WorldWideScience

Sample records for advanced stability control

  1. Advanced Adaptive Particle Swarm Optimization based SVC Controller for Power System Stability

    Directory of Open Access Journals (Sweden)

    Poonam Singhal

    2014-12-01

    Full Text Available The interconnected systems is continually increasing in size and extending over whole geographical regions, it is becoming increasingly more difficult to maintain synchronism between various parts of the power system. This paper work presents an advanced adaptive Particle swarm optimization technique to optimize the SVC controller parameters for enhancement of the steady state stability & overcoming the premature convergence & stagnation problems as in basic PSO algorithm & Particle swarm optimization with shrinkage factor & inertia weight approach (PSO-SFIWA. In this paper SMIB system along with PID damped SVC controller is considered for study. The generator speed deviation is used as an auxiliary signal to SVC, to generate the desired damping. This controller improves the dynamic performance of power system by reducing the steady-state error. The controller parameters are optimized using basic PSO, PSO-SFIWA & Advanced Adaptive PSO. Computational results show that Advanced Adaptive based SVC controller is able to find better quality solution as compare to conventional PSO & PSO-SFIWA Techniques.

  2. Stability and control issues associated with lightly loaded rotors autorotating in high advance ratio flight

    Science.gov (United States)

    Rigsby, James Michael

    Interest in high speed rotorcraft has directed attention toward the slowed-rotor, high advance ratio compound autogyro concept as evidenced by the current DARPA Heliplane project. The behavior of partially unloaded rotors, autorotating at high advance ratio is not well understood and numerous technical issues must be resolved before the vehicle can be realized. Autorotation in helicopters usually indicates an emergency loss of power. For the concept vehicle autorotation is the normal working state of the rotor. The necessity for a reduction in rotor speed with increasing flight speed results in high advance ratio operation where the retreating side of the rotor is dominated by the reverse flow region. Further, rotor speed changes also affect the rotor dynamics and the associated hub moments generated by cyclic flapping. The result is rotor characteristics that vary widely depending on advance ratio. In the present work, rotor behavior is characterized in terms of issues relevant to the control system conceptual design and the rotor impact on the intrinsic vehicle flight dynamics characteristics. A series of trim, stability, and control analyses, based on features inherent in the concept vehicle, are performed. Trends are identified through parametric variation of rotor operating conditions, augmented by inclusion of the sensitivities to blade mass and blade stiffness properties. In this research, non-linear models, including the rotor speed degree of freedom, were created and analyzed with FLIGHTLAB(TM) rotorcraft modeling software. Performance analysis for rotors trimmed to autorotate with zero average hub pitching and rolling moments indicates reduced rotor thrust is achieved primarily through rotor speed reduction at lower shaft incidence angle, and imposing hub moment trim constraints results in a thrust increment sign reversal with collective pitch angle above advance ratio mu ˜ 1.0. Swashplate control perturbations from trim indicate an increase in control

  3. Advanced nonlinear control: Robustness and stability with applications to aircraft flight control systems

    Science.gov (United States)

    Frye, Michael Takaichi

    This dissertation examines the problem of global decentralized control by output feedback for large-scale uncertain nonlinear systems whose subsystems are interconnected not only by their outputs but also by their unmeasurable states. Several innovative techniques will be developed to create decentralized output feedback controllers rendering the closed-loop systems globally asymptotically stable. This is accomplished by extending an output feedback domination design that requires only limited information about the nonlinear system. We will apply our design to lower, upper, and non-triangular nonlinear systems. A time-varying output feedback controller is also constructed for use with large-scale systems that have unknown parameters. Furthermore, a mixed large-scale system consisting of both lower and upper triangular systems is shown to be stabilizable by employing a combined high and low gain domination technique. The significance of our results is that we do not need to have prior information about the nonlinearities of the system. In addition, a new design technique was developed using homogeneous system theory, which allows for the design of nonsmooth controllers and observers to stabilize a class of feedforward system with uncontrollable and unobservable linearization. An example of a large-scale system is a group of autonomous airships performing the function of a temporary mobile cell phone network. An airship mobile cell phone network is a novel solution to the problem of maintaining communication during the advent of extensive damage to the communication infrastructure; be it from a flood, earthquake, hurricane, or terrorist attack. A first principle force-based dynamic model for the Tri-Turbofan Airship was developed and will be discussed in detail. The mathematical model was based on actual flight test data that has been collected at the Gait Analysis and Innovative Technologies Laboratory. This model was developed to research autonomous airship

  4. Euler Technology Assessment - SPLITFLOW Code Applications for Stability and Control Analysis on an Advanced Fighter Model Employing Innovative Control Concepts

    Science.gov (United States)

    Jordan, Keith J.

    1998-01-01

    This report documents results from the NASA-Langley sponsored Euler Technology Assessment Study conducted by Lockheed-Martin Tactical Aircraft Systems (LMTAS). The purpose of the study was to evaluate the ability of the SPLITFLOW code using viscous and inviscid flow models to predict aerodynamic stability and control of an advanced fighter model. The inviscid flow model was found to perform well at incidence angles below approximately 15 deg, but not as well at higher angles of attack. The results using a turbulent, viscous flow model matched the trends of the wind tunnel data, but did not show significant improvement over the Euler solutions. Overall, the predictions were found to be useful for stability and control design purposes.

  5. Recent Advances in Heliogyro Solar Sail Structural Dynamics, Stability, and Control Research

    Science.gov (United States)

    Wilkie, W. Keats; Warren, Jerry E.; Horta, Lucas G.; Lyle, Karen H.; Juang, Jer-Nan; Gibbs, S. Chad; Dowell, Earl H.; Guerrant, Daniel V.; Lawrence, Dale

    2015-01-01

    Results from recent NASA sponsored research on the structural dynamics, stability, and control characteristics of heliogyro solar sails are summarized. Specific areas under investigation include coupled nonlinear finite element analysis of heliogyro membrane blade with solar radiation pressure effects, system identification of spinning membrane structures, and solarelastic stability analysis of heliogyro solar sails, including stability during blade deployment. Recent results from terrestrial 1-g blade dynamics and control experiments on "rope ladder" membrane blade analogs, and small-scale in vacuo system identification experiments with hanging and spinning high-aspect ratio membranes will also be presented. A low-cost, rideshare payload heliogyro technology demonstration mission concept is used as a mission context for these heliogyro structural dynamics and solarelasticity investigations, and is also described. Blade torsional dynamic response and control are also shown to be significantly improved through the use of edge stiffening structural features or inclusion of modest tip masses to increase centrifugal stiffening of the blade structure. An output-only system identification procedure suitable for on-orbit blade dynamics investigations is also developed and validated using ground tests of spinning sub-scale heliogyro blade models. Overall, analytical and experimental investigations to date indicate no intractable stability or control issues for the heliogyro solar sail concept.

  6. Advanced stability control of multi-machine power system by vips apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, A. [Tokyo Univ., Tokyo (Japan). Dept. of Electrical Engineering; Sekine, Y. [Science Univ. of Tokyo, Tokyo (Japan). Dept. of Electrical Engineering

    1994-12-31

    New technology such as synchronized switching and power electronics will make it possible to change the configuration of transmission network, the impedances of transmission lines and the phase angles of voltage in the future power systems. This paper presents a comprehensive power system damping control by power electronics based variable impedance apparatus such as variable series capacitor and high speed phase shifter and also shows a novel switching-over control of transmission lines by synchronized switching for the first awing stability and damping enhancement. The control scheme discussed in this paper is based on an energy function of multi-machine power system and its time derivative. Its effectiveness is demonstrated by digital simulations and eigenvalue analysis in multi-machine test systems. It is demonstrated that multiple switching of transmission lines improves damping in the post-fault conditions. (author) 13 refs., 24 figs., 5 tabs.

  7. Novel Rigid External Distraction Device Improves Stability and Controls the Vector During Midfacial Advancement.

    Science.gov (United States)

    Resnick, Cory M; Rottgers, Stephen Alex; Langenfeld, Christopher C; Mulliken, John B; Padwa, Bonnie L

    2016-06-01

    The major limitation of the rigid external devices currently used for midfacial distraction after subcranial Le Fort III osteotomies is the ductile wire that connects the midface to the device, which makes it difficult to control the vector and force during distraction. The authors describe a novel external appliance that addresses this and other problems of contemporary devices, and application of a custom cranial template that facilitates precise placement of the device to achieve the planned vector of distraction.

  8. MHD stability of advanced tokamak scenarios

    International Nuclear Information System (INIS)

    Tokamak plasmas with a non-monotonic q-profile (current profile) and negative shear in the plasma centre have been associated with improved confinement and large pressure gradients in the region of negative shear. In JET, this regime, has been obtained with pellet injection (the PEP mode) and in DIII-D by ramping the plasma elongation. In JET, the phase of improved confinement is transient and usually ends in a collapse due to an MHD instability which leads to a redistribution of the current and a monotonic q-profile. The infernal mode, which is driven by a large pressure gradient in the region of low shear near the minimum in the q-profile, is the most likely candidate for the observed instability. To extend the transient phase to steady state, control of the shape of the current density profile is essential. The modelling of these advanced tokamak scenarios with a non-monotonic q-profile using non-inductive current drive of lower hybrid waves, fast waves, and neutral beams is discussed elsewhere. The aim is to find suitable initial states and to maintain MHD stability when the plasma β is built up. For this purpose, the robustness of the MHD stability of these configurations is studied with respect to changes in the position and in the depth of the minimum in q, and in the shape of the q and pressure profile. The classes of equilibria chosen for the analysis are based on the modelling of the current-drive schemes for advanced tokamak scenarios in JET. The toroidal ideal and resistive MHD stability code CASTOR is used for the stability calculations. (author) 7 refs., 4 figs

  9. Image stabilization for SWIR advanced optoelectronic device

    Science.gov (United States)

    Schiopu, Paul; Manea, Adrian; Cristea, Ionica; Grosu, Neculai; Craciun, Anca-Ileana; Craciun, Alexandru; Granciu, Dana

    2015-02-01

    At long ranges and under low visibility conditions, Advanced Optoelectronic Device provides the signal-to-noise ratio and image quality in the Short-wave Infra-red - SWIR (wavelengths between 1,1 ÷2,5 μm), significantly better than in the near wave infrared - NWIR and visible spectral bands [1,2]. The quality of image is nearly independent of the polarization in the incoming light, but it is influenced by the relative movement between the optical system and the observer (the operators' handshake), and the movement towards the support system (land and air vehicles). All these make it difficult to detect objectives observation in real time. This paper presents some systems enhance which the ability of observation and sighting through the optical systems without the use of the stands, tripods or other means. We have to eliminate the effect of "tremors of the hands" and the vibration in order to allow the use of optical devices by operators on the moving vehicles on land, on aircraft, or on boats, and to provide additional comfort for the user to track the moving object through the optical system, without losing the control in the process of detection and tracking. The practical applications of stabilization image process, in SWIR, are the most advanced part of the optical observation systems available worldwide [3,4,5]. This application has a didactic nature, because it ensures understanding by the students about image stabilization and their participation in research.

  10. Advanced Control Engineering

    DEFF Research Database (Denmark)

    Zhou, Jianjun

    1999-01-01

    This book is developed as a textbook for the course Advanced Control Engineering. The book is intended for students in mechanical engineering and its aim is to provide an understanding of modern control theory as well as methodologies and applications for state space modeling and design...

  11. Beam Stability at the Advanced Photon Source

    CERN Document Server

    Decker, Glenn

    2005-01-01

    The Advanced Photon Source has been in operation since 1996. Since that time, extensive incremental improvements to orbit stabilization systems have been made. This includes the addition of 80 channels of narrowband rf beam position monitors (bpm's), 40 channels of bending magnet photon bpm's, and most recently the inclusion of 36 insertion device photon bpm's into the orbit correction response matrix. In addition, considerable improvements have been made in the area of power supply regulation, both for the main multipole magnets and the steering corrector magnets. The present status of overall performance will be discussed, including long term pointing stability, reproducibility, and AC beam motion.

  12. Advanced Wavefront Control Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, S S; Brase, J M; Avicola, K; Thompson, C A; Kartz, M W; Winters, S; Hartley, R; Wihelmsen, J; Dowla, F V; Carrano, C J; Bauman, B J; Pennington, D M; Lande, D; Sawvel, R M; Silva, D A; Cooke, J B; Brown, C G

    2001-02-21

    this project, work was performed in four areas (1) advanced modeling tools for deformable mirrors (2) low-order wavefront correctors with Alvarez lenses, (3) a direct phase measuring heterdyne wavefront sensor, and (4) high-spatial-frequency wavefront control using spatial light modulators.

  13. Transient stability and emergency control

    Institute of Scientific and Technical Information of China (English)

    ZHANG XueMin; MEI ShengWei; WU ShengYu

    2009-01-01

    Comparability of emergency control strategies with different instability modes is the key issue to de-cide which control strategy to be implemented. This paper considers that the essential factor causing instability should be used to form a unified standard to assess the effectiveness of control strategies with different instability modes. Thus a switching control stabilization principle was proposed based on elimination of the unbalanced energy between mechanical and electrical energies of generator sets. Along this way, the difficulty of seeking a Lyapunov function was circumvented. According to the prin-ciple, an emergency control algorithm framework was established to handle transient stability as-sessment, control location selection and control amount evaluation. Within the framework, this paper studied instability mode transition, then proposed an algorithm based on prediction function and a new approach to normalized stability margin stemmed from static EEAC method, which can increase com-parability of various control locations. The simulations on the New-England System verified the pro-posed emergency control method for stabilizing transient stability.

  14. Concepts of stability and control

    International Nuclear Information System (INIS)

    The first part of the paper deals with the role transfer functions play in control problems (closed loop, Nyquist stability criterion, sampled data systems and z-transforms; the ''hog cycle''; spring oscillations; Lyapunov functions; the Zubov method; positive-real functions and the Popov criterion; the circle criterion; linear time-delay systems; equations with periodic coefficients; stability of repeated processes). In the second part the author considers the control of systems which are described by partial differential equations (heat-conduction equation; wave equation; control of the heat and the wave equations; parasitic oscillations; noise in linear systems; discrete noise processes). Many examples are given and briefly discussed. (author)

  15. Finite-time stability and control

    CERN Document Server

    Amato, Francesco; Ariola, Marco; Cosentino, Carlo; De Tommasi, Gianmaria

    2014-01-01

    Finite-time stability (FTS) is a more practical concept than classical Lyapunov stability, useful for checking whether the state trajectories of a system remain within pre-specified bounds over a finite time interval. In a linear systems framework, FTS problems can be cast as convex optimization problems and solved by the use of effective off-the-shelf computational tools such as LMI solvers. Finite-time Stability and Control exploits this benefit to present the practical applications of FTS and finite-time control-theoretical results to various engineering fields. The text is divided into two parts: ·         linear systems; and ·         hybrid systems. The building of practical motivating examples helps the reader to understand the methods presented. Finite-time Stability and Control is addressed to academic researchers and to engineers working in the field of robust process control. Instructors teaching graduate courses in advanced control will also find parts of this book useful for the...

  16. Advanced Control of Turbofan Engines

    CERN Document Server

    Richter, Hanz

    2012-01-01

    Advanced Control of Turbofan Engines describes the operational performance requirements of turbofan (commercial)engines from a controls systems perspective, covering industry-standard methods and research-edge advances. This book allows the reader to design controllers and produce realistic simulations using public-domain software like CMAPSS: Commercial Modular Aero-Propulsion System Simulation, whose versions are released to the public by NASA. The scope of the book is centered on the design of thrust controllers for both steady flight and transient maneuvers. Classical control theory is not dwelled on, but instead an introduction to general undergraduate control techniques is provided. This book also: Develops a thorough understanding of the challenges associated with engine operability from a control systems perspective, describing performance demands and operational constraints into the framework and language of modern control theory Presents solid theoretical support for classical and advanced engine co...

  17. Advanced AC Motor Control

    Energy Technology Data Exchange (ETDEWEB)

    Kazmierkowski, M.P. [Institute of Control and Industrial Electronics, Warsaw University of Technology, Warszawa (Poland)

    1997-12-31

    In this paper a review of control methods for high performance PWM inverter-fed induction motor drives is presented. Starting from the description of an induction motor by the help of the space vectors, three basic control strategic are discussed. As first, the most popular Field Oriented Control (FOC) is described. Secondly, the Direct Torque and Flux vector Control (DTFC) method, which - in contrast to FOC - depart from idea of coordinate transformation and analogy with DC motor, is briefly characterized. The last group is based on Feedback Linearization Control (FLC) and can be easy combined with sliding mode control. The simulation and experimental oscillograms that illustrate the performance of the discussed control strategies are shown. (orig.) 35 refs.

  18. Dynamic Stability of Cylindrical Shells under Moving Loads by Applying Advanced Controlling Techniques—Part II: Using Piezo-Stack Control

    Directory of Open Access Journals (Sweden)

    Khaled M. Saadeldin Eldalil

    2009-01-01

    Full Text Available The load acting on the actively controlled cylindrical shell under a transient pressure pulse propelling a moving mass (gun case has been experimentally studied. The concept of using piezoelectric stack and stiffener combination is utilized for damping the tube wall radial and circumferential deforming vibrations, in the correct meeting location timing of the moving mass. The experiment was carried out by using the same stiffened shell tube of the experimental 14 mm gun tube facility which is used in part 1. Using single and double stacks is tried at two pressure levels of low-speed modes, which have response frequencies adapted with the used piezoelectric stacks characteristics. The maximum active damping ratio is occurred at high-pressure level. The radial circumferential strains are measured by using high-frequency strain gage system in phase with laser beam detection system similar to which used in part 1. Time resolved strain measurements of the wall response were obtained, and both precursor and transverse hoop strains have been resolved. A complete comparison had been made between the effect of active controlled and stepped structure cases, which indicate a significant attenuation ratio especially at higher operating pressures.

  19. ADVANCED SULFUR CONTROL CONCEPTS

    Energy Technology Data Exchange (ETDEWEB)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  20. INTEGRATED PLASMA CONTROL FOR ADVANCED TOKAMAKS

    Energy Technology Data Exchange (ETDEWEB)

    HUMPHREYS,D.A; FERRON,J.R; JOHNSON,R.D; LEUER,J.A; PENAFLOR,B.G; WALKER,M.L; WELANDER,A.S; KHAYRUTDINOV,R.R; DOKOUKA,V; EDGELL,D.H; FRANSSON,C.M

    2003-10-01

    OAK-B135 Advanced tokamaks (AT) are distinguished from conventional tokamaks by their high degree of shaping, achievement of profiles optimized for high confinement and stability characteristics, and active stabilization of MHD instabilities to attain high values of normalized beta and confinement. These high performance fusion devices thus require accurate regulation of the plasma boundary, internal profiles, pumping, fueling, and heating, as well as simultaneous and well-coordinated MHD control action to stabilize such instabilities as tearing modes and resistive wall modes. Satisfying the simultaneous demands on control accuracy, reliability, and performance for all of these subsystems requires a high degree of integration in both design and operation of the plasma control system in an advanced tokamak. The present work describes the approach, benefits, and progress made in integrated plasma control with application examples drawn from the DIII-D tokamak. The approach includes construction of plasma and system response models, validation of models against operating experiments, design of integrated controllers which operate in concert with one another as well as with supervisory modules, simulation of control action against off-line and actual machine control platforms, and iteration of the design-test loop to optimize performance.

  1. Arms Control and Strategic Stability

    Institute of Scientific and Technical Information of China (English)

    Hu; Yumin

    2014-01-01

    This essay intends to offer a comment on concepts, trends and attitudes concerning arms control and strategic stability with reference to the current international security situation. It also offers observations from two different perspectives about strategic stability: one proceeds from the concept of universal security and aims to prevent conflicts and instability from disrupting regional and international security environment on which nation states depend so much for their peaceful development; the other starts from maintaining the global leadership by a super power and aiming to contain any challenge that sways or is likely to sway its dominating status. If China and the United States commit themselves to the undertaking of a new type of major powers relationship that stresses win-win cooperation, they will be able to contribute greatly to a stable international security architecture that is good for world peaceful development.

  2. Advances in robust fractional control

    CERN Document Server

    Padula, Fabrizio

    2015-01-01

    This monograph presents design methodologies for (robust) fractional control systems. It shows the reader how to take advantage of the superior flexibility of fractional control systems compared with integer-order systems in achieving more challenging control requirements. There is a high degree of current interest in fractional systems and fractional control arising from both academia and industry and readers from both milieux are catered to in the text. Different design approaches having in common a trade-off between robustness and performance of the control system are considered explicitly. The text generalizes methodologies, techniques and theoretical results that have been successfully applied in classical (integer) control to the fractional case. The first part of Advances in Robust Fractional Control is the more industrially-oriented. It focuses on the design of fractional controllers for integer processes. In particular, it considers fractional-order proportional-integral-derivative controllers, becau...

  3. Attitude control and stabilization technology discipline

    Science.gov (United States)

    Sunkel, John W.

    1990-01-01

    Viewgraphs on attitude control and stabilization technology discipline for the Space Station Freedom are presented. Topics covered include: attitude control technologies for multi-user accommodation; flexible dynamics and control; computational control techniques; and automatic proximity operations.

  4. Advanced Thermal Control Flight Experiment.

    Science.gov (United States)

    Kirkpatrick, J. P.; Brennan, P. J.

    1973-01-01

    The advanced Thermal Control Flight Experiment on the Applications Technology Satellite (ATS-F) will evaluate, for the first time in a space environment, the performance of a feedback-controlled variable conductance heat pipe and a heat pipe thermal diode. In addition, the temperature control aspects of a phase-change material (PCM) will be demonstrated. The methanol/stainless steel feedback-controlled heat pipe uses helium control gas that is stored in a wicked reservoir. This reservoir is electrically heated through a solid state controller that senses the temperature of the heat source directly. The ammonia/stainless steel diode heat pipe uses excess liquid to block heat transfer in the reverse direction. The PCM is octadecane. Design tradeoffs, fabrication problems, and performance during qualification and flight acceptance tests are discussed.

  5. Closed-loop transient stability emergency control

    OpenAIRE

    Ernst, Damien; Pavella, Mania

    2000-01-01

    The question of transient stability control is revisited, various types of controls are identified, and a general approach to closed-loop emergency control is proposed. The focus is on feasibility aspects, general salient features and illustration of stabilization capabilities of an emergency control scheme relying on generation shedding.

  6. Stability of infernal and ballooning modes in advanced tokamak scenarios

    NARCIS (Netherlands)

    Holties, H. A.; Huysmans, G. T. A.; Goedbloed, J. P.; Kerner, W.; Parail, V.V.; Soldner, F. X.

    1996-01-01

    A numerical parameter study has been performed in order to find MHD stable operating regimes for advanced tokamak experiments In this study we have concentrated on internal modes. Ballooning stability and stability with respect to infernal modes are considered. The calculations confirm that pressure

  7. Advances in vaccine stability monitoring technology.

    Science.gov (United States)

    Zweig, Stephen E

    2006-08-14

    Electronic time-temperature indicator (eTTI) monitors can be programmed to exactly follow the stability characteristics of vaccines with a high degree of realism. The monitors have a visual output, enabling vaccine status to be assessed at a glance, and can also output more detailed statistical data. When packaged with vaccine vials in groups of about 10 vials per box, the eTTI can remain with a vaccine throughout most of the vaccine's lifetime. The monitors can detect essentially all cold-chain breaks, and can detect issues, such as inadvertent freezing, that are presently not detected by other vaccine stability monitors such as Vaccine Vial Monitors (VVM). PMID:16759766

  8. Practical stabilization of receding-horizon control

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The purpose of this work is to propose a scheme to stabilize the predictive control systems in the practical stability serse. In the paper, the authors dealt with a general discrete predictive control system xj = f( xj\\t, uj\\t) by using the Lyapunov direct method combining with receding-horizon control technique,and presented a new condition to guarantee the practical stabilization of the systems. With the proposed results, one can design the optimal controllers easily to practically stabilize the predictive control systems.

  9. Advanced gray rod control assembly

    Science.gov (United States)

    Drudy, Keith J; Carlson, William R; Conner, Michael E; Goldenfield, Mark; Hone, Michael J; Long, Jr., Carroll J; Parkinson, Jerod; Pomirleanu, Radu O

    2013-09-17

    An advanced gray rod control assembly (GRCA) for a nuclear reactor. The GRCA provides controlled insertion of gray rod assemblies into the reactor, thereby controlling the rate of power produced by the reactor and providing reactivity control at full power. Each gray rod assembly includes an elongated tubular member, a primary neutron-absorber disposed within the tubular member said neutron-absorber comprising an absorber material, preferably tungsten, having a 2200 m/s neutron absorption microscopic capture cross-section of from 10 to 30 barns. An internal support tube can be positioned between the primary absorber and the tubular member as a secondary absorber to enhance neutron absorption, absorber depletion, assembly weight, and assembly heat transfer characteristics.

  10. Advanced Control of Electrochromic Windows

    OpenAIRE

    Scartezzini, Jean-Louis; Zarkadis, Nikos; Morel, Nicolas

    2013-01-01

    In our research we use the technology of electrochromic (EC) glazing to maximize the use of daylight and minimize the energy consumption in buildings while preserving visual and thermal comfort of the users. We propose an advanced automatic control of EC windows coupled with an anidolic daylighting system (ADS), blinds and dimmable fluorescent lights. EC windows with a visible transmittance range (Tv) of 0.15 – 0.50 were installed on the southern façade of an office room of the LESO experimen...

  11. U31: Vehicle Stability and Dynamics: Electronic Stability Control

    Energy Technology Data Exchange (ETDEWEB)

    Petrolino, Joseph [National Transportation Research Center (NTRC); Spezia, Tony [National Transportation Research Center (NTRC); Arant, Michael [Clemson University; Delorenzis, Damon [Clemson University; LaClair, Tim J [ORNL; Lim, Alvin [Auburn University, Auburn, Alabama; Pape, Doug [Battelle

    2011-01-01

    A team led by NTRCI is working to improve the roll and yaw stability of heavy duty combination trucks through developing stability algorithms, assembling demonstration hardware, and investigating robust wireless communication. Modern electronic stability control (ESC) products automatically slow a vehicle rounding a corner too quickly or apply individual brakes when necessary to improve the steering characteristics of a vehicle. Air brake systems in North America provide no electronic communication between a tractor and semitrailer, limiting the degree to which control systems can be optimized. Prior research has demonstrated stability improvements where dynamic measurements and control commands are communicated between units of a vehicle. Three related activities were undertaken: (1) Develop an algorithm for the optimum yaw and roll control of a combination vehicle. Vehicle state parameters needed to control the vehicle and the proper brake response were determined. An integrated stability control for the tractor and semitrailer requires communication between the two units. Dynamic models were used to assess the algorithm. (2) Implement the ESC algorithm in the laboratory. Hardware components suitable for the harsh environment for measurement, sensor-to-controller communication, and semitrailer-to-tractor communication and brake actuation were specified and assembled as a working system. The goal was to collect the needed vehicle state information, transmit the information to the ESC system, and then actuate the brakes in response to controller commands. (3) Develop a wireless network with the data rate and reliability necessary to communicate dynamic signals for a vehicle stability control system. Adaptive connectivity-aware, multi-hop routing was selected because it can perform in the harsh environment where packet collisions and fading often will exist. The protocol is to give high priority to urgent messages.

  12. Advanced Emissions Control Development Program: Mercury Control

    International Nuclear Information System (INIS)

    McDermott Technology, Inc. (a subsidiary of Babcock ampersand Wilcox) is conducting the Advanced Emissions Control Development Project (AECDP) which is aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (HAPS) from coal-fired electric utility plants. The need for such controls may arise as the US Environmental Protection Agency (EPA) proceeds with implementation of requirements set forth in the Clean Air Act Amendments (CAAA's) of 1990. Promulgation of air toxics emissions regulations for electric utility plants could dramatically impact utilities burning coal, their industrial and residential customers, and the coal industry. AECDP project work will supply the information needed by utilities to respond to potential HAPs regulations in a timely, cost-effective, enviromnentally-sound manner which supports the continued use of the Nation's abundant reserves of coal, such as those in the State of Ohio. The development work is being carried out using the 10 MW Clean Environment Development Facility wherein air toxics emissions control strategies can be developed under controlled conditions. The specific objectives of the project are to (1) measure and understand production and partitioning of air toxics species for a variety of coals, (2) optimize the air toxics removal performance of conventional flue gas cleanup systems, (3) develop advanced air toxics emissions control concepts, (4) develop and validate air toxics emissions measurement and monitoring techniques, and (5) establish a comprehensive, self-consistent air toxics data library. This project is supported by the Department of Energy, the Ohio Coal Development Office within the Ohio Department of Development and Babcock ampersand Wilcox. A comprehensive assessment of HAP emissions from coal-fired electric utility boilers sponsored by the Department of Energy and the Electric Power Research Institute concluded that with the exception of

  13. Advanced Emissions Control Development Program

    Energy Technology Data Exchange (ETDEWEB)

    A.P.Evans; K.E. Redinger; M.J. Holmes

    1998-04-01

    The objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPS), fabric filters (baghouse), and wet flue gas desulfurization. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate and hydrogen chloride. Following the construction and evaluation of a representative air toxics test facility in Phase I, Phase II focused on the evaluation of mercury and several other air toxics emissions. The AECDP is jointly funded by the United States Department of Energy's Federal Energy Technology Center (DOE), the Ohio Coal Development Office within the Ohio Department of Development (oCDO), and Babcock& Wilcox-a McDermott company (B&W).

  14. MATLAB Stability and Control Toolbox Trim and Static Stability Module

    Science.gov (United States)

    Kenny, Sean P.; Crespo, Luis

    2012-01-01

    MATLAB Stability and Control Toolbox (MASCOT) utilizes geometric, aerodynamic, and inertial inputs to calculate air vehicle stability in a variety of critical flight conditions. The code is based on fundamental, non-linear equations of motion and is able to translate results into a qualitative, graphical scale useful to the non-expert. MASCOT was created to provide the conceptual aircraft designer accurate predictions of air vehicle stability and control characteristics. The code takes as input mass property data in the form of an inertia tensor, aerodynamic loading data, and propulsion (i.e. thrust) loading data. Using fundamental nonlinear equations of motion, MASCOT then calculates vehicle trim and static stability data for the desired flight condition(s). Available flight conditions include six horizontal and six landing rotation conditions with varying options for engine out, crosswind, and sideslip, plus three take-off rotation conditions. Results are displayed through a unique graphical interface developed to provide the non-stability and control expert conceptual design engineer a qualitative scale indicating whether the vehicle has acceptable, marginal, or unacceptable static stability characteristics. If desired, the user can also examine the detailed, quantitative results.

  15. Matlab Stability and Control Toolbox: Trim and Static Stability Module

    Science.gov (United States)

    Crespo, Luis G.; Kenny, Sean P.

    2006-01-01

    This paper presents the technical background of the Trim and Static module of the Matlab Stability and Control Toolbox. This module performs a low-fidelity stability and control assessment of an aircraft model for a set of flight critical conditions. This is attained by determining if the control authority available for trim is sufficient and if the static stability characteristics are adequate. These conditions can be selected from a prescribed set or can be specified to meet particular requirements. The prescribed set of conditions includes horizontal flight, take-off rotation, landing flare, steady roll, steady turn and pull-up/ push-over flight, for which several operating conditions can be specified. A mathematical model was developed allowing for six-dimensional trim, adjustable inertial properties, asymmetric vehicle layouts, arbitrary number of engines, multi-axial thrust vectoring, engine(s)-out conditions, crosswind and gyroscopic effects.

  16. Can electronic stability control replace studded tyres?

    Science.gov (United States)

    Elvik, Rune

    2015-12-01

    Based on recent studies, this paper examines whether an increased use of electronic stability control can replace studded tyres. A re-analysis of a study that evaluated the effects on accidents of changes in the use of studded tyres in major cities in Norway is presented. It is found that if all cars have electronic stability control, the use of studded tyres can be reduced to about 15 percent before any increase in the number of accidents occurs. Even if studded tyres were eliminated entirely, any increase in the number of accidents is likely to be considerably smaller than it would have been if electronic stability control had never been invented.

  17. Power system stability modelling, analysis and control

    CERN Document Server

    Sallam, Abdelhay A

    2015-01-01

    This book provides a comprehensive treatment of the subject from both a physical and mathematical perspective and covers a range of topics including modelling, computation of load flow in the transmission grid, stability analysis under both steady-state and disturbed conditions, and appropriate controls to enhance stability.

  18. Preventive and emergency transient stability control

    OpenAIRE

    Ernst, Damien; Ruiz-Vega, Daniel; Pavella, Mania

    2000-01-01

    A unified approach to transient stability closed-loop control is presented. It relies on the general transient stability method called SIME, from which the Preventive and the Emergency SIMEs are derived. The Preventive SIME uses time-domain simulations of plausible contingencies prior to their occurrence, for the online power system monitoring from the control room. The Emergency SIME, on the other hand, uses real-time measurements, acquired on the system power plants after the actual occurre...

  19. Can electronic stability control replace studded tyres?

    DEFF Research Database (Denmark)

    Elvik, Rune

    2015-01-01

    Highlights • Electronic stability control can substitute studded tyres. • This makes it easier to discourage the use of studded tyres. • A certain level of use of studded tyres makes roads less slippery.......Highlights • Electronic stability control can substitute studded tyres. • This makes it easier to discourage the use of studded tyres. • A certain level of use of studded tyres makes roads less slippery....

  20. Stabilized Feedback Control of Unicycle Mobile Robots

    Directory of Open Access Journals (Sweden)

    Khoukhi Amar

    2013-04-01

    Full Text Available In this paper, a stabilized feedback control is designed for a class of unicycle non‐holonomic mobile robots. The approach is based on kinematic polar coordinate transformations. The suggested control scheme allows the robot to achieve stabilized near‐ optimal trajectories, while satisfying the hard constraints of specified initial and final postures (positions and orientations. Simulation experiments showing the effectiveness of the proposed technique are provided and discussed.

  1. Stability and Control of Functional Differential Equations

    CERN Document Server

    Peet, M M

    2006-01-01

    This thesis addresses the question of stability of systems defined by differential equations which contain nonlinearity and delay. In particular, we analyze the stability of a well-known delayed nonlinear implementation of a certain Internet congestion control protocol. We also describe a generalized methodology for proving stability of time-delay systems through the use of semidefinite programming. In Chapters 4 and 5, we consider an Internet congestion control protocol based on the decentralized gradient projection algorithm. For a certain class of utility function, this algorithm was shown to be globally convergent for some sufficiently small value of a gain parameter. Later work gave an explicit bound on this gain for a linearized version of the system. This thesis proves that this bound also implies stability of the original system. In Chapter 7, we describe a general methodology for proving stability of linear time-delay systems by computing solutions to an operator-theoretic version of the Lyapunov ine...

  2. The design of image stabilization control system

    Science.gov (United States)

    Lin, Zhe; Wu, Chunnan; Yu, Fei; Kang, Xiaojun

    2012-09-01

    For high resolution satellite remote sensing cameras, the line of sight (LOS) moving during the image exposure period will cause the modulation transfer function (MTF) degradation and image blurring. Image stabilization component is used to improve image quality by actively removing the apparent motion induced by vibration, tracking error and attitude instability. In this paper, the image stabilization component is considered as a kind of closed loop servo control system, and the image stabilization effect is converted into servo control performance for research. Firstly, the image stabilization servo loop scheme and transfer function model are constructed and the LOS jitter is considered as the output of a stochastic system derived by white-Gaussian noise. Based on the proposed model, the demand boundary of jitter rejection function is described, and the design criterion to be satisfied is obtained according to the requirement of image stabilization performance. And then, a discrete Kalman estimation algorithm is introduced into image stabilization servo loop to filter out the noise caused by pixel-shift sensor (PSS) and compensate for the delay due to the PSS measurement. Based on the given design criterion, the control law is designed by using the output of Kalman filter. The computer simulation is achieved to show that the proposed control strategy can significantly improve the image stabilization performance.

  3. OPTIMAL CONTROL FOR ELECTRIC VEHICLE STABILIZATION

    Directory of Open Access Journals (Sweden)

    MARIAN GAICEANU

    2016-01-01

    Full Text Available This main objective of the paper is to stabilize an electric vehicle in optimal manner to a step lane change maneuver. To define the mathematical model of the vehicle, the rigid body moving on a plane is taken into account. An optimal lane keeping controller delivers the adequate angles in order to stabilize the vehicle’s trajectory in an optimal way. Two degree of freedom linear bicycle model is adopted as vehicle model, consisting of lateral and yaw motion equations. The proposed control maintains the lateral stability by taking the feedback information from the vehicle transducers. In this way only the lateral vehicle’s dynamics are enough to considerate. Based on the obtained linear mathematical model the quadratic optimal control is designed in order to maintain the lateral stability of the electric vehicle. The numerical simulation results demonstrate the feasibility of the proposed solution.

  4. CISM International Advanced School on Stability Problems of Steel Structures

    CERN Document Server

    Skaloud, M

    1992-01-01

    This volume strives to give complete information about the main aspect of the stability behaviour of steel structures and their members. In following this objective, the volume presents a complete scientific background (profiting from the fact that the authors of the individual parts of the publication have personally been very active in the corresponding field of research for an extended period of time now), but also establishes recommendations, procedures and formulae for practical design. The significance of the volume may be seen in its challenging current concepts of stability analysis, encouraging progress in the field and thereby establishing an advanced basis for more reliable and economical design.

  5. Advanced Functional Polymers for Increasing the Stability of Organic Photovoltaics

    DEFF Research Database (Denmark)

    Bundgaard, Eva; Helgesen, Martin; Carlé, Jon Eggert;

    2013-01-01

    The development of new advanced polymers for improving the stability of OPV is reviewed. Two main degradation pathways for the OPV active layer are identified: photochemically initiated reactions primarily starting in the side chains and morphological changes that degrade the important nanostruct...... and processing methods have only been utilized in small‐scale devices prepared by standard techniques such as spin coating, but a few cases of roll‐to‐roll processed solar cells with heat‐cleaved side chains are discussed....

  6. Can electronic stability control replace studded tyres?

    Science.gov (United States)

    Elvik, Rune

    2015-12-01

    Based on recent studies, this paper examines whether an increased use of electronic stability control can replace studded tyres. A re-analysis of a study that evaluated the effects on accidents of changes in the use of studded tyres in major cities in Norway is presented. It is found that if all cars have electronic stability control, the use of studded tyres can be reduced to about 15 percent before any increase in the number of accidents occurs. Even if studded tyres were eliminated entirely, any increase in the number of accidents is likely to be considerably smaller than it would have been if electronic stability control had never been invented. PMID:26436487

  7. MASCOT - MATLAB Stability and Control Toolbox

    Science.gov (United States)

    Kenny, Sean; Crespo, Luis

    2011-01-01

    MASCOT software was created to provide the conceptual aircraft designer accurate predictions of air vehicle stability and control characteristics. The code takes as input mass property data in the form of an inertia tensor, aerodynamic loading data, and propulsion (i.e. thrust) loading data. Using fundamental non-linear equations of motion, MASCOT then calculates vehicle trim and static stability data for any desired flight condition. Common predefined flight conditions are included. The predefined flight conditions include six horizontal and six landing rotation conditions with varying options for engine out, crosswind and sideslip, plus three takeoff rotation conditions. Results are displayed through a unique graphical interface developed to provide stability and control information to the conceptual design engineers using a qualitative scale indicating whether the vehicle has acceptable, marginal, or unacceptable static stability characteristics. This software allows the user to prescribe the vehicle s CG location, mass, and inertia tensor so that any loading configuration between empty weight and maximum take-off weight can be analyzed. The required geometric and aerodynamic data as well as mass and inertia properties may be entered directly, passed through data files, or come from external programs such as Vehicle Sketch Pad (VSP). The current version of MASCOT has been tested with VSP used to compute the required data, which is then passed directly into the program. In VSP, the vehicle geometry is created and manipulated. The aerodynamic coefficients, stability and control derivatives, are calculated using VorLax, which is now available directly within VSP. MASCOT has been written exclusively using the technical computing language MATLAB . This innovation is able to bridge the gap between low-fidelity conceptual design and higher-fidelity stability and control analysis. This new tool enables the conceptual design engineer to include detailed static stability

  8. Advanced Coordinating Control System for Power Plant

    Institute of Scientific and Technical Information of China (English)

    WU Peng; WEI Shuangying

    2006-01-01

    The coordinating control system is popular used in power plant. This paper describes the advanced coordinating control by control methods and optimal operation, introduces their principals and features by using the examples of power plant operation. It is wealthy for automation application in optimal power plant operation.

  9. Advanced methods for BWR transient and stability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, A.; Wehle, F.; Opel, S.; Velten, R. [AREVA, AREVA NP, Erlangen (Germany)

    2008-07-01

    The design of advanced Boiling Water Reactor (BWR) fuel assemblies and cores is governed by the basic requirement of safe, reliable and flexible reactor operation with optimal fuel utilization. AREVA NP's comprehensive steady state and transient BWR methodology allows the designer to respond quickly and effectively to customer needs. AREVA NP uses S-RELAP5/RAMONA as the appropriate methodology for the representation of the entire plant. The 3D neutron kinetics and thermal-hydraulics code has been developed for the prediction of system, fuel and core behavior and provides additional margins for normal operation and transients. Of major importance is the extensive validation of the methodology. The validation is based on measurements at AREVA NP's test facilities, and comparison of the predictions with a great wealth of measured data gathered from BWR plants during many years of operation. Three of the main fields of interest are stability analysis, operational transients and reactivity initiated accidents (RIAs). The introduced 3D methodology for operational transients shows significant margin regarding the operational limit of critical power ratio, which has been approved by the German licensing authority. Regarding BWR stability a large number of measurements at different plants under various conditions have been performed and successfully post-calculated with RAMONA. This is the basis of reliable pre-calculations of the locations of regional and core-wide stability boundaries. (authors)

  10. AMTD - Advanced Mirror Technology Development in Mechanical Stability

    Science.gov (United States)

    Knight, J. Brent

    2015-01-01

    Analytical tools and processes are being developed at NASA Marshal Space Flight Center in support of the Advanced Mirror Technology Development (AMTD) project. One facet of optical performance is mechanical stability with respect to structural dynamics. Pertinent parameters are: (1) the spacecraft structural design, (2) the mechanical disturbances on-board the spacecraft (sources of vibratory/transient motion such as reaction wheels), (3) the vibration isolation systems (invariably required to meet future science needs), and (4) the dynamic characteristics of the optical system itself. With stability requirements of future large aperture space telescopes being in the lower Pico meter regime, it is paramount that all sources of mechanical excitation be considered in both feasibility studies and detailed analyses. The primary objective of this paper is to lay out a path to perform feasibility studies of future large aperture space telescope projects which require extreme stability. To get to that end, a high level overview of a structural dynamic analysis process to assess an integrated spacecraft and optical system is included.

  11. Advanced methods for BWR transient and stability analysis

    International Nuclear Information System (INIS)

    The design of advanced Boiling Water Reactor (BWR) fuel assemblies and cores is governed by the basic requirement of safe, reliable and flexible reactor operation with optimal fuel utilization. AREVA NP's comprehensive steady state and transient BWR methodology allows the designer to respond quickly and effectively to customer needs. AREVA NP uses S-RELAP5/RAMONA as the appropriate methodology for the representation of the entire plant. The 3D neutron kinetics and thermal-hydraulics code has been developed for the prediction of system, fuel and core behavior and provides additional margins for normal operation and transients. Of major importance is the extensive validation of the methodology. The validation is based on measurements at AREVA NP's test facilities, and comparison of the predictions with a great wealth of measured data gathered from BWR plants during many years of operation. Three of the main fields of interest are stability analysis, operational transients and reactivity initiated accidents (RIAs). The introduced 3D methodology for operational transients shows significant margin regarding the operational limit of critical power ratio, which has been approved by the German licensing authority. Regarding BWR stability a large number of measurements at different plants under various conditions have been performed and successfully post-calculated with RAMONA. This is the basis of reliable pre-calculations of the locations of regional and core-wide stability boundaries. (authors)

  12. Renewable source controls for grid stability.

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, Raymond Harry; Elliott, Ryan Thomas; Neely, Jason C.; Silva Monroy, Cesar Augusto; Schoenwald, David Alan; Grant, Lisa

    2012-12-01

    The goal of this study was to evaluate the small signal and transient stability of the Western Electric- ity Coordinating Council (WECC) under high penetrations of renewable energy, and to identify control technologies that would improve the system performance. The WECC is the regional entity responsible for coordinating and promoting bulk electric system reliability in the Western Interconnection. Transient stability is the ability of the power system to maintain synchronism after a large disturbance while small signal stability is the ability of the power system to maintain synchronism after a small disturbance. Tran- sient stability analysis usually focuses on the relative rotor angle between synchronous machines compared to some stability margin. For this study we employed generator speed relative to system speed as a metric for assessing transient stability. In addition, we evaluated the system transient response using the system frequency nadir, which provides an assessment of the adequacy of the primary frequency control reserves. Small signal stability analysis typically identi es the eigenvalues or modes of the system in response to a disturbance. For this study we developed mode shape maps for the di erent scenarios. Prony analysis was applied to generator speed after a 1.4 GW, 0.5 second, brake insertion at various locations. Six di erent WECC base cases were analyzed, including the 2022 light spring case which meets the renewable portfolio standards. Because of the di culty in identifying the cause and e ect relationship in large power system models with di erent scenarios, several simulations were run on a 7-bus, 5-generator system to isolate the e ects of di erent con gurations. Based on the results of the study, for a large power system like the WECC, incorporating frequency droop into wind/solar systems provides a larger bene t to system transient response than replacing the lost inertia with synthetic inertia. From a small signal stability

  13. Criteria for Stability of Linear Control Systems

    Institute of Scientific and Technical Information of China (English)

    JING Yan-fei; HUANG Ting-zhu

    2007-01-01

    As it is well known, it is significant to know whether a matrix is an H-matrix or not in stability analysis of linear control systems. However, to distinguish H-matrices is difficult in real applications. In this paper, a practical extension of the sufficient conditions for H-matrices is investigated under some conditions. A larger scale of H-matrices which can be judged by the proposed method is shown by the numerical examples.

  14. Liapunov Functions and Stability in Control Theory

    CERN Document Server

    Bacciotti, Andrea

    2005-01-01

    This book presents a modern and self-contained treatment of the Liapunov method for stability analysis, in the framework of mathematical nonlinear control theory. A Particular focus is on the problem of the existence of Liapunov functions (converse Liapunov theorems) and their regularity, whose interest is especially motivated by applications to automatic control. Many recent results in this area have been collected and presented in a systematic way. Some of them are given in extended, unified versions and with new, simpler proofs. In the 2nd edition of this successful book several new section

  15. Advances and applications in nonlinear control systems

    CERN Document Server

    Volos, Christos

    2016-01-01

    The book reports on the latest advances and applications of nonlinear control systems. It consists of 30 contributed chapters by subject experts who are specialized in the various topics addressed in this book. The special chapters have been brought out in the broad areas of nonlinear control systems such as robotics, nonlinear circuits, power systems, memristors, underwater vehicles, chemical processes, observer design, output regulation, backstepping control, sliding mode control, time-delayed control, variables structure control, robust adaptive control, fuzzy logic control, chaos, hyperchaos, jerk systems, hyperjerk systems, chaos control, chaos synchronization, etc. Special importance was given to chapters offering practical solutions, modeling and novel control methods for the recent research problems in nonlinear control systems. This book will serve as a reference book for graduate students and researchers with a basic knowledge of electrical and control systems engineering. The resulting design proce...

  16. JPL Advanced Thermal Control Technology Roadmap - 2012

    Science.gov (United States)

    Birur, Gaj; Rodriguez, Jose I.

    2012-01-01

    NASA's new emphasis on human exploration program for missions beyond LEO requires development of innovative and revolutionary technologies. Thermal control requirements of future NASA science instruments and missions are very challenging and require advanced thermal control technologies. Limited resources requires organizations to cooperate and collaborate; government, industry, universities all need to work together for the successful development of these technologies.

  17. Test Stability of Uster Advanced Fiber Information System(AFIS)

    Institute of Scientific and Technical Information of China (English)

    CAO Ji-peng; LU Qin; SUN Peng-zi; LIU Hua-pu

    2010-01-01

    To study test stability of Advanced Fiber Information System(AFIS),card sliver produced in two experiments(12 plans in each experiment)were tested by AFIS.By a statistic analysis of the test results,the number of test times that can get a reliable test reliability(hereinafter this number of test times is referred to as Reliable Test Times,RTT)of test parameters and the coefficient of variation(CV%)values of 30 test results of each experiment plan were obtained.It's concluded that some parameters,such as length,seed coat nep(SCN)size,nep size and immature fiber content(IFC),etc. are very reliable by a test of ten or more times,but other parameters,such as SCN content,trash content,and visible foreign matter(VFM)content,etc.are not reliable until they are tested over 100 times.

  18. Control of time stability of scintillation spectrometer of delayed coincidences

    CERN Document Server

    Morozov, V A

    2002-01-01

    Paper describes a system to control time stability of a two-detector plastic scintillation spectrometer of three-dimensional coincides. A two-reference control system incorporates a light guide base delay optical line, two light diodes and a two-channel generator of nanosecond pulses. A distinguishing feature of the design system is application of one delay line to form both advance and delay time signal as to the real coincidences in the studied radioactive source. The designed system of control enables to measure periods of half-decay of nuclei excited states within 40-100 ns range ensuring control of position of coincidence curve gravity centers within 4 ps limits

  19. Advances in chaos theory and intelligent control

    CERN Document Server

    Vaidyanathan, Sundarapandian

    2016-01-01

    The book reports on the latest advances in and applications of chaos theory and intelligent control. Written by eminent scientists and active researchers and using a clear, matter-of-fact style, it covers advanced theories, methods, and applications in a variety of research areas, and explains key concepts in modeling, analysis, and control of chaotic and hyperchaotic systems. Topics include fractional chaotic systems, chaos control, chaos synchronization, memristors, jerk circuits, chaotic systems with hidden attractors, mechanical and biological chaos, and circuit realization of chaotic systems. The book further covers fuzzy logic controllers, evolutionary algorithms, swarm intelligence, and petri nets among other topics. Not only does it provide the readers with chaos fundamentals and intelligent control-based algorithms; it also discusses key applications of chaos as well as multidisciplinary solutions developed via intelligent control. The book is a timely and comprehensive reference guide for graduate s...

  20. COMSAC: Computational Methods for Stability and Control. Part 1

    Science.gov (United States)

    Fremaux, C. Michael (Compiler); Hall, Robert M. (Compiler)

    2004-01-01

    Work on stability and control included the following reports:Introductory Remarks; Introduction to Computational Methods for Stability and Control (COMSAC); Stability & Control Challenges for COMSAC: a NASA Langley Perspective; Emerging CFD Capabilities and Outlook A NASA Langley Perspective; The Role for Computational Fluid Dynamics for Stability and Control:Is it Time?; Northrop Grumman Perspective on COMSAC; Boeing Integrated Defense Systems Perspective on COMSAC; Computational Methods in Stability and Control:WPAFB Perspective; Perspective: Raytheon Aircraft Company; A Greybeard's View of the State of Aerodynamic Prediction; Computational Methods for Stability and Control: A Perspective; Boeing TacAir Stability and Control Issues for Computational Fluid Dynamics; NAVAIR S&C Issues for CFD; An S&C Perspective on CFD; Issues, Challenges & Payoffs: A Boeing User s Perspective on CFD for S&C; and Stability and Control in Computational Simulations for Conceptual and Preliminary Design: the Past, Today, and Future?

  1. An advanced control system for a next generation transport aircraft

    Science.gov (United States)

    Rising, J. J.; Davis, W. J; Grantham, W. D.

    1983-01-01

    The use of modern control theory to develop a high-authority stability and control system for the next generation transport aircraft is described with examples taken from work performed on an advanced pitch active control system (PACS). The PACS was configured to have short-period and phugoid modes frequency and damping characteristics within the shaded S-plane areas, column force gradients with set bounds and with constant slope, and a blended normal-acceleration/pitch rate time history response to a step command. Details of the control law, feedback loop, and modal control syntheses are explored, as are compensation for the feedback gain, the deletion of the velocity signal, and the feed-forward compensation. Scheduling of the primary and secondary gains are discussed, together with control law mechanization, flying qualities analyses, and application on the L-1011 aircraft.

  2. Advanced control architecture for autonomous vehicles

    Science.gov (United States)

    Maurer, Markus; Dickmanns, Ernst D.

    1997-06-01

    An advanced control architecture for autonomous vehicles is presented. The hierarchical architecture consists of four levels: a vehicle level, a control level, a rule-based level and a knowledge-based level. A special focus is on forms of internal representation, which have to be chosen adequately for each level. The control scheme is applied to VaMP, a Mercedes passenger car which autonomously performs missions on German freeways. VaMP perceives the environment with its sense of vision and conventional sensors. It controls its actuators for locomotion and attention focusing. Modules for perception, cognition and action are discussed.

  3. MERCURY CONTROL WITH ADVANCED HYBRID PARTICULATE COLLECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Ye Zhuang; Stanley J. Miller

    2005-05-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addressed Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and has been marketed as the Advanced Hybrid{trademark} filter by Gore. The Advanced Hybrid{trademark} filter combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The Advanced Hybrid{trademark} filter provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The Advanced Hybrid{trademark} filter also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas--solid contactor. The objective of the project was to demonstrate 90% total mercury control in the Advanced Hybrid{trademark} filter at a lower cost than current mercury control estimates. The approach included bench-scale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW (9000-acfm) scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control

  4. Fault zone roughness controls slip stability

    Science.gov (United States)

    Harbord, Christopher; Nielsen, Stefan; De Paola, Nicola

    2016-04-01

    Fault roughness is an important control factor in the mechanical behaviour of fault zones, in particular the frictional slip stability and subsequent earthquake nucleation. Despite this, there is little experimental quantification as to the effects of varying roughness upon rate- and state-dependant friction (RSF). Utilising a triaxial deformation apparatus and a novel adaptation of the direct shear methodology to simulate initially bare faults in Westerly Granite, we performed a series of velocity step frictional sliding experiments. Initial root mean square roughnesses (Sq) was varied in the range 6x10-7 - 2.4x10-5 m. We also investigated the effects upon slip stability of normal stress variation in the range σn = 30 - 200 MPa, and slip velocity between 0.1 - 10 μm s-1. A transition from stable sliding to unstable slip (manifested by stick-slip and slow slip events) was observed, depending on the parameter combination, thus covering the full spectrum of fault slip behaviours. At low normal stress (σn = 30MPa) smooth faults (Sqstress drops on slow slip events upon velocity increase), with strongly velocity weakening friction. When normal stress is increased to intermediate values (σn = 100 - 150 MPa), smooth faults (Sqstress (σn = 200 MPa) a transition from unstable to stable sliding is observed for smooth faults, which is not expected using RSF stability criteria. At all conditions sliding is stable for rough faults (Sq> 1x10-6 m). We find that instability can develop when the ratio of fault to critical stiffness kf kc > 10, or, alternatively, even when a - b > 0 at σn = 150MPa, suggesting that bare surfaces may not strictly obey the R+S stability condition. Additionally we present white light interferometry and SEM analysis of experimentally deformed samples which provide information about the distribution and physical nature of frictional contact. Significantly we suggest that bare fault surfaces may require a different stability criterion (based on

  5. Critical Interactions in the Stability Control Region of Tropomyosin

    OpenAIRE

    Kirwan, J. Paul; Robert S Hodges

    2010-01-01

    Our laboratory has recently described a stability control region in the two-stranded α-helical coiled-coil α-tropomyosin that accounts for overall protein stability but is not required for folding. We have used a synthetic peptide approach to investigate three stability control sites within the stability control region (residues 97-118). Two of the sites, electrostatic cluster 1 (97-104, EELDRAQE) and electrostatic cluster 2 (112-118, KLEEAEK), feature sequences with unusually high charge den...

  6. Disturbance observer based control system design for inertially stabilized platform

    Science.gov (United States)

    Wu, Chunnan; Lin, Zhe

    2012-09-01

    Inertially stabilized platform (ISP) is indispensable for various imaging systems to segregate the base angular movement and achieve high LOS (Line-Of-Sight) stability. The disturbance rejection ratio and command following performance are of primary concern in designing ISP control systems. In this paper, the redundant gimbals ISP system is considered and it is shown to experience complex disturbance and parameter variation during operation. To meet advanced LOS stabilization requirement, a disturbance observer based (DOB) dual-loop controller design for ISP is proposed of which the DOB is the internal-loop. Using a nominal plant model and a low-pass filter, the disturbance signal is estimated and used as a cancellation input added to the current command of torque motor. If the DOB works well, the disturbance torque and mismatch between nominal plant and actual plant will be compensated and the internal-loop will behave as nominal model parameters. On the other hand, the external-loop will be designed for nominal model parameters to meet stabilization requirements. This paper will mainly focus on the DOB design method. Since the low-pass filter of DOB determines the sensitivity and complementary sensitivity function as will be shown in this paper, designing the filter is the most important consideration. In this paper, an optimal low-pass filter design method is proposed. The method is intuitive, simple to implement and allows on-line tuning. Simulation results show the performance enhancement of our control structure in the presence of disturbance and measurement noise.

  7. Controlling air toxics through advanced coal preparation

    Energy Technology Data Exchange (ETDEWEB)

    Straszheim, W.E.; Buttermore, W.H.; Pollard, J.L. [Iowa State Univ., Ames, IA (United States)

    1995-11-01

    This project involves the assessment of advanced coal preparation methods for removing trace elements from coal to reduce the potential for air toxic emissions upon combustion. Scanning electron microscopy-based automated image analysis (SEM-AIA) and advanced washability analyses are being applied with state-of-the-art analytical procedures to predict the removal of elements of concern by advanced column flotation and to confirm the effectiveness of preparation on the quality of quantity of clean coal produced. Specific objectives are to maintain an acceptable recovery of combustible product, while improving the rejection of mineral-associated trace elements. Current work has focused on determining conditions for controlling column flotation system across its operating range and on selection and analysis of samples for determining trace element cleanability.

  8. COMSAC: Computational Methods for Stability and Control. Part 2

    Science.gov (United States)

    Fremaux, C. Michael (Compiler); Hall, Robert M. (Compiler)

    2004-01-01

    The unprecedented advances being made in computational fluid dynamic (CFD) technology have demonstrated the powerful capabilities of codes in applications to civil and military aircraft. Used in conjunction with wind-tunnel and flight investigations, many codes are now routinely used by designers in diverse applications such as aerodynamic performance predictions and propulsion integration. Typically, these codes are most reliable for attached, steady, and predominantly turbulent flows. As a result of increasing reliability and confidence in CFD, wind-tunnel testing for some new configurations has been substantially reduced in key areas, such as wing trade studies for mission performance guarantees. Interest is now growing in the application of computational methods to other critical design challenges. One of the most important disciplinary elements for civil and military aircraft is prediction of stability and control characteristics. CFD offers the potential for significantly increasing the basic understanding, prediction, and control of flow phenomena associated with requirements for satisfactory aircraft handling characteristics.

  9. Stability notions and Lyapunov functions for sliding mode control systems

    OpenAIRE

    Polyakov, Andrey; Fridman, Leonid

    2014-01-01

    The paper surveys mathematical tools required for stability and convergence analysis of modern sliding mode control systems. Elements of Filippov theory of differential equations with discontinuous right-hand sides and its recent extensions are discussed. Stability notions (from Lyapunov stability (1982) to fixed-time stability (2012)) are observed. Concepts of generalized derivatives and non-smooth Lyapunov functions are considered. The generalized Lyapunov theorems for stability analysis an...

  10. LHC beam stability and feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Steinhagen, Ralph

    2007-07-20

    This report presents the stability and the control of the Large Hadron Collider's (LHC) two beam orbits and their particle momenta using beam-based feedback systems. The aim of this report is to contribute to a safe and reliable LHC commissioning and machine operation. The first part of the analysis gives an estimate of the expected sources of orbit and energy perturbations that can be grouped into environmental sources, machine-inherent sources and machine element failures: the slowest perturbation due to ground motion, tides, temperature fluctuations of the tunnel and other environmental influences are described in this report by a propagation model that is both qualitatively and quantitatively supported by geophone and beam motion measurements at LEP and other CERN accelerators. The second part of this analysis deals with the control of the two LHC beams' orbit and energy through automated feedback systems. Based on the reading of the more than 1056 beam position monitors (BPMs) that are distributed over the machine, a central global feedback controller calculates new deflection strengths for the more than 1060 orbit corrector magnets (CODs) that are suitable to correct the orbit and momentum around their references. this report provides an analysis of the BPMs and CODs involved in the orbit and energy feedback. The BPMs are based on a wide-band time normaliser circuit that converts the transverse beam position reading of each individual particle bunch into two laser pulses that are separated by a time delay and transmitted through optical fibres to an acquisition card that converts the delay signals into a digital position. A simple error model has been tested and compared to the measurement accuracy of LHC type BPMs, obtained through beam-based measurements in the SPS. The average beam position is controlled through 1060 superconducting and individually powered corrector dipole magnets. The proposed correction in 'time-domain' consists of a

  11. LHC beam stability and feedback control

    International Nuclear Information System (INIS)

    This report presents the stability and the control of the Large Hadron Collider's (LHC) two beam orbits and their particle momenta using beam-based feedback systems. The aim of this report is to contribute to a safe and reliable LHC commissioning and machine operation. The first part of the analysis gives an estimate of the expected sources of orbit and energy perturbations that can be grouped into environmental sources, machine-inherent sources and machine element failures: the slowest perturbation due to ground motion, tides, temperature fluctuations of the tunnel and other environmental influences are described in this report by a propagation model that is both qualitatively and quantitatively supported by geophone and beam motion measurements at LEP and other CERN accelerators. The second part of this analysis deals with the control of the two LHC beams' orbit and energy through automated feedback systems. Based on the reading of the more than 1056 beam position monitors (BPMs) that are distributed over the machine, a central global feedback controller calculates new deflection strengths for the more than 1060 orbit corrector magnets (CODs) that are suitable to correct the orbit and momentum around their references. this report provides an analysis of the BPMs and CODs involved in the orbit and energy feedback. The BPMs are based on a wide-band time normaliser circuit that converts the transverse beam position reading of each individual particle bunch into two laser pulses that are separated by a time delay and transmitted through optical fibres to an acquisition card that converts the delay signals into a digital position. A simple error model has been tested and compared to the measurement accuracy of LHC type BPMs, obtained through beam-based measurements in the SPS. The average beam position is controlled through 1060 superconducting and individually powered corrector dipole magnets. The proposed correction in 'time-domain' consists of a proportional

  12. Space Testing of the Advanced Instrument Controller

    OpenAIRE

    Goforth, Todd; Cannon, Scott; Lyke, James

    1999-01-01

    An extremely compact, low-power instrument controller and data processor system has been developed for space-based applications. Known as the Advanced Instrument Controller (AIC), this hybrid device contains both digital and analog components in a package less than 5 grams in weight and 2 x 3 em in size. Based on the Intel 8031151 microprocessor and implementing a superset of the 8051 instruction set, the AIC supports l28k of SRAM, 128k of EEPROM, four 8-bit parallel ports, six serial communi...

  13. Recent Advances in Iterative Learning Control

    Institute of Scientific and Technical Information of China (English)

    Jian-Xin XU

    2005-01-01

    In this paper we review the recent advances in three sub-areas of iterative learning control (ILC): 1) linear ILC for linear processes, 2) linear ILC for nonlinear processes which are global Lipschitz continuous (GLC), and 3) nonlinear ILC for general nonlinear processes. For linear processes, we focus on several basic configurations of linear ILC. For nonlinear processes with linear ILC, we concentrate on the design and transient analysis which were overlooked and missing for a long period. For general classes of nonlinear processes, we demonstrate nonlinear ILC methods based on Lyapunov theory, which is evolving into a new control paradigm.

  14. Frequency domain stability criteria for fractional-order control systems

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper concerns about the frequency domain stability criteria for fractional-order control systems. On the base of characteristics of the fractional-order equations solutions, we consider the Nyquist stability criterion in a wider sense and obtain a more common means to analyze the stability of fractional-order systems conveniently. Finally, this paper illustrates the generalized stability criteria with an example to show the effect of the parameters variation on the fractional-order control systems.

  15. External stability of fractional-order control systems

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The external stability of fractional-order continuous linear control systems described by both fractional-order state space representation and fractional-order transfer function is mainly investigated in this paper. In terms of Lyapunov's stability theory and the stability analysis of the integer-order linear control systems, the definitions of external stability for fractional-order control systems are presented. By using the theorems of the Mittag-Leffler function in two parameters, the necessary and sufficient conditions of external stability are directly derived. The illustrative examples and simulation results are also given.

  16. Control Design for an Inertially Stabilized Rifle

    OpenAIRE

    White, Alejandro Porter

    2007-01-01

    An alternate method for mitigating the depredating physiological affects of a soldiers marksmanship due to combat stressors can be achieved through the design and implementation of a active stabilization system for small arms weapons. The INSTAR system is an innovative active stabilization system designed to decouple the shooterâ s disturbance effects from the barrel movement. The INSTAR system uses an piezoelectric actuator separating the barrel of the rifle from its stock to stabilize barr...

  17. Effects of STATCOM Control Mode on Voltage Stability

    Directory of Open Access Journals (Sweden)

    Ali Zare

    2008-12-01

    Full Text Available STATCOM is one of the most popular devices that been used for voltage stability. There has been no report on the effect of SATCOM control mode on voltage stability. It is very important to understand which parameters and what value of these parameters affect the voltage stability. The results of previous studies have shown that the STATCOM have considerable effects on the improvement of voltage stability, but there have not been any investigations on the effects of the control mode of STATCOM on the voltage stability. This paper deals with the effect of the STATCOM control mode on voltage stability. Simulation results on the IEEE 30-bus test system show the high effect of the STATCOM control mode on voltage stability.

  18. Refinements and Tests of an Advanced Controller to Mitigate Fatigue Loads in the Controls Advanced Research Turbine: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A.; Fleming, P.

    2010-12-01

    Wind turbines are complex, nonlinear, dynamic systems forced by aerodynamic, gravitational, centrifugal, and gyroscopic loads. The aerodynamics of wind turbines are nonlinear, unsteady, and complex. Turbine rotors are subjected to a complicated 3-D turbulent wind inflow field, with imbedded coherent vortices that drive fatigue loads and reduce lifetime. Design of control algorithms for wind turbines must account for multiple control objectives. Future large multi-megawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, while maximizing energy capture. Active damping should be added to these dynamic structures to maintain stability for operation in a complex environment. At the National Renewable Energy Laboratory (NREL), we have designed, implemented, and tested advanced controls to maximize energy extraction and reduce structural dynamic loads. These control designs are based on linear models of the turbine that are generated by specialized modeling software. In this paper, we present field test results of an advanced control algorithm to mitigate blade, tower, and drivetrain loads in Region 3.

  19. JPL Advanced Thermal Control Technology Roadmap - 2008

    Science.gov (United States)

    Birur, Gaj

    2008-01-01

    This slide presentation reviews the status of thermal control technology at JPL and NASA.It shows the active spacecraft that are in vairous positions in the solar syatem, and beyond the solar system and the future missions that are under development. It then describes the challenges that the past missions posed with the thermal control systems. The various solutions that were implemented duirng the decades prior to 1990 are outlined. A review of hte thermal challenges of the future misions is also included. The exploration plan for Mars is then reviewed. The thermal challenges of the Mars Rovers are then outlined. Also the challenges of systems that would be able to be used in to explore Venus, and Titan are described. The future space telescope missions will also need thermal control technological advances. Included is a review of the thermal requirements for manned missions to the Moon. Both Active and passive technologies that have been used and will be used are reviewed. Those that are described are Mechanically Pumped Fluid Loops (MPFL), Loop Heat Pipes, an M3 Passive Cooler, Heat Siwtch for Space and Mars surface applications, phase change material (PCM) technology, a Gas Gap Actuateor using ZrNiH(x), the Planck Sorption Cooler (PCS), vapor compression -- Hybrid two phase loops, advanced pumps for two phase cooling loops, and heat pumps that are lightweight and energy efficient.

  20. Advances in dynamical systems and control

    CERN Document Server

    Zgurovsky, Mikhail

    2016-01-01

    Focused on recent advances, this book covers theoretical foundations as well as various applications. It presents modern mathematical modeling approaches to the qualitative and numerical analysis of solutions for complex engineering problems in physics, mechanics, biochemistry, geophysics, biology and climatology. Contributions by an international team of respected authors bridge the gap between abstract mathematical approaches, such as applied methods of modern analysis, algebra, fundamental and computational mechanics, nonautonomous and stochastic dynamical systems on the one hand, and practical applications in nonlinear mechanics, optimization, decision making theory and control theory on the other. As such, the book will be of interest to mathematicians and engineers working at the interface of these fields. .

  1. Stabilization control of a bumblebee in hovering and forward flight

    Institute of Scientific and Technical Information of China (English)

    Yan Xiong; Mao Sun

    2009-01-01

    Our previous study shows that the hovering and forward flight of a bumblebee do not have inherent stabil-ity (passive stability). But the bumblebees are observed to fly stably. Stabilization control must have been applied. In this study, we investigate the longitudinal stabilization con-trol of the bumblebee. The method of computational fluid dynamics is used to compute the control derivatives and the techniques of eigenvalue and eigenvector analysis and modal decomposition are used for solving the equations of motion. Controllability analysis shows that at all flight speeds consid-ered, although inherently unstable, the flight is controllable. By feedbacking the state variables, i.e. vertical and horizon-tal velocities, pitching rate and pitch angle (which can be measured by the sensory system of the insect), to produce changes in stroke angle and angle of attack of the wings, the flight can be stabilized, explaining why the bumblebees can fly stably even if they are passively unstable.

  2. Quantized stabilization of wireless networked control systems with packet losses.

    Science.gov (United States)

    Qu, Feng-Lin; Hu, Bin; Guan, Zhi-Hong; Wu, Yong-Hong; He, Ding-Xin; Zheng, Ding-Fu

    2016-09-01

    This paper considers stabilization of discrete-time linear systems, where wireless networks exist for transmitting the sensor and controller information. Based on Markov jump systems, we show that the coarsest quantizer that stabilizes the WNCS is logarithmic in the sense of mean square quadratic stability and the stabilization of this system can be transformed into the robust stabilization of an equivalent uncertain system. Moreover, a method of optimal quantizer/controller design in terms of linear matrix inequality is presented. Finally, a numerical example is provided to illustrate the effectiveness of the developed theoretical results.

  3. Advanced Wavefront Sensing and Control Testbed (AWCT)

    Science.gov (United States)

    Shi, Fang; Basinger, Scott A.; Diaz, Rosemary T.; Gappinger, Robert O.; Tang, Hong; Lam, Raymond K.; Sidick, Erkin; Hein, Randall C.; Rud, Mayer; Troy, Mitchell

    2010-01-01

    The Advanced Wavefront Sensing and Control Testbed (AWCT) is built as a versatile facility for developing and demonstrating, in hardware, the future technologies of wave front sensing and control algorithms for active optical systems. The testbed includes a source projector for a broadband point-source and a suite of extended scene targets, a dispersed fringe sensor, a Shack-Hartmann camera, and an imaging camera capable of phase retrieval wavefront sensing. The testbed also provides two easily accessible conjugated pupil planes which can accommodate the active optical devices such as fast steering mirror, deformable mirror, and segmented mirrors. In this paper, we describe the testbed optical design, testbed configurations and capabilities, as well as the initial results from the testbed hardware integrations and tests.

  4. Stabilization of MIMO Time Delay System Using Hybrid Controller of Internal Model Control and Feedforward Control

    OpenAIRE

    Faramarz Asharif; Tamaki, Shiro; Nagado, Tsutomu; NAGATA, TOMOKAZU; Mohammad Reza Alsharif

    2010-01-01

    In this paper, we aim to stabilization the unstable system by loop shaping method. Moreover after stabilizing the system we need to modify the system which is unstable due to time-delay element by Internal Model Controller with feed forward considering the uncertainty of control object and time-delay el. Time-delay will occur during the long distance communication. Therefore, when control object is located in distance, the transmitted reference signal will be delayed. For this reason even tho...

  5. Transients in quasi-controllable systems. Overshooting, stability and instability

    CERN Document Server

    Kozyakin, V S; Pokrovskii, A V

    2009-01-01

    Families of regimes for control systems are studied possessing the so called quasi-controllability property that is similar to the Kalman controllability property. A new approach is proposed to estimate the degree of transients overshooting in quasi-controllable systems. This approach is conceptually related with the principle of bounded regimes absence in the absolute stability problem. Its essence is in obtaining of constructive a priori bounds for degree of overshooting in terms of the so called quasi-controllability measure. It is shown that relations between stability, asymptotic stability and instability for quasi-controllable systems are similar to those for systems described by linear differential or difference equations in the case when the leading eigenvalue of the corresponding matrix is simple. The results are applicable for analysis of transients, classical absolute stability problem, stability problem for desynchronized systems and so on.

  6. Computation of robustly stabilizing PID controllers for interval systems.

    Science.gov (United States)

    Matušů, Radek; Prokop, Roman

    2016-01-01

    The paper is focused on the computation of all possible robustly stabilizing Proportional-Integral-Derivative (PID) controllers for plants with interval uncertainty. The main idea of the proposed method is based on Tan's (et al.) technique for calculation of (nominally) stabilizing PI and PID controllers or robustly stabilizing PI controllers by means of plotting the stability boundary locus in either P-I plane or P-I-D space. Refinement of the existing method by consideration of 16 segment plants instead of 16 Kharitonov plants provides an elegant and efficient tool for finding all robustly stabilizing PID controllers for an interval system. The validity and relatively effortless application of presented theoretical concepts are demonstrated through a computation and simulation example in which the uncertain mathematical model of an experimental oblique wing aircraft is robustly stabilized. PMID:27350931

  7. Stabilization of nonlinear systems based on robust control Lyapunov function

    Institute of Scientific and Technical Information of China (English)

    CAI Xiu-shan; HAN Zheng-zhi; LU Gan-yun

    2007-01-01

    This paper deals with the robust stabilization problem for a class of nonlinear systems with structural uncertainty. Based on robust control Lyapunov function, a sufficient and necessary condition for a function to be a robust control Lyapunov function is given. From this condition, simply sufficient condition for the robust stabilization (robust practical stabilization) is deduced. Moreover, if the equilibrium of the closed-loop system is unique, the existence of such a robust control Lyapunov function will also imply robustly globally asymptotical stabilization. Then a continuous state feedback law can be constructed explicitly. The simulation shows the effectiveness of the method.

  8. Power system stabilizers based on modern control techniques

    Energy Technology Data Exchange (ETDEWEB)

    Malik, O.P.; Chen, G.P.; Zhang, Y.; El-Metwally, K. [Calgary Univ., AB (Canada). Dept. of Electrical and Computer Engineering

    1994-12-31

    Developments in digital technology have made it feasible to develop and implement improved controllers based on sophisticated control techniques. Power system stabilizers based on adaptive control, fuzzy logic and artificial networks are being developed. Each of these control techniques possesses unique features and strengths. In this paper, the relative performance of power systems stabilizers based on adaptive control, fuzzy logic and neural network, both in simulation studies and real time tests on a physical model of a power system, is presented and compared to that of a fixed parameter conventional power system stabilizer. (author) 16 refs., 45 figs., 3 tabs.

  9. Stability of Controlled Hamilton Systems Excited by Gaussian White Noise

    Institute of Scientific and Technical Information of China (English)

    SHANG Mei; GUO Yong-xin; MEI Feng-xiang

    2008-01-01

    A new method is introduced in this paper. This method can be used to study the stability of controlled holonomic Hamilton systems under disturbance of Gaussian white noise. At first, the motion equation of controlled holonomic Hamilton systems excited by Gaussian noise is formulated. A theory to stabilize the system is provided. Finally, one example is given to illustrate the application procedures.

  10. ABSOLUTE STABILITY OF GENERAL LURIE DISCRETE NONLINEAR CONTROL SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    GAN Zuoxin; HAN Jingqing; ZHAO Suxia; WU Yongxian

    2002-01-01

    In the present paper, the absolute stability of general Lurie discrete nonlinear control systems has been discussed by Lyapunov function approach. A sufficient condition of absolute stability for the general Lurie discrete nonlinear control systems is derived, and some necessary and sufficient conditions are obtained in special cases. Meanwhile, we give a simple example to illustrate the effectiveness of the results.

  11. Control Lyapunov Stabilization of Nonlinear Systems with Structural Uncertainty

    Institute of Scientific and Technical Information of China (English)

    CAI Xiu-shan; HAN Zheng-zhi; TANG Hou-jun

    2005-01-01

    This paper deals with global stabilization problem for the nonlinear systems with structural uncertainty.Based on control Lyapunov function, a sufficient and necessary condition for the globally and asymptotically stabilizing the equailibrium of the closed system is given. Moreovery, an almost smooth state feedback control law is constructed. The simulation shows the effectiveness of the method.

  12. Prototyping Advanced Control Systems on FPGA

    Directory of Open Access Journals (Sweden)

    Simard Stéphane

    2009-01-01

    Full Text Available In advanced digital control and mechatronics, FPGA-based systems on a chip (SoCs promise to supplant older technologies, such as microcontrollers and DSPs. However, the tackling of FPGA technology by control specialists is complicated by the need for skilled hardware/software partitioning and design in order to match the performance requirements of more and more complex algorithms while minimizing cost. Currently, without adequate software support to provide a straightforward design flow, the amount of time and efforts required is prohibitive. In this paper, we discuss our choice, adaptation, and use of a rapid prototyping platform and design flow suitable for the design of on-chip motion controllers and other SoCs with a need for analog interfacing. The platform consists of a customized FPGA design for the Amirix AP1000 PCI FPGA board coupled with a multichannel analog I/O daughter card. The design flow uses Xilinx System Generator in Matlab/Simulink for system design and test, and Xilinx Platform Studio for SoC integration. This approach has been applied to the analysis, design, and hardware implementation of a vector controller for 3-phase AC induction motors. It also has contributed to the development of CMC's MEMS prototyping platform, now used by several Canadian laboratories.

  13. Advances in stability theory at the end of the 20th century

    CERN Document Server

    Martynyuk, AA

    2003-01-01

    This volume presents surveys and research papers on various aspects of modern stability theory, including discussions on modern applications of the theory, all contributed by experts in the field. The volume consists of four sections that explore the following directions in the development of stability theory: progress in stability theory by first approximation; contemporary developments in Lyapunov''s idea of the direct method; the stability of solutions to periodic differential systems; and selected applications. Advances in Stability Theory at the End of the 20th Century will interest postgraduates and researchers in engineering fields as well as those in mathematics.

  14. Response Based Emergency Control System for Power System Transient Stability

    OpenAIRE

    Huaiyuan Wang; Baohui Zhang; Zhiguo Hao

    2015-01-01

    A transient stability control system for the electric power system composed of a prediction method and a control method is proposed based on trajectory information. This system, which is independent of system parameters and models, can detect the transient stability of the electric power system quickly and provide the control law when the system is unstable. Firstly, system instability is detected by the characteristic concave or convex shape of the trajectory. Secondly, the control method is...

  15. Stabilization control of a bumblebee in hovering and forward flight

    Science.gov (United States)

    Xiong, Yan; Sun, Mao

    2009-02-01

    Our previous study shows that the hovering and forward flight of a bumblebee do not have inherent stability (passive stability). But the bumblebees are observed to fly stably. Stabilization control must have been applied. In this study, we investigate the longitudinal stabilization control of the bumblebee. The method of computational fluid dynamics is used to compute the control derivatives and the techniques of eigenvalue and eigenvector analysis and modal decomposition are used for solving the equations of motion. Controllability analysis shows that at all flight speeds considered, although inherently unstable, the flight is controllable. By feedbacking the state variables, i.e. vertical and horizontal velocities, pitching rate and pitch angle (which can be measured by the sensory system of the insect), to produce changes in stroke angle and angle of attack of the wings, the flight can be stabilized, explaining why the bumblebees can fly stably even if they are passively unstable.

  16. Modified stabilization method for the tibial tuberosity advancement technique: a biomechanical study

    Directory of Open Access Journals (Sweden)

    Bruno Testoni Lins

    2009-04-01

    Full Text Available The present study aimed to determine biomechanical alterations resultant from a modification in the fixation method of the tibial tuberosity advancement technique (TTA, originally described for stabilization of the cranial cruciate-deficient stifle. Ten adult mongrel dogs weighing 25-30kg were used. After euthanasia, performed for reasons unrelated to this study, the hind limbs were distributed into two groups: G1 operated (n=10 and G2 control (n=10, represented by the contralateral limb. The operated hind limbs were orthopedically, goniometrically and radiographically evaluated, sequentially at four moments: moment 1, in intact joints; moment 2, after cranial cruciate desmotomy; moment 3, after surgical stabilization of the stifle joint using modified TTA; and moment 4, after caudal cruciate ligament desmotomy. The tibial tuberosity was stabilized by one shaft screw craniocaudally and a titanium cage inserted at the osteotomy site. The position of the patellar tendon at 90° in relation to the tibial plateau allowed cranial tibial thrust force neutralization, despite cranial drawer motion maintenance in all dogs. The biomechanical tests confirm the viability of the tibial tuberosity fixation method and support future clinical trials to validate the technique.

  17. Advanced Emissions Control Development Program: Phase III

    Energy Technology Data Exchange (ETDEWEB)

    G.T. Amrhein; R.T. Bailey; W. Downs; M.J. Holmes; G.A. Kudlac; D.A. Madden

    1999-07-01

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. The project goal is to effectively control air toxic emissions through the use of conventional flue gas clean-up equipment such as electrostatic precipitators (ESPs), fabric filters (baghouses - BH), and wet flue gas desulfurization systems (WFGD). Development work concentrated on the capture of trace metals, fine particulate, hydrogen chloride and hydrogen fluoride, with an emphasis on the control of mercury. The AECDP project is jointly funded by the US Department of Energy's Federal Energy Technology Center (DOE), the Ohio Coal Development Office within the Ohio Department of Development (OCDO), and Babcock and Wilcox, a McDermott company (B and W). This report discusses results of all three phases of the AECDP project with an emphasis on Phase III activities. Following the construction and evaluation of a representative air toxics test facility in Phase I, Phase II focused on characterization of the emissions of mercury and other air toxics and the control of these emissions for typical operating conditions of conventional flue gas clean-up equipment. Some general comments that can be made about the control of air toxics while burning a high-sulfur bituminous coal are as follows: (1) particulate control devices such as ESP's and baghouses do a good job of removing non-volatile trace metals, (2) particulate control devices (ESPs and baghouses) effectively remove the particulate-phase mercury, but the particulate-phase mercury was only a small fraction of the total for the coals tested, (3) wet scrubbing can effectively remove hydrogen chloride and hydrogen fluoride, and (4) wet scrubbers show good potential for the removal of mercury when operated under certain conditions, however, for certain applications, system enhancements can be required to achieve

  18. A STABILITY THEOREM FOR CONSTRAINED OPTIMAL CONTROL PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    M.H. Farag

    2004-01-01

    This paper presents the stability of difference approximations of an optimal control problem for a quasilinear parabolic equation with controls in the coefficients, boundary conditions and additional restrictions. The optimal control problem has been convered to one of the optimization problem using a penalty function technique. The difference approximations problem for the considered problem is obtained. The estimations of stability of the solution of difference approximations problem are proved. The stability estimation of the solution of difference approximations problem by the controls is obtained.

  19. Stabilizing unstable steady states using multiple delay feedback control.

    Science.gov (United States)

    Ahlborn, Alexander; Parlitz, Ulrich

    2004-12-31

    Feedback control with different and independent delay times is introduced and shown to be an efficient method for stabilizing fixed points (equilibria) of dynamical systems. In comparison to other delay based chaos control methods multiple delay feedback control is superior for controlling steady states and works also for relatively large delay times (sometimes unavoidable in experiments due to system dead times). To demonstrate this approach for stabilizing unstable fixed points we present numerical simulations of Chua's circuit and a successful experimental application for stabilizing a chaotic frequency doubled Nd-doped yttrium aluminum garnet laser.

  20. Fault Tolerant Control: A Simultaneous Stabilization Result

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Blondel, V.D.

    2004-01-01

    This paper discusses the problem of designing fault tolerant compensators that stabilize a given system both in the nominal situation, as well as in the situation where one of the sensors or one of the actuators has failed. It is shown that such compensators always exist, provided that the system...

  1. Improvement of Transient Stability using Fuzzy Logic Controlled SMES

    Directory of Open Access Journals (Sweden)

    D. Harikrishna

    2011-12-01

    Full Text Available In this paper, the transient stability of an electric power system is improved by fuzzy logic controlled superconducting magnetic energy storage (SMES. The effectiveness of the proposed fuzzy controlled SMES is compared with a conventional proportional integral (PI controlled SMES. In addition to it a comparison between the fuzzy controlled SMES and fuzzy controlled braking resistor (BR is also carried out. The simulation results show that under 3 phase fault, the fuzzy controlled SMES performance is better than PI controlled SMES. Furthermore, the performance of SMES is better than that of BR. The proposed method provides a very simple and effective means of improvement of transient stability.

  2. Predictive Control for Visual Servo Stabilization of Nonholonomic Mobile Robots

    Institute of Scientific and Technical Information of China (English)

    CAO Zheng-Cai; YIN Long-Jie; FU Yi-Li; LIU Tian-Long

    2013-01-01

    Visual servo stabilization of nonholonomic mobile robots has gained extensive attention.However,currently,the solution of the problem does not consider both the visibility constraints and the actuator limitations,so the designed controller is difficult to realize satisfactory performance in practical application.In this paper,a predictive controller for the visual servo stabilization of a mobile robot is presented.Firstly,a kinematic predictive stabilization controller utilized to generate the command of velocity is introduced.Then,in order to make the actual velocity of the mobile robot asymptotically approach to the desired one,a dynamic predictive controller is designed.The proposed predictive controller can deal with the constraints easily.Finally,several simulations are performed,and the results illustrate that the proposed control scheme is effective to solve the visual servo stabilization problem.

  3. Power system transient stability preventive and emergency control

    OpenAIRE

    Ruiz-Vega, Daniel; Wehenkel, Louis; Ernst, Damien; Pizano-Martinez, Alejandro; Fuerte-Esquivel, Claudio

    2014-01-01

    A general approach to real-time transient stability control is described, yielding various complementary techniques: pure preventive, open loop emergency, and closed loop emergency controls. Recent progress in terms of a global transient stability constrained optimal power flow are presented, yielding in a scalable nonlinear programming formulation which allows to take near-optimal decisions for preventive control with a computing budget corresponding only to a few runs of standard optimal po...

  4. Hybrid stabilizing control on a real mobile robot

    NARCIS (Netherlands)

    Oelen, Wilco; Berghuis, Harry; Nijmeijer, Henk; Canudas de Wit, Carlos

    1995-01-01

    To establish empirical verification of a stabilizing controller for nonholonomic systems, the authors implement a hybrid control concept on a 2-DOF mobile robot. Practical issues of velocity control are also addressed through a velocity controller which transforms the mobile robot to a new system wi

  5. An advanced precision analysis of the SM vacuum stability

    CERN Document Server

    Bednyakov, A V

    2016-01-01

    The talk is devoted to the problem of stability of the Standard Model vacuum. The effective potential for the Higgs field, which can potentialy exhibit additional, deeper minimum, is considered as a convenient tool for addressing the problem. Different methods and approximations used to calculate the potential are considered. Special attention is paid to the renomalization-group approach that allows one to carry out three-loop analysis of the problem. By means of an explicit gauge-independent procedure the absolute stability bounds on the observed Higgs and top-quark masses are derived. The importance of high-order corrections is demonstrated. In addition, potential metastablity of the SM is discussed together with modifications of the analysis due to some New Physics.

  6. Robust Stabilization of Nonlinear Systems with Uncertain Varying Control Coefficient

    Directory of Open Access Journals (Sweden)

    Zaiyue Yang

    2014-01-01

    Full Text Available This paper investigates the stabilization problem for a class of nonlinear systems, whose control coefficient is uncertain and varies continuously in value and sign. The study emphasizes the development of a robust control that consists of a modified Nussbaum function to tackle the uncertain varying control coefficient. By such a method, the finite-time escape phenomenon has been prevented when the control coefficient is crossing zero and varying its sign. The proposed control guarantees the asymptotic stabilization of the system and boundedness of all closed-loop signals. The control performance is illustrated by a numerical simulation.

  7. Survey, alignment, and beam stability at the Advanced Light Source

    International Nuclear Information System (INIS)

    This paper describes survey and alignment at the Lawrence Berkeley Laboratories Advanced Light Source (ALS) accelerators from 1993 to 1997. The ALS is a third generation light source requiring magnet alignment to within 150 microns. To accomplish this, a network of monuments was established and maintained. Monthly elevation surveys show the movement of the floor over time. Inclinometers have recently been employed to give real time information about magnet, vacuum tank and magnet girder motion in the ALS storage ring

  8. Predictive PI control and its robust stability analysis

    Institute of Scientific and Technical Information of China (English)

    Ren Zhengyun; Zhang Hong; Shao Huihe

    2005-01-01

    It is difficult to analyze robust BIBO stability of predictive PI (PPI) control system due to the time delay of process. A novel technique for stability analysis of this kind of system is proposed in this paper. The state space form of PPI control system is given, and its characteristic polynomial is derived by a simple method, so the robust BIBO stability analysis of this kind of system is also the analysis of corresponding characteristic polynomial. Applying Kharitonov theorem and edge theorem, the BIBO stability can be judged for arbitrarily given process parameter intervals. The system robust stability with variable process parameters is described respectively, and some beneficial conclusions for the design of PPI controller are obtained.

  9. Improvement of Transient Stability using Fuzzy Logic Controlled SMES

    OpenAIRE

    D Harikrishna; N.V. Srikanth; Y. Chandrasekhar

    2011-01-01

    In this paper, the transient stability of an electric power system is improved by fuzzy logic controlled superconducting magnetic energy storage (SMES). The effectiveness of the proposed fuzzy controlled SMES is compared with a conventional proportional integral (PI) controlled SMES. In addition to it a comparison between the fuzzy controlled SMES and fuzzy controlled braking resistor (BR) is also carried out. The simulation results show that under 3 phase fault, the fuzzy controlled SMES per...

  10. Hybrid stabilizing control on a real mobile robot

    OpenAIRE

    Oelen, Wilco; Berghuis, Harry; Nijmeijer, Henk; Canudas De Wit, Carlos

    1995-01-01

    To establish empirical verification of a stabilizing controller for nonholonomic systems, the authors implement a hybrid control concept on a 2-DOF mobile robot. Practical issues of velocity control are also addressed through a velocity controller which transforms the mobile robot to a new system with linear and angular velocity inputs. Experiments in the physical meaning of different controller components provide insights which result in significant improvements in controller performance

  11. On stabilizing PI controller ranges for multivariable systems

    Energy Technology Data Exchange (ETDEWEB)

    Lin Chong [Institute of Complexity Science, Qingdao University, Qingdao, Shandong 266071 (China); Wang Qingguo; He Yong [Department of Electrical and Computer Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260 (Singapore); Wen Guilin [State Key Laboratory of Advanced Design and Manufactory for Vehicle Body, Hunan University, College of Mechanical and Automotive Engineering, Hunan University, Changsha, Hunan 410082 (China)], E-mail: wenguilin@yahoo.com.cn; Han Xu; Li Guangyao; Zhong Zhihua [State Key Laboratory of Advanced Design and Manufactory for Vehicle Body, Hunan University, College of Mechanical and Automotive Engineering, Hunan University, Changsha, Hunan 410082 (China)

    2008-02-15

    The paper is concerned with the computation of the maximum ranges of stabilizing proportional-integral (PI) controllers for multiple-input and multiple-output (MIMO) systems. A time-domain scheme is proposed by converting the considered problem to a robust stability problem for a polytopic system. An algorithm based on linear matrix inequality (LMI) is established to find the maximum ranges.

  12. Passive stability and active control in a rhythmic task

    NARCIS (Netherlands)

    Wei, Kunlin; Dijkstra, Tjeerd M. H.; Sternad, Dagmar

    2007-01-01

    Rhythmically bouncing a ball with a racket is a task that affords passively stable solutions as demonstrated by stability analyses of a mathematical model of the task. Passive stability implies that no active control is needed as errors die out without requiring corrective actions. Empirical results

  13. Delay-dependent stability and stabilization criteria of networked control systems with multiple time-delays

    Institute of Scientific and Technical Information of China (English)

    Huaicheng YAN; Xinhan HUANG; Min WANG

    2006-01-01

    This paper deals with the problem of delay-dependent stability and stabilization for networked control systems(NCSs)with multiple time-delays. In view of multi-input and multi-output(MIMO) NCSs with many independent sensors and actuators, a continuous time model with distributed time-delays is proposed. Utilizing the Lyapunov stability theory combined with linear matrix inequalities(LMIs) techniques, some new delay-dependent stability criteria for NCSs in terms of generalized Lyapunov matrix equation and LMIs are derived. Stabilizing controller via state feedback is formulated by solving a set of LMIs. Compared with the reported methods, the proposed methods give a less conservative delay bound and more general results. Numerical example and simulation show that the methods are less conservative and more effective.

  14. Ervaringen met Advanced Cruise Control (ACC) in een korte praktijkproef.

    NARCIS (Netherlands)

    Oei, H.-l.

    2003-01-01

    Experiences with Advanced Cruise Control in traffic; a limited experiment. Advanced Cruise Control (ACC) is an ordinary cruise control in which the desired speed is installed manually, but in which the headway time to the vehicle in front is also taken into account. If the headway time becomes less

  15. Solar Dynamic Power System Stability Analysis and Control

    Science.gov (United States)

    Momoh, James A.; Wang, Yanchun

    1996-01-01

    The objective of this research is to conduct dynamic analysis, control design, and control performance test of solar power system. Solar power system consists of generation system and distribution network system. A bench mark system is used in this research, which includes a generator with excitation system and governor, an ac/dc converter, six DDCU's and forty-eight loads. A detailed model is used for modeling generator. Excitation system is represented by a third order model. DDCU is represented by a seventh order system. The load is modeled by the combination of constant power and constant impedance. Eigen-analysis and eigen-sensitivity analysis are used for system dynamic analysis. The effects of excitation system, governor, ac/dc converter control, and the type of load on system stability are discussed. In order to improve system transient stability, nonlinear ac/dc converter control is introduced. The direct linearization method is used for control design. The dynamic analysis results show that these controls affect system stability in different ways. The parameter coordination of controllers are recommended based on the dynamic analysis. It is concluded from the present studies that system stability is improved by the coordination of control parameters and the nonlinear ac/dc converter control stabilize system oscillation caused by the load change and system fault efficiently.

  16. Power System Stabilizer Based on Global Fuzzy Sliding Mode Control

    OpenAIRE

    Nechadi, E.; Harmas, M. N.

    2013-01-01

    —Power systems stability is enhanced through a novel stabiliser developed around a fuzzy sliding mode approach. First, sliding mode control is applied to selected operating point based models of a power system separately then fuzzy logic is used to form a global model encompassing the separate subsystems, thus leading to a fuzzy sliding mode power system control. Stability is insured through Lyapunov synthesis. Severe operating conditions are used in a simulation study to test the validity of...

  17. Stability of the Electroweak Vacuum: Gauge Independence and Advanced Precision.

    Science.gov (United States)

    Bednyakov, A V; Kniehl, B A; Pikelner, A F; Veretin, O L

    2015-11-13

    We perform a manifestly gauge-independent analysis of the vacuum stability in the standard model including two-loop matching, three-loop renormalization group evolution, and pure QCD corrections through four loops. All these ingredients are exact, except that light-fermion masses are neglected. We in turn apply the criterion of nullifying the Higgs self-coupling and its beta function in the modified minimal-subtraction scheme and a recently proposed consistent method for determining the true minimum of the effective Higgs potential that also avoids gauge dependence. Exploiting our knowledge of the Higgs-boson mass, we derive an upper bound on the pole mass of the top quark by requiring that the standard model be stable all the way up to the Planck mass scale and conservatively estimate the theoretical uncertainty. This bound is compatible with the Monte Carlo mass quoted by the Particle Data Group at the 1.3σ level. PMID:26613431

  18. Stabilizing model predictive control for constrained nonlinear distributed delay systems.

    Science.gov (United States)

    Mahboobi Esfanjani, R; Nikravesh, S K Y

    2011-04-01

    In this paper, a model predictive control scheme with guaranteed closed-loop asymptotic stability is proposed for a class of constrained nonlinear time-delay systems with discrete and distributed delays. A suitable terminal cost functional and also an appropriate terminal region are utilized to achieve asymptotic stability. To determine the terminal cost, a locally asymptotically stabilizing controller is designed and an appropriate Lyapunov-Krasoskii functional of the locally stabilized system is employed as the terminal cost. Furthermore, an invariant set for locally stabilized system which is established by using the Razumikhin Theorem is used as the terminal region. Simple conditions are derived to obtain terminal cost and terminal region in terms of Bilinear Matrix Inequalities. The method is illustrated by a numerical example.

  19. Blocking TLR2 activity diminishes and stabilizes advanced atherosclerotic lesions in apolipoprotein E-deficient mice

    Institute of Scientific and Technical Information of China (English)

    Xiao-xing WANG; Xiao-xi LV; Jia-ping WANG; Hui-min YAN; Zi-yan WANG; Han-zhi LIU; Xiao-ming FU

    2013-01-01

    Aim:Toll-like receptor 2 (TLR2) signaling plays a critical role in the initiation of atherosclerosis.The aim of this study was to investigate whether blocking TLR2 activity could produce therapeutic effects on advanced atherosclerosis.Methods:Forty-week old apolipoprotein E-deficient (ApoE-/-) mice fed on a normal diet were intravenously injected with a TLR2-neutralizing antibody or with an isotype-matched IgG for 18 weeks.Double-knockout ApoE-/-Tlr2-/-mice were taken as a positive control.At the end of the treatments,the plasma lipid levels were measured,and the plaque morphology,pro-inflammatory cytokines expression and apoptosis in arteries were analyzed.In the second part of this study,6-week old ApoE-/-and ApoE-/-Tlr2-/-mice fed on a high-cholesterol diet for 12 to 24 weeks,the expression levels of TLR2 and apoptotic markers in arteries were examined.Results:Blockade of TLR2 activity with TLR2-neutralizing antibody or knockout of Tlr2 gene did not alter the plasma lipid levels in ApoE-/-mice.However,the pharmacologic and genetic manipulations significantly reduced the plaque size and vessel stenosis,and increased plaque stability in the brachiocephalic arteries.The protective effects of TLR2 antagonism were associated with the suppressed expression of pro-inflammatory cytokines IL-6 and TNF-α and the inactivation of transcription factors NF-KB and Stat3.In addition,blocking TLR2 activity attenuated ER stress-induced macrophage apoptosis in the brachiocephalic arteries,which could promote the resolution of necrotic cores in advanced atherosclerosis.Moreover,high-cholesterol diet more prominently accelerated atherosclerotic formation and increased the expression of pro-apoptotic protein CHOP and apoptosis in ApoE-/-mice than in ApoE-/-Tlr2-/-mice.Conclusion:The pharmacologic or genetic blockade of TLR2 activity diminishes and stabilizes advanced atherosclerotic lesions in ApoE-/-mice.Thus,targeting TLR2 signaling may be a promising therapeutic strategy against

  20. Sampled-Data State Feedback Stabilization of Boolean Control Networks.

    Science.gov (United States)

    Liu, Yang; Cao, Jinde; Sun, Liangjie; Lu, Jianquan

    2016-04-01

    In this letter, we investigate the sampled-data state feedback control (SDSFC) problem of Boolean control networks (BCNs). Some necessary and sufficient conditions are obtained for the global stabilization of BCNs by SDSFC. Different from conventional state feedback controls, new phenomena observed the study of SDSFC. Based on the controllability matrix, we derive some necessary and sufficient conditions under which the trajectories of BCNs can be stabilized to a fixed point by piecewise constant control (PCC). It is proved that the global stabilization of BCNs under SDSFC is equivalent to that by PCC. Moreover, algorithms are given to construct the sampled-data state feedback controllers. Numerical examples are given to illustrate the efficiency of the obtained results.

  1. Response Based Emergency Control System for Power System Transient Stability

    Directory of Open Access Journals (Sweden)

    Huaiyuan Wang

    2015-11-01

    Full Text Available A transient stability control system for the electric power system composed of a prediction method and a control method is proposed based on trajectory information. This system, which is independent of system parameters and models, can detect the transient stability of the electric power system quickly and provide the control law when the system is unstable. Firstly, system instability is detected by the characteristic concave or convex shape of the trajectory. Secondly, the control method is proposed based on the analysis of the slope of the state plane trajectory when the power system is unstable. Two control objectives are provided according to the methods of acquiring the far end point: one is the minimal cost to restore the system to a stable state; the other one is the minimal cost to limit the maximum swing angle. The simulation indicates that the mentioned transient stability control system is efficient.

  2. Optimal boundary control and boundary stabilization of hyperbolic systems

    CERN Document Server

    Gugat, Martin

    2015-01-01

    This brief considers recent results on optimal control and stabilization of systems governed by hyperbolic partial differential equations, specifically those in which the control action takes place at the boundary.  The wave equation is used as a typical example of a linear system, through which the author explores initial boundary value problems, concepts of exact controllability, optimal exact control, and boundary stabilization.  Nonlinear systems are also covered, with the Korteweg-de Vries and Burgers Equations serving as standard examples.  To keep the presentation as accessible as possible, the author uses the case of a system with a state that is defined on a finite space interval, so that there are only two boundary points where the system can be controlled.  Graduate and post-graduate students as well as researchers in the field will find this to be an accessible introduction to problems of optimal control and stabilization.

  3. Applications of Computational Methods for Dynamic Stability and Control Derivatives

    Science.gov (United States)

    Green, Lawrence L.; Spence, Angela M.

    2004-01-01

    Initial steps in the application o f a low-order panel method computational fluid dynamic (CFD) code to the calculation of aircraft dynamic stability and control (S&C) derivatives are documented. Several capabilities, unique to CFD but not unique to this particular demonstration, are identified and demonstrated in this paper. These unique capabilities complement conventional S&C techniques and they include the ability to: 1) perform maneuvers without the flow-kinematic restrictions and support interference commonly associated with experimental S&C facilities, 2) easily simulate advanced S&C testing techniques, 3) compute exact S&C derivatives with uncertainty propagation bounds, and 4) alter the flow physics associated with a particular testing technique from those observed in a wind or water tunnel test in order to isolate effects. Also presented are discussions about some computational issues associated with the simulation of S&C tests and selected results from numerous surface grid resolution studies performed during the course of the study.

  4. Robust Stability and Performance Comparison of PID and PPI Control

    Institute of Scientific and Technical Information of China (English)

    任正云; 张红; 邵惠鹤

    2004-01-01

    Predictive PI (PPI) control form, capable of time delay compensation, has been put forward recently. This control algorithm is essentially a PI controller with enhanced derivative action, which is not only suitable for long time delay process, but also of simple structure and excellent robust stability. The performance of PPI controller was demonstrated and compared with that of traditional PID controller by different tuning methods.

  5. Power system dynamics stability and control

    CERN Document Server

    Padiyar, K R

    2008-01-01

    Modern power systems tend to be very Complex not only due to increasing Demand for quality power, but also on Account of extensive interconnections and increasing dependence on control for optimum utilization for existing resources. A good Knowledge of system dynamics and control is Essential for secure operation of the system. This book is intended to serve the needs of the Student and practicing engineers. A Large number of illustrative examples are included to provide an insight into the application of the theory.

  6. Advanced h∞ control towards nonsmooth theory and applications

    CERN Document Server

    Orlov, Yury V

    2014-01-01

    This compact monograph is focused on disturbance attenuation in nonsmooth dynamic systems, developing an H∞ approach in the nonsmooth setting. Similar to the standard nonlinear H∞ approach, the proposed nonsmooth design guarantees both the internal asymptotic stability of a nominal closed-loop system and the dissipativity inequality, which states that the size of an error signal is uniformly bounded with respect to the worst-case size of an external disturbance signal. This guarantee is achieved by constructing an energy or storage function that satisfies the dissipativity inequality and is then utilized as a Lyapunov function to ensure the internal stability requirements.    Advanced H∞ Control is unique in the literature for its treatment of disturbance attenuation in nonsmooth systems. It synthesizes various tools, including Hamilton–Jacobi–Isaacs partial differential inequalities as well as Linear Matrix Inequalities. Along with the finite-dimensional treatment, the synthesis is exten...

  7. ADVANCED TOKAMAK OPERATION USING THE DIII-D PLASMA CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    HUMPHREYS,DA; FERRON,JR; GAROFALO,AM; HYATT,AW; JERNIGAN,TC; JOHNSON,RD; LAHAYE,RJ; LEUER,JA; OKABAYASHI,M; PENAFLOR,BG; SCOVILLE,JT; STRAIT,EJ; WALKER,ML; WHYTE,DG

    2002-10-01

    A271 ADVANCED TOKAMAK OPERATION USING THE DIII-D PLASMA CONTROL SYSTEM. The principal focus of experimental operations in the DIII-D tokamak is the advanced tokamak (AT) regime to achieve, which requires highly integrated and flexible plasma control. In a high performance advanced tokamak, accurate regulation of the plasma boundary, internal profiles, pumping, fueling, and heating must be well coordinated with MHD control action to stabilize such instabilities as tearing modes and resistive wall modes. Sophisticated monitors of the operational regime must provide detection of off-normal conditions and trigger appropriate safety responses with acceptable levels of reliability. Many of these capabilities are presently implemented in the DIII-D plasma control system (PCS), and are now in frequent or routine operational use. The present work describes recent development, implementation, and operational experience with AT regime control elements for equilibrium control, MHD suppression, and off-normal event detection and response.

  8. Stability and Stabilization of Networked Control System with Forward and Backward Random Time Delays

    Directory of Open Access Journals (Sweden)

    Ye-Guo Sun

    2012-01-01

    Full Text Available This paper deals with the problem of stabilization for a class of networked control systems (NCSs with random time delay via the state feedback control. Both sensor-to-controller and controller-to-actuator delays are modeled as Markov processes, and the resulting closed-loop system is modeled as a Markovian jump linear system (MJLS. Based on Lyapunov stability theorem combined with Razumikhin-based technique, a new delay-dependent stochastic stability criterion in terms of bilinear matrix inequalities (BMIs for the system is derived. A state feedback controller that makes the closed-loop system stochastically stable is designed, which can be solved by the proposed algorithm. Simulations are included to demonstrate the theoretical result.

  9. Transient stability enhancement via coordinated excitation and UPFC control

    Energy Technology Data Exchange (ETDEWEB)

    Huayuan Chen; Youyi Wang; Rujing Zhou [Nanyang Technological University (Singapore). School of EEE

    2002-01-01

    This paper discusses coordinated excitation and UPFC control to improve power system transient stability. The power system is linearized through direct feedback linearization technique. Robust approach is employed to deal with the uncertainties caused by parameter variations and the inclusion of UPFC controller. Only local measurements are required for designing the excitation controller. The series branch of UPFC is designed to damp the power oscillation during transient period. The shunt branch aims at maintaining bus voltage. The performance of the controllers is tested on a single-machine infinite-bus (SMIB) power system. Simulation results show that both of the series and shunt branch of UPFC help improve transient stability. (Author)

  10. Hamiltonian Control of Quantum Dynamical Semigroups: Stabilization and Convergence Speed

    CERN Document Server

    Ticozzi, Francesco; Cappellaro, Paola; Viola, Lorenza

    2011-01-01

    We consider finite-dimensional Markovian open quantum systems, and characterize the extent to which time-independent Hamiltonian control may allow to stabilize a target quantum state or subspace and optimize the resulting convergence speed. For a generic Lindblad master equation, we introduce a dissipation-induced decomposition of the associated Hilbert space, and show how it serves both as a tool to analyze global stability properties for given control resources and as the starting point to synthesize controls that ensure rapid convergence. The resulting design principles are illustrated in realistic Markovian control settings motivated by quantum information processing, including quantum-optical systems and nitrogen-vacancy centers in diamond.

  11. Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario

    Science.gov (United States)

    Chen, Junjie; Li, Guoqiang; Qian, Jinping; Liu, Zixi

    2012-11-01

    The Experimental Advanced Superconducting Tokamak (EAST) is the first fully superconducting tokamak with a D-shaped cross-sectional plasma presently in operation. The ideal magnetohydrodynamic (MHD) stability and required power for the EAST advanced tokamak (AT) scenario with negative central shear and double transport barrier (DTB) are investigated. With the equilibrium code TOQ and stability code GATO, the ideal MHD stability is analyzed. It is shown that a moderate ratio of edge transport barriers' (ETB) height to internal transport barriers' (ITBs) height is beneficial to ideal MHD stability. The normalized beta βN limit is about 2.20 (without wall) and 3.70 (with ideal wall). With the scaling law of energy confinement time, the required heating power for EAST AT scenario is calculated. The total heating power Pt increases as the toroidal magnetic field BT or the normalized beta βN is increased.

  12. Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario

    Institute of Scientific and Technical Information of China (English)

    陈均杰; 李国强; 钱金平; 刘子奚

    2012-01-01

    The Experimental Advanced Superconducting Tokamak (EAST) is the first fully superconducting tokamak with a D-shaped cross-sectional plasma presently in operation. The ideal magnetohydrodynamic (MHD) stability and required power for the EAST advanced tokamak (AT) scenario with negative central shear and double transport barrier (DTB) are investigated. With the equilibrium code TOQ and stability code GATO, the ideal MHD stability is analyzed. It is shown that a moderate ratio of edge transport barriers' (ETB) height to internal transport barriers' (ITBs) height is beneficial to ideal MHD stability. The normalized beta/3N limit is about 2.20 (without wall) and 3.70 (with ideal wall). With the scaling law of energy confinement time, the required heating power for EAST AT scenario is calculated. The total heating power Pt increases as the toroidal magnetic field BT or the normalized beta βN is increased.

  13. Preventive Control Using Generation Rescheduling for Transient Stability

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Seock; Lee, Byong Jun; Kwon, Sae Hyuk; Choi, Sun Kyu [Korea University, Seoul (Korea); Nam, Hae Kon [Chonnam National University, Kwangu (Korea); Choo, Jin Boo; Jeon, Dong Hoon [Korea Electric Power Research Institute, Taejeon (Korea)

    2002-06-01

    Preventive control has to solve two important problems. The first is fast and accurate severity assessment of instability originated from the occurrence of a dangerous contingency. The second is to choose an action able to stabilize it. In this paper we assess contingencies in power systems using PASF(Power Angle Shape Filtering) and control power systems by a generation rescheduling. The control action stabilize the whole set of harmful contingencies simultaneously. Note that conventional time-domain transient stability methods can hardly tackle preventive control. So, we study the preventive control using off-line method. The proposed method is applied to prevent and to correct loss of synchronism of all the generators in a operating systems data. (author). 5 refs., 6 figs., 5 tabs.

  14. Stability Analysis on Speed Control System of Autonomous Underwater Vehicle

    Institute of Scientific and Technical Information of China (English)

    LI Ye; PANG Yong-jie; WAN Lei; WANG Fang; LIAO Yu-lei

    2009-01-01

    The stability of the motion control system is one of the decisive factors of the control quality for Autonomous Underwater Vehicle (AUV).The divergence of control,which the unstable system may be brought about,is fatal to the operation of AUV.The stability analysis of the PD and S-surface speed controllers based on the Lyapunov' s direct method is proposed in this paper.After decoupling the six degree-of-freedom (DOF) motions of the AUV,the axial dynamic behavior is discussed and the condition is deduced,in which the parameters selection within stability domain can guarantee the system asymptotically stable.The experimental results in a tank and on the sea have successfully verified the algorithm reliability,which can be served as a good reference for analyzing other AUV nonlinear control systems.

  15. Advanced and controlled drug delivery systems in clinical disease management

    NARCIS (Netherlands)

    Brouwers, JRBJ

    1996-01-01

    Advanced and controlled drug delivery systems are important for clinical disease management. In this review the most important new systems which have reached clinical application are highlighted. Microbiologically controlled drug delivery is important for gastrointestinal diseases like ulcerative co

  16. Advanced control of a water supply system: a case study

    NARCIS (Netherlands)

    Bakker, M.; Rajewicz, T.; Kien, H.; Vreeburg, J.H.G.; Rietveld, L.C.

    2014-01-01

    Conventional automatic production flow control and pump pressure control of water supply systems are robust and simple: production flow is controlled based on the level in the clear water reservoir and pump pressure is controlled on a static set-point. Recently, more advanced computer-based control

  17. Generic Model Predictive Control Framework for Advanced Driver Assistance Systems

    NARCIS (Netherlands)

    Wang, M.

    2014-01-01

    This thesis deals with a model predictive control framework for control design of Advanced Driver Assistance Systems, where car-following tasks are under control. The framework is applied to design several autonomous and cooperative controllers and to examine the controller properties at the microsc

  18. 76 FR 55829 - Federal Motor Vehicle Safety Standards; Electronic Stability Control Systems

    Science.gov (United States)

    2011-09-09

    ... Standards; Electronic Stability Control Systems AGENCY: National Highway Traffic Safety Administration... electronic stability control systems. In that final rule, the agency stated that it had previously fulfilled... technical regulation for electronic stability control and had adopted the regulation to the...

  19. Preventive Control Using Generation Rescheduling for Transient Stability

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sun Kyu; Lee, Jong Seock; Lee, Byung Jun; Kwon, Sae Hyuk [Korea University (Korea); Nam, H.K. [Chonnam National University (Korea); Choo, J.B.; Lee, Koung Guk [KEPRI KEPCO (Korea); Yoon, S.H. [PROCOM Systems Co., Ltd. (Korea)

    2001-07-01

    This paper describes preventive control for transient stability. Preventive control encompasses in general a twofold problem: Severity assessment of a instability originating from the occurrence of a instability originating from the occurrence of a dangerous contingency, and Choice of an action able to stabilize it. In this a paper we assess contingencies in a power systems using PASF(Power Angle Shape Filtering) and control power systems by a generation rescheduling. The proposed method is applied to prevent loss of synchronism of all the generators at a site, KEPCO Systems. (author). 4 refs., 8 figs., 4 tabs.

  20. Power system small signal stability analysis and control

    CERN Document Server

    Mondal, Debasish; Sengupta, Aparajita

    2014-01-01

    Power System Small Signal Stability Analysis and Control presents a detailed analysis of the problem of severe outages due to the sustained growth of small signal oscillations in modern interconnected power systems. The ever-expanding nature of power systems and the rapid upgrade to smart grid technologies call for the implementation of robust and optimal controls. Power systems that are forced to operate close to their stability limit have resulted in the use of control devices by utility companies to improve the performance of the transmission system against commonly occurring power system

  1. An optimal real-time controller for vertical plasma stabilization

    CERN Document Server

    Cruz, N; Coda, S; Duval, B P; Le, H B; Rodrigues, A P; Varandas, C A F; Correia, C M B A; Goncalves, B S

    2014-01-01

    Modern Tokamaks have evolved from the initial axisymmetric circular plasma shape to an elongated axisymmetric plasma shape that improves the energy confinement time and the triple product, which is a generally used figure of merit for the conditions needed for fusion reactor performance. However, the elongated plasma cross section introduces a vertical instability that demands a real-time feedback control loop to stabilize the plasma vertical position and velocity. At the Tokamak \\`a Configuration Variable (TCV) in-vessel poloidal field coils driven by fast switching power supplies are used to stabilize highly elongated plasmas. TCV plasma experiments have used a PID algorithm based controller to correct the plasma vertical position. In late 2013 experiments a new optimal real-time controller was tested improving the stability of the plasma. This contribution describes the new optimal real-time controller developed. The choice of the model that describes the plasma response to the actuators is discussed. The ...

  2. Stabilizing equilibrium by linear feedback control for controlling chaos in Chen system

    Energy Technology Data Exchange (ETDEWEB)

    Costa, V A [Departamento de Ciencias Basicas, Facultad de IngenierIa (UNLP), La Plata (Argentina); Gonzalez, G A, E-mail: vacosta@ing.unlp.edu.ar, E-mail: ggonzal@fi.ub.ar [Departamento de Matematica, Facultad de Ingenieria (UBA), Buenos Aires (Argentina)

    2011-03-01

    Stabilization of a chaotic system in one of its unstable equilibrium points by applying small perturbations is studied. A two-stage control strategy based on linear feedback control is applied. Improvement of system performance is addressed by exploiting the ergodicity of the original dynamics and using Lyapunov stability results for control design. Extension to the not complete observability case is also analyzed.

  3. Stability Analysis and Controller Synthesis for Digital Single-Loop Voltage-Controlled Inverters

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Loh, Poh Chiang; Blaabjerg, Frede

    2016-01-01

    This paper analyzes first the stability of single-loop digital voltage control scheme for the LC-filtered voltage source inverters. It turns out that the phase lag, caused by the time delay of digital control system and by the use of integral controller, can stabilize the voltage loop without...

  4. Locus of Control and Marital Stability: A Longitudinal Study.

    Science.gov (United States)

    Constantine, John A.; Bahr, Stephen J.

    1980-01-01

    Investigated relationship between locus of control and marital stability of young men. Factors derived from locus of control measures included leadership, personal, and fate scales. Results indicated the only significant difference was on the leadership scale between men remaining married and those who did not. (RC)

  5. Polynomial fuzzy model-based control systems stability analysis and control synthesis using membership function dependent techniques

    CERN Document Server

    Lam, Hak-Keung

    2016-01-01

    This book presents recent research on the stability analysis of polynomial-fuzzy-model-based control systems where the concept of partially/imperfectly matched premises and membership-function dependent analysis are considered. The membership-function-dependent analysis offers a new research direction for fuzzy-model-based control systems by taking into account the characteristic and information of the membership functions in the stability analysis. The book presents on a research level the most recent and advanced research results, promotes the research of polynomial-fuzzy-model-based control systems, and provides theoretical support and point a research direction to postgraduate students and fellow researchers. Each chapter provides numerical examples to verify the analysis results, demonstrate the effectiveness of the proposed polynomial fuzzy control schemes, and explain the design procedure. The book is comprehensively written enclosing detailed derivation steps and mathematical derivations also for read...

  6. A novel single thruster control strategy for spacecraft attitude stabilization

    Science.gov (United States)

    Godard; Kumar, Krishna Dev; Zou, An-Min

    2013-05-01

    Feasibility of achieving three axis attitude stabilization using a single thruster is explored in this paper. Torques are generated using a thruster orientation mechanism with which the thrust vector can be tilted on a two axis gimbal. A robust nonlinear control scheme is developed based on the nonlinear kinematic and dynamic equations of motion of a rigid body spacecraft in the presence of gravity gradient torque and external disturbances. The spacecraft, controlled using the proposed concept, constitutes an underactuated system (a system with fewer independent control inputs than degrees of freedom) with nonlinear dynamics. Moreover, using thruster gimbal angles as control inputs make the system non-affine (control terms appear nonlinearly in the state equation). This necessitates the control algorithms to be developed based on nonlinear control theory since linear control methods are not directly applicable. The stability conditions for the spacecraft attitude motion for robustness against uncertainties and disturbances are derived to establish the regions of asymptotic 3-axis attitude stabilization. Several numerical simulations are presented to demonstrate the efficacy of the proposed controller and validate the theoretical results. The control algorithm is shown to compensate for time-varying external disturbances including solar radiation pressure, aerodynamic forces, and magnetic disturbances; and uncertainties in the spacecraft inertia parameters. The numerical results also establish the robustness of the proposed control scheme to negate disturbances caused by orbit eccentricity.

  7. An active interferometer-stabilization scheme with linear phase control

    DEFF Research Database (Denmark)

    Vardhan Krishnamachari, Vishnu; Andresen, Esben Ravn; Potma, Eric Olaf

    2006-01-01

    We report a simple and robust computer-based active interferometer stabilization scheme which does not require modulation of the interfering beams and relies on an error signal which is linearly related to the optical path difference. In this setup, a non-collinearly propagating reference laser...... beam stabilizes the interference output of the laser light propagating collinearly through the interferometer. This stabilization scheme enables adjustable phase control with 20 ms switching times in the range from 0.02π radians to 6π radians at 632.8 nm....

  8. Robust stabilization for a class of nonlinear networked control systems

    Institute of Scientific and Technical Information of China (English)

    Jinfeng GAO; Hongye SU; Xiaofu JI; Jian CHU

    2008-01-01

    The problem of robust stabilization for a class of uncertain networked control systems(NCSs)with nonlinearities satisfying a given sector condition is investigated in this paper.By introducing a new model of NCSs with parameter uncertainty,network.induced delay,nonlinearity and data packet dropout in the transmission,a strict linear matrix inequality(LMI)criterion is proposed for robust stabilization of the uncenmn nonlinear NCSs based on the Lyapunov stability theory.The maximum allowable transfer interval(MATI)can be derived by solving the feasibility problem of the corresponding LMI.Some numerical examples are provided to demonstrate the applicability of the proposed algorithm.

  9. Stabilization of multiple independent linear systems with control networks

    Institute of Scientific and Technical Information of China (English)

    Zhenfu BI; Fusheng WANG

    2004-01-01

    The problem of stabilizing multiple independent linear systems sharing one common network cable is presented and solved.Both the quantization and time sequencing are studied in the field of control over networks by providing the formulated stabilizing sufficient condition which illustrates the relationship between the system instability,quantization and time sequencing,and the data rate is also presented in terms of the quantization and time sequencing. A numerical example is given to illustrate the result.

  10. Adaptive Neural Network Controller for Thermogenerator Angular Velocity Stabilization System

    OpenAIRE

    Horvat, Krunoslav; Šoić, Ines; Kuljača, Ognjen

    2013-01-01

    The paper presents an analytical and simulation approach for the selection of activation functions for the class of neural network controllers for ship’s thermogenerator angular velocity stabilization system. Such systems can be found in many ships. A Lyapunov-like stability analysis is performed in order to obtain a weight update law. A number of simulations were performed to find the best activation function using integral error criteria and statistical T-tests.

  11. Field Testing LIDAR Based Feed-Forward Controls on the NREL Controls Advanced Research Turbine: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Scholbrock, A. K.; Fleming, P. A.; Fingersh, L. J.; Wright, A. D.; Schlipf, D.; Haizmann, F.; Belen, F.

    2013-01-01

    Wind turbines are complex, nonlinear, dynamic systems driven by aerodynamic, gravitational, centrifugal, and gyroscopic forces. The aerodynamics of wind turbines are nonlinear, unsteady, and complex. Turbine rotors are subjected to a chaotic three-dimensional (3-D) turbulent wind inflow field with imbedded coherent vortices that drive fatigue loads and reduce lifetime. In order to reduce cost of energy, future large multimegawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, maximize energy capture, and add active damping to maintain stability for these dynamically active structures operating in a complex environment. Researchers at the National Renewable Energy Laboratory (NREL) and University of Stuttgart are designing, implementing, and testing advanced feed-back and feed-forward controls in order to reduce the cost of energy for wind turbines.

  12. Long term stability of mandibular advancement procedures : bilateral sagittal split osteotomy versus distraction osteogenesis

    NARCIS (Netherlands)

    Baas, E. M.; Pijpe, J.; de Lange, J.

    2012-01-01

    The aim of this study was to compare the postoperative stability of the mandible after a bilateral lengthening procedure, either by bilateral sagittal split osteotomy (BSSO) or distraction osteogenesis (DO). All patients who underwent mandibular advancement surgery between March 2001 and June 2004 w

  13. Stability of mandibular advancement procedures : Bilateral sagittal split osteotomy versus distraction osteogenesis

    NARCIS (Netherlands)

    Vos, M. D.; Baas, E. M.; de lange, J.; Bierenbroodspot, F.

    2009-01-01

    The aim of this study was to compare the postoperative stability of the mandible after a bilateral lengthening procedure, either by bilateral sagittal split osteotomy (BSSO) or distraction osteogenesis (DOG). All patients who underwent mandibular advancement surgery between March 2001 and June 2004

  14. Advanced techniques for the analysis of crisis stability, deterrence, and latency

    Energy Technology Data Exchange (ETDEWEB)

    Canavan, G.H.

    1997-12-01

    Studies on crisis stability, deterrence, and latency are presented in chronological order, which also reflects their logical order of development, captures the main features of stability analysis; relates first strike, crisis, and arms control stability as seen from US and Russian perspective; and addresses questions such as whether uncertainty in damage preference or defense deployment can be destabilizing. It illustrates the problems with alternative metrics, latency and reconstitution, and deep unilateral and proportional force reductions.

  15. Eco-geomorphic controls on slope stability

    Science.gov (United States)

    Hales, T.; Ford, C.; Hwang, T.; Vose, J.; Band, L.

    2009-04-01

    Vegetation controls soil-mantled landscape evolution primarily through growth of roots into soil and rock. Root-soil interactions affect the spatial distribution and rate of shallow landsliding and other hillslope processes. Yet the distribution and tensile strength of roots depends on a number of geomorphically-influenced parameters, including soil moisture. Our field-based study investigated the effects of topography on root distributions, tensile strengths, and cohesion. Systematic differences in plant species distribution and soil properties are found in the hollow-nose topography of soil-mantled landscapes; with hollows containing thick colluvial soils and mesic tree species and noses containing thinner, more differentiated soils and more xeric species. We investigated whether these topographic variations in geomorphic and ecologic properties affected the spatial distribution of root cohesion by measuring the distribution and tensile strength of roots from soil pits dug downslope of fifteen individual trees in the Coweeta Hydrologic Laboratory, North Carolina. Our soil pits were located to capture variance in plant species (10 species total), topographic positions (nose, hollow), and sizes (a range of DBH between 5 cm and 60 cm). Root tensile strengths showed little variance with different species, but showed strong differences as a function of topography, with nose roots stronger than hollow roots. Similarly, within species, root cellulose content was systematically greater in trees on nose positions compared to those in hollows. For all species, roots were concentrated close to the soil surface (at least 70% of biomass occurred within 50 cm of the surface) and variations in this pattern were primarily a function of topographic position. Hollow roots were more evenly distributed in the soil column than those on noses, yet trees located on noses had higher mean root cohesion than those in hollows because of a higher root tensile force. These data provide an

  16. Advanced nonlinear engine speed control systems

    DEFF Research Database (Denmark)

    Vesterholm, Thomas; Hendricks, Elbert

    1994-01-01

    Several subsidiary control problems have turned out to be important for improving driveability and fuel consumption in modern spark ignition (SI) engine cars. Among these are idle speed control and cruise control. In this paper the idle speed and cruise control problems will be treated as one...

  17. Optimal Sliding Mode Controllers for Attitude Stabilization of Flexible Spacecraft

    Directory of Open Access Journals (Sweden)

    Chutiphon Pukdeboon

    2011-01-01

    Full Text Available The robust optimal attitude control problem for a flexible spacecraft is considered. Two optimal sliding mode control laws that ensure the exponential convergence of the attitude control system are developed. Integral sliding mode control (ISMC is applied to combine the first-order sliding mode with optimal control and is used to control quaternion-based spacecraft attitude manoeuvres with external disturbances and an uncertainty inertia matrix. For the optimal control part the state-dependent Riccati equation (SDRE and optimal Lyapunov techniques are employed to solve the infinite-time nonlinear optimal control problem. The second method of Lyapunov is used to guarantee the stability of the attitude control system under the action of the proposed control laws. An example of multiaxial attitude manoeuvres is presented and simulation results are included to verify the usefulness of the developed controllers.

  18. Adaptive Dynamic Programming for Control Algorithms and Stability

    CERN Document Server

    Zhang, Huaguang; Luo, Yanhong; Wang, Ding

    2013-01-01

    There are many methods of stable controller design for nonlinear systems. In seeking to go beyond the minimum requirement of stability, Adaptive Dynamic Programming for Control approaches the challenging topic of optimal control for nonlinear systems using the tools of  adaptive dynamic programming (ADP). The range of systems treated is extensive; affine, switched, singularly perturbed and time-delay nonlinear systems are discussed as are the uses of neural networks and techniques of value and policy iteration. The text features three main aspects of ADP in which the methods proposed for stabilization and for tracking and games benefit from the incorporation of optimal control methods: • infinite-horizon control for which the difficulty of solving partial differential Hamilton–Jacobi–Bellman equations directly is overcome, and  proof provided that the iterative value function updating sequence converges to the infimum of all the value functions obtained by admissible control law sequences; • finite-...

  19. Stability of DC Voltage Droop Controllers in VSC HVDC Systems

    DEFF Research Database (Denmark)

    Thams, Florian; Suul, Jon Are; D’Arco, Salvatore;

    2015-01-01

    Future multi-terminal HVDC systems are expected to utilize dc voltage droop controllers and several control implementations have been proposed in literature. This paper first classifies possible dc droop implementations in a simple framework. Then, the small-signal stability of a VSC...... current and dc voltage achieve a wider stability region than the other schemes and a limited sensitivity to the droop gain.......-based converter station is analyzed for all the identified droop control schemes. The stability range for the system is determined as a function of the droop gain and is used to compare the flexibility and robustness of the implementations. The comparisons reveal that the droop implementations based on the ac...

  20. Practical Implementations of Advanced Process Control for Linear Systems

    DEFF Research Database (Denmark)

    Knudsen, Jørgen K . H.; Huusom, Jakob Kjøbsted; Jørgensen, John Bagterp

    2013-01-01

    Most advanced process control systems are based on Model Predictive Control (MPC). In this paper we discuss three critical issues for the practical implementation of linear MPC for process control applications. The rst issue is related to oset free control and disturbance models; the second issue...

  1. Ervaringen met Advanced Cruise Control (ACC) in een korte praktijkproef.

    OpenAIRE

    Oei, H.-l.

    2003-01-01

    Experiences with Advanced Cruise Control in traffic; a limited experiment. Advanced Cruise Control (ACC) is an ordinary cruise control in which the desired speed is installed manually, but in which the headway time to the vehicle in front is also taken into account. If the headway time becomes less than the installed critical threshold value, the system brakes the vehicle gradually. If the vehicle in front is no longer there, or the headway time is greater than the threshold value, the instal...

  2. Strategy missile control system design using adaptive fuzzy control based on Popov stability criterion

    Science.gov (United States)

    Zhang, Jianling; An, Jinwen; Wang, Mina

    2005-11-01

    This paper describes the application and simulation of an adaptive fuzzy controller for a missile model. The fuzzy control system is tested using different values of fuzzy controller correctional factor on a nonlinear missile model. It is shown that the self-tuning fuzzy controller is well suited for controlling the pitch loop of the missile control system with air turbulence and parameter variety. The research shows that the Popov stability criterion could successfully guarantee the stability of the fuzzy system. It provides a good method for the design of missile control system. Simulation results suggest significant benefits from fuzzy logic in control task for missile pitch loop control.

  3. Introduction to Computational Methods for Stability and Control (COMSAC)

    Science.gov (United States)

    Hall, Robert M.; Fremaux, C. Michael; Chambers, Joseph R.

    2004-01-01

    This Symposium is intended to bring together the often distinct cultures of the Stability and Control (S&C) community and the Computational Fluid Dynamics (CFD) community. The COMSAC program is itself a new effort by NASA Langley to accelerate the application of high end CFD methodologies to the demanding job of predicting stability and control characteristics of aircraft. This talk is intended to set the stage for needing a program like COMSAC. It is not intended to give details of the program itself. The topics include: 1) S&C Challenges; 2) Aero prediction methodology; 3) CFD applications; 4) NASA COMSAC planning; 5) Objectives of symposium; and 6) Closing remarks.

  4. A switched system approach to stabilization f networked control systems

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A switched system approach is proposed to model networked control systems (NCSs) with communication constraints. This enables us to apply the rich theory of switched systems to analyzing such NCSs. Sufficient conditions are presented on the stabilization of NCSs. Stabilizing state/output feedback controllers can be constructed by using the feasible solutions of some linear matrix inequalities (LMIs). The merit of our proposed approach is that the behavior of the NCSs can be studied by considering switched system without augmenting the system. A simulation example is worked out to illustrate the effectiveness of the proposed approach.

  5. Overview of advanced process control in welding within ERDA

    International Nuclear Information System (INIS)

    The special kinds of demands placed on ERDA weapons and reactors require them to have very reliable welds. Process control is critical in achieving this reliability. ERDA has a number of advanced process control projects underway with much of the emphasis being on electron beam welding. These include projects on voltage measurement, beam-current control, beam focusing, beam spot tracking, spike suppression, and computer control. A general discussion of process control in welding is followed by specific examples of some of the advanced joining process control projects in ERDA

  6. Advanced techniques for the analysis of crisis stability, deterrence, and latency

    Energy Technology Data Exchange (ETDEWEB)

    Canavan, G.H.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The principal results of studies on crisis stability, deterrence, and latency are presented in their order of development. They capture the main features of stability analysis; relate first strike, crisis, and arms control stability as seen from US and Russian perspective; and address whether different metrics, uncertain damage preferences, or the deployment of defenses can be destabilizing. The report explores differences between unilateral and proportional force reductions in the region of deep reductions where concern shifts from stability to latency.

  7. Stabilization of rotational motion with application to spacecraft attitude control

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2000-01-01

    The objective of this paper is to develop a control scheme for stabilization of a hamiltonian system. The method generalizes the results available in the literature on motion control in the Euclidean space to an arbitrary differrential manifol equipped with a metric. This modification is essencial...... for global stabilization of a rotary motion. Along with a model of the system formulated in the Hamilton's canonical from the algorithm uses information about a required potential energy and a dissipation term. The control action is the sum of the gradient of the potential energy and the dissipation force....... It is shown that this control law makes the system uniformly asymptotically stable to the desired reference point. The concepet is very straightforward in the Euclidean space however a global rotation control cannot be tackled.An additional modification is made to address a system which flow lies...

  8. Stabilization of rotational motion with application to spacecraft attitude control

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2001-01-01

    The objective of this paper is to develop a control scheme for stabilization of a hamiltonian system. The method generalizes the results available in the literature on motion control in the Euclidean space to an arbitrary differrential manifol equipped with a metric. This modification is essencial...... for global stabilization of a rotary motion. Along with a model of the system formulated in the Hamilton's canonical from the algorithm uses information about a required potential energy and a dissipation term. The control action is the sum of the gradient of the potential energy and the dissipation force....... It is shown that this control law makes the system uniformly asymptotically stable to the desired reference point. The concepet is very straightforward in the Euclidean space however a global rotation control cannot be tackled.An additional modification is made to address a system which flow lies...

  9. Fuzzy-like PD controller for spatial control of advanced heavy water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Londhe, P.S., E-mail: pandurangl97@gmail.com [Research Scholar, SGGS Institute of Engineering and Technology, Vishnupuri, Nanded 431606 (India); Patre, B.M., E-mail: bmpatre@ieee.org [Department of Instrumentation Engineering, Shri Guru Gobind Singhji Institute of Engineering and Technology, Vishnupuri, Nanded 431 606 (India); Tiwari, A.P., E-mail: aptiwari@barc.gov.in [Reactor Control Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2014-07-01

    Highlights: • Highly non-linear model of AHWR is used for spatial power control. • A simple fuzzy-like PD (FZ-PD) control structure with robust rule base is developed. • Robust rule structure reduces the difficulties in design and tuning of controller. • Proposed FZ-PD structure shows robust and better transient performance. • Proposed FZ-PD controller is able to suppress spatial oscillations in AHWR. - Abstract: Spatial oscillations in the neutron flux distribution due to xenon reactivity feedback requires stringent control in large nuclear reactors, like advanced heavy water reactor (AHWR). If the spatial oscillations in the power distribution are not controlled, power density and rate of change of power at some locations in the reactor core may exceed limits of fuel failure due to ‘flux tilting’. Further, situations such as on-line refueling might cause transient variations in flux-shape from the nominal flux-shape. For analysis and control of spatial oscillations in AHWR, it is necessary to design a suitable control strategy, which will stabilize these oscillations. In this paper, a simplified scheme to design a conventional fuzzy logic controller for spatial control of AHWR is presented. This scheme known as fuzzy-like proportional derivative (FZ-PD) controller, uses robust PD (proportional derivative) type rule base. Due to robust rule base structure, tuning of scaling factors is greatly reduced. The non-linear coupled core neutronics-thermal hydraulics model of AHWR considered here represented by 90 first order differential equations. Through the dynamic simulations, it is observed that the designed FZ-PD controller is able to suppress spatial oscillations developed in AHWR and its performance is found to be robust.

  10. EFFECT OF PROFILES AND SHAPE ON IDEAL STABILITY OF ADVANCED TOKAMAK EQUILIBRIA

    Energy Technology Data Exchange (ETDEWEB)

    MAKOWSKI,MA; CASPER,TA; FERRON,JR; TAYLOR,TS; TURNBULL,AD

    2003-08-01

    OAK-B135 The pressure profile and plasma shape, parameterized by elongation ({kappa}), triangularity ({delta}), and squareness ({zeta}), strongly influence stability. In this study, ideal stability of single null and symmetric, double-null, advanced tokamak (AT) configurations is examined. All the various shapes are bounded by a common envelope and can be realized in the DIII-D tokamak. The calculated AT equilibria are characterized by P{sub 0}/

    {approx} 2.0-4.5, weak negative central shear, high q{sub min} (> 2.0), high bootstrap fraction, an H-mode pedestal, and varying shape parameters. The pressure profile is modeled by various polynomials together with a hyperbolic tangent pedestal, consistent with experimental observations. Stability is calculated with the DCON code and the resulting stability boundary is corroborated by GATO runs.

  11. Effect of Profiles and Space on Ideal Stability of Advanced Tokamak Equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Makowski, M A; Casper, T A; Ferron, J R; Taylor, T S; Turnbull, A D

    2003-07-07

    The pressure profile and plasma shape, parameterized by elongation ({kappa}), triangularity ({delta}), and squareness ({zeta}), strongly influence stability. In this study, ideal stability of single null and symmetric, double-null, advanced tokamak (AT) configurations is examined. All the various shapes are bounded by a common envelope and can be realized in the DIII-D tokamak. The calculated AT equilibria are characterized by P{sub 0}/{l_angle}P{r_brace} {approx} 2.0-4.5, weak negative central shear, high q{sub min} (>2.0), high bootstrap fraction, an H-mode pedestal, and varying shape parameters. The pressure profile is modeled by various polynomials together with a hyperbolic tangent pedestal, consistent with experimental observations. Stability is calculated with the DCON code and the resulting stability boundary is corroborated by GATO runs.

  12. Mechanics and model-based control of advanced engineering systems

    CERN Document Server

    Irschik, Hans; Krommer, Michael

    2014-01-01

    Mechanics and Model-Based Control of Advanced Engineering Systems collects 32 contributions presented at the International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines, which took place in St. Petersburg, Russia in July 2012. The workshop continued a series of international workshops, which started with a Japan-Austria Joint Workshop on Mechanics and Model Based Control of Smart Materials and Structures and a Russia-Austria Joint Workshop on Advanced Dynamics and Model Based Control of Structures and Machines. In the present volume, 10 full-length papers based on presentations from Russia, 9 from Austria, 8 from Japan, 3 from Italy, one from Germany and one from Taiwan are included, which represent the state of the art in the field of mechanics and model based control, with particular emphasis on the application of advanced structures and machines.

  13. Advanced Stellar Compass, SAC-C, Interface Control Document

    DEFF Research Database (Denmark)

    Madsen, Peter Buch; Betto, Maurizio; Riis, Troels;

    Interface Control Document for the Advanced Stellar Compass for the SAC-C satellite. The SAC-C is Argentine, Danish and NASA satellite. On the SAC-C satellite there are a simplified version of the Ørsted instrumentation platform. The Advanced Stellar Compass is a improved version of the Ørsted Star...... Imager. This document descibes the interface between the Advanced Stellar Compass and OBDH, the size of the DPU and the Camera etc....

  14. Skeletal Stability after Large Mandibular Advancement (> 10 mm) with Bilateral Sagittal Split Osteotomy and Skeletal Elastic Intermaxillary Fixation

    DEFF Research Database (Denmark)

    Schwartz, Kristoffer; Rodrigo, Maria; Jensen, Thomas

    2016-01-01

    OBJECTIVES: The aim of the present study was to assess the skeletal stability after large mandibular advancement (> 10 mm) with bilateral sagittal split osteotomy and skeletal elastic intermaxillary fixation and to correlate the skeletal stability with the vertical facial type. MATERIAL AND METHO...... to distraction osteogenesis in large mandibular advancements....

  15. Launch vehicle flight control augmentation using smart materials and advanced composites (CDDF Project 93-05)

    Science.gov (United States)

    Barret, C.

    1995-01-01

    The Marshall Space Flight Center has a rich heritage of launch vehicles that have used aerodynamic surfaces for flight stability such as the Saturn vehicles and flight control such as on the Redstone. Recently, due to aft center-of-gravity locations on launch vehicles currently being studied, the need has arisen for the vehicle control augmentation that is provided by these flight controls. Aerodynamic flight control can also reduce engine gimbaling requirements, provide actuator failure protection, enhance crew safety, and increase vehicle reliability, and payload capability. In the Saturn era, NASA went to the Moon with 300 sq ft of aerodynamic surfaces on the Saturn V. Since those days, the wealth of smart materials and advanced composites that have been developed allow for the design of very lightweight, strong, and innovative launch vehicle flight control surfaces. This paper presents an overview of the advanced composites and smart materials that are directly applicable to launch vehicle control surfaces.

  16. Advanced topics in control and estimation of state-multiplicative noisy systems

    CERN Document Server

    Gershon, Eli

    2013-01-01

    Advanced Topics in Control and Estimation of State-Multiplicative Noisy Systems begins with an introduction and extensive literature survey. The text proceeds to cover solutions of measurement-feedback control and state problems and the formulation of the Bounded Real Lemma for both continuous- and discrete-time systems. The continuous-time reduced-order and stochastic-tracking control problems for delayed systems are then treated. Ideas of nonlinear stability are introduced for infinite-horizon systems, again, in both the continuous- and discrete-time cases. The reader is introduced to six practical examples of noisy state-multiplicative control and filtering associated with various fields of control engineering. The book is rounded out by a three-part appendix containing stochastic tools necessary for a proper appreciation of the text: a basic introduction to nonlinear stochastic differential equations and aspects of switched systems and peak to peak  optimal control and filtering. Advanced Topics in Contr...

  17. Radiometric calibration stability of the EO-1 advanced land imager: 5 years on-orbit

    Science.gov (United States)

    Markham, B.L.; Ong, L.; Barsi, J.A.; Mendenhall, J.A.; Lencioni, D.E.; Helder, D.L.; Hollaren, D.M.; Morfitt, R.

    2006-01-01

    The Advanced Land Imager (ALI) was developed as a prototype sensor for follow on missions to Landsat-7. It was launched in November 2000 on the Earth Observing One (EO-1) satellite as a nominal one-year technology demonstration mission. As of this writing, the sensor has continued to operate in excess of 5 years. Six of the ALl's nine multi-spectral (MS) bands and the panchromatic band have similar spectral coverage as those on the Landsat-7 ETM+. In addition to on-board lamps, which have been significantly more stable than the lamps on ETM+, the ALI has a solar diffuser and has imaged the moon monthly since launch. This combined calibration dataset allows understanding of the radiometric stability of the ALI system, its calibrators and some differentiation of the sources of the changes with time. The solar dataset is limited as the mechanism controlling the aperture to the solar diffuser failed approximately 18 months after launch. Results over 5 years indicate that: the shortest wavelength band (443 nm) has degraded in response about 2%; the 482 nm and 565 nm bands decreased in response about 1%; the 660 nm, 790 nm and 868 nm bands each degraded about 5%; the 1250 nm and 1650 nm bands did not change significantly and the 2215 nm band increased in response about 2%.

  18. Stability of Constrained Adaptive Model Predictive Control Algorithms

    CERN Document Server

    Jahn, Thomas

    2011-01-01

    Recently, suboptimality estimates for model predictive controllers (MPC) have been derived for the case without additional stabilizing endpoint constraints or a Lyapunov function type endpoint weight. The proposed methods yield a posteriori and a priori estimates of the degree of suboptimality with respect to the infinite horizon optimal control and can be evaluated at runtime of the MPC algorithm. Our aim is to design automatic adaptation strategies of the optimization horizon in order to guarantee stability and a predefined degree of suboptimality for the closed loop solution. Here, we present a stability proof for an arbitrary adaptation scheme and state a simple shortening and prolongation strategy which can be used for adapting the optimization horizon.

  19. Issues on stability of ADP feedback controllers for dynamical systems.

    Science.gov (United States)

    Balakrishnan, S N; Ding, Jie; Lewis, Frank L

    2008-08-01

    This paper traces the development of neural-network (NN)-based feedback controllers that are derived from the principle of adaptive/approximate dynamic programming (ADP) and discusses their closed-loop stability. Different versions of NN structures in the literature, which embed mathematical mappings related to solutions of the ADP-formulated problems called "adaptive critics" or "action-critic" networks, are discussed. Distinction between the two classes of ADP applications is pointed out. Furthermore, papers in "model-free" development and model-based neurocontrollers are reviewed in terms of their contributions to stability issues. Recent literature suggests that work in ADP-based feedback controllers with assured stability is growing in diverse forms. PMID:18632377

  20. Power System Stability Enhancement Using Unified Power Flow Controller

    Directory of Open Access Journals (Sweden)

    Prechanon Kumkratug

    2010-01-01

    Full Text Available Problem statement: The enhancement of transient stability of the power system is one of the most challenging research areas in power engineer. Approach: This study presents the method to enhance transient stability of power system by Unified Power Flow Controller (UPFC. The mathematical model of power system equipped with a UPFC is systematically derived. The parameters of UPFC are modeled into power flow equation and thus it is used to determine control strategy. The swing curves of the three phase faulted power system without and with a UPFC are tested and compared in various cases. Results: The swing curve of system without a UPFC gets increases monotonically and thus the system can be considered as unstable whereas the swing curves of system with a UPFC can return to stable equilibrium point. Conclusion: From the simulation results, the UPFC can enhance transient stability of power system.

  1. Determination of Close Loop System Stability in Automobile Adaptive Cruise Control Systems

    Directory of Open Access Journals (Sweden)

    Owunna Ikechukwu

    2016-07-01

    Full Text Available The beginning of the 21st century sees auto makers pursuing research in advanced features like collision warning and avoidance system into their product. Automotive cruise control system has been undergoing development in EU since the PROMETHEUS programme in the late 1980’s, and has currently metamorphous into Adaptive Cruise Control (ACC technology which is presently emerging in the automotive market as a convenience function intended to reduce driver workload. Adaptive cruise control is the first of the new generation of advanced driver’s assistance devices to reach the market, which partially automates the driver’s task and bringing the drivers comfort into perspective. It allows the host vehicle to maintain a set speed and distance from preceding vehicles by a forward object detection sensor. The forward object detection sensor is the focal point of the ACC system, which determines and regulates vehicle acceleration and deceleration through a powertrain torque control system and an automatic brake control system. This study presents overview of adaptive cruise control system, operation principles and the advantages of integrating ACC system in automobiles. Also, the system must be stable for optimum performance, and stability of a close loop system which the cruise system is an example, was determined by calculating the controller gain (K1, K2, K3 and substituting into the characteristic equations. The stability of a close loop system for the values of K1, K2 and K3 when substituted into the characteristic equation produced a negative real part. To achieve stability in close loop systems, all the poles must have negative real values and this is in line with the values obtain for p1, p2 and p3. From the pole zero plots of 1 = (-7 ± 7.14, 2 = (-7± 11.60 and 3 = (-0.08 and -13.91, stability of the system was achieved

  2. Optimal preview game theory approach to vehicle stability controller design

    Science.gov (United States)

    Tamaddoni, Seyed Hossein; Taheri, Saied; Ahmadian, Mehdi

    2011-12-01

    Dynamic game theory brings together different features that are keys to many situations in control design: optimisation behaviour, the presence of multiple agents/players, enduring consequences of decisions and robustness with respect to variability in the environment, etc. In the presented methodology, vehicle stability is represented by a cooperative dynamic/difference game such that its two agents (players), namely the driver and the direct yaw controller (DYC), are working together to provide more stability to the vehicle system. While the driver provides the steering wheel control, the DYC control algorithm is obtained by the Nash game theory to ensure optimal performance as well as robustness to disturbances. The common two-degrees-of-freedom vehicle-handling performance model is put into discrete form to develop the game equations of motion. To evaluate the developed control algorithm, CarSim with its built-in nonlinear vehicle model along with the Pacejka tire model is used. The control algorithm is evaluated for a lane change manoeuvre, and the optimal set of steering angle and corrective yaw moment is calculated and fed to the test vehicle. Simulation results show that the optimal preview control algorithm can significantly reduce lateral velocity, yaw rate, and roll angle, which all contribute to enhancing vehicle stability.

  3. Gait Planning and Stability Control of a Quadruped Robot

    Directory of Open Access Journals (Sweden)

    Junmin Li

    2016-01-01

    Full Text Available In order to realize smooth gait planning and stability control of a quadruped robot, a new controller algorithm based on CPG-ZMP (central pattern generator-zero moment point is put forward in this paper. To generate smooth gait and shorten the adjusting time of the model oscillation system, a new CPG model controller and its gait switching strategy based on Wilson-Cowan model are presented in the paper. The control signals of knee-hip joints are obtained by the improved multi-DOF reduced order control theory. To realize stability control, the adaptive speed adjustment and gait switch are completed by the real-time computing of ZMP. Experiment results show that the quadruped robot’s gaits are efficiently generated and the gait switch is smooth in the CPG control algorithm. Meanwhile, the stability of robot’s movement is improved greatly with the CPG-ZMP algorithm. The algorithm in this paper has good practicability, which lays a foundation for the production of the robot prototype.

  4. Advanced Combustion and Emission Control Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The Advanced Combustion and Emission Control (ACEC) Technical Team is focused on removing technical barriers to the commercialization of advanced, high-efficiency, emission-compliant internal combustion (IC) engines for light-duty vehicle powertrains (i.e., passenger car, minivan, SUV, and pickup trucks).

  5. Motion control in advanced driving simulators

    OpenAIRE

    Elloumi, Hatem

    2006-01-01

    Driving simulators are advanced devices composed of four components: a virtual scene projected on a wide screen to imitate the road and the traffic, an audio system to play the driving sounds (horn, squeal of brakes, etc.), a car cockpit (including a real dashboard, the pedals and the seat of the driver) to copy the body position and the interaction of the driver with a real vehicle and finally a robot carrying the car cockpit to provide its motion. While the first three components could be c...

  6. Model-free adaptive control of advanced power plants

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang

    2015-08-18

    A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  7. Stability Analysis and Design of Impulsive Control Lorenz Systems Family

    Institute of Scientific and Technical Information of China (English)

    YU Yong-Bin; ZHANG Hong-Bin; ZHANG Feng-Li; YU Jue-Bang; LIAO Xiao-Feng

    2009-01-01

    Lorenz systems family unifying Lorenz system, Chen system and Lu system is a typical chaotic family.In this paper, we consider impulsive control Lorenz chaotic systems family with time-varying impulse intervals. By establishing an effective tool of a set of inequalities, we analyze the asymptotic stability of impulsive control Lorenz systems family and obtain some new less conservative conditions. Based on the stability analysis, we design a novel impulsive controller with time-varying impulse intervals. Illustrative examples are provided to show the feasibility and effectiveness of our method. The obtained results not only can be used to design impulsive control for Lorenz systems family, but also can be extended to other chaotic systems.

  8. Total Transfer Capability Assessment Incorporating Corrective Controls for Transient Stability using TSCOPF

    Science.gov (United States)

    Hakim, Lukmanul; Kubokawa, Junji; Yorino, Naoto; Zoka, Yoshifumi; Sasaki, Yutaka

    Advancements have been made towards inclusion of both static and dynamic security into transfer capability calculation. However, to the authors' knowledge, work on considering corrective controls into the calculation has not been reported yet. Therefore, we propose a Total Transfer Capability (TTC) assessment considering transient stability corrective controls. The method is based on the Newton interior point method for nonlinear programming and transfer capability is approached as a maximization of power transfer with both static and transient stability constraints are incorporated into our Transient Stability Constrained Optimal Power Flow (TSCOPF) formulation. An interconnected power system is simulated to be subjected to a severe unbalanced 3-phase 4-line to ground fault and following the fault, generator and load are shed in a pre-defined sequence to mimic actual corrective controls. In a deregulated electricity market, both generator companies and large load customers are encouraged to actively participate in maintaining power system stability as corrective controls upon agreement of compensation for being shed following a disturbance. Implementation of this proposal on the actual power system operation should be carried out through combining it with the existing transient stabilization controller system. Utilization of these corrective controls results in increasing TTC as suggested in our numerical simulation. As Lagrange multipliers can also describe sensitivity of both inequality and equality constraints to the objective function, then selection of which generator or load to be shed can be carried out on the basis of values of Lagrange multipliers of its respective generator's rotor angle stability and active power balance equation. Hence, the proposal in this paper can be utilized by system operator to assess the maximum TTC for specific loads and network conditions.

  9. Robust stability in constrained predictive control through the Youla parameterisations

    DEFF Research Database (Denmark)

    Thomsen, Sven Creutz; Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2011-01-01

    In this article we take advantage of the primary and dual Youla parameterisations to set up a soft constrained model predictive control (MPC) scheme. In this framework it is possible to guarantee stability in face of norm-bounded uncertainties. Under special conditions guarantees are also given...

  10. Robust stability in predictive control with soft constraints

    DEFF Research Database (Denmark)

    Thomsen, Sven Creutz; Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2010-01-01

    In this paper we take advantage of the primary and dual Youla parameterizations for setting up a soft constrained model predictive control (MPC) scheme for which stability is guaranteed in face of norm-bounded uncertainties. Under special conditions guarantees are also given for hard input...

  11. MHD stability control in alternate confinement concept experiments

    Science.gov (United States)

    Hooper, E. B.

    2006-10-01

    High-quality plasma operation and good energy confinement in the alternate confinement experiments require control of ideal and resistive MHD instabilities. New experiments in the revitalized ICC program, supported by modern MHD computational capabilities, are demonstrating progress in this control which significantly extends previous work. Results from the classical tokamak are thereby extended into new parameter regimes, generating insight into the physics. We consider both toroidal and open concepts and, where appropriate, highlight comparisons with the tokamak, ST, and stellarator. The driving forces for ideal MHD modes are characterized using the Frieman-Rotenberg condition, which generalizes the stability analysis by including plasma flow. Stabilizing mechanisms include conducting walls (RFP, spheromak, FRC); plasma shaping as characterized by the magnetic dipole moment (spheromak, FRC); current-profile control (RFP, spheromak); sheared, super-Alfvénic flows (Z-pinch, centrifugal mirror); quadrupole magnetic wells (FRC, mirror); and high kinetic-energy density flow in good curvature regions (gas-dynamic trap). Resistive tearing is stabilized or limited by current profile control, primarily in the RFP and spheromak. Non-MHD mechanisms such as FLR can also be stabilizing and will be most effective if the MHD growth rate is minimized. Most of the experimental work to date has focused on global or large-scale modes; the possible consequences of short-wavelength or local modes will be explored. E. Frieman and M. Rotenberg, Rev. Mod. Phys. 32, 898 (1960).

  12. Stability and control of VTOL capable airships in hovering flight

    Science.gov (United States)

    Curtiss, H. C., Jr.; Sumantran, V.

    1985-01-01

    The stability and control characteristics of an airship equipped with lifting rotors to provide a modest VTOL capability are discussed. The rotors are used for control and maneuvering in near-hovering flight. Configurations with two, three, and four lifting rotors are examined and compared with respect to control capabilities and dynamic response characteristics. Linearized models of the dynamics are employed for this study. A new approach to the prediction of rotor derivatives for operation near zero thrust in hover is presented. It is found that all three configurations have similar control and response characteristics. The responses are characterized by long time constants and low levels of angular damping.

  13. Stability and control of wind farms in power systems

    OpenAIRE

    Jauch, Clemens

    2006-01-01

    The Ph.D. project ‘Stability and Control of Wind Farms in Power Systems’ deals with some selected problems related to wind power in power systems. With increasing wind power penetration, wind turbines substitute the power production of conventional powerplants. Therefore, wind turbines also have to take over the power system stabilisation and control tasks, that were traditionally carried out by conventional power plants. Out of the many aspects related to this problem, this project focuses o...

  14. Stability Control of an Autonomous Quadcopter through PID Control Law

    Directory of Open Access Journals (Sweden)

    Nicolas Ives Roque Pacheco

    2015-05-01

    Full Text Available In the recent years the world has seen a astonishing ascendance of non tripulated vehicles, and among these is the quadrotors aircrafts or quadcopters. These types of aircraft have been of particular interest due to its easy maneuverability in closed and open spaces and somewhat simplified dynamics. In these paper is presented an first attempt in the built model, to control the 4 DOF(Degrees of freedom of an soon to be autonomous quadcopter through PID law in an controlled environment.

  15. Cooperative research for human factors review of advanced control rooms

    International Nuclear Information System (INIS)

    This project has been performed as cooperative research between KAERI and USNRC. Human factors issues related to soft controls, which is one of key features of advanced HSI, are identified in this project. The issues are analyzed for the evaluation approaches in either experimental or analytical ways. Also, issues requiring additional researches for the evaluation of advanced HSI are identified in the areas of advanced information systems design, computer-based procedure systems, soft controls, human systems interface and plant modernization process, and maintainability of digital systems. The issues are analyzed to discriminate the urgency of researches on it to high, medium, and low levels in consideration of advanced HSI development status in Korea, and some of the issues that can be handled by experimental researches are identified. Additionally, an experimental study is performed to compare operator's performance on human error detection in advanced control rooms vs. in conventional control rooms. It is found that advanced control rooms have several design characteristics hindering operator's error detection performance compared to conventional control rooms

  16. The electric power engineering handbook power system stability and control

    CERN Document Server

    Grisby, Leonard L

    2012-01-01

    With contributions from worldwide leaders in the field, Power System Stability and Control, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) updates coverage of recent developments and rapid technological growth in essential aspects of power systems. Edited by L.L. Grigsby, a respected and accomplished authority in power engineering, and section editors Miroslav Begovic, Prabha Kundur, and Bruce Wollenberg, this reference presents substantially new and revised content. Topics covered include: * Power System Protection * Power System Dynamics and Stability *

  17. Transient stability improvement by nonlinear controllers based on tracking

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Juan M. [Centro de Investigacion y Estudios Avanzados, Guadalajara, Mexico. Av. Cientifica 1145. Col. El Bajio. Zapopan, Jal. 45015 (Mexico); Arroyave, Felipe Valencia; Correa Gutierrez, Rosa Elvira [Universidad Nacional de Colombia, Sede Medellin. Facultad de Minas, Escuela de Mecatronica (Colombia)

    2011-02-15

    This paper deals with the control problem in multi-machine electric power systems, which represent complex great scale nonlinear systems. Thus, the controller design is a challenging problem. These systems are subjected to different perturbations, such as short circuits, connection and/or disconnection of loads, lines, or generators. Then, the utilization of controllers which guarantee good performance under those perturbations is required in order to provide electrical energy to the loads with admissible stability margins. The proposed controllers are based on a systematic strategy, which calculate nonlinear controllers for generating units in a power plant, both for voltage and velocity regulation. The formulation allows designing controllers in a multi-machine power system without intricate calculations. Results on a power system of the open research indicate the proposition's suitability. The problem is formulated as a tracking problem. The designed controllers may be implemented in any electric power system. (author)

  18. Stability Boundaries for Offshore Wind Park Distributed Voltage Control

    DEFF Research Database (Denmark)

    Gryning, Mikkel P.S.; Wu, Qiuwei; Kocewiak, Lukasz;

    2016-01-01

    In order to identify mechanisms causing slow reactive power oscillations observed in an existing offshore wind power plant, and be able to avoid similar events in the future, voltage control is studied in this paper for a plant with a static synchronous compensator, type-4 wind turbines and a park...... pilot control. Using data from the actual wind power plant, all stabilizing subsystem voltage proportional-integral controller parameters are first characterized based on their Hurwitz signature. Inner loop current control is then designed using Internal Mode Control principles, and guidelines for feed...... forward filter design are given to obtain required disturbance rejection properties. The paper contributes by providing analytical relations between power plant control, droop, sampling time, electrical parameters and voltage control characteristics, and by assessing frequencies and damping of reactive...

  19. Advanced mobile networking, sensing, and controls.

    Energy Technology Data Exchange (ETDEWEB)

    Feddema, John Todd; Kilman, Dominique Marie; Byrne, Raymond Harry; Young, Joseph G.; Lewis, Christopher L.; Van Leeuwen, Brian P.; Robinett, Rush D. III; Harrington, John J.

    2005-03-01

    This report describes an integrated approach for designing communication, sensing, and control systems for mobile distributed systems. Graph theoretic methods are used to analyze the input/output reachability and structural controllability and observability of a decentralized system. Embedded in each network node, this analysis will automatically reconfigure an ad hoc communication network for the sensing and control task at hand. The graph analysis can also be used to create the optimal communication flow control based upon the spatial distribution of the network nodes. Edge coloring algorithms tell us that the minimum number of time slots in a planar network is equal to either the maximum number of adjacent nodes (or degree) of the undirected graph plus some small number. Therefore, the more spread out that the nodes are, the fewer number of time slots are needed for communication, and the smaller the latency between nodes. In a coupled system, this results in a more responsive sensor network and control system. Network protocols are developed to propagate this information, and distributed algorithms are developed to automatically adjust the number of time slots available for communication. These protocols and algorithms must be extremely efficient and only updated as network nodes move. In addition, queuing theory is used to analyze the delay characteristics of Carrier Sense Multiple Access (CSMA) networks. This report documents the analysis, simulation, and implementation of these algorithms performed under this Laboratory Directed Research and Development (LDRD) effort.

  20. Control of Smart Building Using Advanced SCADA

    Science.gov (United States)

    Samuel, Vivin Thomas

    For complete control of the building, a proper SCADA implementation and the optimization strategy has to be build. For better communication and efficiency a proper channel between the Communication protocol and SCADA has to be designed. This paper concentrate mainly between the communication protocol, and the SCADA implementation, for a better optimization and energy savings is derived to large scale industrial buildings. The communication channel used in order to completely control the building remotely from a distant place. For an efficient result we consider the temperature values and the power ratings of the equipment so that while controlling the equipment, we are setting a threshold values for FDD technique implementation. Building management system became a vital source for any building to maintain it and for safety purpose. Smart buildings, refers to various distinct features, where the complete automation system, office building controls, data center controls. ELC's are used to communicate the load values of the building to the remote server from a far location with the help of an Ethernet communication channel. Based on the demand fluctuation and the peak voltage, the loads operate differently increasing the consumption rate thus results in the increase in the annual consumption bill. In modern days, saving energy and reducing the consumption bill is most essential for any building for a better and long operation. The equipment - monitored regularly and optimization strategy is implemented for cost reduction automation system. Thus results in the reduction of annual cost reduction and load lifetime increase.

  1. Study on modeling of vehicle dynamic stability and control technique

    Institute of Scientific and Technical Information of China (English)

    GAO Yun-ting; LI Pan-feng

    2012-01-01

    In order to solve the problem of enhancing the vehicle driving stability and safety,which has been the hot question researched by scientific and engineering in the vehicle industry,the new control method was investigated.After the analysis of tire moving characteristics and the vehicle stress analysis,the tire model based on the extension pacejka magic formula which combined longitudinal motion and lateral motion was developed and a nonlinear vehicle dynamical stability model with seven freedoms was made.A new model reference adaptive control project which made the slip angle and yaw rate of vehicle body as the output and feedback variable in adjusting the torque of vehicle body to control the vehicle stability was designed.A simulation model was also built in Matlab/Simulink to evaluate this control project.It was made up of many mathematical subsystem models mainly including the tire model module,the yaw moment calculation module,the center of mass parameter calculation module,tire parameter calculation module of multiple and so forth.The severe lane change simulation result shows that this vehicle model and the model reference adaptive control method have an excellent performance.

  2. Advances in power system modelling, control and stability analysis

    CERN Document Server

    Milano, Federico

    2016-01-01

    This book describes the variety of new methodologies and technologies that are changing the way modern electric power systems are modelled, simulated and operated. It mixes theoretical aspects with practical considerations, as well as benchmarks test systems and real-world applications.

  3. Design of Robust Power System Stabilizer Considering Less Control Energy

    Directory of Open Access Journals (Sweden)

    Cuk Supriyadi Ali Nandar

    2012-01-01

    Full Text Available This paper proposes design a robust power system stabilizer (PSS considering less control energy using a genetic algorithm (GA. The structure of proposed PSS is a 1st-order lead-lag compensator, it is easy to implement in power system utility. In the design, system uncertainties are modeled by an inverse additive uncertainty. The performance, robust stability condition, and less control energy of the designed system are formulated as the objective function in the optimization problem. The GA is applied to solve an optimization problem and to achieve control parameters of proposed PSS. The performance and robustness against system uncertainties of the proposed PSS are investigated in the single-machine infinite bus system in comparison with a conventional PSS and a PSS designed by fixed-structure H∞ loop shaping. Simulation results show that with less control energy, the robustness and damping effect of the proposed PSS can be guaranteed against various operating conditions.Keywords: Control system design, operation and control of power systems, robust control application, less control energy

  4. Neural Network Predictive Control Based Power System Stabilizer

    Directory of Open Access Journals (Sweden)

    Ali Mohamed Yousef

    2012-04-01

    Full Text Available The present study investigates the power system stabilizer based on neural predictive control for improving power system dynamic performance over a wide range of operating conditions. In this study a design and application of the Neural Network Model Predictive Controller (NN-MPC on a simple power system composed of a synchronous generator connected to an infinite bus through a transmission line is proposed. The synchronous machine is represented in detail, taking into account the effect of the machine saliency and the damper winding. Neural network model predictive control combines reliable prediction of neural network model with excellent performance of model predictive control using nonlinear Levenberg-Marquardt optimization. This control system is used the rotor speed deviation as a feedback signal. Furthermore, the using performance system of the proposed controller is compared with the system performance using conventional one (PID controller through simulation studies. Digital simulation has been carried out in order to validate the effectiveness proposed NN-MPC power system stabilizer for achieving excellent performance. The results demonstrate that the effectiveness and superiority of the proposed controller in terms of fast response and small settling time.

  5. Human factors survey of advanced instrumentation and controls

    International Nuclear Information System (INIS)

    A survey oriented towards identifying the human factors issues in regard to the use of advanced instrumentation and controls (I ampersand C) in the nuclear industry was conducted. A number of United States (US) and Canadian nuclear vendors and utilities were participants in the survey. Human factors items, subsumed under the categories of computer-generated displays (CGD), controls, organizational support, training, and related topics, were discussed. The survey found the industry to be concerned about the human factors issues related to the implementation of advanced I ampersand C. Fifteen potential human factors problems were identified. They include: the need for an advanced I ampersand C guideline equivalent to NUREG-0700; a role change in the control room from operator to supervisor; information overload; adequacy of existing training technology for advanced I ampersand C; and operator acceptance and trust. 11 refs., 1 tab

  6. Advanced Stellar Compass, CHAMP, Interface Control Document

    DEFF Research Database (Denmark)

    Madsen, Peter Buch; Jørgensen, John Leif; Betto, Maurizio;

    1999-01-01

    The German government research establishment "GeoForschungsZentrum" developed under a contract to the German government a microsatellite named "Champ". The Space Instrumentation Group has made a Interface Control Document for the CHAMP, witch describes the Star Imager, the electrical interface, t...

  7. Simulation of advanced concepts for damage control

    NARCIS (Netherlands)

    Gillis, M.P.W.; Keijer, W.; Smit, C.S.; Wolff, P.A.

    2003-01-01

    Damage control on board navy ships requires a lot of manpower. On a frigate-sized ship of the Royal Netherlands Navy, up to ninety people can be involved in tasks like fire fighting, battle damage repair and treatment of casualties. In present times this is no longer attainable or affordable. To red

  8. Advanced Control Techniques for WEC Wave Dragon

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter; Jasinski, M.;

    2007-01-01

    This paper presents the ongoing work on control of the Wave Dragon wave energy converter. Research is being conducted in and between several centers across Europe. This is building upon the knowledge gained in the prototype project, and will enable much better performance of the future deployment...... of the full scale Wave Dragon....

  9. Advanced Control Techniques for WEC Wave Dragon

    OpenAIRE

    Tedd, James; Kofoed, Jens Peter; Jasinski, M; Morris, A.; Friis-Madsen, E.; Wisniewski, Rafal; Bendtsen, Jan Dimon

    2007-01-01

      This paper presents the ongoing work on control of the Wave Dragon wave energy converter. Research is being conducted in and between several centers across Europe. This is building upon the knowledge gained in the prototype project, and will enable much better performance of the future deployment of the full scale Wave Dragon.

  10. Stability and synchronization control of stochastic neural networks

    CERN Document Server

    Zhou, Wuneng; Zhou, Liuwei; Tong, Dongbing

    2016-01-01

    This book reports on the latest findings in the study of Stochastic Neural Networks (SNN). The book collects the novel model of the disturbance driven by Levy process, the research method of M-matrix, and the adaptive control method of the SNN in the context of stability and synchronization control. The book will be of interest to university researchers, graduate students in control science and engineering and neural networks who wish to learn the core principles, methods, algorithms and applications of SNN.

  11. Elements of an advanced integrated operator control station

    International Nuclear Information System (INIS)

    One of the critical determinants of peformance for any remotely operated maintenance system is the compatibility achieved between elements of the man/machine interface (e.g., master manipulator controller, controls, displays, etc.) and the human operator. In the Remote Control Engineering task of the Consolidated Fuel Reprocessing Program, considerable attention has been devoted to optimizing the man/machine interface of the operator control station. This system must be considered an integral element of the overall maintenance work system which includes transporters, manipulators, remote viewing, and other parts. The control station must reflect the integration of the operator team, control/display panels, manipulator master controllers, and remote viewing monitors. Human factors principles and experimentation have been used in the development of an advanced integrated operator control station designed for the advance servomanipulator. Key features of this next-generation design are summarized in this presentation. 7 references, 4 figures

  12. Multivariable nonlinear control of STATCOM for synchronous generator stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, N.C. [Multimedia Univ., Melaka (Malaysia). Faculty of Engineering and Technology; Panigrahi, B.K.; Panda, G. [Multimedia Univ., Selangor (Malaysia); Dash, P.K. [National Inst. of Technology, Rourkela (India)

    2004-01-01

    A static synchronous compensator (STATCOM) is a typical flexible ac transmission system device playing a vital role as a stability aid for small and large transient disturbances in an interconnected power system. This article deals with design and evaluation of a feedback linearizing nonlinear controller for STATCOM installed in a single-machine infinite-bus power system. In addition to the coordinated control of ac and dc bus voltages, the proposed controller also provides good damping to the electromechanical oscillation of the synchronous generator under transient disturbances. The efficiency of the control strategy is evaluated by computer simulation studies. The comparative study of these results with the conventional cascade control structure establishes the elegance of the proposed control scheme. (author)

  13. Development of an advanced pitch active control system for a wide body jet aircraft

    Science.gov (United States)

    Guinn, Wiley A.; Rising, Jerry J.; Davis, Walt J.

    1984-01-01

    An advanced PACS control law was developed for a commercial wide-body transport (Lockheed L-1011) by using modern control theory. Validity of the control law was demonstrated by piloted flight simulation tests on the NASA Langley visual motion simulator. The PACS design objective was to develop a PACS that would provide good flying qualities to negative 10 percent static stability margins that were equivalent to those of the baseline aircraft at a 15 percent static stability margin which is normal for the L-1011. Also, the PACS was to compensate for high-Mach/high-g instabilities that degrade flying qualities during upset recoveries and maneuvers. The piloted flight simulation tests showed that the PACS met the design objectives. The simulation demonstrated good flying qualities to negative 20 percent static stability margins for hold, cruise and high-speed flight conditions. Analysis and wind tunnel tests performed on other Lockheed programs indicate that the PACS could be used on an advanced transport configuration to provide a 4 percent fuel savings which results from reduced trim drag by flying at negative static stability margins.

  14. Advances in Computer, Communication, Control and Automation

    CERN Document Server

    011 International Conference on Computer, Communication, Control and Automation

    2012-01-01

    The volume includes a set of selected papers extended and revised from the 2011 International Conference on Computer, Communication, Control and Automation (3CA 2011). 2011 International Conference on Computer, Communication, Control and Automation (3CA 2011) has been held in Zhuhai, China, November 19-20, 2011. This volume  topics covered include signal and Image processing, speech and audio Processing, video processing and analysis, artificial intelligence, computing and intelligent systems, machine learning, sensor and neural networks, knowledge discovery and data mining, fuzzy mathematics and Applications, knowledge-based systems, hybrid systems modeling and design, risk analysis and management, system modeling and simulation. We hope that researchers, graduate students and other interested readers benefit scientifically from the proceedings and also find it stimulating in the process.

  15. Advances in Future Computer and Control Systems v.2

    CERN Document Server

    Lin, Sally; 2012 International Conference on Future Computer and Control Systems(FCCS2012)

    2012-01-01

    FCCS2012 is an integrated conference concentrating its focus on Future Computer and Control Systems. “Advances in Future Computer and Control Systems” presents the proceedings of the 2012 International Conference on Future Computer and Control Systems(FCCS2012) held April 21-22,2012, in Changsha, China including recent research results on Future Computer and Control Systems of researchers from all around the world.

  16. Advances in Future Computer and Control Systems v.1

    CERN Document Server

    Lin, Sally; 2012 International Conference on Future Computer and Control Systems(FCCS2012)

    2012-01-01

    FCCS2012 is an integrated conference concentrating its focus on Future Computer and Control Systems. “Advances in Future Computer and Control Systems” presents the proceedings of the 2012 International Conference on Future Computer and Control Systems(FCCS2012) held April 21-22,2012, in Changsha, China including recent research results on Future Computer and Control Systems of researchers from all around the world.

  17. Advanced CIDI Emission Control System Development

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Christine

    2006-05-31

    Ford Motor Company, with ExxonMobil and FEV, participated in the Department of Energy's (DOE) Ultra-Clean Transportation Fuels Program with the goal to develop an innovative emission control system for light-duty diesel vehicles. The focus on diesel engine emissions was a direct result of the improved volumetric fuel economy (up to 50%) and lower CO2 emissions (up to 25%) over comparable gasoline engines shown in Europe. Selective Catalytic Reduction (SCR) with aqueous urea as the NOx reductant and a Catalyzed Diesel Particulate Filter (CDPF) were chosen as the primary emission control system components. The program expected to demonstrate more than 90% durable reduction in particulate matter (PM) and NOx emissions on a light-duty truck application, based on the FTP-75 drive cycle. Very low sulfur diesel fuel (<15 ppm-wt) enabled lower PM emissions, reduced fuel economy penalty due to the emission control system and improved long-term system durability. Significant progress was made toward a durable system to meet Tier 2 Bin 5 emission standards on a 6000 lbs light-duty truck. A 40% reduction in engine-out NOx emissions was achieved with a mid-size prototype diesel engine through engine recalibration and increased exhaust gas recirculation. Use of a rapid warm-up strategy and urea SCR provided over 90% further NOx reduction while the CDPF reduced tailpipe PM to gasoline vehicle levels. Development work was conducted to separately improve urea SCR and CDPF system durability, as well as improved oxidation catalyst function. Exhaust gas NOx and ammonia sensors were also developed further. While the final emission control system did not meet Tier 2 Bin 5 NOx after 120k mi of aging on the dynamometer, it did meet the standards for HC, NMOG, and PM, and an improved SCR catalyst was shown to have potential to meet the NOx standard, assuming the DOC durability could be improved further. Models of DOC and SCR function were developed to guide the study of several key

  18. Integrated controls/structures study of advanced space systems

    Science.gov (United States)

    Greene, C. S.; Cunningham, T. B.

    1982-01-01

    A cost tradeoff is postulated for a stiff structure utilizing minimal controls (and control expense) to point and stabilize the vehicle. Extra costs for a stiff structure are caused by weight, packaging size, etc. Likewise, a more flexible vehicle should result in reduced structural costs but increased costs associated with additional control hardware and data processing required for vibration control of the structure. This tradeoff occurs as the ratio of the control bandwidth required for the mission to the lowest (significant) bending mode of the vehicle. The cost of controlling a spacecraft for a specific mission and the same basic configuration but varying the flexibility is established.

  19. Practical Implementations of Advanced Process Control for Linear Systems

    DEFF Research Database (Denmark)

    Knudsen, Jørgen K . H.; Huusom, Jakob Kjøbsted; Jørgensen, John Bagterp

    This paper describes some practical problems encountered, when implementing Advanced Process Control, APC, schemes on linear processes. The implemented APC controllers discussed will be LQR, Riccati MPC and Condensed MPC controllers illustrated by simulation of the Four Tank Process and a lineari...... on pilot plant equipment on the department of Chemical Engineering DTU Lyngby.......This paper describes some practical problems encountered, when implementing Advanced Process Control, APC, schemes on linear processes. The implemented APC controllers discussed will be LQR, Riccati MPC and Condensed MPC controllers illustrated by simulation of the Four Tank Process...... cannot be achieved without violation of process constraints. A target calculation function can be used to calculate the optimal achievable target for the process. The use of hard and soft constraints for process input constraints in the MPC controllers, ensures feasible solutions. The computational load...

  20. Stability Control of Vehicle Emergency Braking with Tire Blowout

    Directory of Open Access Journals (Sweden)

    Qingzhang Chen

    2014-01-01

    Full Text Available For the stability control and slowing down the vehicle to a safe speed after tire failure, an emergency automatic braking system with independent intellectual property is developed. After the system has received a signal of tire blowout, the automatic braking mode of the vehicle is determined according to the position of the failure tire and the motion state of vehicle, and a control strategy for resisting tire blowout additional yaw torque and deceleration is designed to slow down vehicle to a safe speed in an expected trajectory. The simulating test system is also designed, and the testing results show that the vehicle can be quickly stabilized and kept in the original track after tire blowout with the emergency braking system described in the paper.

  1. Transient Colloidal Stability Controls the Particle Formation of SBA-15

    OpenAIRE

    Ruan, Juanfang; Kjellman, Tomas; SAKAMOTO, YASUHIRO; Alfredsson, Viveka

    2012-01-01

    A hypothesis about (transient) colloidal stability as a controlling mechanism for particle formation in SBA-15 is presented. The hypothesis is based on results from both in situ and ex situ investigations, including cryogenic transmission electron microscopy (cryo-TEM), UV–vis spectroscopy, and dynamic light scattering (DLS). Cryo-TEM images show that particles grow via the formation of silica–Pluronic–water “flocs”, which coalesce in a seemingly arbitrary manner. Despite this, the final mate...

  2. Ddb1 controls genome stability and meiosis in fission yeast

    DEFF Research Database (Denmark)

    Holmberg, Christian Henrik; Fleck, Oliver; Hansen, H. A.;

    2005-01-01

    The human UV-damaged DNA-binding protein Ddb1 associates with cullin 4 ubiquitin ligases implicated in nucleotide excision repair (NER). These complexes also contain the signalosome (CSN), but NER-relevant ubiquitination targets have not yet been identified. We report that fission yeast Ddb1, Cul...... degradation becomes essential when cells differentiate into meiosis. These results suggest that Ddb1, along with Cullin 4 and the signalosome, constitute a major pathway controlling genome stability, repair, and differentiation via RNR regulation....

  3. Symmetries, Stability, and Control in Nonlinear Systems and Networks

    CERN Document Server

    Russo, Giovanni

    2010-01-01

    This paper discusses the interplay of symmetries and stability in the analysis and control of nonlinear dynamical systems and networks. Specifically, it combines standard results on symmetries and equivariance with recent convergence analysis tools based on nonlinear contraction theory and virtual dynamical systems. This synergy between structural properties (symmetries) and convergence properties (contraction) is illustrated in the contexts of network motifs arising e.g. in genetic networks, of invariance to environmental symmetries, and of imposing different patterns of synchrony in a network.

  4. STABILIZATION OF NONLINEAR TIME-VARYING SYSTEMS: A CONTROL LYAPUNOV FUNCTION APPROACH

    Institute of Scientific and Technical Information of China (English)

    Zhongping JIANG; Yuandan LIN; Yuan WANG

    2009-01-01

    This paper presents a control Lyapunov function approach to the global stabilization problem for general nonlinear and time-varying systems. Explicit stabilizing feedback control laws are proposed based on the method of control Lyapunov functions and Sontag's universal formula.

  5. Advanced control room evaluation: General approach and rationale

    Energy Technology Data Exchange (ETDEWEB)

    O' Hara, J.M. (Brookhaven National Lab., Upton, NY (USA)); Wachtel, J. (Nuclear Regulatory Commission, Washington, DC (USA))

    1991-01-01

    Advanced control rooms (ACRs) for future nuclear power plants (NPPs) are being designed utilizing computer-based technologies. The US Nuclear Regulatory Commission reviews the human engineering aspects of such control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported in order to protect public health and safety. This paper describes the rationale and general approach to the development of a human factors review guideline for ACRs. The factors influencing the guideline development are discussed, including the review environment, the types of advanced technologies being addressed, the human factors issues associated with advanced technology, and the current state-of-the-art of human factors guidelines for advanced human-system interfaces (HSIs). The proposed approach to ACR review would track the design and implementation process through the application of review guidelines reflecting four review modules: planning, design process analysis, human factors engineering review, and dynamic performance evaluation. 21 refs.

  6. Optimal Control of a Ballast-Stabilized Floating Wind Turbine

    DEFF Research Database (Denmark)

    Christiansen, Søren; Knudsen, Torben; Bak, Thomas

    2011-01-01

    structural stiffness of a floating installation in combination with a coupling between the fore–aft motion of the tower and the blade pitch. To address this problem, the present paper models a ballast-stabilized floating wind turbine, and suggests a linear quadratic regulator (LQR) in combination with a wind...... estimator and a state observer. The results are simulated using aero elastic code and analysed in terms of damage equivalent loads. When compared to a baseline controller, this controller clearly demonstrates better generator speed and power tracking while reducing fatigue loads....

  7. Stability analysis of traffic flow with extended CACC control models

    Science.gov (United States)

    Ya-Zhou, Zheng; Rong-Jun, Cheng; Siu-Ming, Lo; Hong-Xia, Ge

    2016-06-01

    To further investigate car-following behaviors in the cooperative adaptive cruise control (CACC) strategy, a comprehensive control system which can handle three traffic conditions to guarantee driving efficiency and safety is designed by using three CACC models. In this control system, some vital comprehensive information, such as multiple preceding cars’ speed differences and headway, variable safety distance (VSD) and time-delay effect on the traffic current and the jamming transition have been investigated via analytical or numerical methods. Local and string stability criterion for the velocity control (VC) model and gap control (GC) model are derived via linear stability theory. Numerical simulations are conducted to study the performance of the simulated traffic flow. The simulation results show that the VC model and GC model can improve driving efficiency and suppress traffic congestion. Project supported by the National Natural Science Foundation of China (Grant Nos. 71571107 and 11302110). The Scientific Research Fund of Zhejiang Province, China (Grant Nos. LY15A020007, LY15E080013, and LY16G010003). The Natural Science Foundation of Ningbo City (Grant Nos. 2014A610030 and 2015A610299), the Fund from the Government of the Hong Kong Administrative Region, China (Grant No. CityU11209614), and the K C Wong Magna Fund in Ningbo University, China.

  8. Advanced control systems research at UPC Terrassa Campus

    OpenAIRE

    Quevedo Casín, Joseba Jokin; Puig Cayuela, Vicenç

    2013-01-01

    Advanced Control Systems (SAC) is a multidiscip linary research group involving UPC professors and Spanish National Research Council (CSIC) researchers, focused on the wide subject of control and supervision of dynamic systems. The group uses theory of signal/systems tools, modelling, simulation and optimization in order to face real problems of systems and automated processes, specifically in the next subjects: Optimal/predictive control of large scale systems (mainly related with water cycl...

  9. ADVANCED COMPRESSOR ENGINE CONTROLS TO ENHANCE OPERATION, RELIABILITY AND INTEGRITY

    Energy Technology Data Exchange (ETDEWEB)

    Gary D. Bourn; Jess W. Gingrich; Jack A. Smith

    2004-03-01

    This document is the final report for the ''Advanced Compressor Engine Controls to Enhance Operation, Reliability, and Integrity'' project. SwRI conducted this project for DOE in conjunction with Cooper Compression, under DOE contract number DE-FC26-03NT41859. This report addresses an investigation of engine controls for integral compressor engines and the development of control strategies that implement closed-loop NOX emissions feedback.

  10. Recent Advances in Explicit Multiparametric Nonlinear Model Predictive Control

    KAUST Repository

    Domínguez, Luis F.

    2011-01-19

    In this paper we present recent advances in multiparametric nonlinear programming (mp-NLP) algorithms for explicit nonlinear model predictive control (mp-NMPC). Three mp-NLP algorithms for NMPC are discussed, based on which novel mp-NMPC controllers are derived. The performance of the explicit controllers are then tested and compared in a simulation example involving the operation of a continuous stirred-tank reactor (CSTR). © 2010 American Chemical Society.

  11. Stability Concerns for Indirect Consumer Control in Smart Grids

    DEFF Research Database (Denmark)

    Juelsgaard, Morten; Andersen, Palle; Wisniewski, Rafal

    2013-01-01

    by an external third party, and indirect consumer control through incentives and price signals. In this work we present a simple formulation of indirect control, where the behavior of each consumer, is governed by local optimization of energy consumption. The local optimization accounts for both cost of energy...... and distribution losses, as well as any discomfort incurred by consumers from any shift in energy consumption. Our work will illustrate that in the simplest formulation of indirect control, the stability is greatly affected of both the behavior of consumers, and the number of consumers to include. We will show how......Demand side management will be an important tool for maintaining a balanced electrical grid in the future, when the penetration of volatile resources, such as wind and solar energy increases. Recent research focuses on two different management approaches, namely direct consumer control...

  12. Advanced control of piezoelectric micro-nano-positioning systems

    CERN Document Server

    Xu, Qingsong

    2016-01-01

    This book explores emerging methods and algorithms that enable precise control of micro-/nano-positioning systems. The text describes three control strategies: hysteresis-model-based feedforward control and hysteresis-model-free feedback control based on and free from state observation. Each paradigm receives dedicated attention within a particular part of the text. Readers are shown how to design, validate and apply a variety of new control approaches in micromanipulation: hysteresis modelling, discrete-time sliding-mode control and model-reference adaptive control. Experimental results are provided throughout and build up to a detailed treatment of practical applications in the fourth part of the book. The applications focus on control of piezoelectric grippers. Advanced Control of Piezoelectric Micro-/Nano-Positioning Systems will assist academic researchers and practising control and mechatronics engineers interested in suppressing sources of nonlinearity such as hysteresis and drift when combining positi...

  13. Full-scale testing, production and cost analysis data for the advanced composite stabilizer for Boeing 737 aircraft, volume 2

    Science.gov (United States)

    Aniversario, R. B.; Harvey, S. T.; Mccarty, J. E.; Parson, J. T.; Peterson, D. C.; Pritchett, L. D.; Wilson, D. R.; Wogulis, E. R.

    1982-01-01

    The development, testing, production activities, and associated costs that were required to produce five-and-one-half advanced-composite stabilizer shipsets for Boeing 737 aircraft are defined and discussed.

  14. Multivariable quadratic synthesis of an advanced turbofan engine controller

    Science.gov (United States)

    Dehoff, R. L.; Hall, W. E., Jr.

    1978-01-01

    A digital controller for an advanced turbofan engine utilizing multivariate feedback is described. The theoretical background of locally linearized control synthesis is reviewed briefly. The application of linear quadratic regulator techniques to the practical control problem is presented. The design procedure has been applied to the F100 turbofan engine, and details of the structure of this system are explained. Selected results from simulations of the engine and controller are utilized to illustrate the operation of the system. It is shown that the general multivariable design procedure will produce practical and implementable controllers for modern, high-performance turbine engines.

  15. AC electric motors control advanced design techniques and applications

    CERN Document Server

    Giri, Fouad

    2013-01-01

    The complexity of AC motor control lies in the multivariable and nonlinear nature of AC machine dynamics. Recent advancements in control theory now make it possible to deal with long-standing problems in AC motors control. This text expertly draws on these developments to apply a wide range of model-based control designmethods to a variety of AC motors. Contributions from over thirty top researchers explain how modern control design methods can be used to achieve tight speed regulation, optimal energetic efficiency, and operation reliability and safety, by considering online state var

  16. Interline power flow controller (IPFC) based damping recurrent neural network controllers for enhancing stability

    Energy Technology Data Exchange (ETDEWEB)

    Banaei, M.R., E-mail: m.banaei@azaruniv.ed [Electrical Engineering Department, Faculty of Engineering, Azarbaijan University of Tarbiat Moallem, Tabriz (Iran, Islamic Republic of); Kami, A. [Electrical Engineering Department, Faculty of Engineering, Azarbaijan University of Tarbiat Moallem, Tabriz (Iran, Islamic Republic of)

    2011-07-15

    Highlights: {yields} A method is presented to improve power system stability using IPFC. {yields} Recurrent neural network controllers damp oscillations in a power system. {yields} Training is based on back propagation with adaptive training parameters. {yields} Selection of effectiveness damping control signal carried out using SVD method. -- Abstract: This paper presents a method to improve power system stability using IPFC based damping online learning recurrent neural network controllers for damping oscillations in a power system. Parameters of equipped controllers for enhancing dynamical stability at the IPFC are tuned using mathematical methods. Therefore these control parameters are often fixed and are set for particular system configurations or operating points. Multilayer recurrent neural network, which can be tuned for changing system conditions, is used in this paper for effectively damp the oscillations. Training is based on back propagation with adaptive training parameters. This controller is tested to variations in system loading and fault in the power system and its performance is compared with performance of a controller that the phase compensation method is used to set its parameters. Selection of effectiveness damping control signal for the design of robust IPFC damping controller carried out through singular value decomposition (SVD) method. Simulation studies show the superior robustness and stabilizing effect of the proposed controller in comparison with phase compensation method.

  17. Interline power flow controller (IPFC) based damping recurrent neural network controllers for enhancing stability

    International Nuclear Information System (INIS)

    Highlights: → A method is presented to improve power system stability using IPFC. → Recurrent neural network controllers damp oscillations in a power system. → Training is based on back propagation with adaptive training parameters. → Selection of effectiveness damping control signal carried out using SVD method. -- Abstract: This paper presents a method to improve power system stability using IPFC based damping online learning recurrent neural network controllers for damping oscillations in a power system. Parameters of equipped controllers for enhancing dynamical stability at the IPFC are tuned using mathematical methods. Therefore these control parameters are often fixed and are set for particular system configurations or operating points. Multilayer recurrent neural network, which can be tuned for changing system conditions, is used in this paper for effectively damp the oscillations. Training is based on back propagation with adaptive training parameters. This controller is tested to variations in system loading and fault in the power system and its performance is compared with performance of a controller that the phase compensation method is used to set its parameters. Selection of effectiveness damping control signal for the design of robust IPFC damping controller carried out through singular value decomposition (SVD) method. Simulation studies show the superior robustness and stabilizing effect of the proposed controller in comparison with phase compensation method.

  18. Advanced control room design for nuclear power plants

    International Nuclear Information System (INIS)

    The power industry has seen a continuous growth of size and complexity of nuclear power plants. Accompanying these changes have been extensive regulatory requirements resulting in significant construction, operation and maintenance costs. In response to related concerns raised by industry members, Combustion Engineering developed the NUPLEX 80 Advanced Control Room. The goal of NUPLEX 80TM is to: reduce design and construction costs; increase plant safety and availability through improvements in the man-machine interface; and reduce maintenance costs. This paper provides an overview of the NUPLEX 80 Advanced Control Room and explains how the stated goals are achieved. (author)

  19. Advanced Proportional Servo Valve Control with Customized Control Code using White Space

    OpenAIRE

    Lauer, Peter

    2016-01-01

    An industrial control valve has been designed by Eaton (AxisPro® valve). The servo performance valve has onboard electronics that features external and internal sensor interfaces, advanced control modes and network capability. Advanced control modes are implement in the valves firmware. With the help of the white space it is possilbe to execute custom code directly on the valve that interact with these controls. Small OEM applications, like rubber moulding machines, benefit from the cominatio...

  20. Advanced and intelligent control in power electronics and drives

    CERN Document Server

    Blaabjerg, Frede; Rodríguez, José

    2014-01-01

    Power electronics and variable frequency drives are continuously developing multidisciplinary fields in electrical engineering, and it is practically not possible to write a book covering the entire area by one individual specialist. Especially by taking account the recent fast development in the neighboring fields like control theory, computational intelligence and signal processing, which all strongly influence new solutions in control of power electronics and drives. Therefore, this book is written by individual key specialist working on the area of modern advanced control methods which penetrates current implementation of power converters and drives. Although some of the presented methods are still not adopted by industry, they create new solutions with high further research and application potential. The material of the book is presented in the following three parts: Part I: Advanced Power Electronic Control in Renewable Energy Sources (Chapters 1-4), Part II: Predictive Control of Power Converters and D...

  1. Contributions of CCLM to advances in quality control.

    Science.gov (United States)

    Kazmierczak, Steven C

    2013-01-01

    Abstract The discipline of laboratory medicine is relatively young when considered in the context of the history of medicine itself. The history of quality control, within the context of laboratory medicine, also enjoys a relatively brief, but rich history. Laboratory quality control continues to evolve along with advances in automation, measurement techniques and information technology. Clinical Chemistry and Laboratory Medicine (CCLM) has played a key role in helping disseminate information about the proper use and utility of quality control. Publication of important advances in quality control techniques and dissemination of guidelines concerned with laboratory quality control has undoubtedly helped readers of this journal keep up to date on the most recent developments in this field.

  2. Microgrid Stability Controller Based on Adaptive Robust Total SMC

    Directory of Open Access Journals (Sweden)

    Xiaoling Su

    2015-03-01

    Full Text Available This paper presents a microgrid stability controller (MSC in order to provide existing distributed generation units (DGs the additional functionality of working in islanding mode without changing their control strategies in grid-connected mode and to enhance the stability of the microgrid. Microgrid operating characteristics and mathematical models of the MSC indicate that the system is inherently nonlinear and time-variable. Therefore, this paper proposes an adaptive robust total sliding-mode control (ARTSMC system for the MSC. It is proved that the ARTSMC system is insensitive to parametric uncertainties and external disturbances. The MSC provides fast dynamic response and robustness to the microgrid. When the system is operating in grid-connected mode, it is able to improve the controllability of the exchanged power between the microgrid and the utility grid, while smoothing the DGs’ output power. When the microgrid is operating in islanded mode, it provides voltage and frequency support, while guaranteeing seamless transition between the two operation modes. Simulation and experimental results show the effectiveness of the proposed approach.

  3. Diamagnetically stabilized levitation control of an intraluminal magnetic capsule.

    Science.gov (United States)

    Lam, Michael; Mintchev, Martin

    2009-08-01

    Controlled navigation promotes full utilization of capsule endoscopy for reliable real-time diagnosis in the gastrointestinal (GI) tract, but intermittent natural peristalsis can disturb the navigational control, destabilize the capsule and take it out of levitation. The focus of the present work was to develop an economical and effective real-time magnetic capsule-guiding system that can operate in the presence of naturally existing peristalsis while retaining navigational control. A real-size magnetic navigation system that can handle peristaltic forces of up to 1.5 N was designed utilizing the computer-aided design (CAD) system Maxwell 3D (Ansoft, Pittsburg, PA) and was verified using a small-size physical experimental setup. The proposed system contains a pair of 50 cm diameter, 10,000-turn copper electromagnets with a 10 cm x 10 cm ferrous core driven by currents of up to 300 A and can successfully maintain position control over the levitating capsule during peristalsis. The addition of bismuth diamagnetic casing for stabilizing the levitating capsule was also studied. A modeled magnetic field around the diamagnetically cased permanent magnet was shown to be redistributed aligning its interaction with the external electromagnets, thus stabilizing the levitating capsule. In summary, a custom-designed diamagnetically facilitated capsule navigation system can successfully steer an intraluminal magnet-carrying capsule. PMID:19550023

  4. Stability and Bifurcation in Magnetic Flux Feedback Maglev Control System

    Directory of Open Access Journals (Sweden)

    Wen-Qing Zhang

    2013-01-01

    Full Text Available Nonlinear properties of magnetic flux feedback control system have been investigated mainly in this paper. We analyzed the influence of magnetic flux feedback control system on control property by time delay and interfering signal of acceleration. First of all, we have established maglev nonlinear model based on magnetic flux feedback and then discussed hopf bifurcation’s condition caused by the acceleration’s time delay. The critical value of delayed time is obtained. It is proved that the period solution exists in maglev control system and the stable condition has been got. We obtained the characteristic values by employing center manifold reduction theory and normal form method, which represent separately the direction of hopf bifurcation, the stability of the period solution, and the period of the period motion. Subsequently, we discussed the influence maglev system on stability of by acceleration’s interfering signal and obtained the stable domain of interfering signal. Some experiments have been done on CMS04 maglev vehicle of National University of Defense Technology (NUDT in Tangshan city. The results of experiments demonstrate that viewpoints of this paper are correct and scientific. When time lag reaches the critical value, maglev system will produce a supercritical hopf bifurcation which may cause unstable period motion.

  5. Longitudinal stability and control with special reference to slipstream effects

    Science.gov (United States)

    Katzoff, S

    1940-01-01

    Report presents the results of a study of data obtained in the NACA full-scale wind tunnel concerning the effects of interference and of propeller operation on longitudinal stability and control. The data include pitching moments for various power conditions for airplanes with tails removed and with tails set at various stabilizer and elevator angles. A number of surveys of the dynamic pressure and the flow direction in the region of the horizontal tail surface are also included. Results are given for eight airplanes, including a model of a four-engine airplane tested both as a tractor and as a pushed and a model of two-engine pusher. The effects are shown of propeller operation on the downwash angles and the dynamic pressures at the tail and on the pitching-moment contribution of the propeller and the wing.

  6. 76 FR 49532 - Federal Motor Vehicle Safety Standards; Electronic Stability Control; Technical Report on the...

    Science.gov (United States)

    2011-08-10

    ... Control; Technical Report on the Effectiveness of Electronic Stability Control Systems for Cars and LTVs... Technical Report on its existing Safety Standard 126, Electronic Stability Control Systems. The report's title is: Crash Prevention Effectiveness in Light-Vehicle Electronic Stability Control: An Update of...

  7. Improvement of Power System Stability using Artificial Neural Network based HVDC Controls

    OpenAIRE

    Nagu Bhookya

    2013-01-01

    In this paper, investigation is carried out for the improvement of power system stability by utilizing auxiliary controls for controlling HVDC power flow. The current controller model and the line dynamics are considered in the stability analysis. Transient stability analysis is done on a multi-machine system, where, a neural network controller is developed to improve the stability of the power system and to improve the response time of the controller to the changing conditions in power syste...

  8. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges

    KAUST Repository

    Prest, Emmanuelle I.

    2016-02-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order

  9. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges.

    Science.gov (United States)

    Prest, Emmanuelle I; Hammes, Frederik; van Loosdrecht, Mark C M; Vrouwenvelder, Johannes S

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order

  10. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges

    Science.gov (United States)

    Prest, Emmanuelle I.; Hammes, Frederik; van Loosdrecht, Mark C. M.; Vrouwenvelder, Johannes S.

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order

  11. Biological stability of drinking water: controlling factors, methods and challenges

    Directory of Open Access Journals (Sweden)

    Emmanuelle ePrest

    2016-02-01

    Full Text Available Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g. development of opportunistic pathogens, aesthetic (e.g. deterioration of taste, odour, colour or operational (e.g. fouling or biocorrosion of pipes problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors such as (i type and concentration of available organic and inorganic nutrients, (ii type and concentration of residual disinfectant, (iii presence of predators such as protozoa and invertebrates, (iv environmental conditions such as water temperature, and (v spatial location of microorganisms (bulk water, sediment or biofilm. Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i existing knowledge on biological stability controlling factors and (ii how these factors are affected by drinking water production and distribution conditions. In addition, (iii the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discuss how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order to

  12. Research on the stability of control systems described by fractional-order transfer functions

    Institute of Scientific and Technical Information of China (English)

    Zeng Qingshan; Zhu Xinjian; Cao Guangyi

    2005-01-01

    The stability of control systems described by fractional-order transfer function form is mainly investigated. The stability analysis of integer-order linear systems was extended to the fractional-order control systems. The stability definition of fractional-order linear control systems is presented in terms of the Lyapunov's stability theory. Using the theorems of the Mittag-Leffler function in two parameters directly derives the stability conclusion. The illustrative examples are also given by simulation results.

  13. Design and Stability of an On-Orbit Attitude Control System Using Reaction Control Thrusters

    Science.gov (United States)

    Hall, Robert A.; Hough, Steven; Orphee, Carolina; Clements, Keith

    2016-01-01

    NASA is providing preliminary design and requirements for the Space Launch System Exploration Upper Stage (EUS). The EUS will provide upper stage capability for vehicle ascent as well as on-orbit control capability. Requirements include performance of on-orbit burn to provide Orion vehicle with escape velocity. On-orbit attitude control is accommodated by a on-off Reaction Control System (RCS). Paper provides overview of approaches for design and stability of an attitude control system using a RCS.

  14. Diamagnetically-stabilized levitation control of an intraluminal magnetic capsule.

    Science.gov (United States)

    Lam, Michael; Mintchev, Martin P

    2008-01-01

    Controlled navigation promotes full utilization of capsule endoscopy for reliable real-time diagnosis in the gastrointestinal (GI) tract, but intermittent natural peristalsis can disturb the navigational control, destabilize the capsule and take it out of levitation. A real-size magnetic navigation system that can handle peristaltic forces of up to 1.5 N was designed utilizing the computer-aided design (CAD) system Maxwell 3D (Ansoft, Pittsburg, PA), and was verified using a small-size physical experimental setup. The proposed system contains a pair of 50-cm in diameter, 10,000-turns copper electromagnets with a 10-cm by 10-cm ferrous core driven by currents of up to 300 Amperes and can successfully maintain position control over the levitating capsule during peristalsis. The addition of Bismuth diamagnetic casing for stabilizing the levitating capsule was also studied. PMID:19163990

  15. Transient Stability of A.C Generator Controlled By Using Fuzzy Logic Controller

    Directory of Open Access Journals (Sweden)

    Srinivas Singirikonda

    2014-03-01

    Full Text Available This article is focused on the implementation of fuzzy logic controller for a.c generator; a power system is highly nonlinear system. At present, power system can be simulated and analyzed based on a mathematical model however, uncertainty still exists due to change of loads and an occurrence of fault. Recently, fuzzy theory highly flexible easily operated and revised, theory is a better choice, especially for a complicated system with many variables. Hence, this work aims to develop a controller based on fuzzy logic to simulate an automatic voltage regulator in transient stability power system analysis. By adding power system stabilizer for tuning of fuzzy logic stabilizing controller there is no need for exact knowledge of power system mathematical model. The fuzzy controller parameters settings are independent due to nonlinear changes in generator and transmission lines operating conditions. Because of that proposed fuzzy controlled power system stabilizer should perform better than the conventional controller. To overcome the drawbacks of conventional power system stabilizer (CPSS, numerous techniques have been proposed in the article. The conventional PSS's effect on the system damping is then compared with a fuzzy logic based PSS while applied to a single machine infinite bus power system.

  16. Overview of the US program of controls for advanced reactors

    International Nuclear Information System (INIS)

    An automated control system can incorporate control goals and strategies, assessment of present and future plant status, diagnostic evaluation and maintenance planning, and signal and command validation. It has not been feasible to employ these capabilities in conventional hard-wired, analog, control systems. Recent advances in computer-based digital data acquisition systems, process controllers, fiber-optic signal transmission artificial intelligence tools and methods, and small inexpensive, fast, large-capacity computers---with both numeric and symbolic capabilities---have provided many of the necessary ingredients for developing large, practical automated control systems. Furthermore, recent reactor designs which provide strong passive responses to operational upsets or accidents afford good opportunities to apply these advances in control technology. This paper presents an overall US national perspective for advanced controls research and development. The goals of high reliability, low operating cost and simple operation are described. The staged approach from conceptualization through implementation is discussed. Then the paper describes the work being done by ORNL, ANL and GE. The relationship of this work to the US commercial industry is also discussed

  17. Comparison of Advanced Distillation Control Methods, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dr. James B. Riggs

    2000-11-30

    Detailed dynamic simulations of three industrial distillation columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to evaluate configuration selections for single-ended and dual-composition control, as well as to compare conventional and advanced control approaches. In addition, a simulator of a main fractionator was used to compare the control performance of conventional and advanced control. For each case considered, the controllers were tuned by using setpoint changes and tested using feed composition upsets. Proportional Integral (PI) control performance was used to evaluate the configuration selection problem. For single ended control, the energy balance configuration was found to yield the best performance. For dual composition control, nine configurations were considered. It was determined that the use of dynamic simulations is required in order to identify the optimum configuration from among the nine possible choices. The optimum configurations were used to evaluate the relative control performance of conventional PI controllers, MPC (Model Predictive Control), PMBC (Process Model-Based Control), and ANN (Artificial Neural Networks) control. It was determined that MPC works best when one product is much more important than the other, while PI was superior when both products were equally important. PMBC and ANN were not found to offer significant advantages over PI and MPC. MPC was found to outperform conventional PI control for the main fractionator. MPC was applied to three industrial columns: one at Phillips Petroleum and two at Union Carbide. In each case, MPC was found to significantly outperform PI controls. The major advantage of the MPC controller is its ability to effectively handle a complex set of constraints and control objectives.

  18. Vision Based Autonomous Robotic Control for Advanced Inspection and Repair

    Science.gov (United States)

    Wehner, Walter S.

    2014-01-01

    The advanced inspection system is an autonomous control and analysis system that improves the inspection and remediation operations for ground and surface systems. It uses optical imaging technology with intelligent computer vision algorithms to analyze physical features of the real-world environment to make decisions and learn from experience. The advanced inspection system plans to control a robotic manipulator arm, an unmanned ground vehicle and cameras remotely, automatically and autonomously. There are many computer vision, image processing and machine learning techniques available as open source for using vision as a sensory feedback in decision-making and autonomous robotic movement. My responsibilities for the advanced inspection system are to create a software architecture that integrates and provides a framework for all the different subsystem components; identify open-source algorithms and techniques; and integrate robot hardware.

  19. Model Predictive Control of Nonlinear Systems: Stability Region and Feasible Initial Control

    Institute of Scientific and Technical Information of China (English)

    Xiao-Bing Hu; Wen-Hua Chen

    2007-01-01

    This paper proposes a new method for model predictive control (MPC) of nonlinear systems to calculate stability region and feasible initial control profile/sequence, which are important to the implementations of MPC. Different from many existing methods,this paper distinguishes stability region from conservative terminal region. With global linearization, linear differential inclusion (LDI)and linear matrix inequality (LMI) techniques, a nonlinear system is transformed into a convex set of linear systems, and then the vertices of the set are used off-line to design the controller, to estimate stability region, and also to determine a feasible initial control profile/sequence. The advantages of the proposed method are demonstrated by simulation study.

  20. Advanced Control of Photovoltaic and Wind Turbines Power Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Chen, Wenjie; Blaabjerg, Frede

    2014-01-01

    and wind renewables. Thus, in this chapter, advanced control strategies, which can enable the power conversion efficiently and reliably, for both photovoltaic (PV) and wind turbines power systems are addressed in order to enhance the integration of those technologies. Related grid demands have been...... presented firstly, where much more attention has been paid on specific requirements, like Low Voltage Ride-Through (LVRT) and reactive power injection capability. To perform the functions of those systems, advanced control strategies are presented with much more emphasis on the LVRT operation with reactive...... power injection for both single-phase and three-phase systems. Other control strategies like constant power generation control for PV systems to further increase the penetration level, and the improvements of LVRT performance for a doubly fed induction generator based wind turbine system by means...

  1. Optical metrology for advanced process control: full module metrology solutions

    Science.gov (United States)

    Bozdog, Cornel; Turovets, Igor

    2016-03-01

    Optical metrology is the workhorse metrology in manufacturing and key enabler to patterning process control. Recent advances in device architecture are gradually shifting the need for process control from the lithography module to other patterning processes (etch, trim, clean, LER/LWR treatments, etc..). Complex multi-patterning integration solutions, where the final pattern is the result of multiple process steps require a step-by-step holistic process control and a uniformly accurate holistic metrology solution for pattern transfer for the entire module. For effective process control, more process "knobs" are needed, and a tighter integration of metrology with process architecture.

  2. STABILIZATION OF VIBRATING BEAM BY VELOCITY FEEDBACK CONTROL

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A flexible structure consisting of a Euler-Bernoulli beam with co-located sensors and actuators is considered.The control is a shear force in proportion to velocity.It is known that uniform exponential stability can be achieved with velocity feedback.A sensitivity asymptotic analysis of the system's eigenvalues and eigenfunctions is set up.The authors prove that,for K1 ∈ [0,+∞),all of the generalized eigenvectors of A form a Riesz basis of H.It is also proved that the optimal exponential decay rate can be obtained from the spectrum of the system for 0 < Kl < +∞.

  3. Handbook of electrical power system dynamics modeling, stability, and control

    CERN Document Server

    Eremia, Mircea

    2013-01-01

    Complete guidance for understanding electrical power system dynamics and blackouts This handbook offers a comprehensive and up-to-date treatment of power system dynamics. Addressing the full range of topics, from the fundamentals to the latest technologies in modeling, stability, and control, Handbook of Electrical Power System Dynamics provides engineers with hands-on guidance for understanding the phenomena leading to blackouts so they can design the most appropriate solutions for a cost-effective and reliable operation. Focusing on system dynamics, the book details

  4. Advanced reactor instrumentation and control reliability and risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Fullwood, R.; Gunther, W.; Valente, J.; Azarm, M.A.

    1991-12-31

    Advanced nuclear power reactors will used different approaches to achieving a higher level of safety than the first generation. One approach used the technological developments in computation and electronics in the form of digital instrumentation and control (I&C) to enhance the reliability, and accuracy of information for plant control, responding to the information, and controlling the plant and its systems under normal and upset environments in various states of degradation. Evaluating the reliability and safety of advanced I&C systems requires determining the reliability of the I&C used in the advanced reactors which involves distributed processing, data pile-up, interactive systems, the man-machine interface, various forms of automatic control, and systems interactions. From these analyses will come an understanding of the potential of the new I&C, and protection from its vulnerabilities to enhance the safe operation of the new plants. Technological, safety, reliability, and regulatory issues associated with advanced I&C for the new reactors are discussed herein. The issues are presented followed by suggested approaches to their resolution.

  5. Advanced reactor instrumentation and control reliability and risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Fullwood, R.; Gunther, W.; Valente, J.; Azarm, M.A.

    1991-01-01

    Advanced nuclear power reactors will used different approaches to achieving a higher level of safety than the first generation. One approach used the technological developments in computation and electronics in the form of digital instrumentation and control (I C) to enhance the reliability, and accuracy of information for plant control, responding to the information, and controlling the plant and its systems under normal and upset environments in various states of degradation. Evaluating the reliability and safety of advanced I C systems requires determining the reliability of the I C used in the advanced reactors which involves distributed processing, data pile-up, interactive systems, the man-machine interface, various forms of automatic control, and systems interactions. From these analyses will come an understanding of the potential of the new I C, and protection from its vulnerabilities to enhance the safe operation of the new plants. Technological, safety, reliability, and regulatory issues associated with advanced I C for the new reactors are discussed herein. The issues are presented followed by suggested approaches to their resolution.

  6. Transient colloidal stability controls the particle formation of SBA-15.

    Science.gov (United States)

    Ruan, Juanfang; Kjellman, Tomas; Sakamoto, Yasuhiro; Alfredsson, Viveka

    2012-08-01

    A hypothesis about (transient) colloidal stability as a controlling mechanism for particle formation in SBA-15 is presented. The hypothesis is based on results from both in situ and ex situ investigations, including cryogenic transmission electron microscopy (cryo-TEM), UV-vis spectroscopy, and dynamic light scattering (DLS). Cryo-TEM images show that particles grow via the formation of silica-Pluronic-water "flocs", which coalesce in a seemingly arbitrary manner. Despite this, the final material consists of well-defined particles with a small size distribution. We argue that the interface between the flocs and surrounding media is covered by Pluronic molecules, which provide steric stabilization. As the flocs grow, the coverage of polymers at the interface is increased until a stable size is reached, and that regulates the particle size. By targeting the characteristics of the Pluronic molecules, during the on-going synthesis, the hypothesis is tested. The results are consistent with the concept of (transient) colloidal stability. PMID:22758927

  7. Access control and interlock system at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Forrestal, J.; Hogrefe, R.; Knott, M.; McDowell, W.; Reigle, D.; Solita, L.; Koldenhoven, R.; Haid, D. [Argonne National Lab., IL (United States). Advanced Photon Source

    1997-08-01

    The Advanced Photon Source (APS) consists of a linac, position accumulator ring (PAR), booster synchrotron, storage ring, and up to 70 experimental beamlines. The Access Control and Interlock System (ACIS) utilizes redundant programmable logic controllers (PLCs) and a third hard-wired chain to protect personnel from prompt radiation generated by the linac, PAR, synchrotron, and storage ring. This paper describes the ACIS`s design philosophy, configuration, hardware, functionality, validation requirements, and operational experience.

  8. Supervisory Control System Architecture for Advanced Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cetiner, Sacit M [ORNL; Cole, Daniel L [University of Pittsburgh; Fugate, David L [ORNL; Kisner, Roger A [ORNL; Melin, Alexander M [ORNL; Muhlheim, Michael David [ORNL; Rao, Nageswara S [ORNL; Wood, Richard Thomas [ORNL

    2013-08-01

    This technical report was generated as a product of the Supervisory Control for Multi-Modular SMR Plants project within the Instrumentation, Control and Human-Machine Interface technology area under the Advanced Small Modular Reactor (SMR) Research and Development Program of the U.S. Department of Energy. The report documents the definition of strategies, functional elements, and the structural architecture of a supervisory control system for multi-modular advanced SMR (AdvSMR) plants. This research activity advances the state-of-the art by incorporating decision making into the supervisory control system architectural layers through the introduction of a tiered-plant system approach. The report provides a brief history of hierarchical functional architectures and the current state-of-the-art, describes a reference AdvSMR to show the dependencies between systems, presents a hierarchical structure for supervisory control, indicates the importance of understanding trip setpoints, applies a new theoretic approach for comparing architectures, identifies cyber security controls that should be addressed early in system design, and describes ongoing work to develop system requirements and hardware/software configurations.

  9. High-precision temperature control and stabilization using a cryocooler.

    Science.gov (United States)

    Hasegawa, Yasuhiro; Nakamura, Daiki; Murata, Masayuki; Yamamoto, Hiroya; Komine, Takashi

    2010-09-01

    We describe a method for precisely controlling temperature using a Gifford-McMahon (GM) cryocooler that involves inserting fiber-reinforced-plastic dampers into a conventional cryosystem. Temperature fluctuations in a GM cryocooler without a large heat bath or a stainless-steel damper at 4.2 K are typically of the order of 200 mK. It is particularly difficult to control the temperature of a GM cryocooler at low temperatures. The fiber-reinforced-plastic dampers enabled us to dramatically reduce temperature fluctuations at low temperatures. A standard deviation of the temperature fluctuations of 0.21 mK could be achieved when the temperature was controlled at 4.200 0 K using a feedback temperature control system with two heaters. Adding the dampers increased the minimum achievable temperature from 3.2 to 3.3 K. Precise temperature control between 4.200 0 and 300.000 K was attained using the GM cryocooler, and the standard deviation of the temperature fluctuations was less than 1.2 mK even at 300 K. This technique makes it possible to control and stabilize the temperature using a GM cryocooler.

  10. Controlling death: the false promise of advance directives.

    Science.gov (United States)

    Perkins, Henry S

    2007-07-01

    Advance directives promise patients a say in their future care but actually have had little effect. Many experts blame problems with completion and implementation, but the advance directive concept itself may be fundamentally flawed. Advance directives simply presuppose more control over future care than is realistic. Medical crises cannot be predicted in detail, making most prior instructions difficult to adapt, irrelevant, or even misleading. Furthermore, many proxies either do not know patients' wishes or do not pursue those wishes effectively. Thus, unexpected problems arise often to defeat advance directives, as the case in this paper illustrates. Because advance directives offer only limited benefit, advance care planning should emphasize not the completion of directives but the emotional preparation of patients and families for future crises. The existentialist Albert Camus might suggest that physicians should warn patients and families that momentous, unforeseeable decisions lie ahead. Then, when the crisis hits, physicians should provide guidance; should help make decisions despite the inevitable uncertainties; should share responsibility for those decisions; and, above all, should courageously see patients and families through the fearsome experience of dying.

  11. Impulsive and hybrid dynamical systems stability, dissipativity, and control

    CERN Document Server

    Haddad, Wassim M; Nersesov, Sergey G

    2014-01-01

    This book develops a general analysis and synthesis framework for impulsive and hybrid dynamical systems. Such a framework is imperative for modern complex engineering systems that involve interacting continuous-time and discrete-time dynamics with multiple modes of operation that place stringent demands on controller design and require implementation of increasing complexity--whether advanced high-performance tactical fighter aircraft and space vehicles, variable-cycle gas turbine engines, or air and ground transportation systems. Impulsive and Hybrid Dynamical Systems goes beyond similar

  12. Profile control of advanced tokamak plasmas in view of continuous operation

    Energy Technology Data Exchange (ETDEWEB)

    Mazon, D., E-mail: Didier.Mazon@cea.fr

    2015-07-15

    The concept of the tokamak is a very good candidate to lead to a fusion reactor. In fact, certain regimes of functioning allow today the tokamaks to attain performances close to those requested by a reactor. Among the various scenarios of functioning nowadays considered for the reactor option, certain named ‘advanced scenarios’ are characterized by an improvement of the stability and confinement in the plasma core, as well as by a modification of the current profile, notably thank to an auto-generated ‘bootstrap’ current. The general frame of this paper treats the perspective of a real-time control of advanced regimes. Concrete examples will underline the impact of diagnostics on the identification of plasma models, from which the control algorithms are constructed. Several preliminary attempts will be described.

  13. Profile control of advanced tokamak plasmas in view of continuous operation

    Science.gov (United States)

    Mazon, D.

    2015-07-01

    The concept of the tokamak is a very good candidate to lead to a fusion reactor. In fact, certain regimes of functioning allow today the tokamaks to attain performances close to those requested by a reactor. Among the various scenarios of functioning nowadays considered for the reactor option, certain named 'advanced scenarios' are characterized by an improvement of the stability and confinement in the plasma core, as well as by a modification of the current profile, notably thank to an auto-generated 'bootstrap' current. The general frame of this paper treats the perspective of a real-time control of advanced regimes. Concrete examples will underline the impact of diagnostics on the identification of plasma models, from which the control algorithms are constructed. Several preliminary attempts will be described.

  14. Stability and control of wind farms in power systems

    DEFF Research Database (Denmark)

    Jauch, Clemens

    The Ph.D. project ‘Stability and Control of Wind Farms in Power Systems’ deals with some selected problems related to wind power in power systems. With increasing wind power penetration, wind turbines substitute the power production of conventional powerplants. Therefore, wind turbines also have...... in force, or published as drafts, at the time, and scientific literature related to the topic,are studied. The project is based on simulations of wind turbines in a power system simulations tool. Some of the models used in this project were readily available prior to the project; the development of others...... is part of the project. The mostextensive modelling work deals with the design of the electrical part of the variable speed turbine and its controls. To simulate realistic grid operation the wind turbine models are connected to an aggregated model of the Nordic power system. For thatpurpose the Nordic...

  15. Stabilization for the semilinear wave equation with geometric control condition

    CERN Document Server

    Joly, Romain

    2012-01-01

    In this article, we prove the exponential stabilization of the semilinear wave equation with a damping effective in a zone satisfying the geometric control condition only. The nonlinearity is assumed to be subcritical, defocusing and analytic. The main novelty compared to previous results, is the proof of a unique continuation result in large time for some undamped equation. The idea is to use an asymptotic smoothing effect proved by Hale and Raugel in the context of dynamical systems. Then, once the analyticity in time is proved, we apply a unique continuation result with partial analyticity due to Robbiano, Zuily, Tataru and H\\"ormander. Some other consequences are also given for the controllability and the existence of a compact attractor.

  16. Control at stability's edge minimizes energetic costs: expert stick balancing.

    Science.gov (United States)

    Milton, John; Meyer, Ryan; Zhvanetsky, Max; Ridge, Sarah; Insperger, Tamás

    2016-06-01

    Stick balancing on the fingertip is a complex voluntary motor task that requires the stabilization of an unstable system. For seated expert stick balancers, the time delay is 0.23 s, the shortest stick that can be balanced for 240 s is 0.32 m and there is a [Formula: see text]° dead zone for the estimation of the vertical displacement angle in the saggital plane. These observations motivate a switching-type, pendulum-cart model for balance control which uses an internal model to compensate for the time delay by predicting the sensory consequences of the stick's movements. Numerical simulations using the semi-discretization method suggest that the feedback gains are tuned near the edge of stability. For these choices of the feedback gains, the cost function which takes into account the position of the fingertip and the corrective forces is minimized. Thus, expert stick balancers optimize control with a combination of quick manoeuvrability and minimum energy expenditures. PMID:27278361

  17. Spectrophotometric Procedure for Fast Reactor Advanced Coolant Manufacture Control

    Science.gov (United States)

    Andrienko, O. S.; Egorov, N. B.; Zherin, I. I.; Indyk, D. V.

    2016-01-01

    The paper describes a spectrophotometric procedure for fast reactor advanced coolant manufacture control. The molar absorption coefficient of dimethyllead dibromide with dithizone was defined as equal to 68864 ± 795 l·mole-1·cm-1, limit of detection as equal to 0.583 · 10-6 g/ml. The spectrophotometric procedure application range was found to be equal to 37.88 - 196.3 g. of dimethyllead dibromide in the sample. The procedure was used within the framework of the development of the method of synthesis of the advanced coolant for fast reactors.

  18. Optimization of stabilized leachate treatment using ozone/persulfate in the advanced oxidation process

    International Nuclear Information System (INIS)

    Highlights: ► Ozone and persulfate reagent (O3/S2O82-) was used to treat stabilized leachate. ► Central composite design (CCD) with response surface methodology (RSM) was applied. ► Operating variables including ozone and persulfate dosage, pH variance, and reaction time. ► Optimum removal of COD, color, and NH3–N was 72%, 96%, and 76%, respectively. ► A good value of ozone consumption (OC) obtained with 0.60 (kg O3/kg COD). - Abstract: The objective of this study was to investigate the performance of employing persulfate reagent in the advanced oxidation of ozone to treat stabilized landfill leachate in an ozone reactor. A central composite design (CCD) with response surface methodology (RSM) was applied to evaluate the relationships between operating variables, such as ozone and persulfate dosages, pH, and reaction time, to identify the optimum operating conditions. Quadratic models for the following four responses proved to be significant with very low probabilities (3–N, and ozone consumption (OC). The obtained optimum conditions included a reaction time of 210 min, 30 g/m3 ozone, 1 g/1 g COD0/S2O82- ratio, and pH 10. The experimental results were corresponded well with predicted models (COD, color, and NH3–N removal rates of 72%, 96%, and 76%, respectively, and 0.60 (kg O3/kg COD OC). The results obtained in the stabilized leachate treatment were compared with those from other treatment processes, such as ozone only and persulfate S2O82- only, to evaluate its effectiveness. The combined method (i.e., O3/S2O82-) achieved higher removal efficiencies for COD, color, and NH3–N compared with other studied applications. Furthermore, the new method is more efficient than ozone/Fenton in advanced oxidation process in the treatment of the same studied leachate

  19. Optimization of Fuzzy Logic Controller for Supervisory Power System Stabilizers

    Directory of Open Access Journals (Sweden)

    Y. A. Al-Turki

    2012-01-01

    Full Text Available This paper presents a powerful supervisory power system stabilizer (PSS using an adaptive fuzzy logic controller driven by an adaptive fuzzy set (AFS. The system under study consists of two synchronous generators, each fitted with a PSS, which are connected via double transmission lines. Different types of PSS-controller techniques are considered. The proposed genetic adaptive fuzzy logic controller (GAFLC-PSS, using 25 rules, is compared with a static fuzzy logic controller (SFLC driven by a fixed fuzzy set (FFS which has 49 rules. Both fuzzy logic controller (FLC algorithms utilize the speed error and its rate of change as an input vector. The adaptive FLC algorithm uses a genetic algorithmto tune the parameters of the fuzzy set of each PSS. The FLC’s are simulated and tested when the system is subjected to different disturbances under a wide range of operating points. The proposed GAFLC using AFS reduced the computational time of the FLC, where the number of rules is reduced from 49 to 25 rules. In addition, the proposed adaptive FLC driven by a genetic algorithm also reduced the complexity of the fuzzy model, while achieving a good dynamic response of the system under study.

  20. FPIC: A Key Next Step for Stability Studies of Advanced Beam Driven FRCs

    Science.gov (United States)

    Dettrick, Sean; Barnes, Dan; Ceccherini, Francesco; Galeotti, Laura; Guerrero, Victor; Hendrix, Doug; Hubbard, Kevin; Milroy, Richard; Necas, Ales; TAE Team

    2015-11-01

    The goal of the C-2U experiment is to use neutral beam heating and edge biasing to sustain an advanced beam-driven FRC for many milliseconds, longer than the growth times of known instabilities and the resistive wall time. To guide the experiment further into unexplored parameter regimes, it is desirable to have a stability code suitable for beam-driven FRC plasmas, in which the bulk of ion orbits are not Larmor-like and hence gyrokinetic approximations are inapplicable. Fully kinetic ions are required for stability simulations of beam driven FRCs, as are multiple ion species, end boundary conditions, and a resistive boundary. To meet these challenges a new 3D quasineutral hybrid code, FPIC, is being developed. FPIC has a choice of zero electron mass and finite electron mass Ohm's law solvers. Uniform staggered grids, finite differencing, and cut cell boundaries are used to simplify and optimize the PIC while allowing arbitrary boundary shapes. Finite resistivity of the boundary is implemented by coupling free-space exterior solutions to the cut-cell edges. The code is MPI parallelized and the particle push is GPU accelerated. Code benchmarks will be presented including the stability of the FRC tilt mode.

  1. Planner-Based Control of Advanced Life Support Systems

    Science.gov (United States)

    Muscettola, Nicola; Kortenkamp, David; Fry, Chuck; Bell, Scott

    2005-01-01

    The paper describes an approach to the integration of qualitative and quantitative modeling techniques for advanced life support (ALS) systems. Developing reliable control strategies that scale up to fully integrated life support systems requires augmenting quantitative models and control algorithms with the abstractions provided by qualitative, symbolic models and their associated high-level control strategies. This will allow for effective management of the combinatorics due to the integration of a large number of ALS subsystems. By focusing control actions at different levels of detail and reactivity we can use faster: simpler responses at the lowest level and predictive but complex responses at the higher levels of abstraction. In particular, methods from model-based planning and scheduling can provide effective resource management over long time periods. We describe reference implementation of an advanced control system using the IDEA control architecture developed at NASA Ames Research Center. IDEA uses planning/scheduling as the sole reasoning method for predictive and reactive closed loop control. We describe preliminary experiments in planner-based control of ALS carried out on an integrated ALS simulation developed at NASA Johnson Space Center.

  2. Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Durkee, Joe W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cipiti, Ben [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Demuth, Scott Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fallgren, Andrew James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jarman, Ken [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Shelly [Argonne National Lab. (ANL), Argonne, IL (United States); Meier, Dave [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Miller, Mike [Argonne National Lab. (ANL), Argonne, IL (United States); Osburn, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pereira, Candido [Argonne National Lab. (ANL), Argonne, IL (United States); Dasari, Venkateswara Rao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ticknor, Lawrence O. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yoo, Tae-Sic [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-30

    The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. These tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.

  3. Advances in tokamak control: from multi-actuator MHD control to model-based current profile tailoring

    Science.gov (United States)

    Felici, Federico

    2012-10-01

    Recent experiments on TCV have demonstrated integrated control of the sawtooth and Neoclassical Tearing Mode (NTM) instabilities in a combined preemption-suppression strategy. This strategy is enabled by new sawtooth control methods (sawtooth pacing) in which modulation of sawtooth-stabilizing electron cyclotron power during the sawtooth cycle stimulates the advent of the crash. Rather than controlling the average sawtooth period, the precise timing of each individual crash can now be prescribed. Using this knowledge, efficient preemptive stabilization of NTMs becomes possible by applying power on the rational surface only at the instant of the crash-generating seed island. TCV experiments demonstrate that this approach, reinforced by NTM stabilization as a backup strategy, is effectively failsafe. This opens the road to inductive H-mode scenarios with long sawteeth providing longer inter-crash periods of high density and temperature. Also Edge Localized Modes are susceptible to EC modulation and it is shown that individual ELM events can be controlled using similar techniques. For advanced tokamak scenarios, MHD control is to be combined with optimization and control of the plasma kinetic and magnetic profile evolution in time. Real-time simulation of a physical model (RAPTOR) of current transport, including bootstrap current, neoclassical conductivity and auxiliary current drive, yields complete knowledge of the relevant profiles at any given time. The pilot implementation on TCV shows that these calculations can indeed be done in real-time and the resulting profiles have been included in feedback control schemes. Integration of this model with time-varying equilibria and internal current profile diagnostics provides a new framework for real-time interpretation of diagnostic data for plasma prediction, scenario monitoring, disruption prevention and feedback control.

  4. Research advances in control methods of wearable walking assist robots

    Directory of Open Access Journals (Sweden)

    Xia ZHANG

    2016-04-01

    Full Text Available As the proportion of the elderly in China increases, the need for robotic assist walking is growing. The assisted-as-needed (AAN property of a wearable walking assist robot matches a user’s biological need and improves the flexibility, appetency and friendliness of a mechanical system. To realize AAN walking and aiming at realizing master/slave flexible assist, a new hybrid control method consisting of hip joint control based on central pattern generators and knee joint impedance structured control is proposed. The adaptation of a robot's master/slave motion mode to a user's physical function, the continuous switching method for knee joint impedance structured control and its stability, and the AAN effect of the Hybrid control theory are studied, which provides a new thought for the development of wearable walking assist robots.

  5. [Recent advance in solidification/stabilization technology for the remediation of heavy metals-contaminated soil].

    Science.gov (United States)

    Hao, Han-zhou; Chen, Tong-bin; Jin, Meng-gui; Lei, Mei; Liu, Cheng-wu; Zu, Wen-pu; Huang, Li-mi

    2011-03-01

    Remediation of heavy metals-contaminated soil is still a difficulty and a hotspot of international research projects. At present, the technologies commonly adopted for the remediation of contaminated sites mainly include excavation, solidification/stabilization (S/S), soil washing, soil vapor extraction (SVE), thermal treatment, and bioremediation. Based on the S/S technical guidelines of Unite State Environmental Protection Agency (EPA) and United Kingdom Environment Agency (EA) and the domestic and foreign patents, this paper introduced the concepts of S/S and its development status at home and abroad, and discussed its future development directions. Solidification refers to a process that binds contaminated media with a reagent, changing the media's physical properties via increasing its compressive strength, decreasing its permeability, and encapsulating the contaminants to form a solid material. Stabilization refers to the process that involves a chemical reaction which reduces the leachability of a waste, chemically immobilizes the waste and reduces its solubility, making the waste become less harmful or less mobile. S/S technology includes cement solidification, lime pozzolanic solidification, plastic materials stabilization, vitrification, and regent-based stabilization. Stabilization (or immobilization) treatment processes convert contaminants to less mobile forms through chemical or thermal interactions. In stabilization technology, the aim of adding agents is to change the soil physical and chemical properties through pH control technology, redox potential technology, precipitation techniques, adsorption technology, and ion-exchange technology that change the existing forms of heavy metals in soil, and thus, reduce the heavy metals bioavailability and mobility. This review also discussed the S/S evaluation methods, highlighted the need to enhance S/S technology in the molecular bonding, soil polymers, and formulation of China's S/S technical guidelines.

  6. Advanced Control Design for Wind Turbines; Part I: Control Design, Implementation, and Initial Tests

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A. D.; Fingersh, L. J.

    2008-03-01

    The purpose of this report is to give wind turbine engineers information and examples of the design, testing through simulation, field implementation, and field testing of advanced wind turbine controls.

  7. Research on the low speed stability control technology of fly-cutting machine for KDP crystals

    Science.gov (United States)

    Chen, Dongsheng; Ji, Fang; Chen, Hua

    2014-08-01

    In the paper, The problem about stability in low speed of the air bearing stage driven by a linear motor was investigated to satisfy the ultra-precision fly-cutting of KDP crystals. First of all, the modal of the servo system with the permanent magnet synchronous linear motor was analyzed. In the system of the low speed linear motor driver, the main interferences came from cutting force f Load , the friction of chain and cable f n , the ripple thrust f ripp , and motor friction f fric . Secondly, the factors about low speed stability were analyzed: the key to improve the system's stability is to control the interference forces; Another important issue is to develop an advanced control strategy. Thirdly, some optimization experiments about low speed stability were developed as follows: the influence of feedback element, the influence of Power converter, speed optimization of damping feed-forward control, speed optimization of Spindle vibration, speed optimization based on disturbance observer. Finally the experimental results: the lowest speed of the stage can reach 0.2 mm/min; the error of the speed is less than 0.06mm/min when running between 1mm/min and 10 mm/min. The cutting experiment of KDP with the size of 330mm × 330mm × 10mm, was proceeded on the Fly-cutting machine by the feeding velocity of 1mm/min. The results about the surface roughness show that the value of Rq is 3.3nm and the value of Ra is 2.6nm.

  8. Introduction to the special issue on Advances in intelligent nonlinear control for robotic systems

    Institute of Scientific and Technical Information of China (English)

    Chee Khiang PANG; Huajin TANG; Qing Wei JIA

    2010-01-01

    @@ In the last two decades, robotic systems have achieved wide applications in every aspect of human society, including industrial manufacturing, automotive production, medical devices, and social lives. With the diversity of application do-mains, control techniques have pervaded from industrial robot manipulators, wheeled or legged mobile robots, unmanned autonomous aerial, ground, and underwater vehicles, to humanoid robots, and haptic devices, etc. The growing number of applications of robotics and increasing requirements for system stability, reliability, and safety, are posing new and challenging theoretical and technological problems for modeling and control of these highly nonlinear systems. Control of these complex systems is highly challenging due to the inherent nonlinear response and strong heterogeneity in dif-ferent parts as computers, sensors, hardware objects, etc. As such, novel nonlinear control strategies are essential to the advancement of robotic systems and corresponding technologies.

  9. Control of the Resistive Wall Mode in Advanced Tokamak Plasmas on DIII-D

    International Nuclear Information System (INIS)

    Resistive wall mode (RWM) instabilities are found to be a limiting factor in advanced tokamak (AT) regimes with low internal inductance. Even small amplitude modes can affect the rotation profile and the performance of these ELMing H-mode discharges. Although complete stabilization of the RWM by plasma rotation has not yet been observed, several discharges with increased beam momentum and power injection sustained good steady-state performance for record time extents. The first investigation of active feedback control of the RWM has shown promising results: the leakage of the radial magnetic flux through the resistive wall can be successfully controlled, and the duration of the high beta phase can be prolonged. The results provide a comparative test of several approaches to active feedback control, and are being used to benchmark the analysis and computational models of active control

  10. Plasma shape and position controller design for advance plasma configurations in TCV

    Science.gov (United States)

    Anand, Himank; Coda, Stefano; Felici, Federico; Moret, Jean Marc; Le, Hoang Bao

    2015-11-01

    The performance and stability of tokamak plasma configurations depend strongly on its shape and position. They play a particularly important role in the stability of global magneto-hydrodynamics (MHD) modes and in heat and particle transport. We report on the controller design of a new generalised plasma shape and position controller for advance plasma configurations, using the linearised plasma model RZIP. The controller design is based on an isoflux control scheme and utilises singular value decomposition (SVD), which provides a natural framework for limiting the controlled parameters to the set with the largest singular values, while respecting the combined poloidal field coil current (PF) limits. It also includes the option of weighting the various observers based on the level of importance for a given plasma configuration. The generalised plasma shape and position control algorithm has been successfully tested off-line for limiter and diverted plasma (single null and snowflake configuration) shapes. The testing and commissioning of the controller will commence in the next TCV experimental campaign.

  11. Microeconomics of advanced process window control for 50-nm gates

    Science.gov (United States)

    Monahan, Kevin M.; Chen, Xuemei; Falessi, Georges; Garvin, Craig; Hankinson, Matt; Lev, Amir; Levy, Ady; Slessor, Michael D.

    2002-07-01

    Fundamentally, advanced process control enables accelerated design-rule reduction, but simple microeconomic models that directly link the effects of advanced process control to profitability are rare or non-existent. In this work, we derive these links using a simplified model for the rate of profit generated by the semiconductor manufacturing process. We use it to explain why and how microprocessor manufacturers strive to avoid commoditization by producing only the number of dies required to satisfy the time-varying demand in each performance segment. This strategy is realized using the tactic known as speed binning, the deliberate creation of an unnatural distribution of microprocessor performance that varies according to market demand. We show that the ability of APC to achieve these economic objectives may be limited by variability in the larger manufacturing context, including measurement delays and process window variation.

  12. New sensorless, efficient optimized and stabilized v/f control for pmsm machines

    Science.gov (United States)

    Jafari, Seyed Hesam

    With the rapid advances in power electronics and motor drive technologies in recent decades, permanent magnet synchronous machines (PMSM) have found extensive applications in a variety of industrial systems due to its many desirable features such as high power density, high efficiency, and high torque to current ratio, low noise, and robustness. In low dynamic applications like pumps, fans and compressors where the motor speed is nearly constant, usage of a simple control algorithm that can be implemented with least number of the costly external hardware can be highly desirable for industry. In recent published works, for low power PMSMs, a new sensorless volts-per-hertz (V/f) controlling method has been proposed which can be used for PMSM drive applications where the motor speed is constant. Moreover, to minimize the cost of motor implementation, the expensive rotor damper winding was eliminated. By removing the damper winding, however, instability problems normally occur inside of the motor which in some cases can be harmful for a PMSM drive. As a result, to address the instability issue, a stabilizing loop was developed and added to the conventional V/f. By further studying the proposed sensorless stabilized V/f, and calculating power loss, it became known that overall motor efficiency still is needed to be improved and optimized. This thesis suggests a new V/f control method for PMSMs, where both efficiency and stability problems are addressed. Also, although in nearly all recent related research, methods have been applied to low power PMSM, for the first time, in this thesis, the suggested method is implemented for a medium power 15 kW PMSM. A C2000 F2833x Digital Signal Processor (DSP) is used as controller part for the student custom built PMSM drive, but instead of programming the DSP in Assembly or C, the main control algorithm was developed in a rapid prototype software environment which here Matlab Simulink embedded code library is used.

  13. Recent advances in opinion modeling: control and social influence

    CERN Document Server

    Albi, Giacomo; Toscani, Giuseppe; Zanella, Mattia

    2016-01-01

    We survey some recent developments on the mathematical modeling of opinion dynamics. After an introduction on opinion modeling through interacting multi-agent systems described by partial differential equations of kinetic type, we focus our attention on two major advancements: optimal control of opinion formation and influence of additional social aspects, like conviction and number of connections in social networks, which modify the agents' role in the opinion exchange process.

  14. Control Systems with Saturating Inputs Analysis Tools and Advanced Design

    CERN Document Server

    Corradini, Maria Letizia; Giannoni, Fabio; Orlando, Giuseppe

    2012-01-01

    This series aims to report new developments in the fields of control and information sciences - quickly, informally and at a high level. The type of material considered for publication includes: 1. Preliminary drafts of monographs and advanced textbooks 2. Lectures on a new field, or presenting a new angle on a classical field 3. Research reports 4. Reports of meetings, provided they are a) of exceptional interest and b) devoted to a specific topic. The timeliness of subject material is very important.

  15. Improved safety in advanced control complexes, without side effects

    International Nuclear Information System (INIS)

    If we only look for a moment at the world around us, it is obvious that advances in digital electronic equipment and Human-System Interface (HSI) technology are occurring at a phenomenal pace. This is evidenced from our home entertainment systems to the dashboard and computer-based operation of our new cars. Though the nuclear industry has less vigorously embraced these advances, their application is being implemented through individual upgrades to current generation nuclear plants and as plant-wide control complexes for advanced plants. In both venues modem technology possesses widely touted advantages for improving plant availability as well as safety. The well-documented safety benefits of digital Instrumentation and Controls (I ampersand C) include higher reliability resulting from redundancy and fault tolerance, inherent self-test and self-diagnostic capabilities which have replaced error-prone human tasks, resistance to setpoint drift increasing available operating margins, and the ability to run complex, real-time, computer-based algorithms directly supporting an operator's monitoring and control task requirements. 22 refs., 3 figs., 5 tabs

  16. Guidelines for the review of advanced controls and displays

    International Nuclear Information System (INIS)

    Advanced control room (ACR) concepts are being developed and refined in the commercial nuclear industry as part of future reactor designs. These ACRs will utilize advanced human-system interface (HSI) technologies which may have significant implications for plant safety in that they may affect: (1) the operators' overall role (function) in the system; (2) the methods by which operators receive information about system status; (3) the ways in which the operators interact with the system; and (4) the requirements on operators to understand and supervise an increasingly complex system. The Nuclear Regulatory Commission (NRC) reviews control room designs to ensure that they incorporate good human factors engineering principles so as to support operator performance and reliability necessary to protect public health and safety. The principal guidance available to the NRC (NUREG-0700) was developed more than ten years ago and does not address new technologies. Accordingly, the guidance must be updated. This paper discusses the development of an NRC Advanced Control Room Design Review Guideline

  17. Pitch Motion Stabilization by Propeller Speed Control Using Statistical Controller Design

    DEFF Research Database (Denmark)

    Nakatani, Toshihiko; Blanke, Mogens; Galeazzi, Roberto

    2006-01-01

    This paper describes dynamics analysis of a small training boat and a possibility of ship pitch stabilization by control of propeller speed. After upgrading the navigational system of an actual small training boat, in order to identify the model of the ship, the real data collected by sea trials ...

  18. Landslide Geohazard Monitoring, Early Warning and Stabilization Control Methods

    Science.gov (United States)

    Bednarczyk, Zbigniew

    2014-03-01

    This paper is a presentation of landslide monitoring, early warning and remediation methods recommended for the Polish Carpathians. Instrumentation included standard and automatic on-line measurements with the real-time transfer of data to an Internet web server. The research was funded through EU Innovative Economy Programme and also by the SOPO Landslide Counteraction Project. The landslides investigated were characterized by relatively low rates of the displacements. These ranged from a few millimetres to several centimetres per year. Colluviums of clayey flysch deposits were of a soil-rock type with a very high plasticity and moisture content. The instrumentation consisted of 23 standard inclinometers set to depths of 5-21 m. The starting point of monitoring measurements was in January 2006. These were performed every 1-2 months over the period of 8 years. The measurements taken detected displacements from several millimetres to 40 cm set at a depth of 1-17 m. The modern, on-line monitoring and early warning system was installed in May 2010. The system is the first of its kind in Poland and only one of several such real-time systems in the world. The installation was working with the Local Road Authority in Gorlice. It contained three automatic field stations for investigation of landslide parameters to depths of 12-16 m and weather station. In-place tilt transducers and innovative 3D continuous inclinometer systems with sensors located every 0.5 m were used. It has the possibility of measuring a much greater range of movements compared to standard systems. The conventional and real-time data obtained provided a better recognition of the triggering parameters and the control of geohazard stabilizations. The monitoring methods chosen supplemented by numerical modelling could lead to more reliable forecasting of such landslides and could thus provide better control and landslide remediation possibilities also to stabilization works which prevent landslides.

  19. Advanced Rooftop Control (ARC) Retrofit: Field-Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.; Taasevigen, Danny J.; Lutes, Robert G.

    2013-07-31

    The multi-year research study was initiated to find solutions to improve packaged equipment operating efficiency in the field. Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Office (BTO) and Bonneville Power Administration (BPA) conducted this research, development and demonstration (RD&D) study. Packaged equipment with constant speed supply fans is designed to provide ventilation at the design rate at all times when the fan is operating as required by building code. Although there are a number of hours during the day when a building may not be fully occupied or the need for ventilation is lower than designed, the ventilation rate cannot be adjusted easily with a constant speed fan. Therefore, modulating the supply fan in conjunction with demand controlled ventilation (DCV) will not only reduce the coil energy but also reduce the fan energy. The objective of this multi-year research, development and demonstration project was to determine the magnitude of energy savings achievable by retrofitting existing packaged rooftop air conditioners with advanced control strategies not ordinarily used for packaged units. First, through detailed simulation analysis, it was shown that significant energy (between 24% and 35%) and cost savings (38%) from fan, cooling and heating energy consumption could be realized when packaged air conditioning units with gas furnaces are retrofitted with advanced control packages (combining multi-speed fan control, integrated economizer controls and DCV). The simulation analysis also showed significant savings for heat pumps (between 20% and 60%). The simulation analysis was followed by an extensive field test of a retrofittable advanced rooftop unit (RTU) controller.

  20. Application of advanced polymeric materials for controlled release pesticides

    Science.gov (United States)

    Rahim, M.; Hakim, M. R.; Haris, H. M.

    2016-08-01

    The objective of this work was to study the capability of advanced polymeric material constituted by chitosan and natural rubber matrices for controlled release of pesticides (1-hydroxynaphthalene and 2-hydroxynaphthalene) in aqueous solution. The released amount of pesticides was measured spectrophotometrically from the absorbance spectra applying a standardized curve. The release of the pesticides was studied into refreshing and non-refreshing neutral aqueous media. Interestingly, formulation successfully indicated a consistent, controlled and prolonged release of pesticides over a period of 35 days.

  1. 77 FR 39206 - Public Hearing on Proposed Rule for Heavy Vehicle Electronic Stability Control Systems

    Science.gov (United States)

    2012-07-02

    ... No. 136, Electronic Stability Control Systems for Heavy Vehicles (77 FR 30766). The standard would... Vehicle Electronic Stability Control Systems AGENCY: National Highway Traffic Safety Administration (NHTSA... published a notice of proposed rulemaking (NPRM) to require the installation of electronic stability...

  2. PARTIAL STABILIZATION OF A CLASS OF CONTINUOUS NONLINEAR CONTROL SYSTEMS WITH SEPARATED VARIABLES

    Institute of Scientific and Technical Information of China (English)

    Jigui JIAN; Xiaoxin LIAO

    2005-01-01

    In this paper, the partial stabilization problem for a class of nonlinear continuous control systems with separated variables is investigated. Several stabilizing controllers are constructed based on the partial stability theory of Lyapunov and the property of M-matrix, and some of these stabilizing controllers are only related to partial state variables. The controllers constructed here are shown to guarantee partial asymptotic stability of the closed-loop systems and these sufficient conditions may give some instructions to actual engineering application. A example is also given to illustrate the design method.

  3. The Advanced Photon Source Injector Test Stand Control System

    CERN Document Server

    MacLean, J F

    2001-01-01

    The Advanced Photon Source (APS) primary and backup injectors consist of two thermionic-cathode rf guns. These guns are being upgraded to provide improved performance, to improve ease of maintenance, and to reduce downtime required for repair or replacement of a failed injector. As part of the process, an injector test stand is being prepared. This stand is effectively independent of the APS linac and will allow for complete characterization and validation of an injector prior to its installation into the APS linac. A modular control system for the test stand has been developed using standard APS control solutions with EPICS to deliver a flexible and comprehensive control system. The modularity of the system will allow both the future expansion of test stand functionality and the evaluation of new control techniques and solutions.

  4. Advances in Intelligent Control Systems and Computer Science

    CERN Document Server

    2013-01-01

    The conception of real-time control networks taking into account, as an integrating approach, both the specific aspects of information and knowledge processing and the dynamic and energetic particularities of physical processes and of communication networks is representing one of the newest scientific and technological challenges. The new paradigm of Cyber-Physical Systems (CPS) reflects this tendency and will certainly change the evolution of the technology, with major social and economic impact. This book presents significant results in the field of process control and advanced information and knowledge processing, with applications in the fields of robotics, biotechnology, environment, energy, transportation, et al.. It introduces intelligent control concepts and strategies as well as real-time implementation aspects for complex control approaches. One of the sections is dedicated to the complex problem of designing software systems for distributed information processing networks. Problems as complexity an...

  5. Integrated metrology: an enabler for advanced process control (APC)

    Science.gov (United States)

    Schneider, Claus; Pfitzner, Lothar; Ryssel, Heiner

    2001-04-01

    Advanced process control (APC) techniques become more and more important as short innovation cycles in microelectronics and a highly competitive market requires cost-effective solutions in semiconductor manufacturing. APC marks a paradigm shift from statistically based techniques (SPC) using monitor wafers for sampling measurement data towards product wafer control. The APC functionalities including run-to-run control, fault detection, and fault analysis allow to detect process drifts and excursions at an early stage and to minimize the number of misprocessed wafers. APC is being established as part of factory control systems through the definition of an APC framework. A precondition for APC is the availability of sensors and measurement methods providing the necessary wafer data. This paper discusses integrated metrology as an enabler for APC and demonstrates practical implementations in semiconductor manufacturing.

  6. Fast Dynamic Simulation-Based Small Signal Stability Assessment and Control

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, Naresh [General Electric Company, Fairfield, CT (United States); Baone, Chaitanya [General Electric Company, Fairfield, CT (United States); Veda, Santosh [General Electric Company, Fairfield, CT (United States); Dai, Jing [General Electric Company, Fairfield, CT (United States); Chaudhuri, Nilanjan [General Electric Company, Fairfield, CT (United States); Leonardi, Bruno [General Electric Company, Fairfield, CT (United States); Sanches-Gasca, Juan [General Electric Company, Fairfield, CT (United States); Diao, Ruisheng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wu, Di [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huang, Zhenyu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhang, Yu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jin, Shuangshuang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zheng, Bin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chen, Yousu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-12-31

    Power grid planning and operation decisions are made based on simulation of the dynamic behavior of the system. Enabling substantial energy savings while increasing the reliability of the aging North American power grid through improved utilization of existing transmission assets hinges on the adoption of wide-area measurement systems (WAMS) for power system stabilization. However, adoption of WAMS alone will not suffice if the power system is to reach its full entitlement in stability and reliability. It is necessary to enhance predictability with "faster than real-time" dynamic simulations that will enable the dynamic stability margins, proactive real-time control, and improve grid resiliency to fast time-scale phenomena such as cascading network failures. Present-day dynamic simulations are performed only during offline planning studies, considering only worst case conditions such as summer peak, winter peak days, etc. With widespread deployment of renewable generation, controllable loads, energy storage devices and plug-in hybrid electric vehicles expected in the near future and greater integration of cyber infrastructure (communications, computation and control), monitoring and controlling the dynamic performance of the grid in real-time would become increasingly important. The state-of-the-art dynamic simulation tools have limited computational speed and are not suitable for real-time applications, given the large set of contingency conditions to be evaluated. These tools are optimized for best performance of single-processor computers, but the simulation is still several times slower than real-time due to its computational complexity. With recent significant advances in numerical methods and computational hardware, the expectations have been rising towards more efficient and faster techniques to be implemented in power system simulators. This is a natural expectation, given that the core solution algorithms of most commercial simulators were developed

  7. Evaluation of information display at advanced main control room

    Energy Technology Data Exchange (ETDEWEB)

    Min, Dae Hwan; Yu, Seon Jae; Choi, Eui Sun [Korea Univ., Seoul (Korea, Republic of)

    2000-03-15

    This year we plan to survey information in order to have basic understanding of digital information display and control at the advanced MCR. At first we collect different ways of presenting information at the advanced MCR. Secondly, we conduct literature survey on studies that have investigated information representation techniques and their effects. Then, we need compare differences between conventional NPPs and advanced NPPs. Thirdly, we need to check HMI styles and evaluation techniques that are used currently at foreign NPPs. Indeed, HMI at the advanced MCR is quite different from that at a conventional MCR. It is not desirable to apply the same evaluation technique that has veen used at the conventional MCR. We need to develop an evaluation technique that is valid in theory and applicable in practice. Finally, we identify the requirements for a support system for an HMI evaluator, since it is not easy to carry out an evaluation task even though one has firm background on cognitive engineering theories and practical experiences.

  8. Evaluation of information display at advanced main control room

    International Nuclear Information System (INIS)

    This year we plan to survey information in order to have basic understanding of digital information display and control at the advanced MCR. At first we collect different ways of presenting information at the advanced MCR. Secondly, we conduct literature survey on studies that have investigated information representation techniques and their effects. Then, we need compare differences between conventional NPPs and advanced NPPs. Thirdly, we need to check HMI styles and evaluation techniques that are used currently at foreign NPPs. Indeed, HMI at the advanced MCR is quite different from that at a conventional MCR. It is not desirable to apply the same evaluation technique that has veen used at the conventional MCR. We need to develop an evaluation technique that is valid in theory and applicable in practice. Finally, we identify the requirements for a support system for an HMI evaluator, since it is not easy to carry out an evaluation task even though one has firm background on cognitive engineering theories and practical experiences

  9. Stability Problems for Chua System with One Linear Control

    Directory of Open Access Journals (Sweden)

    Camelia Pop Arieşanu

    2013-01-01

    Full Text Available A Hamilton-Poisson realization and some stability problems for a dynamical system arisen from Chua system are presented. The stability and dynamics of a linearized smooth version of the Chua system are analyzed using the Hamilton-Poisson formalism. This geometrical approach allows to deduce the nonlinear stabilization near different equilibria.

  10. Improvement of Power System Stability using Artificial Neural Network based HVDC Controls

    Directory of Open Access Journals (Sweden)

    Nagu Bhookya

    2013-06-01

    Full Text Available In this paper, investigation is carried out for the improvement of power system stability by utilizing auxiliary controls for controlling HVDC power flow. The current controller model and the line dynamics are considered in the stability analysis. Transient stability analysis is done on a multi-machine system, where, a neural network controller is developed to improve the stability of the power system and to improve the response time of the controller to the changing conditions in power system. The results show the application of the neural network controller in AC-DC power systems.

  11. Car drivers' perceptions of electronic stability control (ESC) systems.

    Science.gov (United States)

    Vadeby, Anna; Wiklund, Mats; Forward, Sonja

    2011-05-01

    As a way to reduce the number of car crashes different in-car safety devices are being introduced. In this paper one such application is being investigated, namely the electronic stability control system (ESC). The study used a survey method, including 2000 private car drivers (1000 driving a car with ESC and 1000 driving a car without ESC). The main objective was to investigate the effect of ESC on driver behaviour. Results show that drivers report that they drive even more carelessly when they believe that they have ESC, than when they do not. Men are more risk prone than women and young drivers more than older drivers. Using the theory of planned behaviour the results show that attitude, subjective norm and perceived control explain between 62% and 67% of driver's variation of intentions to take risks. When descriptive norm was added to the model a small but statistically significant increase was found. The study also shows that more than 35% erroneously believe that their car is equipped with an ESC system. These findings may suggest that driver behaviour could reduce the positive effect ESC has on accidents. It also shows that drivers who purchase a new car are not well informed about what kind of safety devices the car is equipped with. These findings highlight the need for more targeted information to drivers. PMID:21376858

  12. Artificial Intelligent Control for a Novel Advanced Microwave Biodiesel Reactor

    Science.gov (United States)

    Wali, W. A.; Hassan, K. H.; Cullen, J. D.; Al-Shamma'a, A. I.; Shaw, A.; Wylie, S. R.

    2011-08-01

    Biodiesel, an alternative diesel fuel made from a renewable source, is produced by the transesterification of vegetable oil or fat with methanol or ethanol. In order to control and monitor the progress of this chemical reaction with complex and highly nonlinear dynamics, the controller must be able to overcome the challenges due to the difficulty in obtaining a mathematical model, as there are many uncertain factors and disturbances during the actual operation of biodiesel reactors. Classical controllers show significant difficulties when trying to control the system automatically. In this paper we propose a comparison of artificial intelligent controllers, Fuzzy logic and Adaptive Neuro-Fuzzy Inference System(ANFIS) for real time control of a novel advanced biodiesel microwave reactor for biodiesel production from waste cooking oil. Fuzzy logic can incorporate expert human judgment to define the system variables and their relationships which cannot be defined by mathematical relationships. The Neuro-fuzzy system consists of components of a fuzzy system except that computations at each stage are performed by a layer of hidden neurons and the neural network's learning capability is provided to enhance the system knowledge. The controllers are used to automatically and continuously adjust the applied power supplied to the microwave reactor under different perturbations. A Labview based software tool will be presented that is used for measurement and control of the full system, with real time monitoring.

  13. Artificial Intelligent Control for a Novel Advanced Microwave Biodiesel Reactor

    International Nuclear Information System (INIS)

    Biodiesel, an alternative diesel fuel made from a renewable source, is produced by the transesterification of vegetable oil or fat with methanol or ethanol. In order to control and monitor the progress of this chemical reaction with complex and highly nonlinear dynamics, the controller must be able to overcome the challenges due to the difficulty in obtaining a mathematical model, as there are many uncertain factors and disturbances during the actual operation of biodiesel reactors. Classical controllers show significant difficulties when trying to control the system automatically. In this paper we propose a comparison of artificial intelligent controllers, Fuzzy logic and Adaptive Neuro-Fuzzy Inference System(ANFIS) for real time control of a novel advanced biodiesel microwave reactor for biodiesel production from waste cooking oil. Fuzzy logic can incorporate expert human judgment to define the system variables and their relationships which cannot be defined by mathematical relationships. The Neuro-fuzzy system consists of components of a fuzzy system except that computations at each stage are performed by a layer of hidden neurons and the neural network's learning capability is provided to enhance the system knowledge. The controllers are used to automatically and continuously adjust the applied power supplied to the microwave reactor under different perturbations. A Labview based software tool will be presented that is used for measurement and control of the full system, with real time monitoring.

  14. Advanced discrete-time control designs and applications

    CERN Document Server

    Abidi, Khalid

    2015-01-01

    This book covers a wide spectrum of systems such as linear and nonlinear multivariable systems as well as control problems such as disturbance, uncertainty and time-delays. The purpose of this book is to provide researchers and practitioners a manual for the design and application of advanced discrete-time controllers.  The book presents six different control approaches depending on the type of system and control problem. The first and second approaches are based on Sliding Mode control (SMC) theory and are intended for linear systems with exogenous disturbances. The third and fourth approaches are based on adaptive control theory and are aimed at linear/nonlinear systems with periodically varying parametric uncertainty or systems with input delay. The fifth approach is based on Iterative learning control (ILC) theory and is aimed at uncertain linear/nonlinear systems with repeatable tasks and the final approach is based on fuzzy logic control (FLC) and is intended for highly uncertain systems with heuristi...

  15. Integration of advanced teleoperation technologies for control of space robots

    Science.gov (United States)

    Stagnaro, Michael J.

    1993-01-01

    Teleoperated robots require one or more humans to control actuators, mechanisms, and other robot equipment given feedback from onboard sensors. To accomplish this task, the human or humans require some form of control station. Desirable features of such a control station include operation by a single human, comfort, and natural human interfaces (visual, audio, motion, tactile, etc.). These interfaces should work to maximize performance of the human/robot system by streamlining the link between human brain and robot equipment. This paper describes development of a control station testbed with the characteristics described above. Initially, this testbed will be used to control two teleoperated robots. Features of the robots include anthropomorphic mechanisms, slaving to the testbed, and delivery of sensory feedback to the testbed. The testbed will make use of technologies such as helmet mounted displays, voice recognition, and exoskeleton masters. It will allow tor integration and testing of emerging telepresence technologies along with techniques for coping with control link time delays. Systems developed from this testbed could be applied to ground control of space based robots. During man-tended operations, the Space Station Freedom may benefit from ground control of IVA or EVA robots with science or maintenance tasks. Planetary exploration may also find advanced teleoperation systems to be very useful.

  16. Artificial Intelligent Control for a Novel Advanced Microwave Biodiesel Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wali, W A; Hassan, K H; Cullen, J D; Al-Shamma' a, A I; Shaw, A; Wylie, S R, E-mail: w.wali@2009.ljmu.ac.uk [Built Environment and Sustainable Technologies Institute (BEST), School of the Built Environment, Faculty of Technology and Environment Liverpool John Moores University, Byrom Street, Liverpool L3 3AF (United Kingdom)

    2011-08-17

    Biodiesel, an alternative diesel fuel made from a renewable source, is produced by the transesterification of vegetable oil or fat with methanol or ethanol. In order to control and monitor the progress of this chemical reaction with complex and highly nonlinear dynamics, the controller must be able to overcome the challenges due to the difficulty in obtaining a mathematical model, as there are many uncertain factors and disturbances during the actual operation of biodiesel reactors. Classical controllers show significant difficulties when trying to control the system automatically. In this paper we propose a comparison of artificial intelligent controllers, Fuzzy logic and Adaptive Neuro-Fuzzy Inference System(ANFIS) for real time control of a novel advanced biodiesel microwave reactor for biodiesel production from waste cooking oil. Fuzzy logic can incorporate expert human judgment to define the system variables and their relationships which cannot be defined by mathematical relationships. The Neuro-fuzzy system consists of components of a fuzzy system except that computations at each stage are performed by a layer of hidden neurons and the neural network's learning capability is provided to enhance the system knowledge. The controllers are used to automatically and continuously adjust the applied power supplied to the microwave reactor under different perturbations. A Labview based software tool will be presented that is used for measurement and control of the full system, with real time monitoring.

  17. Hydraulic support stability control of fully mechanized top coal caving face with steep coal seams based on instable critical angle

    Institute of Scientific and Technical Information of China (English)

    TO Shi-hao; YUAN Yong; LI Nai-liang; DOU Feng-jin; WANG Fang-tian

    2008-01-01

    Analyzed the support instable mode of sliding, tripping, and so on, and believedthe key point of the support stability control of fully mechanized coal caving face with steepcoal seams was to maintain that the seam true angle was less than the hydraulic supportinstability critical angle. Through the layout of oblique face, the improvement of supportsetting load, the control of mining height and nonskid platform, the group support systemof end face, the advance optimization of conveyor and support, and the other control tech-nical measures, the true angle of the seam is reduced and the instable critical angle of thesupport is increased, the hydraulic support stability of fully mechanized coal caving facewith steep coal seams is effectively controlled.

  18. PID Controller Stabilization for First-order Integral Processes with Time Delay

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Due to the widespread application of the PID controller in industrial control systems, it is desirable to know the complete set of all the stabilizing PID controllers for a given plant before the controller design and tuning. In this paper,the stabilization problems of the classical proportionalintegral-derivative (PID) controller and the singleparameter PID controller (containing only one adjustable parameter) for integral processes with time delay are investigated, respectively. The complete set of stabilizing parameters of the classical PID controller is determined using a version of the Hermite-Biehler Theorem applicable to quasipolynomials. Since the stabilization problem of the single-parameter PID controller cannot be treated by the Hermite-Biehler Theorem, a simple method called duallocus diagram is employed to derive the stabilizing range of the single-parameter PID controller. These results provide insight into the tuning of the PID controllers.

  19. Advanced overlay: sampling and modeling for optimized run-to-run control

    Science.gov (United States)

    Subramany, Lokesh; Chung, WoongJae; Samudrala, Pavan; Gao, Haiyong; Aung, Nyan; Gomez, Juan Manuel; Gutjahr, Karsten; Park, DongSuk; Snow, Patrick; Garcia-Medina, Miguel; Yap, Lipkong; Demirer, Onur Nihat; Pierson, Bill; Robinson, John C.

    2016-03-01

    In recent years overlay (OVL) control schemes have become more complicated in order to meet the ever shrinking margins of advanced technology nodes. As a result, this brings up new challenges to be addressed for effective run-to- run OVL control. This work addresses two of these challenges by new advanced analysis techniques: (1) sampling optimization for run-to-run control and (2) bias-variance tradeoff in modeling. The first challenge in a high order OVL control strategy is to optimize the number of measurements and the locations on the wafer, so that the "sample plan" of measurements provides high quality information about the OVL signature on the wafer with acceptable metrology throughput. We solve this tradeoff between accuracy and throughput by using a smart sampling scheme which utilizes various design-based and data-based metrics to increase model accuracy and reduce model uncertainty while avoiding wafer to wafer and within wafer measurement noise caused by metrology, scanner or process. This sort of sampling scheme, combined with an advanced field by field extrapolated modeling algorithm helps to maximize model stability and minimize on product overlay (OPO). Second, the use of higher order overlay models means more degrees of freedom, which enables increased capability to correct for complicated overlay signatures, but also increases sensitivity to process or metrology induced noise. This is also known as the bias-variance trade-off. A high order model that minimizes the bias between the modeled and raw overlay signature on a single wafer will also have a higher variation from wafer to wafer or lot to lot, that is unless an advanced modeling approach is used. In this paper, we characterize the bias-variance trade off to find the optimal scheme. The sampling and modeling solutions proposed in this study are validated by advanced process control (APC) simulations to estimate run-to-run performance, lot-to-lot and wafer-to- wafer model term monitoring to

  20. Bumpless Transfer Between Advanced Controllers with Applications to Power Plant Control

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Stoustrup, Jakob; Trangbæk, Klaus

    2003-01-01

    This paper deals with bumpless transfer between a number of advanced controllers, e.g. in a gain-scheduling architecture. Linear observer-based controllers are designed for a number of linear approximations of the system model in a set of operating points, and gain scheduling control can subseque......This paper deals with bumpless transfer between a number of advanced controllers, e.g. in a gain-scheduling architecture. Linear observer-based controllers are designed for a number of linear approximations of the system model in a set of operating points, and gain scheduling control can....... In this paper we propose a systematic approach to achieve bumpless transfer between different nominal controllers. The approach is tested on a simple, but highly nonlinear model of a coal-fired power plant....

  1. Stability and control of wind farms in power systems

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, C.

    2006-10-15

    The Ph.D. project 'Stability and Control of Wind Farms in Power Systems' deals with some selected problems related to wind power in power systems. With increasing wind power penetration, wind turbines substitute the power production of conventional power plants. Therefore, wind turbines also have to take over the power system stabilisation and control tasks, that were traditionally carried out by conventional power plants. Out of the many aspects related to this problem, this project focuses on transient fault ride-through and power system stabilisation. The selection of turbine types considered in this project is limited to active-stall turbines and variable speed, variable pitch turbines with gearboxes and full-scale converter-connected synchronous generators. As a basis for the project, a study into the state of the art is conducted at the beginning of the project. Grid connection requirements that were in force, or published as drafts, at the time, and scientific literature related to the topic, are studied. The project is based on simulations of wind turbines in a power system simulations tool. Some of the models used in this project were readily available prior to the project; the development of others is part of the project. The most extensive modelling work deals with the design of the electrical part of the variable speed turbine and its controls. To simulate realistic grid operation the wind turbine models are connected to an aggregated model of the Nordic power system. For that purpose the Nordic power system model, which was available prior to the project, is extended with a realistic feeder configuration. It is commonly demanded from modern wind turbines, that they must not disconnect in case of transient faults. Therefore, controllers are designed that enable the two turbine types to ride through transient faults. With these transient fault controllers the wind turbines can stay connected to the grid, such that their generation capacity is

  2. Concept of advanced back-up control panel design of digital control room

    International Nuclear Information System (INIS)

    Back-up control panel (BCP) of digital main control room (DMCR) is the back-up means for main computerized control means (MCM). This paper focus on technical issues for advanced design of back-up panel (BCP) for CPR1000 using qualified computer-based video display unit to display plant process indication and alarms. Human factors engineering (HFE) issues also have been considered in the BCP design. Then, as the mean to fulfill safety target of nuclear power plant (NPP), an ideal ergonomic design method is exploited for advanced BCP design. (author)

  3. A hamiltonian control approach for the stabilization of the angular velocity of a rigid body system controlled by two torques

    OpenAIRE

    C. Aguilar-Ibáñez; M.S. Suárez-Castañón; F. Guzmán-Aguilar

    2008-01-01

    We present a Hamiltonian control approach for the stabilization of a rigid body system that is controlled by two torques. The stabilization strategy consists in solving a feasible matching condition in order to derive a feedback controller which forces the closed-loop system to be globally asymptotically stable.

  4. Advanced Energy Harvesting Control Schemes for Marine Renewable Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    McEntee, Jarlath [Ocean Renewable Power Company, Portland, ME (United States); Polagye, Brian [Ocean Renewable Power Company, Portland, ME (United States); Fabien, Brian [Ocean Renewable Power Company, Portland, ME (United States); Thomson, Jim [Ocean Renewable Power Company, Portland, ME (United States); Kilcher, Levi [Ocean Renewable Power Company, Portland, ME (United States); Marnagh, Cian [Ocean Renewable Power Company, Portland, ME (United States); Donegan, James [Ocean Renewable Power Company, Portland, ME (United States)

    2016-03-31

    The Advanced Energy Harvesting Control Schemes for Marine Renewable Energy Devices (Project) investigated, analyzed and modeled advanced turbine control schemes with the objective of increasing the energy harvested by hydrokinetic turbines in turbulent flow. Ocean Renewable Power Company (ORPC) implemented and validated a feedforward controller to increase power capture; and applied and tested the controls on ORPC’s RivGen® Power Systems in Igiugig, Alaska. Assessments of performance improvements were made for the RivGen® in the Igiugig environment and for ORPC’s TidGen® Power System in a reference tidal environment. Annualized Energy Production (AEP) and Levelized Cost of Energy (LCOE) improvements associated with implementation of the recommended control methodology were made for the TidGen® Power System in the DOE reference tidal environment. System Performance Advancement (SPA) goals were selected for the project. SPA targets were to improve Power to Weight Ratio (PWR) and system Availability, with the intention of reducing Levelized Cost of Electricity (LCOE). This project focused primarily reducing in PWR. Reductions in PWR of 25.5% were achieved. Reductions of 20.3% in LCOE were achieved. This project evaluated four types of controllers which were tested in simulation, emulation, a laboratory flume, and the field. The adaptive Kω2 controller performs similarly to the non-adaptive version of the same controller and may be useful in tidal channels where the mean velocity is continually evolving. Trends in simulation were largely verified through experiments, which also provided the opportunity to test assumptions about turbine responsiveness and control resilience to varying scales of turbulence. Laboratory experiments provided an essential stepping stone between simulation and implementation on a field-scale turbine. Experiments also demonstrated that using “energy loss” as a metric to differentiate between well-designed controllers operating at

  5. PREFACE: European Workshop on Advanced Control and Diagnosis

    Science.gov (United States)

    Schulte, Horst; Georg, Sören

    2014-12-01

    The European Workshop on Advanced Control and Diagnosis is an annual event that has been organised since 2003 by Control Engineering departments of several European universities in Germany, France, the UK, Poland, Italy, Hungary and Denmark. The overall planning of the workshops is conducted by the Intelligent Control and Diagnosis (ICD) steering committee. This year's ACD workshop took place at HTW Berlin (University of Applied Sciences) and was organised by the Control Engineering group of School of Engineering I of HTW Berlin. 38 papers were presented at ACD 2014, with contributions spanning a variety of fields in modern control science: Discrete control, nonlinear control, model predictive control, system identification, fault diagnosis and fault-tolerant control, control applications, applications of fuzzy logic, as well as modelling and simulation, the latter two forming a basis for all tasks in modern control. Three interesting and high-quality plenary lectures were delivered. The first plenary speaker was Wolfgang Weber from Pepperl+Fuchs, a German manufacturer of state-of-the-art industrial sensors and process interfaces. The second and third plenary speakers were two internationally high-ranked researchers in their respective fields, Prof. Didier Theilliol from Université de Lorraine and Prof. Carsten Scherer from Universität Stuttgart. Taken together, the three plenary lectures sought to contribute to closing the gap between theory and applications. On behalf of the whole ACD 2014 organising committee, we would like to thank all those who submitted papers and participated in the workshop. We hope it was a fruitful and memorable event for all. Together we are looking forward to the next ACD workshop in 2015 in Pilsen, Czech Republic. Horst Schulte (General Chair), Sören Georg (Programme Chair)

  6. Status and design of the Advanced Photon Source control system

    International Nuclear Information System (INIS)

    This paper presents the current status of the Advanced Photon Source (APS) control system. It will discuss the design decisions which led us to use industrial standards and collaborations with other laboratories to develop the APS control system. The system uses high performance graphic workstations and the X-windows Graphical User Interface (GUI) at the operator interface level. It connects to VME/VXI-based microprocessors at the field level using TCP/IP protocols over high performance networks. This strategy assures the flexibility and expansibility of the control system. A defined interface between the system components will allow the system to evolve with the direct addition of future, improved equipment and new capabilities

  7. Advances and applications in sliding mode control systems

    CERN Document Server

    Zhu, Quanmin

    2015-01-01

    This book describes the advances and applications in Sliding mode control (SMC) which is widely used as a powerful method to tackle uncertain nonlinear systems. The book is organized into 21 chapters which have been organised by the editors to reflect the various themes of sliding mode control. The book provides the reader with a broad range of material from first principles up to the current state of the art in the area of SMC and observation presented in a clear, matter-of-fact style. As such it is appropriate for graduate students with a basic knowledge of classical control theory and some knowledge of state-space methods and nonlinear systems. The resulting design procedures are emphasized using Matlab/Simulink software.    

  8. Advanced Fuzzy Logic Based Admission Control for UMTS System

    Directory of Open Access Journals (Sweden)

    P. Kejik

    2010-12-01

    Full Text Available The capacity of CDMA (Code Division Multiple Access systems is interference limited. Therefore radio resources management (RRM functions are used. They are responsible for supplying optimum coverage, ensuring efficient use of physical resources, and providing the maximum planned capacity. This paper deals with admission control techniques for UMTS (Universal Mobile Telecommunication System. A UMTS system model and four fuzzy logic based admission control algorithms are presented in this paper. Two new versions of fuzzy logic based admission control algorithms are presented there. All algorithms are mutually compared via simulations. Simulations show that the novel advanced fuzzy algorithm outperforms the other simulated algorithms (in terms of blocking probability, dropping probability and the number of active UEs in cell.

  9. Advanced Controls for the Multi-pod Centipod WEC device

    Energy Technology Data Exchange (ETDEWEB)

    McCall, Alan [Dehlsen Associates, LLC, Santa Barabara, CA (United States); Fleming, Alex [Dehlsen Associates, LLC, Santa Barabara, CA (United States)

    2016-02-15

    Dehlsen Associates, LLC (DA) has developed a Wave Energy Converter (WEC), Centipod, which is a multiple point absorber, extracting wave energy primarily in the heave direction through a plurality of point absorber floats sharing a common stable reference structure. The objective of this project was to develop advanced control algorithms that will be used to reduce Levelized Cost of Energy (LCOE). This project investigated the use of Model Predictive Control (MPC) to improve the power capture of the WEC. The MPC controller developed in this work is a state-space, “look ahead” controller approach using knowledge of past and current states to predict future states to take action with the PTO to maximize power capture while still respecting system constraints. In order to maximize power, which is the product of force and velocity, the controller must aim to create phase alignment between excitation force and velocity. This project showed a 161% improvement in the Annual Energy Production (AEP) for the Centipod WEC when utilizing MPC, compared to a baseline, fixed passive damping control strategy. This improvement in AEP was shown to provide a substantial benefit to the WEC’s overall Cost of Energy, reducing LCOE by 50% from baseline. The results of this work proved great potential for the adoption of Model Predictive Controls in Wave Energy Converters.

  10. Robust Stabilization and H∞ Control for Uncertain Neural Networks with Mixed Time Delays

    Directory of Open Access Journals (Sweden)

    Bin Wen

    2015-01-01

    Full Text Available This paper is concerned with the problem of robust stabilization and H∞ control for a class of uncertain neural networks. For the robust stabilization problem, sufficient conditions are derived based on the quadratic convex combination property together with Lyapunov stability theory. The feedback controller we design ensures the robust stability of uncertain neural networks with mixed time delays. We further design a robust H∞ controller which guarantees the robust stability of the uncertain neural networks with a given H∞ performance level. The delay-dependent criteria are derived in terms of LMI (linear matrix inequality. Finally, numerical examples are provided to show the effectiveness of the obtained results.

  11. Advances in control of ectoparasites in large animals.

    Science.gov (United States)

    Hiepe, T

    1988-11-01

    In continuation of a publication on "Large-scale management systems and parasite populations: ectoparasites" in Vet. Parasitol. 11 (1982): 61-68, advances and present state of the control of ectoparasites in herds of cattle, sheep and camels are discussed. An intensified animal production necessitates permanent veterinary control of the status of ectoparasites. Strategically, control is basically directed towards achieving three aims: eradication, reduction of losses by means of dilution of ectoparasites regulations, and therapeutic measures. In the last few years, important progress has been made in effective ectoparasites control, mainly resulting from the discovery of new insecticides and acaricides, the improvement of the application techniques and the recent results in the biological control of arthropods; finally, an immunological approach will open new alternative ways of control. The control of mange and demodicosis in cattle; sarcoptic mange and sucking lice infestations in pigs; mange, biting lice infestations and nasal bots in sheep; ectoparasite infestations in camels and tick infestations are the main topics of the paper. The discovery of Ivermectin, a derivate of Streptomyces avermitilis which is now already fully integrated in to the spectrum of antiparasitic drugs, created a new generation of broad spectrum insecticides/acaricides. Current problems of the chemical control of arthropods, like the risk of residues in meat, milk and their products, the insecticide resistance and the possible environment pollution are critically outlined. But on the other hand, it can be predicted hypothetically that the amount of pest control measures in farm animals will increase in the near future to eliminate arthropods as causes of skin diseases and of damages to hides entailing negative effects on leather processing and as vectors of important infection agents. Finally, the proposal is submitted to elaborate international control programmes against ectoparasite

  12. Coal surface control for advanced fine coal flotation

    Energy Technology Data Exchange (ETDEWEB)

    Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. (California Univ., Berkeley, CA (United States)); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. (Columbia Univ., New York, NY (United States)); Hu, W.; Zou, Y.; Chen, W. (Utah Univ., Salt Lake City, UT (United States)); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. (Praxis Engineers, Inc., Milpitas, CA (United States))

    1992-03-01

    The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal's emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

  13. Advanced Transport Operating System (ATOPS) control display unit software description

    Science.gov (United States)

    Slominski, Christopher J.; Parks, Mark A.; Debure, Kelly R.; Heaphy, William J.

    1992-01-01

    The software created for the Control Display Units (CDUs), used for the Advanced Transport Operating Systems (ATOPS) project, on the Transport Systems Research Vehicle (TSRV) is described. Module descriptions are presented in a standardized format which contains module purpose, calling sequence, a detailed description, and global references. The global reference section includes subroutines, functions, and common variables referenced by a particular module. The CDUs, one for the pilot and one for the copilot, are used for flight management purposes. Operations performed with the CDU affects the aircraft's guidance, navigation, and display software.

  14. Control design for robust stability in linear regulators: Application to aerospace flight control

    Science.gov (United States)

    Yedavalli, R. K.

    1986-01-01

    Time domain stability robustness analysis and design for linear multivariable uncertain systems with bounded uncertainties is the central theme of the research. After reviewing the recently developed upper bounds on the linear elemental (structured), time varying perturbation of an asymptotically stable linear time invariant regulator, it is shown that it is possible to further improve these bounds by employing state transformations. Then introducing a quantitative measure called the stability robustness index, a state feedback conrol design algorithm is presented for a general linear regulator problem and then specialized to the case of modal systems as well as matched systems. The extension of the algorithm to stochastic systems with Kalman filter as the state estimator is presented. Finally an algorithm for robust dynamic compensator design is presented using Parameter Optimization (PO) procedure. Applications in a aircraft control and flexible structure control are presented along with a comparison with other existing methods.

  15. Static Synchronous Series Compensator Controller based on Fuzzy Logic Control for Power System Stabilization

    Directory of Open Access Journals (Sweden)

    Prechanon Kumkratug

    2011-01-01

    Full Text Available Problem statement: Modern power system consists of the complicated network of transmission lines and carries heavy demand. Thus they cause in the stability problem. Approach: Static Synchronous Series Compensator (SSSC is a power electronic based device that has the capability of controlling the power flow through a line. The series voltage injection model of SSSC is modeled into power flow equation and thus it is used to determine its control strategy. This study applies the fuzzy logic applies the SSSC to improve stability of power system. The mathematical model and control strategy of a SSSC are presented. The SSSC is represented by variable voltage injection with associate transformer leakage control to derive control strategy of SSSC. The swing curves of the three phase faulted power system without and with a SSSC is tested and compared in various cases. Results: The swing curve of the system with SSSC based fuzzy logic control has the less amplitude during the dynamic period. Conclusion: It was found from simulation results that SSSC can improve the power system oscillation after disturbance.

  16. Local controllability and stabilization of spacecraft attitude by two single-gimbal control moment gyros

    Institute of Scientific and Technical Information of China (English)

    Gui Haichao; Jin Lei; Xu Shijie

    2013-01-01

    The attitude control problem of a spacecraft underactuated by two single-gimbal control moment gyros (SGCMGs) is investigated. Small-time local controllability (STLC) of the attitude dynamics of the spacecraft-SGCMGs system is analyzed via nonlinear controllability theory. The conditions that guarantee STLC of the spacecraft attitude by two non-coaxial SGCMGs are obtained with the momentum of the SGCMGs as inputs, implying that the spacecraft attitude is STLC when the total angular momentum of the whole system is zero. Moreover, our results indi-cate that under the zero-momentum restriction, full attitude stabilization is possible for a spacecraft using two non-coaxial SGCMGs. For the case of two coaxial SGCMGs, the STLC property of the spacecraft cannot be determined. In this case, an improvement to the previous full attitude stabiliz-ing control law, which requires zero-momentum presumption, is proposed to account for the singu-larity of SGCMGs and enhance the steady state performance. Numerical simulation results demonstrate the effectiveness and advantages of the new control law.

  17. Study on Integrated Control of Vehicle Yaw and Rollover Stability Using Nonlinear Prediction Model

    Directory of Open Access Journals (Sweden)

    Jianyong Cao

    2013-01-01

    Full Text Available This paper proposes the integrated controller of the yaw and rollover stability controls based on the prediction model. A nonlinear 3-DoF vehicle model with a piecewise linearization tire model is built up as the rollover predictive model, and its accuracy is verified by vehicle tests. A yaw stability controller and a rollover stability controller are proposed, respectively. Then coordinated control strategy is investigated for the integration of vehicle yaw and roll stability controls. The additional yaw torque and braking torque of each wheel are calculated. The unified command of valves is sent combined with ABS control algorithm. Virtual tests in CarSim are carried out, including slalom condition and double-lane change condition. Results indicate that the coordinated control algorithm improves vehicle yaw and roll stability effectively.

  18. Attitude Control of a Small Coaxial Helicopter with a Bell Type Stabilizer Bar

    Science.gov (United States)

    Sunada, Shigeru; Hirosue, Wataru; Kawashima, Kenta

    We analyzed the small coaxial helicopter recently developed for entertainment. The upper rotor is connected with a stabilizer bar alone and the lower rotor is not connected with it. The cyclic pitch of the upper rotor is controlled by this stabilizer bar, and that of the lower rotor is controlled by servo motors. We investigated how this stabilizer bar varies the cyclic pitch of the upper rotor and how it contributes to attitude control of a fuselage.

  19. Robust Absolute Stability of General Interval Lur'e Type Nonlinear Control Systems

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, Lyapunov function method isused to study the robust absolute stability of general interval Lur'e type nonlinear control systems. As a result, algebraically sufficient conditions with interval matrix inequality form are obtained for the general interval Lur'e type nonlinear control systems, thus the relationship between the stability of symmetrical interval matrix and the robust absolute stability of general interval Lur'e type nonlinear control systems is established.

  20. Research and development on the application of advanced control technologies to advanced nuclear reactor systems: A US national perspective

    International Nuclear Information System (INIS)

    Control system designs for nuclear power plants are becoming more advanced through the use of digital technology and automation. This evolution is taking place because of: (1) the limitations in analog based control system performance and maintenance and availability and (2) the promise of significant improvement in plant operation and availability due to advances in digital and other control technologies. Digital retrofits of control systems in US nuclear plants are occurring now. Designs of control and protection systems for advanced LWRs are based on digital technology. The use of small inexpensive, fast, large-capacity computers in these designs is the first step of an evolutionary process described in this paper. Under the sponsorship of the US Department of Energy (DOE), Oak Ridge National Laboratory, Argonne National Laboratory, GE Nuclear Energy and several universities are performing research and development in the application of advances in control theory, software engineering, advanced computer architectures, artificial intelligence, and man-machine interface analysis to control system design. The target plant concept for the work described in this paper is the Power Reactor Inherently Safe Module reactor (PRISM), an advanced modular liquid metal reactor concept. This and other reactor designs which provide strong passive responses to operational upsets or accidents afford good opportunities to apply these advances in control technology. 18 refs., 5 figs

  1. Dynamic Modeling, Optimization, and Advanced Control for Large Scale Biorefineries

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail

    of the L1 adaptive output feedback controller [10] are developed: one for biomass pretreatment temperature [11] and another one for pH in enzymatic hydrolysis [12]. Biomass conversion is highly sensitive to these process parameters, which exhibit nonlinear behavior and can change nominal values...... years PhD project that was run by Technical University of Denmark (DTU) in collaboration with the largest Danish energy company DONG Energy A/S between 2012 and 2015. The company owns a demonstration scale second generation biorefinery in Kalundborg, Denmark, also known as the Inbicon demonstration...... plant [3]. The goal of the project is to utilize realtime data extracted from the large scale facility to formulate and validate first principle dynamic models of the plant. These models are then further exploited to derive model-based tools for process optimization, advanced control and real...

  2. Advanced methods of quality control in nuclear fuel fabrication

    International Nuclear Information System (INIS)

    Under pressure of current economic and electricity market situation utilities implement more demanding fuel utilization schemes including higher burn ups and thermal rates, longer fuel cycles and usage of Mo fuel. Therefore, fuel vendors have recently initiated new R and D programmes aimed at improving fuel quality, design and materials to produce robust and reliable fuel. In the beginning of commercial fuel fabrication, emphasis was given to advancements in Quality Control/Quality Assurance related mainly to product itself. During recent years, emphasis was transferred to improvements in process control and to implementation of overall Total Quality Management (TQM) programmes. In the area of fuel quality control, statistical control methods are now widely implemented replacing 100% inspection. This evolution, some practical examples and IAEA activities are described in the paper. The paper presents major findings of the latest IAEA Technical Meetings (TMs) and training courses in the area with emphasis on information received at the TM and training course held in 1999 and other latest publications to provide an overview of new developments in process/quality control, their implementation and results obtained including new approaches to QC

  3. Nonlinear power flow feedback control for improved stability and performance of airfoil sections

    Science.gov (United States)

    Wilson, David G.; Robinett, III, Rush D.

    2013-09-03

    A computer-implemented method of determining the pitch stability of an airfoil system, comprising using a computer to numerically integrate a differential equation of motion that includes terms describing PID controller action. In one model, the differential equation characterizes the time-dependent response of the airfoil's pitch angle, .alpha.. The computer model calculates limit-cycles of the model, which represent the stability boundaries of the airfoil system. Once the stability boundary is known, feedback control can be implemented, by using, for example, a PID controller to control a feedback actuator. The method allows the PID controller gain constants, K.sub.I, K.sub.p, and K.sub.d, to be optimized. This permits operation closer to the stability boundaries, while preventing the physical apparatus from unintentionally crossing the stability boundaries. Operating closer to the stability boundaries permits greater power efficiencies to be extracted from the airfoil system.

  4. Stabilization Controller Design for a class of Inverted Pendulums via Adaptive Fuzzy Sliding Mode Control

    Directory of Open Access Journals (Sweden)

    Heng Liu

    2013-07-01

    Full Text Available X–Z inverted pendulum is a new kind of inverted pendulum and it can move with the combination of the vertical and horizontal forces. This paper addresses  the control problem of X-Z inverted pendulum in the presents of system uncertainties and external disturbances, and an adaptive fuzzy sliding mode control approach is proposed. The fuzzy  system is used to approximate the system uncertainties and the complicated intermediate control functions in the backstepping control design. To update the parameters of the fuzzy system, a proper proportional-integral adaptation law is introduced.  Finally, simulation studies are done to show the stabilization of the X-Z inverted pendulum under the proposed method.

  5. PID self tuning control based on Mamdani fuzzy logic control for quadrotor stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Priyambodo, Tri Kuntoro, E-mail: mastri@ugm.ac.id; Putra, Agfianto Eko [Aerospace and Aeronautics Electronics Research Group, Universitas Gadjah Mada, Yogyakarta (Indonesia); Department of Computer Science and Electronics, Universitas Gadjah Mada, Yogyakarta (Indonesia); Dharmawan, Andi, E-mail: andi-dharmawan@ugm.ac.id [Department of Computer Science and Electronics, Universitas Gadjah Mada, Yogyakarta (Indonesia)

    2016-02-01

    Quadrotor as one type of UAV have the ability to perform Vertical Take Off and Landing (VTOL). It allows the Quadrotor to be stationary hovering in the air. PID (Proportional Integral Derivative) control system is one of the control methods that are commonly used. It is usually used to optimize the Quadrotor stabilization at least based on the three Eulerian angles (roll, pitch, and yaw) as input parameters for the control system. The three constants of PID can be obtained in various methods. The simplest method is tuning manually. This method has several weaknesses. For example if the three constants are not exact, the resulting response will deviate from the desired result. By combining the methods of PID with fuzzy logic systems where human expertise is implemented into the machine language is expected to further optimize the control system.

  6. PID self tuning control based on Mamdani fuzzy logic control for quadrotor stabilization

    International Nuclear Information System (INIS)

    Quadrotor as one type of UAV have the ability to perform Vertical Take Off and Landing (VTOL). It allows the Quadrotor to be stationary hovering in the air. PID (Proportional Integral Derivative) control system is one of the control methods that are commonly used. It is usually used to optimize the Quadrotor stabilization at least based on the three Eulerian angles (roll, pitch, and yaw) as input parameters for the control system. The three constants of PID can be obtained in various methods. The simplest method is tuning manually. This method has several weaknesses. For example if the three constants are not exact, the resulting response will deviate from the desired result. By combining the methods of PID with fuzzy logic systems where human expertise is implemented into the machine language is expected to further optimize the control system

  7. A Fuzzy Logic-Controlled Superconducting Magnetic Energy Storage (SMES) for Transient Stability Augmentation

    OpenAIRE

    Ali, Mohd.Hasan; MURATA, Toshiaki; Tamura, Junji

    2007-01-01

    This paper presents a fuzzy logic-controlled superconducting magnetic energy storage (SMES) to improve the transient stability of an electric power system. In order to see how effective the proposed fuzzy controlled SMES in improving the transient stability is, its performance is compared to that of a conventional proportional-integral (PI) controlled SMES. Furthermore, a comparative study between the fuzzy controlled SMES and fuzzy controlled braking resistor (BR) is carried out. Simulation ...

  8. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Ye Zhuang; Stanley J. Miller; Grant E. Dunham; Michelle R. Olderbak

    2002-02-01

    Since 1995, DOE has supported development of a new concept in particulate control, called the advanced hybrid particulate collector (AHPC). The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a utility power plant to prove scaleup and demonstrate longer-term mercury control. This project, if successful, will demonstrate at the pilot-scale level a technology that would provide a cost-effective technique to accomplish control of mercury emissions and, at the same time, greatly enhance fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution to a large segment of the U.S. utility industry as well as other industries requiring mercury control.

  9. A modern control room for Indian Advanced Heavy Water Reactor

    International Nuclear Information System (INIS)

    Advanced Heavy Water Reactor (AHWR) is a next generation nuclear power plant being developed by Bhabha Atomic Research Centre, India. AHWR is a vertical, pressure tube type, heavy-water-moderated, boiling light-water-cooled, innovative reactor, relying on natural circulation for core cooling in all operating and accident conditions. In addition, it incorporates various passive systems for decay heat removal, containment cooling and isolation. In addition to the many passive safety features, AHWR has state of the art I and C architecture based on extensive use of computers and networking. In tune with the many advanced features of the reactor, a centralized modern control room has been conceived for operation and monitoring of the plant. The I and C architecture enables the implementation of a fully computerised operator friendly control room with soft Human Machine Interfaces (HMI). While doing so, safety has been given due consideration. The control and monitoring of AHWR systems are carried out from the fully computer-based operator interfaces, except safety systems, for which only monitoring is provided from soft HMI. The control of the safety systems is performed from dedicated hardwired safety system panels. Soft HMI reduces the number of individual control devices and improves their reliability. The paper briefly describes the I and C architecture adopted for the AHWR plant along with the interfaces to the main and backup control rooms. There are many issues involved while introducing soft HMI based operator interfaces for Nuclear Power Plants (NPP) compared to the conventional plants. Besides discussing the implementation issues, the paper elaborates the design considerations that have undergone in the design of various components in the main control room especially operator workstations, shift supervisor console, safety system panels and large display panels. Mainly task based displays have been adopted for the routine operator interactions of the plant

  10. AMBA Based Advanced DMA Controller for SoC

    Directory of Open Access Journals (Sweden)

    Abdullah Aljumah

    2016-03-01

    Full Text Available this paper describes the implementation of an AMBA Based Advanced DMA Controller for SoC. It uses AMBA Specifications, where two buses AHB and APB are defined and works for processor as system bus and peripheral bus respectively. The DMA controller functions between these two buses as a bridge and allow them to work concurrently. Depending on the speed of peripherals it uses buffering mechanism. Therefore an asynchronous FIFO is used for synchronizing the speed of peripherals. The proposed DMA controller can works in SoC along with processor and achieve fast data rate. The method introduced significant volume of data transfer with very low timing characteristics. Thus it is a better choice in respect of timing and volume of data. These two issues have been resolved under this research study. The results are compared with the AMD processors, like Geode GX 466, GX 500 and GX 533, and the presence and absence of DMA controller with processor is discussed and compared. The DMAC stands to be better alternative in SoC design.

  11. End-to-end rate-based congestion control with random loss: convergence and stability

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The convergence and stability analysis for two end-to-end rate-based congestion control algorithms with unavoidable random loss in packets are presented, which can be caused by, for example, errors on wireless links. The convergence rates of these two algorithms are analyzed by linearizing them around their equilibrium points, since they are globally stable and can converge to their unique equilibrium points. Some sufficient conditions for local stability in the presence of round-trip delay are obtained based on the general Nyquist criterion of stability. The stability conditions can be considered to be more general. If random loss in the first congestion control algorithm is not considered, they reduce to the local stability conditions which have been obtained in some literatures. Furthermore, sufficient conditions for local stability of a new congestion control algorithm have also been obtained if random loss is not considered in the second congestion control algorithm.

  12. Simulation and stability analysis of supersonic impinging jet noise with microjet control

    Science.gov (United States)

    Hildebrand, Nathaniel; Nichols, Joseph W.

    2014-11-01

    A model for an ideally expanded 1.5 Mach turbulent jet impinging on a flat plate using unstructured high-fidelity large eddy simulations (LES) and hydrodynamic stability analysis is presented. Note the LES configuration conforms exactly to experiments performed at the STOVL supersonic jet facility of the Florida Center for Advanced Aero-Propulsion allowing validation against experimental measurements. The LES are repeated for different nozzle-wall separation distances as well as with and without the addition of sixteen microjets positioned uniformly around the nozzle lip. For some nozzle-wall distances, but not all, the microjets result in substantial noise reduction. Observations of substantial noise reduction are associated with a relative absence of large-scale coherent vortices in the jet shear layer. To better understand and predict the effectiveness of microjet noise control, the application of global stability analysis about LES mean fields is used to extract axisymmetric and helical instability modes connected to the complex interplay between the coherent vortices, shocks, and acoustic feedback. We gratefully acknowledge computational resources provided by the Argonne Leadership Computing Facility.

  13. Strategies for Voltage Control and Transient Stability Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Hiskens, Ian A.

    2013-09-25

    As wind generation grows, its influence on power system performance will becoming increasingly noticeable. Wind generation di ffers from traditional forms of generation in numerous ways though, motivating the need to reconsider the usual approaches to power system assessment and performance enhancement. The project has investigated the impact of wind generation on transient stability and voltage control, identifying and addressing issues at three distinct levels of the power system: 1) at the device level, the physical characteristics of wind turbine generators (WTGs) are quite unlike those of synchronous machines, 2) at the wind-farm level, the provision of reactive support is achieved through coordination of numerous dissimilar devices, rather than straightforward generator control, and 3) from a systems perspective, the location of wind-farms on the sub-transmission network, coupled with the variability inherent in their power output, can cause complex voltage control issues. The project has sought to develop a thorough understanding of the dynamic behaviour of type-3 WTGs, and in particular the WECC generic model. The behaviour of such models is governed by interactions between the continuous dynamics of state variables and discrete events associated with limits. It was shown that these interactions can be quite complex, and may lead to switching deadlock that prevents continuation of the trajectory. Switching hysteresis was proposed for eliminating deadlock situations. Various type-3 WTG models include control blocks that duplicate integrators. It was shown that this leads to non-uniqueness in the conditions governing steady-state, and may result in pre- and post-disturbance equilibria not coinciding. It also gives rise to a zero eigenvalue in the linearized WTG model. In order to eliminate the anomalous behaviour revealed through this investigation, WECC has now released a new generic model for type-3 WTGs. Wind-farms typically incorporate a variety of

  14. Stability analysis of a noise control system in a duct by using delay differential equation

    Institute of Scientific and Technical Information of China (English)

    Masakazu Haraguchi; Hai Yan Hu

    2009-01-01

    The paper deals with the criteria for the closed-loop stability of a noise control system in a duct. To study the stability of the system, the model of delay differential equation is derived from the propagation of acoustic wave governed by a partial differential equation of hyperbolic type. Then, a simple feedback controller is designed, and its closed-loop stability is analyzed on the basis of the derived model of delay differential equation. The obtained criteria reveal the influence of the controller gain and the positions of a sensor and an actuator on the closed-loop stability. Finally, numerical simulations are presented to support the theoreti-cal results.

  15. STATE-FEEDBACK ADAPTIVE STABILIZING CONTROL DESIGN FOR A CLASS OF HIGH-ORDER NONLINEAR SYSTEMS WITH UNKNOWN CONTROL COEFFICIENTS

    Institute of Scientific and Technical Information of China (English)

    Zongyao SUN; Yungang LIU

    2007-01-01

    In this paper, a new approach is successfully addressed to design the state-feedback adaptive stabilizing control law for a class of high-order nonlinear systems in triangular form and with unknown and nonidentical control coefficients, whose stabilizing control has been investigated recently under the knowledge that the lower bounds of the control coefficients are exactly known. In the present paper,without any knowledge of the lower bounds of the control coefficients, based on the adaptive technique and appropriately choosing design parameters, we give the recursive design procedure of the stabilizing control law by utilizing the approach of adding a power integrator together with tuning functions. The state-feedback adaptive control law designed not only preserves the equilibrium at the origin, but also guarantees the global asymptotic stability of the closed-loop states and the uniform boundedness of all the other closed-loop signals.

  16. Advanced Energy Harvesting Control Schemes for Marine Renewable Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    McEntee, Jarlath [Ocean Renewable Power Company, Portland, ME (United States); Polagye, Brian [Ocean Renewable Power Company, Portland, ME (United States); Fabien, Brian [Ocean Renewable Power Company, Portland, ME (United States); Thomson, Jim [Ocean Renewable Power Company, Portland, ME (United States); Kilcher, Levi [Ocean Renewable Power Company, Portland, ME (United States); Marnagh, Cian [Ocean Renewable Power Company, Portland, ME (United States); Donegan, James [Ocean Renewable Power Company, Portland, ME (United States)

    2016-03-31

    The Advanced Energy Harvesting Control Schemes for Marine Renewable Energy Devices (Project) investigated, analyzed and modeled advanced turbine control schemes with the objective of increasing the energy harvested by hydrokinetic turbines in turbulent flow. Ocean Renewable Power Company (ORPC) implemented and validated a feedforward controller to increase power capture; and applied and tested the controls on ORPC’s RivGen® Power Systems in Igiugig, Alaska. Assessments of performance improvements were made for the RivGen® in the Igiugig environment and for ORPC’s TidGen® Power System in a reference tidal environment. Annualized Energy Production (AEP) and Levelized Cost of Energy (LCOE) improvements associated with implementation of the recommended control methodology were made for the TidGen® Power System in the DOE reference tidal environment. System Performance Advancement (SPA) goals were selected for the project. SPA targets were to improve Power to Weight Ratio (PWR) and system Availability, with the intention of reducing Levelized Cost of Electricity (LCOE). This project focused primarily reducing in PWR. Reductions in PWR of 25.5% were achieved. Reductions of 20.3% in LCOE were achieved. This project evaluated four types of controllers which were tested in simulation, emulation, a laboratory flume, and the field. The adaptive Kω2 controller performs similarly to the non-adaptive version of the same controller and may be useful in tidal channels where the mean velocity is continually evolving. Trends in simulation were largely verified through experiments, which also provided the opportunity to test assumptions about turbine responsiveness and control resilience to varying scales of turbulence. Laboratory experiments provided an essential stepping stone between simulation and implementation on a field-scale turbine. Experiments also demonstrated that using “energy loss” as a metric to differentiate between well-designed controllers operating at

  17. Variable Speed CMG Control of a Dual-Spin Stabilized Unconventional VTOL Air Vehicle

    Science.gov (United States)

    Lim, Kyong B.; Moerder, Daniel D.; Shin, J-Y.

    2004-01-01

    This paper describes an approach based on using both bias momentum and multiple control moment gyros for controlling the attitude of statically unstable thrust-levitated vehicles in hover or slow translation. The stabilization approach described in this paper uses these internal angular momentum transfer devices for stability, augmented by thrust vectoring for trim and other outer loop control functions, including CMG stabilization/ desaturation under persistent external disturbances. Simulation results show the feasibility of (1) improved vehicle performance beyond bias momentum assisted vector thrusting control, and (2) using control moment gyros to significantly reduce the external torque required from the vector thrusting machinery.

  18. Nonlinear control for global stabilization of multiple-integrator system by bounded controls

    Institute of Scientific and Technical Information of China (English)

    Bin ZHOU; Guangren DUAN; Liu ZHANG

    2008-01-01

    The global stabilization problem of the multiple-integrator system by bounded controls is considered.A nonlinear feedback law consisting of nested saturation functions is proposed.This type of nonlinear feedback law that is a modification and generalization of the result given in[1] needs only[(n+1)/2](n is the dimensions of the system)saturation elements,which is fewer than that which the other nonlinear laws need.Funhermore.the poles of the closedloop system Can be placed on any location on the left real axis when none of the saturafion elements in the control laws is saturated.This type of nonlinear control law exhibits a simpler structure and call significantly improve the transient performances of the closed-loop system,and is very superior to the other existing methods.Simulation on a fourth-order system is used to validate the proposed method.

  19. Advanced methods of microscope control using μManager software

    Directory of Open Access Journals (Sweden)

    Arthur D Edelstein

    2014-07-01

    Full Text Available µManager is an open-source, cross-platform desktop application, to control a wide variety of motorized microscopes, scientific cameras, stages, illuminators, and other microscope accessories. Since its inception in 2005, µManager has grown to support a wide range of microscopy hardware and is now used by thousands of researchers around the world. The application provides a mature graphical user interface and offers open programming interfaces to facilitate plugins and scripts. Here, we present a guide to using some of the recently added advanced µManager features, including hardware synchronization, simultaneous use of multiple cameras, projection of patterned light onto a specimen, live slide mapping, imaging with multi-well plates, particle localization and tracking, and high-speed imaging.

  20. International conference on Advances in Intelligent Control and Innovative Computing

    CERN Document Server

    Castillo, Oscar; Huang, Xu; Intelligent Control and Innovative Computing

    2012-01-01

    In the lightning-fast world of intelligent control and cutting-edge computing, it is vitally important to stay abreast of developments that seem to follow each other without pause. This publication features the very latest and some of the very best current research in the field, with 32 revised and extended research articles written by prominent researchers in the field. Culled from contributions to the key 2011 conference Advances in Intelligent Control and Innovative Computing, held in Hong Kong, the articles deal with a wealth of relevant topics, from the most recent work in artificial intelligence and decision-supporting systems, to automated planning, modelling and simulation, signal processing, and industrial applications. Not only does this work communicate the current state of the art in intelligent control and innovative computing, it is also an illuminating guide to up-to-date topics for researchers and graduate students in the field. The quality of the contents is absolutely assured by the high pro...

  1. GPS based Advanced Vehicle Tracking and Vehicle Control System

    Directory of Open Access Journals (Sweden)

    Mashood Mukhtar

    2015-02-01

    Full Text Available Security systems and navigators have always been a necessity of human‟s life. The developments of advanced electronics have brought revolutionary changes in these fields. In this paper, we will present a vehicle tracking system that employs a GPS module and a GSM modem to find the location of a vehicle and offers a range of control features. To complete the design successfully, a GPS unit, two relays, a GSM Modem and two MCU units are used. There are five features introduced in the project. The aim of this project is to remotely track a vehicle‟s location, remotely switch ON and OFF the vehicle‟s ignition system and remotely lock and unlock the doors of the vehicle. An SMS message is sent to the tracking system and the system responds to the users request by performing appropriate actions. Short text messages are assigned to each of these features. A webpage is specifically designed to view the vehicle‟s location on Google maps. By using relay based control concept introduced in this paper, number of control features such as turning heater on/off, radio on/off etc. can be implemented in the same fashion.

  2. Variable Parameters PD Control and Stability of a High Rate Rigid Rotor-Journal Active Magnetic Bearing System

    Institute of Scientific and Technical Information of China (English)

    LUO Kai

    2005-01-01

    Stability is a key problem that means whether a high rate rotor-active magnetic bearings system works reliably or not. Aiming at a bearings system described with nonlinear equations, this paper built a linear model according to the system behavior. Considering realization of the control system and behavior of a high rate rotor system (magnetic force is far smaller than input force produced by mass eccentricity) this paper proposes a design method of variable parameters PD control algorithm that can be used universally. The control system was simplified and a mass of adjusting work of control parameters was reduced. Analysis and simulation indicated that the bearings system could get a wider stable region of harmonic motion, and proved that the algorithm is robust and advanced. The control system can be realized because the winding electric currents are positive. The method is convenient for operation and can easily be used for engineering practice.

  3. Settlement Control of Soft Ground using Cement-Ricehusk Stabilization

    Directory of Open Access Journals (Sweden)

    Mokhtar M.

    2012-01-01

    Full Text Available Cement is widely used for improvement of soft soils, but financial and environmental concerns are causing genuine concerns to all parties, leading to the quest for alternative and effective stabilizers. Ricehusk is an agricultural waste in Malaysia, commonly disposed of by open burning or dumping in landfills. Considering that the ashes derived from ricehusk are pozzolanic in nature, there is a possibility that a cement-ricehusk mixture could effectively improve soft soils with reduced cement dosage. This study examines the mixture’s effectiveness by monitoring the settlement reduction in a clay soil. Standard oedometer tests were carried out on a soft marine clay sample admixed with cement-ricehusk. Test specimens contained 0-10% cement and 0-5% of ricehusk respectively, and were left to cure for either seven or 28 days. The stabilized specimens were observed to undergo significant reduction in compressibility, verifying the potential of cement-ricehusk as an alternative soft soil stabilizer.

  4. Second Generation Advanced Reburning for High Efficiency NOx Control

    Energy Technology Data Exchange (ETDEWEB)

    Vladimir M. Zamansky; Peter M. Maly; Vitali V. Lissianski; Mark S. Sheldon; David Moyeda; Roy Payne

    2001-06-30

    This project develops a family of novel Second Generation Advanced Reburning (SGAR) NO{sub x} control technologies, which can achieve 95% NO{sub x} control in coal fired boilers at a significantly lower cost than Selective Catalytic Reduction (SCR). The conventional Advanced Reburning (AR) process integrates basic reburning and N-agent injection. The SGAR systems include six AR variants: (1) AR-Lean--injection of the N-agent and promoter along with overfire air; (2) AR-Rich--injection of N-agent and promoter into the reburning zone; (3) Multiple Injection Advanced Reburning (MIAR)--injection of N-agents and promoters both into the reburning zone and with overfire air; (4) AR-Lean + Promoted SNCR--injection of N-agents and promoters with overfire air and into the temperature zone at which Selective Non-Catalytic Reduction (SNCR) is effective; (5) AR-Rich + Promoted SNCR--injection of N-agents and promoters into the reburning zone and into the SNCR zone; and (6) Promoted Reburning + Promoted SNCR--basic or promoted reburning followed by basic or promoted SNCR process. The project was conducted in two phases over a five-year period. The work included a combination of analytical and experimental studies to confirm the process mechanisms, identify optimum process configurations, and develop a design methodology for full-scale applications. Phase I was conducted from October, 1995 to September, 1997 and included both analytical studies and tests in bench and pilot-scale test rigs. Phase I moved AR technology to Maturity Level III-Major Subsystems. Phase II is conducted over a 45 month period (October, 1997-June, 2001). Phase II included evaluation of alternative promoters, development of alternative reburning fuel and N-Agent jet mixing systems, and scale up. The goal of Phase II was to move the technology to Maturity Level I-Subscale Integrated System. Tests in combustion facility ranging in firing rate from 0.1 x 10{sup 6} to 10 x 10{sup 6} Btu/hr demonstrated the

  5. The beauty of simple adaptive control and new developments in nonlinear systems stability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Barkana, Itzhak, E-mail: ibarkana@gmail.com [BARKANA Consulting, Ramat Hasharon (Israel)

    2014-12-10

    Although various adaptive control techniques have been around for a long time and in spite of successful proofs of stability and even successful demonstrations of performance, the eventual use of adaptive control methodologies in practical real world systems has met a rather strong resistance from practitioners and has remained limited. Apparently, it is difficult to guarantee or even understand the conditions that can guarantee stable operations of adaptive control systems under realistic operational environments. Besides, it is difficult to measure the robustness of adaptive control system stability and allow it to be compared with the common and widely used measure of phase margin and gain margin that is utilized by present, mainly LTI, controllers. Furthermore, customary stability analysis methods seem to imply that the mere stability of adaptive systems may be adversely affected by any tiny deviation from the pretty idealistic and assumably required stability conditions. This paper first revisits the fundamental qualities of customary direct adaptive control methodologies, in particular the classical Model Reference Adaptive Control, and shows that some of their basic drawbacks have been addressed and eliminated within the so-called Simple Adaptive Control methodology. Moreover, recent developments in the stability analysis methods of nonlinear systems show that prior conditions that were customarily assumed to be needed for stability are only apparent and can be eliminated. As a result, sufficient conditions that guarantee stability are clearly stated and lead to similarly clear proofs of stability. As many real-world applications show, once robust stability of the adaptive systems can be guaranteed, the added value of using Add-On Adaptive Control along with classical Control design techniques is pushing the desired performance beyond any previous limits.

  6. The beauty of simple adaptive control and new developments in nonlinear systems stability analysis

    International Nuclear Information System (INIS)

    Although various adaptive control techniques have been around for a long time and in spite of successful proofs of stability and even successful demonstrations of performance, the eventual use of adaptive control methodologies in practical real world systems has met a rather strong resistance from practitioners and has remained limited. Apparently, it is difficult to guarantee or even understand the conditions that can guarantee stable operations of adaptive control systems under realistic operational environments. Besides, it is difficult to measure the robustness of adaptive control system stability and allow it to be compared with the common and widely used measure of phase margin and gain margin that is utilized by present, mainly LTI, controllers. Furthermore, customary stability analysis methods seem to imply that the mere stability of adaptive systems may be adversely affected by any tiny deviation from the pretty idealistic and assumably required stability conditions. This paper first revisits the fundamental qualities of customary direct adaptive control methodologies, in particular the classical Model Reference Adaptive Control, and shows that some of their basic drawbacks have been addressed and eliminated within the so-called Simple Adaptive Control methodology. Moreover, recent developments in the stability analysis methods of nonlinear systems show that prior conditions that were customarily assumed to be needed for stability are only apparent and can be eliminated. As a result, sufficient conditions that guarantee stability are clearly stated and lead to similarly clear proofs of stability. As many real-world applications show, once robust stability of the adaptive systems can be guaranteed, the added value of using Add-On Adaptive Control along with classical Control design techniques is pushing the desired performance beyond any previous limits

  7. Multiple-Time-Scales Hierarchical Frequency Stability Control Strategy of Medium-Voltage Isolated Microgrid

    DEFF Research Database (Denmark)

    Zhao, Zhuoli; Yang, Ping; Guerrero, Josep M.;

    2016-01-01

    . In this way, dynamic stability control that cope with disturbances in short-time scale is implemented by microgrid central controller (MGCC) within Zone B and Zone C. Meanwhile, steady-state stability control to solve the peaks and valleys problem of loads and DGs in long-time scale is executed by microgrid......, it is more complex to control and manage. Thus in order to maintain the frequency stability in multiple-time-scales, a hierarchical control strategy is proposed. The proposed control architecture divides the system frequency in three zones: (A) stable zone, (B) precautionary zone and (C) emergency zone...... energy management system (MEMS) within Zone A. Furthermore, based on the developed complete small-signal state-space model, sensitivity analysis of the eigenvalues is conducted in order to reveal the dynamic stability margin of the MV microgrid, and to identify the proper range of the control parameters...

  8. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Charlene R. Crocker; Steven A. Benson; Stanley J. Miller

    2003-11-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4--Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultra-high collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the original 5-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a

  9. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Steven A. Benson; Stanley J. Miller; Charlene R. Crocker; Kevin C. Galbreath; Jason D. Laumb; Jill M. Zola; Ye Zhuang; Michelle R. Olderbak

    2004-08-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the original 5-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a

  10. An advanced frequency-domain code for boiling water reactor (BWR) stability analysis and design

    International Nuclear Information System (INIS)

    The two-phase flow instability is of interest for the design and operation of many industrial systems such as boiling water reactors (BWRs), chemical reactors, and steam generators. In case of BWRs, the flow instabilities are coupled to the power instabilities via neutronic-thermal hydraulic feedbacks. Since these instabilities produce also local pressure oscillations, the coolant flashing plays a very important role at low pressure. Many frequency-domain codes have been used for two-phase flow stability analysis of thermal hydraulic industrial systems with particular emphasis to BWRs. Some were ignoring the effect of the local pressure, or the effect of 3D power oscillations, and many were not able to deal with the neutronics-thermal hydraulics problems considering the entire core and all its fuel assemblies. The new frequency domain tool uses the best available nuclear, thermal hydraulic, algebraic and control theory methods for simulating BWRs and analyzing their stability in either off-line or on-line fashion. The novel code takes all necessary information from plant files via an interface, solves and integrates, for all reactor fuel assemblies divided into a number of segments, the thermal-hydraulic non-homogenous non-equilibrium coupled linear differential equations, and solves the 3D, two-energy-group diffusion equations for the entire core (with spatial expansion of the neutron fluxes in Legendre polynomials).It is important to note that the neutronics equations written in terms of flux harmonics for a discretized system (nodal-modal equations) generate a set of large sparse matrices. The eigenvalue problem associated to the discretized core statics equations is solved by the implementation of the implicit restarted Arnoldi method (IRAM) with implicit shifted QR mechanism. The results of the steady state are then used for the calculation of the local transfer functions and system transfer matrices. The later are large-dense and complex matrices, (their size

  11. A Review of Active Yaw Control System for Vehicle Handling and Stability Enhancement

    Directory of Open Access Journals (Sweden)

    M. K. Aripin

    2014-01-01

    Full Text Available Yaw stability control system plays a significant role in vehicle lateral dynamics in order to improve the vehicle handling and stability performances. However, not many researches have been focused on the transient performances improvement of vehicle yaw rate and sideslip tracking control. This paper reviews the vital elements for control system design of an active yaw stability control system; the vehicle dynamic models, control objectives, active chassis control, and control strategies with the focus on identifying suitable criteria for improved transient performances. Each element is discussed and compared in terms of their underlying theory, strengths, weaknesses, and applicability. Based on this, we conclude that the sliding mode control with nonlinear sliding surface based on composite nonlinear feedback is a potential control strategy for improving the transient performances of yaw rate and sideslip tracking control.

  12. Model reference adaptive control and adaptive stability augmentation

    DEFF Research Database (Denmark)

    Henningsen, Arne; Ravn, Ole

    1993-01-01

    A comparison of the standard concepts in MRAC design suggests that a combination of the implicit and the explicit design techniques may lead to an improvement of the overall system performance in the presence of unmodelled dynamics. Using the ideas of adaptive stability augmentation a combined...

  13. Biological stability of drinking water: Controlling factors, methods, and challenges

    NARCIS (Netherlands)

    Prest, E.I.E.D.; Hammes, F.; Van Loosdrecht, M.C.M.; Vrouwenvelder, J.S.

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and ca

  14. Design of UPFC Controller Using Modified Bilinear Equation for Improving Transient Stability

    Directory of Open Access Journals (Sweden)

    Majid Nayeripour

    2008-01-01

    Full Text Available Based on the use of the modified bilinear equation for the unified power flow controller (UPFC, this paper proposes a new control strategy to improve the transient stability of power system. This control strategy is applied to shunt and series inverters of UPFC as the modulating signals at the operating point. This input signals are such that the derivative of Liapunov energy function is negative definite. Simulation results show that the transient stability of power system has improved more effectively than the conventional PI controllers. Moreover, the coordination between series and shunt controllers of UPFC via one control law is considered as the main advantages of the designed controllers.

  15. Advancing cancer control research in an emerging news media environment.

    Science.gov (United States)

    Smith, Katherine C; Niederdeppe, Jeff; Blake, Kelly D; Cappella, Joseph N

    2013-12-01

    Cancer is both highly feared and highly newsworthy, and there is a robust body of research documenting the content and effects of cancer news coverage on health behaviors and policy. Recent years have witnessed ongoing, transformative shifts in American journalism alongside rapid advances in communication technology and the public information environment. These changes create a pressing need to consider a new set of research questions, sampling strategies, measurement techniques, and theories of media effects to ensure continued relevance and adaptation of communication research to address critical cancer control concerns. This paper begins by briefly reviewing what we know about the role of cancer news in shaping cancer-related beliefs, attitudes, behaviors, and policies. We then outline challenges and opportunities, both theoretical and methodological, posed by the rapidly changing news media environment and the nature of audience engagement. We organize our discussion around three major shifts associated with the emerging news media environment as it relates to health communication: 1) speed and dynamism of news diffusion, 2) increased narrowcasting of media content for specialized audiences, and 3) broadened participation in shaping media content. In so doing, we articulate a set of questions for future theory and research, in an effort to catalyze innovative communication scholarship to improve cancer prevention and control. PMID:24395988

  16. Advanced Branching Control and Characterization of Inorganic Semiconducting Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Steven Michael [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    The ability to finely tune the size and shape of inorganic semiconducting nanocrystals is an area of great interest, as the more control one has, the more applications will be possible for their use. The first two basic shapes develped in nanocrystals were the sphere and the anistropic nanorod. the II_VI materials being used such as Cadmium Selenide (CdSe) and Cadmium Telluride (CdTe), exhibit polytypism, which allows them to form in either the hexagonally packed wurtzite or cubically packed zinc blende crystalline phase. The nanorods are wurtzite with the length of the rod growing along the c-axis. As this grows, stacking faults may form, which are layers of zinc blende in the otherwise wurtzite crystal. Using this polytypism, though, the first generation of branched crystals were developed in the form of the CdTe tetrapod. This is a nanocrystal that nucleates in the zincblend form, creating a tetrahedral core, on which four wurtzite arms are grown. This structure opened up the possibility of even more complex shapes and applications. This disseration investigates the advancement of branching control and further understanding the materials polytypism in the form of the stacking faults in nanorods.

  17. Advanced illumination control algorithm for medical endoscopy applications

    Science.gov (United States)

    Sousa, Ricardo M.; Wäny, Martin; Santos, Pedro; Morgado-Dias, F.

    2015-05-01

    CMOS image sensor manufacturer, AWAIBA, is providing the world's smallest digital camera modules to the world market for minimally invasive surgery and one time use endoscopic equipment. Based on the world's smallest digital camera head and the evaluation board provided to it, the aim of this paper is to demonstrate an advanced fast response dynamic control algorithm of the illumination LED source coupled to the camera head, over the LED drivers embedded on the evaluation board. Cost efficient and small size endoscopic camera modules nowadays embed minimal size image sensors capable of not only adjusting gain and exposure time but also LED illumination with adjustable illumination power. The LED illumination power has to be dynamically adjusted while navigating the endoscope over changing illumination conditions of several orders of magnitude within fractions of the second to guarantee a smooth viewing experience. The algorithm is centered on the pixel analysis of selected ROIs enabling it to dynamically adjust the illumination intensity based on the measured pixel saturation level. The control core was developed in VHDL and tested in a laboratory environment over changing light conditions. The obtained results show that it is capable of achieving correction speeds under 1 s while maintaining a static error below 3% relative to the total number of pixels on the image. The result of this work will allow the integration of millimeter sized high brightness LED sources on minimal form factor cameras enabling its use in endoscopic surgical robotic or micro invasive surgery.

  18. Variable Torque Control of Offshore Wind Turbine on Spar Floating Platform Using Advanced RBF Neural Network

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2014-01-01

    Full Text Available Offshore floating wind turbine (OFWT has been a challenging research spot because of the high-quality wind power and complex load environment. This paper focuses on the research of variable torque control of offshore wind turbine on Spar floating platform. The control objective in below-rated wind speed region is to optimize the output power by tracking the optimal tip-speed ratio and ideal power curve. Aiming at the external disturbances and nonlinear uncertain dynamic systems of OFWT because of the proximity to load centers and strong wave coupling, this paper proposes an advanced radial basis function (RBF neural network approach for torque control of OFWT system at speeds lower than rated wind speed. The robust RBF neural network weight adaptive rules are acquired based on the Lyapunov stability analysis. The proposed control approach is tested and compared with the NREL baseline controller using the “NREL offshore 5 MW wind turbine” model mounted on a Spar floating platform run on FAST and Matlab/Simulink, operating in the below-rated wind speed condition. The simulation results show a better performance in tracking the optimal output power curve, therefore, completing the maximum wind energy utilization.

  19. Controllability,Observability and Stability for a Class of Fractional-Order Linear Time-Invariant Control Systems

    Institute of Scientific and Technical Information of China (English)

    曾庆山; 曹广益; 朱新坚

    2004-01-01

    The definitions of controllability, observability and stability were presented for fractional-order linear systems. Using the Cayley-Hamilton theorem and Mittag-Leffler function in two parameters, the sufficient and necessary conditions of controllability and observability for such systems were derived. In terms of Lyapunov's stability theory, using the theorems of Mittage-Leffler function in two parameters this paper directly derived the sufficient and necessary condition of stability for such systems. The results obtained are useful for the analysis and synthesis of fractional-order linear control systems.

  20. Design of an Interpolated Controller for Stabilization of a Plant with Variable Operating Condition

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper, the stabilization of a linear SISO plant with variable operating condition is considered. The plant is described by a linear interpolation of proper stable co-prime factorizations of the transfer functions at two representative operating points. An interpolation of the stabilizing controllers for the representative models is designed to stabilize the plant, and the necessary and sufficient condition for the plant to be stabilized by the proposed controller is presented using the Nevanlinna-Pick interpolation theory [4, 5]. It is shown that the class of stabilization plants via the proposed controller in the paper is larger than that by the controller in reference [3]. An example is also given to illustrate this fact.

  1. Second Generation Advanced Reburning for High Efficiency NOx Control

    International Nuclear Information System (INIS)

    Energy and Environmental Research Corporation is developing a family of high efficiency and low cost NOx control technologies for coal fired utility boilers based on Advanced Reburning (AR), a synergistic integration of basic reburning with injection of an N-agent. In conventional AR, injection of the reburn fuel is followed by simultaneous N-agent and overfire air injection. The second generation AR systems incorporate several components which can be used in different combinations. These components include: (1) Reburning Injection of the reburn fuel and overfire air. (2) N-agent Injection The N-agent (ammonia or urea) can be injected at different locations: into the reburning zone, along with the overfire air, and downstream of the overfire air injection. (3) N-agent Promotion Several sodium compounds can considerably enhance the NOx control from N-agent injection. These ''promoters'' can be added to aqueous N-agents. (4) Two Stages of N-agent Injection and Promotion Two N-agents with or without promoters can be injected at different locations for deeper NOx control. AR systems are intended for post-RACT applications in ozone non-attainment areas where NOx control in excess of 80% is required. AR will provide flexible installations that allow NOx levels to be lowered when regulations become more stringent. The total cost of NOx control for AR systems is approximately half of that for SCR. Experimental and kinetic modeling results for development of these novel AR systems are presented. Tests have been conducted in a 1.0 MMBtu/hr Boiler Simulator Facility with coal as the main fuel and natural gas as the reburning fuel. The results show that high efficiency NOx control, in the range 84-95%, can be achieved with various elements of AR. A comparative byproduct emission study was performed to compare the emissions from different variants of AR with commercial technologies (reburning and SNCR). For each technology sampling included: CO, SO2, N2O, total hydrocarbons, NH

  2. Nonlinear and Variable Structure Excitation Controller for Power System Stability

    Institute of Scientific and Technical Information of China (English)

    Wang Ben; Ronnie Belmans

    2006-01-01

    A new nonlinear variable structure excitation controller is proposed. Its design combines the differential geometry theory and the variable structure controlling theory. The mathematical model in the form of "an affine nonlinear system" is set up for the control of a large-scale power system. The static and dynamic performances of the nonlinear variable structure controller are simulated. The response of system with the controller proposed is compared to that of the nonlinear optimal controller when the system is subjected to a variety of disturbances. Simulation results show that the nonlinear variable structure excitation controller gives more satisfactorily static and dynamic performance and better robustness.

  3. Selection an Optimal Control Channel for STATCOM-Based Stabilizers to Damp Inter-Area Oscillation

    Directory of Open Access Journals (Sweden)

    A. Samanfar

    2014-01-01

    Full Text Available In static synchronous compensator (STATCOM a controllable AC voltage is generated by a voltage-source converter. There are two control channels for controlling of magnitude and phase of the voltage. When these devices are used for damping inter-are oscillations in multi-machine power systems, a damping stabilizer can be applied for both channels. In this paper, a method by quadratic mathematical programming has been presented to design of the damping stabilizer. By this method, the effect of the stabilizer in both control channels of the STATCOM on damping of inter-area oscillations has been assessed. Obtained results on a 2-area 4-machine power system shows that a STATCOM-based stabilizer in the phase control channel is more effective for damping inter-area oscillations than that of the magnitude control channel.

  4. A stability analysis method for the fuzzy controller and its application

    International Nuclear Information System (INIS)

    A method is proposed to analyze the stability of a fuzzy controller and the method is applied to a fuzzy controller developed in this work to automatically control the steam generator water level in the pressurized water reactor (PWR). The stability analysis method is devised from the relationships between the fuzzy controller and the conventional PI (Proportional and Integral) controller. The relationships are derived from the theoretical analysis and modeling of the widely used fuzzy controller having two inputs (Error, Rate) and one output with triangular type membership functions. In addition, an analyzable 9-Rule fuzzy controller is designed and computer-simulated for the automatic control of the steam generator water level in the PWR to employ the developed stability analysis method. This study shows that the stability analysis method based on the comparison of the equivalent PI gain ranges of the fuzzy controller with that of a linear PI controller provides very meaningful ideas for the design of stable fuzzy controller through the computer simulations. Therefore, the method suggested in this work can be used in a confirmatory process to check the stability of a fuzzy controller designed with two inputs (error, rate) and also the method would be used as an useful guidance to efficiently design and tune the fuzzy controller

  5. Skeletal Stability after Large Mandibular Advancement (> 10 mm with Bilateral Sagittal Split Osteotomy and Skeletal Elastic Intermaxillary Fixation

    Directory of Open Access Journals (Sweden)

    Kristoffer Schwartz

    2016-06-01

    Full Text Available Objectives: The aim of the present study was to assess the skeletal stability after large mandibular advancement (> 10 mm with bilateral sagittal split osteotomy and skeletal elastic intermaxillary fixation and to correlate the skeletal stability with the vertical facial type. Material and Methods: A total of 33 consecutive patients underwent bimaxillary surgery to correct skeletal Class II malocclusion with a mandibular advancement (> 10 mm measured at B-point and postoperative skeletal elastic intermaxillary fixation for 16 weeks. Skeletal stability was evaluated using lateral cephalometric radiographs obtained preoperative (T1, 8 weeks postoperatively (T2, and 18 month postoperatively (T3. B-point and pogonion (Pog was used to measure the skeletal relapse and the mandibular plane angle (MP-angle was used to determine the vertical facial type. Results: The mean advancement from T1 to T2 were 11.6 mm and 13.5 mm at B-point and Pog, respectively. The mean skeletal relapse from T2 to T3 was -1.3 mm at B-point and -1.6 mm at Pog. The nineteen patients characterized as long facial types, showed the highest amount of skeletal relapse (-1.5 mm at B-point and -1.9 mm at Pog. Conclusions: The present study showed a limited amount of skeletal relapse in large mandibular advancement (> 10 mm with bilateral sagittal split osteotomy and skeletal elastic intermaxillary fixation. Bilateral sagittal split osteotomy in combination with skeletal intermaxillary fixation can therefore be an alternative to distraction osteogenesis in large mandibular advancements.

  6. Skeletal Stability after Large Mandibular Advancement (> 10 mm) with Bilateral Sagittal Split Osteotomy and Skeletal Elastic Intermaxillary Fixation

    Science.gov (United States)

    Rodrigo-Domingo, Maria; Jensen, Thomas

    2016-01-01

    ABSTRACT Objectives The aim of the present study was to assess the skeletal stability after large mandibular advancement (> 10 mm) with bilateral sagittal split osteotomy and skeletal elastic intermaxillary fixation and to correlate the skeletal stability with the vertical facial type. Material and Methods A total of 33 consecutive patients underwent bimaxillary surgery to correct skeletal Class II malocclusion with a mandibular advancement (> 10 mm) measured at B-point and postoperative skeletal elastic intermaxillary fixation for 16 weeks. Skeletal stability was evaluated using lateral cephalometric radiographs obtained preoperative (T1), 8 weeks postoperatively (T2), and 18 month postoperatively (T3). B-point and pogonion (Pog) was used to measure the skeletal relapse and the mandibular plane angle (MP-angle) was used to determine the vertical facial type. Results The mean advancement from T1 to T2 were 11.6 mm and 13.5 mm at B-point and Pog, respectively. The mean skeletal relapse from T2 to T3 was -1.3 mm at B-point and -1.6 mm at Pog. The nineteen patients characterized as long facial types, showed the highest amount of skeletal relapse (-1.5 mm at B-point and -1.9 mm at Pog). Conclusions The present study showed a limited amount of skeletal relapse in large mandibular advancement (> 10 mm) with bilateral sagittal split osteotomy and skeletal elastic intermaxillary fixation. Bilateral sagittal split osteotomy in combination with skeletal intermaxillary fixation can therefore be an alternative to distraction osteogenesis in large mandibular advancements. PMID:27489609

  7. PI Stabilization for Congestion Control of AQM Routers with Tuning Parameter Optimization

    Directory of Open Access Journals (Sweden)

    S. Chebli

    2016-09-01

    Full Text Available In this paper, we consider the problem of stabilizing network using a new proportional- integral (PI based congestion controller in active queue management (AQM router; with appropriate model approximation in the first order delay systems, we seek a stability region of the controller by using the Hermite- Biehler theorem, which isapplicable to quasipolynomials. A Genetic Algorithm technique is employed to derive optimal or near optimal PI controller parameters.

  8. Comparison of model reference and map based control method for vehicle stability enhancement

    NARCIS (Netherlands)

    Baek, S.; Son, M.; Song, J.; Boo, K.; Kim, H.

    2012-01-01

    A map based controller method to improve a vehicle lateral stability is proposed in this study and compared with the conventional method, a model referenced controller. A model referenced controller to determine compensated yaw moment uses the sliding mode method, but the proposed map based controll

  9. Computational Methods for Dynamic Stability and Control Derivatives

    Science.gov (United States)

    Green, Lawrence L.; Spence, Angela M.; Murphy, Patrick C.

    2004-01-01

    Force and moment measurements from an F-16XL during forced pitch oscillation tests result in dynamic stability derivatives, which are measured in combinations. Initial computational simulations of the motions and combined derivatives are attempted via a low-order, time-dependent panel method computational fluid dynamics code. The code dynamics are shown to be highly questionable for this application and the chosen configuration. However, three methods to computationally separate such combined dynamic stability derivatives are proposed. One of the separation techniques is demonstrated on the measured forced pitch oscillation data. Extensions of the separation techniques to yawing and rolling motions are discussed. In addition, the possibility of considering the angles of attack and sideslip state vector elements as distributed quantities, rather than point quantities, is introduced.

  10. Stability analysis and μ-synthesis control of brake systems

    OpenAIRE

    Lignon, Sylvain; Sinou, Jean-Jacques; Jezequel, Louis

    2006-01-01

    The concept of friction-induced brake vibrations, commonly known as judder, is investigated. Judder vibration is based on the class of geometrically induced or kinematic constraint instability. After presenting the modal coupling mechanism and the associated dynamic model, a stability analysis as well as a sensitivity analysis have been conducted in order to identify physical parameters for a brake design avoiding friction-induced judder instability. Next, in order to reduce the size of the i...

  11. Stability analysis and \\mu-synthesis control of brake systems

    OpenAIRE

    Lignon, Sylvain; Sinou, Jean-Jacques; Jezequel, Louis

    2008-01-01

    The concept of friction-induced brake vibrations, commonly known as judder, is investigated. Judder vibration is based on the class of geometrically induced or kinematic constraint instability. After presenting the modal coupling mechanism and the associated dynamic model, a stability analysis as well as a sensitivity analysis have been conducted in order to identify physical parameters for a brake design avoiding friction-induced judder instability. Next, in order to reduce the size of the i...

  12. Advanced modelling, monitoring, and process control of bioconversion systems

    Science.gov (United States)

    Schmitt, Elliott C.

    Production of fuels and chemicals from lignocellulosic biomass is an increasingly important area of research and industrialization throughout the world. In order to be competitive with fossil-based fuels and chemicals, maintaining cost-effectiveness is critical. Advanced process control (APC) and optimization methods could significantly reduce operating costs in the biorefining industry. Two reasons APC has previously proven challenging to implement for bioprocesses include: lack of suitable online sensor technology of key system components, and strongly nonlinear first principal models required to predict bioconversion behavior. To overcome these challenges batch fermentations with the acetogen Moorella thermoacetica were monitored with Raman spectroscopy for the conversion of real lignocellulosic hydrolysates and a kinetic model for the conversion of synthetic sugars was developed. Raman spectroscopy was shown to be effective in monitoring the fermentation of sugarcane bagasse and sugarcane straw hydrolysate, where univariate models predicted acetate concentrations with a root mean square error of prediction (RMSEP) of 1.9 and 1.0 g L-1 for bagasse and straw, respectively. Multivariate partial least squares (PLS) models were employed to predict acetate, xylose, glucose, and total sugar concentrations for both hydrolysate fermentations. The PLS models were more robust than univariate models, and yielded a percent error of approximately 5% for both sugarcane bagasse and sugarcane straw. In addition, a screening technique was discussed for improving Raman spectra of hydrolysate samples prior to collecting fermentation data. Furthermore, a mechanistic model was developed to predict batch fermentation of synthetic glucose, xylose, and a mixture of the two sugars to acetate. The models accurately described the bioconversion process with an RMSEP of approximately 1 g L-1 for each model and provided insights into how kinetic parameters changed during dual substrate

  13. Development of numerical procedure for thermal hydraulic design of nuclear reactors with advanced two-fluid model (1). Improvement of numerical stability of advanced two-fluid model

    International Nuclear Information System (INIS)

    Two-fluid model is still useful to simulate two-phase flow in large domain such as rod bundles. However, two-fluid model include a lot of constitutive equations, and the two-fluid model has problems that the results of analyses depend on accuracy of constitutive equations. To solve these problems, we have been developing an advanced two-fluid model. In this model, an interface tracking method is combined with the two-fluid model to predict large interface structure behavior without any constitutive equations, and constitutive equations to evaluate the effects of small bubbles or droplets are only required. In this study, we modified the advanced two-fluid model to improve the stability of the numerical simulation and reduce the computational time. In this paper, we describe the modification performed in this study and the numerical results of two-phase flow in various flow conditions are shown. (author)

  14. Impulsive control of stochastic system under the sense of stochastic asymptotical stability

    Institute of Scientific and Technical Information of China (English)

    Niu Yu-Jun; Ma Ge

    2010-01-01

    This paper studies the stochastic asymptotical stability of stochastic impulsive differential equations,and establishes a comparison theory to ensure the trivial solution's stochastic asymptotical stability.From the comparison theory,it can find out whether the stochastic impulsive differential system is stable just by studying the stability of a deterimpulsive control method,and numerical simulations are employed to verify the feasibility of this method.

  15. Global exponential stability of recurrent neural networks for synthesizing linear feedback control systems via pole assignment.

    Science.gov (United States)

    Zhang, Yunong; Wang, Jun

    2002-01-01

    Global exponential stability is the most desirable stability property of recurrent neural networks. The paper presents new results for recurrent neural networks applied to online computation of feedback gains of linear time-invariant multivariable systems via pole assignment. The theoretical analysis focuses on the global exponential stability, convergence rates, and selection of design parameters. The theoretical results are further substantiated by simulation results conducted for synthesizing linear feedback control systems with different specifications and design requirements. PMID:18244461

  16. Stability condition of FAST TCP in high speed network Oil the basis of control theory

    Institute of Scientific and Technical Information of China (English)

    Zhao Fuzhe; Zhou Jianzhong; Luo Zhimeng; Xiao Yang

    2008-01-01

    Considering the instability of data transferred existing in high speed network.a near method is proposed for improving the stability using control theory.Under this method,the mathematical model of such a network is established.Stability condition is derived from the mathematical model.Several sivaulation experiments are performed.The results show that the method can increase the stability of data transferred in terms of the congestion window,queue size,and sending rate of the source.

  17. Control frame for synchronous stability of interconnected power systems in deregulated environments

    OpenAIRE

    Ni, Y.; Poon, KKY; H. Liu; Lan, Z.; Zhu, H; L. Zhu

    2006-01-01

    Power system restructuring brings about new challenges to power system stability, especially the transient stability (TS) and small-signal stability (SS) of interconnected large-scale power systems under large and cascaded disturbances. This is because of the need to yield more economic benefits in deregulated environments. In order to improve interconnected power system TS and SS in deregulated environments, the development of an effective global control frame is very important. In this pape...

  18. Robust stabilizing first-order controllers for a class of time delay systems.

    Science.gov (United States)

    Saadaoui, Karim; Testouri, Sana; Benrejeb, Mohamed

    2010-07-01

    In this paper, stabilizing regions of a first-order controller for an all poles system with time delay are computed via parametric methods. First, the admissible ranges of one of the controller's parameters are obtained. Then, for a fixed value of this parameter, stabilizing regions in the remaining two parameters are determined using the D-decomposition method. Phase and gain margin specifications are then included in the design. Finally, robust stabilizing first-order controllers are determined for uncertain plants with an interval type uncertainty in the coefficients. Examples are given to illustrate the effectiveness of the proposed method.

  19. Stability Analysis of Predator-Prey System with Fuzzy Impulsive Control

    Directory of Open Access Journals (Sweden)

    Yuangan Wang

    2012-01-01

    Full Text Available Having attracted much attention in the past few years, predator-prey system provides a good mathematical model to present the correlation between predators and preys. This paper focuses on the robust stability of Lotka-Volterra predator-prey system with the fuzzy impulsive control model, and Takagi-Sugeno (T-S fuzzy impulsive control model as well. Via the T-S model and the Lyapunov method, the controlling conditions of the asymptotical stability and exponential stability are established. Furthermore, the numerical simulation for the Lotka-Volterra predator-prey system with impulsive effects verifies the effectiveness of the proposed methods.

  20. DESIGN OF A NEW INTERPOLATED CONTROLLER FOR STABILIZATION OF A SET OF INTERPOLATED PLANTS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Stabilization of a plant with variable operating conditions was considered. The plant is assumed to lie in a set of interpolated models composed of all interpolations generated between certain sets of proper stable coprime factorizations of transfer functions of two representative models that are defined at two representative operating points. An interpolated controller that is linear interpolation of coprime factorizations of two stabilizing controllers for the two representative models is designed to stabilize this set of interpolated models. Design of such an interpolated controller was converted to a feasibility problem constrained by several LMIs and a BMI, and a two-step iteration algorithm was employed to solve it.

  1. Spacecraft Stabilization and Control for Capture of Non-Cooperative Space Objects

    Science.gov (United States)

    Joshi, Suresh; Kelkar, Atul G.

    2014-01-01

    This paper addresses stabilization and control issues in autonomous capture and manipulation of non-cooperative space objects such as asteroids, space debris, and orbital spacecraft in need of servicing. Such objects are characterized by unknown mass-inertia properties, unknown rotational motion, and irregular shapes, which makes it a challenging control problem. The problem is further compounded by the presence of inherent nonlinearities, signi cant elastic modes with low damping, and parameter uncertainties in the spacecraft. Robust dissipativity-based control laws are presented and are shown to provide global asymptotic stability in spite of model uncertainties and nonlinearities. It is shown that robust stabilization can be accomplished via model-independent dissipativity-based controllers using thrusters alone, while stabilization with attitude and position control can be accomplished using thrusters and torque actuators.

  2. Recent Advances in Understanding Integrative Control of Potassium Homeostasis

    Science.gov (United States)

    Youn, Jang H.; McDonough, Alicia A.

    2016-01-01

    The potassium homeostatic system is very tightly regulated. Recent studies have shed light on the sensing and molecular mechanisms responsible for this tight control. In addition to classic feedback regulation mediated by a rise in extracellular fluid (ECF) [K+], there is evidence for a feedforward mechanism: Dietary K+ intake is sensed in the gut, and an unidentified gut factor is activated to stimulate renal K+ excretion. This pathway may explain renal and extrarenal responses to altered K+ intake that occur independently of changes in ECF [K+]. Mechanisms for conserving ECF K+ during fasting or K+ deprivation have been described: Kidney NADPH oxidase activation initiates a cascade that provokes the retraction of K+ channels from the cell membrane, and muscle becomes resistant to insulin stimulation of cellular K+ uptake. How these mechanisms are triggered by K+ deprivation remains unclear. Cellular AMP kinase–dependent protein kinase activity provokes the acute transfer of K+ from the ECF to the ICF, which may be important in exercise or ischemia. These recent advances may shed light on the beneficial effects of a high-K+ diet for the cardiovascular system. PMID:18759636

  3. Advanced process control with design-based metrology

    Science.gov (United States)

    Yang, Hyunjo; Kim, Jungchan; Hong, Jongkyun; Yim, Donggyu; Kim, Jinwoong; Hasebe, Toshiaki; Yamamoto, Masahiro

    2007-03-01

    K1 factor for development and mass-production of memory devices has been decreased down to below 0.30 in recent years. Process technology has responded with extreme resolution enhancement technologies (RET) and much more complex OPC technologies than before. ArF immersion lithography is expected to remain the major patterning technology through under 35 nm node, where the degree of process difficulties and the sensitivity to process variations grow even higher. So, Design for manufacturing (DFM) is proposed to lower the degree of process difficulties and advanced process control (APC) is required to reduce the process variations. However, both DFM and APC need much feed-back from the wafer side such as hot spot inspection results and total CDU measurements at the lot, wafer, field and die level. In this work, we discuss a new design based metrology which can compare SEM image with CAD data and measure the whole CD deviations from the original layouts in a full die. It can provide the full information of hot spots and the whole CD distribution diagram of various transistors in peripheral regions as well as cell layout. So, it is possible to analyze the root cause of the CD distribution of some specific transistors or cell layout, such as OPC error, mask CDU, lens aberrations or etch process variation and so on. The applications of this new inspection tool will be introduced and APC using the analysis result will be presented in detail.

  4. 3. IFAC workshop: advances in automotive control. Vol. 1. Preprints

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    As the subject indicates, the aim of this workshop will be to discuss the latest advances related to motor vehicles, but also, and more generally, to exchange ideas between academic partners, car-manufacturers and subcontractors. The programme shows that a special effort has been made in this respect. No doubt plenary lectures are of great importance and the thematic sessions in the different sectors are the essence of such workshops; however, the discussions between experts in the different fields, the meetings between people from industry, universities and public or private laboratories, as well as the resulting exchange of ideas, are at least as important. Research is often criticized for providing merely theoretical results and for the insufficient number of its applications. But the motor vehicle offers a wide field of applications in which we can validate all techniques, tools and methods. This allows us to be involved in all the areas of fundamental research, in all the different possible approaches from fundamental research to technology transfer, and to observe the actual effects of our results. The increase in road traffic was a major problem of the past XXth century. It is clear that one the challenges of the XXIst century will be improve driving safety and comfort. The different work sessions concerning more control, driveline modelling, vehicle dynamics, electronic architecture, intelligent components, engine control, engine modelling, the modelling of combustion and turbocharging, diagnostics and subsystems. The quality of the papers and the diversity of their origins clearly shows the interest that we all take in this key sector of our research and industry. (orig.)

  5. Advanced Grid-Friendly Controls Demonstration Project for Utility-Scale PV Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Neill, Barbara [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-01-21

    A typical photovoltaic (PV) power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. The availability and dissemination of actual test data showing the viability of advanced utility-scale PV controls among all industry stakeholders can leverage PV's value from being simply an energy resource to providing additional ancillary services that range from variability smoothing and frequency regulation to power quality. Strategically partnering with a selected utility and/or PV power plant operator is a key condition for a successful demonstration project. The U.S. Department of Energy's (DOE's) Solar Energy Technologies Office selected the National Renewable Energy Laboratory (NREL) to be a principal investigator in a two-year project with goals to (1) identify a potential partner(s), (2) develop a detailed scope of work and test plan for a field project to demonstrate the gird-friendly capabilities of utility-scale PV power plants, (3) facilitate conducting actual demonstration tests, and (4) disseminate test results among industry stakeholders via a joint NREL/DOE publication and participation in relevant technical conferences. The project implementation took place in FY 2014 and FY 2015. In FY14, NREL established collaborations with AES and First Solar Electric, LLC, to conduct demonstration testing on their utility-scale PV power plants in Puerto Rico and Texas, respectively, and developed test plans for each partner. Both Puerto Rico Electric Power Authority and the Electric Reliability Council of Texas expressed interest in this project because of the importance of such advanced controls for the reliable operation of their power systems under high penetration levels of variable renewable generation. During FY15, testing was completed on both plants, and a large amount of test data was produced and analyzed that demonstrates the ability of

  6. Stabilization

    Directory of Open Access Journals (Sweden)

    Muhammad H. Al-Malack

    2016-07-01

    Full Text Available Fuel oil flyash (FFA produced in power and water desalination plants firing crude oils in the Kingdom of Saudi Arabia is being disposed in landfills, which increases the burden on the environment, therefore, FFA utilization must be encouraged. In the current research, the effect of adding FFA on the engineering properties of two indigenous soils, namely sand and marl, was investigated. FFA was added at concentrations of 5%, 10% and 15% to both soils with and without the addition of Portland cement. Mixtures of the stabilized soils were thoroughly evaluated using compaction, California Bearing Ratio (CBR, unconfined compressive strength (USC and durability tests. Results of these tests indicated that stabilized sand mixtures could not attain the ACI strength requirements. However, marl was found to satisfy the ACI strength requirement when only 5% of FFA was added together with 5% of cement. When the FFA was increased to 10% and 15%, the mixture’s strength was found to decrease to values below the ACI requirements. Results of the Toxicity Characteristics Leaching Procedure (TCLP, which was performed on samples that passed the ACI requirements, indicated that FFA must be cautiously used in soil stabilization.

  7. The Stability Analysis of Multimedia Playout Synchronization Using Buffer Level Control

    Institute of Scientific and Technical Information of China (English)

    CHEN Bin; ZHU Xiang-Hua

    2004-01-01

    From the viewpoint of Cybernetics, multimedia playout synchronization system is a closed loop control system. The paper analyses the stability of a typical buffer-oriented playout synchronization model[1] with Routh criterion. The sufficient and necessary condition of system stability is obtained. The restriction relationship between two important system parameters: synchronization adaptation phase L and smoothing factor а is also given.

  8. On the Feasibility of Stabilizing Parametric Roll with Active Bifurcation Control

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Blanke, Mogens

    2007-01-01

    to dynamically modify the instability region where parametric roll can occur. It is shown how a control strategy for roll stabilization could be modi…ed to change a bifurcation in roll motion and stabilize the motion, even after parametric resonance has started. The paper addresses issues of achievable...

  9. Stability and boundedness in terms of two measures for nonlinear impulsive control systems

    Institute of Scientific and Technical Information of China (English)

    Qiang XI

    2009-01-01

    In this paper we study stability and boundedness in terms of two measures for impulsive control systems. By using variational Lyapunov method, a new variational comparison principle and some criteria on stability and boundedness are obtained. An example is presented to illustrate the efficiency of proposed result.

  10. Impacts of P-f & Q-V Droop Control on MicroGrids Transient Stability

    Science.gov (United States)

    Zhao-xia, Xiao; Hong-wei, Fang

    Impacts of P-f & Q-V droop control on MicroGrid transient stability was investigated with a wind unit of asynchronous generator in the MicroGrid. The system frequency stability was explored when the motor load starts and its load power changes, and faults of different types and different locations occurs. The simulations were done by PSCAD/EMTDC.

  11. Power Control Technique for Efficient Call Admission Control in Advanced Wirless Networks

    Directory of Open Access Journals (Sweden)

    Ch. Sreenivasa Rao

    2012-06-01

    Full Text Available In 4G networks, call admission control techniques have been proposed to provide Quality of Service (QoS in a network by restricting the access to network resources. Power control is essential in call admission control in order to provide fair access to all users, improve battery lifetime and system performance. But the existing call admission control algorithms rarely consider the power controlling techniques in the handoff process for different traffic classes. In this paper, we propose to develop a power controlled call admission control scheme for handoff in the advanced wireless networks. The incoming call measures the initial interference on it and then the base station starts transmitting the packets to the new call. The new call is rejected when the interference reaches a threshold value.Whenever an existing call meets the power constraint, the transmit power is decremented based on thetraffic class and incoming call obtains this information by monitoring the interference received on it. Theconvergence of the power control algorithm is checked and the power levels of all incoming calls areadjusted. From our simulation results we prove that this power control technique provides efficienthandoff in the 4G networks by increasing the throughput and reducing the delay of the existing users.

  12. Unified stabilizing controller synthesis approach for discrete-time intelligent systems with time delays by dynamic output feedback

    Institute of Scientific and Technical Information of China (English)

    LIU MeiQin

    2007-01-01

    A novel model, termed the standard neural network model (SNNM), is advanced to describe some delayed (or non-delayed) discrete-time intelligent systems composed of neural networks and Takagi and Sugeno (T-S) fuzzy models. The SNNM is composed of a discrete-time linear dynamic system and a bounded static nonlinear operator. Based on the global asymptotic stability analysis of the SNNMs, linear and nonlinear dynamic output feedback controllers are designed for the SNNMs to stabilize the closed-loop systems, respectively. The control design equations are shown to be a set of linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms to determine the control signals. Most neural-network-based (or fuzzy) discrete-time intelligent systems with time delays or without time delays can be transformed into the SNNMs for controller synthesis in a unified way. Three application examples show that the SNNMs not only make controller synthesis of neural-network-based (or fuzzy) discrete-time intelligent systems much easier, but also provide a new approach to the synthesis of the controllers for the other type of nonlinear systems.

  13. Static stability and control effectiveness of a parametric launch vehicle

    Science.gov (United States)

    Ellis, R. R.; Gamble, M.

    1972-01-01

    An investigation is reported to determine the static aerodynamic characteristics of a space shuttle parametric launch configuration. The orbiter control surfaces were deflected to obtain the control effectiveness for use in launch vehicle control studies. Experimental data were obtained for Mach number from 0.6 to 4.96, angles of attack from minus 10 to plus 10 degrees and angles of sideslip from minus six to six degrees at zero degrees angle of attack.

  14. Attitude Stabilization Control of a Quadrotor UAV by Using Backstepping Approach

    Directory of Open Access Journals (Sweden)

    Xing Huo

    2014-01-01

    Full Text Available The modeling and attitude stabilization control problems of a four-rotor vertical takeoff and landing unmanned air vehicle (UAV known as the quadrotor are investigated. The quadrotor’s attitude is represented by the unit quaternion rather than Euler angles to avoid singularity problem. Taking dynamical behavior of motors into consideration and ignoring aerodynamic effect, a nonlinear controller is developed to stabilize the attitude. The control design is accomplished by using backstepping control technique. The proposed control law is based on the compensation for the Coriolis and gyroscope torques. Applying Lyapunov stability analysis proves that the closed-loop attitude system is asymptotic stable. Moreover, the controller can guarantee that all the states of the system are uniformly ultimately bounded in the presence of external disturbance torque. The effectiveness of the proposed control approach is analytically authenticated and also validated via simulation study.

  15. Optimization of linear parametric circuits by the control of stability

    Directory of Open Access Journals (Sweden)

    Yu. I. Shapovalov

    2013-07-01

    Full Text Available Introduction. A brief description of the symbolic frequency method for linear parametric circuit analysis is adduced. In particular it comes to parametric transfer functions and assessment of asymptotic stability of such circuits. The formulation of optimization task. The objective function formation is done via two functions - the function of goal defined by desirable circuit characteristics (goal of optimization and function characteristics of circuit defined by the selected values of the varied parameters during optimization of electrical circuit characteristics. The coincidence degree of these two functions is objective function which is formed on their basis by the chosen method. The procedure of optimization. The solution of optimization task is determining the values с0* and m* that provide minimum value of objective function, satisfy the condition of circuit stability and conditions of physical parametric element realizability Example. There is example of single-circuit parametric amplifier optimization using the objective function based on the calculation of parametric circuit transfer function with a symbolic representation of the parametric capacity parameters. Conclusions. Frequency symbolic analysis method allows solving optimization task of parametric linear circuits designing in the frequency domain based on use of the frequency symbolic transfer functions which are approximated by trigonometric polynomials of Fourier, particularly in complex form.

  16. Stability and accuracy control of k · p parameters

    Science.gov (United States)

    Bastos, Carlos M. O.; Sabino, Fernando P.; Faria Junior, Paulo E.; Campos, Tiago; Da Silva, Juarez L. F.; Sipahi, Guilherme M.

    2016-10-01

    The k · p method is a successful approach to obtain band structure, optical and transport properties of semiconductors and it depends on external parameters that are obtained either from experiments, tight binding or ab initio calculations. Despite the widespread use of the k · p method, a systematic analysis of the stability and the accuracy of its parameters is not usual in the literature. In this work, we report a theoretical framework to determine the k · p parameters from state-of-the-art hybrid density functional theory including spin-orbit coupling, providing a calculation where the gap and spin-orbit energy splitting are in agreement with the experimental values. The accuracy of the set of parameters is enhanced by fitting over several directions at once, minimizing the overall deviation from the original data. This strategy allows us to systematically evaluate the stability, preserving the accuracy of the parameters, providing a tool to determine optimal parameters for specific ranges around the Γ-point. To prove our concept, we investigate the zinc blende GaAs that shows results in excellent agreement with the most reliable data in the literature.

  17. Advanced Stellar Compass - Adeos II - Interface Control Document

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Kilsgaard, Søren;

    This document describes the Advanced Stellar Compass (ASC) and defines the interfaces between the instrument and the ADEOS II satellite. The ASC is a highly advanced and autonomous Stellar Reference Unit designed, developed and produced by the Space Instrumentation Group of the Department...... are given and to conclude we review the ASC specifications against the ADEOS II requirements and provide the verification matrix....

  18. The environmental control and life support system advanced automation project

    Science.gov (United States)

    Dewberry, Brandon S.

    1991-01-01

    The objective of the ECLSS Advanced Automation project includes reduction of the risk associated with the integration of new, beneficial software techniques. Demonstrations of this software to baseline engineering and test personnel will show the benefits of these techniques. The advanced software will be integrated into ground testing and ground support facilities, familiarizing its usage by key personnel.

  19. Advance Noise Control Fan II: Test Rig Fan Risk Management Study

    Science.gov (United States)

    Lucero, John

    2013-01-01

    Since 1995 the Advanced Noise Control Fan (ANCF) has significantly contributed to the advancement of the understanding of the physics of fan tonal noise generation. The 9'x15' WT has successfully tested multiple high speed fan designs over the last several decades. This advanced several tone noise reduction concepts to higher TRL and the validation of fan tone noise prediction codes.

  20. Symbolic Models for Nonlinear Control Systems Without Stability Assumptions

    NARCIS (Netherlands)

    Zamani, Majid; Pola, Giordano; Mazo, Manuel; Tabuada, Paulo

    2012-01-01

    Finite-state models of control systems were proposed by several researchers as a convenient mechanism to synthesize controllers enforcing complex specifications. Most techniques for the construction of such symbolic models have two main drawbacks: either they can only be applied to restrictive class

  1. Controllability and Stabilization of Bilinear and Semilinear Partial Differential Equations

    DEFF Research Database (Denmark)

    Krishnaswamy, Vijayaraghavan

    The topic of the thesis is the investigation of the question of controllability of weakly nonlinear partial differntial equations. The method is based on the Hilbert Uniqueness Method.......The topic of the thesis is the investigation of the question of controllability of weakly nonlinear partial differntial equations. The method is based on the Hilbert Uniqueness Method....

  2. Comparing the Power System Stabilizer Based on Sliding Mode Control with the Fuzzy Power System Stabilizer for Single Machine Infinite Bus System (SMIB

    Directory of Open Access Journals (Sweden)

    Atabak Kolabi

    2013-01-01

    Full Text Available This study compares the power system stabilizer based on sliding mode control with the fuzzy power system stabilizer for Single Machine Infinite Bus System (SMIB. Using the sliding mode control, a range is obtained for the changes in system parameters; and a stabilizer is designed to have a proper performance in this wide range. The purpose of designing the sliding mode stabilizer and fuzzy stabilizer is the increased stability and improving the dynamic response of the single machine system connected to the infinite bus in different working conditions. In this study, simulation results are compared in case of conventional PSS, no PSS, PSS based on sliding mode control and PSS based fuzzy logic. The results of simulations performed on the model of nonlinear system shows good performance of sliding mode controller and the Fuzzy controller. SMIB system was selected because of its simple structure, which is very useful in understanding the effects and implications of the PSS.

  3. Transient stability and voltage regulation enhancement via coordinated control of generator excitation and SVC

    Energy Technology Data Exchange (ETDEWEB)

    Cong, L.; Wang, Y. [Nanyang Technological University (Singapore). School of Electrical and Electronic Engineering; Hill, D.J. [City University of Hong Kong, Kowloon (China). Dept. of Electronic Engineering

    2005-02-01

    This paper focuses on designing the coordinated control of Static Var Compensator (SVC) and generator excitation to achieve both the transient stability and voltage regulation enhancement of power systems. With the help of feedback linearization technique and robust control theory, the nonlinearity of power system, the variation in the system structure, the parameter uncertainties of the plant and the interconnections between generator and SVC are taken into consideration. The resulting controller is capable of stabilizing the overall system and achieving simultaneous transient stability and voltage regulation enhancement under diverse operating conditions. Only local measurements are required. The performance of the controller is evaluated through numeric simulation. Simulation results show that both transient stability and voltage quality can be improved effectively regardless of the system operating points and fault locations. (author)

  4. Enhancement of transient stability by fuzzy logic-controlled SMES considering communication delay

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Mohd Hasan; Wu, Bin [Dept. of Electrical and Computer Engineering, Ryerson University, 245 Church Street, Toronto, Ontario (Canada); Park, Minwon; Yu, In-Keun [Dept. of Electrical Engineering, Changwon National University, Changwon, Gyeongnam 641-773 (Korea); Murata, Toshiaki; Tamura, Junji [Dept. of Electrical and Electronic Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507 (Japan)

    2009-09-15

    This paper presents a fuzzy logic-controlled superconducting magnetic energy storage (SMES) for the enhancement of transient stability in a multi-machine power system. The control scheme of SMES is based on a pulse width modulation (PWM) voltage source converter (VSC) and a two-quadrant DC-DC chopper using gate-turn-off (GTO) thyristor. Total kinetic energy deviation (TKED) of the synchronous generators is used as the fuzzy input for SMES control. Communication delays introduced in online calculation of the TKED are considered for the actual analysis of transient stability. Global positioning system (GPS) is proposed for the practical implementation of the calculation of the TKED. Simulation results of balanced fault at different points in a multi-machine power system show that the proposed fuzzy logic-controlled SMES is an effective device for transient stability enhancement of multi-machine power system. Moreover, the transient stability performance is effected by the communication delay. (author)

  5. Advances in Stability of Composite Airframe Structures Regarding Collapse, Robust Design and Dynamic Loading

    OpenAIRE

    Degenhardt, Richard

    2008-01-01

    European aircraft industry demands for reduced development and operating costs, by 20% and 50% in the short and long term, respectively. Structural weight reduction by exploitation of structural reserves in composite aerospace structures contributes to this aim, however, it requires accurate and experimentally validated stability analysis of real structures under realistic loading conditions. This paper presents new achievements from the area of computational and experimental stability resear...

  6. p-moment stability of stochastic impulsive differential equations and its application in impulsive control

    Institute of Scientific and Technical Information of China (English)

    XU Wei; NIU Yudun; RONG HaiWu; SUN ZhongKui

    2009-01-01

    The exponential p-moment stability of stochastic impulsive differential equations is addressed. A new theorem to ensure the p-moment stability is established for the trivial solution of the stochastic impul-sive differential system. As an application of the theorem proposed, the problem of controlling chaos of Lorenz system which is excited by parameter white-noise excitation is considered using impulsive control method. Finally, numerical simulation results are given to verify the feasibility of our approach.

  7. p-moment stability of stochastic impulsive differential equations and its application in impulsive control

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The exponential p-moment stability of stochastic impulsive differential equations is addressed. A new theorem to ensure the p-moment stability is established for the trivial solution of the stochastic impul- sive differential system. As an application of the theorem proposed, the problem of controlling chaos of Lorenz system which is excited by parameter white-noise excitation is considered using impulsive control method. Finally, numerical simulation results are given to verify the feasibility of our approach.

  8. Mode estimation and adaptive feedforward control for stabilization of a flexible gun tube

    Science.gov (United States)

    Vandegrift, Mark W.; DiRenzo, Michael T.

    1998-07-01

    In this paper we describe an approach for designing a pointing and stabilization system for an unbalanced, flexible gun. Our approach is based upon classical control techniques as well as system identification and adaptive feedforward techniques. Adaptive algorithms identify the flexible modes of the system and estimate the dynamics unbalance. This information is used to update the control law in order to improve the stabilization accuracy of the system.

  9. Dynamic system identification and modeling of a rotary wing UAV for stability and control analysis

    OpenAIRE

    McEwen, Matthew D.

    1998-01-01

    This thesis presents a method for the dynamic system identification and simulation model development of a small rotary wing UAV. Using aerodynamic parameterization and linear state-space modeling techniques, the Bergen Industrial UAV was modeled for computer simulation to analyze its inherent stability and control characteristics. The NPS designed JANRAD software was utilized to determine the stability and control derivatives used in the simulation model. The identification of the UAV dynamic...

  10. Control design and comprehensive stability analysis of acrobots based on Lyapunov functions

    Institute of Scientific and Technical Information of China (English)

    LAI Xu-zhi; WU Yun-xin; SHE Jin-hua; WU Min

    2005-01-01

    A design method for controllers and a comprehensive stability analysis for an acrobat based on Lyapunov functions are presented. Three control laws based on three Lyapunov functions are designed to increase the energy so as to move the acrobot into the unstable inverted equilibrium position, and solve the problem of posture and energy. The concept of a non-smooth Lyapunov function is employed to analyze the stability of the whole system. The validity of this strategy is demonstrated by simulations.

  11. Active Disturbance Rejection Fuzzy Controller for Roll Stabilization of Autonomous Underwater Vehicle under Wave Disturbance

    OpenAIRE

    Lin-Lin Wang; Hong-Jian Wang; Li-Xin Pan; Jun-Xi Guo

    2015-01-01

    Considering the case of autonomous underwater vehicle navigating with low speed near water surface, a new method for designing of roll motion controller is proposed in order to restrain wave disturbance effectively and improve roll stabilizing performance under different sea conditions. Active disturbance rejection fuzzy control is applied, which is based on nonlinear motion model of autonomous underwater vehicle and the principle of zero-speed fin stabilizer. Extended state observer is used...

  12. Method of Time-Delay Calculating and Correcting to Control Spin-Stabilized Satellite Synchronously

    Institute of Scientific and Technical Information of China (English)

    YangTianshe; LiJisheng; HuangYongxuan

    2005-01-01

    The key to control Spin-Stabilized Satellites Synchronously is to determine the models for calculating and correcting of time-delay at the different situations. Based on the principle of Synchronous-Control mode, the methods of determining the models of calculating and correcting of time-delay are proposed. The methods have been proved to be effective in real satellite control engineering.

  13. Global Output-Feedback Control for Simultaneous Tracking and Stabilization of Wheeled Mobile Robots

    Science.gov (United States)

    Chang, J.; Zhang, L. J.; Xue, D.

    A time-varying global output-feedback controller is presented that solves both tracking and stabilization for wheeled mobile robots simultaneously at the torque level. The controller synthesis is based on a coordinate transformation, Lyapunov direct method and backstepping technique. The performance of the proposed controller is demonstrated by simulation.

  14. Fairness and Stability Analysis of Congestion Control Schemes in Vehicular Ad-hoc Networks

    CERN Document Server

    Nasiriani, Neda; Krishnan, Hariharan

    2012-01-01

    Cooperative vehicle safety (CVS) systems operate based on broadcast of vehicle position and safety information to neighboring cars. The communication medium of CVS is a vehicular ad-hoc network. One of the main challenges in large scale deployment of CVS systems is the issue of scalability. To address the scalability problem, several congestion control methods have been proposed and are currently under field study. These algorithms adapt transmission rate and power based on network measures such as channel busy ratio. We examine two such algorithms and study their dynamic behavior in time and space to evaluate stability (in time) and fairness (in space) properties of these algorithms. We present stability conditions and evaluate stability and fairness of the algorithms through simulation experiments. Results show that there is a trade-off between fast convergence, temporal stability and spatial fairness. The proper ranges of parameters for achieving stability are presented for the discussed algorithms. Stabil...

  15. Variation Analysis and Stability Control for Measurement Process

    Institute of Scientific and Technical Information of China (English)

    ZHAO Feng-yu; MA Yi-zhong; Bo Bergman; XU Ji-chao

    2002-01-01

    Based on a two-section measuring method, a data collection sheet is formed. According to the data collected, the variation sources of a measurement process are analyzed and general guidelines for variation diagnosis are suggested. In our previous study, a method is presented to control the deviation of measurement system, but it is not sensitive to mean value variation and mean value drift. In this paper, a simplified data collection scheme via two-section measuring method is introduced to control both variation and center drift of measurement process. Based on this scheme, traditional SPC charts for variation control and EWMA chart for mean value drift are given.

  16. Controls on soil microbial community stability under climate change

    Directory of Open Access Journals (Sweden)

    Franciska T De Vries

    2013-09-01

    Full Text Available Soil microbial communities are intricately linked to ecosystem functioning because they play important roles in carbon and nitrogen cycling. Still, we know little about how soil microbial communities will be affected by disturbances expected with climate change. This is a significant gap in understanding, as the stability of microbial communities, defined as a community's ability to resist and recover from disturbances, likely has consequences for ecosystem function. Here, we propose a framework for predicting a community’s response to climate change, based on specific functional traits present in the community, the relative dominance of r- and K-strategists, and the soil environment. We hypothesize that the relative abundance of r- and K-strategists will inform about a community’s resistance and resilience to climate change associated disturbances. We also propose that other factors specific to soils, such as moisture content and the presence of plants, may enhance a community’s resilience. For example, recent evidence suggests microbial grazers, resource availability, and plant roots each impact on microbial community stability. We explore these hypotheses by offering three vignettes of published data that that we re-analyzed. Our results show that community measures of the relative abundance of r- and K-strategists, as well as environmental properties like resource availability and the abundance and diversity of higher trophic levels, can contribute to explaining the response of microbial community composition to climate change-related disturbances. However, further investigation and experimental validation is necessary to directly test these hypotheses across a wide range of soil ecosystems.

  17. Stabilization of prescribed values and periodic orbits with regular and pulse target oriented control

    Energy Technology Data Exchange (ETDEWEB)

    Braverman, E., E-mail: maelena@ucalgary.ca; Chan, B. [Department of Mathematics and Statistics, University of Calgary, 2500 University Drive N.W., Calgary AB T2N 1N4 (Canada)

    2014-03-15

    Investigating a method of chaos control for one-dimensional maps, where the intervention is proportional to the difference between a fixed value and a current state, we demonstrate that stabilization is possible in one of the two following cases: (1) for small values, the map is increasing and the slope of the line connecting the points on the line with the origin is decreasing; (2) the chaotic map is locally Lipschitz. Moreover, in the latter case we prove that any point of the map can be stabilized. In addition, we study pulse stabilization when the intervention occurs each m-th step and illustrate that stabilization is possible for the first type of maps. In the context of population dynamics, we notice that control with a positive target, even if stabilization is not achieved, leads to persistent solutions and prevents extinction in models which experience the Allee effect.

  18. Stabilization of prescribed values and periodic orbits with regular and pulse target oriented control

    International Nuclear Information System (INIS)

    Investigating a method of chaos control for one-dimensional maps, where the intervention is proportional to the difference between a fixed value and a current state, we demonstrate that stabilization is possible in one of the two following cases: (1) for small values, the map is increasing and the slope of the line connecting the points on the line with the origin is decreasing; (2) the chaotic map is locally Lipschitz. Moreover, in the latter case we prove that any point of the map can be stabilized. In addition, we study pulse stabilization when the intervention occurs each m-th step and illustrate that stabilization is possible for the first type of maps. In the context of population dynamics, we notice that control with a positive target, even if stabilization is not achieved, leads to persistent solutions and prevents extinction in models which experience the Allee effect

  19. Stabilization and Control Models of Systems With Hysteresis Nonlinearities

    Directory of Open Access Journals (Sweden)

    Mihail E. Semenov

    2012-05-01

    Full Text Available Mechanical and economic systems with hysteresis nonlinearities are studied in article. Dissipativity condition of inverted pendulum under the hysteresis control is obtained. The solution of the optimal production strategy problem was found where price has hysteresis behaviour.

  20. Transient Stability Augmentation by Programmed Power Angle Relationship using Unified Power Flow Controller

    OpenAIRE

    Padiyar, KR; Krishna, S

    2001-01-01

    Improvement in transient stability can be achieved by adequate system design and discrete supplementary controllers. The emerging Flexible AC Transmission System (FACTS) controllers are considered to be suitable for this purpose due to their speed and flexibility. The Unified Power Flow Controller (UPFC) is a voltage source converter based FACTS controller which injects a series voltage and a shunt current. In this paper, a control strategy is developed to achieve maximal improvement in trans...

  1. Hummingbirds control hovering flight by stabilizing visual motion

    OpenAIRE

    Goller, Benjamin; Altshuler, Douglas L.

    2014-01-01

    The avian brain has numerous specializations for navigation and processing visual information, but relatively little is known about how flying birds control their position in space. To study the role of vision in controlling hovering flight, we developed a virtual reality environment where visual patterns could be displayed to a freely flying hummingbird. Normal flight could only be performed if the visual background was completely stationary. In contrast, any motion in the background image c...

  2. Input-output stability for accelerometer control systems

    Science.gov (United States)

    Banks, H. T.; Morris, K. A.

    1991-01-01

    It is shown that, although accelerometer control systems are not well-posed in the sense of Salamon, a well-defined input-output relation exists. It is established that the output of an accelerometer control system can be described by the convolution of the input and a distribution. This distribution is Laplace transformable, and the Laplace transform of the distribution is the transfer function of the system.

  3. Dynamic postural control but not mechanical stability differs among those with and without chronic ankle instability.

    Science.gov (United States)

    Wikstrom, E A; Tillman, M D; Chmielewski, T L; Cauraugh, J H; Naugle, K E; Borsa, P A

    2010-02-01

    The purpose of this investigation was to compare dynamic postural control and mechanical ankle stability among patients with and without chronic ankle instability (CAI) and controls. Seventy-two subjects were divided equally into three groups: uninjured controls, people with previous ankle injury but without CAI, and people with CAI. Subjects completed a single-leg hop-stabilization task, and then had an anterior drawer test and lateral ankle radiograph performed bilaterally. The dynamic postural stability index was calculated from the ground reaction forces of the single-leg hop-stabilization task. Ankle joint stiffness (N/m) was measured with an instrumented arthrometer during the anterior drawer test, and fibula position was assessed from the radiographic image. Patients with previous ankle injuries but without CAI demonstrated higher frontal plane dynamic postural stability scores than both the uninjured control and CAI groups (Pankle joint stiffness (P=0.045) relative to the control group. The increased frontal plane dynamic postural control may represent a component of a coping mechanism that limits recurrent sprains and the development of CAI. Mechanical stability alterations are speculated to result from the initial ankle trauma. PMID:19422654

  4. Robust Feedback Controller for Exponential Stability of Nonlinear Systems with Mismatched Uncertainties

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The robust stabilization of nonlinear systems with mismatched uncertainties is investigated. Based on the stability of the nominal system, a new approach to synthesizing a class of continuous state feedback controllers for uncertain nonlinear dynamical systems is proposed. By such feedback controllers, the exponential stability of uncertain nonlinear dynamical systems can be guaranteed. The approach can give a clear insight to system analysis. An illustrative example is given to demonstrate the utilization of the approach developed. Simulation results show that the method presented is practical and effective.

  5. On the output-input stability property for multivariable nonlinear control systems

    OpenAIRE

    Liberzon, Daniel

    2002-01-01

    We study the recently introduced notion of output-input stability, which is a robust variant of the minimum-phase property for general smooth nonlinear control systems. The subject of this paper is developing the theory of output-input stability in the multi-input, multi-output setting. We show that output-input stability can be viewed as a combination of two system properties, one related to detectability and the other to left-invertibility. For systems affine in controls, we provide a neces...

  6. Electric Machine with Boosted Inductance to Stabilize Current Control

    Science.gov (United States)

    Abel, Steve

    2013-01-01

    High-powered motors typically have very low resistance and inductance (R and L) in their windings. This makes the pulse-width modulated (PWM) control of the current very difficult, especially when the bus voltage (V) is high. These R and L values are dictated by the motor size, torque (Kt), and back-emf (Kb) constants. These constants are in turn set by the voltage and the actuation torque-speed requirements. This problem is often addressed by placing inductive chokes within the controller. This approach is undesirable in that space is taken and heat is added to the controller. By keeping the same motor frame, reducing the wire size, and placing a correspondingly larger number of turns in each slot, the resistance, inductance, torque constant, and back-emf constant are all increased. The increased inductance aids the current control but ruins the Kt and Kb selections. If, however, a fraction of the turns is moved from their "correct slot" to an "incorrect slot," the increased R and L values are retained, but the Kt and Kb values are restored to the desired values. This approach assumes that increased resistance is acceptable to a degree. In effect, the heat allocated to the added inductance has been moved from the controller to the motor body, which in some cases is preferred.

  7. Robust D-Stability Controller Design for a Ducted Fan Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Xiao-lu Ren

    2014-01-01

    Full Text Available This paper deals with the aerodynamic modeling of a small ducted fan UAV and the problem of attitude stabilization when the parameter of the vehicle is varied. The main aerodynamic model of the hovering flight UAV is first presented. Then, an attitude control is designed from a linearization of the dynamic model around the hovering flight, which is based on the H∞ output feedback control theory with D-stability. Simulation results show that such method has good robustness to the attitude system. They can meet the requirements of attitude control and verify further the feasibility of such a control strategy.

  8. Nonlinear model predictive control with guaraneed stability based on pesudolinear neural networks

    Institute of Scientific and Technical Information of China (English)

    WANG Yongji; WANG Hong

    2004-01-01

    A nonlinear model predictive control problem based on pseudo-linear neural network (PNN) is discussed, in which the second order on-line optimization method is adopted. The recursive computation of Jacobian matrix is investigated. The stability of the closed loop model predictive control system is analyzed based on Lyapunov theory to obtain the sufficient condition for the asymptotical stability of the neural predictive control system. A simulation was carried out for an exothermic first-order reaction in a continuous stirred tank reactor. It is demonstrated that the proposed control strategy is applicable to some of nonlinear systems.

  9. Global stability and optimal control of an SIRS epidemic model on heterogeneous networks

    Science.gov (United States)

    Chen, Lijuan; Sun, Jitao

    2014-09-01

    In this paper, we consider an SIRS epidemic model with vaccination on heterogeneous networks. By constructing suitable Lyapunov functions, global stability of the disease-free equilibrium and the endemic equilibrium of the model is investigated. Also we firstly study an optimally controlled SIRS epidemic model on complex networks. We show that an optimal control exists for the control problem. Finally some examples are presented to show the global stability and the efficiency of this optimal control. These results can help in adopting pragmatic treatment upon diseases in structured populations.

  10. Spacecraft stability and control using new techniques for periodic and time-delayed systems

    Science.gov (United States)

    NAzari, Morad

    This dissertation addresses various problems in spacecraft stability and control using specialized theoretical and numerical techniques for time-periodic and time-delayed systems. First, the effects of energy dissipation are considered in the dual-spin spacecraft, where the damper masses in the platform (?) and the rotor (?) cause energy loss in the system. Floquet theory is employed to obtain stability charts for different relative spin rates of the subsystem [special characters omitted] with respect to the subsystem [special characters omitted]. Further, the stability and bifurcation of delayed feedback spin stabilization of a rigid spacecraft is investigated. The spin is stabilized about the principal axis of the intermediate moment of inertia using a simple delayed feedback control law. In particular, linear stability is analyzed via the exponential-polynomial characteristic equations and then the method of multiple scales is used to obtain the normal form of the Hopf bifurcation. Next, the dynamics of a rigid spacecraft with nonlinear delayed multi-actuator feedback control are studied, where a nonlinear feedback controller using an inverse dynamics approach is sought for the controlled system to have the desired linear delayed closed-loop dynamics (CLD). Later, three linear state feedback control strategies based on Chebyshev spectral collocation and the Lyapunov Floquet transformation (LFT) are explored for regulation control of linear periodic time delayed systems. First , a delayed feedback control law with discrete delay is implemented and the stability of the closed-loop response is investigated in the parameter space of available control gains using infinite-dimensional Floquet theory. Second, the delay differential equation (DDE) is discretized into a large set of ordinary differential equations (ODEs) using the Chebyshev spectral continuous time approximation (CSCTA) and delayed feedback with distributed delay is applied. The third strategy involves

  11. Advanced Sensors and Controls for Building Applications: Market Assessment and Potential R&D Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Brambley, M. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Haves, P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McDonald, S. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Torcellini, P. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hansen, D. [U.S. Dept. of Energy, Washington, D.C. (United States); Holmberg, D. R. [National Institute of Science and Technology, Gaithersburg, MD (United States); Roth, K. W. [TIAX, LLC, Cambridge, MA (United States)

    2005-04-01

    This document provides a market assessment of existing building sensors and controls and presents a range of technology pathways (R&D options) for pursuing advanced sensors and building control strategies.

  12. Recent advances in exploiting ionic liquids for biomolecules: Solubility, stability and applications.

    Science.gov (United States)

    Sivapragasam, Magaret; Moniruzzaman, Muhammad; Goto, Masahiro

    2016-08-01

    The technological utility of biomolecules (e.g. proteins, enzymes and DNA) can be significantly enhanced by combining them with ionic liquids (ILs) - potentially attractive "green" and "designer" solvents - rather than using in conventional organic solvents or water. In recent years, ILs have been used as solvents, cosolvents, and reagents for biocatalysis, biotransformation, protein preservation and stabilization, DNA solubilization and stabilization, and other biomolecule-based applications. Using ILs can dramatically enhance the structural and chemical stability of proteins, DNA, and enzymes. This article reviews the recent technological developments of ILs in protein-, enzyme-, and DNA-based applications. We discuss the different routes to increase biomolecule stability and activity in ILs, and the design of biomolecule-friendly ILs that can dissolve biomolecules with minimum alteration to their structure. This information will be helpful to design IL-based processes in biotechnology and the biological sciences that can serve as novel and selective processes for enzymatic reactions, protein and DNA stability, and other biomolecule-based applications. PMID:27312484

  13. Unobservable Planar Bimodal Linear Systems: Miniversal Deformations, Controllability and Stabilization

    CERN Document Server

    Ferrer, Josep; Pacha, Juan R; Peña, Marta

    2012-01-01

    We consider the set of bimodal linear systems consisting of two linear dynamics acting on each side of a given hyperplane, assuming continuity along the separating hyperplane. Focusing on the unobservable planar ones, we obtain a simple explicit characterization of controllability. Moreover, we apply the canonical forms of these systems depending on two state variables to obtain explicitly miniversal deformations, to illustrate bifurcation diagrams and to prove that the unobservable controllable systems are stabilizable. Preprint of an article submitted for consideration in IJBC \\copyright 2011 copyright World Scientific Publishing Company http://www.worldscinet.com/ijbc/

  14. A Nonlinear Excitation Controller Design Method for Terminal Voltage Regulation and Transient Stability Enhancement

    Science.gov (United States)

    Huang, Chongxin; Zhang, Kaifeng; Dai, Xianzhong; Zang, Qiang

    2014-06-01

    This paper proposes a cascade control method to design a nonlinear excitation controller to guarantee the terminal voltage regulation and the transient stability. Firstly, a nonlinear automatic voltage regulator (NAVR) in the inner loop is designed to control the terminal voltage exactly. Secondly, the generator model including the NAVR is transformed to be a reduced one. Subsequently, based on the reduced generator model, the nonlinear power system stabilizer in the external loop is designed to enhance the transient stability of the power systems. Furthermore, a coordination strategy is presented to improve the performances of the terminal voltage regulation in the steady state and the stability in the transient state. Finally, the proposed method is verified by numerous simulation results.

  15. Dynamic Event Tree advancements and control logic improvements

    Energy Technology Data Exchange (ETDEWEB)

    Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sen, Ramazan Sonat [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cogliati, Joshua Joseph [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The RAVEN code has been under development at the Idaho National Laboratory since 2012. Its main goal is to create a multi-purpose platform for the deploying of all the capabilities needed for Probabilistic Risk Assessment, uncertainty quantification, data mining analysis and optimization studies. RAVEN is currently equipped with three different sampling categories: Forward samplers (Monte Carlo, Latin Hyper Cube, Stratified, Grid Sampler, Factorials, etc.), Adaptive Samplers (Limit Surface search, Adaptive Polynomial Chaos, etc.) and Dynamic Event Tree (DET) samplers (Deterministic and Adaptive Dynamic Event Trees). The main subject of this document is to report the activities that have been done in order to: start the migration of the RAVEN/RELAP-7 control logic system into MOOSE, and develop advanced dynamic sampling capabilities based on the Dynamic Event Tree approach. In order to provide to all MOOSE-based applications a control logic capability, in this Fiscal Year an initial migration activity has been initiated, moving the control logic system, designed for RELAP-7 by the RAVEN team, into the MOOSE framework. In this document, a brief explanation of what has been done is going to be reported. The second and most important subject of this report is about the development of a Dynamic Event Tree (DET) sampler named “Hybrid Dynamic Event Tree” (HDET) and its Adaptive variant “Adaptive Hybrid Dynamic Event Tree” (AHDET). As other authors have already reported, among the different types of uncertainties, it is possible to discern two principle types: aleatory and epistemic uncertainties. The classical Dynamic Event Tree is in charge of treating the first class (aleatory) uncertainties; the dependence of the probabilistic risk assessment and analysis on the epistemic uncertainties are treated by an initial Monte Carlo sampling (MCDET). From each Monte Carlo sample, a DET analysis is run (in total, N trees). The Monte Carlo employs a pre-sampling of the

  16. Dynamic Event Tree advancements and control logic improvements

    International Nuclear Information System (INIS)

    The RAVEN code has been under development at the Idaho National Laboratory since 2012. Its main goal is to create a multi-purpose platform for the deploying of all the capabilities needed for Probabilistic Risk Assessment, uncertainty quantification, data mining analysis and optimization studies. RAVEN is currently equipped with three different sampling categories: Forward samplers (Monte Carlo, Latin Hyper Cube, Stratified, Grid Sampler, Factorials, etc.), Adaptive Samplers (Limit Surface search, Adaptive Polynomial Chaos, etc.) and Dynamic Event Tree (DET) samplers (Deterministic and Adaptive Dynamic Event Trees). The main subject of this document is to report the activities that have been done in order to: start the migration of the RAVEN/RELAP-7 control logic system into MOOSE, and develop advanced dynamic sampling capabilities based on the Dynamic Event Tree approach. In order to provide to all MOOSE-based applications a control logic capability, in this Fiscal Year an initial migration activity has been initiated, moving the control logic system, designed for RELAP-7 by the RAVEN team, into the MOOSE framework. In this document, a brief explanation of what has been done is going to be reported. The second and most important subject of this report is about the development of a Dynamic Event Tree (DET) sampler named 'Hybrid Dynamic Event Tree' (HDET) and its Adaptive variant 'Adaptive Hybrid Dynamic Event Tree' (AHDET). As other authors have already reported, among the different types of uncertainties, it is possible to discern two principle types: aleatory and epistemic uncertainties. The classical Dynamic Event Tree is in charge of treating the first class (aleatory) uncertainties; the dependence of the probabilistic risk assessment and analysis on the epistemic uncertainties are treated by an initial Monte Carlo sampling (MCDET). From each Monte Carlo sample, a DET analysis is run (in total, N trees). The Monte Carlo employs a pre

  17. Sexual Arousal and Self-Control: Results from a Preliminary Experimental Test of the Stability of Self-Control

    Science.gov (United States)

    Bouffard, Jeffrey; Kunzi, Tasha

    2012-01-01

    A central proposition of Gottfredson and Hirschi's (1990) General Theory of Crime is the relative stability of low self-control, however research on "self-control strength" suggests that it may vary across contexts. The current study examines these differing conceptions by randomly assigning participants to one of two sexual arousal conditions or…

  18. Unified Ideal Stability Limits for Advanced Tokamak and Spherical Torus Plasmas

    International Nuclear Information System (INIS)

    Ideal magnetohydrodynamic stability limits of shaped tokamak plasmas with high bootstrap fraction are systematically determined as a function of plasma aspect ratio. For plasmas with and without wall stabilization of external kink modes, the computed limits are well described by distinct and nearly invariant values of a normalized beta parameter utilizing the total magnetic field energy density inside the plasma. Stability limit data from the low aspect ratio National Spherical Torus Experiment is compared to these theoretical limits and indicates that ideal nonrotating plasma no-wall beta limits have been exceeded in regimes with sufficiently high cylindrical safety factor. These results could impact the choice of aspect ratio in future fusion power plants

  19. Inertially stabilized line-of-sight control system using a magnetic bearing with vernier gimbaling capacity

    Science.gov (United States)

    Lin, Zhuchong; Liu, Kun

    2014-11-01

    Line of sight stabilization and control system is widely used in pointing and stabilizing the line of sight of optical sensors. Multi-axis gimbals configurations are commonly used for isolating disturbance from the angular motion of the base where the stabilization platform is mounted. However, in the case of large payload, nonlinear friction and the bandwidth limit of the servo loop can greatly diminish the performance of the whole system. Magnetic actuators, because of their high force per mass capability and non-friction characteristic, are promising means of achieving high-accuracy stabilization. Nevertheless, the gap between magnetic actuators and the payload is very small, which limits the slewing range of the line of sight as well as the angular motion range of the base that can be isolated. A novel two-stage stabilization configuration is developed, which combines multi-axis gimbals configuration and magnetic actuators as well as both of their advantages. At the first stage, a multi-axis gimbals configuration is adopted to isolate the large angular motion of the base while at the second stage magnetic actuators are utilized to perform high-accuracy stabilization. A so-called "stabilizing inside and tracking outside" scheme is carried out to perform two-stage stabilization control. The advantage of this configuration compared with conventional configuration is analyzed through analytical method. Finally, the effectiveness of the design is investigated through simulation studies.

  20. Stability Control of Propeller Autonomous Underwater Vehicle Based on Combined Sections Method

    Directory of Open Access Journals (Sweden)

    Qi Duo

    2015-09-01

    Full Text Available Learning from the motion principle of quadrotor, a symmetric propeller AUV, which has small size and low velocity is designed. Compared with the AUV equipped with rudders, it has better maneuverability and manipulation at low velocity. According to the Newton-Euler method, the 6 DOF kinematic model and dynamic model of the propeller AUV are established. A stability controller that consists of 3 different PID controllers is designed. It makes the depth and attitude angle as trigger conditions, and the relevant controller is chosen in different moving process. The simulation experiments simulate ideal motion state and disturbed motion state, and experiments results show that the stability controller based on combined sections method can make the best of mature technology of PID, and meet the control requirements in different stages. It has a higher respond speed and accuracy, improving the stability of the propeller AUV under the disturbance of complex ocean currents.

  1. Robust Control Based on Feedback Linearization for Roll Stabilizing of Autonomous Underwater Vehicle Under Wave Disturbances

    Institute of Scientific and Technical Information of China (English)

    PAN Li-xin; JIN Hong-zhang; WANG Lin-lin

    2011-01-01

    In the case of Autonomous Underwater Vehicle (AUV) navigating with low speed near water surface, a new method for design of roll motion controller is proposed in order to restrain wave disturbance effectively and improve roll stabilizing performance. Robust control is applied, which is based on uncertain nonlinear horizontal motion model of AUV and the principle of zero speed fin stabilizer. Feedback linearization approach is used to transform the complex nonlinear system into a comparatively simple linear system. For parameter uncertainty of motion model, the controller is designed with mixed-sensitivity method based on H-infinity robust control theory. Simulation results show better robustness improved by this control method for roll stabilizing of AUV navigating near water surface.

  2. Analysis and improvement of digital control stability for master-slave manipulator system

    International Nuclear Information System (INIS)

    Some bilateral controls of master-slave system have been designed, which can realize high-fidelity telemanipulation as if the operator were manipulating the object directly. While usual robot systems are controlled by software-servo system using digital computer, little work has been published on design and analysis for digital control of these systems, which must consider time-delay of sensor signals and zero order hold effect of command signals on actuators. This paper presents a digital control analysis for single degree of freedom master-slave system including impedance models of both the human operator and the task object, which clarifies some index for the stability. The stability result shows a virtual master-slave system concepts, which improve the digital control stability. We first analyze a dynamic control method of master-slave system in discrete-time system for the stability problem, which can realize high-fidelity telemanipulation in the continuous-time. Secondly, using the results of the stability analysis, the robust control scheme for master-slave system is proposed, and the validity of this scheme is finally confirmed by the simulation. Consequently, it would be considered that any combination of master and slave modules with dynamic model of these manipulators is possible to construct the stable master-slave system. (author)

  3. Grid Monitoring and Advanced Control of Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Timbus, Adrian Vasile

    of controllers have been studied and compared. The possibility of using the information about grid variables into the control structure in order to improve the control of DPGS has also been investigated. As a consequence, improved behavior of resonant controller has been noticed if grid frequency information...... is forwarded to its internal model. Additionally, controllers such as dead beat and hysteresis controller improve their robustness to parameter mismatch if the identi ed value of grid impedance is passed to the controller. Moreover, several control strategies to provide exible active and reactive power control...

  4. Dynamic Imbalance Analysis and Stability Control of Galloping Gait for a Passive Quadruped Robot

    Directory of Open Access Journals (Sweden)

    Chunlei Wang

    2015-01-01

    Full Text Available Some imbalance and balance postures of a passive quadruped robot with a simplified mathematical model are studied. Through analyzing the influence of the touchdown angle of the rear leg on the posture of the trunk during the flight phase, the stability criterion is concluded: the closer are the two moments which are the zero time of the pitching angle and the peak time of the center of mass, the better is the stability of the trunk posture during the flight phase. Additionally, the validity of the stability criterion is verified for the cat, greyhound, lion, racehorse, basset hound, and giraffe. Furthermore, the stability criterion is also applicable when the center of the mass of body is shifted. Based on the stability criterion, the necessary and sufficient condition of the galloping stability for the quadruped robot is proposed to attain a controlled thrust. The control strategy is designed by an optimization dichotomy algorithm for seeking the zero point of the balance condition. Through the control results, it is demonstrated that the imbalance posture of the trunk could be stabilized by adjusting the stiffness of four legs.

  5. Dynamic Imbalance Analysis and Stability Control of Galloping Gait for a Passive Quadruped Robot.

    Science.gov (United States)

    Wang, Chunlei; Zhang, Ting; Wei, Xiaohui; Long, Yongjun; Wang, Shigang

    2015-01-01

    Some imbalance and balance postures of a passive quadruped robot with a simplified mathematical model are studied. Through analyzing the influence of the touchdown angle of the rear leg on the posture of the trunk during the flight phase, the stability criterion is concluded: the closer are the two moments which are the zero time of the pitching angle and the peak time of the center of mass, the better is the stability of the trunk posture during the flight phase. Additionally, the validity of the stability criterion is verified for the cat, greyhound, lion, racehorse, basset hound, and giraffe. Furthermore, the stability criterion is also applicable when the center of the mass of body is shifted. Based on the stability criterion, the necessary and sufficient condition of the galloping stability for the quadruped robot is proposed to attain a controlled thrust. The control strategy is designed by an optimization dichotomy algorithm for seeking the zero point of the balance condition. Through the control results, it is demonstrated that the imbalance posture of the trunk could be stabilized by adjusting the stiffness of four legs. PMID:27110095

  6. Single Stance Stability and Proprioceptive Control in Older Adults Living at Home: Gender and Age Differences

    Directory of Open Access Journals (Sweden)

    Dario Riva

    2013-01-01

    Full Text Available In developed countries, falls in older people represent a rising problem. As effective prevention should start before the risk becomes evident, an early predictor is needed. Single stance instability would appear as a major risk factor. Aims of the study were to describe single stance stability, its sensory components, and their correlation with age and gender. A random sample of 597 older adults (319 men, 278 women living at home, aged 65–84, was studied. Stability tests were performed with an electronic postural station. The single stance test showed the impairment of single stance stability in older individuals (75–84 yrs. The significant decline of stability in the older subjects may be explained by the impairment of proprioceptive control together with the decrease in compensatory visual stabilization and emergency responses. Younger subjects (65–74 yrs exhibited better, but still inadequate, proprioceptive control with compensatory visual stabilization. Gender differences appeared in older subjects: women were significantly less stable than men. The measurement of the sensory components of single stance stability could aid in the early detection of a decay in antigravity movements many years before the risk of falling becomes evident. Adequate proprioceptive control could mitigate the effects of all other risks of falling.

  7. Motion control of the satellite mounted robot arm which assures satellite attitude stability

    Science.gov (United States)

    Mitsushige, Oda

    When a robot arm is mounted on a satellite to perform some tasks, the satellite's attitude must be stabilized to retain the communication link and to generate electrical power from solar panels. It is not realistic to control the total system as one dynamic system, since the number of degrees of freedom becomes too large to be handled by state-of-the-art satellite mounted computers. This paper proposes a coordinated control between the satellite's attitude control system and the robot-arm control system. The robot-arm control system estimates the angular momentum of the planned robot-arm's motion. The satellite's attitude control system will compensate for the reaction by using feed-forward control. The robot-arm controller also manages the motion plan of the robot arm in order not to disturb the satellite's attitude stability.

  8. Model predictive control of HVDC power flow to improve transient stability in power systems

    OpenAIRE

    Phulpin, Yannick; Hazra, Jagabondhu; Ernst, Damien

    2011-01-01

    This paper addresses the problem of HVDC control using real-time information to avoid loss of synchronism phenomena in power systems. It proposes a discrete-time control strategy based on model predictive control, which solves at every time step an open-loop optimal-control problem using an A* event-tree search. Different optimisation criteria based on transient stability indices are compared. The paper presents simulations results for two benchmark systems with 9 and 24 buses, respectively, ...

  9. Composite-system-stability-methods applied to advanced shipboard electric-power systems. Doctoral thesis

    Energy Technology Data Exchange (ETDEWEB)

    Amy, J.V.

    1992-05-01

    Large increases in the complexity of shipboard electric loads as well as development of electric drive, integrated electric drive and pulsed power systems make manifest the present and future importance of naval electric power systems. The most crucial attribute of these systems is their ability to fulfill their function in the presence of large-signal perturbations. Fundamental differences between shipboard and commercial electric power systems make all but the most general nonlinear, large-signal stability analyses inappropriate for the design and assessment of naval electric power systems. The tightly coupled and compact nature of shipboard systems are best accommodated by composite system stability analyses. Composite system methods, based upon Lyapunov's direct method, require that each component's stability be represented by a Lyapunov function. A new Lyapunov function which is based upon co-energy is developed for 3-phase synchronous machines. This use of co-energy is generalizable to all electromechanical energy conversion devices. The co-energy-based Lyapunov function is implemented as a stability organ which generates waveforms at information terminals of a device object in the object oriented simulation environment of WAVESIM. Single generator simulation results are used to acquire a measure of the over sufficiency of the co-energy-based Lyapunov function.

  10. Effects of proprioceptive training program on core stability and center of gravity control in sprinters.

    Science.gov (United States)

    Romero-Franco, Natalia; Martínez-López, Emilio; Lomas-Vega, Rafael; Hita-Contreras, Fidel; Martínez-Amat, Antonio

    2012-08-01

    The purpose of this study was to determinate the effect of a 6-week specific-sprinter proprioceptive training program on core stability and gravity center control in sprinters. Thirty-three athletes (age = 21.82 ± 4.84 years, height = 1.76 ± 0.07 m, weight = 67.82 ± 08.04 kg, body mass index = 21.89 ± 2.37 kg · m(-2)) from sprint disciplines were divided into a control (n = 17) and experimental (n = 16) groups. A 30-minute proprioceptive training program was included in the experimental group training sessions, and it was performed for 6 weeks, 3 times each week. This program included 5 exercises with the BOSU and Swiss ball as unstable training tools that were designed to reproduce different moments of the technique of a sprint race. Stability with eyes open (EO) and eyes closed, postural stability, and gravity center control were assessed before and after the training program. Analyses of covariance (α = 0.05) revealed significant differences in stability in the medial-lateral plane with EO, gravity center control in the right direction and gravity center control in the back direction after the exercise intervention in the experimental athletes. Nevertheless, no other significant differences were demonstrated. A sprinter-specific proprioceptive training program provided postural stability with EO and gravity center control measures improvements, although it is not clear if the effect of training would transfer to the general population. PMID:21997455

  11. Enhancement of power system transient stability using a nonlinear coordinated excitation and TCPS controller

    Energy Technology Data Exchange (ETDEWEB)

    Hashmani, A.A.; Youyi Wang; Lie, T.T. [Nanyang Technological University (Singapore). School of EEE

    2002-03-01

    A robust nonlinear coordinated generator excitation and thyristor-controlled phase shifter (TCPS) controller is proposed to enhance the transient stability of a multimachine power system. To eliminate the nonlinearities and interconnections of the multimachine power system, a direct feedback linearization (DFL) compensator through the excitation loop is designed. Considering the effects of plant parametric uncertainties and remaining nonlinear interconnections, a robust decentralized generator excitation controller is proposed to ensure the stability of the DFL compensated system. Only the bounds of the generator parameters are necessary to be known in the design of the proposed controller, while the transmission network parameters, system operating points or the fault locations need not be known. Since the proposed controller can ensure the stability of large-scale power system within the whole operating region for all admissible parameters, the transient stability of the overall system can be enhanced significantly. Digital simulation studies were conducted on a three-machine power system to show the effectiveness of the proposed control scheme in enhancing the transient stability of the system regardless of the network parameters, operating points and fault locations. (Author)

  12. Effects of proprioceptive training program on core stability and center of gravity control in sprinters.

    Science.gov (United States)

    Romero-Franco, Natalia; Martínez-López, Emilio; Lomas-Vega, Rafael; Hita-Contreras, Fidel; Martínez-Amat, Antonio

    2012-08-01

    The purpose of this study was to determinate the effect of a 6-week specific-sprinter proprioceptive training program on core stability and gravity center control in sprinters. Thirty-three athletes (age = 21.82 ± 4.84 years, height = 1.76 ± 0.07 m, weight = 67.82 ± 08.04 kg, body mass index = 21.89 ± 2.37 kg · m(-2)) from sprint disciplines were divided into a control (n = 17) and experimental (n = 16) groups. A 30-minute proprioceptive training program was included in the experimental group training sessions, and it was performed for 6 weeks, 3 times each week. This program included 5 exercises with the BOSU and Swiss ball as unstable training tools that were designed to reproduce different moments of the technique of a sprint race. Stability with eyes open (EO) and eyes closed, postural stability, and gravity center control were assessed before and after the training program. Analyses of covariance (α = 0.05) revealed significant differences in stability in the medial-lateral plane with EO, gravity center control in the right direction and gravity center control in the back direction after the exercise intervention in the experimental athletes. Nevertheless, no other significant differences were demonstrated. A sprinter-specific proprioceptive training program provided postural stability with EO and gravity center control measures improvements, although it is not clear if the effect of training would transfer to the general population.

  13. Effects of electrolytes and surfactants on the morphology and stability of advanced silver nano-materials

    Energy Technology Data Exchange (ETDEWEB)

    Obaid, Abdullah Yousif; AL-Thabaiti, Shaeel Ahmed; El-Mossalamy, E.H. [Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21413 (Saudi Arabia); Hussain, Javed Ijaz [Nano-science Research Lab, Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi 110 025 (India); Khan, Zaheer, E-mail: drkhanchem@yahoo.co.in [Nano-science Research Lab, Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi 110 025 (India)

    2013-03-15

    Highlights: ► Stoichiometric ratio of S{sub 2}O{sub 3}{sup 2−} and Ag{sup +} ions are responsible to the formation of prefect transparent yellow colored silver sol. ► Higher S{sub 2}O{sub 3}{sup 2−} concentrations has damping effect. ► Head group of the surfactants and nature of the electrolytes have significant effect on the stability of silver nanoparticles. - Abstract: The impact of electrolytes, stabilizing and/or capping agents on morphology of colloidal silver nano-materials (AgNPs) has been studied spectroscopically. Sodium thiosulfate acts as reducing-, stabilizing- and damping-agents. Stoichiometric ratios of S{sub 2}O{sub 3}{sup 2−} and Ag{sup +} ions were responsible to the formation stable and prefect transparent dark yellow colored AgNPs. The S{sub 2}O{sub 3}{sup 2−}-stabilized AgNPs were significantly more stable in inorganic electrolytes (NaNO{sub 3}, Na{sub 2}SO{sub 4}, Na{sub 2}CO{sub 3} and KBr). S{sub 2}O{sub 3}{sup 2−} is adsorbed more strongly than the used other anions. The addition of cetyltrimethylammonium bromide (CTAB) and sodium dodecylsulfate (SDS) has significant effects on the absorbance of S{sub 2}O{sub 3}{sup 2−}-stabilized AgNPs which can be rationalized in terms of electrostatic attraction and repulsion between the adsorbed S{sub 2}O{sub 3}{sup 2−} ions on to the surface of AgNPs and cationic and/or anionic head groups of used surfactants, respectively. Transmission electron microscopy images suggest that AgNPs are polydispersed, spherical and exhibiting an interesting irregular morphology.

  14. Finite-time stabilization control for discontinuous time-delayed networks: New switching design.

    Science.gov (United States)

    Zhang, Ling-Ling; Huang, Li-Hong; Cai, Zuo-Wei

    2016-03-01

    This paper discusses the finite-time stabilization problem for time-varying delayed neural networks (DNNs) with discontinuous activation functions. By using fixed point theory and set-valued analysis, we establish the existence theorem of equilibrium point. In order to stabilize the states of this class of discontinuous DNNs in finite time, we design two different kinds of switching controllers which are described by discontinuous functions. Under the framework of Filippov solutions, several new and effective criteria are derived to realize finite-time stabilization of discontinuous DNNs based on the famous finite-time stability theory. Besides, the upper bounds of the settling time of stabilization are estimated. Numerical examples are finally provided to illustrate the correctness of the proposed design method and theoretical results.

  15. Internal exponential stabilization for Navier-Stokes equations by means of finite-dimensional distributed controls

    CERN Document Server

    Barbu, Viorel; Shirikyan, Armen

    2010-01-01

    We consider the Navier-Stokes system in a bounded domain with a smooth boundary. Given a sufficiently regular global solution, we construct a finite-dimensional feedback control that is supported by a given open set and stabilizes the linearized equation. The proof of this fact is based on a truncated observability inequality, the regularizing property for the linearized equation, and some standard techniques of the optimal control theory. We then show that the control constructed for the linear problem stabilizes locally also the full Navier-Stokes system.

  16. Robust Stability of Fractional Order Time-Delay Control Systems: A Graphical Approach

    Directory of Open Access Journals (Sweden)

    Radek Matušů

    2015-01-01

    Full Text Available The paper deals with a graphical approach to investigation of robust stability for a feedback control loop with an uncertain fractional order time-delay plant and integer order or fractional order controller. Robust stability analysis is based on plotting the value sets for a suitable range of frequencies and subsequent verification of the zero exclusion condition fulfillment. The computational examples present the typical shapes of the value sets of a family of closed-loop characteristic quasipolynomials for a fractional order plant with uncertain gain, time constant, or time-delay term, respectively, and also for combined cases. Moreover, the practically oriented example focused on robust stability analysis of main irrigation canal pool controlled by either classical integer order PID or fractional order PI controller is included as well.

  17. Stability, controllability and observability of linear matrix-second-order systems

    Science.gov (United States)

    Hughes, P. C.; Skelton, R. E.

    1979-01-01

    The stability, controllability and observability of lightly damped linear mechanical systems are considered and gyroscopic effects (e.g., control moment gyros) are also included. The structure of the equations is further specified to include both 'rigid' and 'elastic' modes, possibly coupled by gyroscopic terms. Stability and asymptotic stability results are summarized in two theorems. The special structure of the system equations permits a statement of the necessary and sufficient conditions for controllability and observability in terms of simple rank tests. Of great practical significance, the minimum number of actuators and sensors are among the necessary conditions derived. Natural definitions for modal controllability and observability are also evolved which give a direct indication of beneficial locations for actuators and sensors.

  18. Stability of a double inverted pendulum model during human quiet stance with continuous delay feedback control.

    Science.gov (United States)

    Suzuki, Yasuyuki; Nomura, Taishin; Morasso, Pietro

    2011-01-01

    Recent debate about neural mechanisms for stabilizing human upright quiet stance focuses on whether the active and time delay neural feedback control generating muscle torque is continuous or intermittent. A single inverted pendulum controlled by the active torque actuating the ankle joint has often been used for the debate on the presumption of well-known ankle strategy hypothesis claiming that the upright quiet stance can be stabilized mostly by the ankle torque. However, detailed measurements are showing that the hip joint angle exhibits amount of fluctuations comparable with the ankle joint angle during natural postural sway. Here we analyze a double inverted pendulum model during human quiet stance to demonstrate that the conventional proportional and derivative delay feedback control, i.e., the continuous delay PD control with gains in the physiologically plausible range is far from adequate as the neural mechanism for stabilizing human upright quiet stance. PMID:22256061

  19. Advanced control of propylene polimerizations in slurry reactors

    Directory of Open Access Journals (Sweden)

    Bolsoni A.

    2000-01-01

    Full Text Available The objective of this work is to develop a strategy of nonlinear model predictive control for industrial slurry reactors of propylene polymerizations. The controlled variables are the melt index (polymer quality and the amount of unreacted monomer (productivity. The model used in the controller presents a linear dynamics and a nonlinear static gain given by a neuronal network MLP (multilayer perceptron. The simulated performance of the controller was evaluated for a typical propylene polymerization process. It is shown that the performance of the proposed control strategy is much better than the one obtained with the use of linear predictive controllers for setpoint tracking control problems.

  20. Advances in Structural Control in Civil Engineering in China

    Directory of Open Access Journals (Sweden)

    Hongnan Li

    2010-01-01

    Full Text Available In the recent years, much attention has been paid to the research and development of structural control techniques with particular emphasis on alleviation of wind and seismic responses of buildings and bridges in China. Structural control in civil engineering has been developed from the concept into a workable technology and applied into practical engineering structures. The aim of this paper is to review a state of the art of researches and applications of structural control in civil engineering in China. It includes the passive control, active control, hybrid controland semiactive control. Finally, the possible future directions of structural control in civil engineering in China are presented.

  1. Advanced control of walking-beam reheating furnace

    Institute of Scientific and Technical Information of China (English)

    Zhigang Chen; Chao Xu; Bin Zhang; Huihe Shao; Jianmin Zhang

    2003-01-01

    Reheating furnace is an important device with complex dynamic characteristics in steel plants. The temperature tracing control of reheating furnace has great importance both to the quality of slabs and energy saving. A model-based control strategy,multivariable constrained control (MCC) for the reheating furnace control is used. With this control method, the furnace is treated as a six-input-six-output general model with loops coupled in nature. Compared with the traditional control, the proposed control strategy gets better temperature tracing accuracy and exhibits some energy saving feature. The simulation results show that the performance of the furnace is greatly improved.

  2. Stability analysis and design of the improved droop controller on a voltage source inverter

    DEFF Research Database (Denmark)

    Calabria, Mauro; Schumacher, Walter; Guerrero, Josep M.;

    2015-01-01

    This paper studies the dynamics of a droop-controlled voltage source inverter connected to a stiff grid and addresses the use of the improved droop controller in order to enhance the dynamic behavior of the system. The small-signal stability of the inverter is studied in depth considering...

  3. CONTROL AND STABILITY ANALYSIS OF THE GMC ALGORITHM APPLIED TO pH SYSTEMS

    Directory of Open Access Journals (Sweden)

    Manzi J.T.

    1998-01-01

    Full Text Available This paper deals with the control of the neutralization processes of the strong acid-strong base and the weak acid-strong base systems using the Generic Model Control (GMC algorithm. The control strategy is applied to a pilot plant where hydrochloric acid-sodium hydroxide and acetic acid-sodium hydroxide systems are neutralized. The GMC algorithm includes in the controller structure a nonlinear model of the process in the controller structure. The paper also focuses the provides a stability analysis of the controller for some of the uncertainties involved in the system. The rResults indicate that the controller stabilizes the system for a large range of uncertainties, but the performance may deteriorate when the system is submitted to large disturbances.

  4. Coordinated preventive control of transient stability with multi-contingency in power systems using trajectory sensitivities

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.H.; Yuan, W.P. [Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR (China); College of Electric Power, South China University of Technology, Guangzhou 510640 (China); Chan, K.W. [Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR (China); Liu, M.B. [College of Electric Power, South China University of Technology, Guangzhou 510640 (China)

    2011-01-15

    In this paper, the challenging multi-contingency transient stability constrained optimal power flow problem is partitioned into two sub-problems, namely optimal power flow (OPF) and transient stability control, solved in turn with conventional well trusted power system analysis tools instead of tackling it directly using a complicated integrated approach. Preventive multi-contingency transient stability control is carried out with generation rescheduling based on trajectory sensitivities using results obtained from a conventional transient stability simulation. A new iterative approach is proposed to optimally redistribute the generation from the critical machines to noncritical machines with the help of conventional OPF. Results on the New England 10-machine 39-bus systems demonstrate that the proposed method is capable of handling multiple contingencies and complex power system models effectively with solution quantity and time comparable with conventional integrated approaches. (author)

  5. Recent Advances in Bidirectional Modeling and Structural Control

    OpenAIRE

    Paul, Satyam; Yu, Wen; Li, Xiaoou

    2016-01-01

    This paper provides an overview of building structure modeling and control under bidirectional seismic waves. It focuses on different types of bidirectional control devices, control strategies, and bidirectional sensors used in structural control systems. This paper also highlights the various issues like system identification techniques, the time-delay in the system, estimation of velocity and position from acceleration signals, and optimal placement of the sensors and control devices. The i...

  6. Recent Advances in Bidirectional Modeling and Structural Control

    OpenAIRE

    Satyam Paul; Wen Yu; Xiaoou Li

    2016-01-01

    This paper provides an overview of building structure modeling and control under bidirectional seismic waves. It focuses on different types of bidirectional control devices, control strategies, and bidirectional sensors used in structural control systems. This paper also highlights the various issues like system identification techniques, the time-delay in the system, estimation of velocity and position from acceleration signals, and optimal placement of the sensors and control devices. Th...

  7. Stability and Control for Energy Production Parametric Dependence

    Directory of Open Access Journals (Sweden)

    Maurizio Carlini

    2010-01-01

    Full Text Available The activities of plant cultivation in Italy are provided by prefabricated structures that are designed to avoid any preliminary study of optical and thermal exchanges between the external environment and the green house. Designers mainly focused on the heating and cooling system to obtain climate beneficial effects on plant growth. This system involves rather significant operating costs which have driven the interests of designers, builders, and farmers to pursue constructive solutions such as the optimization and control of energy flows in the system. In this paper we take into account a model of greenhouse for plant cultivation to be located in Central Italy. For the optimal design of a greenhouse, simulations of heat exchange and flow of energy have been made in order to maximise the cooling system consumption of energy.

  8. Multicontroller: an object programming approach to introduce advanced control algorithms for the GCS large scale project

    CERN Document Server

    Cabaret, S; Coppier, H; Rachid, A; Barillère, R; CERN. Geneva. IT Department

    2007-01-01

    The GCS (Gas Control System) project team at CERN uses a Model Driven Approach with a Framework - UNICOS (UNified Industrial COntrol System) - based on PLC (Programming Language Controller) and SCADA (Supervisory Control And Data Acquisition) technologies. The first' UNICOS versions were able to provide a PID (Proportional Integrative Derivative) controller whereas the Gas Systems required more advanced control strategies. The MultiController is a new UNICOS object which provides the following advanced control algorithms: Smith Predictor, PFC (Predictive Function Control), RST* and GPC (Global Predictive Control). Its design is based on a monolithic entity with a global structure definition which is able to capture the desired set of parameters of any specific control algorithm supported by the object. The SCADA system -- PVSS - supervises the MultiController operation. The PVSS interface provides users with supervision faceplate, in particular it links any MultiController with recipes: the GCS experts are ab...

  9. Stability of the Newton-Like algorithm in optimization flow control

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The stability of the Newton-like algorithm in optimization flow control is considered in this paper.This algorithm is proved to be globally stable under a general network topology by means of Lyapunov stability theory, without considering the round trip time of each source. While the stability of this algorithm with considering the round trip time is analyzed as well. The analysis shows that the algorithm with only one bottleneck link accessed by several sources is also globally stable, and all trajectories described by this algorithm ultimately converge to the equilibrium point.

  10. STABILITY ANALYSIS OF DECENTRALIZED ADAPTIVE BACKSTEPPING CONTROL SYSTEMS WITH ACTUATOR FAILURES

    Institute of Scientific and Technical Information of China (English)

    Wei WANG; Changyun WEN; Guanghong YANG

    2009-01-01

    In this paper, the authors analyze the stability of a class of interconnected systems with subsystem unmodeled dynamics and dynamic interactions employing decentralized adaptive controllers designed by Wen, Zhou, and Wang (2008) in the presence of actuator failures. It will be shown that the global stability of the remaining closed-loop system is still ensured and the outputs are also regulated to zero when some subsystems break down.

  11. Human factors design review guidelines for advanced nuclear control room technologies

    Energy Technology Data Exchange (ETDEWEB)

    O' Hara, J.; Brown, W. (Brookhaven National Lab., Upton, NY (United States)); Granda, T.; Baker, C. (Carlow Associates, Inc., Fairfax, VA (United States))

    1991-01-01

    Advanced control rooms (ACRs) for future nuclear power plants are being designed utilizing computer-based technologies. The US Nuclear Regulatory Commission reviews the human engineering aspects of such control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported in order to protect public health and safety. This paper describes the rationale, general approach, and initial development of an NRC Advanced Control Room Design Review Guideline. 20 refs., 1 fig.

  12. Stability control during the performance of a simultaneous obstacle avoidance and auditory Stroop task.

    Science.gov (United States)

    Worden, Timothy A; Vallis, Lori Ann

    2016-02-01

    Navigation through complex environments requires a greater degree of control and attentional resources from the central nervous system to ensure postural stability and efficient goal completion as compared to quiet standing or unobstructed walking. Furthermore, when a cognitive task is also performed in a dual-task scenario, additional resources may be required. The purpose of the current study was to examine the effects of performing a concurrent cognitive (auditory Stroop task) and complex locomotor task (with a stationary or dynamic obstacle) on frontal plane stability control quantified using a margin of stability (MOS) measure. Fourteen healthy young adults performed 40 dual-task trials (randomized in a balanced design for auditory Stroop congruency and obstacle movement). Results indicated that frontal plane MOS was greatest for the obstacle crossing step and was greater for the dynamic obstacle as compared to the stationary obstacle. Conversely, frontal plane MOS was the smallest for the pre-crossing step, indicating that this point in the obstacle stepping strategy may be the least stable. No effect of cognitive task difficulty was observed for any of the experimental conditions, providing support for a 'posture-first' strategy. These findings suggest that an increase in stability is prioritized for the obstacle crossing step, potentially at the expense of reduced stability in the step immediately preceding the obstacle. These results have implications for better understanding how the CNS controls stability at different events during the obstacle crossing strategy in a complex environment. PMID:26487180

  13. Adaptive Neural-Sliding Mode Control of Active Suspension System for Camera Stabilization

    Directory of Open Access Journals (Sweden)

    Feng Zhao

    2015-01-01

    Full Text Available The camera always suffers from image instability on the moving vehicle due to the unintentional vibrations caused by road roughness. This paper presents a novel adaptive neural network based on sliding mode control strategy to stabilize the image captured area of the camera. The purpose is to suppress vertical displacement of sprung mass with the application of active suspension system. Since the active suspension system has nonlinear and time varying characteristics, adaptive neural network (ANN is proposed to make the controller robustness against systematic uncertainties, which release the model-based requirement of the sliding model control, and the weighting matrix is adjusted online according to Lyapunov function. The control system consists of two loops. The outer loop is a position controller designed with sliding mode strategy, while the PID controller in the inner loop is to track the desired force. The closed loop stability and asymptotic convergence performance can be guaranteed on the basis of the Lyapunov stability theory. Finally, the simulation results show that the employed controller effectively suppresses the vibration of the camera and enhances the stabilization of the entire camera, where different excitations are considered to validate the system performance.

  14. An empirical study on the basic human error probabilities for NPP advanced main control room operation using soft control

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Inseok, E-mail: nuclear82@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Kim, Ar Ryum, E-mail: arryum@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Harbi, Mohamed Ali Salem Al, E-mail: 100035556@kustar.ac.ae [Department of Nuclear Engineering, Khalifa University of Science, Technology and Research, P.O. Box 127788, Abu Dhabi (United Arab Emirates); Lee, Seung Jun, E-mail: sjlee@kaeri.re.kr [Integrated Safety Assessment Division, Korea Atomic Energy Research Institute, 150-1, Dukjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kang, Hyun Gook, E-mail: hyungook@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Seong, Poong Hyun, E-mail: phseong@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2013-04-15

    Highlights: ► The operation environment of MCRs in NPPs has changed by adopting new HSIs. ► The operation action in NPP Advanced MCRs is performed by soft control. ► Different basic human error probabilities (BHEPs) should be considered. ► BHEPs in a soft control operation environment are investigated empirically. ► This work will be helpful to verify if soft control has positive or negative effects. -- Abstract: By adopting new human–system interfaces that are based on computer-based technologies, the operation environment of main control rooms (MCRs) in nuclear power plants (NPPs) has changed. The MCRs that include these digital and computer technologies, such as large display panels, computerized procedures, soft controls, and so on, are called Advanced MCRs. Among the many features in Advanced MCRs, soft controls are an important feature because the operation action in NPP Advanced MCRs is performed by soft control. Using soft controls such as mouse control, touch screens, and so on, operators can select a specific screen, then choose the controller, and finally manipulate the devices. However, because of the different interfaces between soft control and hardwired conventional type control, different basic human error probabilities (BHEPs) should be considered in the Human Reliability Analysis (HRA) for advanced MCRs. Although there are many HRA methods to assess human reliabilities, such as Technique for Human Error Rate Prediction (THERP), Accident Sequence Evaluation Program (ASEP), Human Error Assessment and Reduction Technique (HEART), Human Event Repository and Analysis (HERA), Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR), Cognitive Reliability and Error Analysis Method (CREAM), and so on, these methods have been applied to conventional MCRs, and they do not consider the new features of advance MCRs such as soft controls. As a result, there is an insufficient database for assessing human reliabilities in advanced

  15. Algorithm Design and Validation for Adaptive Nonlinear Control Enhancement (ADVANCE) Technology Development for Resilient Flight Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SSCI proposes to develop and test a framework referred to as the ADVANCE (Algorithm Design and Validation for Adaptive Nonlinear Control Enhancement), within which...

  16. Advanced Techniques for Assessment of Postural and Locomotor Ataxia, Spatial Orientation, and Gaze Stability

    Science.gov (United States)

    Wall, Conrad., III

    1999-01-01

    In addition to adapting to microgravity, major neurovestibular problems of space flight include postflight difficulties with standing, walking, turning corners, and other activities that require stable upright posture and gaze stability. These difficulties inhibit astronauts' ability to stand or escape from their vehicle during emergencies. The long-ter7n goal of the NSBRI is the development of countermeasures to ameliorate the effects of long duration space flight. These countermeasures must be tested with valid and reliable tools. This project aims to develop quantitative, parametric approaches for assessing gaze stability and spatial orientation during normal gait and when gait is perturbed. Two of this year's most important findings concern head fixation distance and ideal trajectory analysis. During a normal cycle of walking the head moves up and down linearly. A simultaneous angular pitching motion of the head keeps it aligned toward an imaginary point in space at a distance of about one meter in front of a subject and along the line of march. This distance is called the head fixation distance. Head fixation distance provides the fundamental framework necessary for understanding the functional significance of the vestibular reflexes that couple head motion to eye motion. This framework facilitates the intelligent design of counter-measures for the effects of exposure to microgravity upon the vestibular ocular reflexes. Ideal trajectory analysis is a simple candidate countermeasure based upon quantifying body sway during repeated up and down stair stepping. It provides one number that estimates the body sway deviation from an ideal sinusoidal body sway trajectory normalized on the subject's height. This concept has been developed with NSBRI funding in less than one year. These findings are explained in more detail below. Compared to assessments of the vestibuo-ocular reflex, analysis of vestibular effects on locomotor function is relatively less well developed

  17. A ram-air-spoiler roll stabilization device for forward control cruciform missiles

    Science.gov (United States)

    Blair, A. B., Jr.; Sawyer, W. C.; Jackson, C. M., Jr.

    1978-01-01

    An experimental investigation has been made at supersonic Mach numbers to determine the feasibility of using a ram-air-spoiler roll control device on a typical canard control missile configuration. As a basis for roll control comparisons, conventional aileron controls on the tail fins were also tested. Results are presented which indicate that the addition of nacelles on the missile tail fins resulted in satisfactory roll control effectiveness and only small changes in basic missile stability. The ram-air-spoiler roll control effectiveness is relatively constant over the range of vehicle attitudes and Mach numbers investigated.

  18. Cutting edge SRU control : improved environmental compliance with Jacobs advanced burner control+ (ABC+)

    Energy Technology Data Exchange (ETDEWEB)

    Molenaar, G. [Jacobs Canada Inc., Calgary, AB (Canada); Henning, A.; Kobussen, S. [Jacobs Nederland BV, Hoogvliet (Netherlands)

    2009-07-01

    Oil sands bitumen contains approximately 4 to 5 per cent sulphur by weight and the bitumen is upgraded to produce lighter fractions. During coking the bitumen is heated and cracked into lighter molecules and a mixture of kerosene, naphtha and gas oil is recovered via fractionation. Then, the vapors leaving the fractionator are processed through hydrodesulphurization, followed by removal by amine based sweetening units. The acid gas from the ASUs is sent to the sulphur recovery units (SRUs) where most of the sulphur is recovered as elemental sulphur. The oil sands industry faces many challenges with respect to environmental impact, energy use and greenhouse gas emissions including the recovery of sulphur and minimizing hydrogen sulfide (H{sub 2}S) and sulphur dioxide (SO{sub 2}) emissions from the oil sands production facilities. In order to improve the SRU control response to acid gas feed variations, Jacobs Comprimo Sulphur Solutions implemented advanced burner control+ (ABC+) at Suncor's Simonette Gas Plant's SRU in northern Alberta. This control system used an acid gas feed analyzer and dynamic algorithms to control the combustion air to the reaction furnace. The analyzer measures H{sub 2}S, total hydrocarbons, carbon dioxide (CO{sub 2}) and water (H{sub 2}O) accurately and quickly, which is important for having effective and fast air-to-acid gas ratio control. The paper provided background information on the Suncor Simonette Gas Plant and discussed ABC+ versus conventional control. An overview of the simplified ABC and ABC+ systems was then illustrated and presented. The ABB multiwave process photometer was also explained. Last, a dynamic simulation of the potential benefits of ABC+ was discussed and the ABC+ benefits for oil sands were presented. It was concluded that ABC+ provides improved SRU performance, reduced SO{sub 2} emissions and violations, and reduced flaring. 1 tab., 3 figs.

  19. Modeling and Advanced Control for Sustainable Process Systems (chapter 5)

    Science.gov (United States)

    This book chapter introduces a novel process systems engineering framework that integrates process control with sustainability assessment tools for the simultaneous evaluation and optimization of process operations. The implemented control strategy consists of a biologically-insp...

  20. An advanced plasma control system for Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Wijnands, T.; Martin, G.

    1996-01-01

    First results on plasma control with the new plasma control system of Tore Supra are presented. The system has been especially designed for long pulse operation: plasmas are controlled on reference signals, which can be varied in real time by using diagnostic measurements. On line determination of the global plasma equilibrium has enabled new operation scenarios in which both the power from the poloidal field generators and the total Lower Hybrid (LH) power are used to control the plasma. Experiments with feedback control of the safety factor on the plasma boundary, control of the LH driven current, control of the flux on the plasma boundary and control of the internal inductance are discussed. (author). 12 refs.