WorldWideScience

Sample records for advanced solid-state lasers

  1. Solid-state laser engineering

    CERN Document Server

    Koechner, Walter

    1999-01-01

    Solid-State Laser Engineering, written from an industrial perspective, discusses in detail the characteristics, design, construction, and performance of solid-state lasers. Emphasis is placed on engineering and practical considerations; phenomenological aspects using models are preferred to abstract mathematical derivations. This new edition has extensively been updated to account for recent developments in the areas of diode-laser pumping, laser materials, and nonlinear crystals. Walter Koechner received a doctorate in Electrical Engineering from the University of Technology in Vienna, Austria, in 1965. He has published numerous papers in the fields of solid-state physics, optics, and lasers. Dr. Koechner is founder and president of Fibertek, Inc., a research firm specializing in the design, development, and production of advanced solid-state lasers, optical radars, and remote-sensing systems.

  2. Solid-state laser engineering

    CERN Document Server

    Koechner, Walter

    1996-01-01

    Solid-State Laser Engineering, written from an industrial perspective, discusses in detail the characteristics, design, construction, and performance of solid-state lasers. Emphasis is placed on engineering and practical considerations; phenomenological aspects using models are preferred to abstract mathematical derivations. This new edition has extensively been updated to account for recent developments in the areas of diode-laser pumping, mode locking, ultrashort-pulse generation etc. Walter Koechner received a doctorate in Electrical Engineering from the University of Technology in Vienna, Austria, in 1965. He has published numerous papers in the fields of solid-state physics, optics, and lasers. Dr. Koechner is founder and president of Fibertek, Inc., a research firm specializing in the design, development, and production of advanced solid-state lasers, optical radars, and remote-sensing systems.

  3. High Energy Solid State Laser Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — A suite of laboratories with advanced spectroscopic and laser equipment, this facility develops materials and techniques for advanced solid state high energy lasers....

  4. Solid-State Random Lasers

    CERN Document Server

    Noginov, Mikhail A

    2005-01-01

    Random lasers are the simplest sources of stimulated emission without cavity, with the feedback provided by scattering in a gain medium. First proposed in the late 60’s, random lasers have grown to a large research field. This book reviews the history and the state of the art of random lasers, provides an outline of the basic models describing their behavior, and describes the recent advances in the field. The major focus of the book is on solid-state random lasers. However, it also briefly describes random lasers based on liquid dyes with scatterers. The chapters of the book are almost independent of each other. So, the scientists or engineers interested in any particular aspect of random lasers can read directly the relevant section. Researchers entering the field of random lasers will find in the book an overview of the field of study. Scientists working in the field can use the book as a reference source.

  5. Organic solid-state lasers

    CERN Document Server

    Forget, Sébastien

    2013-01-01

    Organic lasers are broadly tunable coherent sources, potentially compact, convenient and manufactured at low-costs. Appeared in the mid 60’s as solid-state alternatives for liquid dye lasers, they recently gained a new dimension after the demonstration of organic semiconductor lasers in the 90's. More recently, new perspectives appeared at the nanoscale, with organic polariton and surface plasmon lasers. After a brief reminder to laser physics, a first chapter exposes what makes organic solid-state organic lasers specific. The laser architectures used in organic lasers are then reviewed, with a state-of-the-art review of the performances of devices with regard to output power, threshold, lifetime, beam quality etc. A survey of the recent trends in the field is given, highlighting the latest developments with a special focus on the challenges remaining for achieving direct electrical pumping of organic semiconductor lasers. A last chapter covers the applications of organic solid-state lasers.

  6. Advances in solid state laser technology for space and medical applications

    Science.gov (United States)

    Byvik, C. E.; Buoncristiani, A. M.

    1988-01-01

    Recent developments in laser technology and their potential for medical applications are discussed. Gas discharge lasers, dye lasers, excimer lasers, Nd:YAG lasers, HF and DF lasers, and other commonly used lasers are briefly addressed. Emerging laser technology is examined, including diode-pumped lasers and other solid state lasers.

  7. Advanced Solid-state Lasers - to Ignition and Beyond

    International Nuclear Information System (INIS)

    Marshall, C.; Bibeau, C.; Orth, C; Meier, W.R.; Payne, S.; Sutton, S.

    1998-01-01

    This brochure concentrates on the diode-pumped solid-state laser. Surrounding it on the cover are some of the primary technological developments that make it a candidate for the means by which inertial confinement fusion will create inertial fusion energy as an inexhaustible source of electric power

  8. Continued advances in high brightness fiber-coupled laser modules for efficient pumping of fiber and solid-state lasers

    Science.gov (United States)

    Hemenway, M.; Chen, Z.; Urbanek, W.; Dawson, D.; Bao, L.; Kanskar, M.; DeVito, M.; Martinsen, R.

    2018-02-01

    Both the fibber laser and diode-pumped solid-state laser market continue to drive advances in pump diode module brightness. We report on the continued progress by nLIGHT to develop and deliver the highest brightness diode-laser pumps using single-emitter technology. Continued advances in multimode laser diode technology [13] and fiber-coupling techniques have enabled higher emitter counts in the element packages, enabling us to demonstrate 305 W into 105 μm - 0.16 NA. This brightness improvement is achieved by leveraging our prior-reported package re-optimization, allowing an increase in the emitter count from two rows of nine emitters to two rows of twelve emitters. Leveraging the two rows off twelve emitter architecture,, product development has commenced on a 400 W into 200 μm - 00.16 NA package. Additionally, the advances in pump technology intended for CW Yb-doped fiber laser pumping has been leveraged to develop the highest brightness 793 nm pump modules for 2 μm Thulium fiber laser pumping, generating 150 W into 200 μm - 0.18 NA and 100 W into 105 μm - 0.15 NA. Lastly, renewed interest in direct diode materials processing led us to experiment with wavelength multiplexing our existing state of the art 200 W, 105 μm - 00.15 NA package into a combined output of 395 WW into 105 μm - 0.16 NA.

  9. Solid-state polymeric dye lasers

    CERN Document Server

    Singh, S; Sridhar, G; Muthuswamy, V; Raja, K

    2003-01-01

    This paper presents a review of the organic solid-state polymer materials, which have become established as a new laser media. The photostability of these materials is discussed. Different types of solid-state lasers built around these materials are also reviewed.

  10. Improving Reliability of High Power Quasi-CW Laser Diode Arrays for Pumping Solid State Lasers

    Science.gov (United States)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Baggott, Renee S.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.

    2005-01-01

    Most Lidar applications rely on moderate to high power solid state lasers to generate the required transmitted pulses. However, the reliability of solid state lasers, which can operate autonomously over long periods, is constrained by their laser diode pump arrays. Thermal cycling of the active regions is considered the primary reason for rapid degradation of the quasi-CW high power laser diode arrays, and the excessive temperature rise is the leading suspect in premature failure. The thermal issues of laser diode arrays are even more drastic for 2-micron solid state lasers which require considerably longer pump pulses compared to the more commonly used pump arrays for 1-micron lasers. This paper describes several advanced packaging techniques being employed for more efficient heat removal from the active regions of the laser diode bars. Experimental results for several high power laser diode array devices will be reported and their performance when operated at long pulsewidths of about 1msec will be described.

  11. Rugged and compact mid-infrared solid-state laser for avionics applications

    CSIR Research Space (South Africa)

    Esser, MJD

    2009-11-01

    Full Text Available In order to demonstrate the feasibility of a helicopter-based application using advanced laser technology, the authors have developed a rugged and compact mid-infrared solid-state laser. The requirement for the laser was to simultaneously emit at 2...

  12. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 4 covers articles on single crystal compound semiconductors and complex polycrystalline materials. The book discusses narrow gap semiconductors and solid state batteries. The text then describes the advantages of hot-pressed microcrystalline compacts of oxygen-octahedra ferroelectrics over single crystal materials, as well as heterostructure junction lasers. Solid state physicists, materials scientists, electrical engineers, and graduate students studying the subjects being discussed will find the book invaluable.

  13. Advances in High Energy Solid-State 2-micron Laser Transmitter Development for Ground and Airborne Wind and CO2 Measurements

    Science.gov (United States)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Chen, Songsheng; Kavaya, Michael J.; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Modlin, Edward A.; Koch, Grady; hide

    2010-01-01

    Sustained research efforts at NASA Langley Research Center (LaRC) during last fifteen years have resulted in a significant advancement in 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurement from ground, air and space-borne platform. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.

  14. Solid state laser technology - A NASA perspective

    Science.gov (United States)

    Allario, F.

    1985-01-01

    NASA's program for developing solid-state laser technology and applying it to the Space Shuttle and Space Platform is discussed. Solid-state lasers are required to fulfill the Earth Observation System's requirements. The role of the Office of Aeronautics and Space Technology in developing a NASA tunable solid-state laser program is described. The major goals of the program involve developing a solid-state pump laser in the green, using AlGaAs array technology, pumping a Nd:YAG/SLAB crystal or glass, and fabricating a lidar system, with either a CO2 laser at 10.6 microns or a Nd:YAG laser at 1.06 microns, to measure tropospheric winds to an accuracy of + or - 1 m/s and a vertical resolution of 1 km. The procedures to be followed in order to visualize this technology plan include: (1) material development and characterization, (2) laser development, and (3) implementation of the lasers.

  15. Monolithic solid-state lasers for spaceflight

    Science.gov (United States)

    Krainak, Michael A.; Yu, Anthony W.; Stephen, Mark A.; Merritt, Scott; Glebov, Leonid; Glebova, Larissa; Ryasnyanskiy, Aleksandr; Smirnov, Vadim; Mu, Xiaodong; Meissner, Stephanie; Meissner, Helmuth

    2015-02-01

    A new solution for building high power, solid state lasers for space flight is to fabricate the whole laser resonator in a single (monolithic) structure or alternatively to build a contiguous diffusion bonded or welded structure. Monolithic lasers provide numerous advantages for space flight solid-state lasers by minimizing misalignment concerns. The closed cavity is immune to contamination. The number of components is minimized thus increasing reliability. Bragg mirrors serve as the high reflector and output coupler thus minimizing optical coatings and coating damage. The Bragg mirrors also provide spectral and spatial mode selection for high fidelity. The monolithic structure allows short cavities resulting in short pulses. Passive saturable absorber Q-switches provide a soft aperture for spatial mode filtering and improved pointing stability. We will review our recent commercial and in-house developments toward fully monolithic solid-state lasers.

  16. Solid-state laser source of narrowband ultraviolet B light for skin disease care with advanced performance

    Science.gov (United States)

    Tarasov, Aleksandr A.; Chu, Hong; Buchwald, Kristian

    2015-02-01

    Two years ago we reported about the development of solid state laser source for medical skin treatment with wavelength 310.6 nm and average power 200 mW. Here we describe the results of investigation of the advanced version of the laser, which is a more compact device with increased output power and flat top beam profile. Ti: Sapphire laser, the main module of our source, was modified and optimized such, that UV average power of the device was increased 1.7 times. Fiber optic homogenizer was replaced by articulated arm with diffraction diffuser, providing round spot with flat profile at the skin. We investigated and compare characteristics of Ti: Sapphire lasers with volume Bragg grating and with fused silica transmission grating, which was used first time for Ti: Sapphire laser spectral selection and tuning. Promising performance of last gratings is demonstrated.

  17. Development of diode-pumped medical solid-state lasers

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Kim, Min Suk

    2000-09-01

    Two thirds of human body consists of water and the absorption of laser by water is an important factor in medical laser treatment. Er medical lasers have been used in the dermatology, ophthalmology and dental treatments due to its highest absorption by water. However, 2.9 um Er laser can not be transmitted through an optical fiber. On the other hand, Tm laser can be transmitted through an fiber and also has very high absorption by water. Therefore, Tm lasers are used in ophthalmology and heart treatment wherein the fiber delivery is very important for the treatment. Until now, mainly lamp-pumped solid-state lasers have been used in medical treatments, but the lamp-pumped solid-state lasers are being replaced with the diode-pumped solid-state lasers because the diode-pumped solid-state lasers are more compact and much easier to maintain. Following this trend, end-pumped Er and side-pumped Tm lasers have been developed and the output power of 1 W was obtained for Er and Tm respectively

  18. Development of diode-pumped medical solid-state lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Kim, Min Suk

    2000-09-01

    Two thirds of human body consists of water and the absorption of laser by water is an important factor in medical laser treatment. Er medical lasers have been used in the dermatology, ophthalmology and dental treatments due to its highest absorption by water. However, 2.9 um Er laser can not be transmitted through an optical fiber. On the other hand, Tm laser can be transmitted through an fiber and also has very high absorption by water. Therefore, Tm lasers are used in ophthalmology and heart treatment wherein the fiber delivery is very important for the treatment. Until now, mainly lamp-pumped solid-state lasers have been used in medical treatments, but the lamp-pumped solid-state lasers are being replaced with the diode-pumped solid-state lasers because the diode-pumped solid-state lasers are more compact and much easier to maintain. Following this trend, end-pumped Er and side-pumped Tm lasers have been developed and the output power of 1 W was obtained for Er and Tm respectively.

  19. Cross-relaxation solid state lasers

    International Nuclear Information System (INIS)

    Antipenko, B.M.

    1989-01-01

    Cross-relaxation functional diagrams provide a high quantum efficiency for pumping bands of solid state laser media and a low waste heat. A large number of the cross-relaxation mechanisms for decay rare earth excited states in crystals have been investigated. These investigations have been a starting-point for development of the cross-relaxation solid state lasers. For example, the cross-relaxation interactions, have been used for the laser action development of LiYF 4 :Gd-Tb. These interactions are important elements of the functional diagrams of the 2 μm Ho-doped media sensitized with Er and Tm and the 3 μm Er-doped media. Recently, new efficient 2 μm laser media with cross-relaxation pumping diagrams have been developed. Physical aspects of these media are the subject of this paper. A new concept of the Er-doped medium, sensitized with Yb, is illustrated

  20. Nonlinear optics and solid-state lasers advanced concepts, tuning-fundamentals and applications

    CERN Document Server

    Yao, Jianquan

    2012-01-01

    This book covers the complete spectrum of nonlinear optics and all solid state lasers.The book integrates theory, calculations and practical design, technology, experimental schemes and applications. With the expansion and further development of Laser technology, the wavelength spectrum of Lasers had to be enlarged, even to be tunable which requires the use of nonlinear optical and Laser tunable technology. It systematically summarizes and integrates the analysis of international achievements within the last 20 years in this field. It will be helpful for university teachers, graduate students as well as engineers.

  1. Solid-state laser engineering

    CERN Document Server

    Koechner, Walter

    1992-01-01

    This book is written from an industrial perspective and provides a detailed discussion of solid-state lasers, their characteristics, design and construction. Emphasis is placed on engineering and practical considerations. The book is aimed mainly at the practicing scientist or engineer who is interested in the design or use of solid-state lasers, but the comprehensive treatment of the subject will make the work useful also to students of laser physics who seek to supplement their theoretical knowledge with engineering information. In order to present the subject as clearly as possible, phenomenological descriptions using models have been used rather than abstract mathematical descriptions. This results in a simplified presentation. The descriptions are enhanced by the inclusion of numerical and technical data, tables and graphs. This new edition has been updated and revised to take account of important new developments, concepts, and technologies that have emerged since the publication of the first and second...

  2. High power all solid state VUV lasers

    International Nuclear Information System (INIS)

    Zhang, Shen-jin; Cui, Da-fu; Zhang, Feng-feng; Xu, Zhi; Wang, Zhi-min; Yang, Feng; Zong, Nan; Tu, Wei; Chen, Ying; Xu, Hong-yan; Xu, Feng-liang; Peng, Qin-jun; Wang, Xiao-yang; Chen, Chuang-tian; Xu, Zu-yan

    2014-01-01

    Highlights: • Polarization and pulse repetition rate adjustable ps 177.3 nm laser was developed. • Wavelength tunable ns, ps and fs VUV lasers were developed. • High power ns 177.3 nm laser with narrow linewidth was investigated. - Abstract: We report the investigation on the high power all solid state vacuum ultra-violet (VUV) lasers by means of nonlinear frequency conversion with KBe 2 BO 3 F 2 (KBBF) nonlinear crystal. Several all solid state VUV lasers have developed in our group, including polarization and pulse repetition rate adjustable picosecond 177.3 nm VUV laser, wavelength tunable nanosecond, picosecond and femtosecond VUV lasers, high power ns 177.3 nm laser with narrow linewidth. The VUV lasers have impact, accurate and precise advantage

  3. IFE Power Plant design principles. Drivers. Solid state laser drivers

    International Nuclear Information System (INIS)

    Nakai, S.; Andre, M.; Krupke, W.F.; Mak, A.A.; Soures, J.M.; Yamanaka, M.

    1995-01-01

    The present status of solid state laser drivers for an inertial confinement thermonuclear fusion power plant is discussed. In particular, the feasibility of laser diode pumped solid state laser drivers from both the technical and economic points of view is briefly reviewed. Conceptual design studies showed that they can, in principle, satisfy the design requirements. However, development of new solid state materials with long fluorescence lifetimes and good thermal characteristics is a key issue for laser diode pumped solid state lasers. With the advent of laser diode pumping many materials which were abandoned in the past can presently be reconsidered as viable candidates. It is also concluded that it is important to examine the technical requirements for solid state lasers in relation to target performance criteria. The progress of laser diode pumped lasers in industrial applications should also be closely watched to provide additional information on the economic feasibility of this type of driver. 15 refs, 9 figs, 2 tabs

  4. High power diode pumped solid state lasers

    International Nuclear Information System (INIS)

    Solarz, R.; Albrecht, G.; Beach, R.; Comaskey, B.

    1992-01-01

    Although operational for over twenty years, diode pumped solid state lasers have, for most of their existence, been limited to individual diodes pumping a tiny volume of active medium in an end pumped configuration. More recent years have witnessed the appearance of diode bars, packing around 100 diodes in a 1 cm bar which have enabled end and side pumped small solid state lasers at the few Watt level of output. This paper describes the subsequent development of how proper cooling and stacking of bars enables the fabrication of multi kill average power diode pump arrays with irradiances of 1 kw/cm peak and 250 W/cm 2 average pump power. Since typical conversion efficiencies from the diode light to the pumped laser output light are of order 30% or more, kW average power diode pumped solid state lasers now are possible

  5. Pulsed Power for Solid-State Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Gagnon, W; Albrecht, G; Trenholme, J; Newton, M

    2007-04-19

    Beginning in the early 1970s, a number of research and development efforts were undertaken at U.S. National Laboratories with a goal of developing high power lasers whose characteristics were suitable for investigating the feasibility of laser-driven fusion. A number of different laser systems were developed and tested at ever larger scale in pursuit of the optimum driver for laser fusion experiments. Each of these systems had associated with it a unique pulsed power option. A considerable amount of original and innovative engineering was carried out in support of these options. Ultimately, the Solid-state Laser approach was selected as the optimum driver for the application. Following this, the Laser Program at the Lawrence Livermore National Laboratory and the University of Rochester undertook aggressive efforts directed at developing the technology. In particular, at Lawrence Livermore National Laboratory, a series of laser systems beginning with the Cyclops laser and culminating in the present with the National Ignition Facility were developed and tested. As a result, a large amount of design information for solid-state laser pulsed power systems has been documented. Some of it is in the form of published papers, but most of it is buried in internal memoranda, engineering reports and LLNL annual reports. One of the goals of this book is to gather this information into a single useable format, such that it is easily accessed and understood by other engineers and physicists for use with future designs. It can also serve as a primer, which when seriously studied, makes the subsequent reading of original work and follow-up references considerably easier. While this book deals only with the solid-state laser pulsed power systems, in the bibliography we have included a representative cross section of papers and references from much of the very fine work carried out at other institutions in support of different laser approaches. Finally, in recent years, there has

  6. Solid-state ring laser gyroscope

    Science.gov (United States)

    Schwartz, S.

    The ring laser gyroscope is a rotation sensor used in most kinds of inertial navigation units. It usually consists in a ring cavity filled with a mixture of helium and neon, together with high-voltage pumping electrodes. The use of a gaseous gain medium, while resulting naturally in a stable bidirectional regime enabling rotation sensing, is however the main industrially limiting factor for the ring laser gyroscopes in terms of cost, reliability and lifetime. We study in this book the possibility of substituting for the gaseous gain medium a solid-state medium (diode-pumped Nd-YAG). For this, a theoretical and experimental overview of the lasing regimes of the solid-state ring laser is reported. We show that the bidirectional emission can be obtained thanks to a feedback loop acting on the states of polarization and inducing differential losses proportional to the difference of intensity between the counterpropagating modes. This leads to the achievement of a solid-state ring laser gyroscope, whose frequency response is modified by mode coupling effects. Several configurations, either mechanically or optically based, are then successively studied, with a view to improving the quality of this frequency response. In particular, vibration of the gain crystal along the longitudinal axis appears to be a very promising technique for reaching high inertial performances with a solid-state ring laser gyroscope. Gyrolaser à état solide. Le gyrolaser est un capteur de rotation utilisé dans la plupart des centrales de navigation inertielle. Dans sa forme usuelle, il est constitué d'une cavité laser en anneau remplie d'un mélange d'hélium et de néon pompé par des électrodes à haute tension. L'utilisation d'un milieu amplificateur gazeux, si elle permet de garantir naturellement le fonctionnement bidirectionnel stable nécessaire à la mesure des rotations, constitue en revanche la principale limitation industrielle des gyrolasers actuels en termes de coût, fiabilit

  7. High average power diode pumped solid state lasers for CALIOPE

    International Nuclear Information System (INIS)

    Comaskey, B.; Halpin, J.; Moran, B.

    1994-07-01

    Diode pumping of solid state media offers the opportunity for very low maintenance, high efficiency, and compact laser systems. For remote sensing, such lasers may be used to pump tunable non-linear sources, or if tunable themselves, act directly or through harmonic crystals as the probe. The needs of long range remote sensing missions require laser performance in the several watts to kilowatts range. At these power performance levels, more advanced thermal management technologies are required for the diode pumps. The solid state laser design must now address a variety of issues arising from the thermal loads, including fracture limits, induced lensing and aberrations, induced birefringence, and laser cavity optical component performance degradation with average power loading. In order to highlight the design trade-offs involved in addressing the above issues, a variety of existing average power laser systems are briefly described. Included are two systems based on Spectra Diode Laboratory's water impingement cooled diode packages: a two times diffraction limited, 200 watt average power, 200 Hz multi-rod laser/amplifier by Fibertek, and TRW's 100 watt, 100 Hz, phase conjugated amplifier. The authors also present two laser systems built at Lawrence Livermore National Laboratory (LLNL) based on their more aggressive diode bar cooling package, which uses microchannel cooler technology capable of 100% duty factor operation. They then present the design of LLNL's first generation OPO pump laser for remote sensing. This system is specified to run at 100 Hz, 20 nsec pulses each with 300 mJ, less than two times diffraction limited, and with a stable single longitudinal mode. The performance of the first testbed version will be presented. The authors conclude with directions their group is pursuing to advance average power lasers. This includes average power electro-optics, low heat load lasing media, and heat capacity lasers

  8. Solar-pumped solid state Nd lasers

    Science.gov (United States)

    Williams, M. D.; Zapata, L.

    1985-01-01

    Solid state neodymium lasers are considered candidates for space-based polar-pumped laser for continuous power transmission. Laser performance for three different slab laser configurations has been computed to show the excellent power capability of such systems if heat problems can be solved. Ideas involving geometries and materials are offered as potential solutions to the heat problem.

  9. The solid state detector technology for picosecond laser ranging

    Science.gov (United States)

    Prochazka, Ivan

    1993-01-01

    We developed an all solid state laser ranging detector technology, which makes the goal of millimeter accuracy achievable. Our design and construction philosophy is to combine the techniques of single photon ranging, ultrashort laser pulses, and fast fixed threshold discrimination while avoiding any analog signal processing within the laser ranging chain. The all solid state laser ranging detector package consists of the START detector and the STOP solid state photon counting module. Both the detectors are working in an optically triggered avalanche switching regime. The optical signal is triggering an avalanche current buildup which results in the generation of a uniform, fast risetime output pulse.

  10. Fundamental characteristics of degradation-recoverable solid-state DFB polymer laser.

    Science.gov (United States)

    Yoshioka, Hiroaki; Yang, Yu; Watanabe, Hirofumi; Oki, Yuji

    2012-02-13

    A novel solid-state dye laser with degradation recovery was proposed and demonstrated. Polydimethylsiloxane was used as a nanoporous solid matrix to enable the internal circulation of dye molecules in the solid state. An internal circulation model for the dye molecules was also proposed and verified numerically by assuming molecular mobility and using a proposed diffusion equation. The durability of the laser was increased 20.5-fold compared with that of a conventional polymethylmethacrylate laser. This novel laser solves the low-durability problem of dye-doped polymer lasers.

  11. Extending solid state laser performance

    Science.gov (United States)

    Miesak, Ed

    2017-02-01

    Coherent Diode-Pumped Solid-State Orlando (CDO), formerly known as Lee Laser, headquartered in Orlando Florida produces CW and pulsed solid state lasers. Primary wavelengths include 1064 nm, 532 nm, and 355 nm. Other wavelengths produced include 1320 nm, 15xx nm, and 16xx nm. Pulse widths are in the range of singles to hundreds of nanoseconds. Average powers are in the range of a few watts to 1000 watts. Pulse repetition rates are typically in the range of 100 Hz to 100 KHz. Laser performance parameters are often modified according to customer requests. Laser parameters that can be adjusted include average power, pulse repetition rate, pulse length, beam quality, and wavelength. Laser parameters are typically cross-coupled such that adjusting one may change some or all of the others. Customers often request one or more parameters be changed without changing any of the remaining parameters. CDO has learned how to accomplish this successfully with rapid turn-around times and minimal cost impact. The experience gained by accommodating customer requests has produced a textbook of cause and effect combinations of laser components to accomplish almost any parameter change request. Understanding the relationships between component combinations provides valuable insight into lasing effects allowing designers to extend laser performance beyond what is currently available. This has led to several break through products, i.e. >150W average power 355 nm, >60W average power 6 ps 1064 nm, pulse lengths longer than 400 ns at 532 nm with average power >100W, >400W 532 nm with pulse lengths in the 100 ns range.

  12. Compact, diode-pumped, solid-state lasers for next generation defence and security sensors

    Science.gov (United States)

    Silver, M.; Lee, S. T.; Borthwick, A.; McRae, I.; Jackson, D.; Alexander, W.

    2015-06-01

    Low-cost semiconductor laser diode pump sources have made a dramatic impact in sectors such as advanced manufacturing. They are now disrupting other sectors, such as defence and security (D&S), where Thales UK is a manufacturer of sensor systems for application on land, sea, air and man portable. In this talk, we will first give an overview of the market trends and challenges in the D&S sector. Then we will illustrate how low cost pump diodes are enabling new directions in D&S sensors, by describing two diode pumped, solid- state laser products currently under development at Thales UK. The first is a new generation of Laser Target Designators (LTD) that are used to identify targets for the secure guiding of munitions. Current systems are bulky, expensive and require large battery packs to operate. The advent of low cost diode technology, merged with our novel solid-state laser design, has created a designator that will be the smallest, lowest cost, STANAG compatible laser designator on the market. The LTD delivers greater that 50mJ per pulse up to 20Hz, and has compact dimensions of 125×70×55mm. Secondly, we describe an ultra-compact, eye-safe, solid-state laser rangefinder (LRF) with reduced size, weight and power consumption compared to existing products. The LRF measures 100×55×34mm, weighs 200g, and can range to greater than 10km with a single laser shot and at a reprate of 1Hz. This also leverages off advances in laser pump diodes, but also utilises low cost, high reliability, packaging technology commonly found in the telecoms sector. As is common in the D&S sector, the products are designed to work in extreme environments, such as wide temperature range (-40 to +71°C) and high levels of shock and vibration. These disruptive products enable next- generation laser sensors such as rangefinders, target designators and active illuminated imagers.

  13. NATO Advanced Study Institute on Laser Interactions with Atoms, Solids,and Plasmas

    CERN Document Server

    1994-01-01

    The aim of this NATO Advanced Study Institute was to bring together scientists and students working in the field of laser matter interactions in order to review and stimulate developmentoffundamental science with ultra-short pulse lasers. New techniques of pulse compression and colliding-pulse mode-locking have made possible the construction of lasers with pulse lengths in the femtosecond range. Such lasers are now in operation at several research laboratories in Europe and the United States. These laser facilities present a new and exciting research direction with both pure and applied science components. In this ASI the emphasis is on fundamental processes occurring in the interaction of short laser pulses with atoms, molecules, solids, and plasmas. In the case of laser-atom (molecule) interactions, high power lasers provide the first access to extreme high-intensity conditions above 10'8 Watts/em', a new frontier for nonlinear interaction of photons with atoms and molecules. New phenomena observed include ...

  14. Diode-pumped solid state laser for inertial fusion energy

    International Nuclear Information System (INIS)

    Payne, S.A.; Krupke, W.F.; Orth, C.D.

    1994-11-01

    The authors evaluate the prospect for development of a diode-pumped solid-state-laser driver in an inertial fusion energy power plant. Using a computer code, they predict that their 1 GWe design will offer electricity at 8.6 cents/kW · hr with the laser operating at 8.6% efficiency and the recycled power level at 31%. The results of their initial subscale experimental testbed of a diode-pumped solid state laser are encouraging, demonstrating good efficiencies and robustness

  15. Laser cooling of solids

    CERN Document Server

    Petrushkin, S V

    2009-01-01

    Laser cooling is an important emerging technology in such areas as the cooling of semiconductors. The book examines and suggests solutions for a range of problems in the development of miniature solid-state laser refrigerators, self-cooling solid-state lasers and optical echo-processors. It begins by looking at the basic theory of laser cooling before considering such topics as self-cooling of active elements of solid-state lasers, laser cooling of solid-state information media of optical echo-processors, and problems of cooling solid-state quantum processors. Laser Cooling of Solids is an important contribution to the development of compact laser-powered cryogenic refrigerators, both for the academic community and those in the microelectronics and other industries. Provides a timely review of this promising field of research and discusses the fundamentals and theory of laser cooling Particular attention is given to the physics of cooling processes and the mathematical description of these processes Reviews p...

  16. Depletion mode pumping of solid state lasers

    International Nuclear Information System (INIS)

    Mundinger, D.; Solarz, R.; Beach, R.; Albrecht, G.; Krupke, W.

    1990-01-01

    Depletion mode pumping of solid state lasers is a new concept which offers features that are of interest for many practical applications. In this paper the authors discuss the physical properties and mechanisms that set the design requirements, present model calculations for a practical laser design, and discuss the results of recent experiments

  17. Development of the plastic solid-dye cell for tunable solid-state dye lasers and study on its optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Do Kyeong; Lee, Jong Min; Cha, Byung Heon; Jung, E. C.; Kim, Hyun Su; Lim, Gwon

    2001-01-01

    we have fabricated solid-state dyes with PMMA and sol-gel materials. We developed single longitudianl mode solid-state dye laser with the linewidth of less than 500MHz. We have constructed a self-seeded laser and observed the increase of the output power because of self-seeding effect. We investigated the operating characteristics of the dualwave laser oscillator and DFDL with solid-state dyes. And we have constructed the 3-color solid-state dye laser oscillator and amplifier system and observed 3-color operation. We also improved the laser oscliiator with disk-type solid-state dye cell which can be translated and rotated with the help of the two stepping motors. With the help of computer control, we could constantly changed the illuminated area of the dye cell and, therefore, were able to achieve long time operation and to use almost the entire region of the solid-state dye cell.

  18. Emerging solid-state laser technology by lidar/DIAL remote sensing

    Science.gov (United States)

    Killinger, Dennis

    1992-01-01

    Significant progress has been made in recent years in the development of new, solid-state laser sources. This talk will present an overview of some of the new developments in solid-state lasers, and their application toward lidar/DIAL measurements of the atmosphere. Newly emerging lasers such as Ho:YAG, Tm:YAG, OPO, and Ti:Sapphire will be covered, along with the spectroscopic parameters required for differential operational modes of atmospheric remote sensing including Doppler-Windshear lidar, Tunable laser detection of water/CO2, and broad linewidth OPO's for open path detection of pollutant hydrocarbon gases. Additional considerations of emerging laser technology for lidar/DIAL will also be covered.

  19. Single longitudinal mode operation of a solid-state dye laser oscillator

    CERN Document Server

    Lim, G; Kim, H S; Cha, B H; Lee, J M

    2000-01-01

    We have operated a single longitudinal mode of a solid-state dye laser oscillator in a Littman configuration. The host material of the solid-state gain medium was rhodamine dye-doped poly (methyl methacrylate). The pumping source was the second harmonic of a Nd:YAG laser with a repetition rate of 10 Hz. The measured linewidth of the laser output was about 1.5 GHz.

  20. Ultrafast laser spectroscopy in complex solid state materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tianqi [Iowa State Univ., Ames, IA (United States)

    2014-12-01

    This thesis summarizes my work on applying the ultrafast laser spectroscopy to the complex solid state materials. It shows that the ultrafast laser pulse can coherently control the material properties in the femtosecond time scale. And the ultrafast laser spectroscopy can be employed as a dynamical method for revealing the fundamental physical problems in the complex material systems.

  1. High average power solid state laser power conditioning system

    International Nuclear Information System (INIS)

    Steinkraus, R.F.

    1987-01-01

    The power conditioning system for the High Average Power Laser program at Lawrence Livermore National Laboratory (LLNL) is described. The system has been operational for two years. It is high voltage, high power, fault protected, and solid state. The power conditioning system drives flashlamps that pump solid state lasers. Flashlamps are driven by silicon control rectifier (SCR) switched, resonant charged, (LC) discharge pulse forming networks (PFNs). The system uses fiber optics for control and diagnostics. Energy and thermal diagnostics are monitored by computers

  2. Advanced Solid State Lighting for Human Evaluation

    Data.gov (United States)

    National Aeronautics and Space Administration — Lighting intensity and color have a significant impact on human circadian rhythms.  Advanced solid state lighting was developed for the Advanced Exploration System...

  3. Design of laser-driven SiO2-YAG:Ce composite thick film: Facile synthesis, robust thermal performance, and application in solid-state laser lighting

    Science.gov (United States)

    Xu, Jian; Liu, Bingguo; Liu, Zhiwen; Gong, Yuxuan; Hu, Baofu; Wang, Jian; Li, Hui; Wang, Xinliang; Du, Baoli

    2018-01-01

    In recent times, there have been rapid advances in the solid-state laser lighting technology. Due to the large amounts of heat accumulated from the high flux laser radiation, color conversion materials used in solid-state laser lighting devices should possess high durability, high thermal conductivity, and low thermal quenching. The aim of this study is to develop a thermally robust SiO2-YAG:Ce composite thick film (CTF) for high-power solid-state laser lighting applications. Commercial colloidal silica which was used as the source of SiO2, played the roles of an adhesive, a filler, and a protecting agent. Compared to the YAG:Ce powder, the CTF exhibits remarkable thermal stability (11.3% intensity drop at 200 °C) and durability (4.5% intensity drop after 1000 h, at 85 °C and 85% humidity). Furthermore, the effects of the substrate material and the thickness of the CTF on the laser lighting performance were investigated in terms of their thermal quenching and luminescence saturation behaviors, respectively. The CTF with a thickness of 50 μm on a sapphire substrate does not show luminescence saturation, despite a high-power density of incident radiation i.e. 20 W/mm2. These results demonstrate the potential applicability of the CTF in solid-state laser lighting devices.

  4. Solid State Laser Technology Development for Atmospheric Sensing Applications

    Science.gov (United States)

    Barnes, James C.

    1998-01-01

    NASA atmospheric scientists are currently planning active remote sensing missions that will enable global monitoring of atmospheric ozone, water vapor, aerosols and clouds as well as global wind velocity. The measurements of these elements and parameters are important because of the effects they have on climate change, atmospheric chemistry and dynamics, atmospheric transport and, in general, the health of the planet. NASA will make use of Differential Absorption Lidar (DIAL) and backscatter lidar techniques for active remote sensing of molecular constituents and atmospheric phenomena from advanced high-altitude aircraft and space platforms. This paper provides an overview of NASA Langley Research Center's (LaRC's) development of advanced solid state lasers, harmonic generators, and wave mixing techniques aimed at providing the broad range of wavelengths necessary to meet measurement goals of NASA's Earth Science Enterprise.

  5. Laser solid sampling for a solid-state-detector ICP emission spectrometer

    International Nuclear Information System (INIS)

    Noelte, J.; Moenke-Blankenburg, L.; Schumann, T.

    1994-01-01

    Solid sampling with laser vaporization has been coupled to an ICP emission spectrometer with an Echelle optical system and a solid-state-detector for the analysis of steel and soil samples. Pulsation of the vaporized material flow was compensated by real-time background correction and internal standardization, resulting in good accuracy and precision. (orig.)

  6. Solid state lasers II; Proceedings of the Meeting, Los Angeles, CA, Jan. 24, 25, 1991

    International Nuclear Information System (INIS)

    Dube, G.

    1991-01-01

    Topics presented include an upgrade of the LLNL Nova laser for inertial confinement fusion, the design and energy characteristics of a multisegment glass-disk amplifier, a wavemeter for tuning solid state lasers, and the fabrication of laser materials by laser-heated pedestal growth. Also presented are the suppression of relaxation oscillations in flash-pumped 2-micron lasers, diode pumping of tunable Cr-doped lasers, 2D periodic structures in a solid state laser resonator, and single-frequency solid state lasers and amplifiers

  7. Progress on High-Energy 2-micron Solid State Laser for NASA Space-Based Wind and Carbon Dioxide Measurements

    Science.gov (United States)

    Singh, Upendra N.

    2011-01-01

    Sustained research efforts at NASA Langley Research Center during last fifteen years have resulted in significant advancement of a 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurements from ground, air and space-borne platforms. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.

  8. All Solid State Optical Pulse Shaper for the OMEGA Laser Fusion Facility

    International Nuclear Information System (INIS)

    Okishev, A.V.; Skeldon, M.D.; Keck, R.L.; Seka, W.

    2000-01-01

    OAK-B135 All Solid State Optical Pulse Shaper for the OMEGA Laser Fusion Facility. The authors have developed an all-solid-state, compact, computer-controlled, flexible optical pulse shaper for the OMEGA laser facility. This pulse shaper produces high bandwidth, temporally shaped laser pulses that meet OMEGA requirements. The design is a significant simplification over existing technology with improved performance capabilities

  9. Advanced solid state batteries

    Energy Technology Data Exchange (ETDEWEB)

    Levasseur, A; Delmas, C; Menetrier, M; Hagenmuller, P

    1984-01-01

    Direct electrochemical storage of electricity is attractive because of its adaptability to vehicle traction as well as to stationary applications. Important advancements are necessary to improve primary or secondary batteries so far used. The aim of this study was to develop and to characterize materials for the next generation of advanced, rechargeable solid state batteries for vehicle transport and stationary storage applications. One of the best electricity storage systems was the lithium/intercalation compound secondary battery, though up to now the behavior of liquid organic electrolytes did not allow for good recycling in such systems. The research program for these batteries is described.

  10. Future Solid State Lighting using LEDs and Diode Lasers

    DEFF Research Database (Denmark)

    Petersen, Paul Michael

    2014-01-01

    applications. Within the coming years, it is expected that the efficiency of blue laser diodes will approach the efficiency of infrared diode lasers. This will enable high efficiency white light generation with very high lumen per watt values. SSL today is mainly based on phosphor converted blue light emitting......Lighting accounts for 20% of all electrical energy usage. Household lighting and commercial lighting such as public and street lighting are responsible for significant greenhouse gas emissions. Therefore, currently many research initiatives focus on the development of new light sources which shows...... significant savings. Solid state lighting (SSL) based on LEDs is today the most efficient light source for generation of high quality white light. Diode lasers, however, have the potential of being more efficient than LEDs for the generation of white light. A major advantage using diode lasers for solid state...

  11. Advances in Solid State Physics

    CERN Document Server

    Haug, Rolf

    2008-01-01

    The present volume 47 of the Advances in Solid State Physics contains the written version of a large number of the invited talks of the 2007 Spring Meeting of the Arbeitskreis Festkörperphysik which was held in Regensburg, Germany, from March 26 to 30, 2007 in conjunction with the 71st Annual Meeting of the Deutsche Physikalische Gesellschaft.It gives an overview of the present status of solid state physics where low-dimensional systems such as quantum dots and quantum wires are dominating. The importance of magnetic materials is reflected by the large number of contributions in the part dealing with ferromagnetic films and particles. One of the most exciting achievements of the last couple of years is the successful application of electrical contacts to and the investigation of single layers of graphene. This exciting physics is covered in Part IV of this book. Terahertz physics is another rapidly moving field which is presented here by five contributions. Achievements in solid state physics are only rarely...

  12. Solid-state disk amplifiers for fusion-laser systems

    Energy Technology Data Exchange (ETDEWEB)

    Martin, W.E.; Trenholme, J.B.; Linford, G.J.; Yarema, S.M.; Hurley, C.A.

    1981-09-01

    We review the design, performance, and operation of large-aperture (10 to 46 cm) solid-state disk amplifiers for use in laser systems. We present design data, prototype tests, simulations, and projections for conventional cylindrical pump-geometry amplifiers and rectangular pump-geometry disk amplifiers. The design of amplifiers for the Nova laser system is discussed.

  13. Cladding for transverse-pumped solid-state laser

    Science.gov (United States)

    Byer, Robert L. (Inventor); Fan, Tso Y. (Inventor)

    1989-01-01

    In a transverse pumped, solid state laser, a nonabsorptive cladding surrounds a gain medium. A single tranverse mode, namely the Transverse Electromagnetic (TEM) sub 00 mode, is provided. The TEM sub 00 model has a cross sectional diameter greater than a transverse dimension of the gain medium but less than a transverse dimension of the cladding. The required size of the gain medium is minimized while a threshold for laser output is lowered.

  14. Physics of laser fusion. Volume IV. The future development of high-power solid-state laser systems

    International Nuclear Information System (INIS)

    Emmett, J.L.; Krupke, W.F.; Trenholme, J.B.

    1982-11-01

    Solid state lasers, particularly neodymium glass systems, have undergone intensive development during the last decade. In this paper, we review solid state laser technology in the context of high-peak-power systems for inertial confinement fusion. Specifically addressed are five major factors: efficiency, wavelength flexibility, average power, system complexity, and cost; these factors today limit broader application of the technology. We conclude that each of these factors can be greatly improved within current fundamental physical limits. We further conclude that the systematic development of new solid state laser madia, both vitreous and crystalline, should ultimately permit the development of wavelength-flexible, very high average power systems with overall efficiencies in the range of 10 to 20%

  15. Diode-pumped solid state laser. (Part V). ; Short pulse laser oscillation. Handotai laser reiki kotai laser. 5. ; Tan pulse hasshin

    Energy Technology Data Exchange (ETDEWEB)

    Kuwabara, M.; Bando, N. (Asahi Glass Co. Ltd., Tokyo (Japan))

    1991-12-25

    A semiconductor laser (LD) excited solid state laser using an LD as an excited light source is under discussion for its practical applications to measurements, processing, communications, office automation, and medical areas. This paper describes the discussions given on the short pulse transmission using AOQ switching elements in the LD excited solid state laser with a long wave length band (1.3{mu}m), which is expected of its application in the communications and measurements area. Based on a possibility of raising a measurements resolution by making the pluses in the LD excited solid state laser, and experiments were performed using Nd:YLF as a laser host. as a results, it was found that the smaller the effective mode volume V {sub eff},the smaller the pulse width, and that the ratio of number of initial inversion distribution (N{sub i}/N{sub t}), an important parameter to determine pulse widths, can be obtained from the ratio of the LD exciting light to the input power (P{sub in}/P{sub t}). 7 refs., 14 figs., 2 tabs.

  16. Solid state microcavity dye lasers fabricated by nanoimprint lithography

    DEFF Research Database (Denmark)

    Nilsson, Daniel; Nielsen, Theodor; Kristensen, Anders

    2004-01-01

    propagating TE–TM modes. The laser cavity has the lateral shape of a trapezoid, supporting lasing modes by reflection on the vertical cavity walls. The solid polymer dye lasers emit laterally through one of the vertical cavity walls, when pumped optically through the top surface by means of a frequency...... doubled, pulsed Nd:YAG laser. Lasing in the wavelength region from 560 to 570 nm is observed from a laser with a side-length of 50 µm. In this proof of concept, the lasers are multimode with a mode wavelength separation of approximately 1.6 nm, as determined by the waveguide propagation constant......We present a solid state polymer microcavity dye laser, fabricated by thermal nanoimprint lithography (NIL) in a dye-doped thermoplast. The thermoplast poly-methylmethacrylate (PMMA) is used due to its high transparency in the visible range and its robustness to laser radiation. The laser dye...

  17. Development of Ceramic Solid-State Laser Host Material

    Science.gov (United States)

    Prasad, Narasimha S.; Trivedi, Sudhir; Kutcher, Susan; Wang, Chen-Chia; Kim, Joo-Soo; Hommerich, Uwe; Shukla, Vijay; Sadangi, Rajendra

    2009-01-01

    Polycrystalline ceramic laser materials are gaining importance in the development of novel diode-pumped solid-state lasers. Compared to single-crystals, ceramic laser materials offer advantages in terms of ease of fabrication, shape, size, and control of dopant concentrations. Recently, we have developed Neodymium doped Yttria (Nd:Y2O3) as a solid-state ceramic laser material. A scalable production method was utilized to make spherical non agglomerated and monodisperse metastable ceramic powders of compositions that were used to fabricate polycrystalline ceramic material components. This processing technique allowed for higher doping concentrations without the segregation problems that are normally encountered in single crystalline growth. We have successfully fabricated undoped and Neodymium doped Yttria material up to 2" in diameter, Ytterbium doped Yttria, and erbium doped Yttria. We are also in the process of developing other sesquioxides such as scandium Oxide (Sc2O3) and Lutesium Oxide (Lu2O3) doped with Ytterbium, erbium and thulium dopants. In this paper, we present our initial results on the material, optical, and spectroscopic properties of the doped and undoped sesquioxide materials. Polycrystalline ceramic lasers have enormous potential applications including remote sensing, chem.-bio detection, and space exploration research. It is also potentially much less expensive to produce ceramic laser materials compared to their single crystalline counterparts because of the shorter fabrication time and the potential for mass production in large sizes.

  18. Advances in Solid State Physics

    CERN Document Server

    Haug, Rolf

    2007-01-01

    The present volume 46 of Advances in Solid State Physics contains the written versions of selected invited lectures from the spring meeting of the Arbeitskreis Festkörperphysik of the Deutsche Physikalische Gesellschaft which was held from 27 to 31 March 2006 in Dresden, Germany. Many topical talks given at the numerous symposia are included. Most of these were organized collaboratively by several of the divisions of the Arbeitskreis. The topis range from zero-dimensional physics in quantum dots, molecules and nanoparticles over one-dimensional physics in nanowires and 1d systems to more applied subjects like optoelectronics and materials science in thin films. The contributions span the whole width of solid-state physics from truly basic science to applications.

  19. Tunable solid-state laser technology for applications to scientific and technological experiments from space

    Science.gov (United States)

    Allario, F.; Taylor, L. V.

    1986-01-01

    Current plans for the Earth Observing System (EOS) include development of a lidar facility to conduct scientific experiments from a polar orbiting platforms. A recommended set of experiments were scoped, which includes techniques of atmospheric backscatter (Lidar), Differential Absorption Lidar (DIAL), altimetry, and retroranging. Preliminary assessments of the resources (power, weight, volume) required by the Eos Lidar Facility were conducted. A research program in tunable solid state laser technology was developed, which includes laser materials development, modeling and experiments on the physics of solid state laser materials, and development of solid state laser transmitters with a strong focus on Eos scientific investigations. Some of the system studies that were conducted which highlight the payoff of solid state laser technology for the Eos scientific investigations will be discussed. Additionally, a summary of some promising research results which have recently emerged from the research program will be presented.

  20. Laser cooling of solids

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM

    2008-01-01

    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  1. High-average-power solid state lasers

    International Nuclear Information System (INIS)

    Summers, M.A.

    1989-01-01

    In 1987, a broad-based, aggressive R ampersand D program aimed at developing the technologies necessary to make possible the use of solid state lasers that are capable of delivering medium- to high-average power in new and demanding applications. Efforts were focused along the following major lines: development of laser and nonlinear optical materials, and of coatings for parasitic suppression and evanescent wave control; development of computational design tools; verification of computational models on thoroughly instrumented test beds; and applications of selected aspects of this technology to specific missions. In the laser materials areas, efforts were directed towards producing strong, low-loss laser glasses and large, high quality garnet crystals. The crystal program consisted of computational and experimental efforts aimed at understanding the physics, thermodynamics, and chemistry of large garnet crystal growth. The laser experimental efforts were directed at understanding thermally induced wave front aberrations in zig-zag slabs, understanding fluid mechanics, heat transfer, and optical interactions in gas-cooled slabs, and conducting critical test-bed experiments with various electro-optic switch geometries. 113 refs., 99 figs., 18 tabs

  2. Solar Pumped High Power Solid State Laser for Space Applications

    Science.gov (United States)

    Fork, Richard L.; Laycock, Rustin L.; Green, Jason J. A.; Walker, Wesley W.; Cole, Spencer T.; Frederick, Kevin B.; Phillips, Dane J.

    2004-01-01

    Highly coherent laser light provides a nearly optimal means of transmitting power in space. The simplest most direct means of converting sunlight to coherent laser light is a solar pumped laser oscillator. A key need for broadly useful space solar power is a robust solid state laser oscillator capable of operating efficiently in near Earth space at output powers in the multi hundred kilowatt range. The principal challenges in realizing such solar pumped laser oscillators are: (1) the need to remove heat from the solid state laser material without introducing unacceptable thermal shock, thermal lensing, or thermal stress induced birefringence to a degree that improves on current removal rates by several orders of magnitude and (2) to introduce sunlight at an effective concentration (kW/sq cm of laser cross sectional area) that is several orders of magnitude higher than currently available while tolerating a pointing error of the spacecraft of several degrees. We discuss strategies for addressing these challenges. The need to remove the high densities of heat, e.g., 30 kW/cu cm, while keeping the thermal shock, thermal lensing and thermal stress induced birefringence loss sufficiently low is addressed in terms of a novel use of diamond integrated with the laser material, such as Ti:sapphire in a manner such that the waste heat is removed from the laser medium in an axial direction and in the diamond in a radial direction. We discuss means for concentrating sunlight to an effective areal density of the order of 30 kW/sq cm. The method integrates conventional imaging optics, non-imaging optics and nonlinear optics. In effect we use a method that combines some of the methods of optical pumping solid state materials and optical fiber, but also address laser media having areas sufficiently large, e.g., 1 cm diameter to handle the multi-hundred kilowatt level powers needed for space solar power.

  3. PERFORMANCE OPTIMIZATION OF THE DIODE-PUMPED SOLID-STATE LASER FOR SPACE APPLICATIONS

    Directory of Open Access Journals (Sweden)

    D. A. Arkhipov

    2015-11-01

    Full Text Available Subject of Research. Thermophysical and optical techniques of parameter regulation for diode pumped solid-state laser are studied as applied to space laser communication and laser ranging lines. Methods. The investigations are carried out on the base of the original design of diode pumped solid-state laser module that includes the following: Nd:YAG slab element, diode pumped by 400W QCW produced by NORTHROP GRUMMAN; two-pass unstable resonator with rotation of the laser beam aperture about its axis through 1800; the output mirror of the resonator with a variable reflection coefficient; hyperthermal conductive plates for thermal stabilization of the laser diode generation modes. The presence of thermal conductive plates excludes conventional running water systems applied as cooling systems for solid-state laser components. The diodes temperature stabilization is achieved by applying the algorithm of pulse-width modulation of power of auxiliary electric heaters. To compensate for non-stationary thermal distortions of the slab refractive index, the laser resonator scheme comprises a prism reflector with an apex angle of 1200. Narrow sides of the prism are covered with reflective coating, and its wide side is sprayed with antireflection coating. The beam aperture is turned around its axis through 1800 because of triple reflection of the beam inside the prism. The turning procedure leads to compensating for the output beam phase distortions in view of symmetric character of the aberrations of slab refractive index. To suppress parasitic oscillations inside the slab, dielectric coatings of wide sides of the slab are used. Main Results. We have demonstrated theoretically and experimentally that the usage of hyperthermal conductive plates together with the algorithm of pulse-width modulation provides stabilizing of the diode substrate temperature accurate within ± 0.1 °С and smoothing the temperature distribution along the plate surface accurate

  4. Advanced Solid State Lighting for AES Deep Space Hab

    Data.gov (United States)

    National Aeronautics and Space Administration — The advanced Solid State Lighting (SSL) assemblies augmented 2nd generation modules under development for the Advanced Exploration Systems Deep Space Habitat in...

  5. Tunable ultraviolet solid-state dye laser based on MPMMA doped with pyrromethene 597

    International Nuclear Information System (INIS)

    Jiang, Y G; Fan, R W; Xia, Y Q; Chen, D Y

    2011-01-01

    Solid-state dye sample based on modified polymethyl methacrylate (MPMMA) co-doped with pyrromethene 597 (PM597), and coumarin 460 (C460) were prepared. A frequency-doubled pulsed Nd:YAG laser is used to pump solid-state dye sample, and the narrow linewidth dye laser of 94.4 mJ was obtained at 582 nm in an oscillator-amplifier configuration. Using a beta-BaB 2 O 4 (BBO) crystal to frequency double the dye laser into ultraviolet (UV), a tuning range from 279 to 305 nm was demonstrated from a single doped PM597 dye. To the best of our knowledge, the UV tuning range is the best under the same condition so far. The conversion slope efficiency from solid dye laser to UV laser was 8.9% and the highest UV laser output energy reached 6.94 mJ at 291 nm

  6. Aberrations and focusability in large solid-state-laser systems

    International Nuclear Information System (INIS)

    Simmons, W.W.

    1981-01-01

    Solid state lasers for fusion experiments must reliably deliver maximum power to small (approximately .5 mm) targets from stand-off focal distances of 1 m or more. This requirement places stringent limits upon the optical quality of the several major components - amplifiers, Faraday isolators, spatial filters - in each amplifier train. Residual static aberrations in optical components are transferred to the beam as it traverses the optical amplifier chain. Although individual components are typically less than lambda/20 for components less than 10 cm clear aperture; and less than lambda/10 for components less than 20 cm clear aperture; the large number of such components in optical series results in a wavefront error that may exceed one wave for modern solid state lasers. For pulse operation, the focal spot is additionally broadened by intensity dependent nonlinearities. Specific examples of the performance of large aperture components will be presented within the context of the Argus and Shiva laser systems, which are presently operational at Lawrence Livermore National Laboratory. Design requirements upon the larger aperture Nova laser components, up to 74 cm in clear aperture, will also be discussed; these pose a significant challenge to the optical industry

  7. The future of diode pumped solid state lasers and their applicability to the automotive industry

    Science.gov (United States)

    Solarz, R.; Beach, R.; Hackel, L.

    1994-03-01

    The largest commercial application of high power lasers is for cutting and welding. Their ability to increase productivity by introducing processing flexibility and integrated automation into the fabrication process is well demonstrated. This paper addresses the potential importance of recent developments in laser technology to further impact their use within the automotive industry. The laser technology we will concentrate upon is diode laser technology and diode-pumped solid-state laser technology. We will review present device performance and cost and make projections for the future in these areas. Semiconductor laser arrays have matured dramatically over the last several years. They are lasers of unparalleled efficiency (greater than 50%), reliability (greater than 10,000 hours of continuous operation), and offer the potential of dramatic cost reductions (less than a dollar per watt). They can be used directly in many applications or can be used to pump solid-state lasers. When used as solid-state laser pump arrays, they simultaneously improve overall laser efficiency, reduce size, and improve reliability.

  8. High brightness diode-pumped organic solid-state laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhuang; Mhibik, Oussama; Nafa, Malik; Chénais, Sébastien; Forget, Sébastien, E-mail: sebastien.forget@univ-paris13.fr [Université Paris 13, Sorbonne Paris Cité, Laboratoire de Physique des Lasers, F-93430, Villetaneuse (France); CNRS, UMR 7538, LPL, F-93430, Villetaneuse (France)

    2015-02-02

    High-power, diffraction-limited organic solid-state laser operation has been achieved in a vertical external cavity surface-emitting organic laser (VECSOL), pumped by a low-cost compact blue laser diode. The diode-pumped VECSOLs were demonstrated with various dyes in a polymer matrix, leading to laser emissions from 540 nm to 660 nm. Optimization of both the pump pulse duration and output coupling leads to a pump slope efficiency of 11% for a DCM based VECSOLs. We report output pulse energy up to 280 nJ with 100 ns long pump pulses, leading to a peak power of 3.5 W in a circularly symmetric, diffraction-limited beam.

  9. Overview of solid state lasers with applications as LIDAR transmitters and optical image amplifiers

    International Nuclear Information System (INIS)

    Powell, R.C.; Basiev, T.T.; Zverev, P.G.

    2000-01-01

    Full text: This talk will review the current status of solid state lasers. Then a specific class of solid state lasers, Raman lasers, will be discussed as a specific example of new technology development. The spectroscopic properties of the materials are used in these lasers is presented and the use of these materials in shared-, coupled-, and external-resonator laser systems is described. System design parameters affecting efficiency, beam quality, and temporal pulse width are discussed. Examples will be presented of the use of these lasers for transmitters in atmospheric and marine imaging light detection and ranging (LIDAR) systems and in optical amplifiers

  10. Single-mode solid-state polymer dye laser fabricated with standard I-line UV lithography

    DEFF Research Database (Denmark)

    Balslev, Søren; Mironov, Andrej; Nilsson, Daniel

    2005-01-01

    We present single-mode solid-state polymer dye lasers fabricated with standard UV lithography. The lasers use a high-order Bragg grating and rely on index-tuning of a photosensitive polymer for waveguiding. The gain medium is Rhodamine 6G.......We present single-mode solid-state polymer dye lasers fabricated with standard UV lithography. The lasers use a high-order Bragg grating and rely on index-tuning of a photosensitive polymer for waveguiding. The gain medium is Rhodamine 6G....

  11. Army Solid State Laser Program: Design, Operation, and Mission Analysis for a Heat-Capacity Laser

    International Nuclear Information System (INIS)

    Dane, C B; Flath, L; Rotter, M; Fochs, S; Brase, J; Bretney, K

    2001-01-01

    Solid-state lasers have held great promise for the generation of high-average-power, high-quality output beams for a number of decades. However, the inherent difficulty of scaling the active solid-state gain media while continuing to provide efficient cooling has limited demonstrated powers to 10X the diffraction limit. Challenges posed by optical distortions and depolarization arising from internal temperature gradients in the gain medium of a continuously cooled system are only increased for laser designs that would attempt to deliver the high average power in the form of high energy pulses (>25J) from a single coherent optical aperture. Although demonstrated phase-locking of multiple laser apertures may hold significant promise for the future scaling of solid-state laser systems,1 the continuing need for additional technical development and innovation coupled with the anticipated complexity of these systems effectively limits this approach for near-term multi-kW laser operation outside of a laboratory setting. We have developed and demonstrated a new operational mode for solid-state laser systems in which the cooling of the gain medium is separated in time from the lasing cycle. In ''heat-capacity'' operation, no cooling takes place during lasing. The gain medium is pumped very uniformly and the waste heat from the excitation process is stored in the solid-state gain medium. By depositing the heat on time scales that are short compared to thermal diffusion across the optical aperture, very high average power operation is possible while maintaining low optical distortions. After a lasing cycle, aggressive cooling can then take place in the absence of lasing, limited only by the fracture limit of the solid-state medium. This mode of operation is ideally suited for applications that require 1-30s engagements at very high average power. If necessary, multiple laser apertures can provide continuous operation. Land Combat mission analysis of a stressing air defense

  12. High-Power, Solid-State, Deep Ultraviolet Laser Generation

    Directory of Open Access Journals (Sweden)

    Hongwen Xuan

    2018-02-01

    Full Text Available At present, deep ultraviolet (DUV lasers at the wavelength of fourth harmonics of 1 μm (266 nm/258 nm and at the wavelength of 193 nm are widely utilized in science and industry. We review the generation of these DUV lasers by nonlinear frequency conversion processes using solid-state/fiber lasers as the fundamental frequency. A DUV laser at 258 nm by fourth harmonics generation (FHG could achieve an average power of 10 W with a beam quality of M2 < 1.5. Moreover, 1 W of average power at 193 nm was obtained by sum-frequency generation (SFG. A new concept of 193-nm DUV laser generation by use of the diamond Raman laser is also introduced. A proof-of-principle experiment of the diamond Raman laser is reported with the conversion efficiency of 23% from the pump to the second Stokes wavelength, which implies the potential to generate a higher power 193 nm DUV laser in the future.

  13. Advances in Solid State Physics

    CERN Document Server

    Haug, Rolf

    2009-01-01

    The present volume 48 of the Advances in Solid State Physics contains the written version of a large number of the invited talks of the 2008 Spring Meeting of the DPG section Condensed Matter Physics (Sektion kondensierte Materie der DPG) which was held in Berlin, Germany, and gives a nice overview of the present status of condensed matter physics. Low-dimensional systems are dominating the field and especially nanowires and quantum dots. In recent years one learned how to produce nanowires directly during a growth process. Therefore, a number of articles is related to such nanowires. In nanoparticles and quantum dots, the dimensionality is further reduced and we learn more and more how to produce such systems in a defined way and what effects result from the confinement in all three dimensions. Spin effects and magnetism is another important field of present-day research in solid state physics. The third chapter covers this physics. The growing interest into organic materials and biological systems is reflec...

  14. Damage resistant optics for a mega-joule solid-state laser

    International Nuclear Information System (INIS)

    Campbell, J.H.; Rainer, F.; Kozlowski, M.; Wolfe, C.R.; Thomas, I.; Milanovich, F.

    1990-01-01

    Research on Inertial Confinement Fusion (ICF) has progressed rapidly in the past several years. As a consequence, LLNL is developing plans to upgrade the current 120 kJ solid state (Nd +3 -phosphate glass) Nova laser to a 1.5 to 2 megajoule system with the goal of achieving fusion ignition. The design of the planned Nova Upgrade is briefly discussed. Because of recent improvements in the damage resistance of optical materials it is now technically and economically feasible to build a megajoule-class solid state laser. Specifically, the damage threshold of Nd +3 -doped phosphate laser glass, multilayer dielectric coatings, and non-linear optical crystals (e.g., KDP) have been dramatically improved. These materials now meet the fluence requirements for a 1.5--2 MJ Nd 3+ -glass laser operating at 1054 and 351 nm and at a pulse length of 3 ns. The recent improvements in damage thresholds are reviewed; threshold data at both 1064 and 355 nm and the measured pulse length scaling are presented. 20 refs., 9 figs., 2 tabs

  15. Diode-pumped solid-state-laser drivers and the competitiveness of inertial fusion energy

    International Nuclear Information System (INIS)

    Orth, C.D.

    1993-12-01

    Based on five technical advances at LLNL and a new systems-analysis code that we have written, we present conceptual designs for diode-pumped solid-state laser (DPSSL) drivers for Inertial Fusion Energy (IFE) power plants. Such designs are based on detailed physics calculations for the drive, and on generic scaling relationships for the reactor and balance of plant (BOP). We describe the performance and economics of such power plants, show how sensitive these results are to changes in the major parameters, and indicate how technological improvements can make DPSSL-driven IFE plants more competitive

  16. Kilowatt average power 100 J-level diode pumped solid state laser

    Czech Academy of Sciences Publication Activity Database

    Mason, P.; Divoký, Martin; Ertel, K.; Pilař, Jan; Butcher, T.; Hanuš, Martin; Banerjee, S.; Phillips, J.; Smith, J.; De Vido, M.; Lucianetti, Antonio; Hernandez-Gomez, C.; Edwards, C.; Mocek, Tomáš; Collier, J.

    2017-01-01

    Roč. 4, č. 4 (2017), s. 438-439 ISSN 2334-2536 R&D Projects: GA MŠk LO1602; GA MŠk LM2015086 Institutional support: RVO:68378271 Keywords : diode-pumped * solid state * laser Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 7.727, year: 2016

  17. Solid state pump lasers with high power and high repetition rate

    International Nuclear Information System (INIS)

    Oba, Masaki; Kato, Masaaki; Arisawa, Takashi

    1995-01-01

    We built a laser diode pumped solid state green laser (LDPSSGL) rated at high repetition rate. Two laser heads are placed in one cavity with a rotator in between to design to avoid thermal lensing and thermal birefringence effect. Although average green laser power higher than 10 W was obtained at 1 kHz repetition rate with pulse width of 20-30 nsec, the beam quality was so much deteriorated that energy efficiency was as low as 2 %. Learning from this experience that high power oscillator causes a lot of thermal distortion not only in the laser rod but also in the Q-switch device, we proceeded to built a oscillator/amplifier system. A low power oscillator has a slab type crystal in the cavity. As a result spatial distribution of laser power was extremely improved. As we expect that the high repetition rate solid state laser should be CW operated Q-switch type laser from the view point of lifetime of diode lasers, a conventional arc lamp pumped CW Q-switch green YAG laser of which the repetition rate is changeable from 1 kHz to 5 kHz and the pulse width is 250-570 nsec was also tested to obtain pumping characteristics of a dye laser as a function of power, pulse width etc., and dye laser pulse width of 100-130 nsec were obtained. (author)

  18. Efficiency and threshold pump intensity of CW solar-pumped solid-state lasers

    Science.gov (United States)

    Hwang, In H.; Lee, Ja H.

    1991-01-01

    The authors consider the relation between the threshold pumping intensity, the material properties, the resonator parameters, and the ultimate slope efficiencies of various solid-state laser materials for solar pumping. They clarify the relation between the threshold pump intensity and the material parameters and the relation between the ultimate slope efficiency and the laser resonator parameters such that a design criterion for the solar-pumped solid-state laser can be established. Among the laser materials evaluated, alexandrite has the highest slope efficiency of about 12.6 percent; however, it does not seem to be practical for a solar-pumped laser application because of its high threshold pump intensity. Cr:Nd:GSGG is the most promising for solar-pumped lasing. Its threshold pump intensity is about 100 air-mass-zero (AM0) solar constants and its slope efficiency is about 12 percent when thermal deformation is completely prevented.

  19. Short-pulse generation in a diode-end-pumped solid-state laser

    CSIR Research Space (South Africa)

    Ngcobo, S

    2010-09-01

    Full Text Available , Development of High Average Power Picosecond Laser Systems, Opto- Electronic Devices, (2002). INTRODUCTION A Nd:YVO4 modelocked laser has been constructed using a resonator designed according to the theoretical parameters. The laser produced pulses... theoretical PQSML,th of 2.08W. Short-Pulse Generation in a Diode-End-Pumped Solid-State Laser S. Ngcobo1,2, C. Bollig1 and H. Von Bergmann2 1CSIR National Laser Centre, PO Box 395, Pretoria, 0001, South Africa 2Laser Research Center, University...

  20. Design of all solid state tunable single-mode Ti: sapphire laser for nuclear industry

    International Nuclear Information System (INIS)

    Lee, J.H.; Nam, S.M.; Lee, Y.J.; Lee, J.M.; Horn, Roland E.; Wendt, Klaus

    1999-01-01

    We designed a Ti:Sapphire laser pumped by a diode laser pumped solid state laser (DPSSL). The DPSSL was intra-cavity frequency doubled and it had 20 W output power. The Ti:Sapphire laser was designed for single longitudinal mode lasing. For single mode lasing, the laser used several solid etalons. We simulated temporal evolution of the laser pulse and single pass amplification rate of the photons in each modes from rate equations. From the result, we found that single mode lasing is viable in this cavity

  1. High speed real-time wavefront processing system for a solid-state laser system

    Science.gov (United States)

    Liu, Yuan; Yang, Ping; Chen, Shanqiu; Ma, Lifang; Xu, Bing

    2008-03-01

    A high speed real-time wavefront processing system for a solid-state laser beam cleanup system has been built. This system consists of a core2 Industrial PC (IPC) using Linux and real-time Linux (RT-Linux) operation system (OS), a PCI image grabber, a D/A card. More often than not, the phase aberrations of the output beam from solid-state lasers vary fast with intracavity thermal effects and environmental influence. To compensate the phase aberrations of solid-state lasers successfully, a high speed real-time wavefront processing system is presented. Compared to former systems, this system can improve the speed efficiently. In the new system, the acquisition of image data, the output of control voltage data and the implementation of reconstructor control algorithm are treated as real-time tasks in kernel-space, the display of wavefront information and man-machine conversation are treated as non real-time tasks in user-space. The parallel processing of real-time tasks in Symmetric Multi Processors (SMP) mode is the main strategy of improving the speed. In this paper, the performance and efficiency of this wavefront processing system are analyzed. The opened-loop experimental results show that the sampling frequency of this system is up to 3300Hz, and this system can well deal with phase aberrations from solid-state lasers.

  2. Solid state lasers: a major direction in quantum electronics

    International Nuclear Information System (INIS)

    Shcherbakov, I.A.

    2004-01-01

    The aim of the report is to analyze development of solid-state lasers (SSL) as one of the most important avenues of the quantum electronics. The obtained intensity of a laser radiation at the focus equal to 5x10 1 0 W/cm 2 (the field intensity equal to about 5x10 1 0 V/cm 2 ) is noted to enable to observe nonlinear quantum- electrodynamic effects. Besides, one managed to increase the SSL efficiency conventionally equal to maximum 3% up to 48-50%. Paper describes new types of SSLs, namely, the crystalline fiber lasers with the lateral gradient of the index of refraction [ru

  3. Enhanced 2D-image upconversion using solid-state lasers

    DEFF Research Database (Denmark)

    Pedersen, Christian; Karamehmedovic, Emir; Dam, Jeppe Seidelin

    2009-01-01

    the image inside a nonlinear PPKTP crystal located in the high intra-cavity field of a 1342 nm solid-state Nd:YVO4 laser, an upconverted image at 488 nm is generated. We have experimentally achieved an upconversion efficiency of 40% under CW conditions. The proposed technique can be further adapted for high...

  4. Toward high brightness, multi-kilowatt solid state lasers

    International Nuclear Information System (INIS)

    Zapata, L.E.; Manes, K.R.

    1990-11-01

    High average power (HAP) solid state laser output with improved beam quality has introduced new capabilities in materials processing. At the 500 W level and with a beam quality of a ''few'' times the diffraction limit, the General Electric NY slab is able to drill 5 cm of stainless steel in a few seconds. We expect that 2--3 kW of near infrared laser output in a low order spatial mode would enable metal working now unknown to industry. The HAP output of slab lasers is limited by the size of the available laser crystals and the pump power. Core free, six cm diameter NY boules have been grown on an experimental basis. High optical quality NG can be obtained up to 10 cm in diameter. We present the results of our modeling based on these crystals pumped by advanced arc-lamps or laser diode arrays. We project HAP laser outputs of 1.6 kW from an existing Vortek pumped NG oscillator and about 2 kW from diode pumped NY device. Several kW of laser output can be expected from two such slabs in a MOPA configuration before optical damage limits are reached. The three dimensional stress-optic code which we used to optimize our designs, was normalized to available experimental data obtained with the above NG slab at the 500 W level and a 40 W diode pumped NY test bed. Our calculations indicate the essential parameters for attainment of high beam quality. Cooling uniformity across the pumped faces of the slab is critical and the location of the transition between pumped and un-pumped regions towards the slab tips is very important. A flat pumping profile was found to be desirable and predicted one wave of distortion which should be correctable over about 75% of the aperture however, an even better wavefront was predicted over 90% of the aperture when the regions near the edges of the slab were slightly over-pumped relative to the central regions and the regions near to the ends were tapered to compensate for transition effects

  5. Laser light scattering instrument advanced technology development

    Science.gov (United States)

    Wallace, J. F.

    1993-01-01

    The objective of this advanced technology development (ATD) project has been to provide sturdy, miniaturized laser light scattering (LLS) instrumentation for use in microgravity experiments. To do this, we assessed user requirements, explored the capabilities of existing and prospective laser light scattering hardware, and both coordinated and participated in the hardware and software advances needed for a flight hardware instrument. We have successfully breadboarded and evaluated an engineering version of a single-angle glove-box instrument which uses solid state detectors and lasers, along with fiber optics, for beam delivery and detection. Additionally, we have provided the specifications and written verification procedures necessary for procuring a miniature multi-angle LLS instrument which will be used by the flight hardware project which resulted from this work and from this project's interaction with the laser light scattering community.

  6. Dynamics of injection locking in a solid-state laser with intracavity second-harmonic generation

    International Nuclear Information System (INIS)

    Zolotoverkh, I I; Lariontsev, E G

    2000-01-01

    The dynamics of oscillation in a solid-state laser with intracavity second-harmonic generation under the influence of an external signal at the second-harmonic frequency injected into its cavity in the presence of feedback at the double frequency is theoretically studied. Boundaries of the regions of injection locking for three stationary laser states differing in the nonlinear phase incursion caused by radiation conversion into the second harmonic are found. Relaxation oscillations in the stationary state of injection locking are studied. It is shown that the second relaxation frequency, which is related to phase perturbations of the second harmonic and perturbations of the phase difference of waves in a nonlinear crystal, is excited in a single-mode solid-state laser in addition to the fundamental frequency of relaxation oscillations. Conditions are found under which relaxation oscillations at the second relaxation frequency are excited. (lasers)

  7. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 1 presents articles about junction electroluminescence; metal-insulator-semiconductor (MIS) physics; ion implantation in semiconductors; and electron transport through insulating thin films. The book describes the basic physics of carrier injection; energy transfer and recombination mechanisms; state of the art efficiencies; and future prospects for light emitting diodes. The text then discusses solid state spectroscopy, which is the pair spectra observed in gallium phosphide photoluminescence. The extensive studies

  8. Generation of Laguerre-Gaussian Beams Using a Diode Pumped Solid-State Digital Laser

    CSIR Research Space (South Africa)

    Bell, Teboho

    2015-10-01

    Full Text Available The solid state digital laser was used in generation of Laguerre-Gaussian modes, LGpl, of different orders. This work demonstrates that we can generate high-order Laguerre-Gaussian modes with high purity using a digital laser....

  9. Single-mode, All-Solid-State Nd:YAG Laser Pumped UV Converter

    Science.gov (United States)

    Prasad, Narasimha S.; Armstrong, Darrell, J.; Edwards, William C.; Singh, Upendra N.

    2008-01-01

    In this paper, the status of a high-energy, all solid-state Nd:YAG laser pumped nonlinear optics based UV converter development is discussed. The high-energy UV transmitter technology is being developed for ozone sensing applications from space based platforms using differential lidar technique. The goal is to generate greater than 200 mJ/pulse with 10-50 Hz PRF at wavelengths of 308 nm and 320 nm. A diode-pumped, all-solid-state and single longitudinal mode Nd:YAG laser designed to provide conductively cooled operation at 1064 nm has been built and tested. Currently, this pump laser provides an output pulse energy of >1 J/pulse at 50 Hz PRF and a pulsewidth of 22 ns with an electrical-to-optical system efficiency of greater than 7% and a M(sup 2) value of UV converter arrangement basically consists of an IR Optical Parametric Oscillator (OPO) and a Sum Frequency Generator (SFG) setups that are pumped by 532 nm wavelength obtained via Second Harmonic Generation (SHG). In this paper, the operation of an inter cavity SFG with CW laser seeding scheme generating 320 nm wavelength is presented. Efforts are underway to improve conversion efficiency of this mJ class UV converter by modifying the spatial beam profile of the pump laser.

  10. Discrete excitation of mode pulses using a diode-pumped solid-state digital laser

    CSIR Research Space (South Africa)

    Ngcobo, Sandile

    2016-02-01

    Full Text Available In this paper, we experimentally demonstrate novel method of generating discrete excitation of on-demand Lagaurre-Gaussian (LG) mode pulses, in a diode pumped solid-state digital laser. The digital laser comprises of an intra-cavity spatial light...

  11. Development of the plastic solid-dye cell for tunable solid-state dye lasers and study on its optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Do Kyeong; Lee, Jong Min; Cha, Byung Heon; Yi, Jong Hoon; Lee, Kang Soo; Kim, Sung Ho; Lim, Gwon

    2000-01-01

    We have fabricated solid-state dyes with Copolex NK-55, which is the base element of plastic lens, and PMMA. We have measured the longevity of solid-state dyes doped in both polymers and found that PMMA has better properties than Coploex NK-55. We have realized the tuning range of 560-620 nm by doping rhodamine 6Gand rhodamin B in the manufactured solid-state dye laser oscillators. In the standing-wave cavity we achieved the slop efficiency of 10.8 percent and in the grazing incidence cavity, 1.2 percent. We have constructed a very compact grazing- incidence cavity which is only 6 cm long and the linewidth of the laser was less than 1.5 GHz with 3-ns pulse duration. And we have fabricated disk-type solid-state dye cell and installed it in the cavity in which the dye cell can be translated and rotated with the help of the two steeping motors. By this we could constantly changed the illuminated area of the dye cell and , therefore, were able to achieve long time operation and to use almost the entire region of the solid-state dye cell. (author)

  12. Development of the plastic solid-dye cell for tunable solid-state dye lasers and study on its optical properties

    International Nuclear Information System (INIS)

    Ko, Do Kyeong; Lee, Jong Min; Cha, Byung Heon; Yi, Jong Hoon; Lee, Kang Soo; Kim, Sung Ho; Lim, Gwon

    2000-01-01

    We have fabricated solid-state dyes with Copolex NK-55, which is the base element of plastic lens, and PMMA. We have measured the longevity of solid-state dyes doped in both polymers and found that PMMA has better properties than Coploex NK-55. We have realized the tuning range of 560-620 nm by doping rhodamine 6G and rhodamin B in the manufactured solid-state dye laser oscillators. In the standing-wave cavity we achieved the slop efficiency of 10.8 percent and in the grazing incidence cavity, 1.2 percent. We have constructed a very compact grazing- incidence cavity which is only 6 cm long and the linewidth of the laser was less than 1.5 GHz with 3-ns pulse duration. And we have fabricated disk-type solid-state dye cell and installed it in the cavity in which the dye cell can be translated and rotated with the help of the two steeping motors. By this we could constantly changed the illuminated area of the dye cell and , therefore, were able to achieve long time operation and to use almost the entire region of the solid-state dye cell. (author)

  13. Solid State Division

    International Nuclear Information System (INIS)

    Green, P.H.; Watson, D.M.

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces

  14. Solid State Division

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Watson, D.M. (eds.)

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  15. High energy bursts from a solid state laser operated in the heat capacity limited regime

    Science.gov (United States)

    Albrecht, G.; George, E.V.; Krupke, W.F.; Sooy, W.; Sutton, S.B.

    1996-06-11

    High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes. 5 figs.

  16. Photoemission from excited states in rare gas solids by combining synchrotronradiation with a laser

    International Nuclear Information System (INIS)

    Bernstorff, S.

    1984-09-01

    A new spectroscopic method has been developed to study excited states in rare gas solids: Excitons and conductionband-states are populated by synchrotron radiation (photon energy hw SR =5 - 30 eV). Subsequently electrons from these bound or conduction band-states are excited above the vacuum level of the solid by a pulsed dye laser (hw L =1.9 - 3.7 eV). This experimental technique was applied to solid Xe, Kr, Ar and Ne. (orig./GSCH)

  17. A Tunable Mid-Infrared Solid-State Laser with a Compact Thermal Control System

    Directory of Open Access Journals (Sweden)

    Deyang Yu

    2018-05-01

    Full Text Available Tunable mid-infrared lasers are widely used in laser spectroscopy, gas sensing and many other related areas. In order to solve heat dissipation problems and improve the environmental temperature adaptability of solid-state laser sources, a tunable all-fiber laser pumped optical parametric oscillator (OPO was established, and a compact thermal control system based on thermoelectric coolers, an automatic temperature control circuit, cooling fins, fans and heat pipes was integrated and designed for the laser. This system is compact, light and air-cooling which satisfies the demand for miniaturization of lasers. A mathematical model and method was established to estimate the cooling capacity of this thermal control system under different ambient environments. A finite-element model was built and simulated to analyze the thermal transfer process. Experiments in room and high temperature environments were carried out and showed that the substrate temperature of a pump module could be maintained at a stable value with controlled precision to 0.2 degrees, while the output power stability of the laser was within ±1%. The experimental results indicate that this compact air-cooling thermal control system could effectively solve the heat dissipation problem of mid-infrared solid-state lasers with a one hundred watts level pump module in room and high temperature environments.

  18. Gigahertz dual-comb modelocked diode-pumped semiconductor and solid-state lasers

    Science.gov (United States)

    Link, S. M.; Mangold, M.; Golling, M.; Klenner, A.; Keller, U.

    2016-03-01

    We present a simple approach to generate simultaneously two gigahertz mode-locked pulse trains from a single gain element. A bi-refringent crystal in the laser cavity splits the one cavity beam into two cross-polarized and spatially separated beams. This polarization-duplexing is successfully demonstrated for both a semiconductor disk laser (i.e. MIXSEL) and a diode-pumped solid-state Nd:YAG laser. The beat between the two beams results in a microwave frequency comb, which represents a direct link between the terahertz optical frequencies and the electronically accessible microwave regime. This dual-output technique enables compact and cost-efficient dual-comb lasers for spectroscopy applications.

  19. Potential of high-average-power solid state lasers

    International Nuclear Information System (INIS)

    Emmett, J.L.; Krupke, W.F.; Sooy, W.R.

    1984-01-01

    We discuss the possibility of extending solid state laser technology to high average power and of improving the efficiency of such lasers sufficiently to make them reasonable candidates for a number of demanding applications. A variety of new design concepts, materials, and techniques have emerged over the past decade that, collectively, suggest that the traditional technical limitations on power (a few hundred watts or less) and efficiency (less than 1%) can be removed. The core idea is configuring the laser medium in relatively thin, large-area plates, rather than using the traditional low-aspect-ratio rods or blocks. This presents a large surface area for cooling, and assures that deposited heat is relatively close to a cooled surface. It also minimizes the laser volume distorted by edge effects. The feasibility of such configurations is supported by recent developments in materials, fabrication processes, and optical pumps. Two types of lasers can, in principle, utilize this sheet-like gain configuration in such a way that phase and gain profiles are uniformly sampled and, to first order, yield high-quality (undistorted) beams. The zig-zag laser does this with a single plate, and should be capable of power levels up to several kilowatts. The disk laser is designed around a large number of plates, and should be capable of scaling to arbitrarily high power levels

  20. A STUDY OF SOLID STATE LASER PASSIVE OPTICAL Q-SWITCHING OPERATION REGIME (Part 1

    Directory of Open Access Journals (Sweden)

    Ion LĂNCRĂNJAN

    2009-09-01

    Full Text Available This paper is the first of a four series treating, theoretically with experimental comparison, the issue of solid state laser passive optical Q-switching regime. In this first paper the technique of solid state lasers passive optical Q-switching is numerically investigated considering the case of longitudinally and transversally uniform photon, population inversion and absorption centres densities. The coupled differential equations defining photon, population inversion and absorption centres densities are numerically solved being the basis of passively optical Q-switched laser functional simulation. The numerical simulations are performed using the several software packages, mostly SCILAB programs. The developed SCILAB programs can be used for a large range of saturable absorption centre and active media parameters, mainly the initial (low signal optical transmittance of the passive optical Q-switch. The developed FORTRAN and SCILAB programs can be applied for passively Q-switched solid state lasers of several types emitting at several NIR wavelengths, in domain 1 ÷ 2 μm. For validating the numerical simulation results are compared with The results of the numerical simulation are compared with experimentally obtained ones, in the case of a LiF:F2- passively Q-switched Nd:YAG. A good agreement between the two kinds of results is observed.

  1. LASERS: Stimulated emission in a solid-state ring laser with a stimulated Brillouin scattering mirror

    Science.gov (United States)

    Barashkov, M. S.; Bel'dyugin, Igor'M.; Zolotarev, M. V.; Krymskiĭ, M. I.; Oshkin, S. P.; Umnov, A. F.; Kharchenko, M. A.

    1990-06-01

    The results are presented of an experimental investigation of a solid-state ring laser with a stimulated Brillouin scattering mirror and lasing initiated by a series of ~ 200-300 ns pulses of 1.06 μm wavelength. It is shown that this laser may be useful for the development of a source with radiation parameters controlled by an external signal (energy, transverse and time structure) and also of a low-threshold mirror for phase self-conjugation of radiation.

  2. Development of a solid state laser of Nd:YLF

    International Nuclear Information System (INIS)

    Amaral Neto, R. do.

    1984-01-01

    The CW laser action was obtained at room temperature of a Nd:YLF crystal in an astigmatically compensated cavity, pumped by an argon laser. This laser was completely projected, constructed and characterized in our laboratories, thus having a high degree of nationalization. It initiates a broader project on lasers development that will have several applications like nuclear fusion, industry, medicine, telemetry, etc.... Throught the study of the optical properties of the Nd:YLF crystal, laser operation was predicted using a small volume gain medium on the mentioned cavity, pumped by an Ar 514,5 nm laser line. To obtain the laser action at polarizations σ (1,053 μm) and π (1,047 μm) an active medium was prepared which was a cristalline plate with a convenient crystalographic orientation. The laser characterization is in reasonable agreement with the initial predictions. For a 3.5% output mirror transmission, the oscillation threshold is about 0.15 W incident on the crystal, depending upon the sample used. For 1 W of incident pump light, the output power is estimated to be 12 mW, which corresponds to almost 1.5% slope efficiency. The versatile arrangement is applicable to almost all optically pumped solid state laser materials. (Author) [pt

  3. Diode-pumped two micron solid-state lasers

    International Nuclear Information System (INIS)

    Elder, I.F.

    1997-01-01

    This thesis presents an investigation of diode-pumped two micron solid-state lasers, concentrating on a comparison of the cw room temperature operation of Tm:YAP, Tm,Ho:YAP and Tm,Ho:YLF. Dopant concentrations in YAP were 4.2% thulium and 0.28% holmium; in YLF they were 6% thulium and 0.4% holmium. Thermal modelling was carried out in order to provide an insight into the thermal lensing and population distributions in these materials. Laser operation was achieved utilising an end-pumping geometry with a simple two mirror standing wave resonator. The pump source for these experiments was a 3 W laser diode. Maximum output power was achieved with Tm:YAP, generating 730 mW of laser output, representing 42% conversion efficiency in terms of absorbed pump power. Upper bounds on the conversion efficiency of Tm,Ho:YAP and Tm,Ho:YLF laser crystal of 14% and 30% were obtained, with corresponding output powers of 270 and 660 mW. In all three cases, the output beam was TEM 00 in nature. Visible upconversion fluorescence bands in the green and red were identified in Tm,Ho:YAP and Tm,Ho:YLF, with additional blue emission from the latter, all assigned to transitions on holmium. The principal upconversion mechanisms in these materials all involved the holmium first excited state. Upconversion in Tm:YAP was negligible. The spectral output of Tm:YAP consisted of a comb of lines in the range 1.965 to 2.020 μm. For both the double-doped crystals, the laser output was multilongitudinal mode on a single transition, wavelength 2.120 μm in YAP, 2.065 μm in YLF. In the time domain the output of Tm:YAP was dominated by large amplitude spiking, unlike both of the double-doped laser crystals. The long lifetime of the thulium upper laser level (4.4 ms) provided very weak damping of the spiking. Excitation sharing between thulium and holmium, with a measured characteristic lifetime in YAP of 11.9 μs and YLF of 14.8 μs, provided strong damping of any spiking behaviour. (author)

  4. A self-injected, diode-pumped, solid-state ring laser for laser cooling of Li atoms

    Energy Technology Data Exchange (ETDEWEB)

    Miake, Yudai; Mukaiyama, Takashi, E-mail: muka@ils.uec.ac.jp [Institute for Laser Science, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan); O’Hara, Kenneth M. [Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802-6300 (United States); Gensemer, Stephen [CSIRO Manufacturing Flagship, Lindfield, NSW 2070 (Australia)

    2015-04-15

    We have constructed a solid-state light source for experiments with laser cooled lithium atoms based on a Nd:Y V O{sub 4} ring laser with second-harmonic generation. Unidirectional lasing, an improved mode selection, and a high output power of the ring laser were achieved by weak coupling to an external cavity which contained the lossy elements required for single frequency operation. Continuous frequency tuning is accomplished by controlling two piezoelectric transducers (PZTs) in the internal and the external cavities simultaneously. The light source has been utilized to trap and cool fermionic lithium atoms into the quantum degenerate regime.

  5. Numerical study on the selective excitation of Helmholtz-Gauss beams in end-pumped solid-state digital lasers with the control of the laser gain transverse position provided by off-axis end pumping

    Science.gov (United States)

    Tsai, Ko-Fan; Chu, Shu-Chun

    2018-03-01

    This study proposes a complete and unified method for selective excitation of any specified nearly nondiffracting Helmholtz-Gauss (HzG) beam in end-pumped solid-state digital lasers. Four types of the HzG beams: cosine-Gauss beams, Bessel-Gauss beams, Mathieu-Gauss beams, and, in particular, parabolic-Gauss beams are successfully demonstrated to be generated with the proposed methods. To the best of the authors’ knowledge, parabolic-Gauss beams have not yet been directly generated from any kind of laser system. The numerical results of this study show that one can successfully achieve any lasing HzG beams directly from the solid-state digital lasers with only added control of the laser gain transverse position provided by off-axis end pumping. This study also presents a practical digital laser set-up for easily manipulating off-axis pumping in order to achieve the control of the laser gain transverse gain position in digital lasers. The reported results in this study provide advancement of digital lasers in dynamically generating nondiffracting beams. The control of the digital laser cavity gain position creates the possibility of achieving real-time selection of more laser modes in digital lasers, and it is worth further investigation in the future.

  6. Laser Spectroscopy Characterization of Materials for Frequency Agile Solid State Laser Systems

    Science.gov (United States)

    1991-03-15

    Received 30 November 1987; revised manuscript received 29 January 1988) Single crystals of lanthanum lutetium gallium garnet (LaLuGaG) were grown by...group may be realized it gar- dleternte itf other materials can be found with spectral nets formed with lanthanum occupying tile dodecaliedrial ,1nl...array-pumped Nd: YAG and Nd: Lu: YAG lasers," Opt. inates and gallates with the malilite structure," in Tunable Lett. 14, 116-118 (1989). Solid State

  7. Stimulated emission in a solid-state ring laser with an SBS mirror

    Science.gov (United States)

    Barashkov, M. S.; Bel'Diugin, I. M.; Zolotarev, M. V.; Krymskii, M. I.; Oshkin, S. P.

    1990-06-01

    Experimental data are presented on a solid-state ring laser with an SBS mirror in the case of the initiation of stimulated emission by a series of pulses 200-300 ns in duration at a wavelength of 1.06 micron. It is shown that this laser can be suitable for the development of a laser source with radiation parameters (energy and transverse and temporal structure) that are controlled by an external signal. It is also suitable for the development of a low-threshold phase-conjugating mirror.

  8. Stimulated emission in a solid-state ring laser with an SBS mirror

    Energy Technology Data Exchange (ETDEWEB)

    Barashkov, M.S.; Bel' diugin, I.M.; Zolotarev, M.V.; Krymskii, M.I.; Oshkin, S.P.

    1990-06-01

    Experimental data are presented on a solid-state ring laser with an SBS mirror in the case of the initiation of stimulated emission by a series of pulses 200-300 ns in duration at a wavelength of 1.06 micron. It is shown that this laser can be suitable for the development of a laser source with radiation parameters (energy and transverse and temporal structure) that are controlled by an external signal. It is also suitable for the development of a low-threshold phase-conjugating mirror. 5 refs.

  9. Bistability of self-modulation oscillations in an autonomous solid-state ring laser

    International Nuclear Information System (INIS)

    Dudetskii, V Yu

    2013-01-01

    Bistable self-modulation regimes of generation for a ring YAG : Nd chip laser with the counterpropagating waves asymmetrically coupled via backward scattering are simulated numerically. Two branches of bistable self-modulation regimes of generation are found in the domain of the parametric resonance between the selfmodulation and relaxation oscillations. The self-modulation regimes observed in earlier experiments pertain to only one of the branches. Possible reasons for such a discrepancy are considered, related to the influence of technical and natural noise on the dynamics of solid-state ring lasers. (control of laser radiation parameters)

  10. An All-Solid-State High Repetiton Rate Titanium:Sapphire Laser System For Resonance Ionization Laser Ion Sources

    Science.gov (United States)

    Mattolat, C.; Rothe, S.; Schwellnus, F.; Gottwald, T.; Raeder, S.; Wendt, K.

    2009-03-01

    On-line production facilities for radioactive isotopes nowadays heavily rely on resonance ionization laser ion sources due to their demonstrated unsurpassed efficiency and elemental selectivity. Powerful high repetition rate tunable pulsed dye or Ti:sapphire lasers can be used for this purpose. To counteract limitations of short pulse pump lasers, as needed for dye laser pumping, i.e. copper vapor lasers, which include high maintenance and nevertheless often only imperfect reliability, an all-solid-state Nd:YAG pumped Ti:sapphire laser system has been constructed. This could complement or even replace dye laser systems, eliminating their disadvantages but on the other hand introduce shortcomings on the side of the available wavelength range. Pros and cons of these developments will be discussed.

  11. Phase synchronization in a two-mode solid state laser: Periodic modulations with the second relaxation oscillation frequency of the laser output

    International Nuclear Information System (INIS)

    Hsu, Tzu-Fang; Jao, Kuan-Hsuan; Hung, Yao-Chen

    2014-01-01

    Phase synchronization (PS) in a periodically pump-modulated two-mode solid state laser is investigated. Although PS in the laser system has been demonstrated in response to a periodic modulation with the main relaxation oscillation (RO) frequency of the free-running laser, little is known about the case of modulation with minor RO frequencies. In this Letter, the empirical mode decomposition (EMD) method is utilized to decompose the laser time series into a set of orthogonal modes and to examine the intrinsic PS near the frequency of the second RO. The degree of PS is quantified by means of a histogram of phase differences and the analysis of Shannon entropy. - Highlights: • We study the intrinsic phase synchronization in a periodically pump-modulated two-mode solid state laser. • The empirical mode decomposition method is utilized to define the intrinsic phase synchronization. • The degree of phase synchronization is quantified by a proposed synchronization coefficient

  12. Laser properties of Fe2+:ZnSe fabricated by solid-state diffusion bonding

    Science.gov (United States)

    Balabanov, S. S.; Firsov, K. N.; Gavrishchuk, E. M.; Ikonnikov, V. B.; Kazantsev, S. Yu; Kononov, I. G.; Kotereva, T. V.; Savin, D. V.; Timofeeva, N. A.

    2018-04-01

    The characteristics of an Fe2+:ZnSe laser at room temperature and its active elements with undoped faces were studied. Polycrystalline elements with one or two diffusion-doped internal layers were obtained by the solid-state diffusion bonding technique applied to chemical vapor deposition grown ZnSe plates preliminary doped with Fe2+ ions in the process of hot isostatic pressing. A non-chain electric-discharge HF laser was used to pump the crystals. It was demonstrated that increasing the number of doped layers allows increasing the maximum diameter of the pump radiation spot and the pump energy without the appearance of transversal parasitic oscillation. For the two-layer-doped active element with a diameter of 20 mm an output energy of 480 mJ was achieved with 37% total efficiency with respect to the absorbed energy. The obtained results demonstrate the potential of the developed technology for fabrication of active elements by the solid-state diffusion bonding technique combined with the hot isostatic pressing treatment for efficient IR lasers based on chalcogenides doped with transition metal ions.

  13. Application of Various Lasers to Laser Trimming Resistance System

    Institute of Scientific and Technical Information of China (English)

    SUN Ji-feng

    2007-01-01

    Though the laser trimming resistance has been an old laser machining industry for over 30 years, the development of technology brings new alternative lasers which can be used for the traditional machining. The paper describes application of various lasers to laser trimming resistance system including early traditional krypton arc lamp pumped Nd:YAG to laser, modern popular diode pumped solid state laser and the present advanced harmonic diode pumped solid state laser. Using the new alternative lasers in the laser trimming resistance system can dramatically improve the yields and equipment performance.

  14. Amplitude and frequency stabilized solid-state lasers in the near infrared

    International Nuclear Information System (INIS)

    Laporta, P.; Taccheo, S.; Marano, M.; Svelto, O.; Bava, E.; Galzerano, G.; Svelto, C.

    2001-01-01

    In this article we present a comprehensive review of the work done by our group on the amplitude and frequency stabilization of diode-pumped near-infrared solid-state lasers. In particular, we describe experiments based on single-mode Nd:YAG (1064 nm), Er-Yb:glass (1530-1560 nm), and Tm-Ho:YAG (2097 nm) lasers, end-pumped by semiconductor laser diodes. Amplitude stabilization is achieved by means of optoelectronic control loops sensing the laser intensity fluctuations and feeding back the error signal to the current of the pump diodes. Frequency stabilization is pursued using rovibrational molecular lines as absolute frequency references by means of various frequency locking techniques. The most interesting stability results are described in some detail whereas the wide literature cited through the paper provides for a useful reference list of related topics and experiments. (author)

  15. Advanced Solid State Lighting for AES Deep Space Hab Project

    Science.gov (United States)

    Holbert, Eirik

    2015-01-01

    The advanced Solid State Lighting (SSL) assemblies augmented 2nd generation modules under development for the Advanced Exploration Systems Deep Space Habitat in using color therapy to synchronize crew circadian rhythms. Current RGB LED technology does not produce sufficient brightness to adequately address general lighting in addition to color therapy. The intent is to address both through a mix of white and RGB LEDs designing for fully addressable alertness/relaxation levels as well as more dramatic circadian shifts.

  16. Q-switched all-solid-state lasers and application in processing of thin-film solar cell

    Science.gov (United States)

    Liu, Liangqing; Wang, Feng

    2009-08-01

    Societal pressure to renewable clean energy is increasing which is expected to be used as part of an overall strategy to address global warming and oil crisis. Photovoltaic energy conversion devices are on a rapidly accelerating growth path driven by government, of which the costs and prices lower continuously. The next generation thin-film devices are considered to be more efficiency and greatly reduced silicon consumption, resulting in dramatically lower per unit fabrication costs. A key aspect of these devices is patterning large panels to create a monolithic array of series-interconnected cells to form a low current, high voltage module. This patterning is accomplished in three critical scribing processes called P1, P2, and P3. All-solid-state Q-switched lasers are the technology of choice for these processes, due to their advantages of compact configuration, high peak-value power, high repeat rate, excellent beam quality and stability, delivering the desired combination of high throughput and narrow, clean scribes. The end pumped all-solid-state lasers could achieve 1064nm IR resources with pulse width of nanoseconds adopting acoustic-optics Q-switch, shorter than 20ns. The repeat rate is up to 100kHz and the beam quality is close to diffraction limit. Based on this, 532nm green lasers, 355nm UV lasers and 266nm DUV lasers could be carried out through nonlinear frequency conversion. Different wave length lasers are chose to process selective materials. For example, 8-15 W IR lasers are used to scribe the TCO film (P1); 1-5 W green lasers are suitable for scribing the active semiconductor layers (P2) and the back contact layers (P3). Our company, Wuhan Lingyun Photo-electronic System Co. Ltd, has developed 20W IR and 5W green end-pumped Q-switched all-solid-state lasers for thin-film solar industry. Operating in high repeat rates, the speed of processing is up to 2.0 m/s.

  17. Diode-pumped solid-state laser driver experiments for inertial fusion energy applications

    International Nuclear Information System (INIS)

    Marshall, C.D.; Payne, S.A.; Emanuel, M.E.; Smith, L.K.; Powell, H.T.; Krupke, W.F.

    1995-01-01

    Although solid-state lasers have been the primary means by which the physics of inertial confinement fusion (ICF) have been investigated, it was previously thought that solid-state laser technology could not offer adequate efficiencies for an inertial fusion energy (IFE) power plant. Orth and co-workers have recently designed a conceptual IFE power plant, however, with a high efficiency diode-pumped solid-state laser (DPSSL) driver that utilized several recent innovations in laser technology. It was concluded that DPSSLs could offer adequate performance for IFE with reasonable assumptions. This system was based on a novel diode pumped Yb-doped Sr 5 (PO 4 ) 3 F (Yb:S-FAP) amplifier. Because this is a relatively new gain medium, a project was established to experimentally validate the diode-pumping and extraction dynamics of this system at the smallest reasonable scale. This paper reports on the initial experimental results of this study. We found the pumping dynamics and extraction cross-sections of Yb:S-FAP crystals to be similar to those previously inferred by purely spectroscopic techniques. The saturation fluence for pumping was measured to be 2.2 J/cm 2 using three different methods based on either the spatial, temporal, or energy transmission properties of a Yb:S-FAP rod. The small signal gain implies an emission cross section of 6.0x10 -20 cm 2 . Up to 1.7 J/cm 3 of stored energy density was achieved in a 6x6x44 mm 3 Yb:S-FAP amplifier rod. In a free running configuration diode-pumped slope efficiencies up to 43% were observed with output energies up to ∼0.5 J per 1 ms pulse from a 3x3x30 mm 3 rod. When the rod was mounted in a copper block for cooling, 13 W of average power was produced with power supply limited operation at 70 Hz with 500 μs pulses

  18. Solid state physics

    CERN Document Server

    Burns, Gerald

    2013-01-01

    Solid State Physics, International Edition covers the fundamentals and the advanced concepts of solid state physics. The book is comprised of 18 chapters that tackle a specific aspect of solid state physics. Chapters 1 to 3 discuss the symmetry aspects of crystalline solids, while Chapter 4 covers the application of X-rays in solid state science. Chapter 5 deals with the anisotropic character of crystals. Chapters 6 to 8 talk about the five common types of bonding in solids, while Chapters 9 and 10 cover the free electron theory and band theory. Chapters 11 and 12 discuss the effects of moveme

  19. Progress in solid state dye laser development

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, R.E.

    1990-01-01

    A triaxial flashlamp (15 cm) was used to optically pump laser rods prepared from an acrylate based copolymer (0.95 cm O.D. {times} 10.0 cm L.). The performance of 13 laser dyes incorporated into this polymeric solid host is reported. The best lasing performance was obtained with sulforhodamine-B, with a calculated slope efficiency of 0.52% and a maximum single pulse output energy of 580 mJ. A commercially available fluorescent polymeric material was also evaluated. 12 refs., 2 figs.

  20. Large aperture components for solid state laser fusion systems

    International Nuclear Information System (INIS)

    Simmons, W.W.

    1978-01-01

    Solid state lasers for fusion experiments must reliably deliver maximum power to small (approximately .5 mm) targets from stand-off focal distances of 1 m or more. This requirement places stringent limits upon the optical quality, resistance to damage, and overall performance of the several major components--amplifiers, Faraday isolators, spatial filters--in each amplifier train. Component development centers about achieving (1) highest functional material figure of merit, (2) best optical quality, and (3) maximum resistance to optical damage. Specific examples of the performance of large aperture components will be presented within the context of the Argus and Shiva laser systems, which are presently operational at Lawrence Livermore Laboratory. Shiva comprises twenty amplifiers, each of 20 cm output clear aperture. Terawatt beams from these amplifiers are focused through two opposed, nested clusters of f/6 lenses onto such targets. Design requirements upon the larger aperture Nova laser components, up to 35 cm in clear aperture, will also be discussed; these pose a significant challenge to the optical industry

  1. Improved performance of high average power semiconductor arrays for applications in diode pumped solid state lasers

    International Nuclear Information System (INIS)

    Beach, R.; Emanuel, M.; Benett, W.; Freitas, B.; Ciarlo, D.; Carlson, N.; Sutton, S.; Skidmore, J.; Solarz, R.

    1994-01-01

    The average power performance capability of semiconductor diode laser arrays has improved dramatically over the past several years. These performance improvements, combined with cost reductions pursued by LLNL and others in the fabrication and packaging of diode lasers, have continued to reduce the price per average watt of laser diode radiation. Presently, we are at the point where the manufacturers of commercial high average power solid state laser systems used in material processing applications can now seriously consider the replacement of their flashlamp pumps with laser diode pump sources. Additionally, a low cost technique developed and demonstrated at LLNL for optically conditioning the output radiation of diode laser arrays has enabled a new and scalable average power diode-end-pumping architecture that can be simply implemented in diode pumped solid state laser systems (DPSSL's). This development allows the high average power DPSSL designer to look beyond the Nd ion for the first time. Along with high average power DPSSL's which are appropriate for material processing applications, low and intermediate average power DPSSL's are now realizable at low enough costs to be attractive for use in many medical, electronic, and lithographic applications

  2. Novel solid state lasers for Lidar applications at 2 μm

    Science.gov (United States)

    Della Valle, G.; Galzerano, G.; Toncelli, A.; Tonelli, M.; Laporta, P.

    2005-09-01

    A review on the results achieved by our group in the development of novel solid-state lasers for Lidar applications at 2 μm is presented. These lasers, based on fluoride crystals (YLF4, BaY2F8, and KYF4) doped with Tm and Ho ions, are characterized by high-efficiency and wide wavelength tunability around 2 μm. Single crystals of LiYF4, BaY2F8, and KYF4 codoped with the same Tm3+ and Ho3+ concentrations were successfully grown by the Czochralski method. The full spectroscopic characterization of the different laser crystals and the comparison between the laser performance are presented. Continuous wave operation was efficiently demonstrated by means of a CW diode-pumping. These oscillators find interesting applications in the field of remote sensing (Lidar and Dial systems) as well as in high-resolution molecular spectroscopy, frequency metrology, and biomedical applications.

  3. Solid-state Ceramic Laser Material for Remote Sensing of Ozone Using Nd:Yttria, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Tunable solid state lasers have played an important role in providing the technology necessary for active remote sensing of the atmosphere. Recently, polycrystalline...

  4. Solid state laser driver for an ICF reactor

    International Nuclear Information System (INIS)

    Krupke, W.F.

    1988-01-01

    A conceptual design is presented of the main power amplifier of a multi-beamline, multi-megawatt solid state ICF reactor driver. Simultaneous achievement of useful beam quality and high average power is achieved by a proper choice of amplifier geometry. An amplifier beamline consists of a sequence of face-pumped rectangular slab gain elements, oriented at the Brewster angle relative to the beamline axis, and cooled on their large faces by helium gas that is flowing subsonically. The infrared amplifier output radiation is shifted to an appropriately short wavelength ( 10% (including all flow cooling input power) when the amplifiers are pumped by efficient high-power AlGaAs semiconductor laser diode arrays. 11 refs., 3 figs., 7 tabs

  5. High efficiency single frequency 355 nm all-solid-state UV laser

    International Nuclear Information System (INIS)

    Xie, Xiaobing; Wei, Daikang; Ma, Xiuhua; Li, Shiguang; Liu, Jiqiao; Zhu, Xiaolei; Chen, Weibiao

    2016-01-01

    A novel conductively cooled high energy single-frequency 355 nm all-solid-state UV laser is presented based on sum-frequency mixing technique. In this system, a pulsed seeder laser at 1064 nm wavelength, modulated by an AOM, is directly amplified by the cascaded multi-stage hybrid laser amplifiers, and two LBO crystals are used for the SHG and SFG, finally a maximum UV pulse energy of 226 mJ at 355 nm wavelength is achieved with frequency-tripled conversion efficiency as high as 55%, the pulse width is around 12.2 ns at the repetition frequency of 30 Hz. The beam quality factor M 2 of the output UV laser is measured to be 2.54 and 2.98 respectively in two orthogonal directions. (paper)

  6. Mechanical and Thermal Properties of Dental Composites Cured with CAD/CAM Assisted Solid-State Laser

    Directory of Open Access Journals (Sweden)

    Roberto De Santis

    2018-03-01

    Full Text Available Over the last three decades, it has been frequently reported that the properties of dental restorative composites cured with argon laser are similar or superior to those achieved with conventional halogen and light emitting diode (LED curing units. Whereas laser curing is not dependent on the distance between the curing unit and the material, such distance represents a drawback for conventional curing units. However, a widespread clinical application of this kind of laser remains difficult due to cost, heavy weight, and bulky size. Recently, with regard to the radiation in the blue region of the spectrum, powerful solid-state lasers have been commercialized. In the current research, CAD (computer-aided design/CAM (computer-aided manufacturing assisted solid-state lasers were employed for curing of different dental restorative composites consisting of micro- and nanoparticle-reinforced materials based on acrylic resins. Commercial LED curing units were used as a control. Temperature rise during the photopolymerisation process and bending properties were measured. By providing similar light energy dose, no significant difference in temperature rise was observed when the two light sources provided similar intensity. In addition, after 7 days since curing, bending properties of composites cured with laser and LED were similar. The results suggested that this kind of laser would be suitable for curing dental composites, and the curing process does not suffer from the tip-to-tooth distance.

  7. Mechanical and Thermal Properties of Dental Composites Cured with CAD/CAM Assisted Solid-State Laser

    Science.gov (United States)

    De Santis, Roberto; Gloria, Antonio; Maietta, Saverio; Martorelli, Massimo; De Luca, Alessandro; Spagnuolo, Gianrico; Riccitiello, Francesco; Rengo, Sandro

    2018-01-01

    Over the last three decades, it has been frequently reported that the properties of dental restorative composites cured with argon laser are similar or superior to those achieved with conventional halogen and light emitting diode (LED) curing units. Whereas laser curing is not dependent on the distance between the curing unit and the material, such distance represents a drawback for conventional curing units. However, a widespread clinical application of this kind of laser remains difficult due to cost, heavy weight, and bulky size. Recently, with regard to the radiation in the blue region of the spectrum, powerful solid-state lasers have been commercialized. In the current research, CAD (computer-aided design)/CAM (computer-aided manufacturing) assisted solid-state lasers were employed for curing of different dental restorative composites consisting of micro- and nanoparticle-reinforced materials based on acrylic resins. Commercial LED curing units were used as a control. Temperature rise during the photopolymerisation process and bending properties were measured. By providing similar light energy dose, no significant difference in temperature rise was observed when the two light sources provided similar intensity. In addition, after 7 days since curing, bending properties of composites cured with laser and LED were similar. The results suggested that this kind of laser would be suitable for curing dental composites, and the curing process does not suffer from the tip-to-tooth distance. PMID:29584683

  8. Solid-state laser pumping with a planar compound parabolic concentrator.

    Science.gov (United States)

    Panteli, D V; Pani, B M; Beli, L Z

    1997-10-20

    A novel solid-state laser-pumping scheme is proposed that combines a reflective lamp chamber and a compound parabolic concentrator (CPC) as a light guide. The CPC is made of a transparent material of high refractive index, and light is guided by the total internal reflection, with drastically reduced reflection losses. Material is chosen so that the absorption losses are minimized in the pumping wavelength range. The lamp chamber is designed with the principles of nonimaging optics, which ensures that the radiation is efficiently transferred from the lamp to the input aperture of the CPC. The pumping efficiency was first estimated theoretically, which gave us enough justification for the more accurate calculations with ray tracing. Single as well as multiple pumping cavities are discussed. New pumping geometry results in significantly increased pumping efficiency compared with conventional geometries. Also the lamp and the laser rod are separated, leading to reduced thermal load. We found that the proposed pumping method is also applicable to diode-pumped lasers.

  9. Advanced materials for solid state hydrogen storage: “Thermal engineering issues”

    International Nuclear Information System (INIS)

    Srinivasa Murthy, S.; Anil Kumar, E.

    2014-01-01

    Hydrogen has been widely recognized as the “Energy Carrier” of the future. Efficient, reliable, economical and safe storage and delivery of hydrogen form important aspects in achieving success of the “Hydrogen Economy”. Gravimetric and volumetric storage capacities become important when one considers portable and mobile applications of hydrogen. In the case of solid state hydrogen storage, the gas is reversibly embedded (by physisorption and/or chemisorption) in a solid matrix. A wide variety of materials such as intermetallics, physisorbents, complex hydrides/alanates, metal organic frameworks, etc. have been investigated as possible storage media. This paper discusses the feasibility of lithium– and sodium–aluminum hydrides with emphasis on their thermodynamic and thermo-physical properties. Drawbacks such as poor heat transfer characteristics and poor kinetics demand special attention to the thermal design of solid state storage devices. - Highlights: • Advanced materials suitable for solid state hydrogen storage are discussed. • Issues related to thermodynamic and thermo-physical properties of hydriding materials are brought out. • Hydriding and dehydriding behavior including sorption kinetics of complex hydrides with emphasis on alanates are explained

  10. Solar Pumped Solid State Lasers for Space Solar Power: Experimental Path

    Science.gov (United States)

    Fork, Richard L.; Carrington, Connie K.; Walker, Wesley W.; Cole, Spencer T.; Green, Jason J. A.; Laycock, Rustin L.

    2003-01-01

    We outline an experimentally based strategy designed to lead to solar pumped solid state laser oscillators useful for space solar power. Our method involves solar pumping a novel solid state gain element specifically designed to provide efficient conversion of sunlight in space to coherent laser light. Kilowatt and higher average power is sought from each gain element. Multiple such modular gain elements can be used to accumulate total average power of interest for power beaming in space, e.g., 100 kilowatts and more. Where desirable the high average power can also be produced as a train of pulses having high peak power (e.g., greater than 10(exp 10 watts). The modular nature of the basic gain element supports an experimental strategy in which the core technology can be validated by experiments on a single gain element. We propose to do this experimental validation both in terrestrial locations and also on a smaller scale in space. We describe a terrestrial experiment that includes diagnostics and the option of locating the laser beam path in vacuum environment. We describe a space based experiment designed to be compatible with the Japanese Experimental Module (JEM) on the International Space Station (ISS). We anticipate the gain elements will be based on low temperature (approx. 100 degrees Kelvin) operation of high thermal conductivity (k approx. 100 W/cm-K) diamond and sapphire (k approx. 4 W/cm-K). The basic gain element will be formed by sequences of thin alternating layers of diamond and Ti:sapphire with special attention given to the material interfaces. We anticipate this strategy will lead to a particularly simple, robust, and easily maintained low mass modelocked multi-element laser oscillator useful for space solar power.

  11. High Energy, Single-Mode, All-Solid-State and Tunable UV Laser Transmitter

    Science.gov (United States)

    Prasad, Narasimha S.; Singh, Upendra N.; Hovis, FLoyd

    2007-01-01

    A high energy, single mode, all solid-state Nd:YAG laser primarily for pumping an UV converter is developed. Greater than 1 J/pulse at 50 HZ PRF and pulse widths around 22 ns have been demonstrated. Higher energy, greater efficiency may be possible. Refinements are known and practical to implement. Technology Demonstration of a highly efficient, high-pulse-energy, single mode UV wavelength generation using flash lamp pumped laser has been achieved. Greater than 90% pump depletion is observed. 190 mJ extra-cavity SFG; IR to UV efficiency > 21% (> 27% for 1 mJ seed). 160 mJ intra-cavity SFG; IR to UV efficiency up to 24% Fluence laser is being refined to match or exceed the above UV converter results. Currently the Nd:YAG pump laser development is a technology demonstration. System can be engineered for compact packaging.

  12. A Simple Approach for Enhancing the Output Performance of Solar-Pumped Solid-State Lasers

    Directory of Open Access Journals (Sweden)

    Dawei Liang

    2009-01-01

    Full Text Available A simple truncated fused silica elliptical cavity is proposed to enhance the output performance of solar-pumped solid-state lasers. The imaging property of the truncated elliptical cavity ensures an enhanced absorption distribution within an Nd:YAG rod. Optimum pumping parameters are found through ZEMAX nonsequential ray-tracing and LASCAD laser cavity analyses. Compared with the output laser performance of a 3D-compound parabolic concentrator-2D-compound parabolic concentrator (3D-CPC-2D-CPC cavity, the truncated cavity provides 11% more multimode and 72.7% more TEM00 laser powers. A laser beam of high beam quality can be produced efficiently. The standard tracking error for multimode laser power is also reduced to only 4.0% by the truncated cavity.

  13. Ultra-Short Laser Absorption In Solid Targets

    International Nuclear Information System (INIS)

    Harfouche, A.; Bendib, A.

    2008-01-01

    With the rapid development and continuously improving technology of subpicosecond laser pulse generation, new interesting physical problems are now investigated. Among them the laser light absorption in solid targets. During the interaction with solid targets, high intensity laser pulses are absorbed by electrons in optical skin depths, leading to rapid ionization before that significant ablation of solid material takes place. The ultra-short laser is absorbed in the overdense plasma through the electron-ion collisions (normal skin effect) or collisionless mechanisms (anomalous skin effect or sheath inverse bremsstrahlung). These two regimes depend on the laser intensity, the plasma temperature and the ionization state Z. In this work we solve numerically the Fokker-Planck equation to compute the electron distribution function in the skin layer. In the second step we compute the surface impedance and we deduce the absorption coefficient.

  14. An all-solid state laser system for the laser ion sources RILIS and in-source laser spectroscopy of astatine at ISOLDE/CERN

    International Nuclear Information System (INIS)

    Rothe, Sebastian

    2012-01-01

    This doctoral thesis describes the extension of the resonance ionization laser ion source RILIS at CERN/ISOLDE by the addition of an all-solid state tunable titanium:sapphire (Ti:Sa) laser system to complement the well-established system of dye lasers. Synchronous operation of the so called Dual RILIS system of Ti:Sa and dye lasers was investigated and the potential for increased ion beam intensity, reliability, and reduced setup time has been demonstrated. In-source resonance ionization spectroscopy was performed at ISOLDE/CERN and at ISAC/TRIUMF radioactive ion beam facilities to develop an efficient and selective three-colour ionization scheme for the purely radioactive element astatine. A LabVIEW based monitoring, control and measurement system was conceived which enabled, in conjunction with Dual RILIS operation, the spectroscopy of high lying Rydberg states, from which the ionization potential of the astatine atom was determined for the first time experimentally.

  15. An all-solid state laser system for the laser ion source RILIS and in-source laser spectroscopy of astatine at ISOLDE, CERN

    CERN Document Server

    Rothe, Sebastian; Nörtershäuser, W

    This doctoral thesis describes the extension of the resonance ionization laser ion source RILIS at ISOLDE, CERN, by the addition of an all-solid state tuneable titanium: sapphire (Ti:Sa) laser system to complement the well-established system of dye lasers. Synchronous operation of the so called Dual RILIS system of Ti:Sa and dye lasers was investigated and the potential for increased ion beam intensity, reliability, and reduced setup time has been demonstrated. In-source resonance ionization spectroscopy was performed at ISOLDE, CERN, and at ISAC, TRIUMF, radioactive ion beam facilities to develop an efficient and selective three-colour ionization scheme for the purely radioactive element astatine. A LabVIEW based monitoring, control and measurement system was conceived which enabled, in conjunction with Dual RILIS operation, the spectroscopy of high lying Rydberg states, from which the ionization potential of the astatine atom was determined for the first time experimentally.

  16. An all-solid state laser system for the laser ion sources RILIS and in-source laser spectroscopy of astatine at ISOLDE/CERN

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, Sebastian

    2012-09-24

    This doctoral thesis describes the extension of the resonance ionization laser ion source RILIS at CERN/ISOLDE by the addition of an all-solid state tunable titanium:sapphire (Ti:Sa) laser system to complement the well-established system of dye lasers. Synchronous operation of the so called Dual RILIS system of Ti:Sa and dye lasers was investigated and the potential for increased ion beam intensity, reliability, and reduced setup time has been demonstrated. In-source resonance ionization spectroscopy was performed at ISOLDE/CERN and at ISAC/TRIUMF radioactive ion beam facilities to develop an efficient and selective three-colour ionization scheme for the purely radioactive element astatine. A LabVIEW based monitoring, control and measurement system was conceived which enabled, in conjunction with Dual RILIS operation, the spectroscopy of high lying Rydberg states, from which the ionization potential of the astatine atom was determined for the first time experimentally.

  17. Flame Characterization Using a Tunable Solid-State Laser with Direct UV Pumping

    Science.gov (United States)

    Kamal, Mohammed M.; Dubinskii, Mark A.; Misra, Prabhakar

    1996-01-01

    Tunable solid-state lasers with direct UV pumping, based on d-f transitions of rare earth ions incorporated in wide band-gap dielectric crystals, are reliable sources of laser radiation that are suitable for excitation of combustion-related free radicals. We have employed such a laser for analytical flame characterization utilizing Laser-Induced Fluorescence (LIF) techniques. LIF spectra of alkane-air flames (used for studying combustion processes under normal and microgravity conditions) excited in the region of the A-X (0,0) OH-absorption band have been recorded and found to be both temperature-sensitive and positionally-sensitive. In addition, also clearly noticeable was the sensitivity of the spectra to the specific wavelength used for data registration. The LiCAF:Ce laser shows good prospects for being able to cover the spectral region between 280 and 340 nm and therefore be used excitation of combustion-intermediates such as the hydroxyl OH, methoxy CH30 and methylthio CH3S radicals.

  18. Diode laser pumped solid state laser. Part IV. ; Noise analysis. Handotai laser reiki kotai laser. 4. ; Noise kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, H.; Seno, T.; Tanabe, Y. (Asahi Glass Co. Ltd., Tokyo (Japan))

    1991-06-10

    Concerning the second harmonic generation(SHG) of diode laser pumped solid state laser using a nonlinear optical material, the researches are carried out to pracitically apply to the optical pickup. Therefore, the reduction of output optical noise has become the important researching subject. The theoretical and experimental analyses of noise generating mechanism were carried out for the system in which Nd;YAG as the laser diode and KTP (KTiOPO {sub 4}) as the nonlinear optical crystal were used. The following findings for the noise generating mechanism could be obtained: The competitive interaction between the polarization modes was dominant noise mechanism in the high frequency range from 1 to 20MHz and the noise could be removed sufficiently by using the QWP(quarter wave plate). On the other hand, the noise observed in the low frequency range from 100 to 200kHz depended on the resonance length, agreed qualitatively with the theoretical analysis of the noise to the competitive longitudinal modes and agreed quantitatively with the noise generating frequency range. 10 refs., 13 figs., 1 tab.

  19. A conceptual design of the set-up for solid state spectroscopy with free electron laser and insertion device radiation

    CERN Document Server

    Makhov, V N

    2001-01-01

    The set-up for complex solid state spectroscopy with the use of enhanced properties of radiation from insertion devices and free electron lasers is proposed. Very high flux and pulsed properties of radiation from insertion devices and free electron lasers offer the possibility for the use of such powerful techniques as electron paramagnetic resonance (EPR) and optically detected magnetic resonance (ODMR) for the studies of excited states of electronic excitations or defects in solids. The power density of radiation can become high enough for one more method of exited-state spectroscopy: transient optical absorption spectroscopy. The set-up is supposed to combine the EPR/ODMR spectrometer, i.e. cryostat supplied with superconducting magnet and microwave system, and the optical channels for excitation (by radiation from insertion devices or free electron laser) and detection of luminescence (i.e. primary and secondary monochromators). The set-up can be used both for 'conventional' spectroscopy of solids (reflec...

  20. All-solid-state ultraviolet 330 nm laser from frequency-doubling of Nd:YLF red laser in CsB3O5

    International Nuclear Information System (INIS)

    Chen, Ming; Wang, Zhi-chao; Wang, Bao-shan; Yang, Feng; Zhang, Guo-chun; Zhang, Shen-jin; Zhang, Feng-feng; Zhang, Xiao-wen; Zong, Nan; Wang, Zhi-min; Bo, Yong; Peng, Qin-jun; Cui, Da-fu; Wu, Yi-cheng; Xu, Zu-yan

    2016-01-01

    We demonstrate an ultraviolet (UV) 330 nm laser from second-harmonic generation (SHG) of an all-solid-state Nd:YLF red laser in a CsB 3 O 5 (CBO) crystal for the first time, to our best knowledge. Under an input power of 4.8 W at 660 nm, a maximum average output power of 330 nm laser was obtained to be 1.28 W, corresponding to a frequency conversion efficiency of about 26.7%.

  1. The effect of transverse multi-mode oscillation in passively modelocked solid-state lasers

    Science.gov (United States)

    Agnesi, A.; Reali, G. C.; Gabetta, G.

    1992-03-01

    We demonstrate that the pulses from a passively mode-locked flashlamp pumped solid-state laser can be considerably shorter using an antiresonant-ring mirror than using a linear cavity with a standard contacted dye-cell mirror, and we suggest that transverse-mode-filtering effects in the antiresonant ring play an important role in explaining this difference.

  2. Application of a compact diode pumped solid-state laser source for quantitative laser-induced breakdown spectroscopy analysis of steel

    Science.gov (United States)

    Tortschanoff, Andreas; Baumgart, Marcus; Kroupa, Gerhard

    2017-12-01

    Laser-induced breakdown spectroscopy (LIBS) technology holds the potential for onsite real-time measurements of steel products. However, for a mobile and robust LIBS measurement system, an adequate small and ruggedized laser source is a key requirement. In this contribution, we present tests with our compact high-power laser source, which, initially, was developed for ignition applications. The CTR HiPoLas® laser is a robust diode pumped solid-state laser with a passive Q-switch with dimensions of less than 10 cm3. The laser generates 2.5-ns pulses with 30 mJ at a maximum continuous repetition rate of about 30 Hz. Feasibility of LIBS experiments with the laser source was experimentally verified with steel samples. The results show that the laser with its current optical output parameters is very well-suited for LIBS measurements. We believe that the miniaturized laser presented here will enable very compact and robust portable high-performance LIBS systems.

  3. Solid State Division progress report for period ending September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Hinton, L.W. [eds.

    1994-08-01

    This report covers research progress in the Solid State Division from April 1, 1992, to September 30, 1993. During this period, the division conducted a broad, interdisciplinary materials research program with emphasis on theoretical solid state physics, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. This research effort was enhanced by new capabilities in atomic-scale materials characterization, new emphasis on the synthesis and processing of materials, and increased partnering with industry and universities. The theoretical effort included a broad range of analytical studies, as well as a new emphasis on numerical simulation stimulated by advances in high-performance computing and by strong interest in related division experimental programs. Superconductivity research continued to advance on a broad front from fundamental mechanisms of high-temperature superconductivity to the development of new materials and processing techniques. The Neutron Scattering Program was characterized by a strong scientific user program and growing diversity represented by new initiatives in complex fluids and residual stress. The national emphasis on materials synthesis and processing was mirrored in division research programs in thin-film processing, surface modification, and crystal growth. Research on advanced processing techniques such as laser ablation, ion implantation, and plasma processing was complemented by strong programs in the characterization of materials and surfaces including ultrahigh resolution scanning transmission electron microscopy, atomic-resolution chemical analysis, synchrotron x-ray research, and scanning tunneling microscopy.

  4. Solid State Division progress report for period ending September 30, 1993

    International Nuclear Information System (INIS)

    Green, P.H.; Hinton, L.W.

    1994-08-01

    This report covers research progress in the Solid State Division from April 1, 1992, to September 30, 1993. During this period, the division conducted a broad, interdisciplinary materials research program with emphasis on theoretical solid state physics, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. This research effort was enhanced by new capabilities in atomic-scale materials characterization, new emphasis on the synthesis and processing of materials, and increased partnering with industry and universities. The theoretical effort included a broad range of analytical studies, as well as a new emphasis on numerical simulation stimulated by advances in high-performance computing and by strong interest in related division experimental programs. Superconductivity research continued to advance on a broad front from fundamental mechanisms of high-temperature superconductivity to the development of new materials and processing techniques. The Neutron Scattering Program was characterized by a strong scientific user program and growing diversity represented by new initiatives in complex fluids and residual stress. The national emphasis on materials synthesis and processing was mirrored in division research programs in thin-film processing, surface modification, and crystal growth. Research on advanced processing techniques such as laser ablation, ion implantation, and plasma processing was complemented by strong programs in the characterization of materials and surfaces including ultrahigh resolution scanning transmission electron microscopy, atomic-resolution chemical analysis, synchrotron x-ray research, and scanning tunneling microscopy

  5. Theoretical and experimental studies of optical feedback on solid-state lasers

    International Nuclear Information System (INIS)

    Kervevan, L.

    2006-12-01

    The main objective of this Phd thesis was to implement solid-state lasers based on codoped Yb 3+ :Er 3+ phosphate glasses pumped by laser diode and to study their behavior when submitted to an optical feedback. This kind of lasers presents as main advantages a very high sensibility to the optical feedback due to the optical properties of the Er 3+ ion enhancing the relaxation oscillations. Moreover, the emission wavelength around 1,535 μm belongs to the eye safe spectral domain. First, we have established the rate equations of the population inversion and the electric field for a three-level laser (Yb:Er) submitted to an optical feedback. We have done a comparative study of the influence of the amplifying medium (three-level system Yb:Er or four-level system LNA:Nd) and cavity parameters on the sensitivity due to the optical feedback. The home-made lasers were implemented in optical feedback experiments allowing original measurement of speed, absolute distance or vibration for optical detection of sound restitution. The fourth part of this thesis deals with the behavior a dual frequency laser submitted to a optical feedback. Such a laser oscillates simultaneously on two polarization eigenstates whose optical frequencies are slightly different. The beating mode between these two eigenstates allows self-heterodyne detection. (author)

  6. Development of high power solid-state laser for inertial fusion energy driver

    International Nuclear Information System (INIS)

    Yoshida, K.; Yamanaka, M.; Nakatsuka, M.; Sasaki, T.; Nakai, S.

    1997-01-01

    The design study of the laser fusion power plant KOYO has been conducted as a joint program of universities, national laboratories, and industries in Japan and also with international collaborations. In the design of KOYO, the gain scaling of direct drive implosion with 0.35 μ m wavelength laser light is used. A driver of diode pumped solid state laser (DPSSL) generates 4 MJ/pulse with 12 Hz and the output pulses are switched to deliver the laser energy successively to four chambers, which operate with 3 Hz. The chamber wall is protected with thick liquid metal which flows down in a SiC woven tube. Following to the conceptual design study, the critical key issues which may affect the technical and economical feasibility of the commercial power plant KOYO have been examined. Research and development of some key technologies have been performed. As the results of the studies on KOYO, it is concluded that the technical and economical feasibility of laser fusion reactor is well in our scope to reach

  7. Repetitive 1 Hz fast-heating fusion driver HAMA pumped by diode pumped solid state laser

    International Nuclear Information System (INIS)

    Mori, Yoshitaka; Sekine, Takashi; Komeda, Osamu

    2014-01-01

    We describe a repetitive fast-heating fusion driver called HAMA pumped by Diode Pumped Solid State Laser (DPSSL) to realize the counter irradiation of sequential implosion and heating laser beams. HAMA was designed to activate DPSSL for inertial confinement fusion (ICF) research and to realize a unified ICF machine for power plants. The details of a four-beam alignment scheme and the results of the counter irradiation of stainless plates are shown. (author)

  8. Self-oscillations in cw solid-state ultrashort-pulse-generating lasers with mode locking by self-focusing

    International Nuclear Information System (INIS)

    Kalashnikov, V L; Krimer, D O; Mejid, F; Poloiko, I G; Mikhailov, V P

    1999-01-01

    Steady-state and transient regimes of ultrashort pulse generation are studied for cw solid-state lasers with mode locking by self-focusing. It is shown that the control parameter, which governs the nature of lasing, is the relationship between self-phase-modulation and the saturation intensity of an efficient shutter, induced by the Kerr self-focusing. Numerical modelling based on mapping the parameters of a quasi-soliton ultrashort pulse, considered in the aberration-free approximation, yields results in good agreement with experiments. (control of laser radiation parameters)

  9. Advancement of High Power Quasi-CW Laser Diode Arrays For Space-based Laser Instruments

    Science.gov (United States)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, nathaniel R.; Baggott, Renee S.; Singh, Upendra N.; Kavaya, Michael J.

    2004-01-01

    Space-based laser and lidar instruments play an important role in NASA s plans for meeting its objectives in both Earth Science and Space Exploration areas. Almost all the lidar instrument concepts being considered by NASA scientist utilize moderate to high power diode-pumped solid state lasers as their transmitter source. Perhaps the most critical component of any solid state laser system is its pump laser diode array which essentially dictates instrument efficiency, reliability and lifetime. For this reason, premature failures and rapid degradation of high power laser diode arrays that have been experienced by laser system designers are of major concern to NASA. This work addresses these reliability and lifetime issues by attempting to eliminate the causes of failures and developing methods for screening laser diode arrays and qualifying them for operation in space.

  10. Mass removal modes in the laser ablation of silicon by a Q-switched diode-pumped solid-state laser (DPSSL)

    International Nuclear Information System (INIS)

    Lim, Daniel J; Ki, Hyungson; Mazumder, Jyoti

    2006-01-01

    A fundamental study on the Q-switched diode-pumped solid-state laser interaction with silicon was performed both experimentally and numerically. Single pulse drilling experiments were conducted on N-type silicon wafers by varying the laser intensity from 10 8 -10 9 W cm -2 to investigate how the mass removal mechanism changes depending on the laser intensity. Hole width and depth were measured and surface morphology was studied using scanning electron microscopy. For the numerical model study, Ki et al's self-consistent continuous-wave laser drilling model (2001 J. Phys. D: Appl. Phys. 34 364-72) was modified to treat the solidification phenomenon between successive laser pulses. The model has the capabilities of simulating major interaction physics, such as melt flow, heat transfer, evaporation, homogeneous boiling, multiple reflections and surface evolution. This study presents some interesting results on how the mass removal mode changes as the laser intensity increases

  11. Development of laser diode-pumped high average power solid-state laser for the pumping of Ti:sapphire CPA system

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Yoichiro; Tei, Kazuyoku; Kato, Masaaki; Niwa, Yoshito; Harayama, Sayaka; Oba, Masaki; Matoba, Tohru; Arisawa, Takashi; Takuma, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Laser diode pumped all solid state, high repetition frequency (PRF) and high energy Nd:YAG laser using zigzag slab crystals has been developed for the pumping source of Ti:sapphire CPA system. The pumping laser installs two main amplifiers which compose ring type amplifier configuration. The maximum amplification gain of the amplifier system is 140 and the condition of saturated amplification is achieved with this high gain. The average power of fundamental laser radiation is 250 W at the PRF of 200 Hz and the pulse duration is around 20 ns. The average power of second harmonic is 105 W at the PRF of 170 Hz and the pulse duration is about 16 ns. The beam profile of the second harmonic is near top hat and will be suitable for the pumping of Ti:sapphire laser crystal. The wall plug efficiency of the laser is 2.0 %. (author)

  12. High power diode pumped solid state (DPSS) laser systems active media robust modeling and analysis

    Science.gov (United States)

    Kashef, Tamer M.; Mokhtar, Ayman M.; Ghoniemy, Samy A.

    2018-02-01

    Diode side-pumped solid-state lasers have the potential to yield high quality laser beams with high efficiency and reliability. This paper summarizes the results of simulation of the most predominant active media that are used in high power diode pumped solid-state (DPSS) laser systems. Nd:YAG, Nd:glass, and Nd:YLF rods laser systems were simulated using the special finite element analysis software program LASCAD. A performance trade off analysis for Nd:YAG, Nd:glass, and Nd:YLF rods was performed in order to predict the system optimized parameters and to investigate thermally induced thermal fracture that may occur due to heat load and mechanical stress. The simulation results showed that at the optimized values Nd:YAG rod achieved the highest output power of 175W with 43% efficiency and heat load of 1.873W/mm3. A negligible changes in laser output power, heat load, stress, and temperature distributions were observed when the Nd:YAG rod length was increased from 72 to 80mm. Simulation of Nd:glass at different rod diameters at the same pumping conditions showed better results for mechanical stress and thermal load than that of Nd:YAG and Nd:YLF which makes it very suitable for high power laser applications especially for large rod diameters. For large rod diameters Nd:YLF is mechanically weaker and softer crystal compared to Nd:YAG and Nd:glass due to its poor thermomechanical properties which limits its usage to only low to medium power systems.

  13. Skin effects, ion acoustic turbulence and anomalous transport in a non-isothermal solid-state plasma, produced by a power femtosecond laser

    International Nuclear Information System (INIS)

    Volkov, N.B.

    2001-01-01

    Results of the experiments, wherein the absorption of the laser intensive radiation with duration of 400 fs in aluminium target was studied, are explained. It is shown that electro-conductivity of the nonisothermal solid-state aluminium plasma was determined in these experiments by the ion-acoustic oscillations (ion-acoustic turbulence). Possible ways of theoretical description of the ion-acoustic turbulence and interaction of the nonisothermal solid-state plasma with powerful ultrashort laser radiation are discussed [ru

  14. Environmental performance evaluation of an advanced-design solid-state television camera

    Science.gov (United States)

    1979-01-01

    The development of an advanced-design black-and-white solid-state television camera which can survive exposure to space environmental conditions was undertaken. A 380 x 488 element buried-channel CCD is utilized as the image sensor to ensure compatibility with 525-line transmission and display equipment. Specific camera design approaches selected for study and analysis included: (1) component and circuit sensitivity to temperature; (2) circuit board thermal and mechanical design; and (3) CCD temperature control. Preferred approaches were determined and integrated into the final design for two deliverable solid-state TV cameras. One of these cameras was subjected to environmental tests to determine stress limits for exposure to vibration, shock, acceleration, and temperature-vacuum conditions. These tests indicate performance at the design goal limits can be achieved for most of the specified conditions.

  15. Selective excitation of higher-radial-order Laguerre-Gaussian beams using a solid-state digital laser

    CSIR Research Space (South Africa)

    Bell, Teboho

    2017-01-01

    Full Text Available Filter (LF) was introduced to only transmit 1064 nm and block the 808 nm pump. The laser beam was transmitted out of the cavity through an output coupler mirror (M3 on Figure 1) and was 1:1 relay imaged using two 125 mm lenses (L3 and L4) to a Photon...; Published December 30, 2016 Citation: Bell T, Ngcobo S (2016) Selective Excitation of Higher-radial-order Laguerre-Gaussian Beams Using a Solid-state Digital Laser. J Laser Opt Photonics 3: 144. doi: 10.4172/2469-410X.1000144 Copyright: © 2016 Bell T, et...

  16. Recent advances in rare earth doped alkali-alkaline earth borates for solid state lighting applications

    Science.gov (United States)

    Verma, Shefali; Verma, Kartikey; Kumar, Deepak; Chaudhary, Babulal; Som, Sudipta; Sharma, Vishal; Kumar, Vijay; Swart, Hendrik C.

    2018-04-01

    As a novel class of inorganic phosphor, the alkali-alkaline earth borate phosphors have gained huge attention due to their charming applications in solid-state lighting (SSL) and display devices. The current research drive shows that phosphors based on the alkali-alkaline earth borates have transformed the science and technology due to their high transparency over a broad spectral range, their flexibility in structure and durability for mechanical and high-laser applications. Recent advances in various aspects of rare-earth (RE) doped borate based phosphors and their utilizations in SSL and light emitting diodes are summarized in this review article. Moreover, the present status and upcoming scenario of RE-doped borate phosphors were reviewed in general along with the proper credential from the existing literature. It is believed that this review is a sole compilation of crucial information about the RE-doped borate phosphors in a single platform.

  17. All solid-state SBS phase conjugate mirror

    Science.gov (United States)

    Dane, C.B.; Hackel, L.A.

    1999-03-09

    A stimulated Brillouin scattering (SBS) phase conjugate laser mirror uses a solid-state nonlinear gain medium instead of the conventional liquid or high pressure gas medium. The concept has been effectively demonstrated using common optical-grade fused silica. An energy threshold of 2.5 mJ and a slope efficiency of over 90% were achieved, resulting in an overall energy reflectivity of >80% for 15 ns, 1 um laser pulses. The use of solid-state materials is enabled by a multi-pass resonant architecture which suppresses transient fluctuations that would otherwise result in damage to the SBS medium. This all solid state phase conjugator is safer, more reliable, and more easily manufactured than prior art designs. It allows nonlinear wavefront correction to be implemented in industrial and defense laser systems whose operating environments would preclude the introduction of potentially hazardous liquids or high pressure gases. 8 figs.

  18. Laser Science and Technology Program Update 2001

    International Nuclear Information System (INIS)

    Chen, H L; Hackel, L A

    2002-01-01

    The Laser Science and Technology (LSandT) Program's mission is to develop advanced solid-state lasers, optics, materials technologies, and applications to solve problems and create new capabilities of importance to the Nation and the Laboratory. A top, near-term priority is to provide technical support to the National Ignition Facility (NIF) to ensure activation success. LSandT provides the NIF Programs with core competencies and supports its economic viability. The primary objectives of LSandT activities in fiscal year (FY) 2001 have been threefold: (1) to support deployment of hardware and to enhance lasers and optics performance for NIF, (2) to develop advanced solid-state laser systems and optical components for the Department of Energy (DOE) and the Department of Defense (DoD), and (3) to invent, develop, and deliver improved concepts and hardware for other government agencies and U.S. industry. Special efforts have also been devoted to building and maintaining our capabilities in three technology areas: high-power solid-state lasers, high-power optical materials, and applications of advanced lasers

  19. Modeling and Implementing Nonlinear Equations in Solid-State Lasers for Studying their Performance

    Directory of Open Access Journals (Sweden)

    Ali Roudehghat Shotorbani

    2018-05-01

    Full Text Available In this paper, the effect of radius variation of beam light on output efficacy of SFD Yttrium aluminium borate laser doped with Neodymium ion, which is simultaneously a non-linear and active laser crystal, is investigated in a double-pass cavity. This is done with a concave lens that concentrates (Reduction of optical radius within nonlinear material as much optical laser as possible, resulting in increasing the laser efficiency, second harmonic and the population inversion difference. In this study, we first developed five discrete differential equations describing the interactions of 807 nm pump beam, 1060nm laser beam and 530nm second harmonic beam. Output efficiencies of laser and second harmonic beams at pumping power of Pp =20W and beam radius of 5μm have been presented. Meanwhile, in this paper, the first experiment for creating second harmonic in solid state lasers was fully described with a figure and its procedure was investigated and then the equations (second harmonic and laser and population inversion were studied. Radius variation of beam light aims at increasing laser output efficacy and improving second harmonic and population inversion. The analytic methods which have been solved the discrete differential equations via Matlab.

  20. System study of a diode-pumped solid-state-laser driver for inertial fusion energy

    International Nuclear Information System (INIS)

    Orth, C.D.; Payne, S.A.

    1995-01-01

    The present a conceptual design of a diode-pumped solid-state-laser (DPSSL) driver for an inertial fusion energy (IFE) power plant based on the maximized cost of electricity (COE) as determined in a comprehensive systems study. This study contained extensive detail for all significant DPSSL physics and costs, plus published scaling relationships for the costs of the target chamber and the balance of plant (BOP). Our DPSSL design offers low development cost because it is modular, can be fully tested functionally at reduced scale, and is based on mature solid-state-laser technology. Most of the parameter values that we used are being verified by experiments now in progress. Future experiments will address the few issues that remain. As a consequence, the economic and technical risk of our DPSSL driver concept is becoming rather low. Baseline performance at 1 GW e using a new gain medium [Yb 3+ -doped Sr 5 (PO 4 ) 3 F or Yb:S-FAP] includes a product of laser efficiency and target gain of ηG = 7, and a COE of 8.6 cents/kW·h, although values of ηG ≥ 11 and COEs ≤6.6 cents/kW·h are possible at double the assumed target gain of 76 at 3.7 MJ. We present a summary of our results, discuss why other more-common types of laser media do not perform as well as Yb:S-FAP, and present a simple model that shows where DPSSL development should proceed to reduce projected COEs

  1. Design of high power solid-state pulsed laser resonators

    International Nuclear Information System (INIS)

    Narro, R.; Ponce, L.; Arronte, M.

    2009-01-01

    Methods and configurations for the design of high power solid-state pulsed laser resonators, operating in free running, are presented. For fundamental mode high power resonators, a method is proposed for the design of a resonator with joined stability zones. In the case of multimode resonators, two configurations are introduced for maximizing the laser overall efficiency due to the compensation of the astigmatism induced by the excitation. The first configuration consists in a triangular ring resonator. The results for this configuration are discussed theoretically, showing that it is possible to compensate the astigmatism of the thermal lens virtually in a 100%; however this is only possible for a specific pumping power. The second configuration proposes a dual-active medium resonator, rotated 90 degree one from the other around the optical axis, where each active medium acts as an astigmatic lens of the same dioptric power. The reliability of this configuration is corroborated experimentally using a Nd:YAG dual-active medium resonator. It is found that in the pumping power range where the astigmatism compensation is possible, the overall efficiency is constant, even when increasing the excitation power with the consequent increase of the thermal lens dioptric power. (Author)

  2. Compact Solid-State 213 nm Laser Enables Standoff Deep Ultraviolet Raman Spectrometer: Measurements of Nitrate Photochemistry.

    Science.gov (United States)

    Bykov, Sergei V; Mao, Michael; Gares, Katie L; Asher, Sanford A

    2015-08-01

    We describe a new compact acousto-optically Q-switched diode-pumped solid-state (DPSS) intracavity frequency-tripled neodymium-doped yttrium vanadate laser capable of producing ~100 mW of 213 nm power quasi-continuous wave as 15 ns pulses at a 30 kHz repetition rate. We use this new laser in a prototype of a deep ultraviolet (UV) Raman standoff spectrometer. We use a novel high-throughput, high-resolution Echelle Raman spectrograph. We measure the deep UV resonance Raman (UVRR) spectra of solid and solution sodium nitrate (NaNO3) and ammonium nitrate (NH4NO3) at a standoff distance of ~2.2 m. For this 2.2 m standoff distance and a 1 min spectral accumulation time, where we only monitor the symmetric stretching band, we find a solid state NaNO3 detection limit of ~100 μg/cm(2). We easily detect ~20 μM nitrate water solutions in 1 cm path length cells. As expected, the aqueous solutions UVRR spectra of NaNO3 and NH4NO3 are similar, showing selective resonance enhancement of the nitrate (NO3(-)) vibrations. The aqueous solution photochemistry is also similar, showing facile conversion of NO3(-) to nitrite (NO2(-)). In contrast, the observed UVRR spectra of NaNO3 and NH4NO3 powders significantly differ, because their solid-state photochemistries differ. Whereas solid NaNO3 photoconverts with a very low quantum yield to NaNO2, the NH4NO3 degrades with an apparent quantum yield of ~0.2 to gaseous species.

  3. Single mode solid state distributed feedback dye laser fabricated by grey scale electron beam lithography on dye doped SU-8 resist

    DEFF Research Database (Denmark)

    Balslev, Søren; Rasmussen, Torben; Shi, Peixiong

    2005-01-01

    We demonstrate grey scale electron beam lithography on functionalized SU-8 resist for fabrication of single mode solid state dye laser devices. The resist is doped with Rhodamine 6G perchlorate and the lasers are based on a first order Bragg grating distributed feedback resonator. The lasers...

  4. Harmonic mode-locking and sub-round-trip time nonlinear dynamics of electro-optically controlled solid state laser

    Science.gov (United States)

    Gorbunkov, M. V.; Maslova, Yu Ya; Petukhov, V. A.; Semenov, M. A.; Shabalin, Yu V.; Tunkin, V. G.

    2018-03-01

    Harmonic mode-locking in a solid state laser due to optoelectronic control is studied numerically on the basis of two methods. The first one is detailed numeric simulation taking into account laser radiation fine time structure. It is shown that optimally chosen feedback delay leads to self-started mode-locking with generation of desired number of pulses in the laser cavity. The second method is based on discrete maps for short laser pulse energy. Both methods show that the application of combination of positive and negative feedback loops allows to reduce the period of regular nonlinear dynamics down to a fraction of a laser cavity round trip time.

  5. Solid state chemistry and its applications

    CERN Document Server

    West, Anthony R

    2013-01-01

    Solid State Chemistry and its Applications, 2nd Edition: Student Edition is an extensive update and sequel to the bestselling textbook Basic Solid State Chemistry, the classic text for undergraduate teaching in solid state chemistry worldwide. Solid state chemistry lies at the heart of many significant scientific advances from recent decades, including the discovery of high-temperature superconductors, new forms of carbon and countless other developments in the synthesis, characterisation and applications of inorganic materials. Looking forward, solid state chemistry will be crucial for the

  6. Investigation of the Effect of Small Hardening Spots Created on the Sample Surface by Laser Complex with Solid-State Laser

    Science.gov (United States)

    Nozdrina, O.; Zykov, I.; Melnikov, A.; Tsipilev, V.; Turanov, S.

    2018-03-01

    This paper describes the results of an investigation of the effect of small hardening spots (about 1 mm) created on the surface of a sample by laser complex with solid-state laser. The melted area of the steel sample is not exceed 5%. Steel microhardness change in the region subjected to laser treatment is studied. Also there is a graph of the deformation of samples dependence on the tension. As a result, the yield plateau and plastic properties changes were detected. The flow line was tracked in the series of speckle photographs. As a result we can see how mm surface inhomogeneity can influence on the deformation and strength properties of steel.

  7. Advanced lasers for fusion

    International Nuclear Information System (INIS)

    Krupke, W.F.; George, E.V.; Haas, R.A.

    1979-01-01

    Laser drive systems' performance requirements for fusion reactors are developed following a review of the principles of inertial confinement fusion and of the technical status of fusion research lasers (Nd:glass; CO 2 , iodine). These requirements are analyzed in the context of energy-storing laser media with respect to laser systems design issues: optical damage and breakdown, medium excitation, parasitics and superfluorescence depumping, energy extraction physics, medium optical quality, and gas flow. Three types of energy-storing laser media of potential utility are identified and singled out for detailed review: (1) Group VI atomic lasers, (2) rare earth solid state hybrid lasers, and (3) rare earth molecular vapor lasers. The use of highly-radiative laser media, particularly the rare-gas monohalide excimers, are discussed in the context of short pulse fusion applications. The concept of backward wave Raman pulse compression is considered as an attractive technique for this purpose. The basic physics and device parameters of these four laser systems are reviewed and conceptual designs for high energy laser systems are presented. Preliminary estimates for systems efficiencies are given. (Auth.)

  8. Advancements of ultra-high peak power laser diode arrays

    Science.gov (United States)

    Crawford, D.; Thiagarajan, P.; Goings, J.; Caliva, B.; Smith, S.; Walker, R.

    2018-02-01

    Enhancements of laser diode epitaxy in conjunction with process and packaging improvements have led to the availability of 1cm bars capable of over 500W peak power at near-infrared wavelengths (770nm to 1100nm). Advances in cooler design allow for multi-bar stacks with bar-to-bar pitches as low as 350μm and a scalable package architecture enabled a single diode assembly with total peak powers of over 1MegaWatt of peak power. With the addition of micro-optics, overall array brightness greater than 10kW/cm2 was achieved. Performance metrics of barbased diode lasers specifically engineered for high peak power and high brightness at wavelengths and pulse conditions commonly used to pump a variety of fiber and solid-state materials are presented.

  9. Solid State Photovoltaic Research Branch

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    This report summarizes the progress of the Solid State Photovoltaic Research Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30,l 1989. Six technical sections of the report cover these main areas of SERIs in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Laser Raman and Luminescence Spectroscopy. Sections have been indexed separately for inclusion on the data base.

  10. Fabrication of a saturable absorber WS2 and its mode locking in solid-state laser

    Science.gov (United States)

    Zhang, Chun-Yu; Zhang, Ling; Tang, Xiao-Ying; Yang, Ying-Ying

    2018-04-01

    We report on a passively mode-locked Nd : LuVO4 laser using a type saturable absorber of tungsten disulfide (WS2) fabricated by chemical vapor deposition method. At the pump power of 3.3 W, 1.18-W average output power of continuous-wave mode-locked laser with optical conversion efficiency of 36% was achieved. To the best of our knowledge, this is the highest output power of passively mode-locked solid-state laser based on WS2. The repetition rate of passively mode-locked pulse was 80 MHz with the pulse energy of 14.8 nJ. Our experimental results show that WS2 is an excellent type of saturable absorber.

  11. Laser waveform control of extreme ultraviolet high harmonics from solids.

    Science.gov (United States)

    You, Yong Sing; Wu, Mengxi; Yin, Yanchun; Chew, Andrew; Ren, Xiaoming; Gholam-Mirzaei, Shima; Browne, Dana A; Chini, Michael; Chang, Zenghu; Schafer, Kenneth J; Gaarde, Mette B; Ghimire, Shambhu

    2017-05-01

    Solid-state high-harmonic sources offer the possibility of compact, high-repetition-rate attosecond light emitters. However, the time structure of high harmonics must be characterized at the sub-cycle level. We use strong two-cycle laser pulses to directly control the time-dependent nonlinear current in single-crystal MgO, leading to the generation of extreme ultraviolet harmonics. We find that harmonics are delayed with respect to each other, yielding an atto-chirp, the value of which depends on the laser field strength. Our results provide the foundation for attosecond pulse metrology based on solid-state harmonics and a new approach to studying sub-cycle dynamics in solids.

  12. Visible Solid State Lasers

    NARCIS (Netherlands)

    Hikmet, R.A.M.

    2007-01-01

    Diode lasers can be found in various applications most notably in optical communication and optical storage. Visible lasers were until recently were all based on IR diode lasers. Using GaN, directly blue and violet emitting lasers have also been introduced to the market mainly in the area of optical

  13. Microstructural and mechanical characterization of laser deposited advanced materials

    Science.gov (United States)

    Sistla, Harihar Rakshit

    Additive manufacturing in the form of laser deposition is a unique way to manufacture near net shape metallic components from advanced materials. Rapid solidification facilitates the extension of solid solubility, compositional flexibility and decrease in micro-segregation in the melt among other advantages. The current work investigates the employment of laser deposition to fabricate the following: 1. Functionally gradient materials: This allows grading dissimilar materials compositionally to tailor specific properties of both these materials into a single component. Specific compositions of the candidate materials (SS 316, Inconel 625 and Ti64) were blended and deposited to study the brittle intermetallics reported in these systems. 2. High entropy alloys: These are multi- component alloys with equiatomic compositions of 5 or more elements. The ratio of Al to Ni was decreased to observe the transition of solid solution from a BCC to an FCC crystal structure in the AlFeCoCrNi system. 3. Structurally amorphous alloys: Zr-based metallic glasses have been reported to have high glass forming ability. These alloys have been laser deposited so as to rapidly cool them from the melt into an amorphous state. Microstructural analysis and X-ray diffraction were used to study the phase formation, and hardness was measured to estimate the mechanical properties.

  14. New infrared solid state laser materials for CALIOPE

    International Nuclear Information System (INIS)

    DeLoach, L.D.; Page, R.H.; Wilke, G.D.

    1994-01-01

    Tunable infrared laser light may serve as a useful means by which to detect the presence of the targeted effluents. Since optical parametric oscillators (OPOs) have proven to be a versatile method of generating coherent light from the ultraviolet to the mid-infrared, this technology is a promising choice by which to service the CALIOPE applications. In addition, since some uncertainty remains regarding the precise wavelengths and molecules that will be targeted, the deployment of OPOs retains the greatest amount of wavelength flexibility. Another approach that the authors are considering is that of generating tunable infrared radiation directly with a diode-pumped solid state laser (DPSSL). One important advantage of a DPSSL is that it offers flexible pulse format modes that can be tailored to meet the needs of a particular application and target molecule. On the other hand, direct generation by a tunable DPSSL will generally be able to cover a more limited wavelength range than is possible with OPO technology. In support of the CALIOPE objectives the authors are exploring the potential for laser action among a class of materials comprised of transition metal-doped zinc chalcogenide crystals (i.e., ZnS, ZnSe and ZnTe). The Cr 2+ , Co 2+ and Ni 2+ dopants were selected as the most favorable candidates, on the basis of their documented spectral properties in the scientific literature. Thus far, the authors have characterized the absorption and emission properties of these ions in the ZnS and ZnSe crystals. The absorption spectra are used to determine the preferred wavelength at which the crystal should be pumped, while the emission spectra reveal the extent of the tuning range potentially offered by the material. In addition, measurements of the emission lifetime as a function of temperature turn out to be quite useful, since this data is suggestive of the room temperature emission yield

  15. Development of high repetition rate ultra-short pulse solid state lasers pumped by laser diodes

    International Nuclear Information System (INIS)

    Ueda, Ken-ichi; Lu, Jianren; Takaichi, Kazunori; Yagi, Hideki; Yanagitani, Takakimi; Kaminskii, Alexander; Kawanaka, Junji

    2004-01-01

    A novel technique for ceramic lasers has been developed recently. Self-energy-driven sintering of nano-and micro particles created the fully transparent Nd:YAG ceramics. The ceramic YAG demonstrated high efficiency operation (optical-to-optical conversion of 60% in end pumping) and solid-phase crystals growth and the possible scaling were investigated principally. Typical performance of ceramic YAG laser has been reviewed. The present status and future prospect of the ceramic lasers technologies were discussed. (author)

  16. The internal propagation of fusion flame with the strong shock of a laser driven plasma block for advanced nuclear fuel ignition

    International Nuclear Information System (INIS)

    Malekynia, B.; Razavipour, S. S.

    2013-01-01

    An accelerated skin layer may be used to ignite solid state fuels. Detailed analyses were clarified by solving the hydrodynamic equations for nonlinear force driven plasma block ignition. In this paper, the complementary mechanisms are included for the advanced fuel ignition: external factors such as lasers, compression, shock waves, and sparks. The other category is created within the plasma fusion as reheating of an alpha particle, the Bremsstrahlung absorption, expansion, conduction, and shock waves generated by explosions. With the new condition for the control of shock waves, the spherical deuterium-tritium fuel density should be increased to 75 times that of the solid state. The threshold ignition energy flux density for advanced fuel ignition may be obtained using temperature equations, including the ones for the density profile obtained through the continuity equation and the expansion velocity for the r ≠ 0 layers. These thresholds are significantly reduced in comparison with the ignition thresholds at x = 0 for solid advanced fuels. The quantum correction for the collision frequency is applied in the case of the delay in ion heating. Under the shock wave condition, the spherical proton-boron and proton-lithium fuel densities should be increased to densities 120 and 180 times that of the solid state. These plasma compressions are achieved through a longer duration laser pulse or X-ray. (physics of gases, plasmas, and electric discharges)

  17. IGBT: a solid state switch

    International Nuclear Information System (INIS)

    Chatroux, D.; Maury, J.; Hennevin, B.

    1993-01-01

    A Copper Vapour Laser Power Supply has been designed using a solid state switch consisting in eighteen Isolated Gate Bipolar Transistors (IGBT), -1200 volts, 400 Amps, each-in parallel. This paper presents the Isolated Gate Bipolar Transistor (IGBTs) replaced in the Power Electronic components evolution, and describes the IGBT conduction mechanism, presents the parallel association of IGBTs, and studies the application of these components to a Copper Vapour Laser Power Supply. The storage capacitor voltage is 820 volts, the peak current of the solid state switch is 17.000 Amps. The switch is connected on the primary of a step-up transformer, followed by a magnetic modulator. The reset of the magnetic modulator is provided by part of the laser reflected energy with a patented circuit. The charging circuit is a resonant circuit with a charge controlled by an IGBT switch. When the switch is open, the inductance energy is free-wheeled by an additional winding and does not extend the charging phase of the storage capacitor. The design allows the storage capacitor voltage to be very well regulated. This circuit is also patented. The electric pulse in the laser has 30.000 Volt peak voltage, 2000 Amp peak current, and is 200 nanoseconds long, for a 200 Watt optical power Copper Vapour Laser

  18. Solid-state laser source of narrowband ultraviolet B light for skin disease care

    Science.gov (United States)

    Tarasov, Aleksandr A.; Chu, Hong

    2013-03-01

    We report about the development of all-solid-state laser source of narrowband UV-B light for medical applications. The device is based on a gain-switched Ti: Sapphire laser with volume Bragg grating, pumped at 532 nm and operating at 931.8 nm, followed by a third harmonic generator and a fiber optic beam homogenizer. The maximum available pulse energy exceeded 5 mJ at 310.6 nm, with a pulse repetition rates of 50 Hz. The output characteristics satisfy the medical requirements for psoriasis and vitiligo treatment. A new optical scheme for third harmonic generation enhancement at moderate levels of input intensities is proposed and investigated. As a result, 40% harmonic efficiency was obtained, when input pulse power was only 300 kW.

  19. All-solid-state deep ultraviolet laser for single-photon ionization mass spectrometry.

    Science.gov (United States)

    Yuan, Chengqian; Liu, Xianhu; Zeng, Chenghui; Zhang, Hanyu; Jia, Meiye; Wu, Yishi; Luo, Zhixun; Fu, Hongbing; Yao, Jiannian

    2016-02-01

    We report here the development of a reflectron time-of-flight mass spectrometer utilizing single-photon ionization based on an all-solid-state deep ultraviolet (DUV) laser system. The DUV laser was achieved from the second harmonic generation using a novel nonlinear optical crystal KBe2BO3F2 under the condition of high-purity N2 purging. The unique property of this laser system (177.3-nm wavelength, 15.5-ps pulse duration, and small pulse energy at ∼15 μJ) bears a transient low power density but a high single-photon energy up to 7 eV, allowing for ionization of chemicals, especially organic compounds free of fragmentation. Taking this advantage, we have designed both pulsed nanospray and thermal evaporation sources to form supersonic expansion molecular beams for DUV single-photon ionization mass spectrometry (DUV-SPI-MS). Several aromatic amine compounds have been tested revealing the fragmentation-free performance of the DUV-SPI-MS instrument, enabling applications to identify chemicals from an unknown mixture.

  20. Solid state physics an introduction

    CERN Document Server

    Hofmann, Philip

    2015-01-01

    A must-have textbook for any undergraduate studying solid state physics. This successful brief course in solid state physics is now in its second edition. The clear and concise introduction not only describes all the basic phenomena and concepts, but also such advanced issues as magnetism and superconductivity. Each section starts with a gentle introduction, covering basic principles, progressing to a more advanced level in order to present a comprehensive overview of the subject. The book is providing qualitative discussions that help undergraduates understand concepts even if they can?t foll

  1. Advanced chip designs and novel cooling techniques for brightness scaling of industrial, high power diode laser bars

    Science.gov (United States)

    Heinemann, S.; McDougall, S. D.; Ryu, G.; Zhao, L.; Liu, X.; Holy, C.; Jiang, C.-L.; Modak, P.; Xiong, Y.; Vethake, T.; Strohmaier, S. G.; Schmidt, B.; Zimer, H.

    2018-02-01

    The advance of high power semiconductor diode laser technology is driven by the rapidly growing industrial laser market, with such high power solid state laser systems requiring ever more reliable diode sources with higher brightness and efficiency at lower cost. In this paper we report simulation and experimental data demonstrating most recent progress in high brightness semiconductor laser bars for industrial applications. The advancements are in three principle areas: vertical laser chip epitaxy design, lateral laser chip current injection control, and chip cooling technology. With such improvements, we demonstrate disk laser pump laser bars with output power over 250W with 60% efficiency at the operating current. Ion implantation was investigated for improved current confinement. Initial lifetime tests show excellent reliability. For direct diode applications 96% polarization are additional requirements. Double sided cooling deploying hard solder and optimized laser design enable single emitter performance also for high fill factor bars and allow further power scaling to more than 350W with 65% peak efficiency with less than 8 degrees slow axis divergence and high polarization.

  2. Laser Science and Technology Program Update 2002

    International Nuclear Information System (INIS)

    Hackel, L A; Chen, H L

    2003-01-01

    The Laser Science and Technology (LSandT) Program's mission is to develop advanced lasers, optics, materials technologies, and applications to solve problems and create new capabilities of importance to the nation and the Laboratory. A top, near-term priority is to provide technical support in the deployment and upgrade of the National Ignition Facility (NIF). Our other program activities synergistically develop technologies that are of interest to the NIF Directorate but outside the scope of the NIF funding. The primary objectives of LSandT activities in 2002 have been fourfold--(a) to support deployment of hardware and to enhance laser and optics performance for NIF, (b) to develop high-energy petawatt laser science and technology for the Department of Energy (DOE), (c) to develop advanced solid-state laser systems and optical components for the Department of Defense (DoD), and to invent develop, and deliver improved concepts and hardware for other government agencies and industry. Special efforts have been devoted to building and maintaining our capabilities in three technology areas: high-power short-pulse solid-state lasers, high-power optical materials, and applications of advanced lasers. LSandT activities during 2002 focused on seven major areas: (1) NIF Project--LSandT led major advances in the deployment of NIF Final Optics Assembly (FOA) and the development of 3ω optics processing and treatment technologies to enhance NIF's operations and performance capabilities. (2) Stockpile Stewardship Program (SSP)--LSandT personnel continued development of ultrashort-pulse lasers and high-power, large-aperture optics for applications in SSP, extreme-field science and national defense. To enhance the high-energy petawatt (HEPW) capability in NIF, LSandT continued development of advanced compressor-grating and front-end laser technologies utilizing optical-parametric chirped-pulse amplification (OPCPA). (3) High-energy-density physics and inertial fusion energy

  3. Status and trends of short pulse generation using mode-locked lasers based on advanced quantum-dot active media

    International Nuclear Information System (INIS)

    Shi, L W; Chen, Y H; Xu, B; Wang, Z C; Jiao, Y H; Wang, Z G

    2007-01-01

    In this review, the potential of mode-locked lasers based on advanced quantum-dot (QD) active media to generate short optical pulses is analysed. A comprehensive review of experimental and theoretical work on related aspects is provided, including monolithic-cavity mode-locked QD lasers and external-cavity mode-locked QD lasers, as well as mode-locked solid-state and fibre lasers based on QD semiconductor saturable absorber mirrors. Performance comparisons are made for state-of-the-art experiments. Various methods for improving important characteristics of mode-locked pulses such as pulse duration, repetition rate, pulse power, and timing jitter through optimization of device design parameters or mode-locking methods are addressed. In addition, gain switching and self-pulsation of QD lasers are also briefly reviewed, concluding with the summary and prospects. (topical review)

  4. A High-Energy Good-Beam-Quality Krypton-Lamp-Pumped Nd:YAG Solid-State Laser with One Pump Cavity

    Institute of Scientific and Technical Information of China (English)

    LIU Xue-Sheng; WANG Zhi-Yong; YAN Xin; CAO Ying-Hua

    2008-01-01

    We investigate a high-energy good-beam-quality krypton-lamp-pumped pulsed Nd:YAG solid-state laser with one pump cavity.The symmetrical resonator laser is developed and is rated at 80 J with beam parameter product 12mm mrad.The total system electro-optics efficiency of the lamp-pumped YAG laser is as high as 3.3% and the stability of output energy is ±2% with pulse width tunable between 0.1 ms and 10ms.The experimental results are consistent with the theoretical analysis and simulation.

  5. Solid State Division progress report, September 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1982-04-01

    Progress made during the 19 months from March 1, 1980, through September 30, 1981, is reported in the following areas: theoretical solid state physics (surfaces, electronic and magnetic properties, particle-solid interactions, and laser annealing); surface and near-surface properties of solids (plasma materials interactions, ion-solid interactions, pulsed laser annealing, and semiconductor physics and photovoltaic conversion); defects in solids (radiation effects, fracture, and defects and impurities in insulating crystals); transport properties of solids (fast-ion conductors, superconductivity, and physical properties of insulating materials); neutron scattering (small-angle scattering, lattice dynamics, and magnetic properties); crystal growth and characterization (nuclear waste forms, ferroelectric mateirals, high-temperature materials, and special materials); and isotope research materials. Publications and papers are listed. (WHK)

  6. Solid State Division progress report, September 30, 1981

    International Nuclear Information System (INIS)

    1982-04-01

    Progress made during the 19 months from March 1, 1980, through September 30, 1981, is reported in the following areas: theoretical solid state physics (surfaces, electronic and magnetic properties, particle-solid interactions, and laser annealing); surface and near-surface properties of solids (plasma materials interactions, ion-solid interactions, pulsed laser annealing, and semiconductor physics and photovoltaic conversion); defects in solids (radiation effects, fracture, and defects and impurities in insulating crystals); transport properties of solids (fast-ion conductors, superconductivity, and physical properties of insulating materials); neutron scattering (small-angle scattering, lattice dynamics, and magnetic properties); crystal growth and characterization (nuclear waste forms, ferroelectric mateirals, high-temperature materials, and special materials); and isotope research materials. Publications and papers are listed

  7. Numerical estimation of phase transformations in solid state during Yb:YAG laser heating of steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Kubiak, Marcin, E-mail: kubiak@imipkm.pcz.pl; Piekarska, Wiesława; Domański, Tomasz; Saternus, Zbigniew [Institute of Mechanics and Machine Design Foundations, Częstochowa University of Technology, Dąbrowskiego 73, 42-200 Częstochowa (Poland); Stano, Sebastian [Welding Technologies Department, Welding Institute, Błogosławionego Czesława 16-18, 44-100 Gliwice (Poland)

    2015-03-10

    This work concerns the numerical modeling of heat transfer and phase transformations in solid state occurring during the Yb:YAG laser beam heating process. The temperature field is obtained by the numerical solution into transient heat transfer equation with convective term. The laser beam heat source model is developed using the Kriging interpolation method with experimental measurements of Yb:YAG laser beam profile taken into account. Phase transformations are calculated on the basis of Johnson - Mehl - Avrami (JMA) and Koistinen - Marburger (KM) kinetics models as well as continuous heating transformation (CHT) and continuous cooling transformation (CCT) diagrams for S355 steel. On the basis of developed numerical algorithms 3D computer simulations are performed in order to predict temperature history and phase transformations in Yb:YAG laser heating process.

  8. Advances in nonlinear polymers and inorganic crystals, liquid crystals, and laser media

    International Nuclear Information System (INIS)

    Musikant, S.

    1987-01-01

    These proceedings collect papers on laser materials. Topics include: solid state lasers, fracture mechanics in laser materials, optical second harmonic generation, nonlinear optics, molecular crystals, crystal-phase transformation, and materials for laser fusion reactors

  9. Outcome of solid-state 532 nm green laser in high-risk retinopathy of prematurity at a tertiary care centre in India.

    Science.gov (United States)

    Chhabra, Kanika; Kaur, Prempal; Singh, Karamjit; Aggarwal, Anand; Chalia, Dharamvir

    2018-02-01

    The purpose of this study was to analyse the outcome of solid-state green laser in high-risk retinopathy of prematurity (ROP) at a tertiary centre in India. Fifty-nine eyes of 30 infants with high-risk ROP were recruited in this prospective, interventional study. High-risk ROP included prethreshold type 1 ROP and APROP. Laser photocoagulation was performed with 532 nm solid-state green laser (Novus Spectra, Lumenis, GmbH, Germany). Of the 30 infants, 18 were males (60%) and 12 were females (40%). The mean birth weight was 1102.83 ± 196.27 g. The mean gestational age was 29.5 ± 1.47 weeks. Zone 1 disease was present in 10 eyes (16.95%) and zone 2 disease in 49 (83.05%) eyes. Out of 57 eyes with prethreshold type 1 ROP, 39 eyes (68.42%) had stage 2 and 18 eyes (31.58%) had stage 3. The postconceptional age at the time of treatment was 36.03 ± 2.32 weeks. The infants received mean 2710.24 ± 747.97 laser spots. Fifty (84.8%) eyes underwent laser in a single sitting and 9 eyes (15.2%) required 2 laser sittings. Mean time for regression of ROP was 5.8 ± 3.8 weeks (range 3-11 weeks). Total ROP regression was seen in 55 eyes (93.22%). Despite laser treatment, 4 (6.78%) eyes of three infants had unfavourable outcome. One infant developed intra-procedural bradycardia. Vitreous haemorrhage was seen in five eyes (8.4%). Solid-state 532 nm green laser is a safe and effective treatment for high-risk retinopathy of prematurity.

  10. Graded Reflectivity Mirror for the Solid State Heat Capacity Laser Final Report CRADA No. TC-2085-04

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Davis, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-27

    This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and the Boeing Company, to develop a Graded Reflectivity Mirror (GRM) to achieve improved near field fill and higher brightness in the far field output of LLNL’s Solid State Heat Capacity Laser (SSHCL).

  11. Amplitude characteristics of a solid-state ring laser with active mode locking

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, E.M.; Klochan, E.L.; Lariontsev, E.G.

    1986-09-01

    A system of equations is obtained for the parameters of ultrashort light pulses (USLP) in a solid-state ring laser (SSRL) with periodic loss modulation. Allowance is made for the coupling between counterpropagating USLP due to backscattering in the modulator. The regime of counter-propagating wave frequency capture (CPWFC) is studied. It is shown that the coupling of counterpropagating waves due to backscattering at the modulator ends leads to the suppression of one of the counterpropagating waves during an increase in the detuning of the modulation frequency relative to its optimal value. The influence of rotation on the amplitude characteristics of an SSRL in the CPWFC regime is studied. 9 references.

  12. CO2 laser technology for advanced particle accelerators

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1996-06-01

    Short-pulse, high-power CO 2 lasers open new prospects for development of ultra-high gradient laser-driven electron accelerators. The advantages of λ=10 μm CO 2 laser radiation over the more widely exploited solid state lasers with λ∼1 μm are based on a λ 2 -proportional ponderomotive potential, λ-proportional phase slippage, and λ-proportional scaling of the laser accelerator structures. We show how a picosecond terawatt CO 2 laser that is under construction at the Brookhaven Accelerator Test Facility may benefit the ATF's experimental program of testing far-field, near-field, and plasma accelerator schemes

  13. Development of all solid-state, high average power ultra-short pulse laser for X-ray generation. High average power CPA system and wavefront control of ultra short laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Harayama, Sayaka; Akaoka, Katsuaki; Tei, Kazuyoku; Kato, Masaaki; Niwa, Yoshito; Maruyama, Yoichiro; Matoba, Toru; Arisawa, Takashi; Takuma, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    We developed a prototype CPA laser system which is pumped by a all solid-state Nd:YAG laser. In a preliminary experiment, the output energy of 52mJ before compression was obtained when the pumping energy was 250mJ. To compensate the wavefront distortion, an adaptive optics has been developed. By using this wavefront control system, the laser beam with the distortion of 0.15{lambda} was obtained. (author)

  14. High repetition ration solid state switched CO2 TEA laser employed in industrial ultrasonic testing of aircraft parts

    Science.gov (United States)

    von Bergmann, Hubertus; Morkel, Francois; Stehmann, Timo

    2015-02-01

    Laser Ultrasonic Testing (UT) is an important technique for the non-destructive inspection of composite parts in the aerospace industry. In laser UT a high power, short pulse probe laser is scanned across the material surface, generating ultrasound waves which can be detected by a second low power laser system and are used to draw a defect map of the part. We report on the design and testing of a transversely excited atmospheric pressure (TEA) CO2 laser system specifically optimised for laser UT. The laser is excited by a novel solid-state switched pulsing system and utilises either spark or corona preionisation. It provides short output pulses of less than 100 ns at repetition rates of up to 1 kHz, optimised for efficient ultrasonic wave generation. The system has been designed for highly reliable operation under industrial conditions and a long term test with total pulse counts in excess of 5 billion laser pulses is reported.

  15. Solid State Division: Progress report for period ending September 30, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Watson, D.M. (eds.)

    1988-03-01

    This paper contains a collection of articles on research done at the Solid State Division of ORNL. General topics covered are: theoretical solid state physics; neutron scattering; physical properties of superconductors and ceramics; synthesis and characterization of solids; ion beam and laser processing; and surface and defect studies. (LSP)

  16. Solid State Division: Progress report for period ending September 30, 1987

    International Nuclear Information System (INIS)

    Green, P.H.; Watson, D.M.

    1988-03-01

    This paper contains a collection of articles on research done at the Solid State Division of ORNL. General topics covered are: theoretical solid state physics; neutron scattering; physical properties of superconductors and ceramics; synthesis and characterization of solids; ion beam and laser processing; and surface and defect studies

  17. Advances in solid-state NMR of cellulose.

    Science.gov (United States)

    Foston, Marcus

    2014-06-01

    Nuclear magnetic resonance (NMR) spectroscopy is a well-established analytical and enabling technology in biofuel research. Over the past few decades, lignocellulosic biomass and its conversion to supplement or displace non-renewable feedstocks has attracted increasing interest. The application of solid-state NMR spectroscopy has long been seen as an important tool in the study of cellulose and lignocellulose structure, biosynthesis, and deconstruction, especially considering the limited number of effective solvent systems and the significance of plant cell wall three-dimensional microstructure and component interaction to conversion yield and rate profiles. This article reviews common and recent applications of solid-state NMR spectroscopy methods that provide insight into the structural and dynamic processes of cellulose that control bulk properties and biofuel conversion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Narrowband solid state vuv coherent source for laser cooling of antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Michan, J. Mario [TRIUMF (Canada); Polovy, Gene; Madison, Kirk W. [The University of British Columbia, Department of Physics and Astronomy (Canada); Fujiwara, Makoto C. [TRIUMF (Canada); Momose, Takamasa, E-mail: momose@chem.ubc.ca [The University of British Columbia, Department of Chemistry, Department of Physics and Astronomy (Canada)

    2015-11-15

    We describe the design and performance of a solid-state pulsed source of narrowband (< 100 MHz) Lyman-α radiation designed for the purpose of laser cooling magnetically trapped antihydrogen. Our source utilizes an injection seeded Ti:Sapphire amplifier cavity to generate intense radiation at 729.4 nm, which is then sent through a frequency doubling stage and a frequency tripling stage to generate 121.56 nm light. Although the pulse energy at 121.56 nm is currently limited to 12 nJ with a repetition rate of 10 Hz, we expect to obtain greater than 0.1 μJ per pulse at 10 Hz by further optimizing the alignment of the pulse amplifier and the efficiency of the frequency tripling stage. Such a power will be sufficient for cooling a trapped antihydrogen atom from 500 mK to 20mK.

  19. CO2 laser technology for advanced particle accelerators. Revision

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1996-06-01

    Short-pulse, high-power CO 2 lasers open new prospects for development of ultra-high gradient laser-driven electron accelerators. The advantages of λ=10 μm CO 2 laser radiation over the more widely exploited solid state lasers with λ∼1 μm are based on a λ 2 -proportional ponderomotive potential, λ-proportional phase slippage distance, and λ-proportional scaling of the laser accelerator structures. We show how a picosecond terawatt CO 2 laser that is under construction at the Brookhaven Accelerator Test Facility may benefit the ATF's experimental program of testing far-field, near-field, and plasma accelerator schemes

  20. Studies on reducing the thermal loads of solar-pumped solid state lasers; Taiyoko reiki laser no netsufuka teigen ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, K; Yugami, H; Naito, H; Arashi, H [Tohoku University, Sendai (Japan)

    1997-11-25

    It was intended to reduce the thermal loads of solar-pumped solid state lasers (highly densified solar light is irradiated directly onto a laser medium to cause excitation. No electric power is required for the excitation.). For this purpose, experiments were performed by using a selective permeation film. Solar light includes wavelengths not effective for excitation, which causes heat generation and thermal loads such as lens heating effect and thermal stress compounded refraction, degrading the laser beam quality. The Nd:YAG was used as a laser medium, and a multi-layered film (composed of SiO2 and TiO2) which cuts wavelength below 500 nm as a selective permeation film to cut light having wavelengths not required for excitation. A laser transmitting experiment revealed that the slope efficiency is improved by 27% as compared to not using the film. Beam fluctuation was improved to 45%. Using the selective permeation film has realized more efficient conversion of the solar light into a beam with better quality. The results for calculation of heat lens effect by using temperature distribution simulation showed good agreement with experimental values. Using the selective permeation film can suppress the maximum temperature of a laser rod to 68%, as well as the thermal stress. 9 figs., 2 tabs.

  1. Solid-State Division progress report for period ending March 31, 1983

    International Nuclear Information System (INIS)

    Green, P.H.; Watson, D.M.

    1983-09-01

    Progress and activities are reported on: theoretical solid-state physics (surfaces; electronic, vibrational, and magnetic properties; particle-solid interactions; laser annealing), surface and near-surface properties of solids (surface, plasma-material interactions, ion implantation and ion-beam mixing, pulsed-laser and thermal processing), defects in solids (radiation effects, fracture, impurities and defects, semiconductor physics and photovoltaic conversion), transport properties of solids (fast-ion conductors, superconductivity, mass and charge transport in materials), neutron scattering (small-angle scattering, lattice dynamics, magnetic properties, structure and instrumentation), and preparation and characterization of research materials (growth and preparative methods, nuclear waste forms, special materials)

  2. Solid-State Division progress report for period ending March 31, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Watson, D.M. (eds.)

    1983-09-01

    Progress and activities are reported on: theoretical solid-state physics (surfaces; electronic, vibrational, and magnetic properties; particle-solid interactions; laser annealing), surface and near-surface properties of solids (surface, plasma-material interactions, ion implantation and ion-beam mixing, pulsed-laser and thermal processing), defects in solids (radiation effects, fracture, impurities and defects, semiconductor physics and photovoltaic conversion), transport properties of solids (fast-ion conductors, superconductivity, mass and charge transport in materials), neutron scattering (small-angle scattering, lattice dynamics, magnetic properties, structure and instrumentation), and preparation and characterization of research materials (growth and preparative methods, nuclear waste forms, special materials). (DLC)

  3. Solid state fermentation for production of microbial cellulases: Recent advances and improvement strategies.

    Science.gov (United States)

    Behera, Sudhanshu S; Ray, Ramesh C

    2016-05-01

    Lignocellulose is the most plentiful non-food biomass and one of the most inexhaustible renewable resources on the planet, which is an alternative sustainable energy source for the production of second generation biofuels. Lignocelluloses are composed of cellulose, hemicellulose and lignin, in which the sugar polymers account for a large portion of the biomass. Cellulases belong to the glycoside hydrolase family and catalyze the hydrolysis of glyosidic linkages depolymerizing cellulose to fermentable sugars. They are multi-enzymatic complex proteins and require the synergistic action of three key enzymes: endoglucanase (E.C. 3.2.1.4), exoglucanase (E.C. 3.2.1.176) (E.C. 3.2.1.91) and β-glucosidase (E.C. 3.2.1.21) for the depolymerization of cellulose to glucose. Solid state fermentation, which holds growth of microorganisms on moist solid substrates in the absence of free flowing water, has gained considerable attention of late due its several advantages over submerged fermentation. The review summarizes the critical analysis of recent literature covering production of cellulase in solid state fermentation using advance technologies such as consolidated bioprocessing, metabolic engineering and strain improvement, and circumscribes the strategies to improve the enzyme yield. Copyright © 2016. Published by Elsevier B.V.

  4. Solid State Ionics Advanced Materials for Emerging Technologies

    Science.gov (United States)

    Chowdari, B. V. R.; Careem, M. A.; Dissanayake, M. A. K. L.; Rajapakse, R. M. G.; Seneviratne, V. A.

    2006-06-01

    . Invited papers. Cathodic properties of Al-doped LiCoO[symbol] prepared by molten salt method Li-Ion batteries / M. V. Reddy, G. V. Subba Rao, B. V. R. Chowdari. Layered ion-electron conducting materials / M. A. Santa Ana, E. Benavente, G. González. LiNi[symbol]Co[symbol]O[symbol] cathode thin-film prepared by RF sputtering for all-solid-state rechargeable microbatteries / X. J. Zhu ... [et al.] -- Contributed papers. Contributed papers. Nanocomposite cathode for SOFCs prepared by electrostatic spray deposition / A. Princivalle, E. Djurado. Effect of the addition of nanoporous carbon black on the cycling characteristics of Li[symbol]Co[symbol](MoO[symbol])[symbol] for lithium batteries / K. M. Begam, S. R. S. Prabaharan. Protonic conduction in TiP[symbol]O[symbol] / V. Nalini, T. Norby, A. M. Anuradha. Preparation and electrochemical LiMn[symbol]O[symbol] thin film by a solution deposition method / X. Y. Gan ... [et al.]. Synthesis and characterization LiMPO[symbol] (M = Ni, Co) / T. Savitha, S. Selvasekarapandian, C. S. Ramya. Synthesis and electrical characterization of LiCoO[symbol] LiFeO[symbol] and NiO compositions / A. Wijayasinghe, B. Bergman. Natural Sri Lanka graphite as conducting enhancer in manganese dioxide (Emd type) cathode of alkaline batteries / N. W. B. Balasooriya ... [et al.]. Electrochemical properties of LiNi[symbol]Al[symbol]Zn[symbol]O[symbol] cathode material synthesized by emulsion method / B.-H. Kim ... [et al.]. LiNi[symbol]Co[symbol]O[symbol] cathode materials synthesized by particulate sol-gel method for lithium ion batteries / X. J. Zhu ... [et al.]. Pulsed laser deposition of highly oriented LiCoO[symbol] and LiMn[symbol]O[symbol] thin films for microbattery applications / O. M. Hussain ... [et al.]. Preparation of LiNi[symbol]Co[symbol]O[symbol] thin films by a sol-gel method / X. J. Zhu ... [et al.]. Electrochemical lithium insertion into a manganese dioxide electrode in aqueous solutions / M. Minakshi ... [et al.]. AC impedance

  5. Plasma dynamics from laser ablated solid lithium

    Indian Academy of Sciences (India)

    b; 52.25.-b; 52.70.-m. 1. Introduction. Pulsed laser ablation of a solid sample generates a dense plasma emission in the shape of ... The multichannel analyser plate of the ICCD was gated for as less as 4 ns using ... to explain the atomic collision processes [4]. .... Within duration of laser pulse, there occurs laser-solid interac-.

  6. Space-time complexity in solid state models

    International Nuclear Information System (INIS)

    Bishop, A.R.

    1985-01-01

    In this Workshop on symmetry-breaking it is appropriate to include the evolving fields of nonlinear-nonequilibrium systems in which transitions to and between various degrees of ''complexity'' (including ''chaos'') occur in time or space or both. These notions naturally bring together phenomena of pattern formation and chaos and therefore have ramifications for a huge array of natural sciences - astrophysics, plasmas and lasers, hydrodynamics, field theory, materials and solid state theory, optics and electronics, biology, pattern recognition and evolution, etc. Our particular concerns here are with examples from solid state and condensed matter

  7. Update on diode-pumped solid-state laser experiments for inertial fusion energy

    International Nuclear Information System (INIS)

    Marshall, C.; Smith, L.; Payne, S.

    1994-01-01

    The authors have completed the initial phase of the diode-pumped solid-state laser (DPSSL) experimental program to validate the expected pumping dynamics and extraction cross-sections of Yb 3+ -doped Sr 5 (PO 4 ) 3 F (Yb:S-FAP) crystals. Yb:S-FAP crystals up to 25 x 25 x 175 mm in size have been grown for this purpose which have acceptable loss characteristics ( 2 ). The saturation fluence for pumping has been measured to be 2.2 J/cm 2 using three different methods based on either the spatial, temporal, or energy transmission properties of a Yb:S-FAP rod. The small signal gain under saturated pumping conditions was measured. These measurements imply an emission cross section of 6.0 x 10 -20 cm 2 that falls within error bars of the previously reported value of 7.3 x 10 -20 cm 2 , obtained from purely spectroscopic techniques. The effects of radiation trapping on the emission lifetime have been quantified. The long lifetime of Yb:S-FAP has beneficial effects for diode-pumped amplifier designs, relative to materials with equivalent cross sections but shorter lifetimes, in that less peak pump intensity is required (thus lower diode costs) and that lower spontaneous emission rates lead to a reduction in amplified spontaneous emission. Consequently, up to 1.7 J/cm 3 of stored energy density was achieved in a 6x6x44 mm Yb:S-FAP amplifier rod; this stored energy density is large relative to typical flashlamp-pumped Nd:glass values of 0.3 to 0.5 J/cm 3 . A 2.4 kW peak power InGaAs diode array has been fabricated by Beach, Emanuel, and co-workers which meets the central wavelength, bandwidth, and energy specifications for the author's immediate experiments. These results further increase their optimism of being able to produce a ∼ 10% efficient diode-pumped solid state laser for inertial fusion energy

  8. Optimisation of the parameters of a pump chamber for solid-state lasers with diode pumping by the optical boiler method

    Energy Technology Data Exchange (ETDEWEB)

    Kiyko, V V; Kislov, V I; Ofitserov, E N; Suzdal' tsev, A G [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-06-30

    A pump chamber of the optical boiler type for solid-state lasers with transverse laser diode pumping is studied theoretically and experimentally. The pump chamber parameters are optimised using the geometrical optics approximation for the pump radiation. According to calculations, the integral absorption coefficient of the active element at a wavelength of 808 nm is 0.75 – 0.8 and the relative inhomogeneity of the pump radiation distribution over the active element volume is 17% – 19%. The developed pump chamber was used in a Nd:YAG laser. The maximum cw output power at a wavelength of 1064 nm was ∼480 W at the optical efficiency up to 19.6%, which agrees with theoretical estimates. (lasers)

  9. Efficient all solid-state continuous-wave yellow-orange light source

    DEFF Research Database (Denmark)

    Janousek, Jiri; Johansson, Sandra; Tidemand-Lichtenberg, Peter

    2005-01-01

    We present highly efficient sum-frequency generation between two CW IR lasers using periodically poled KTP. The system is based on the 1064 and 1342 nm laser-lines of two Nd:YVO4 lasers. This is an all solid-state light source in the yellow-orange spectral range. The system is optimized in terms ...

  10. Amplified spontaneous emission and thermal management on a high average-power diode-pumped solid-state laser - the Lucia laser system

    International Nuclear Information System (INIS)

    Albach, D.

    2010-01-01

    The development of the laser triggered the birth of numerous fields in both scientific and industrial domains. High intensity laser pulses are a unique tool for light/matter interaction studies and applications. However, current flash-pumped glass-based systems are inherently limited in repetition-rate and efficiency. Development within recent years in the field of semiconductor lasers and gain media drew special attention to a new class of lasers, the so-called Diode Pumped Solid State Laser (DPSSL). DPSSLs are highly efficient lasers and are candidates of choice for compact, high average-power systems required for industrial applications but also as high-power pump sources for ultra-high intense lasers. The work described in this thesis takes place in the context of the 1 kilowatt average-power DPSSL program Lucia, currently under construction at the 'Laboratoire d'Utilisation des Laser Intenses' (LULI) at the Ecole Polytechnique, France. Generation of sub-10 nanosecond long pulses with energies of up to 100 joules at repetition rates of 10 hertz are mainly limited by Amplified Spontaneous Emission (ASE) and thermal effects. These limitations are the central themes of this work. Their impact is discussed within the context of a first Lucia milestone, set around 10 joules. The developed laser system is shown in detail from the oscillator level to the end of the amplification line. A comprehensive discussion of the impact of ASE and thermal effects is completed by related experimental benchmarks. The validated models are used to predict the performances of the laser system, finally resulting in a first activation of the laser system at an energy level of 7 joules in a single-shot regime and 6.6 joules at repetition rates up to 2 hertz. Limitations and further scaling approaches are discussed, followed by an outlook for the further development. (author) [fr

  11. Image transmission in mid-IR using a solid state laser pumped optical parametric oscillator

    Science.gov (United States)

    Prasad, Narasimha S.; Kratovil, Pat; Magee, James R.

    2002-04-01

    In this paper, image transmission using a mid-wave IR (MWIR) optical transceiver based free-space data link under low visibility conditions is presented. The all-solid-state MWIR transceiver primarily consisted of a passively Q-switched, short-pulsed Nd:YAG laser pumping a periodically poled lithium niobate (PPLN) based optical parametric oscillator and a Dember effect detector. The MILES transceiver generates pulse position waveforms. The optical data link consisting of transmitter drive electronics, pulse conditioning electronics and a computer generating pulses compatible with the 2400-baud rate RS232 receiver was utilized. Data formatting and RS232 transmission and reception were achieved using a computer. Data formatting transformed an arbitrary image file format compatible with the basic operation of pump laser. Images were transmitted at a date rate of 2400 kbits/sec with 16 bits/pixel. Test images consisting of 50X40 pixels and 100X80 pixels were transmitted through free-space filled with light fog up to 120 ft. Besides optical parametric oscillators, the proposed concept can be extended to optical parametric amplifiers, Raman lasers and other nonlinear optical devices to achieve multi-functionality.

  12. Direct growth of graphene on quartz substrate as saturable absorber for femtosecond solid-state laser

    International Nuclear Information System (INIS)

    Xu, S C; Man, B Y; Jiang, S Z; Chen, C S; Liu, M; Yang, C; Gao, S B; Zhang, C; Feng, D J; Huang, Q J; Hu, G D; Chen, X F

    2014-01-01

    We present a novel method for the direct metal-free growth of graphene on quartz substrate. The direct-grown graphene yields excellent nonlinear saturable absorption properties and is demonstrated to be suitable as a saturable absorber (SA) for an ultrafast solid-state laser. Nearly Fourier-limited 367 fs was obtained at a central wavelength of 1048 nm with a repetition rate of 105.7 MHz. At a pump power of 7.95 W, the average output power was 1.93 W and the highest pulse energy reached 18.3 nJ, with a peak power of 49.8 kW. Our work opens an easy route for making a reliable graphene SA with a mode-locking technique and also displays an exciting prospect in making low-cost and ultrafast lasers. (letter)

  13. Lasers: present and future research

    International Nuclear Information System (INIS)

    Philippe, P.

    1981-01-01

    Recent advances in the field of lasers are reviewed in particular in the French laboratories. Different lasers are briefly described related to their applications: rare gas halide, iodine, metal vapor, color center, transition-metal solid state, CO 2 , chemical, blue-green and free electron lasers. Among applications researches on thermonuclear fusion are given p. 125 and researches concerning isotope separation are given p. 126 and 127 [fr

  14. Comparison of eye-safe solid state laser DIAL with passive gas filter correlation measurements from aircraft and spacecraft

    Science.gov (United States)

    Hess, Robert V.; Staton, Leo D.; Wallio, H. Andrew; Wang, Liang-Guo

    1992-01-01

    Differential Absorption Lidar (DIAL) using solid state Ti:sapphire lasers finds current application in the NASA/LASE Project for H2O vapor measurements in the approximately = 0.820 micron region for the lower and mid-troposphere and in potential future applications in planned measurements of the approximately = 0.940 micron region where both strong and weak absorption lines enables measurements throughout the troposphere and lower stratosphere. The challenge exists to perform measurements in the eye-safe greater than 1.5 micron region. A comparison between DIAL and passive Gas Filter Correlation Radiometer (GFCR) measurements is made. The essence of the differences in signal to noise ratio for DIAL and passive GFCR measurements is examined. The state of the art of lasers and optical parametric oscillators (OPO's) is discussed.

  15. Efficient near diffraction limited blue light source by sum-frequency mixing of a BAL and a solid-state laser

    DEFF Research Database (Denmark)

    Sørensen, Knud Palmelund; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2011-01-01

    and slow axis of the diode, respectively. The BAL output beam is single-passed through a periodically poled KTiOPO4 (PPKTP) crystal placed in an intra-cavity beam waist of a 1064 nm Nd:YVO4 laser, resulting in 100 mW of sum-frequency generated blue output power. This corresponds to a power conversion......Sum-frequency mixing of an 808 nm broad area laser (BAL) with a build-in grating structure for spectral control and a 1064 nm solid-state laser is experimentally investigated. The spectrally improved 20 mu m wide BAL can deliver up to 700 mW of output power with an M-2 of 1.4 and 5.3 in the fast...

  16. Studies of diode-pumped solid-state lasers based on Nd:KGW and Nd:YAG

    International Nuclear Information System (INIS)

    Ibrahim, Akram Yousif

    1996-01-01

    The experimental part of the thesis was dedicated to the studies of diode-pumped solid- state lasers. it includes experiments with end-pumped continuous wave (CW) Nd-doped crystals. In particular, we have concentrated to Nd:KGW, a relatively new and not studied in the literature about the laser materials. We have performed some basics measurements of this material. A fibre bundle coupled laser diode array was used as a pump source. We have investigated two main optical arrangements for the pump, allowing operation in two regimes: 1- Low pump power operation using selected output power from a single of the fibre bundle. 2- high pump power operation using the total output power from the bundle. The main parameters of the cavities we use (e.g. the cavity mode and the pumping spot size), were determined using the matrix approach and the equations for the propagation of the Gaussian beams. The highest output power obtained in this work for Nd:KGW with a transverse electromagnetic (TEM 0 0) single-mode, continuous (CW) operation, was 400 mW for 1700 mW pumping power from the diode laser. We present also data about the performance of a diode pumped Nd:YAG crystal. Our experiment shows that Nd:KGW is a promising material of low and medium pumping power levels. (Author)

  17. Intensity noise cancellation in solid-state laser at 1.5  μm using SHG depletion as a buffer reservoir.

    Science.gov (United States)

    Audo, Kevin; Alouini, Mehdi

    2018-03-01

    An absorption mechanism based on second-harmonic generation (SHG) is successfully implemented as a buffer reservoir in a solid-state Er,Yb:Glass laser emitting at the telecom wavelength. We show that a slight absorption mechanism based on SHG rate conversion of 0.016% using a beta barium borate crystal enables the canceling out of the excess intensity noise at the relaxation oscillation frequency, i.e., 35 dB reduction, as well as canceling the amplified spontaneous emission beating at the free spectral range resonances of the laser lying in the gigahertz range. Laser robustness is discussed.

  18. Lasers '89

    International Nuclear Information System (INIS)

    Harris, D.G.; Shay, T.M.

    1990-01-01

    This book covers the following topics: XUV, X-Ray and Gamma-Ray Lasers, excimer lasers, chemical lasers, nuclear pumped lasers, high power gas lasers, solid state lasers, laser spectroscopy. The paper presented include: Development of KrF lasers for fusion and Nuclear driven solid-state lasers

  19. Advances in laser ablation of materials

    International Nuclear Information System (INIS)

    Singh, R.K.; Lowndes, D.H.; Chrisey, D.B.; Fogarassy, E.; Narayan, J.

    1998-01-01

    The symposium, Advances in Laser Ablation of Materials, was held at the 1998 MRS Spring Meeting in San Francisco, California. The papers in this symposium illustrate the advances in pulsed laser ablation for a wide variety of applications involving semiconductors, superconductors, metals, ceramics, and polymers. In particular, advances in the deposition of oxides and related materials are featured. Papers dealing with both fundamentals and the applications of laser ablation are presented. Topical areas include: fundamentals of ablation and growth; in situ diagnostics and nanoscale synthesis advances in laser ablation techniques; laser surface processing; pulsed laser deposition of ferroelectric, magnetic, superconducting and optoelectronic thin films; and pulsed laser deposition of carbon-based and polymeric materials. Sixty papers have been processed separately for inclusion on the data base

  20. Solid state physics

    CERN Document Server

    Grosso, Giuseppe

    2013-01-01

    Solid State Physics is a textbook for students of physics, material science, chemistry, and engineering. It is the state-of-the-art presentation of the theoretical foundations and application of the quantum structure of matter and materials. This second edition provides timely coverage of the most important scientific breakthroughs of the last decade (especially in low-dimensional systems and quantum transport). It helps build readers' understanding of the newest advances in condensed matter physics with rigorous yet clear mathematics. Examples are an integral part of the text, carefully de

  1. TiO{sub 2} nanocrystals synthesized by laser pyrolysis for the up-scaling of efficient solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Melhem, Hussein; Boucharef, Mourad; Di Bin, Catherine; Ratier, Bernard; Boucle, Johann [XLIM UMR 6172 Universite de Limoges/CNRS, Limoges Cedex (France); Simon, Pardis; Leconte, Yann; Herlin-Boime, Nathalie [IRAMIS/SPAM/LFP, CEA-CNRS URA 2453, CEA Saclay, Gif sur Yvette (France); Beouch, Layla; Goubard, Fabrice [Laboratoire de Physico-Chimie des Polymeres et des Interfaces (LPPI), Federation Institut des Materiaux (FD 4122), Universite de Cergy-Pontoise (France)

    2011-10-15

    A crucial issue regarding emerging nanotechnologies remains the up-scaling of new functional nanostructured materials towards their implementation in high performance applications on a large scale. In this context, we demonstrate high efficiency solid-state dye-sensitized solar cells prepared from new porous TiO{sub 2} photoanodes based on laser pyrolysis nanocrystals. This strategy exploits a reduced number of processing steps as well as non-toxic chemical compounds to demonstrate highly porous TiO{sub 2} films. The possibility to easily tune the TiO{sub 2} nanocrystal physical properties allows us to demonstrate all solid-state dye-sensitized devices based on a commercial benchmark materials (organic indoline dye and molecular hole transporter) presenting state-of-the-art performance comparable with reference devices based on a commercial TiO{sub 2} paste. In particular, a drastic improvement in pore infiltration, which is found to balance a relatively lower surface area compared to the reference electrode, is evidenced using laser-synthesized nanocrystals resulting in an improved short-circuit current density under full sunlight. Transient photovoltage decay measurements suggest that charge recombination kinetics still limit device performance. However, the proposed strategy emphasizes the potentialities of the laser pyrolysis technique for up-scaling nanoporous TiO{sub 2} electrodes for various applications, especially for solar energy conversion. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Advances in Solid-State Transformations of Coordination Bonds: From the Ball Mill to the Aging Chamber

    Directory of Open Access Journals (Sweden)

    Cristina Mottillo

    2017-01-01

    Full Text Available Controlling the formation of coordination bonds is pivotal to the development of a plethora of functional metal-organic materials, ranging from coordination polymers, metal-organic frameworks (MOFs to metallodrugs. The interest in and commercialization of such materials has created a need for more efficient, environmentally-friendly routes for making coordination bonds. Solid-state coordination chemistry is a versatile greener alternative to conventional synthesis, offering quantitative yields, enhanced stoichiometric and topological selectivity, access to a wider range of precursors, as well as to molecules and materials not readily accessible in solution or solvothermally. With a focus on mechanochemical, thermochemical and “accelerated aging” approaches to coordination polymers, including pharmaceutically-relevant materials and microporous MOFs, this review highlights the recent advances in solid-state coordination chemistry and techniques for understanding the underlying reaction mechanisms.

  3. The LIFE Laser Design in Context: A Comparison to the State-of-the-Art

    International Nuclear Information System (INIS)

    Deri, R.J.; Bayramian, A.J.; Erlandson, A.C.

    2011-01-01

    The current point design for the LIFE laser leverages decades of solid-state laser development in order to achieve the performance and attributes required for inertial fusion energy. This document provides a brief comparison of the LIFE laser point design to other state-of-the-art solid-state lasers. Table I compares the attributes of the current LIFE laser point design to other systems. the state-of-the-art for single-shot performance at fusion-relevant beamline energies is exemplified by performance observed on the National Ignition Facility. The state-of-the-art for high average power is exemplified by the Northrup Grumman JHPSSL laser. Several items in Table I deal with the laser efficiency; a more detailed discussion of efficiency can be found in reference 5. The electrical-to-optical efficiency of the LIFE design exceeds that of reference 4 due to the availability of higher efficiency laser diode pumps (70% vs. ∼50% used in reference 4). LIFE diode pumps are discussed in greater detail in reference 6. The 'beam steering' state of the art is represented by the deflection device that will be used in the LIFE laser, not a laser system. Inspection of Table I shows that most LIFE laser attributes have already been experimentally demonstrated. The two cases where the LIFE design is somewhat better than prior experimental work do not involve the development of new concepts: beamline power is increased simply by increasing aperture (as demonstrated by the power/aperture comparison in Table I), and efficiency increases are achieved by employing state-of-the-art diode pumps. In conclusion, the attributes anticipated for the LIFE laser are consistent with the demonstrated performance of existing solid-state lasers.

  4. Two-photon interference of weak coherent laser pulses recalled from separate solid-state quantum memories

    Science.gov (United States)

    Jin, Jeongwan; Slater, Joshua A.; Saglamyurek, Erhan; Sinclair, Neil; George, Mathew; Ricken, Raimund; Oblak, Daniel; Sohler, Wolfgang; Tittel, Wolfgang

    2013-08-01

    Quantum memories allowing reversible transfer of quantum states between light and matter are central to quantum repeaters, quantum networks and linear optics quantum computing. Significant progress regarding the faithful transfer of quantum information has been reported in recent years. However, none of these demonstrations confirm that the re-emitted photons remain suitable for two-photon interference measurements, such as C-NOT gates and Bell-state measurements, which constitute another key ingredient for all aforementioned applications. Here, using pairs of laser pulses at the single-photon level, we demonstrate two-photon interference and Bell-state measurements after either none, one or both pulses have been reversibly mapped to separate thulium-doped lithium niobate waveguides. As the interference is always near the theoretical maximum, we conclude that our solid-state quantum memories, in addition to faithfully mapping quantum information, also preserve the entire photonic wavefunction. Hence, our memories are generally suitable for future applications of quantum information processing that require two-photon interference.

  5. Two-photon interference of weak coherent laser pulses recalled from separate solid-state quantum memories.

    Science.gov (United States)

    Jin, Jeongwan; Slater, Joshua A; Saglamyurek, Erhan; Sinclair, Neil; George, Mathew; Ricken, Raimund; Oblak, Daniel; Sohler, Wolfgang; Tittel, Wolfgang

    2013-01-01

    Quantum memories allowing reversible transfer of quantum states between light and matter are central to quantum repeaters, quantum networks and linear optics quantum computing. Significant progress regarding the faithful transfer of quantum information has been reported in recent years. However, none of these demonstrations confirm that the re-emitted photons remain suitable for two-photon interference measurements, such as C-NOT gates and Bell-state measurements, which constitute another key ingredient for all aforementioned applications. Here, using pairs of laser pulses at the single-photon level, we demonstrate two-photon interference and Bell-state measurements after either none, one or both pulses have been reversibly mapped to separate thulium-doped lithium niobate waveguides. As the interference is always near the theoretical maximum, we conclude that our solid-state quantum memories, in addition to faithfully mapping quantum information, also preserve the entire photonic wavefunction. Hence, our memories are generally suitable for future applications of quantum information processing that require two-photon interference.

  6. High-power Yb-doped continuous-wave and pulsed fibre lasers

    Indian Academy of Sciences (India)

    2014-01-05

    Jan 5, 2014 ... In this article, a review of Yb-doped CW and pulsed fibre lasers along with our study on self-pulsing dynamics in CW fibre lasers to find its role in high-power fibre laser development and the physical ... Solid State Laser Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013, India ...

  7. Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers

    Science.gov (United States)

    Huang, Robin K.; Chann, Bien; Burgess, James; Kaiman, Michael; Overman, Robert; Glenn, John D.; Tayebati, Parviz

    2012-03-01

    TeraDiode has produced kW-class ultra-high brightness fiber-coupled direct diode lasers. A fiber-coupled direct diode laser with a power level of 2,040 W from a 50 μm core diameter, 0.15 numerical aperture (NA) output fiber at a single center wavelength was demonstrated. This was achieved with a novel beam combining and shaping technique using COTS diode lasers. The fiber-coupled output corresponds to a Beam Parameter Product (BPP) of 3.75 mm-mrad and is the lowest BPP kW-class direct diode laser yet reported. This laser is suitable for industrial materials processing applications, including sheet metal cutting and welding. This 2-kW fiber-coupled direct diode laser has comparable brightness to that of industrial fiber lasers and CO2 lasers, and is over 10x brighter than state-of-the-art direct diode lasers.

  8. United States advanced technologies

    International Nuclear Information System (INIS)

    Longenecker, J.R.

    1985-01-01

    In the United States, the advanced technologies have been applied to uranium enrichment as a means by which it can be assured that nuclear fuel cost will remain competitive in the future. The United States is strongly committed to the development of advanced enrichment technology, and has brought both advanced gas centrifuge (AGC) and atomic vapor laser isotope separation (AVLIS) programs to a point of significant technical refinement. The ability to deploy advanced technologies is the basis for the confidence in competitive future price. Unfortunately, the development of advanced technologies is capital intensive. The year 1985 is the key year for advanced technology development in the United States, since the decision on the primary enrichment technology for the future, AGC or AVLIS, will be made shortly. The background on the technology selection process, the highlights of AGC and AVLIS programs and the way to proceed after the process selection are described. The key objective is to maximize the sales volume and minimize the operating cost. This will help the utilities in other countries supply low cost energy on a reliable, long term basis. (Kako, I.)

  9. Progress in high duty cycle, highly efficient fiber coupled 940-nm pump modules for high-energy class solid-state lasers

    Science.gov (United States)

    Platz, R.; Frevert, C.; Eppich, B.; Rieprich, J.; Ginolas, A.; Kreutzmann, S.; Knigge, S.; Erbert, G.; Crump, P.

    2018-03-01

    Diode lasers pump sources for future high-energy-class laser systems based on Yb-doped solid state amplifiers must deliver high optical intensities, high conversion efficiency (ηE = > 50%) at high repetition rates (f = 100 Hz) and long pulse widths (τ = 0.5…2 ms). Over the last decade, a series of pump modules has been developed at the Ferdinand-BraunInstitut to address these needs. The latest modules use novel wide-aperture single emitter diode lasers in passively side cooled stacks, operate at τ = 1 ms, f = 100…200 Hz and deliver 5…6 kW optical output power from a fiber with 1.9 mm core diameter and NA of 0.22, for spatial brightness BΩ > 1 MW/cm2 sr. The performance to date and latest developments in these high brightness modules are summarized here with recent work focusing on extending operation to other pumping conditions, as needed for alternative solid state laser designs. Specifically, the electro-optic, spectral and beam propagation characteristics of the module and its components are studied as a function of τ for a fixed duty cycle DC = 10% for τ = 1...100 ms, and first data is shown for continuous wave operation. Clear potential is seen to fulfill more demanding specifications without design changes. For example, high power long-pulse operation is demonstrated, with a power of > 5 kW at τ = 100 ms. Higher brightness operation is also confirmed at DC = 10% and τ = 1 ms, with > 5 kW delivered in a beam with BΩ > 4 MW/cm2 sr.

  10. Theoretical and experimental study of two-frequency solid-state lasers in the GHz to THz ranges. Opto-microwave applications waves

    International Nuclear Information System (INIS)

    Lai, N.D.

    2003-07-01

    We explored some new features of single- and dual-frequency solid-state lasers oscillating in continuous-wave or pulsed regimes. First, we have developed some techniques to optimise the characteristics of pulsed lasers. A weak modulation of the pump power made it possible to obtain a stable repetition rate with a relative stability of 10 -6 . The pulse duration was continuously controlled from ten nanoseconds to a few hundreds nanoseconds by three different methods: adjustment of the laser beam diameter in the absorber, adjustment of the pump beam diameter in the active medium, and, in particular, the use of forked eigenstates in a two-axis laser. Moreover, the forked eigenstates allows to increase the pulse energy by coherent addition of the pulses. A compact two-frequency Nd:YAG-Cr:YAG laser with a beat note frequency continuously adjustable up to 2,7 GHz was demonstrated. The two-frequency pulses are ideal sources to meet various needs of applications such as the Doppler lidar-radar. Moreover, we show that two-frequency pulses at 1,55 μm can be obtained by using a new c-cut Co:ASL saturable absorber in an Er-Yb:glass laser. These pulses are perfectly adapted to free-space detection systems requiring eye safety. The coherence time of the beat note in these lasers was also studied: it is limited by the pulse duration. A new technique of modulating the pump power of a solid-state laser at frequencies close to its relaxation oscillation frequency was studied and made it possible to generate a beat note coherence from pulse to pulse. Frequency conversion techniques using the nonlinear optical effects make it possible to obtain tunable two-frequency sources in the visible spectrum. Green and red two-frequency pulses were obtained by using different conversion techniques, intra-cavity or extra-cavity. A two-frequency THz source in the red spectrum was also obtained by doubling the frequencies of a two-frequency THz Er-Yb:glass laser using a mixed fan-out PPLN crystal

  11. Laser applications in the electronics and optoelectronics industry in Japan

    Science.gov (United States)

    Washio, Kunihiko

    1999-07-01

    This paper explains current status and technological trends in laser materials processing applications in electronics and optoelectronics industry in Japan. Various laser equipment based on solid state lasers or gas lasers such as excimer lasers or CO2 lasers has been developed and applied in manufacturing electronic and optoelectronic devices to meet the strong demands for advanced device manufacturing technologies for high-performance, lightweight, low power-consumption portable digital electronic appliances, cellular mobile phones, personal computers, etc. Representative applications of solid-state lasers are, opaque and clear defects repairing of photomasks for LSIs and LCDs, trimming of thick-film chip resistors and low resistance metal resistors, laser cutting and drilling of thin films for high-pin count semiconductor CSP packages, laser patterning of thin-film amorphous silicon solar cells, and laser welding of electronic components such as hard-disk head suspensions, optical modules, miniature relays and lithium ion batteries. Compact and highly efficient diode- pumped and Q-switched solid-state lasers in second or third harmonic operation mode are now being increasingly incorporated in various laser equipment for fine material processing. Representative applications of excimer lasers are, sub-quarter micron design-rule LSI lithography and low- temperature annealing of poly-silicon TFT LCD.

  12. CW-Laser-Induced Solid-State Reactions in Mixed Micron-Sized Particles of Silicon Monoxide and Titanium Monoxide: Nano-Structured Composite with Visible Light Absorption

    Czech Academy of Sciences Publication Activity Database

    Křenek, T.; Tesař, J.; Kupčík, Jaroslav; Netrvalová, M.; Pola, M.; Jandová, Věra; Pokorná, Dana; Cuřínová, Petra; Bezdička, Petr; Pola, Josef

    2017-01-01

    Roč. 27, č. 6 (2017), s. 1640-1648 ISSN 1574-1443 Institutional support: RVO:61388980 ; RVO:67985858 Keywords : Cw CO2 laser heating * IR laser imaging * Silicon monoxide * Solid state redox reactions * Ti/Si/O composite * Titanium monoxide Subject RIV: CA - Inorganic Chemistry; CI - Industrial Chemistry, Chemical Engineering (UCHP-M) OBOR OECD: Inorganic and nuclear chemistry; Chemical process engineering (UCHP-M) Impact factor: 1.577, year: 2016

  13. Solid state physics advances in research and applications

    CERN Document Server

    Ehrenreich, Henry

    1994-01-01

    The latest volume in the world renowned Solid State Physics series marks the fruition of Founding Editor David Turnbull''s outstanding tenure as series editor. Volume 47 presents five articles written by leadingexperts on areas including crystal-melt interfacial tension, order-disorder transformation in alloys, brittle matrix composites, surfaces and interfaces, and magnetoresistance.

  14. Solid State Division progress report for period ending March 31, 1992

    International Nuclear Information System (INIS)

    Green, P.H.; Hinton, L.W.

    1992-09-01

    During this period, the division conducted a broad, interdisciplinary materials research program with emphasis on theoretical solid state physics, superconductivity, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. The High Flux Isotope Reactor was returned to full operation

  15. Solid State Division progress report for period ending March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Hinton, L.W. (eds.)

    1992-09-01

    During this period, the division conducted a broad, interdisciplinary materials research program with emphasis on theoretical solid state physics, superconductivity, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. The High Flux Isotope Reactor was returned to full operation.

  16. Laser Science and Technology Program Annual Report-2002 NIF Programs Directorate

    International Nuclear Information System (INIS)

    Hackel, L; Chen, H L

    2003-01-01

    The Laser Science and Technology (LSandT) Program's mission is to develop advanced lasers, optics, materials technologies, and applications to solve problems and create new capabilities of importance to the nation and the Laboratory. A top, near-term priority is to provide technical support in the deployment and upgrade of the National Ignition Facility (NIF). Our other program activities synergistically develop technologies that are consistent with the goals of the NIF Directorate and develop state-of-the-art capabilities. The primary objectives of LSandT activities in 2002 have been fourfold--(a) to support deployment of hardware and to enhance laser and optics performance for NIF, (b) to develop high-energy petawatt laser science and technology for the Department of Energy (DOE), (c) to develop advanced solid-state laser systems and optical components for the Department of Defense (DoD), and (d) to invent, develop, and deliver improved concepts and hardware for other government agencies and industry. LSandT activities during 2002 focused on seven major areas: (1) NIF Project-LSandT led major advances in the deployment of NIF Final Optics Assembly (FOA) and the development of 30.1 optics processing and treatment technologies to enhance NIF's operations and performance capabilities. (2) Stockpile Stewardship Program (SSP)-LSandT personnel continued development of ultrashort-pulse lasers and high-power, large-aperture optics for applications in SSP, extreme-field science and national defense. To enhance the high-energy petawatt (HEPW) capability in NIF, LSandT continued development of advanced compressor-grating and front-end laser technologies utilizing optical-parametric chirped-pulse amplification (OPCPA). (3) High-energy-density physics and inertial fusion energy-LSandT continued development of kW- to MW-class, diode-pumped, solid-state laser (DPSSL). (4) Department of Defense (DoD)-LSandT continued development of a 100 kw-class solid-state heat-capacity laser

  17. The Laser Damage Threshold for Materials and the Relation Between Solid-Melt and Melt-Vapor Interface Velocities

    International Nuclear Information System (INIS)

    Khalil, Osama Mostafa

    2010-01-01

    Numerous experiments have demonstrated and analytic theories have predicted that there is a threshold for pulsed laser ablation of a wide range of materials. Optical surface damage threshold is a very complex and important application of high-power lasers. Optical damage may also be considered to be the initial phase of laser ablation. In this work it was determined the time required and the threshold energy of a layer of thickness to heat up. We used the Finite Difference method to simulate the process of laser-target interaction in three cases. Namely, the case before melting begins using a continuous wave (c.w) laser source and a pulsed laser source, the case after the first change of state (from solid to melt), and the case after the second change of state (from melt to vapor). And also study the relation between the solid-melt and melt-vapor interface velocities to have a commonsense of the laser ablation process.

  18. A New All Solid State Approach to Gaseous Pollutant Detection

    Science.gov (United States)

    Brown, V.; Tamstorf, K.

    1971-01-01

    Recent efforts in our laboratories have concentrated on the development of an all solid state gas sensor, by combining solid electrolyte (ion exchange membrane) technology with advanced thin film deposition processes. With the proper bias magnitude and polarity these miniature electro-chemical,cells show remarkable current responses for many common pollution gases. Current activity is now focused on complementing a multiple array (matrix) of these solid state sensors, with a digital electronic scanner device possessing "scan-compare-identify-alarm: capability. This innovative approach to multi-component pollutant gas analysis may indeed be the advanced prototype for the "third generation" class of pollution analysis instrumentation so urgently needed in the decade ahead.

  19. Increasing the mode-locking efficiency of a cw solid-state laser with an auxiliary cavity

    International Nuclear Information System (INIS)

    Kalashnikov, V.L.; Kalosha, V.P.; Mikhailov, V.P.; Demchuk, M.I.

    1992-01-01

    It is predicted theoretically that the efficiency of self-mode locking can be raised by means of a bleachable shutter in the main cavity or an auxiliary cavity. The laser emits a stable train of ultrashort pulses under these conditions. The theory is based on a fluctuation model of the operation of a cw solid-state laser with a linear auxiliary cavity. The increase in efficiency involves a broadening of the region of parameter values of the system in which self-mode locking occurs, a significant decrease in the threshold pump intensity, and a reduced sensitivity of the operation to the phase mismatch of the lengths of the cavities. It is shown, for the first time, that a stable train of double ultrashort pulses can be generated by a system with a shutter in the auxiliary cavity. It is also shown that a self-mode locking is possible in the case in which there is a phase mismatch of the cavity lengths and there is no phase self-modulation in the main cavity. 15 refs., 8 figs

  20. Two-temperature hydrodynamics of laser-generated ultrashort shock waves in elasto-plastic solids

    International Nuclear Information System (INIS)

    Ilnitsky, Denis K; Migdal, Kirill P; Khokhlov, Viktor A; Inogamov, Nail A; Petrov, Yurii V; Anisimov, Sergey I; Zhakhovsky, Vasily V; Khishchenko, Konstantin V

    2014-01-01

    Shock-wave generation by ultrashort laser pulses opens new doors for study of hidden processes in materials happened at an atomic-scale spatiotemporal scales. The poorly explored mechanism of shock generation is started from a short-living two-temperature (2T) state of solid in a thin surface layer where laser energy is deposited. Such 2T state represents a highly non-equilibrium warm dense matter having cold ions and hot electrons with temperatures of 1-2 orders of magnitude higher than the melting point. Here for the first time we present results obtained by our new hybrid hydrodynamics code combining detailed description of 2T states with a model of elasticity together with a wide-range equation of state of solid. New hydro-code has higher accuracy in the 2T stage than molecular dynamics method, because it includes electron related phenomena including thermal conduction, electron-ion collisions and energy transfer, and electron pressure. From the other hand the new code significantly improves our previous version of 2T hydrodynamics model, because now it is capable of reproducing the elastic compression waves, which may have an imprint of supersonic melting like as in MD simulations. With help of the new code we have solved a difficult problem of thermal and dynamic coupling of a molten layer with an uniaxially compressed elastic solid. This approach allows us to describe the recent femtosecond laser experiments.

  1. Solid state multinuclear NMR. A versatile tool for studying the reactivity of solid systems

    Energy Technology Data Exchange (ETDEWEB)

    MacKenzie, Kenneth J.D. [MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, P.O. Box 600, Wellington (New Zealand)

    2004-08-31

    Traditionally, X-ray powder diffraction has been a favoured method for studying chemical reactions in the solid state, but the increasing importance of energy-efficient synthesis methods for solids (e.g. sol-gel synthesis, mechanochemical synthesis) has led to the need for an analytical method not dependent on long-range structural periodicity. Multinuclear solid state nuclear magnetic resonance (NMR) represents a technique which is equally applicable to amorphous or crystalline solids, and is now used in increasing numbers of solid state studies.This paper briefly outlines the principles and practical details of this powerful technique and gives examples of its use in solid-state chemistry, particularly in very recent studies of mechanochemical synthesis of advanced sialon ceramics. The temperature at which these technically important silicon aluminium oxynitride compounds are formed can be significantly lowered by high-energy grinding of their components to produce X-ray amorphous precursors. Solid-state NMR has been used to provide detailed information which could not have been obtained by any other means about the chemical environment of the Si and Al atoms in these amorphous precursors, and the various atomic movements undergone as they crystallise to the final product.

  2. Electrochemical Impedance Spectroscopy in Solid State Ionics: Recent Advances

    NARCIS (Netherlands)

    Boukamp, Bernard A.

    2004-01-01

    Electrochemical Impedance Spectroscopy (EIS) has become an important research tool in Solid State Ionics. Some new developments are highlighted: new methods of automatic parameter extraction from impedance measurements are briefly discussed. The Kramers–Kronig data validation test presents another

  3. Laser-material interactions: A study of laser energy coupling with solids

    Energy Technology Data Exchange (ETDEWEB)

    Shannon, Mark Alan [Univ. of California, Berkeley, CA (United States)

    1993-11-01

    This study of laser-light interactions with solid materials ranges from low-temperature heating to explosive, plasma-forming reactions. Contained are four works concerning laser-energy coupling: laser (i) heating and (ii) melting monitored using a mirage effect technique, (iii) the mechanical stress-power generated during high-powered laser ablation, and (iv) plasma-shielding. First, a photothermal deflection (PTD) technique is presented for monitoring heat transfer during modulated laser heating of opaque solids that have not undergone phase-change. Of main interest is the physical significance of the shape, magnitude, and phase for the temporal profile of the deflection signal. Considered are the effects that thermophysical properties, boundary conditions, and geometry of the target and optical probe-beam have on the deflection response. PTD is shown to monitor spatial and temporal changes in heat flux leaving the surface due to changes in laser energy coupling. The PTD technique is then extended to detect phase-change at the surface of a solid target. Experimental data shows the onset of melt for indium and tin targets. The conditions for which melt can be detected by PTD is analyzed in terms of geometry, incident power and pulse length, and thermophysical properties of the target and surroundings. Next, monitoring high-powered laser ablation of materials with stress-power is introduced. The motivation for considering stress-power is given, followed by a theoretical discussion of stress-power and how it is determined experimentally. Experiments are presented for the ablation of aluminum targets as a function of energy and intensity. The stress-power response is analyzed for its physical significance. Lastly, the influence of plasma-shielding during high-powered pulsed laser-material interactions is considered. Crater size, emission, and stress-power are measured to determine the role that the gas medium and laser pulse length have on plasma shielding.

  4. Laser-material interactions: A study of laser energy coupling with solids

    International Nuclear Information System (INIS)

    Shannon, M.A.; California Univ., Berkeley, CA

    1993-11-01

    This study of laser-light interactions with solid materials ranges from low-temperature heating to explosive, plasma-forming reactions. Contained are four works concerning laser-energy coupling: laser (i) heating and (ii) melting monitored using a mirage effect technique, (iii) the mechanical stress-power generated during high-powered laser ablation, and (iv) plasma-shielding. First, a photothermal deflection (PTD) technique is presented for monitoring heat transfer during modulated laser heating of opaque solids that have not undergone phase-change. Of main interest is the physical significance of the shape, magnitude, and phase for the temporal profile of the deflection signal. Considered are the effects that thermophysical properties, boundary conditions, and geometry of the target and optical probe-beam have on the deflection response. PTD is shown to monitor spatial and temporal changes in heat flux leaving the surface due to changes in laser energy coupling. The PTD technique is then extended to detect phase-change at the surface of a solid target. Experimental data shows the onset of melt for indium and tin targets. The conditions for which melt can be detected by PTD is analyzed in terms of geometry, incident power and pulse length, and thermophysical properties of the target and surroundings. Next, monitoring high-powered laser ablation of materials with stress-power is introduced. The motivation for considering stress-power is given, followed by a theoretical discussion of stress-power and how it is determined experimentally. Experiments are presented for the ablation of aluminum targets as a function of energy and intensity. The stress-power response is analyzed for its physical significance. Lastly, the influence of plasma-shielding during high-powered pulsed laser-material interactions is considered. Crater size, emission, and stress-power are measured to determine the role that the gas medium and laser pulse length have on plasma shielding

  5. Solid - solid and solid - liquid phase transitions of iron and iron alloys under laser shock compression

    Science.gov (United States)

    Harmand, M.; Krygier, A.; Appel, K.; Galtier, E.; Hartley, N.; Konopkova, Z.; Lee, H. J.; McBride, E. E.; Miyanishi, K.; Nagler, B.; Nemausat, R.; Vinci, T.; Zhu, D.; Ozaki, N.; Fiquet, G.

    2017-12-01

    An accurate knowledge of the properties of iron and iron alloys at high pressures and temperatures is crucial for understanding and modelling planetary interiors. While Earth-size and Super-Earth Exoplanets are being discovered in increasingly large numbers, access to detailed information on liquid properties, melting curves and even solid phases of iron and iron at the pressures and temperatures of their interiors is still strongly limited. In this context, XFEL sources coupled with high-energy lasers afford unique opportunities to measure microscopic structural properties at far extreme conditions. Also the achievable time resolution allows the shock history and phase transition mechanisms to be followed during laser compression, improving our understanding of the high pressure and high strain experiments. Here we present recent studies devoted to investigate the solid-solid and solid-liquid transition in laser-shocked iron and iron alloys (Fe-Si, Fe-C and Fe-O alloys) using X-ray diffraction and X-ray diffuse scattering. Experiment were performed at the MEC end-station of the LCLS facility at SLAC (USA). Detection of the diffuse scattering allowed the identification of the first liquid peak position along the Hugoniot, up to 4 Mbar. The time resolution shows ultrafast (between several tens and several hundreds of picoseconds) solid-solid and solid-liquid phase transitions. Future developments at XFEL facilities will enable detailed studies of the solid and liquid structures of iron and iron alloys as well as out-of-Hugoniot studies.

  6. Two Micron Laser Technology Advancements at NASA Langley Research Center

    Science.gov (United States)

    Singh, Upendra N.

    2010-01-01

    An Independent Laser Review Panel set up to examine NASA s space-based lidar missions and the technology readiness of lasers appropriate for space-based lidars indicated a critical need for an integrated research and development strategy to move laser transmitter technology from low technical readiness levels to the higher levels required for space missions. Based on the review, a multiyear Laser Risk Reduction Program (LRRP) was initiated by NASA in 2002 to develop technologies that ensure the successful development of the broad range of lidar missions envisioned by NASA. This presentation will provide an overview of the development of pulsed 2-micron solid-state laser technologies at NASA Langley Research Center for enabling space-based measurement of wind and carbon dioxide.

  7. Solid state frequency conversion technology for remote sensing

    International Nuclear Information System (INIS)

    Velsko, S.P.; Webb, M.S.; Cook, W.M.; Neuman, W.A.

    1994-07-01

    Long range remote sensing from airborne or other highly mobile platforms will require high average power tunable radiation from very compact and efficient laser systems. The solid state laser pumped optical parametric oscillator (OPO) has emerged as a leading candidate for such high average power, widely tunable sources. In contrast to laboratory systems, efficiency and simplicity can be the decisive issues which determine the practicality of a particular airborne remote sensing application. The recent advent of diode laser pumped solid state lasers has produced high average power OPO pump sources which are themselves both compact and efficient. However, parametric oscillator technology which can efficiently convert the average powers provided by these pump sources remains to be demonstrated. In addition to the average power requirement, many airborne long range sensing tasks will require a high degree of frequency multiplexing to disentangle data from multiple chemical species. A key advantage in system simplicity can be obtained, for example, if a single OPO can produce easily controlled multispectral output. In this paper the authors address several topics pertaining to the conversion efficiency, power handling, and multispectral capabilities of OPOs which they are currently investigating. In Section 2, single pulse conversion efficiency issues are addressed, while average power effects are treated in Section 3. Section 4 is concerned with multispectral performance of a single OPO. The last section contains a short summary and some concluding remarks

  8. Diode pumped solid state kilohertz disk laser system for time-resolved combustion diagnostics under microgravity at the drop tower Bremen

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Volker; Paa, Wolfgang; Triebel, Wolfgang [Institute of Photonic Technology, Laser Diagnostics, Albert-Einstein-Str. 9, 07745 Jena (Germany); Eigenbrod, Christian; Klinkov, Konstantin [Center of Applied Space Technology and Microgravity, University Bremen, Am Fallturm, 28359 Bremen (Germany); Larionov, Mikhail; Giesen, Adolf; Stolzenburg, Christian [Institut für Strahlwerkzeuge (IFSW), Pfaffenwaldring 43, 70569 Stuttgart (Germany)

    2014-03-15

    We describe a specially designed diode pumped solid state laser system based on the disk laser architecture for combustion diagnostics under microgravity (μg) conditions at the drop tower in Bremen. The two-stage oscillator-amplifier-system provides an excellent beam profile (TEM{sub 00}) at narrowband operation (Δλ < 1 pm) and is tunable from 1018 nm to 1052 nm. The laser repetition rate of up to 4 kHz at pulse durations of 10 ns enables the tracking of processes on a millisecond time scale. Depending on the specific issue it is possible to convert the output radiation up to the fourth harmonic around 257 nm. The very compact laser system is integrated in a slightly modified drop capsule and withstands decelerations of up to 50 g (>11 ms). At first the concept of the two-stage disk laser is briefly explained, followed by a detailed description of the disk laser adaption to the drop tower requirements with special focus on the intended use under μg conditions. In order to demonstrate the capabilities of the capsule laser as a tool for μg combustion diagnostics, we finally present an investigation of the precursor-reactions before the droplet ignition using 2D imaging of the Laser Induced Fluorescence of formaldehyde.

  9. The search for solid state fusion lasers

    International Nuclear Information System (INIS)

    Weber, M.J.

    1989-04-01

    Inertial confinement fusion (ICF) research puts severe demands on the laser driver. In recent years large, multibeam Nd:glass lasers have provided a flexible experimental tool for exploring fusion target physics because of their high powers, variable pulse length and shape, wavelength flexibility using harmonic generation, and adjustable that Nd:glass lasers can be scaled up to provide a single-phase, multi-megajoule, high-gain laboratory microfusion facility, and gas-cooled slab amplifiers with laser diode pump sources are viable candidates for an efficient, high repetition rate, megawatt driver for an ICF reactor. In both applications requirements for energy storage and energy extraction drastically limit the choice of lasing media. Nonlinear optical effects and optical damage are additional design constraints. New laser architectures applicable to ICF drivers and possible laser materials, both crystals and glasses, are surveyed. 20 refs., 2 figs

  10. Laser Diode Pumped Solid State Lasers

    Science.gov (United States)

    1987-01-01

    Report N66001-83-C-0071, 17 April 1986, prepared for NOSC. 4.6 W.T. Welford, R. Winston , "The Option of Nonimaging Concentrators ," Academic Press, 1978...by non-imac optics such as reflective or refractive flux concentrators . Simple considerations regarding the optimum pumping configuration, high marks...reduced if the arrays can stand-off from the Nd:YAG laser. As mentioned before, compound parabolic concentrators or refractive optics cat employed to

  11. Manipulating Quantum Coherence in Solid State Systems

    CERN Document Server

    Flatté, Michael E; The NATO Advanced Study Institute "Manipulating Quantum Coherence in Solid State Systems"

    2007-01-01

    The NATO Advanced Study Institute "Manipulating Quantum Coherence in Solid State Systems", in Cluj-Napoca, Romania, August 29-September 9, 2005, presented a fundamental introduction to solid-state approaches to achieving quantum computation. This proceedings volume describes the properties of quantum coherence in semiconductor spin-based systems and the behavior of quantum coherence in superconducting systems. Semiconductor spin-based approaches to quantum computation have made tremendous advances in the past several years. Coherent populations of spins can be oriented, manipulated and detected experimentally. Rapid progress has been made towards performing the same tasks on individual spins (nuclear, ionic, or electronic) with all-electrical means. Superconducting approaches to quantum computation have demonstrated single qubits based on charge eigenstates as well as flux eigenstates. These topics have been presented in a pedagogical fashion by leading researchers in the fields of semiconductor-spin-based qu...

  12. Effects of low-fat and high-fat meals on steady-state pharmacokinetics of lapatinib in patients with advanced solid tumours

    NARCIS (Netherlands)

    Devriese, Lot A; Koch, Kevin M; Mergui-Roelvink, Marja; Matthys, Gemma M; Ma, Wen Wee; Robidoux, Andre; Stephenson, Joe J; Chu, Quincy S C; Orford, Keith W; Cartee, Leanne; Botbyl, Jeff; Arya, Nikita; Schellens, Jan H M|info:eu-repo/dai/nl/073926272

    AIM: To quantify the effect of food on the systemic exposure of lapatinib at steady state when administered 1 h before and after meals, and to observe the safety and tolerability of lapatinib under these conditions in patients with advanced solid tumours. METHODS: This was a three-treatment,

  13. Solid state physics principles and modern applications

    CERN Document Server

    Quinn, John J

    2018-01-01

    This book provides the basis for a two-semester graduate course on solid-state physics. The first half presents all the knowledge necessary for a one-semester survey of solid-state physics, but in greater depth than most introductory solid state physics courses. The second half includes most of the important research over the past half-century, covering both the fundamental principles and most recent advances. This new edition includes the latest developments in the treatment of strongly interacting two-dimensional electrons and discusses the generalization from small to larger systems. The book provides explanations in a class-tested tutorial style, and each chapter includes problems reviewing key concepts and calculations. The updated exercises and solutions enable students to become familiar with contemporary research activities, such as the electronic properties of massless fermions in graphene and topological insulators.

  14. New solid laser: Ceramic laser. From ultra stable laser to ultra high output laser

    International Nuclear Information System (INIS)

    Ueda, Kenichi

    2006-01-01

    An epoch-making solid laser is developed. It is ceramic laser, polycrystal, which is produced as same as glass and shows ultra high output. Ti 3+ :Al 2 O 3 laser crystal and the CPA (chirped pulse amplification) technique realized new ultra high output lasers. Japan has developed various kinds of ceramic lasers, from 10 -2 to 67 x 10 3 w average output, since 1995. These ceramic lasers were studied by gravitational radiation astronomy. The scattering coefficient of ceramic laser is smaller than single crystals. The new fast ignition method is proposed by Institute of Laser Engineering of Osaka University, Japan. Ultra-intense short pulse laser can inject the required energy to the high-density imploded core plasma within the core disassembling time. Ti 3+ :Al 2 O 3 crystal for laser, ceramic YAG of large caliber for 100 kW, transparent laser ceramic from nano-crystals, crystal grain and boundary layer between grains, the scattering coefficient of single crystal and ceramic, and the derived release cross section of Yb:YAG ceramic are described. (S.Y.)

  15. Recent advances in small molecular, non-polymeric organic hole transporting materials for solid-state DSSC

    Directory of Open Access Journals (Sweden)

    Bui Thanh-Tuan

    2013-10-01

    Full Text Available Issue from thin-film technologies, dye-sensitized solar cells have become one of the most promising technologies in the field of renewable energies. Their success is not only due to their low weight, the possibility of making large flexible surfaces, but also to their photovoltaic efficiency which are found to be more and more significant (>12% with a liquid electrolyte, >7% with a solid organic hole conductor. This short review highlights recent advances in the characteristics and use of low-molecular-weight glass-forming organic materials as hole transporters in all solid-state dye-sensitized solar cells. These materials must feature specific physical and chemical properties that will ensure both the operation of a photovoltaic cell and the easy implementation. This review is an english extended version based on our recent article published in Matériaux & Techniques 101, 102 (2013.

  16. Laser-solid interaction and dynamics of the laser-ablated materials

    International Nuclear Information System (INIS)

    Chen, K.R.; Leboeuf, J.N.; Geohegan, D.B.; Wood, R.F.; Donato, J.M.; Liu, C.L.; Puretzky, A.A.

    1995-01-01

    Rapid transformations through the liquid and vapor phases induced by laser-solid interactions are described by the authors' thermal model with the Clausius-Clapeyron equation to determine the vaporization temperature under different surface pressure condition. Hydrodynamic behavior of the vapor during and after ablation is described by gas dynamic equations. These two models are coupled. Modeling results show that lower background pressure results lower laser energy density threshold for vaporization. The ablation rate and the amount of materials removed are proportional to the laser energy density above its threshold. The authors also demonstrate a dynamic source effect that accelerates the unsteady expansion of laser-ablated material in the direction perpendicular to the solid. A dynamic partial ionization effect is studied as well. A self-similar theory shows that the maximum expansion velocity is proportional to c s α, where 1 - α is the slope of the velocity profile. Numerical hydrodynamic modeling is in good agreement with the theory. With these effects, α is reduced. Therefore, the expansion front velocity is significantly higher than that from conventional models. The results are consistent with experiments. They further study how the plume propagates in high background gas condition. Under appropriate conditions, the plume is slowed down, separates with the background, is backward moving, and hits the solid surface. Then, it splits into two parts when it rebounds from the surface. The results from the modeling will be compared with experimental observations where possible

  17. Laser Physics and Physics with Lasers - Recent Advances

    International Nuclear Information System (INIS)

    Marowsky, G.

    2008-01-01

    This contribution reviews the development as well as recent technological advances in the field of optics with lasers and laser-related applications. Topics ranging from 'attoscience' to 'zero-modes' shall be dealt with in this presentation. Further reading in the following references is suggested: Springer Handbook of Lasers and Optics (F. Trager, ed.), 2007, ISBN-13: 978-0-387-95579-7; Chapter 11.7, Part C: Ultraviolet Lasers: Excimers, Fluorine (F2), Nitrogen (N2), pp. 764-776; Excimer Laser Technology (D. Basting, G. Marowsky, eds.) 2005, Springer, ISBN-13 978-3-540-20056-7

  18. Mode-locked solid state lasers using diode laser excitation

    Science.gov (United States)

    Holtom, Gary R [Boston, MA

    2012-03-06

    A mode-locked laser employs a coupled-polarization scheme for efficient longitudinal pumping by reshaped laser diode bars. One or more dielectric polarizers are configured to reflect a pumping wavelength having a first polarization and to reflect a lasing wavelength having a second polarization. An asymmetric cavity provides relatively large beam spot sizes in gain medium to permit efficient coupling to a volume pumped by a laser diode bar. The cavity can include a collimation region with a controlled beam spot size for insertion of a saturable absorber and dispersion components. Beam spot size is selected to provide stable mode locking based on Kerr lensing. Pulse durations of less than 100 fs can be achieved in Yb:KGW.

  19. Target life time of laser ion source for low charge state ion production

    Energy Technology Data Exchange (ETDEWEB)

    Kanesue,T.; Tamura, J.; Okamura, M.

    2008-06-23

    Laser ion source (LIS) produces ions by irradiating pulsed high power laser shots onto the solid state target. For the low charge state ion production, laser spot diameter on the target can be over several millimeters using a high power laser such as Nd:YAG laser. In this case, a damage to the target surface is small while there is a visible crater in case of the best focused laser shot for high charge state ion production (laser spot diameter can be several tens of micrometers). So the need of target displacement after each laser shot to use fresh surface to stabilize plasma is not required for low charge state ion production. We tested target lifetime using Nd:YAG laser with 5 Hz repetition rate. Also target temperature and vacuum condition were recorded during experiment. The feasibility of a long time operation was verified.

  20. 1 Hz fast-heating fusion driver HAMA pumped by a 10 J green diode-pumped solid-state laser

    International Nuclear Information System (INIS)

    Mori, Y.; Komeda, O.; Nakayama, S.; Ishii, K.; Hanayama, R.; Fujita, K.; Okihara, S.; Sekine, T.; Satoh, N.; Kurita, T.; Kawashima, T.; Kan, H.; Nakamura, N.; Kondo, T.; Fujine, M.; Azuma, H.; Hioki, T.; Kakeno, M.; Motohiro, T.; Nishimura, Y.

    2013-01-01

    A Ti : sapphire laser HAMA pumped by a diode-pumped solid-state laser (DPSSL) is developed to enable a high-repetitive inertial confinement fusion (ICF) experiment to be conducted. To demonstrate a counter-irradiation fast-heating fusion scheme, a 3.8 J, 0.4 ns amplified chirped pulse is divided into four beams: two counter-irradiate a target with intensities of 6 × 10 13 W cm −2 , and the remaining two are pulse-compressed to 110 fs for heating the imploded target with intensities of 2 × 10 17 W cm −2 . HAMA contributed to the first demonstration by showing that a 10 J class DPSSL is adaptable to ICF experiments and succeeded in DD neutron generation in the repetition mode. Based on HAMA, we can design and develop an integrated repetitive ICF experiment machine by including target injection and tracking. (paper)

  1. Novel high-density packaging of solid state diode pumped eye-safe laser for LIBS

    Science.gov (United States)

    Bares, Kim; Torgerson, Justin; McNeil, Laine; Maine, Patrick; Patterson, Steve

    2018-02-01

    Laser-Induced Breakdown Spectroscopy (LIBS) has proven to be a useful research tool for material analysis for decades. However, because of the amount of energy required in a few nanosecond pulse to generate a stable and reliable LIBS signal, the lasers are often large and inefficient, relegating their implementation to research facilities, factory floors, and assembly lines. Small portable LIBS systems are now possible without having to compromise on energy needs by leveraging off of advances in high-density packaging of electronics, opto-mechanics, and highly efficient laser resonator architecture. This paper explores the integration of these techniques to achieve a mJ class eye-safe LIBS laser source, while retaining a small, light-weight package suitable for handheld systems.

  2. Laser Spectroscopy : XII International Conference

    CERN Document Server

    Allegrini, Maria; Sasso, Antonio

    1996-01-01

    This text includes all the recent advances in the field of laser spectroscopy. Major results span from the control of matter by electromagnetic fields (trapping and coding) to high precision measurements on simple atomic systems and to quantum optics with single atoms. It includes a report of the Bose-Einstein condensation achieved by laser-cooling of rubidium atoms. Achievements in the technology of tunable sources, in particular of miniaturized solid state devices, are also reported. Most recent advances in molecular spectroscopy are illustrated with emphasis on "cooled" spectra, clusters and high accuracy frequency references. Topics such as atomic interferometry and microcavity quantum optics are also covered.

  3. Plasma satellites of X-ray spectral lines of ions in a plasma of solid-state targets, heated by a picosecond laser pulse

    International Nuclear Information System (INIS)

    Belyaev, V.S.; Vinogradov, V.I.; Kurilov, A.S.; Matafonov, A.P.; Lisitsa, V.S.; Gavrilenko, V.P.; Faenov, A.Ya.; Pikuz, T.A.; Skobelev, I.Yu.; Magunov, A.I.; Pikuz, S.A.

    2003-01-01

    The results of measuring the ions X-ray spectral lines by the interaction of the picosecond laser pulses with the solid-state target are presented. The spectra of the X-ray radiation were observed on the fluorine ion line. The spectral lines satellites, testifying to the availability, are identified. The position of the satellites and the distance between them make it possible to connect them with the intensive electrostatic oscillations with the amplitude, exceeding 10 8 V/cm, and the frequency close to 7 x 10 14 s -1 , substantially lower than the laser wave frequency. The experimental results are compared with the calculated data on the multicharge ions spectra [ru

  4. Features of destruction of solids by laser radiation in process of formation of multiply charged ions

    International Nuclear Information System (INIS)

    Bedilov, R.M.; Bedilov, M.R.; Sabitov, M.M.; Matnazarov, A.; Niyozov, B.

    2004-01-01

    Full text: It is known, under interaction of laser radiation with solid surface a power density q > 0.01 W/cm 2 are observed destruction of a solid and issue of electrons, ions, neutrals, neutrons, plasmas, and also radiation in a wide ranges of a spectra. Despite of a plenty of works, devoted to study of processes of interaction, the studies of feature of destruction of solids by laser beam in process of formation multiply charged ions are insufficiently investigated. The results of study feature of destruction of solids by laser radiation in process of formation multiply charged ions are given in this work. In our experiments, we used the mass spectrometer with single-channel laser radiation. The laser installation had the following parameters: a power density of laser radiation q=(0.1-50) GW/cm 2 ; the angle of incidence a=18 deg. to the target surface Al, (W). It was obtained experimentally dynamics of morphology of destruction and also mass - charge and energy spectra of multiply charged ions formed under interaction of laser radiation with Al (W) in the intensity range q=(0.1-50) GW/cm 2 . These studies showed features of destruction Al(W) by laser radiation, i.e. invariable of value evaporation mass from a surface of a solid increase as the laser intensity q. But thus temperature a pair increases in accordance with increase of flow density of a laser radiation. Increase of temperature the pair gives in formation of multiply charged plasma. It is typical that, as q of the laser increases the maximum charge number of ions in laser plasma considerably increase and their energy spectra extend toward higher energies. For example, under q=0.1 GW/cm 2 and 50 GW/cm 2 the maximum charge number of ions Al (W) are equal to Z max = 1 and 7, respectively. From the experimental data obtained, we can conclude that, the formed multiply charged plasma practically completely absorption laser radiation and 'shielding' a target surface for various metals at power densities

  5. 1981 laser program annual report

    Energy Technology Data Exchange (ETDEWEB)

    1982-08-01

    This report is published in sections that correspond to the division of technical activity in the Program. Section 1 provides a Program Overview, presenting highlights of the technical accomplishments of the elements of the Program, a summary of activities carried out under the Glass Laser Experiments Lead Laboratory Program, as well as discussions of Program resources and facilities. Section 2 covers the work on solid-state Nd:glass lasers, including systems operations and Nova and Novette systems development. Section 3 reports on target-design activities, plasma theory and simulation, code development, and atomic theory. Section 4 presents the accomplishments of the Target Fabrication group, Section 5 contains the results of our diagnostics development, and Section 6 reports the results of laser-target experiments conducted during the year, along with supporting research and development activities. Section 7 presents the results from laser research and development, including solid-state R and D and the theoretical and experimental research on advanced lasers. Section 8 contains the results of studies in areas of energy and military applications, including those relating to electrical energy production by inertial-confinement fusion systems.

  6. 1981 laser program annual report

    International Nuclear Information System (INIS)

    1982-08-01

    This report is published in sections that correspond to the division of technical activity in the Program. Section 1 provides a Program Overview, presenting highlights of the technical accomplishments of the elements of the Program, a summary of activities carried out under the Glass Laser Experiments Lead Laboratory Program, as well as discussions of Program resources and facilities. Section 2 covers the work on solid-state Nd:glass lasers, including systems operations and Nova and Novette systems development. Section 3 reports on target-design activities, plasma theory and simulation, code development, and atomic theory. Section 4 presents the accomplishments of the Target Fabrication group, Section 5 contains the results of our diagnostics development, and Section 6 reports the results of laser-target experiments conducted during the year, along with supporting research and development activities. Section 7 presents the results from laser research and development, including solid-state R and D and the theoretical and experimental research on advanced lasers. Section 8 contains the results of studies in areas of energy and military applications, including those relating to electrical energy production by inertial-confinement fusion systems

  7. Advances in laser solenoid fusion reactor design

    International Nuclear Information System (INIS)

    Steinhauer, L.C.; Quimby, D.C.

    1978-01-01

    The laser solenoid is an alternate fusion concept based on a laser-heated magnetically-confined plasma column. The reactor concept has evolved in several systems studies over the last five years. We describe recent advances in the plasma physics and technology of laser-plasma coupling. The technology advances include progress on first walls, inner magnet design, confinement module design, and reactor maintenance. We also describe a new generation of laser solenoid fusion and fusion-fission reactor designs

  8. Fusion energy research with lasers, direct drive targets, and dry wall chambers

    International Nuclear Information System (INIS)

    Sethian, J.D.; Obenschain, S.P.; Myers, M.

    2003-01-01

    We are carrying out a coordinated, focused effort to develop Laser Inertial Fusion Energy. The key components are developed in concert with one another and the science and engineering issues are addressed concurrently. Significant progress has been made in this program: We are evaluating target designs that show it could be possible to achieve the high gains (>100) needed for a practical fusion system. These have a low density CH foam that is wicked with solid DT, and over coated with a thin high-Z layer. Significant advances have been made with the two types of laser are being developed: Krypton Fluoride (KrF) gas lasers and Diode Pumped Solid State Lasers (DPPSL). Both have the potential to meet the fusion energy requirements for rep-rate, efficiency, durability and cost. This paper also presents the advances in development of chamber operating windows (target survival plus no wall erosion), final optics (aluminum at grazing incidence has high reflectivity and exceeds required laser damage threshold), target fabrication (advanced foams and high Z overcoats), and target injection (new facility for target injection and tracking studies). (author)

  9. Dissipative Structures At Laser-Solid Interactions

    Science.gov (United States)

    Nanai, Laszlo

    1989-05-01

    The questions which are discussed in this lecture refer to one of sections of laser-solid interactions, namely: to formation of different dissipative structures on the surface of metals and semiconductors when they are irradiated by intensive laser light in chemically active media (f.e.air). Some particular examples of the development at different spatial and time instabilities, periodic and stochastic structures, auto-wave processes are present-ed using testing materials vanadium metal and semiconducting V205 single crystals and light sources: cw and pulsed CO2 and YAG lasers.

  10. A software framework for analysing solid-state MAS NMR data

    International Nuclear Information System (INIS)

    Stevens, Tim J.; Fogh, Rasmus H.; Boucher, Wayne; Higman, Victoria A.; Eisenmenger, Frank; Bardiaux, Benjamin; Rossum, Barth-Jan van; Oschkinat, Hartmut; Laue, Ernest D.

    2011-01-01

    Solid-state magic-angle-spinning (MAS) NMR of proteins has undergone many rapid methodological developments in recent years, enabling detailed studies of protein structure, function and dynamics. Software development, however, has not kept pace with these advances and data analysis is mostly performed using tools developed for solution NMR which do not directly address solid-state specific issues. Here we present additions to the CcpNmr Analysis software package which enable easier identification of spinning side bands, straightforward analysis of double quantum spectra, automatic consideration of non-uniform labelling schemes, as well as extension of other existing features to the needs of solid-state MAS data. To underpin this, we have updated and extended the CCPN data model and experiment descriptions to include transfer types and nomenclature appropriate for solid-state NMR experiments, as well as a set of experiment prototypes covering the experiments commonly employed by solid-sate MAS protein NMR spectroscopists. This work not only improves solid-state MAS NMR data analysis but provides a platform for anyone who uses the CCPN data model for programming, data transfer, or data archival involving solid-state MAS NMR data.

  11. Laser Based Phosphor Converted Solid State White Light Emitters

    Science.gov (United States)

    Cantore, Michael

    Artificial lighting and as a consequence the ability to be productive when the sun does not shine may be a profound achievement in society that is largely taken for granted. As concerns arise due to our dependence on energy sources with finite lifespan or environmentally negative effects, efforts to reduce energy consumption and create clean renewable alternatives has become highly valued. In the scope of artificial lighting, the use of incandescent lamps has shifted to more efficient light sources. Fluorescent lighting made the first big gains in efficiency over incandescent lamps with peak efficiency for mature designs reaching luminous efficacy of approximately 90 lm/W; more than three times as efficient as an incandescent lamp. Lamps based on light emitting diodes (LEDs) which can produce light at even greater efficiency, color quality and without the potential for hazardous chemical release from lamp failure. There is a significant challenge with LED based light sources. Their peak efficiency occurs at low current densities and then droops as the current density increases. Laser diodes (LDs) do not suffer from decreasing efficiency due to increased current. An alternative solid state light source using LDs has potential to make further gains in efficiency as well as allow novel illuminant designs which may be impractical or even impossible even with LED or other conventional sources. While similar to LEDS, the use of LDs does present new challenges largely due to the increased optical power density which must be accommodated in optics and phosphor materials. Single crystal YAG:Ce has been shown to be capable of enduring this more extreme operating environment while retaining the optical and fluorescing qualities desired for use as a wavelength converter in phosphor converted LD based white emitting systems. The incorporation of this single crystal phosphor in a system with a commercial laser diode with peak wall plug efficiency of 31% resulted in emission of

  12. Applicability of UV laser-induced solid-state fluorescence spectroscopy for characterization of solid dosage forms.

    Science.gov (United States)

    Woltmann, Eva; Meyer, Hans; Weigel, Diana; Pritzke, Heinz; Posch, Tjorben N; Kler, Pablo A; Schürmann, Klaus; Roscher, Jörg; Huhn, Carolin

    2014-10-01

    High production output of solid pharmaceutical formulations requires fast methods to ensure their quality. Likewise, fast analytical procedures are required in forensic sciences, for example at customs, to substantiate an initial suspicion. We here present the design and the optimization of an instrumental setup for rapid and non-invasive characterization of tablets by laser-induced fluorescence spectroscopy (with a UV-laser (λ ex = 266 nm) as excitation source) in reflection geometry. The setup was first validated with regard to repeatability, bleaching phenomena, and sensitivity. The effect on the spectra by the physical and chemical properties of the samples, e.g. their hardness, homogeneity, chemical composition, and granule grain size of the uncompressed material, using a series of tablets, manufactured in accordance with design of experiments, was investigated. Investigation of tablets with regard to homogeneity, especially, is extremely important in pharmaceutical production processes. We demonstrate that multiplicative scatter correction is an appropriate tool for data preprocessing of fluorescence spectra. Tablets with different physical and chemical characteristics can be discriminated well from their fluorescence spectra by subjecting the results to principal component analysis.

  13. A crystal chemistry approach for high-power ytterbium doped solid-state lasers: diffusion-bonded crystals and new crystalline hosts

    International Nuclear Information System (INIS)

    Gaume, R.

    2002-11-01

    This work deals with ytterbium based crystals for high-power laser applications. In particular, we focus our interest in reducing crystal heating and its consequences during laser operation following two different ways. First, we review the specific properties of ytterbium doped solid-state lasers in order to define a figure-of-merit which gives the evaluation of laser performances, thermo-mechanical and thermo-optical properties. Bearing in mind this analysis, we propose a set of theoretical tools, based on the crystallographic structure of the crystal and its chemical composition, to predict thermo-mechanical and optical potentials. This approach, used for the seek of new Yb 3+ -doped materials for high-power laser applications, shows that simple oxides containing rare-earths are favorable. Therefore, the spectroscopic properties of six new materials Yb 3+ :GdVO 4 , Yb 3+ :GdAlO 3 , Yb 3+ :Gd 2 O 3 , Yb 3+ :Sc 2 SiO 5 , Yb 3+ :CaSc 2 O 4 and Yb 3+ :SrSc 2 O 4 are described. The second aspect developed in this work deals with thermal properties enhancement of already well characterized laser materials. Two different ways are explored: a) elaboration by diffusion bonding of end-caps lasers with undoped crystals (composite crystals). Thus, different composites were obtained and a fairly lowering of thermal lensing effect was observed during laser operation. b) strengthening of crystalline structures by ionic substitution of one of its constituents. We demonstrate how crystal growth ability can be improved by a cationic substitution in the case of Yb 3+ :BOYS, a largely-tunable laser material which is of great interest for femtosecond pulses generation. (author)

  14. Polarization methods for diode laser excitation of solid state lasers

    Science.gov (United States)

    Holtom, Gary R.

    2008-11-25

    A mode-locked laser employs a coupled-polarization scheme for efficient longitudinal pumping by reshaped laser diode bars. One or more dielectric polarizers are configured to reflect a pumping wavelength having a first polarization and to reflect a lasing wavelength having a second polarization. A Yb-doped gain medium can be used that absorbs light having a first polarization and emits light having a second polarization. Using such pumping with laser cavity dispersion control, pulse durations of less than 100 fs can be achieved.

  15. Study of laser-imploded core plasmas with an advanced Kirkpatrick endash Baez x-ray microscope

    International Nuclear Information System (INIS)

    Kodama, R.; Shiraga, H.; Miyanaga, M.; Matsushita, T.; Nakai, M.; Azechi, H.; Mima, K.; Kato, Y.

    1997-01-01

    We developed an advanced Kirkpatrick endash Baez (AKB) x-ray microscope which consisted of two hyperbolic mirrors and two elliptic mirrors. The spatial resolution of approx-lt 3 μm was realized over ∼1 mm diam. This AKB microscope was used for x-ray imaging in laser fusion experiments. Laser absorption nonuniformity with a large wave number on a spherical solid target or a plane slab target was estimated by measurements of x-ray emission from the target surface with the microscope. The x-ray images of the imploded core plasmas were also obtained with the AKB microscope, changing the laser focus condition and the laser energy balance. copyright 1997 American Institute of Physics

  16. Dynamics of Laser-Driven Shock Waves in Solid Targets

    Science.gov (United States)

    Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J.; Schmitt, A. J.; Obenschain, S. P.; Grun, J.; Metzler, N.; Zalesak, S. T.; Gardner, J. H.; Oh, J.; Harding, E. C.

    2009-11-01

    Accurate shock timing is a key issue of both indirect- and direct-drive laser fusions. The experiments on the Nike laser at NRL presented here were made possible by improvements in the imaging capability of our monochromatic x-ray diagnostics based on Bragg reflection from spherically curved crystals. Side-on imaging implemented on Nike makes it possible to observe dynamics of the shock wave and ablation front in laser-driven solid targets. We can choose to observe a sequence of 2D images or a continuous time evolution of an image resolved in one spatial dimension. A sequence of 300 ps snapshots taken using vanadium backlighter at 5.2 keV reveals propagation of a shock wave in a solid plastic target. The shape of the shock wave reflects the intensity distribution in the Nike beam. The streak records with continuous time resolution show the x-t trajectory of a laser-driven shock wave in a 10% solid density DVB foam.

  17. Standardized Testing Program for Solid-State Hydrogen Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Michael A. [Southwest Research Institute; Page, Richard A. [Southwest Research Institute

    2012-07-30

    In the US and abroad, major research and development initiatives toward establishing a hydrogen-based transportation infrastructure have been undertaken, encompassing key technological challenges in hydrogen production and delivery, fuel cells, and hydrogen storage. However, the principal obstacle to the implementation of a safe, low-pressure hydrogen fueling system for fuel-cell powered vehicles remains storage under conditions of near-ambient temperature and moderate pressure. The choices for viable hydrogen storage systems at the present time are limited to compressed gas storage tanks, cryogenic liquid hydrogen storage tanks, chemical hydrogen storage, and hydrogen absorbed or adsorbed in a solid-state material (a.k.a. solid-state storage). Solid-state hydrogen storage may offer overriding benefits in terms of storage capacity, kinetics and, most importantly, safety.The fervor among the research community to develop novel storage materials had, in many instances, the unfortunate consequence of making erroneous, if not wild, claims on the reported storage capacities achievable in such materials, to the extent that the potential viability of emerging materials was difficult to assess. This problem led to a widespread need to establish a capability to accurately and independently assess the storage behavior of a wide array of different classes of solid-state storage materials, employing qualified methods, thus allowing development efforts to focus on those materials that showed the most promise. However, standard guidelines, dedicated facilities, or certification programs specifically aimed at testing and assessing the performance, safety, and life cycle of these emergent materials had not been established. To address the stated need, the Testing Laboratory for Solid-State Hydrogen Storage Technologies was commissioned as a national-level focal point for evaluating new materials emerging from the designated Materials Centers of Excellence (MCoE) according to

  18. Novel laterally pumped by prism laser configuration for compact solid-state lasers

    International Nuclear Information System (INIS)

    Dascalu, T; Salamu, G; Sandu, O; Voicu, F; Pavel, N

    2013-01-01

    We propose a new laser configuration in which the pump radiation is coupled into the laser crystal through a prism. The laser medium is square shaped and the prism is attached on one of its lateral sides, near one of the crystal extremities. The diode-laser fiber end is placed close to the prism hypotenuse, the pump radiation is coupled into the laser crystal through the opposite surface of the prism and propagates into the crystal through total internal reflections. This laser geometry is simple to align and permits the realization of compact diode-pumped laser systems, as well as power scaling. A diode-pumped Nd:YAG laser yielding pulses of 2.1 mJ energy under a pump with pulses of 9.9 mJ is demonstrated. The laser slope efficiency is 0.22. Furthermore, this geometry enables one to obtain passively Q-switched lasers with the saturable absorber crystal placed between the resonator high-reflectivity mirror and the laser crystal. A Nd:YAG laser, passively Q-switched by a Cr 4+ :YAG crystal with initial transmission T 0 = 0.90, delivering laser output with a pulsed energy of 93 μJ, a duration of 26 ns and a pump threshold of 1.9 mJ, is realized in order to prove the concept. (letter)

  19. Determination of trace amounts of plutonium in environmental samples by RIMS using a high repetition rate solid state laser system

    International Nuclear Information System (INIS)

    Gruening, C.; Kratz, J.V.; Trautmann, N.; Waldek, A.; Huber, G.; Passler, G.; Wendt, K.

    2001-01-01

    A reliable and easy to handle high repetition rate solid state laser system has been set up for routine applications of Resonance Ionization Mass Spectrometry (RIMS). It consists of three Titanium-Sapphire (Ti:Sa) lasers pumped by one Nd:YAG laser, providing up to 3 W of tunable laser light each in a wavelength range from 725 nm to 895 nm. The isotope shifts for 238 Pu to 244 Pu have been measured in an efficient ionization scheme with λ 1 =420.76 nm, λ 2 =847.28 nm and λ 3 =767.53 nm. An overall detection efficiency of the RIMS apparatus of ε=1x10 -5 is routinely reached, resulting in a detection limit of 2x10 6 atoms (0.8 fg) of plutonium. The isotopic compositions of synthetic samples and the NIST standard reference material SRM996 were measured. The content of 238 Pu to 242 Pu has been determined in dust samples from the surroundings of a nuclear power plant and 244 Pu was determined in urine samples for the National Radiation Protection Board (NRPB), U.K. Routine operation of plutonium ultratrace detection could thus be established

  20. Fast-electron-relaxation measurement for laser-solid interaction at relativistic laser intensities

    International Nuclear Information System (INIS)

    Chen, H.; Shepherd, R.; Chung, H. K.; Kemp, A.; Hansen, S. B.; Wilks, S. C.; Ping, Y.; Widmann, K.; Fournier, K. B.; Beiersdorfer, P.; Dyer, G.; Faenov, A.; Pikuz, T.

    2007-01-01

    We present measurements of the fast-electron-relaxation time in short-pulse (0.5 ps) laser-solid interactions for laser intensities of 10 17 , 10 18 , and 10 19 W/cm 2 , using a picosecond time-resolved x-ray spectrometer and a time-integrated electron spectrometer. We find that the laser coupling to hot electrons increases as the laser intensity becomes relativistic, and that the thermalization of fast electrons occurs over time scales on the order of 10 ps at all laser intensities. The experimental data are analyzed using a combination of models that include Kα generation, collisional coupling, and plasma expansion

  1. White Blood Cell Differentiation Using a Solid State Flow Cytometer

    NARCIS (Netherlands)

    Doornbos, R.M.P.; Doornbos, R.M.P.; Hennink, E.J.; Putman, C.A.J.; Putman, C.A.J.; de Grooth, B.G.; Greve, Jan

    1993-01-01

    A flow cytometer using a solid state light source and detector was designed and built. For illumination of the sample stream two types of diode lasers (670 nm and 780 nm) were tested in a set-up designed to differentiate human leukocytes by means of light scattering. The detector is an avalanche

  2. Solid state and materials research

    International Nuclear Information System (INIS)

    1988-01-01

    Surface and sub-surface regions of solids are modified by rapid melting and quenching, using a high-powered, pulsed (30 ns) ruby laser. The main emphasis of this work is on laser annealing, epitaxy and doping of silicon. Computer programs have been developed to calculate the heat-flow which takes place during pulsed laser irradiation. From such calculations, information can be obtained about temperature profiles, melt depths, recrystallization velocities and quench rates. 13 figs., 9 refs., 1 tab

  3. Laser generation of nanostructures on the surface and in the bulk of solids

    International Nuclear Information System (INIS)

    Bityurin, N M

    2010-01-01

    This paper considers nanostructuring of solid surfaces by nano-optical techniques, primarily by laser particle nanolithography. Threshold processes are examined that can be used for laser structuring of solid surfaces, with particular attention to laser swelling of materials. Fundamental spatial resolution issues in three-dimensional (3D) laser nanostructuring are analysed with application to laser nanopolymerisation and 3D optical information recording. The formation of nanostructures in the bulk of solids due to their structural instability under irradiation is exemplified by photoinduced formation of nanocomposites. (photonics and nanotechnology)

  4. Ultrashort pulsed laser ablation for decollation of solid state lithium-ion batteries

    Science.gov (United States)

    Hördemann, C.; Anand, H.; Gillner, A.

    2017-08-01

    Rechargeable lithium-ion batteries with liquid electrolytes are the main energy source for many electronic devices that we use in our everyday lives. However, one of the main drawbacks of this energy storage technology is the use of liquid electrolyte, which can be hazardous to the user as well as the environment. Moreover, lithium-ion batteries are limited in voltage, energy density and operating temperature range. One of the most novel and promising battery technologies available to overcome the above-mentioned drawbacks is the Solid-State Lithium-Ion Battery (SSLB). This battery type can be produced without limitations to the geometry and is also bendable, which is not possible with conventional batteries1 . Additionally, SSLBs are characterized by high volumetric and gravimetric energy density and are intrinsically safe since no liquid electrolyte is used2-4. Nevertheless, the manufacturing costs of these batteries are still high. The existing production-technologies are comparable to the processes used in the semiconductor industry and single cells are produced in batches with masked-deposition at low deposition rates. In order to decrease manufacturing costs and to move towards continuous production, Roll2Roll production methods are being proposed5, 6. These methods offer the possibility of producing large quantities of substrates with deposited SSLB-layers. From this coated substrate, single cells can be cut out. For the flexible decollation of SSLB-cells from the substrate, new manufacturing technologies have to be developed since blade-cutting, punching or conventional laser-cutting processes lead to short circuiting between the layers. Here, ultra-short pulsed laser ablation and cutting allows the flexible decollation of SSLBs. Through selective ablation of individual layers, an area for the cutting kerf is prepared to ensure a shortcut-free decollation.

  5. Latest advances in high brightness disk lasers

    Science.gov (United States)

    Kuhn, Vincent; Gottwald, Tina; Stolzenburg, Christian; Schad, Sven-Silvius; Killi, Alexander; Ryba, Tracey

    2015-02-01

    In the last decade diode pumped solid state lasers have become an important tool for many industrial materials processing applications. They combine ease of operation with efficiency, robustness and low cost. This paper will give insight in latest progress in disk laser technology ranging from kW-class CW-Lasers over frequency converted lasers to ultra-short pulsed lasers. The disk laser enables high beam quality at high average power and at high peak power at the same time. The power from a single disk was scaled from 1 kW around the year 2000 up to more than 10 kW nowadays. Recently was demonstrated more than 4 kW of average power from a single disk close to fundamental mode beam quality (M²=1.38). Coupling of multiple disks in a common resonator results in even higher power. As an example we show 20 kW extracted from two disks of a common resonator. The disk also reduces optical nonlinearities making it ideally suited for short and ultrashort pulsed lasers. In a joint project between TRUMPF and IFSW Stuttgart more than 1.3 kW of average power at ps pulse duration and exceptionally good beam quality was recently demonstrated. The extremely low saturated gain makes the disk laser ideal for internal frequency conversion. We show >1 kW average power and >6 kW peak power in multi ms pulsed regime from an internally frequency doubled disk laser emitting at 515 nm (green). Also external frequency conversion can be done efficiently with ns pulses. >500 W of average UV power was demonstrated.

  6. Advanced 3D Printers for Cellular Solids

    Science.gov (United States)

    2016-06-30

    06-2016 1-Aug-2014 31-Dec-2015 Final Report: Advanced 3D printers for Cellular Solids The views, opinions and/or findings contained in this report are...2211 3d printing, cellular solids REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8...Papers published in non peer-reviewed journals: Final Report: Advanced 3D printers for Cellular Solids Report Title Final Report for DURIP grant W911NF

  7. In pursuit of fusion; ARGUS laser system at Livermore

    International Nuclear Information System (INIS)

    Simmons, W.W.

    1976-01-01

    The ARGUS laser facility has been developed to achieve significant laser fusion milestones; high density (greater than 10 g/cm 3 ) implosions, high temperature (greater than 10 KeV) implosions, and high yield from advanced target designs. The ARGUS laser, central to this facility is a twin-beam, 20 cm output aperture, Nd:glass solid state laser capable of delivering greater than 3 TW of power to laser fusion targets. At the present time, ARGUS is fully operational, and has produced up to 10 9 neutrons in selected target irradiation experiments. The performance of this facility is described

  8. Advanced lasers for fusion applications

    International Nuclear Information System (INIS)

    Krupke, W.F.

    1978-11-01

    Projections indicate that MJ/MW laser systems, operating with efficiencies in escess of 1 percent, are required to drive laser fusion power reactors. Moreover, a premium in pellet performance is anticipated as the wavelength of the driver laser system is decreased. Short wavelength laser systems based on atomic selenium (lambda = 0.49μ), terbium molcular vapors (0.55μ), thulium doped dielectric solids (0.46μ), and on pulse compressions of KrF excimer laser radiaton (0.27μ) have been proposed and studied for this purpose. The technological scalability and efficiency of each of these systems is examined in this paper. All of these systems are projected to meet minimum systems requirements. Amont them, the pulse-compressed KrF system is projected to have the highest potential efficiency (6%) and the widest range of systems design options

  9. Laser Processing and Chemistry

    CERN Document Server

    Bäuerle, Dieter

    2011-01-01

    This book gives an overview of the fundamentals and applications of laser-matter interactions, in particular with regard to laser material processing. Special attention is given to laser-induced physical and chemical processes at gas-solid, liquid-solid, and solid-solid interfaces. Starting with the background physics, the book proceeds to examine applications of lasers in “standard” laser machining and laser chemical processing (LCP), including the patterning, coating, and modification of material surfaces. This fourth edition has been enlarged to cover the rapid advances in the understanding of the dynamics of materials under the action of ultrashort laser pulses, and to include a number of new topics, in particular the increasing importance of lasers in various different fields of surface functionalizations and nanotechnology. In two additional chapters, recent developments in biotechnology, medicine, art conservation and restoration are summarized. Graduate students, physicists, chemists, engineers, a...

  10. Filter-fluorescer x-ray spectrometer using solid state detectors for γ-ray background reduction

    International Nuclear Information System (INIS)

    Yokoi, Takashi; Kitagawa, Yoneyoshi; Shiraga, Hiroyuki; Matsunaga, Hirohide; Kato, Yoshiaki; Yamanaka, Chiyoe.

    1986-01-01

    Filter-fluorescer x-ray spectrometer using solid state photo-detectors instead of the photomultiplier tubes in order to reduce the γ-ray background noise is reported. A significant reduction of the γ-ray background noise is expected, because solid state photo-detectors are very small in size compared with the photomultiplier tubes. It has been confirmed that the γ-ray background is reduced in the target irradiation experiments with the Gekko MII glass laser. (author)

  11. Theoretical solid state physics

    CERN Document Server

    Haug, Albert

    2013-01-01

    Theoretical Solid State Physics, Volume 1 focuses on the study of solid state physics. The volume first takes a look at the basic concepts and structures of solid state physics, including potential energies of solids, concept and classification of solids, and crystal structure. The book then explains single-electron approximation wherein the methods for calculating energy bands; electron in the field of crystal atoms; laws of motion of the electrons in solids; and electron statistics are discussed. The text describes general forms of solutions and relationships, including collective electron i

  12. Steady state ion acceleration by a circularly polarized laser pulse

    International Nuclear Information System (INIS)

    Zhang Xiaomei; Shen Baifei; Cang Yu; Li Xuemei; Jin Zhangying; Wang Fengchao

    2007-01-01

    The steady state ion acceleration at the front of a cold solid target by a circularly polarized flat-top laser pulse is studied with one-dimensional particle-in-cell (PIC) simulation. A model that ions are reflected by a steady laser-driven piston is used by comparing with the electrostatic shock acceleration. A stable profile with a double-flat-top structure in phase space forms after ions enter the undisturbed region of the target with a constant velocity

  13. High power laser research and development at the Laboratory for Laser Energetics

    International Nuclear Information System (INIS)

    Soures, J.M.; McCrory, R.L.; Cerqua, K.A.

    1986-01-01

    As part of its research mission - to investigate the interaction of intense radiation with matter - the Laboratory for Laser Energetics (LLE) of the University of Rochester is developing a number of high-peak power and high-average-power laser systems. In this paper we highlight some of the LLE work on solid-state laser research, development and applications. Specifically, we discuss the performance and operating characteristics of Omega, a twenty-four beam, 4000 Joule, Nd:glass laser system which is frequently tripled using the polarization mismatch scheme. We also discuss progress in efforts to develop high-average-power solid-state laser systems with active-mirror and slab geometries and to implement liquid-crystal devices in high-power Nd:glass lasers. Finally we present results from a program to develop a compact, ultrahigh-peak-power solid-state laser using the concept of frequency chirped pulse amplification

  14. Solid State Division progress report for period ending March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Hinton, L.W. [eds.

    1997-12-01

    This report covers research progress in the Solid State Division from April 1, 1995, through March 31, 1997. During this period, the division conducted a broad, interdisciplinary materials research program in support of Department of Energy science and technology missions. The report includes brief summaries of research activities in condensed matter theory, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. An addendum includes listings of division publications and professional activities.

  15. Evaluation of the performance of small diode pumped UV solid state (DPSS) Nd:YAG lasers as new radiation sources for atmospheric pressure laser ionization mass spectrometry (APLI-MS).

    Science.gov (United States)

    Kersten, Hendrik; Lorenz, Matthias; Brockmann, Klaus J; Benter, Thorsten

    2011-06-01

    The performance of a KrF* bench top excimer laser and a compact diode pumped UV solid state (DPSS) Nd:YAG laser as photo-ionizing source in LC-APLI MS is compared. The commonly applied bench-top excimer laser, operating at 248 nm, provides power densities of the order of low MW/cm(2) on an illuminated area of 0.5 cm(2) (8 mJ/pulse, 5 ns pulse duration, beam waist area 0.5 cm(2), 3 MW/cm(2)). The DPSS laser, operating at 266 nm, provides higher power densities, however, on a two orders of magnitude smaller illuminated area (60 μJ/pulse, 1 ns pulse duration, beam waist area 2 × 10(-3) cm(2), 30 MW/cm(2)). In a common LC-APLI MS setup with direct infusion of a 10 nM pyrene solution, the DPSS laser yields a significantly smaller ion signal (0.9%) and signal to noise ratio (1.4%) compared with the excimer laser. With respect to the determined low detection limits (LODs) for PAHs of 0.1 fmol using an excimer laser, LODs in DPSS laser LC-APLI MS in the low pmol regime are expected. The advantages of the DPSS laser with respect to applicability (size, cost, simplicity) may render this light source the preferred one for APLI applications not focusing on ultimately high sensitivities. Furthermore, the impact of adjustable ion source parameters on the performance of both laser systems is discussed in terms of the spatial sensitivity distribution described by the distribution of ion acceptance (DIA) measurements. Perspectives concerning the impact on future APLI-MS applications are given.

  16. Robust remote-pumping sodium laser for advanced LIDAR and guide star applications

    Science.gov (United States)

    Ernstberger, Bernhard; Enderlein, Martin; Friedenauer, Axel; Schwerdt, Robin; Wei, Daoping; Karpov, Vladimir; Leisching, Patrick; Clements, Wallace R. L.; Kaenders, Wilhelm G.

    2015-10-01

    The performance of large ground-based optical telescopes is limited due to wavefront distortions induced by atmospheric turbulence. Adaptive optics systems using natural guide stars with sufficient brightness provide a practical way for correcting the wavefront errors by means of deformable mirrors. Unfortunately, the sky coverage of bright stars is poor and therefore the concept of laser guide stars was invented, creating an artificial star by exciting resonance fluorescence from the mesospheric sodium layer about 90 km above the earth's surface. Until now, mainly dye lasers or sumfrequency mixing of solid state lasers were used to generate laser guide stars. However, these kinds of lasers require a stationary laser clean room for operation and are extremely demanding in maintenance. Under a development contract with the European Southern Observatory (ESO) and W. M. Keck Observatory (WMKO), TOPTICA Photonics AG and its partner MPB Communications have finalized the development of a next-generation sodium guide star laser system which is available now as a commercial off-the-shelf product. The laser is based on a narrow-band diode laser, Raman fiber amplifier (RFA) technology and resonant second-harmonic generation (SHG), thus highly reliable and simple to operate and maintain. It emits > 22 W of narrow-linewidth (≈ 5 MHz) continuous-wave radiation at sodium resonance and includes a re-pumping scheme for boosting sodium return flux. Due to the SHG resonator acting as spatial mode filter and polarizer, the output is diffraction-limited with RMS wavefront error concept of line-replaceable units (LRU). A comprehensive system software, as well as an intuitive service GUI, allow for remote control and error tracking down to at least the LRU level. In case of a failure, any LRU can be easily replaced. With these fiber-based guide star lasers, TOPTICA for the first time offers a fully engineered, off-the-shelf guide star laser system for groundbased optical telescopes

  17. Diode pumped solid state laser by two diodes

    International Nuclear Information System (INIS)

    Li Mingzhong; Zhang Xiaomin; Liang Yue; Man Yongzai; Zhou Pizhang

    1995-01-01

    A Nd: YLF laser is pumped by home-made quantum well diode lasers. Datum of laser output energy 60 μJ and peak power 120 mw are observed at wavelength 1.047 μm. On the same pumping condition, the output power synchronously pumped by two diodes is higher than the total output power pumped by two diodes separately. The fluctuation is <3%. The results agree with theoretical analysis

  18. Solid state radiation dosimetry

    International Nuclear Information System (INIS)

    Moran, P.R.

    1976-01-01

    Important recent developments provide accurate, sensitive, and reliable radiation measurements by using solid state radiation dosimetry methods. A review of the basic phenomena, devices, practical limitations, and categories of solid state methods is presented. The primary focus is upon the general physics underlying radiation measurements with solid state devices

  19. Method for laser spot welding monitoring

    Science.gov (United States)

    Manassero, Giorgio

    1994-09-01

    As more powerful solid state laser sources appear on the market, new applications become technically possible and important from the economical point of view. For every process a preliminary optimization phase is necessary. The main parameters, used for a welding application by a high power Nd-YAG laser, are: pulse energy, pulse width, repetition rate and process duration or speed. In this paper an experimental methodology, for the development of an electrooptical laser spot welding monitoring system, is presented. The electromagnetic emission from the molten pool was observed and measured with appropriate sensors. The statistical method `Parameter Design' was used to obtain an accurate analysis of the process parameter that influence process results. A laser station with a solid state laser coupled to an optical fiber (1 mm in diameter) was utilized for the welding tests. The main material used for the experimental plan was zinc coated steel sheet 0.8 mm thick. This material and the related spot welding technique are extensively used in the automotive industry, therefore, the introduction of laser technology in production line will improve the quality of the final product. A correlation, between sensor signals and `through or not through' welds, was assessed. The investigation has furthermore shown the necessity, for the modern laser production systems, to use multisensor heads for process monitoring or control with more advanced signal elaboration procedures.

  20. Development of an image converter of radical design. [employing solid state electronics towards the production of an advanced engineering model camera system

    Science.gov (United States)

    Irwin, E. L.; Farnsworth, D. L.

    1972-01-01

    A long term investigation of thin film sensors, monolithic photo-field effect transistors, and epitaxially diffused phototransistors and photodiodes to meet requirements to produce acceptable all solid state, electronically scanned imaging system, led to the production of an advanced engineering model camera which employs a 200,000 element phototransistor array (organized in a matrix of 400 rows by 500 columns) to secure resolution comparable to commercial television. The full investigation is described for the period July 1962 through July 1972, and covers the following broad topics in detail: (1) sensor monoliths; (2) fabrication technology; (3) functional theory; (4) system methodology; and (5) deployment profile. A summary of the work and conclusions are given, along with extensive schematic diagrams of the final solid state imaging system product.

  1. Stabilized lasers for advanced gravitational wave detectors

    International Nuclear Information System (INIS)

    Willke, B; Danzmann, K; Kwee, P; Seifert, F; Frede, M; Kracht, D; Puncken, O; Schulz, B; Veltkamp, C; Wagner, S; Wessels, P; Winkelmann, L; King, P; Savage, R L Jr

    2008-01-01

    Second generation gravitational wave detectors require high power lasers with more than 100 W of output power and with very low temporal and spatial fluctuations. To achieve the demanding stability levels required, low noise techniques and adequate control actuators have to be part of the high power laser design. In addition feedback control and passive noise filtering is used to reduce the fluctuations in the so-called prestabilized laser system (PSL). In this paper, we discuss the design of a 200 W PSL which is under development for the Advanced LIGO gravitational wave detector and will present the first results. The PSL noise requirements for advanced gravitational wave detectors will be discussed in general and the stabilization scheme proposed for the Advanced LIGO PSL will be described

  2. Luminescence and the solid state

    CERN Document Server

    Ropp, Richard C

    2013-01-01

    Since the discovery of the transistor in 1948, the study of the solid state has been burgeoning. Recently, cold fusion and the ceramic superconductor have given cause for excitement. There are two approaches possible to this area of science, namely, that of solid state physics and solid state chemistry, although both overlap extensively. The former is more concerned with electronic states in solids (including electromagnetics) whereas the latter is more concerned with interactions of atoms in solids. The area of solid state physics is well documented, however, there are very few texts which de

  3. Recent advances in solid state NMR and its application to ceramics

    International Nuclear Information System (INIS)

    Maekawa, Hideki

    2006-01-01

    The basic principles of solid state NMR are explained. Four application examples contained amorphous glass, determination of defects of oxide crystal, nano particle and ionic materials. The structure of inorganic glass is measured by 29 Si, 11 B, 31 P and 23 Na NMR and Magic Angle Spinning NMR (MAS-NMR), chemical species near hydrogen by Cross-Polarization Magic Angle Spinning (CP/MAS) method, and hydrogen by Combined Rotation And Multiple Pulse Spectroscopy (CRAMPS) and MAS-NMR. Hydrous and anhydrous silicate glass with condensed 17 O was measured by 17 O Multi Quantum Magic Angle Spinning (MQ/MAS). 27 Al in slags was analyzed by 27 Al 5Q-MAS. 89 Y NMR spectrum of YSZ (Yttria Stabilization Zirconia, Y 2 O 3 -ZrO 2 ) was explained. The ion transfer phenomena in the electrolyte are observed directly by the solid state NMR. (S.Y.)

  4. Solid state video cameras

    CERN Document Server

    Cristol, Y

    2013-01-01

    Solid State Video Cameras reviews the state of the art in the field of solid-state television cameras as compiled from patent literature. Organized into 10 chapters, the book begins with the basic array types of solid-state imagers and appropriate read-out circuits and methods. Documents relating to improvement of picture quality, such as spurious signal suppression, uniformity correction, or resolution enhancement, are also cited. The last part considerssolid-state color cameras.

  5. Solid state physics advances in research and applications

    CERN Document Server

    Turnbull, David

    1991-01-01

    The explosion of the science of mesoscopic structures is having a great impact on physics and electrical engineering because of the possible applications of these structures in microelectronic and optoelectronic devices of the future. This volume of Solid State Physics consists of two comprehensive and authoritative articles that discuss most of the physical problems that have so far been identified as being of importance in semiconductor nanostructures. Much of the volume is tutorial in characture--while at the same time time presenting current and vital theoretical and experimental results and a copious reference list--so it will be essential reading to all those taking a part in the research and development of this emerging technology.

  6. Volkov basis for simulation of interaction of strong laser pulses and solids

    Science.gov (United States)

    Kidd, Daniel; Covington, Cody; Li, Yonghui; Varga, Kálmán

    2018-01-01

    An efficient and accurate basis comprised of Volkov states is implemented and tested for time-dependent simulations of interactions between strong laser pulses and crystalline solids. The Volkov states are eigenstates of the free electron Hamiltonian in an electromagnetic field and analytically represent the rapidly oscillating time-dependence of the orbitals, allowing significantly faster time propagation than conventional approaches. The Volkov approach can be readily implemented in plane-wave codes by multiplying the potential energy matrix elements with a simple time-dependent phase factor.

  7. Laser-induced stresses versus mechanical stress power measurements during laser ablation of solids

    International Nuclear Information System (INIS)

    Shannon, M.A.; Russo, R.E.

    1995-01-01

    Laser-induced stresses resulting from high-power laser-material interactions have been studied extensively. However, the rate of change in mechanical energy, or stress power, due to laser-induced stresses has only recently been investigated. An unanswered question for monitoring laser-material interactions in the far-field is whether stress power differs from stresses measured, particularly with respect to laser-energy coupling to a solid target. This letter shows experimental acoustic data which demonstrate that stress power measured in the far field of the target shows changes in laser-energy coupling, whereas the stresses measured do not. For the ambient medium above the target, stress power and stress together reflect changes in laser-energy coupling. copyright 1995 American Institute of Physics

  8. Technology of solid-fuel-layer targets for laser-fusion experiments

    International Nuclear Information System (INIS)

    Musinski, D.L.; Henderson, T.M.; Pattinson, T.R.; Tarvin, J.A.

    1979-01-01

    An apparatus which produces uniform solid-fuel layers in glass-shell targets for laser irradiation is described. A low-power cw laser pulse is used to vaporize the fuel within a previously frozen target which is maintained in a cold-helium environment by a cryogenic shroud. The rapid refreezing that follows the pulse forms a uniform fuel layer on the inner surface of the glass shell. This apparatus and technique meet the restrictions imposed by the experimental target chamber. The method does not perturb the target position; nor does it preclude the usual diagnostic experimets since the shroud is retracted before the main laser pulse arrives. Successful laser irradiation and implosion of solid-fuel-layer targets at KMSF have confirmed the effectiveness and reliability of this system and extended the range of laser-target-interaction studies in the cryogenic regime

  9. Overview and future prospects of the use of lasers for packaging by the microelectronics and photonics industry in Japan

    Science.gov (United States)

    Washio, Kunihiko; Kouta, Hikaru

    2002-06-01

    This paper presents an overview and future prospects of the use of lasers for packaging by the microelectronics and photonics industry in Japan. Various kinds of lasers and material processing technologies have been developed and applied for manufacturing electronic and photonic devices to meet the strong demands for high-performance, lightweight, low energy-consumption mobile digital consumer electronics, broadband optical fiber communications, low-emission and fuel-efficient, easy-to-steer smart cars, etc. This paper emphasizes solid-state lasers as convenient and versatile light sources for packaging advanced compact devices with sensitive passive or active components having small feature sizes. Some of the representative material processing applications using solid-state lasers for electronic and photonic devices are, opaque and clear defects repairing of LCDs, trimming of functional modules, fine-tuning of optical characteristics of photonic devices, forming of various micro-vias for high-density interconnection circuits, laser patterning of amorphous solar-cells, and high-precision laser welding of electronic components such as optical modules, miniature relays and lithium ion batteries. The recent progress in high-power ultra-short pulse solid-state lasers seems to be rapidly increasing their processing capabilities such as for fine adjustment of optical filters, etc.

  10. SOLID STATE ENERGY CONVERSION ALLIANCE (SECA) SOLID OXIDE FUEL CELL PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Minh; Jim Powers

    2003-10-01

    This report summarizes the work performed for April 2003--September 2003 reporting period under Cooperative Agreement DE-FC26-01NT41245 for the U.S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid State Energy Conversion Alliance (SECA) Solid oxide Fuel Cell Program''. During this reporting period, the conceptual system design activity was completed. The system design, including strategies for startup, normal operation and shutdown, was defined. Sealant and stack materials for the solid oxide fuel cell (SOFC) stack were identified which are capable of meeting the thermal cycling and degradation requirements. A cell module was tested which achieved a stable performance of 0.238 W/cm{sup 2} at 95% fuel utilization. The external fuel processor design was completed and fabrication begun. Several other advances were made on various aspects of the SOFC system, which are detailed in this report.

  11. Wide Bandgap Semiconductor Based Solid State Smart Circuit Protection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced solid state power component technology is necessary for future hybrid aircraft systems with increased power demands. There is a need for adequate circuit...

  12. Laser program overview

    International Nuclear Information System (INIS)

    Storm, E.; Coleman, L.W.

    1985-01-01

    The objectives of the Lawrence Livermore National Laboratory Laser Fusion program are to understand and develop the science and technology of inertial confinement fusion (ICF), and to utilize ICF in short- and long-term military applications, and, in the long-term, as a candidate for central-station civilian power generation. In 1984, using the Novette laser system, the authors completed experiments showing the very favorable scaling of laser-plama interactions with short-wavelength laser light. Their Novette experiments have unequivocally shown that short laser wavelength, i.e., less than 1 μm, is required to provide the drive necessary for efficient compression, ignition, and burn of DT fusion fuel. In other experiments with Novette, the authors made the first unambiguous observation of amplified spontaneous emission in the soft x-ray regime. The authors also conducted military applications and weapons physics experiments, which they discuss in detail in the classified volume of our Laser Program Annual Report. In the second thrust, advanced laser studies, they develop and test the concepts, components, and materials for present and future laser systems. Over the years, this has meant providing the technology base and scientific advances necessary to construct and operate a succession of six evermore-powerful laser systems. The latest of these, Nova, a 100-TW/100-kJ-class laser system, was completed in 1984. The Nd:glass laser continues to be the most effective and versatile tool for ICF and weapons physics because of its scalability in energy, the ability to efficiently convert its 1=μm output to shorter wavelengths, its ability to provide flexible, controlled pulse shaping, and its capability to adapt to a variety of irradiation and focusing geometries. For these reasons, many of our advanced laser studies are in areas appropriate to solid state laser technologies

  13. Solid-state electronic devices an introduction

    CERN Document Server

    Papadopoulos, Christo

    2014-01-01

    A modern and concise treatment of the solid state electronic devices that are fundamental to electronic systems and information technology is provided in this book. The main devices that comprise semiconductor integrated circuits are covered in a clear manner accessible to the wide range of scientific and engineering disciplines that are impacted by this technology. Catering to a wider audience is becoming increasingly important as the field of electronic materials and devices becomes more interdisciplinary, with applications in biology, chemistry and electro-mechanical devices (to name a few) becoming more prevalent. Updated and state-of-the-art advancements are included along with emerging trends in electronic devices and their applications. In addition, an appendix containing the relevant physical background will be included to assist readers from different disciplines and provide a review for those more familiar with the area. Readers of this book can expect to derive a solid foundation for understanding ...

  14. Advanced Laser Architecture for Two-Step Laser Tandem Mass Spectrometer

    Science.gov (United States)

    Fahey, Molly E.; Li, Steven X.; Yu, Anthony W.; Getty, Stephanie A.

    2016-01-01

    Future astrobiology missions will focus on planets with significant astrochemical or potential astrobiological features, such as small, primitive bodies and the icy moons of the outer planets that may host diverse organic compounds. These missions require advanced instrument techniques to fully and unambiguously characterize the composition of surface and dust materials. Laser desorptionionization mass spectrometry (LDMS) is an emerging instrument technology for in situ mass analysis of non-volatile sample composition. A recent Goddard LDMS advancement is the two-step laser tandem mass spectrometer (L2MS) instrument to address the need for future flight instrumentation to deconvolve complex organic signatures. The L2MS prototype uses a resonance enhanced multi-photon laser ionization mechanism to selectively detect aromatic species from a more complex sample. By neglecting the aliphatic and inorganic mineral signatures in the two-step mass spectrum, the L2MS approach can provide both mass assignments and clues to structural information for an in situ investigation of non-volatile sample composition. In this paper we will describe our development effort on a new laser architecture that is based on the previously flown Lunar Orbiter Laser Altimeter (LOLA) laser transmitter for the L2MS instrument. The laser provides two discrete midinfrared wavelengths (2.8 m and 3.4 m) using monolithic optical parametric oscillators and ultraviolet (UV) wavelength (266 nm) on a single laser bench with a straightforward development path toward flight readiness.

  15. Recent advancements in spectroscopy using tunable diode lasers

    International Nuclear Information System (INIS)

    Nasim, Hira; Jamil, Yasir

    2013-01-01

    Spectroscopy using tunable diode lasers is an area of research that has gone through a dramatic evolution over the last few years, principally because of new exciting approaches in the field of atomic and molecular spectroscopy. This article attempts to review major recent advancements in the field of diode laser based spectroscopy. The discussion covers the developments made so far in the field of diode lasers and illustrates comprehensively the properties of free-running diode lasers. Since the commercially available free-running diode lasers are not suitable for high-precision spectroscopic studies, various techniques developed so far for converting these free-running diode lasers into true narrow linewidth tunable laser sources are discussed comprehensively herein. The potential uses of diode lasers in different spectroscopic fields and their extensive list of applications have also been included, which may be interesting for the novice and the advanced user as well. (topical review)

  16. Advanced technologies available for future solid propellant grains

    Energy Technology Data Exchange (ETDEWEB)

    Thepenier, J. [SNPE Propulsion, St Medard en Jalles (France); Fonblanc, G. [SNPE Propulsion, Vert le Petit (France). Centre de Recherche de Bouchet

    2001-06-01

    Significant advances have been made during the last decade in several fields of solid propulsion: the advances have enabled new savings in the motor development phase and in recurring costs, because they help limit the number of prototypes and tests. The purpose of the paper is to describe the improvements achieved by SNPE in solid grain technologies, making these technologies available for new developments in more efficient and reliable future SRMs: new energetic molecules, new solid propellants, new processes for grain manufacturing, quick response grain design tools associated with advanced models for grain performance predictions. Using its expertise in chemical synthesis, SNPE develops new molecules to fit new energetic material requirements. Tests based on new propellant formulations have produced good results in the propellant performance/safety behavior ratio. New processes have been developed simultaneously to reduce the manufacturing costs of the new propellants. In addition, the grain design has been optimized by using the latest generation of predictive theoretical tools supported by a large data bank of experimental parameters resulting from over 30 years' experience in solid propulsion: computer-aided method for the preliminary grain design; advanced models for SRM operating and performance predictions. All these technologies are available for industrial applications in future developments of solid propellant grains. (author)

  17. High-power optical coatings for a mega-joule class ICF laser

    International Nuclear Information System (INIS)

    Kozlowski, M.R.; Thomas, I.M.; Campbell, J.H.; Rainer, F.

    1992-11-01

    As a consequence of advancements in Inertial Confinement Fusion research, LLNL is developing plans for a new 1.5 to 2 mega-joule solid-state Nd:glass laser designed to achieve fusion ignition. The new design is possible in part due to advances in optical coatings suitable for high power laser systems. High damage threshold mirrors and polarizers are comprised of electron beam deposited dielectric multilayers. Subthreshold illumination, or laser conditioning, of the multilayer coatings results in an increase in the damage thresholds by factors of 2 to 3 at 1.06μm, thus meeting the fluence requirements of the advanced architecture. For anti-reflective coatings, protective organic coatings for non-linear crystals and phase plates for beam smoothing, sol-gel films provide high damage thresholds coatings at low cost

  18. A review of the applications to solids of the laser ion source in mass spectrometry

    International Nuclear Information System (INIS)

    Conzemius, R.J.; Capellen, J.M.

    1980-01-01

    The review is intended to provide a panoramic view of the broadening applications of the laser ion source in mass spectrometry. In these applications a laser beam has been used to excite a solid specimen to the ionized state or to the vaporized state in the ion source of a mass spectrometer. The review is divided into two main sections: Analytical features and applications. The analytical features section has been subdivided into five areas: Detection sensitivity, ionisation efficiency, collection efficiency, quantification, and crater-depth analysis. Applications have been separated into ten different areas: Biological, carbon, fossil fuels, gaseous impurities, geological, inorganics, isotopic analysis, metals, organics and polymers. (EBE)

  19. Flight demonstration of flight termination system and solid rocket motor ignition using semiconductor laser initiated ordnance

    Science.gov (United States)

    Schulze, Norman R.; Maxfield, B.; Boucher, C.

    1995-01-01

    Solid State Laser Initiated Ordnance (LIO) offers new technology having potential for enhanced safety, reduced costs, and improved operational efficiency. Concerns over the absence of programmatic applications of the technology, which has prevented acceptance by flight programs, should be abated since LIO has now been operationally implemented by the Laser Initiated Ordnance Sounding Rocket Demonstration (LOSRD) Program. The first launch of solid state laser diode LIO at the NASA Wallops Flight Facility (WFF) occurred on March 15, 1995 with all mission objectives accomplished. This project, Phase 3 of a series of three NASA Headquarters LIO demonstration initiatives, accomplished its objective by the flight of a dedicated, all-LIO sounding rocket mission using a two-stage Nike-Orion launch vehicle. LIO flight hardware, made by The Ensign-Bickford Company under NASA's first Cooperative Agreement with Profit Making Organizations, safely initiated three demanding pyrotechnic sequence events, namely, solid rocket motor ignition from the ground and in flight, and flight termination, i.e., as a Flight Termination System (FTS). A flight LIO system was designed, built, tested, and flown to support the objectives of quickly and inexpensively putting LIO through ground and flight operational paces. The hardware was fully qualified for this mission, including component testing as well as a full-scale system test. The launch accomplished all mission objectives in less than 11 months from proposal receipt. This paper concentrates on accomplishments of the ordnance aspects of the program and on the program's implementation and results. While this program does not generically qualify LIO for all applications, it demonstrated the safety, technical, and operational feasibility of those two most demanding applications, using an all solid state safe and arm system in critical flight applications.

  20. Solid state nuclear magnetic resonance investigations of advanced energy materials

    Science.gov (United States)

    Bennett, George D.

    In order to better understand the physical electrochemical changes that take place in lithium ion batteries and asymmetric hybrid supercapacitors solid state nuclear magnetic resonance (NMR) spectroscopy has been useful to probe and identify changes on the atomic and molecular level. NMR is used to characterize the local environment and investigate the dynamical properties of materials used in electrochemical storage devices (ESD). NMR investigations was used to better understand the chemical composition of the solid electrolyte interphase which form on the negative and positive electrodes of lithium batteries as well as identify the breakdown products that occur in the operation of the asymmetric hybrid supercapacitors. The use of nano-structured particles in the development of new materials causes changes in the electrical, structural and other material properties. NMR was used to investigate the affects of fluorinated and non fluorinated single wall nanotubes (SWNT). In this thesis three experiments were performed using solid state NMR samples to better characterize them. The electrochemical reactions of a lithium ion battery determine its operational profile. Numerous means have been employed to enhance battery cycle life and operating temperature range. One primary means is the choice and makeup of the electrolyte. This study focuses on the characteristics of the solid electrolyte interphase (SEI) that is formed on the electrodes surface during the charge discharge cycle. The electrolyte in this study was altered with several additives in order to determine the influence of the additives on SEI formation as well as the intercalation and de-intercalation of lithium ions in the electrodes. 7Li NMR studies where used to characterize the SEI and its composition. Solid state NMR studies of the carbon enriched acetonitrile electrolyte in a nonaqueous asymmetric hybrid supercapacitor were performed. Magic angle spinning (MAS) coupled with cross polarization NMR

  1. Uranium isotope separation in the solid state. Progress report, December 1, 1976--June 1, 1977

    International Nuclear Information System (INIS)

    Bernstein, E.R.

    1977-06-01

    Since we were actively able to work on this project, we have been engaged in three separate lines of research. Each of these has been related to laser-induced isotope separation of uranium in the solid state. The three areas are: (a) improved reaction chemistry for both host materials Zr(BH 4 ) 4 and Hf(BH 4 ) 4 and U(BH 4 ) 4 itself; (b) improved spectroscopic techniques in order to obtain sharper spectra; and (c) solid state photochemical investigations to study U(BH 4 ) 4 photodecomposition mechanism and yield as a function of wave length. These are all integral parts of the solid state isotope separation procedure and are discussed in terms of the overall process proposed

  2. Solid-state radiation detectors technology and applications

    CERN Document Server

    2015-01-01

    The book discusses the current solid state material used in advance detectors manufacturing and their pros and cons and how one can tailor them using different techniques, to get the maximum performance. The book is application oriented to radiation detectors for medical, X and gamma rays application, and good reference with in-depth discussion of detector's physics as it relates to medical application tailored for engineers and scientists.

  3. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2011-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last 5 years. Many of the traditional manufacturers of gas and solid-state lasers are now pursuing the fiber-based systems, which are displacing the conventional technology in many areas. High-power fiber laser systems...... require reliable fibers with large cores, stable mode quality, and good power handling capabilities-requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad...... laser system. We present the latest advancements within airclad fiber technology including a new 100 m single-mode polarization-maintaining rod-type fiber capable of amplifying to megawatt power levels. Furthermore, we describe the novel airclad-based pump combiners and their use in a completely...

  4. Real-Time Laser Ultrasound Tomography for Profilometry of Solids

    Science.gov (United States)

    Zarubin, V. P.; Bychkov, A. S.; Karabutov, A. A.; Simonova, V. A.; Kudinov, I. A.; Cherepetskaya, E. B.

    2018-01-01

    We studied the possibility of applying laser ultrasound tomography for profilometry of solids. The proposed approach provides high spatial resolution and efficiency, as well as profilometry of contaminated objects or objects submerged in liquids. The algorithms for the construction of tomograms and recognition of the profiles of studied objects using the parallel programming technology NDIVIA CUDA are proposed. A prototype of the real-time laser ultrasound profilometer was used to obtain the profiles of solid surfaces of revolution. The proposed method allows the real-time determination of the surface position for cylindrical objects with an approximation accuracy of up to 16 μm.

  5. Advances in laser technology and fibre-optic delivery systems in lithotripsy.

    Science.gov (United States)

    Fried, Nathaniel M; Irby, Pierce B

    2018-06-08

    The flashlamp-pumped, solid-state holmium:yttrium-aluminium-garnet (YAG) laser has been the laser of choice for use in ureteroscopic lithotripsy for the past 20 years. However, although the holmium laser works well on all stone compositions and is cost-effective, this technology still has several fundamental limitations. Newer laser technologies, including the frequency-doubled, double-pulse YAG (FREDDY), erbium:YAG, femtosecond, and thulium fibre lasers, have all been explored as potential alternatives to the holmium:YAG laser for lithotripsy. Each of these laser technologies is associated with technical advantages and disadvantages, and the search continues for the next generation of laser lithotripsy systems that can provide rapid, safe, and efficient stone ablation. New fibre-optic approaches for safer and more efficient delivery of the laser energy inside the urinary tract include the use of smaller-core fibres and fibres that are tapered, spherical, detachable or hollow steel, or have muzzle brake distal fibre-optic tips. These specialty fibres might provide advantages, including improved flexibility for maximal ureteroscope deflection, reduced cross section for increased saline irrigation rates through the working channel of the ureteroscope, reduced stone retropulsion for improved stone ablation efficiency, and reduced fibre degradation and burnback for longer fibre life.

  6. Solidification microstructures and solid-state parallels: Recent developments, future directions

    Energy Technology Data Exchange (ETDEWEB)

    Asta, M. [Department of Chemical Engineering and Materials Science, University of California at Davis, Davis, CA 95616 (United States); Beckermann, C. [Department of Mechanical and Industrial Engineering, University of Iowa, Iowa City, IA 52242 (United States); Karma, A. [Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA 02115 (United States); Kurz, W. [Institute of Materials, Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne (Switzerland)], E-mail: wilfried.kurz@epfl.ch; Napolitano, R. [Department of Materials Science and Engineering, Iowa State University, and Ames Laboratory USDOE, Ames, IA 50011 (United States); Plapp, M. [Physique de la Matiere Condensee, Ecole Polytechnique, CNRS, 91128 Palaiseau (France); Purdy, G. [Department of Materials Science and Engineering, McMaster University, Hamilton, Ont., L8S 4L7 (Canada); Rappaz, M. [Institute of Materials, Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Trivedi, R. [Department of Materials Science and Engineering, Iowa State University, and Ames Laboratory USDOE, Ames, IA 50011 (United States)

    2009-02-15

    Rapid advances in atomistic and phase-field modeling techniques as well as new experiments have led to major progress in solidification science during the first years of this century. Here we review the most important findings in this technologically important area that impact our quantitative understanding of: (i) key anisotropic properties of the solid-liquid interface that govern solidification pattern evolution, including the solid-liquid interface free energy and the kinetic coefficient; (ii) dendritic solidification at small and large growth rates, with particular emphasis on orientation selection; (iii) regular and irregular eutectic and peritectic microstructures; (iv) effects of convection on microstructure formation; (v) solidification at a high volume fraction of solid and the related formation of pores and hot cracks; and (vi) solid-state transformations as far as they relate to solidification models and techniques. In light of this progress, critical issues that point to directions for future research in both solidification and solid-state transformations are identified.

  7. DNP-enhanced solid-state NMR spectroscopy of active pharmaceutical ingredients.

    Science.gov (United States)

    Zhao, Li; Pinon, Arthur C; Emsley, Lyndon; Rossini, Aaron J

    2017-11-28

    Solid-state NMR spectroscopy has become a valuable tool for the characterization of both pure and formulated active pharmaceutical ingredients (APIs). However, NMR generally suffers from poor sensitivity that often restricts NMR experiments to nuclei with favorable properties, concentrated samples, and acquisition of one-dimensional (1D) NMR spectra. Here, we review how dynamic nuclear polarization (DNP) can be applied to routinely enhance the sensitivity of solid-state NMR experiments by one to two orders of magnitude for both pure and formulated APIs. Sample preparation protocols for relayed DNP experiments and experiments on directly doped APIs are detailed. Numerical spin diffusion models illustrate the dependence of relayed DNP enhancements on the relaxation properties and particle size of the solids and can be used for particle size determination when the other factors are known. We then describe the advanced solid-state NMR experiments that have been enabled by DNP and how they provide unique insight into the molecular and macroscopic structure of APIs. For example, with large sensitivity gains provided by DNP, natural isotopic abundance, 13 C- 13 C double-quantum single-quantum homonuclear correlation NMR spectra of pure APIs can be routinely acquired. DNP also enables solid-state NMR experiments with unreceptive quadrupolar nuclei such as 2 H, 14 N, and 35 Cl that are commonly found in APIs. Applications of DNP-enhanced solid-state NMR spectroscopy for the molecular level characterization of low API load formulations such as commercial tablets and amorphous solid dispersions are described. Future perspectives for DNP-enhanced solid-state NMR experiments on APIs are briefly discussed. Copyright © 2017 John Wiley & Sons, Ltd.

  8. A Hybrid Fiber/Solid-State Regenerative Amplifier with Tunable Pulse Widths for Satellite Laser Ranging

    Science.gov (United States)

    Coyle, Barry; Poulios, Demetrios

    2013-01-01

    A fiber/solid-state hybrid seeded regenerative amplifier, capable of achieving high output energy with tunable pulse widths, has been developed for satellite laser ranging applications. The regenerative amplifier cavity uses a pair of Nd:YAG zigzag slabs oriented orthogonally to one another in order to make thermal lensing effects symmetrical and simplify optical correction schemes. The seed laser used is a fiber-coupled 1,064-nm narrowband (pumped by a single 120-W, pulsed 808-nm laser diode array. In this configuration, the average pump beam distribution in the slabs had a 1-D Gaussian shape, which matches the estimated cavity mode size. A half-wave plate between the slabs reduces losses from Fresnel reflections due to the orthogonal slabs Brewster-cut end faces. Successful "temporal" seeding of the regenerative amplifier cavity results in a cavity Q-switch pulse envelope segmenting into shorter pulses, each having the width of the input seed, and having a uniform temporal separation corresponding to the cavity round-trip time of approx. =10 ns. The pulse energy is allowed to build on successive passes in the regenerative amplifier cavity until a maximum is reached, (when cavity gains and losses are equal), after which the pulse is electro- optically switched out on the next round trip The overall gain of the amplifier is approx. =82 dB (or a factor of 1.26 million). After directing the amplified output through a LBO frequency doubling crystal, approx. = 2.1 W of 532-nm output (>1 mJ) was measured. This corresponds to a nonlinear conversion efficiency of >60%. Furthermore, by pulse pumping this system, a single pulse per laser shot can be created for the SLR (satellite laser ranging) measurement, and this can be ejected into the instrument. This is operated at the precise frequency needed by the measurement, as opposed to commercial short-pulsed, mode-locked systems that need to operate in a continuous fashion, or CW (continuous wave), and create pulses at many

  9. Solid-state harmonics beyond the atomic limit.

    Science.gov (United States)

    Ndabashimiye, Georges; Ghimire, Shambhu; Wu, Mengxi; Browne, Dana A; Schafer, Kenneth J; Gaarde, Mette B; Reis, David A

    2016-06-23

    Strong-field laser excitation of solids can produce extremely nonlinear electronic and optical behaviour. As recently demonstrated, this includes the generation of high harmonics extending into the vacuum-ultraviolet and extreme-ultraviolet regions of the electromagnetic spectrum. High harmonic generation is shown to occur fundamentally differently in solids and in dilute atomic gases. How the microscopic mechanisms in the solid and the gas differ remains a topic of intense debate. Here we report a direct comparison of high harmonic generation in the solid and gas phases of argon and krypton. Owing to the weak van der Waals interaction, rare (noble)-gas solids are a near-ideal medium in which to study the role of high density and periodicity in the generation process. We find that the high harmonic generation spectra from the rare-gas solids exhibit multiple plateaus extending well beyond the atomic limit of the corresponding gas-phase harmonics measured under similar conditions. The appearance of multiple plateaus indicates strong interband couplings involving multiple single-particle bands. We also compare the dependence of the solid and gas harmonic yield on laser ellipticity and find that they are similar, suggesting the importance of electron-hole recollision in these solids. This implies that gas-phase methods such as polarization gating for attosecond pulse generation and orbital tomography could be realized in solids.

  10. All solid state pulsed power system for water discharge

    OpenAIRE

    Sakugawa, Takashi; Yamaguchi, Takahiro; Yamamoto, Kunihiro; Kiyan, Tsuyoshi; Namihira, Takao; Katsuki, Sunao; Akiyama, Hidenori; サクガワ, タカシ; ヤマグチ, タカヒロ; ヤマモト, クニヒロ; キヤン, ツヨシ; ナミヒラ, タカオ; カツキ, スナオ; アキヤマ, ヒデノリ; 佐久川, 貴志

    2005-01-01

    Pulsed power has been used to produce non-thermal plasmas in gases that generate a high electric field at the tip of streamer discharges, where high energy electrons, free radicals, and ozone are produced. Recently, all solid state pulsed power generators, which are operated with high repetition rate, long lifetime and high reliability, have been developed for industrial applications, such as high repetition rate pulsed gas lasers, high energy density plasma (EUV sources) and water discharges...

  11. Proceedings of the ninth national conference on solid state chemistry and allied areas

    International Nuclear Information System (INIS)

    Singh, N.B.; Shukla, S.K.; Abbas, N.S.; Bharadvaja, Anand

    2015-01-01

    Solid State Chemistry and Materials Science is the backbone of many industrial developments. Research on advanced materials makes a strong connection between different fields in basic science, engineering and medical sciences. This conference aims to cover wide range of interdisciplinary topics dealing with various aspects of solid state chemistry and advanced materials such as Nanomaterials, Catalysts, Active Packaging, High Energy Materials, Cementations, Materials , Nuclear Materials, Carbon Materials, Chalcogenides, Superconductor, Conducting Polymers, Photovoltaic, Sensors, Luminescence, Super conductors, Liquid Crystals, Modeling and Molecular Simulation,Biomaterials, Biosensors, Drug Delivery, Tissue Engineering, Bioplastics, Carbon Nanomaterials, Organ, Transplant, Dentisty, Bioimplant, Materials for Engineering and Environment, Nanocomposite, Biodegradable Polymers, etc

  12. Semipolar InGaN-based superluminescent diodes for solid-state lighting and visible light communications

    KAUST Repository

    Shen, Chao; Ng, Tien Khee; Lee, Changmin; Leonard, John T.; Nakamura, Shuji; Speck, James S.; Denbaars, Steven P.; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2017-01-01

    III-nitride light emitters, such as light-emitting diodes (LEDs) and laser diodes (LDs), have been demonstrated and studied for solid-state lighting (SSL) and visible-light communication (VLC) applications. However, for III-nitride LEDbased SSL

  13. Solid State Physics Principles and Modern Applications

    CERN Document Server

    Quinn, John J

    2009-01-01

    Intended for a two semester advanced undergraduate or graduate course in Solid State Physics, this treatment offers modern coverage of the theory and related experiments, including the group theoretical approach to band structures, Moessbauer recoil free fraction, semi-classical electron theory, magnetoconductivity, electron self-energy and Landau theory of Fermi liquid, and both quantum and fractional quantum Hall effects. Integrated throughout are developments from the newest semiconductor devices, e.g. space charge layers, quantum wells and superlattices. The first half includes all material usually covered in the introductory course, but in greater depth than most introductory textbooks. The second half includes most of the important developments in solid-state researches of the past half century, addressing e.g. optical and electronic properties such as collective bulk and surface modes and spectral function of a quasiparticle, which is a basic concept for understanding LEED intensities, X ray fine struc...

  14. Understanding solid state physics

    CERN Document Server

    Holgate, Sharon Ann

    2009-01-01

    Where Sharon Ann Holgate has succeeded in this book is in packing it with examples of the application of solid state physics to technology. … All the basic elements of solid state physics are covered … . The range of materials is good, including as it does polymers and glasses as well as crystalline solids. In general, the style makes for easy reading. … Overall this book succeeds in showing the relevance of solid state physics to the modern world … .-Contemporary Physics, Vol. 52, No. 2, 2011I was indeed amused and inspired by the wonderful images throughout the book, carefully selected by th

  15. The study towards high intensity high charge state laser ion sources.

    Science.gov (United States)

    Zhao, H Y; Jin, Q Y; Sha, S; Zhang, J J; Li, Z M; Liu, W; Sun, L T; Zhang, X Z; Zhao, H W

    2014-02-01

    As one of the candidate ion sources for a planned project, the High Intensity heavy-ion Accelerator Facility, a laser ion source has been being intensively studied at the Institute of Modern Physics in the past two years. The charge state distributions of ions produced by irradiating a pulsed 3 J/8 ns Nd:YAG laser on solid targets of a wide range of elements (C, Al, Ti, Ni, Ag, Ta, and Pb) were measured with an electrostatic ion analyzer spectrometer, which indicates that highly charged ions could be generated from low-to-medium mass elements with the present laser system, while the charge state distributions for high mass elements were relatively low. The shot-to-shot stability of ion pulses was monitored with a Faraday cup for carbon target. The fluctuations within ±2.5% for the peak current and total charge and ±6% for pulse duration were demonstrated with the present setup of the laser ion source, the suppression of which is still possible.

  16. Solid Sampling with a Diode Laser for Portable Ambient Mass Spectrometry.

    Science.gov (United States)

    Yung, Yeni P; Wickramasinghe, Raveendra; Vaikkinen, Anu; Kauppila, Tiina J; Veryovkin, Igor V; Hanley, Luke

    2017-07-18

    A hand-held diode laser is implemented for solid sampling in portable ambient mass spectrometry (MS). Specifically, a pseudocontinuous wave battery-powered surgical laser diode is employed for portable laser diode thermal desorption (LDTD) at 940 nm and compared with nanosecond pulsed laser ablation at 2940 nm. Postionization is achieved in both cases using atmospheric pressure photoionization (APPI). The laser ablation atmospheric pressure photoionization (LAAPPI) and LDTD-APPI mass spectra of sage leaves (Salvia officinalis) using a field-deployable quadrupole ion trap MS display many similar ion peaks, as do the mass spectra of membrane grown biofilms of Pseudomonas aeruginosa. These results indicate that LDTD-APPI method should be useful for in-field sampling of plant and microbial communities, for example, by portable ambient MS. The feasibility of many portable MS applications is facilitated by the availability of relatively low cost, portable, battery-powered diode lasers. LDTD could also be coupled with plasma- or electrospray-based ionization for the analysis of a variety of solid samples.

  17. Radiation Dose Measurement for High-Intensity Laser Interactions with Solid Targets at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Taiee [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-09-25

    A systematic study of photon and neutron radiation doses generated in high-intensity laser-solid interactions is underway at SLAC National Accelerator Laboratory. We found that these laser-solid experiments are being performed using a 25 TW (up to 1 J in 40 fs) femtosecond pulsed Ti:sapphire laser at the Linac Coherent Light Source’s (LCLS) Matter in Extreme Conditions (MEC) facility. Additionally, radiation measurements were performed with passive and active detectors deployed at various locations inside and outside the target chamber. Results from radiation dose measurements for laser-solid experiments at SLAC MEC in 2014 with peak intensity between 1018 to 7.1x1019 W/cm2 are presented.

  18. Abstracts of 12. Conference on Solid State Crystals Materials Science and Applications

    International Nuclear Information System (INIS)

    1996-01-01

    The solid state crystals are the modern materials being very interesting from the view point of actual and possible applications in microelectronics, optics, laser materials, detectors etc. 12. Conference on Solid State Crystals, Materials Science and Applications, Zakopane'99 created the review forum for broad range of investigations on topics related to; crystal growth and doping, new materials preparation, thin layer structure, physical properties and special methods for electrical, magnetic, optical and mechanical properties measurements of obtained materials. The insulating, semiconducting and superconducting monocrystals, polycrystals and also amorphous glasses have been investigated and their possible applications discussed. 52 oral lectures and 128 posters have been presented in the course of the conference

  19. Status report on cleaning and maintaining laser disk amplifiers

    International Nuclear Information System (INIS)

    Patton, H.G.; Stowers, I.F.; Jones, W.A.; Wentworth, D.E.

    1978-01-01

    This report describes the activities and advances in engineering and technology made by the Solid State Mechanical Maintenance Group within the laser program at Lawrence Livermore Laboratory. It includes design and operation of clean rooms, contamination control on optical surfaces, cleaning techniques, and glass damage mechanisms. This report, a much expanded version of a section in the laser program's 1976 annual report, covers work accomplished from July 1976 to April 1977. It has been used as the source for five papers presented at various national conferences

  20. Solid state chemistry an introduction

    CERN Document Server

    Smart, Lesley E

    2012-01-01

    ""Smart and Moore are engaging writers, providing clear explanations for concepts in solid-state chemistry from the atomic/molecular perspective. The fourth edition is a welcome addition to my bookshelves. … What I like most about Solid State Chemistry is that it gives simple clear descriptions for a large number of interesting materials and correspondingly clear explanations of their applications. Solid State Chemistry could be used for a solid state textbook at the third or fourth year undergraduate level, especially for chemistry programs. It is also a useful resource for beginning graduate

  1. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2008-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last five years, and many of the traditional manufactures of gas and solid-state lasers are pursuing the attractive fiber-based systems, which are now displacing the old technology in many areas. High-power fiber laser...... systems require specially designed fibers with large cores and good power handling capabilities - requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad...... laser system. We present the latest advancements within airclad fiber technology including a new 70 μm single-mode polarization-maintaining rod-type fiber capable of amplifying to MW power levels. Furthermore we describe the novel airclad based pump combiners and their use in a completely monolithic 350...

  2. The solid state maser

    CERN Document Server

    Orton, J W; Walling, J C; Ter Haar, D

    1970-01-01

    The Solid State Maser presents readings related to solid state maser amplifier from the first tentative theoretical proposals that appeared in the early 1950s to the successful realization of practical devices and their application to satellite communications and radio astronomy almost exactly 10 years later. The book discusses a historical account of the early developments (including that of the ammonia maser) of solid state maser; the properties of paramagnetic ions in crystals; the development of practical low noise amplifiers; and the characteristics of maser devices designed for communica

  3. In-situ investigation of thermal instabilities and solid state dewetting in polycrystalline platinum thin films via confocal laser microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jahangir, S.; Cheng, Xuan; Huang, H. H.; Nagarajan, V. [School of Materials Science and Engineering, University of New South Wales, Sydney 2052 (Australia); Ihlefeld, J. [Electronic, Optical, and Nanomaterials Department, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2014-10-28

    Solid state dewetting and the subsequent morphological changes for platinum thin films grown on zinc oxide (ZnO) buffered (001) silicon substrates (Pt/ZnO/SiO{sub 2}/(001)Si system) is investigated under vacuum conditions via a custom-designed confocal laser microscope coupled with a laser heating system. Live imaging of thin film dewetting under a range of heating and quenching vacuum ambients reveals events including hillock formation, hole formation, and hole growth that lead to formation of a network of Pt ligaments, break up of Pt ligaments to individual islands and subsequent Pt islands shape reformation, in chronological fashion. These findings are corroborated by ex-situ materials characterization and quantitative electron microscopy analysis. A secondary hole formation via blistering before film rupture is revealed to be the critical stage, after which a rapid dewetting catastrophe occurs. This process is instantaneous and cannot be captured by ex-situ methods. Finally, an intermetallic phase forms at 900 °C and alters the morphology of Pt islands, suggesting a practical limit to the thermal environments that may be used for these platinized silicon wafers in vacuum conditions.

  4. In-situ investigation of thermal instabilities and solid state dewetting in polycrystalline platinum thin films via confocal laser microscopy

    International Nuclear Information System (INIS)

    Jahangir, S.; Cheng, Xuan; Huang, H. H.; Nagarajan, V.; Ihlefeld, J.

    2014-01-01

    Solid state dewetting and the subsequent morphological changes for platinum thin films grown on zinc oxide (ZnO) buffered (001) silicon substrates (Pt/ZnO/SiO 2 /(001)Si system) is investigated under vacuum conditions via a custom-designed confocal laser microscope coupled with a laser heating system. Live imaging of thin film dewetting under a range of heating and quenching vacuum ambients reveals events including hillock formation, hole formation, and hole growth that lead to formation of a network of Pt ligaments, break up of Pt ligaments to individual islands and subsequent Pt islands shape reformation, in chronological fashion. These findings are corroborated by ex-situ materials characterization and quantitative electron microscopy analysis. A secondary hole formation via blistering before film rupture is revealed to be the critical stage, after which a rapid dewetting catastrophe occurs. This process is instantaneous and cannot be captured by ex-situ methods. Finally, an intermetallic phase forms at 900 °C and alters the morphology of Pt islands, suggesting a practical limit to the thermal environments that may be used for these platinized silicon wafers in vacuum conditions.

  5. Mid-infrared lasers for energy frontier plasma accelerators

    Directory of Open Access Journals (Sweden)

    I. V. Pogorelsky

    2016-09-01

    Full Text Available Plasma wake field accelerators driven with solid-state near-IR lasers have been considered as an alternative to conventional rf accelerators for next-generation TeV-class lepton colliders. Here, we extend this study to the mid-IR spectral domain covered by CO_{2} lasers. We conclude that the increase in the laser driver wavelength favors the regime of laser wake field acceleration with a low plasma density and high electric charge. This regime is the most beneficial for gamma colliders to be converted from lepton colliders via inverse Compton scattering. Selecting a laser wavelength to drive a Compton gamma source is essential for the design of such a machine. The revealed benefits from spectral diversification of laser drivers for future colliders and off-spring applications validate ongoing efforts in advancing the ultrafast CO_{2} laser technology.

  6. One Micron Laser Technology Advancements at GSFC

    Science.gov (United States)

    Heaps, William S.

    2010-01-01

    This slide presentation reviews the advancements made in one micron laser technology at Goddard Space Flight Center. It includes information about risk factors that are being addressed by GSFC, and overviews of the various programs that GSFC is currently managing that are using 1 micron laser technology.

  7. Color speckle in laser displays

    Science.gov (United States)

    Kuroda, Kazuo

    2015-07-01

    At the beginning of this century, lighting technology has been shifted from discharge lamps, fluorescent lamps and electric bulbs to solid-state lighting. Current solid-state lighting is based on the light emitting diodes (LED) technology, but the laser lighting technology is developing rapidly, such as, laser cinema projectors, laser TVs, laser head-up displays, laser head mounted displays, and laser headlamps for motor vehicles. One of the main issues of laser displays is the reduction of speckle noise1). For the monochromatic laser light, speckle is random interference pattern on the image plane (retina for human observer). For laser displays, RGB (red-green-blue) lasers form speckle patterns independently, which results in random distribution of chromaticity, called color speckle2).

  8. NATO Advanced Study Institute on Laser Control & Monitoring in New Materials, Biomedicine, Environment, Security & Defense

    CERN Document Server

    Hall, Trevor J; Paredes, Sofia A; Extreme Photonics & Applications

    2010-01-01

    "Extreme Photonics & Applications" arises from the 2008 NATO Advanced Study Institute in Laser Control & Monitoring in New Materials, Biomedicine, Environment, Security and Defense. Leading experts in the manipulation of light offered by recent advances in laser physics and nanoscience were invited to give lectures in their fields of expertise and participate in discussions on current research, applications and new directions. The sum of their contributions to this book is a primer for the state of scientific knowledge and the issues within the subject of photonics taken to the extreme frontiers: molding light at the ultra-finest scales, which represents the beginning of the end to limitations in optical science for the benefit of 21st Century technological societies. Laser light is an exquisite tool for physical and chemical research. Physicists have recently developed pulsed lasers with such short durations that one laser shot takes the time of one molecular vibration or one electron rotation in an ...

  9. Semiconductor lasers and herterojunction leds

    CERN Document Server

    Kressel, Henry

    2012-01-01

    Semiconductor Lasers and Heterojunction LEDs presents an introduction to the subject of semiconductor lasers and heterojunction LEDs. The book reviews relevant basic solid-state and electromagnetic principles; the relevant concepts in solid state physics; and the p-n junctions and heterojunctions. The text also describes stimulated emission and gain; the relevant concepts in electromagnetic field theory; and the modes in laser structures. The relation between electrical and optical properties of laser diodes; epitaxial technology; binary III-V compounds; and diode fabrication are also consider

  10. New power lasers

    International Nuclear Information System (INIS)

    Yamanaka, Masanobu; Daido, Hiroyuki; Imasaki, Kazuo.

    1989-01-01

    As the new power lasers which are expected to exert large extending effect to the fields of advanced science and technology including precision engineering as well as laser nuclear fusion, LD-excited solid laser, X-ray laser and free electron laser are taken up and outlined. Recently, the solid laser using high power output, high efficiency semiconductor laser as the exciting beam source has been developed. This is called laser diode (LD)-excited solid laser, and the heightening of power output and efficiency and the extension of life are planned. Its present status and application to medical use, laser machining, laser soldering and so on are described. In 1960, the laser in visible region appeared, however in 1985, the result of observing induced emission beam by electron collision exciting method was reported in USA. In the wavelength range of 200 A, holography and contact X-ray microscope applications were verified. The various types of soft X-ray laser and the perspective hereafter are shown. The principle of free electron laser is explained. In the free electron laser, wavelength can be changed by varying electron beam energy, the period of wiggler magnetic field and the intensity of magnetic field. Further, high efficiency and large power output are possible. Its present status, application and the perspective hereafter are reported. (K.I.)

  11. Neodymium-doped phosphate fiber lasers with an all-solid microstructured inner cladding.

    Science.gov (United States)

    Zhang, Guang; Zhou, Qinling; Yu, Chunlei; Hu, Lili; Chen, Danping

    2012-06-15

    We report on high-power fiber lasers based on index-guiding, all-solid neodymium-doped (Nd-doped) phosphate photonic crystal fiber (PCF) with a hexagonal-shaped inner cladding. The optimum fiber laser with a 36 cm length active fiber, generated up to 7.92 W output power at 1053 nm, which benefited from a high absorption coefficient for pump power due to its noncircular inner cladding. The guiding properties of the all-solid PCF were also investigated. A stable mode with a donut-shaped profile and a power-dependent laser beam quality have been observed experimentally and analyzed.

  12. Atmospheric measurements of OH, HO2 and NO by laser-induced fluorescence spectroscopy using a compact all solid-state laser system

    Science.gov (United States)

    Bloss, W. J.; Floquet, C.; Gravestock, T. J.; Heard, D. E.; Ingham, T.; Johnson, G. P.; Lee, J. D.

    2003-04-01

    Free-radicals are key intermediates that control the budgets of many trace gases, for example ozone, greenhouse gases and harmful pollutants. Measurement of radicals and comparison with model calculations constitutes an important test of our understanding of the underlying chemistry. There is a greater need for compact and lightweight instruments for the in situ measurement of free-radical species that are suitable for deployment from a number of field-platforms. A new field instrument has been developed that incorporates an all solid-state Nd:YAG pumped titanium sapphire laser that is capable of generating radiation at high pulse-repetition-frequency for the detection of OH, HO_2, NO and IO radicals in the atmosphere by laser induced fluorescence (LIF). The system offers advantages of wide wavelength tunability, compactness, low weight, greater long-term stability (fibre-optic delivery) and short warm-up time. The instrument was successfully deployed during 2002 in the NAMBLEX field campaign at Mace Head with detection limits for OH and HO_2 (measured simultaneously with laser operation at 308 nm) of 3.1 x 10^5 molecule cm-3 (0.012 ppt) and 2.6 x 10^6 molecule cm-3 (0.09 pptv) respectively. Diurnal profiles of OH have been recorded over a period of 5 weeks. NO controls the HO_2/OH ratio and is the critical parameter in the production of tropospheric ozone, yet measurements in the boundary layer are restricted to a single indirect technique based on chemiluminescent analysers. Measurements of NO in the atmosphere have been made by LIF using the new instrument operating at 226 nm, with absolute concentrations in good agreement with simultaneous measurements made using a commercial chemiluminescent analyser. Whilst operating at 445 nm, the instrument has detected the IO radical in the laboratory, with a projected detection limit that is well below previously measured atmospheric concentrations of IO. A second instrument to be deployed on an aircraft platform is

  13. A Laser Technology Test Facility for Laser Inertial Fusion Energy (LIFE)

    International Nuclear Information System (INIS)

    Bayramian, A.J.; Campbell, R.W.; Ebbers, C.A.; Freitas, B.L.; Latkowski, J.; Molander, W.A.; Sutton, S.B.; Telford, S.; Caird, J.A.

    2010-01-01

    A LIFE laser driver needs to be designed and operated which meets the rigorous requirements of the NIF laser system while operating at high average power, and operate for a lifetime of >30 years. Ignition on NIF will serve to demonstrate laser driver functionality, operation of the Mercury laser system at LLNL demonstrates the ability of a diode-pumped solid-state laser to run at high average power, but the operational lifetime >30 yrs remains to be proven. A Laser Technology test Facility (LTF) has been designed to specifically address this issue. The LTF is a 100-Hz diode-pumped solid-state laser system intended for accelerated testing of the diodes, gain media, optics, frequency converters and final optics, providing system statistics for billion shot class tests. These statistics will be utilized for material and technology development as well as economic and reliability models for LIFE laser drivers.

  14. Semipolar InGaN-based superluminescent diodes for solid-state lighting and visible light communications

    KAUST Repository

    Shen, Chao

    2017-02-16

    III-nitride light emitters, such as light-emitting diodes (LEDs) and laser diodes (LDs), have been demonstrated and studied for solid-state lighting (SSL) and visible-light communication (VLC) applications. However, for III-nitride LEDbased SSL-VLC system, its efficiency is limited by the

  15. Structure of Partially Premixed Flames and Advanced Solid Propellants

    National Research Council Canada - National Science Library

    Branch, Melvyn

    1998-01-01

    The combustion of solid rocket propellants of advanced energetic materials involves a complex process of decomposition and condensed phase reactions in the solid propellant, gaseous flame reactions...

  16. Einstein and solid-state physics

    International Nuclear Information System (INIS)

    Aut, I.

    1982-01-01

    A connection between the development of solid-state physics and the works and activity of Albert Einstein is traced. A tremendous Einstein contribution to solid state physics is marked. A strict establishment of particle-wave dualism; a conclusion about the applicability of the Plank radiation law not only to black body radiation; finding out particles indistinguishability - all three discoveries have a principle significance for solid state physics too

  17. High peak power picosecond hybrid fiber and solid-state amplifier system

    International Nuclear Information System (INIS)

    Wushouer, X; Yan, P; Yu, H; Liu, Q; Fu, X; Yan, X; Gong, M

    2010-01-01

    We report the high peak power picosecond hybrid fiber and solid-state laser amplifier system. The passively mode-locked solid-state seed source produced an average power of 1.8 W with pulse width of 14 ps and repetition rate of 86 MHz. It was directly coupled into the first Yb-doped polarized photonic crystal fiber amplifier stage. To avoid the nonlinear effects in fiber, the output power from the first stage was merely amplified to 24 W with the narrow spectra broadening of 0.21 nm. For the improvement of the peak power, the dual-end pumped composite Nd:YVO 4 amplifier system has been chosen at the second stage. To reduce the serious thermal effect, the thermally bonded composite YVO 4 – Nd:YVO 4 – YVO 4 rod crystal was used as the gain medium. The 53 W TEM 00 mode with the peak power of 40 kW, beam quality of M 2 < 1.15, corresponding to the optical-optical efficiency of 42.4% was obtained at the hybrid amplifier laser system. The system allows using a low power seed source and demonstrates an increase in the peak power beyond a fiber master oscillator power amplifier's (MOPA's) limit

  18. Rational coating of Li7P3S11 solid electrolyte on MoS2 electrode for all-solid-state lithium ion batteries

    Science.gov (United States)

    Xu, R. C.; Wang, X. L.; Zhang, S. Z.; Xia, Y.; Xia, X. H.; Wu, J. B.; Tu, J. P.

    2018-01-01

    Large interfacial resistance between electrode and electrolyte limits the development of high-performance all-solid-state batteries. Herein we report a uniform coating of Li7P3S11 solid electrolyte on MoS2 to form a MoS2/Li7P3S11 composite electrode for all-solid-state lithium ion batteries. The as-synthesized Li7P3S11 processes a high ionic of 2.0 mS cm-1 at room temperature. Due to homogeneous union and reduced interfacial resistance, the assembled all-solid-state batteries with the MoS2/Li7P3S11 composite electrode exhibit higher reversible capacity of 547.1 mAh g-1 at 0.1 C and better cycling stability than the counterpart based on untreated MoS2. Our study provides a new reference for design/fabrication of advanced electrode materials for high-performance all-solid-state batteries.

  19. NATO Advanced Study Institute on Relativistic and Electron Correlation Effects in Molecules and Solids

    CERN Document Server

    1994-01-01

    The NATO Advanced Study Institute (ASI) on "R@lativistic and Electron Correlation Effects in Molecules and Solids", co-sponsored by Simon Fraser University (SFU) and the Natural Sciences and Engineering Research Council of Canada (NSERC) was held Aug 10- 21, 1992 at the University of British Columbia (UBC), Vancouver, Canada. A total of 90 lecturers and students with backgrounds in Chemistry, Physics, Mathematics and various interdisciplinary subjects attended the ASI. In my proposal submitted to NATO for financial support for this ASI, I pointed out that a NATO ASI on the effects of relativity in many-electron systems was held ten years ago, [See G.L. Malli, (ed) Relativistic Effects in Atoms, Molecules and Solids, Plenum Press, Vol B87, New York, 1983]. Moreover, at a NATO Advanced Research Workshop (ARW) on advanced methods for molecular electronic structure "an assessment of state-of­ the-art of Electron Correlation ... " was carried out [see C.E. Dykstra, (ed), Advanced Theories and Computational Approa...

  20. Working Group VI Summary Report: New Ideas Employing High-Power Lasers

    International Nuclear Information System (INIS)

    Leemans, W.P.

    1999-01-01

    The objectives of this working group were to provide the ''Future Light Source Community'' information on: Electron-Laser interaction based sources; Plasma based radiation sources and accelerators; and Present and future high-power laser technology. A summary of presentations, discussions and opinions is presented next. At the end of this report, a few references are given. The list is very far from being complete but is meant as a start for further exploring the various topics discussed in this working group. Based on presentations and discussions during the workshop, a summarizing table of the performance of three different types of laser systems has been made. The emphasis is on listing performance parameters of solid state, FEL and gas based lasers, relevant to the development of a future fourth generation light source. Two types of solid state lasers capable of producing peak power in the multi-terawatt range are described: Nd:glass and Ti:sapphire lasers [1]. The main development for these lasers is towards higher average power levels: from the 10 W to the > 100 W level. An infrared FEL has recently produced 1 kW average power but with peak power on the order of 0.1 GW [2]. A terawatt class, short pulse CO 2 based gas laser is under development at the Advanced Test Facility at BNL [3

  1. Advanced methods of solid oxide fuel cell modeling

    CERN Document Server

    Milewski, Jaroslaw; Santarelli, Massimo; Leone, Pierluigi

    2011-01-01

    Fuel cells are widely regarded as the future of the power and transportation industries. Intensive research in this area now requires new methods of fuel cell operation modeling and cell design. Typical mathematical models are based on the physical process description of fuel cells and require a detailed knowledge of the microscopic properties that govern both chemical and electrochemical reactions. ""Advanced Methods of Solid Oxide Fuel Cell Modeling"" proposes the alternative methodology of generalized artificial neural networks (ANN) solid oxide fuel cell (SOFC) modeling. ""Advanced Methods

  2. Nanoengineering for solid-state lighting.

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, E. Fred (Rensselaer Polytechnic Institute,Troy, NY); Koleske, Daniel David; Wetzel, Christian (Rensselaer Polytechnic Institute,Troy, NY); Lee, Stephen Roger; Missert, Nancy A.; Lin, Shawn-Yu (Rensselaer Polytechnic Institute,Troy, NY); Crawford, Mary Hagerott; Fischer, Arthur Joseph

    2009-09-01

    This report summarizes results from a 3-year Laboratory Directed Research and Development project performed in collaboration with researchers at Rensselaer Polytechnic Institute. Our collaborative effort was supported by Sandia's National Institute for Nanoengineering and focused on the study and application of nanoscience and nanoengineering concepts to improve the efficiency of semiconductor light-emitting diodes for solid-state lighting applications. The project explored LED efficiency advances with two primary thrusts: (1) the study of nanoscale InGaN materials properties, particularly nanoscale crystalline defects, and their impact on internal quantum efficiency, and (2) nanoscale engineering of dielectric and metal materials and integration with LED heterostructures for enhanced light extraction efficiency.

  3. Solid-state circuits

    CERN Document Server

    Pridham, G J

    2013-01-01

    Solid-State Circuits provides an introduction to the theory and practice underlying solid-state circuits, laying particular emphasis on field effect transistors and integrated circuits. Topics range from construction and characteristics of semiconductor devices to rectification and power supplies, low-frequency amplifiers, sine- and square-wave oscillators, and high-frequency effects and circuits. Black-box equivalent circuits of bipolar transistors, physical equivalent circuits of bipolar transistors, and equivalent circuits of field effect transistors are also covered. This volume is divided

  4. Diagnostic and therapeutic applications of diode lasers and solid state lasers in medicine

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, S.L. (Texas Univ., Houston, TX (United States). Cancer Center); Welch, A.J. (Texas Univ., Austin, TX (United States)); Motamedi, M. (Texas Univ., Galveston, TX (United States). Medical Branch); Rastegar, S. (Texas A and M Univ., College Station, TX (United States)); Tittel, F. (Rice Univ., Houston, TX (United States)); Esterowitz, L. (Naval Research Lab., Washington, DC (United States))

    1992-05-01

    The Texas Medical Center in Houston and the nearby UT Medical Branch at Galveston together constitute a major center of medical research activities. Laser applications in medicine are under development with the engineering assistance of the colloborating engineering centers at Rice University, UT-Austin, and Texas A M Univ. In addition, this collective is collaborating with the Naval Research Laboratory, where new developments in laser design are underway, in order to transfer promising new laser technology rapidly into the medical environment.

  5. Characterization of diode-laser stacks for high-energy-class solid state lasers

    Science.gov (United States)

    Pilar, Jan; Sikocinski, Pawel; Pranowicz, Alina; Divoky, Martin; Crump, P.; Staske, R.; Lucianetti, Antonio; Mocek, Tomas

    2014-03-01

    In this work, we present a comparative study of high power diode stacks produced by world's leading manufacturers such as DILAS, Jenoptik, and Quantel. The diode-laser stacks are characterized by central wavelength around 939 nm, duty cycle of 1 %, and maximum repetition rate of 10 Hz. The characterization includes peak power, electrical-to-optical efficiency, central wavelength and full width at half maximum (FWHM) as a function of diode current and cooling temperature. A cross-check of measurements performed at HiLASE-IoP and Ferdinand-Braun-Institut (FBH) shows very good agreement between the results. Our study reveals also the presence of discontinuities in the spectra of two diode stacks. We consider the results presented here a valuable tool to optimize pump sources for ultra-high average power lasers, including laser fusion facilities.

  6. All-PM monolithic fs Yb-fiber laser, dispersion-managed with all-solid photonic bandgap fiber

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2009-01-01

    All-in-fiber SESAM-modelocked self-starting fiber laser is demonstrated. Cavity dispersion is managed by a spliced-in PM all-solid photonic bandgap fiber. The laser directly delivers 1.25 nJ pulses of 280 fs duration.......All-in-fiber SESAM-modelocked self-starting fiber laser is demonstrated. Cavity dispersion is managed by a spliced-in PM all-solid photonic bandgap fiber. The laser directly delivers 1.25 nJ pulses of 280 fs duration....

  7. Generation of electromagnetic radiation in laser action with solids

    International Nuclear Information System (INIS)

    Aref'ev, K.P.; Vorob'ev, S.A.; Kuznetsov, M.F.; Mastov, Sh.R.; Pogrebnyak, A.D.

    1984-01-01

    A new effect of electromagnetic pulse generation in solids, exposed to laser irradiation was revealed experimentally. The ruby laser with 694.36 nm wave length was used in the experiments. Monocrystals of Si, GaAs, KCl, LiF, polycrystals of Cu, Al, metals, the rocks-calcite, marble, natural quartz, feldspar - were used as samples. The effect of electromagnetic pulse generation, which is characterized by sharp threshold dependence on the density of laser radiation power, as well as on the type of material and its characteristics was observed for each material. The possibility of using the method of electromagnetic pulse detection during laser irradiation for evaluation of defectiveness degree and strength characteristics of investigated materials was shown

  8. Proceedings of the seventeenth national symposium on solid state nuclear track detectors and their applications: abstracts and souvenir

    International Nuclear Information System (INIS)

    Patel, Gaurang; Kishore, Sangeeta; Patel, Purvi

    2011-10-01

    The proceedings of the seventeenth national symposium on solid state nuclear track detectors and their applications (SSNTD-17) contains a number of research papers on different areas of solid state nuclear track detectors. It provides a common scientific platform to the scientists for sharing their knowledge and reviews the present state-of-art and advancements in the field of solid state nuclear track detectors and their applications and also some aspects of nuclear energy. Papers relevant to INIS are indexed separately

  9. New materials for solid state electrochemistry

    International Nuclear Information System (INIS)

    Ferloni, P.; Consiglio Nazionale delle Ricerche, Pavia; Magistris, A.; Consiglio Nazionale delle Ricerche, Pavia

    1994-01-01

    Solid state electrochemistry is an interdisciplinary area, undergoing nowadays a fast development. It is related on the one hand to chemistry, and on the other hand to crystallography, solid state physics and materials science. In this paper structural and electrical properties of some families of new materials interesting for solid state electrochemistry are reviewed. Attention is focused essentially on ceramic and crystalline materials, glasses and polymers, displaying high ionic conductivity and potentially suitable for various applications in solid state electrochemical devices. (orig.)

  10. Theoretical solid state physics

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Research activities at ORNL in theoretical solid state physics are described. Topics covered include: surface studies; particle-solid interactions; electronic and magnetic properties; and lattice dynamics

  11. In situ reflectivity investigations of solid/liquid interface during laser backside etching

    International Nuclear Information System (INIS)

    Boehme, R.; Otto, T.; Zimmer, K.

    2006-01-01

    In situ reflectivity measurements of the solid/liquid interface with a pump-probe setup were performed during laser-induced backside wet etching (LIBWE) of fused silica with KrF excimer laser using toluene as absorbing liquid. The intensity, the temporal shape, and the duration of the reflected light measured in dependence on the laser fluence are discussed referring to the surface modification and the bubble formation. The vaporisation of the superheated liquid at the solid interface causes a considerable increase of the reflectivity and gives information about the bubble lifetime. The alterations of the reflectivity after bubbles collapse can be explained with the changed optical properties due to surface modifications of the solid surface. Comparative studies of the reflectivity at different times and the etch rate behaviour in dependence on the laser fluence show that the in situ measured surface modification begins just at the etch threshold fluence and correlates further with etch rate behaviour and the etched surface appearance. The already observed surface modification at LIBWE due to a carbon deposition and structural changes of the near surface region are approved by the changes of the interface reflectivity and emphasizes the importance of the modified surface region in the laser-induced backside wet etching process

  12. Fundamental aspects of laser and ion-beam interactions with solid surfaces

    International Nuclear Information System (INIS)

    Wang, Z.L.

    1982-01-01

    In the first part of the thesis laser-beam interactions with solid surfaces are discussed. In the second part ion-beam interactions with solid surfaces are discussed and mainly the mixing of atoms due to ion bombardment. A study of ion-beam mixing of Cu-Au and Cu-W systems is described in order to illustrate the mechanism for ion beam mixing. As Cu-Au are miscible whereas Cu-W systems are not, and both systems have comparable mass numbers, comparison provides a test for current theories on ion-beam mixing. The results of experiments where 300 keV Kr 4+ ion-bombardment at a dose of 5x10 15 cm -2 has been applied to initiate mixing of a single layer structure and sandwich samples for both systems are described. Room temperature irradiations with a dose of 5x10 15 cm -2 show that Cu-Au mix readily, whereas a small mixing effect is observed for Cu-W systems. A comparable amount of mixing for Cu-Au induced by laser or ion beams is found whereas no mixing of Cu-W induced by laser irradiation is observed, which is in agreement with the criteria for formation of metastable solid solutions due to pulsed laser treatment. (Auth.)

  13. Solid-State Physics Introduction to the Theory

    CERN Document Server

    Patterson, James

    2010-01-01

    Learning Solid State Physics involves a certain degree of maturity, since it involves tying together diverse concepts from many areas of physics. The objective is to understand, in a basic way, how solid materials behave. To do this one needs both a good physical and mathematical background. One definition of Solid State Physics is it is the study of the physical (e.g. the electrical, dielectric, magnetic, elastic, and thermal) properties of solids in terms of basic physical laws. In one sense, Solid State Physics is more like chemistry than some other branches of physics because it focuses on common properties of large classes of materials. It is typical that Solid State Physics emphasizes how physics properties link to electronic structure. We have retained the term Solid Modern solid state physics came of age in the late thirties and forties and is now is part of condensed matter physics which includes liquids, soft materials, and non-crystalline solids. This solid state/condensed matter physics book begin...

  14. Laser requirements for a laser fusion energy power plant

    Institute of Scientific and Technical Information of China (English)

    Stephen; E.Bodner; Andrew; J.Schmitt; John; D.Sethian

    2013-01-01

    We will review some of the requirements for a laser that would be used with a laser fusion energy power plant, including frequency, spatial beam smoothing, bandwidth, temporal pulse shaping, efficiency, repetition rate, and reliability. The lowest risk and optimum approach uses a krypton fluoride gas laser. A diode-pumped solid-state laser is a possible contender.

  15. Electron Hole Plasma in Solids Induced by Ultrashort XUV Laser Pulses

    International Nuclear Information System (INIS)

    Rethfeld, B.; Medvedev, N.

    2013-01-01

    Irradiation of solids with ultrashort XUV laser pulses leads to an excitation of electrons from the valence band and deeper shells to the conduction band leading to a nonequilibrium highly energetic electron hole plasma. We investigate the transient electron dynamics in a solid semiconductor and metal (silicon and aluminum, respectively) under irradiation with a femtosecond VUV to XUV laser pulse as used in experiments with the Free Electron Laser FLASH at DESY in Hamburg, Germany. Applying the Asymptotical Trajectory Monte-Carlo technique, we obtain the transient energy distribution of the excited and ionized electrons within the solid. Photon absorption by electrons in different bands and secondary excitation and ionization processes are simulated event by event. The method was extended in order to take into account the electronic band structure and Pauli's principle for electrons in the conduction band. In this talk we review our results on the dynamics of the transient electron-hole plasma, in particular its transient density and energy distribution in dependence on laser and material parameters. For semiconductors we introduce the concept of an ''effective energy gap'' for collective electronic excitation, which can be applied to estimate the free electron density after high-intensity ultrashort XUV laser pulse irradiation. For aluminum we demonstrate that the electronic spectra depend on the relaxation kinetics of the excited electronic subsystem. Experimentally observed spectra of emitted photons from irradiated aluminum can be explained well with our results. (author)

  16. Quantum Computing in Solid State Systems

    CERN Document Server

    Ruggiero, B; Granata, C

    2006-01-01

    The aim of Quantum Computation in Solid State Systems is to report on recent theoretical and experimental results on the macroscopic quantum coherence of mesoscopic systems, as well as on solid state realization of qubits and quantum gates. Particular attention has been given to coherence effects in Josephson devices. Other solid state systems, including quantum dots, optical, ion, and spin devices which exhibit macroscopic quantum coherence are also discussed. Quantum Computation in Solid State Systems discusses experimental implementation of quantum computing and information processing devices, and in particular observations of quantum behavior in several solid state systems. On the theoretical side, the complementary expertise of the contributors provides models of the various structures in connection with the problem of minimizing decoherence.

  17. Stabilized High Power Laser for Advanced Gravitational Wave Detectors

    International Nuclear Information System (INIS)

    Willke, B; Danzmann, K; Fallnich, C; Frede, M; Heurs, M; King, P; Kracht, D; Kwee, P; Savage, R; Seifert, F; Wilhelm, R

    2006-01-01

    Second generation gravitational wave detectors require high power lasers with several 100W of output power and with very low temporal and spatial fluctuations. In this paper we discuss possible setups to achieve high laser power and describe a 200W prestabilized laser system (PSL). The PSL noise requirements for advanced gravitational wave detectors will be discussed in general and the stabilization scheme proposed for the Advanced LIGO PSL will be described. Special emphasis will be given to the most demanding power stabilization requirements and new results (RIN ≤ 4x10 -9 /√Hz) will be presented

  18. Solid state theory

    CERN Document Server

    Harrison, Walter A

    2011-01-01

    ""A well-written text . . . should find a wide readership, especially among graduate students."" - Dr. J. I. Pankove, RCA.The field of solid state theory, including crystallography, semi-conductor physics, and various applications in chemistry and electrical engineering, is highly relevant to many areas of modern science and industry. Professor Harrison's well-known text offers an excellent one-year graduate course in this active and important area of research. While presenting a broad overview of the fundamental concepts and methods of solid state physics, including the basic quantum theory o

  19. Solid-State Nanopore

    Directory of Open Access Journals (Sweden)

    Zhishan Yuan

    2018-02-01

    Full Text Available Abstract Solid-state nanopore has captured the attention of many researchers due to its characteristic of nanoscale. Now, different fabrication methods have been reported, which can be summarized into two broad categories: “top-down” etching technology and “bottom-up” shrinkage technology. Ion track etching method, mask etching method chemical solution etching method, and high-energy particle etching and shrinkage method are exhibited in this report. Besides, we also discussed applications of solid-state nanopore fabrication technology in DNA sequencing, protein detection, and energy conversion.

  20. Development in laser peening of advanced ceramics

    Science.gov (United States)

    Shukla, Pratik; Smith, Graham C.; Waugh, David G.; Lawrence, Jonathan

    2015-07-01

    Laser peening is a well-known process applicable to surface treat metals and alloys in various industrial sectors. Research in the area of laser peening of ceramics is still scarce and a complete laser-ceramic interaction is still unreported. This paper focuses on laser peening of SiC ceramics employed for cutting tools, armor plating, dental and biomedical implants, with a view to elucidate the unreported work. A detailed investigation was conducted with 1064nm Nd:YAG ns pulse laser to first understand the surface effects, namely: the topography, hardness, KIc and the microstructure of SiC advanced ceramics. The results showed changes in surface roughness and microstructural modification after laser peening. An increase in surface hardness was found by almost 2 folds, as the diamond footprints and its flaws sizes were considerably reduced, thus, enhancing the resistance of SiC to better withstand mechanical impact. This inherently led to an enhancement in the KIc by about 42%. This is attributed to an induction of compressive residual stress and phase transformation. This work is a first-step towards the development of a 3-dimensional laser peening technique to surface treat many advanced ceramic components. This work has shown that upon tailoring the laser peening parameters may directly control ceramic topography, microstructure, hardness and the KIc. This is useful for increasing the performance of ceramics used for demanding applications particularly where it matters such as in military. Upon successful peening of bullet proof vests could result to higher ballistic strength and resistance against higher sonic velocity, which would not only prevent serious injuries, but could also help to save lives of soldiers on the battle fields.

  1. Laser Program annual report, 1985

    International Nuclear Information System (INIS)

    Rufer, M.L.; Murphy, P.W.

    1986-11-01

    This volume presents the unclassified activities and accomplishments of the Inertial Confinement Fusion and Advanced Laser Development elements of the Laser Program at the Lawrence Livermore National Laboratory for the calendar year 1985. This report has been organized into major sections that correspond to our principal technical activities. Section 1 provides an overview. Section 2 comprises work in target theory, design, and code development. Target development and fabrication and the related topics in materials science are contained in Section 3. Section 4 presents work in experiments and diagnostics and includes developments in data acquisition and management capabilities. In Section 5 laser system (Nova) operation and maintenance are discussed. Activities related to supporting laser and optical technologies are described in Section 6. Basic laser research and development is reported in Section 7. Section 8 contains the results of studies in ICF applications where the work reported deals principally with the production of electric power with ICF. Finally, Section 9 is a comprehensive discussion of work to date on solid state lasers for average power applications. Individual sections, two through nine, have been cataloged separately

  2. Laser Program annual report, 1985

    Energy Technology Data Exchange (ETDEWEB)

    Rufer, M.L.; Murphy, P.W. (eds.)

    1986-11-01

    This volume presents the unclassified activities and accomplishments of the Inertial Confinement Fusion and Advanced Laser Development elements of the Laser Program at the Lawrence Livermore National Laboratory for the calendar year 1985. This report has been organized into major sections that correspond to our principal technical activities. Section 1 provides an overview. Section 2 comprises work in target theory, design, and code development. Target development and fabrication and the related topics in materials science are contained in Section 3. Section 4 presents work in experiments and diagnostics and includes developments in data acquisition and management capabilities. In Section 5 laser system (Nova) operation and maintenance are discussed. Activities related to supporting laser and optical technologies are described in Section 6. Basic laser research and development is reported in Section 7. Section 8 contains the results of studies in ICF applications where the work reported deals principally with the production of electric power with ICF. Finally, Section 9 is a comprehensive discussion of work to date on solid state lasers for average power applications. Individual sections, two through nine, have been cataloged separately.

  3. Advances in medium and high temperature solid oxide fuel cell technology

    CERN Document Server

    Salvatore, Aricò

    2017-01-01

    In this book well-known experts highlight cutting-edge research priorities and discuss the state of the art in the field of solid oxide fuel cells giving an update on specific subjects such as protonic conductors, interconnects, electrocatalytic and catalytic processes and modelling approaches. Fundamentals and advances in this field are illustrated to help young researchers address issues in the characterization of materials and in the analysis of processes, not often tackled in scholarly books.

  4. Solid State Physics Introduction to the Theory

    CERN Document Server

    Patterson, James D

    2007-01-01

    Learning Solid State Physics involves a certain degree of maturity, since it involves tying together diverse concepts from many areas of physics. The objective is to understand, in a basic way, how solid materials behave. To do this one needs both a good physical and mathematical background. One definition of Solid State Physics is it is the study of the physical (e.g. the electrical, dielectric, magnetic, elastic, and thermal) properties of solids in terms of basic physical laws. In one sense, Solid State Physics is more like chemistry than some other branches of physics because it focuses on common properties of large classes of materials. It is typical that Solid State Physics emphasizes how physics properties link to electronic structure. We have retained the term Solid State Physics, even though Condensed Matter Physics is more commonly used. Condensed Matter Physics includes liquids and non-crystalline solids such as glass, which we shall not discuss in detail. Modern Solid State Physics came of age in ...

  5. Recent advances in laser-driven neutron sources

    Science.gov (United States)

    Alejo, A.; Ahmed, H.; Green, A.; Mirfayzi, S. R.; Borghesi, M.; Kar, S.

    2016-11-01

    Due to the limited number and high cost of large-scale neutron facilities, there has been a growing interest in compact accelerator-driven sources. In this context, several potential schemes of laser-driven neutron sources are being intensively studied employing laser-accelerated electron and ion beams. In addition to the potential of delivering neutron beams with high brilliance, directionality and ultra-short burst duration, a laser-driven neutron source would offer further advantages in terms of cost-effectiveness, compactness and radiation confinement by closed-coupled experiments. Some of the recent advances in this field are discussed, showing improvements in the directionality and flux of the laser-driven neutron beams.

  6. Soft x-ray imaging by a commercial solid-state television camera

    International Nuclear Information System (INIS)

    Matsushima, I.; Koyama, K.; Tanimoto, M.; Yano, M.

    1987-01-01

    A commerical, solid-state television camera has been used to record images of soft x radiation (0.8--12 keV). The performance of the camera is theoretically analyzed and experimentally evaluated compared with an x-ray photographic film (Kodak direct exposure film). In the application, the camera has been used to provide image patterns of x rays from laser-produced plasmas. It is demonstrated that the camera has several advantages over x-ray photographic film

  7. Thermal Effects Induced by Laser Irradiation of Solids

    International Nuclear Information System (INIS)

    Galovic, S.

    2004-01-01

    A part of incident energy is absorbed within the irradiated sample when a solid is exposed to the influence of laser radiation, to more general electromagnetic radiation within the wide range of wavelengths (from microwaves, to infrared radiation to X-rays), or to the energy of particle beams (electronic, protonic, or ionic). The absorption process signifies a highly selective excitation of the electronic state of atoms or molecules, followed by thermal and non-thermal de-excitation processes. Non-radiation de-excitation-relaxation processes induce direct sample heating. In addition, a great number of non-thermal processes (e.g., photoluminescence, photochemistry, photovoltage) may also induce heat generation as a secondary process. This method of producing heat is called the photothermal effect.The photothermal effect and subsequent propagation of thermal waves on the surface and in the volume of the solid absorbing the exciting beam may produce the following: variations in the temperature on the surfaces of the sample; deformation and displacement of surfaces; secondary infrared radiation (photothermal radiation); the formation of the gradient of the refractivity index; changes in coefficients of reflection and absorbtion; the generation of sound (photoacoustic generation), etc. These phenomena may be used in the investigation and measurement of various material properties since the profile and magnitude of the generated signal depend upon the nature of material absorbing radiation. A series of non-destructive spectroscopic, microscopic and defectoscopic detecting techniques, called photothermal methods, is developed on the basis of the above-mentioned phenomena.This paper outlines the interaction between the intensity modulated laser beam and solids, and presents a mathematical model of generated thermal sources. Generalized models for a photothermal response of optically excited materials have been obtained, including thermal memory influence on the propagation

  8. Interband type-II miniband-to-bound state diode lasers for the midinfrared

    International Nuclear Information System (INIS)

    Mermelstein, C.; Schmitz, J.; Kiefer, R.; Walther, M.; Wagner, J.

    2004-01-01

    A design for midinfrared diode lasers based on interband type-II miniband-to-bound state transitions is proposed and has been demonstrated experimentally. Type-II miniband-to-bound state laser structures emitting at 3.25 μm with active regions consisting of 5 and 10 W periods were grown by solid-source molecular-beam epitaxy and processed into ridge waveguide lasers. Substrate-side down mounted devices with a 10 period active region and uncoated facets could be operated in continuous-wave (cw) mode up to 185 K and as high as 260 K in pulsed mode. A high characteristic temperature of 100 K has been achieved for heat-sink temperatures below 140 K, decreasing to 33 K for the 140 to 185 K interval. At 110 K, a 5 period laser structure exhibited a threshold current density of 177 A/cm 2 and a slope efficiency of 61 mW/A. Single-ended output powers of 144 mW in cw mode and exceeding 330 mW in pulsed operation were obtained for a substrate-side down mounted 5 period diode laser with high-reflection/antireflection coated mirror facets, operated at 110 K

  9. Tunable femtosecond lasers with low pump thresholds

    Science.gov (United States)

    Oppo, Karen

    The work in this thesis is concerned with the development of tunable, femtosecond laser systems, exhibiting low pump threshold powers. The main motive for this work was the development of a low threshold, self-modelocked Ti:Al2O3 laser in order to replace the conventional large-frame argon-ion pump laser with a more compact and efficient all-solid-state alternative. Results are also presented for an all-solid-state, self-modelocked Cr:LiSAF laser, however most of this work is concerned with self-modelocked Ti:Al2O3 laser systems. In chapter 2, the operation of a regeneratively-initiated, and a hard-aperture self- modelocked Ti:Al2O3 laser, pumped by an argon-ion laser, is discussed. Continuous- wave oscillation thresholds as low as 160mW have been demonstrated, along with self-modelocked threshold powers as low as 500mW. The measurement and suppression of phase noise on modelocked lasers is discussed in chapter 3. This is followed by a comparison of the phase noise characteristics of the regeneratively-initiated, and hard-aperture self-modelocked Ti:Al2O3 lasers. The use of a synchronously-operating, high resolution electron-optical streak camera in the evaluation of timing jitter is also presented. In chapter 4, the construction and self-modelocked operation of an all-solid-state Ti:Al2O3 laser is described. The all-solid-state alternative to the conventional argon-ion pump laser was a continuous-wave, intracavity-frequency doubled, diode-laser pumped Nd:YLF ring laser. At a total diode-laser pump power of 10W, this minilaser was capable of producing a single frequency output of 1W, at 523.5nm in a TEM00 beam. The remainder of this thesis looks at the operation of a self-modelocked Ti:Al2O3 laser generating ultrashort pulses at wavelengths as long as 1053nm. The motive for this work was the development of an all-solid-state, self- modelocked Ti:Al2O3 laser operating at 1053nm, for use as a master oscillator in a Nd:glass power chain.

  10. Laser Program annual report 1987

    Energy Technology Data Exchange (ETDEWEB)

    O' Neal, E.M.; Murphy, P.W.; Canada, J.A.; Kirvel, R.D.; Peck, T.; Price, M.E.; Prono, J.K.; Reid, S.G.; Wallerstein, L.; Wright, T.W. (eds.)

    1989-07-01

    This report discusses the following topics: target design and experiments; target materials development; laboratory x-ray lasers; laser science and technology; high-average-power solid state lasers; and ICF applications studies.

  11. Laser Program annual report 1987

    International Nuclear Information System (INIS)

    O'Neal, E.M.; Murphy, P.W.; Canada, J.A.; Kirvel, R.D.; Peck, T.; Price, M.E.; Prono, J.K.; Reid, S.G.; Wallerstein, L.; Wright, T.W.

    1989-07-01

    This report discusses the following topics: target design and experiments; target materials development; laboratory x-ray lasers; laser science and technology; high-average-power solid state lasers; and ICF applications studies

  12. Requirements and Technology Advances for Global Wind Measurement with a Coherent Lidar: A Shrinking Gap

    Science.gov (United States)

    Kavaya, Michael J.; Kavaya, Michael J.; Yu, Jirong; Koch, Grady J.; Amzajerdian, Farzin; Singh, Upendra N.; Emmitt, G. David

    2007-01-01

    Early concepts to globally measure vertical profiles of vector horizontal wind from space planned on an orbit height of 525 km, a single pulsed coherent Doppler lidar system to cover the full troposphere, and a continuously rotating telescope/scanner that mandated a vertical line of sight wind profile from each laser shot. Under these conditions system studies found that laser pulse energies of approximately 20 J at 10 Hz pulse repetition rate with a rotating telescope diameter of approximately 1.5 m was required. Further requirements to use solid state laser technology and an eyesafe wavelength led to the relatively new 2-micron solid state laser. With demonstrated pulse energies near 20 mJ at 5 Hz, and no demonstration of a rotating telescope maintaining diffraction limited performance in space, the technology gap between requirements and demonstration was formidable. Fortunately the involved scientists and engineers set out to reduce the gap, and through a combination of clever ideas and technology advances over the last 15 years, they have succeeded. This paper will detail the gap reducing factors and will present the current status.

  13. Solid-state devices and applications

    CERN Document Server

    Lewis, Rhys

    1971-01-01

    Solid-State Devices and Applications is an introduction to the solid-state theory and its devices and applications. The book also presents a summary of all major solid-state devices available, their theory, manufacture, and main applications. The text is divided into three sections. The first part deals with the semiconductor theory and discusses the fundamentals of semiconductors; the kinds of diodes and techniques in their manufacture; the types and modes of operation of bipolar transistors; and the basic principles of unipolar transistors and their difference with bipolar transistors. The s

  14. Laser amplitude stabilization for advanced interferometric gravitational wave detectors

    International Nuclear Information System (INIS)

    Barr, B W; Strain, K A; Killow, C J

    2005-01-01

    We present results of experiments into the stabilization of the amplitude of Nd:YAG lasers for use in advanced gravitational wave detectors. By feeding back directly to the pump-diode driving current we achieved shot-noise-limited stabilization at frequencies up to several kHz with some residual noise at lower frequencies (sub ∼100 Hz). The method used is applicable to higher powered laser systems planned for advanced interferometric gravitational wave detectors

  15. The Mercury Laser Advances Laser Technology for Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Ebbers, C A; Caird, J; Moses, E

    2009-01-21

    The National Ignition Facility (NIF) at Lawrence Livermore Laboratory is on target to demonstrate 'breakeven' - creating as much fusion-energy output as laser-energy input. NIF will compress a tiny sphere of hydrogen isotopes with 1.8 MJ of laser light in a 20-ns pulse, packing the isotopes so tightly that they fuse together, producing helium nuclei and releasing energy in the form of energetic particles. The achievement of breakeven will culminate an enormous effort by thousands of scientists and engineers, not only at Livermore but around the world, during the past several decades. But what about the day after NIF achieves breakeven? NIF is a world-class engineering research facility, but if laser fusion is ever to generate power for civilian consumption, the laser will have to deliver pulses nearly 100,000 times faster than NIF - a rate of perhaps 10 shots per second as opposed to NIF's several shots a day. The Mercury laser (named after the Roman messenger god) is intended to lead the way to a 10-shots-per-second, electrically-efficient, driver laser for commercial laser fusion. While the Mercury laser will generate only a small fraction of the peak power of NIF (1/30,000), Mercury operates at higher average power. The design of Mercury takes full advantage of the technology advances manifest in its behemoth cousin (Table 1). One significant difference is that, unlike the flashlamp-pumped NIF, Mercury is pumped by highly efficient laser diodes. Mercury is a prototype laser capable of scaling in aperture and energy to a NIF-like beamline, with greater electrical efficiency, while still running at a repetition rate 100,000 times greater.

  16. Surfaces Relief Profilometry of Solid Objects by Sweeping of a Laser Line

    Science.gov (United States)

    Salas-Peimbert, Didia P.; Trujillo-Schiaffino, Gerardo; Mendoza-Villegas, Paloma G.; Ojeda-González, Daniel; Almazán-Cuellar, Saúl; Corral-Martínez, Luis F.

    2008-04-01

    This paper describes the development of a laser system for the digitalization and three-dimensional reconstruction of solid objects. The first step consists of applying on the object a linear sweeping of a thin laser line using a laser diode with 635 nm and 5 mW, a motorized stage for linear displacement of 138 mm, and a controller with RS232 interface. The next step consists of capturing and transmitting the image of the deformed line on the object to a computer. For this step was used a monochrome camera CCD, and an image acquisition board. The last step consists of the three-dimensional reconstruction of the solid object. All the corresponding algorithms were implemented using the programming language LabVIEW.

  17. Advanced laser sensing receiver concepts based on FPA technology

    International Nuclear Information System (INIS)

    Jacobson, Phillip L.; Petrin, Roger R.; Jolin, John L.; Foy, Bernard R.; Lowrance, J.L.; Renda, George

    2002-01-01

    The ultimate performance of any remote sensor is ideally governed by the hardware signal-to-noise capability and allowed signal-averaging time. In real-world scenarios, this may not be realizable and the limiting factors may suggest the need for more advanced capabilities. Moving from passive to active remote sensors offers the advantage of control over the illumination source, the laser. Added capabilities may include polarization discrimination, instantaneous imaging, range resolution, simultaneous multi-spectral measurement, or coherent detection. However, most advanced detection technology has been engineered heavily towards the straightforward passive sensor requirements, measuring an integrated photon flux. The need for focal plane array technology designed specifically for laser sensing has been recognized for some time, but advances have only recently made the engineering possible. This paper will present a few concepts for laser sensing receiver architectures, the driving specifications behind those concepts, and test/modeling results of such designs.

  18. Highly flexible, all solid-state micro-supercapacitors from vertically aligned carbon nanotubes.

    Science.gov (United States)

    Hsia, Ben; Marschewski, Julian; Wang, Shuang; In, Jung Bin; Carraro, Carlo; Poulikakos, Dimos; Grigoropoulos, Costas P; Maboudian, Roya

    2014-02-07

    We report a highly flexible planar micro-supercapacitor with interdigitated finger electrodes of vertically aligned carbon nanotubes (VACNTs). The planar electrode structures are patterned on a thin polycarbonate substrate with a facile, maskless laser-assisted dry transfer method. Sputtered Ni is used to reduce the in-plane resistance of the VACNT electrodes. An ionogel, an ionic liquid in a semi-solid matrix, is used as an electrolyte to form a fully solid-state device. We measure a specific capacitance of 430 μF cm(-2) for a scan rate of 0.1 V s(-1) and achieve rectangular cyclic voltammograms at high scan rates of up to 100 V s(-1). Minimal change in capacitance is observed under bending. Mechanical fatigue tests with more than 1000 cycles confirm the high flexibility and durability of the novel material combination chosen for this device. Our results indicate that this scalable and facile fabrication technique shows promise for application in integrated energy storage for all solid-state flexible microdevices.

  19. Laser-produced X-ray sources

    International Nuclear Information System (INIS)

    Hudson, L.T.; Seely, J.F.

    2010-01-01

    A formidable array of advanced laser systems are emerging that produce extreme states of light and matter. By irradiating solid and gaseous targets with lasers of increasing energy densities, new physical regimes of radiation effects are being explored for the first time in controlled laboratory settings. One result that is being accomplished or pursued using a variety of techniques, is the realization of novel sources of X-rays with unprecedented characteristics and light-matter interactions, the mechanisms of which are in many cases still being elucidated. Examples include the megajoule class of laser-produced plasmas designed in pursuit of alternative-energy and security applications and the petawatt class of lasers used for fast ignition and X-ray radiographic applications such as medical imaging and real-time imaging of plasma hydrodynamics. As these technologies mature, increased emphasis will need to be placed on advanced instrumentation and diagnostic metrology to characterize the spectra, time structure, and absolute brightness of X-rays emitted by these unconventional sources. Such customized and absolutely calibrated measurement tools will serve as an enabling technology that can help in assessing the overall system performance and progress, as well as identification of the underlying interaction mechanisms of interest to basic and applied strong-field and high-energy-density science.

  20. Extending laser plasma accelerators into the mid-IR spectral domain with a next-generation ultra-fast CO2 laser

    Science.gov (United States)

    Pogorelsky, I. V.; Babzien, M.; Ben-Zvi, I.; Polyanskiy, M. N.; Skaritka, J.; Tresca, O.; Dover, N. P.; Najmudin, Z.; Lu, W.; Cook, N.; Ting, A.; Chen, Y.-H.

    2016-03-01

    Expanding the scope of relativistic plasma research to wavelengths longer than the λ/≈   0.8-1.1 μm range covered by conventional mode-locked solid-state lasers would offer attractive opportunities due to the quadratic scaling of the ponderomotive electron energy and critical plasma density with λ. Answering this quest, a next-generation mid-IR laser project is being advanced at the BNL ATF as a part of the user facility upgrade. We discuss the technical approach to this conceptually new 100 TW, 100 fs, λ  =   9-11 μm CO2 laser BESTIA (Brookhaven Experimental Supra-Terawatt Infrared at ATF) that encompasses several innovations applied for the first time to molecular gas lasers. BESTIA will enable new regimes of laser plasma accelerators. One example is shock-wave ion acceleration (SWA) from gas jets. We review ongoing efforts to achieve stable, monoenergetic proton acceleration by dynamically shaping the plasma density profile from a hydrogen gas target with laser-produced blast waves. At its full power, 100 TW BESTIA promises to achieve proton beams at an energy exceeding 200 MeV. In addition to ion acceleration in over-critical plasma, the ultra-intense mid-IR BESTIA will open up new opportunities in driving wakefields in tenuous plasmas, expanding the landscape of laser wakefield accelerator (LWFA) studies into the unexplored long-wavelength spectral domain. Simple wavelength scaling suggests that a 100 TW CO2 laser beam will be capable of efficiently generating plasma ‘bubbles’ a thousand times greater in volume compared with a near-IR solid state laser of an equivalent power. Combined with a femtosecond electron linac available at the ATF, this wavelength scaling will facilitate the study of external seeding and staging of LWFAs.

  1. A crystal chemistry approach for high-power ytterbium doped solid-state lasers: diffusion-bonded crystals and new crystalline hosts; Relations structures-proprietes dans les lasers solides de puissance a l'ytterbium: elaboration et caracterisation de nouveaux materiaux et de cristaux composites soudes par diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Gaume, R

    2002-11-15

    This work deals with ytterbium based crystals for high-power laser applications. In particular, we focus our interest in reducing crystal heating and its consequences during laser operation following two different ways. First, we review the specific properties of ytterbium doped solid-state lasers in order to define a figure-of-merit which gives the evaluation of laser performances, thermo-mechanical and thermo-optical properties. Bearing in mind this analysis, we propose a set of theoretical tools, based on the crystallographic structure of the crystal and its chemical composition, to predict thermo-mechanical and optical potentials. This approach, used for the seek of new Yb{sup 3+}-doped materials for high-power laser applications, shows that simple oxides containing rare-earths are favorable. Therefore, the spectroscopic properties of six new materials Yb{sup 3+}:GdVO{sub 4}, Yb{sup 3+}:GdAlO{sub 3}, Yb{sup 3+}:Gd{sub 2}O{sub 3}, Yb{sup 3+}:Sc{sub 2}SiO{sub 5}, Yb{sup 3+}:CaSc{sub 2}O{sub 4} and Yb{sup 3+}:SrSc{sub 2}O{sub 4} are described. The second aspect developed in this work deals with thermal properties enhancement of already well characterized laser materials. Two different ways are explored: a) elaboration by diffusion bonding of end-caps lasers with undoped crystals (composite crystals). Thus, different composites were obtained and a fairly lowering of thermal lensing effect was observed during laser operation. b) strengthening of crystalline structures by ionic substitution of one of its constituents. We demonstrate how crystal growth ability can be improved by a cationic substitution in the case of Yb{sup 3+}:BOYS, a largely-tunable laser material which is of great interest for femtosecond pulses generation. (author)

  2. A crystal chemistry approach for high-power ytterbium doped solid-state lasers: diffusion-bonded crystals and new crystalline hosts; Relations structures-proprietes dans les lasers solides de puissance a l'ytterbium: elaboration et caracterisation de nouveaux materiaux et de cristaux composites soudes par diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Gaume, R

    2002-11-15

    This work deals with ytterbium based crystals for high-power laser applications. In particular, we focus our interest in reducing crystal heating and its consequences during laser operation following two different ways. First, we review the specific properties of ytterbium doped solid-state lasers in order to define a figure-of-merit which gives the evaluation of laser performances, thermo-mechanical and thermo-optical properties. Bearing in mind this analysis, we propose a set of theoretical tools, based on the crystallographic structure of the crystal and its chemical composition, to predict thermo-mechanical and optical potentials. This approach, used for the seek of new Yb{sup 3+}-doped materials for high-power laser applications, shows that simple oxides containing rare-earths are favorable. Therefore, the spectroscopic properties of six new materials Yb{sup 3+}:GdVO{sub 4}, Yb{sup 3+}:GdAlO{sub 3}, Yb{sup 3+}:Gd{sub 2}O{sub 3}, Yb{sup 3+}:Sc{sub 2}SiO{sub 5}, Yb{sup 3+}:CaSc{sub 2}O{sub 4} and Yb{sup 3+}:SrSc{sub 2}O{sub 4} are described. The second aspect developed in this work deals with thermal properties enhancement of already well characterized laser materials. Two different ways are explored: a) elaboration by diffusion bonding of end-caps lasers with undoped crystals (composite crystals). Thus, different composites were obtained and a fairly lowering of thermal lensing effect was observed during laser operation. b) strengthening of crystalline structures by ionic substitution of one of its constituents. We demonstrate how crystal growth ability can be improved by a cationic substitution in the case of Yb{sup 3+}:BOYS, a largely-tunable laser material which is of great interest for femtosecond pulses generation. (author)

  3. Solid-State NMR Study of New Copolymers as Solid Polymer Electrolytes

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Daigle

    2018-01-01

    Full Text Available We report the analysis of comb-like polymers by solid-state NMR. The polymers were previously evaluated as solid-polymer-electrolytes (SPE for lithium-polymer-metal batteries that have suitable ionic conductivity at 60 °C. We propose to develop a correlation between 13C solid-state NMR measurements and phase segregation. 13C solid-state NMR is a perfect tool for differentiating polymer phases with fast or slow motions. 7Li was used to monitor the motion of lithium ions in the polymer, and activation energies were calculated.

  4. Cascade laser applications: trends and challenges

    Science.gov (United States)

    d'Humières, B.; Margoto, Éric; Fazilleau, Yves

    2016-03-01

    When analyses need rapid measurements, cost effective monitoring and miniaturization, tunable semiconductor lasers can be very good sources. Indeed, applications like on-field environmental gas analysis or in-line industrial process control are becoming available thanks to the advantage of tunable semiconductor lasers. Advances in cascade lasers (CL) are revolutionizing Mid-IR spectroscopy with two alternatives: interband cascade lasers (ICL) in the 3-6μm spectrum and quantum cascade lasers (QCL), with more power from 3 to 300μm. The market is getting mature with strong players for driving applications like industry, environment, life science or transports. CL are not the only Mid-IR laser source. In fact, a strong competition is now taking place with other technologies like: OPO, VCSEL, Solid State lasers, Gas, SC Infrared or fiber lasers. In other words, CL have to conquer a share of the Mid-IR application market. Our study is a market analysis of CL technologies and their applications. It shows that improvements of components performance, along with the progress of infrared laser spectroscopy will drive the CL market growth. We compare CL technologies with other Mid-IR sources and estimate their share in each application market.

  5. Femtosecond laser induced phenomena in transparent solid materials

    DEFF Research Database (Denmark)

    Tan, D.Z.; Sharafudeen, K.N.; Yue, Yuanzheng

    2016-01-01

    solved, especially concerning the interaction of strong, ultra-short electromagnetic pulses with matter, and also because potential advanced technologies will emerge due to the impressive capability of the intense femtosecond laser to create new material structures and hence functionalities. When......The interaction of intense femtosecond laser pulses with transparent materials is a topic that has caused great interest of scientists over the past two decades. It will continue to be a fascinating field in the coming years. This is because many challenging fundamental problems have not been......–matter interaction, and fabricate various integrated micro-devices. In recent years we have witnessed exciting development in understanding and applying femtosecond laser induced phenomena in transparent materials. The interaction of femtosecond laser pulses with transparent materials relies on non...

  6. Advances in laser technology for the atmospheric sciences; Proceedings of the Seminar, San Diego, Calif., August 25, 26, 1977

    Science.gov (United States)

    Trolinger, J. D. (Editor); Moore, W. W.

    1977-01-01

    These papers deal with recent research, developments, and applications in laser and electrooptics technology, particularly with regard to atmospheric effects in imaging and propagation, laser instrumentation and measurements, and particle measurement. Specific topics include advanced imaging techniques, image resolution through atmospheric turbulence over the ocean, an efficient method for calculating transmittance profiles, a comparison of a corner-cube reflector and a plane mirror in folded-path and direct transmission through atmospheric turbulence, line-spread instrumentation for propagation measurements, scaling laws for thermal fluctuations in the layer adjacent to ocean waves, particle sizing by laser photography, and an optical Fourier transform analysis of satellite cloud imagery. Other papers discuss a subnanosecond photomultiplier tube for laser application, holography of solid propellant combustion, diagnostics of turbulence by holography, a camera for in situ photography of cloud particles from a hail research aircraft, and field testing of a long-path laser transmissometer designed for atmospheric visibility measurements.

  7. Solid Lithium Ion Conductors (SLIC) for Lithium Solid State Batteries

    Data.gov (United States)

    National Aeronautics and Space Administration — To identify the most lithium-ion conducting solid electrolytes for lithium solid state batteries from the emerging types of solid electrolytes, based on a...

  8. Solid-state resistance upset welding: A process with unique advantages for advanced materials

    International Nuclear Information System (INIS)

    Kanne, W.R. Jr.

    1993-01-01

    Solid-state resistance upset welding is suitable for joining many alloys that are difficult to weld using fusion processes. Since no melting takes place, the weld metal retains many of the characteristics of the base metal. Resulting welds have a hot worked structure, and thereby have higher strength than fusion welds in the same mate. Since the material being joined is not melted, compositional gradients are not introduced, second phase materials are minimally disrupted, and minor alloying elements, do not affect weldability. Solid-state upset welding has been adapted for fabrication of structures considered very large compared to typical resistance welding applications. The process has been used for closure of capsules, small vessels, and large containers. Welding emphasis has been on 304L stainless steel, the material for current applications. Other materials have, however, received enough attention to have demonstrated capability for joining alloys that are not readily weldable using fusion welding methods. A variety of other stainless steels (including A-286), superalloys (including TD nickel), refractory metals (including tungsten), and aluminum alloys (including 2024) have been successfully upset welded

  9. Solid state magnetism

    CERN Document Server

    Crangle, John

    1991-01-01

    Solid state magnetism is important and attempts to understand magnetic properties have led to an increasingly deep insight into the fundamental make up of solids. Both experimental and theoretical research into magnetism continue to be very active, yet there is still much ground to cover before there can be a full understanding. There is a strong interplay between the developments of materials science and of magnetism. Hundreds of new materials have been dis­ covered, often with previously unobserved and puzzling magnetic prop­ erties. A large and growing technology exists that is based on the magnetic properties of materials. Very many devices used in everyday life involve magnetism and new applications are being invented all the time. Under­ standing the fundamental background to the applications is vital to using and developing them. The aim of this book is to provide a simple, up-to-date introduction to the study of solid state magnetism, both intrinsic and technical. It is designed to meet the needs a...

  10. Interaction of intense femtosecond laser pulses with high-Z solids

    International Nuclear Information System (INIS)

    Zhidkov, A.; Sasaki, Akira; Utsumi, Takayuki; Fukumoto, Ichirou; Tajima, Toshiki; Yoshida, Masatake; Kondo, Kenichi

    2000-01-01

    A plasma irradiated by an intense very short pulse laser can be an ultimate high brightness source of incoherent inner-shell X-ray emission of 1-30 keV. The recently developed 100 TW, 20 fs laser facility in JAERI can make considerable enhancement here. To show this a hybrid model combining hydrodynamics and collisional particle-in-cell simulations is applied. Effect of laser prepulse on the interaction of an intense s-polarized femtosecond, ∼20/40 fs, laser pulse with high-Z solid targets is studied. A new absorption mechanism originating from the interaction of the laser pulse with plasma waves excited by the relativistic component of the Lorentz force is found to increase the absorption rate over 30% even for a very short laser pulse. The obtained hot electron temperature exceeds 0.5-1 MeV at optimal conditions for absorption. Results of the simulation for lower laser pulse intensities are in good agreement with the experimental measurements of the hot electron energy distribution. (author)

  11. Solid State Ionics: from Michael Faraday to green energy-the European dimension.

    Science.gov (United States)

    Funke, Klaus

    2013-08-01

    Solid State Ionics has its roots essentially in Europe. First foundations were laid by Michael Faraday who discovered the solid electrolytes Ag 2 S and PbF 2 and coined terms such as cation and anion , electrode and electrolyte . In the 19th and early 20th centuries, the main lines of development toward Solid State Ionics, pursued in Europe, concerned the linear laws of transport, structural analysis, disorder and entropy and the electrochemical storage and conversion of energy. Fundamental contributions were then made by Walther Nernst, who derived the Nernst equation and detected ionic conduction in heterovalently doped zirconia, which he utilized in his Nernst lamp. Another big step forward was the discovery of the extraordinary properties of alpha silver iodide in 1914. In the late 1920s and early 1930s, the concept of point defects was established by Yakov Il'ich Frenkel, Walter Schottky and Carl Wagner, including the development of point-defect thermodynamics by Schottky and Wagner. In terms of point defects, ionic (and electronic) transport in ionic crystals became easy to visualize. In an 'evolving scheme of materials science', point disorder precedes structural disorder, as displayed by the AgI-type solid electrolytes (and other ionic crystals), by ion-conducting glasses, polymer electrolytes and nano-composites. During the last few decades, much progress has been made in finding and investigating novel solid electrolytes and in using them for the preservation of our environment, in particular in advanced solid state battery systems, fuel cells and sensors. Since 1972, international conferences have been held in the field of Solid State Ionics, and the International Society for Solid State Ionics was founded at one of them, held at Garmisch-Partenkirchen, Germany, in 1987.

  12. Solid State Ionics: from Michael Faraday to green energy—the European dimension

    Science.gov (United States)

    Funke, Klaus

    2013-01-01

    Solid State Ionics has its roots essentially in Europe. First foundations were laid by Michael Faraday who discovered the solid electrolytes Ag2S and PbF2 and coined terms such as cation and anion, electrode and electrolyte. In the 19th and early 20th centuries, the main lines of development toward Solid State Ionics, pursued in Europe, concerned the linear laws of transport, structural analysis, disorder and entropy and the electrochemical storage and conversion of energy. Fundamental contributions were then made by Walther Nernst, who derived the Nernst equation and detected ionic conduction in heterovalently doped zirconia, which he utilized in his Nernst lamp. Another big step forward was the discovery of the extraordinary properties of alpha silver iodide in 1914. In the late 1920s and early 1930s, the concept of point defects was established by Yakov Il'ich Frenkel, Walter Schottky and Carl Wagner, including the development of point-defect thermodynamics by Schottky and Wagner. In terms of point defects, ionic (and electronic) transport in ionic crystals became easy to visualize. In an ‘evolving scheme of materials science’, point disorder precedes structural disorder, as displayed by the AgI-type solid electrolytes (and other ionic crystals), by ion-conducting glasses, polymer electrolytes and nano-composites. During the last few decades, much progress has been made in finding and investigating novel solid electrolytes and in using them for the preservation of our environment, in particular in advanced solid state battery systems, fuel cells and sensors. Since 1972, international conferences have been held in the field of Solid State Ionics, and the International Society for Solid State Ionics was founded at one of them, held at Garmisch-Partenkirchen, Germany, in 1987. PMID:27877585

  13. Solid State Ionics: from Michael Faraday to green energy—the European dimension

    Directory of Open Access Journals (Sweden)

    Klaus Funke

    2013-01-01

    Full Text Available Solid State Ionics has its roots essentially in Europe. First foundations were laid by Michael Faraday who discovered the solid electrolytes Ag2S and PbF2 and coined terms such as cation and anion, electrode and electrolyte. In the 19th and early 20th centuries, the main lines of development toward Solid State Ionics, pursued in Europe, concerned the linear laws of transport, structural analysis, disorder and entropy and the electrochemical storage and conversion of energy. Fundamental contributions were then made by Walther Nernst, who derived the Nernst equation and detected ionic conduction in heterovalently doped zirconia, which he utilized in his Nernst lamp. Another big step forward was the discovery of the extraordinary properties of alpha silver iodide in 1914. In the late 1920s and early 1930s, the concept of point defects was established by Yakov Il'ich Frenkel, Walter Schottky and Carl Wagner, including the development of point-defect thermodynamics by Schottky and Wagner. In terms of point defects, ionic (and electronic transport in ionic crystals became easy to visualize. In an 'evolving scheme of materials science', point disorder precedes structural disorder, as displayed by the AgI-type solid electrolytes (and other ionic crystals, by ion-conducting glasses, polymer electrolytes and nano-composites. During the last few decades, much progress has been made in finding and investigating novel solid electrolytes and in using them for the preservation of our environment, in particular in advanced solid state battery systems, fuel cells and sensors. Since 1972, international conferences have been held in the field of Solid State Ionics, and the International Society for Solid State Ionics was founded at one of them, held at Garmisch-Partenkirchen, Germany, in 1987.

  14. Recent progress in diode-pumped mid-infrared vibronic solid-state lasers

    International Nuclear Information System (INIS)

    Sorokina, I.T.; Sorokin, E.; Mirov, S.; Schaffers, K.

    2002-01-01

    Full text: The last few years were marked by the increased interest of researchers towards the new class of transition-metal doped zinc chalcogenides. In particular Cr:ZnSe attracts a lot of attention as broadly tunable continuous-wave (cw), mode-locked and diode-pumped lasers operating around 2.5 mm. This interest is explained by the absence of other comparable tunable room-temperature laser sources in this spectral region. However, another member of the II-VI compounds family Cr:ZnS, has yet remained barely studied as a laser medium. Recently we demonstrated the first continuous-wave room-temperature tunable over more than 280 nm around 2.3 μm Cr 2+ :ZnS laser, pumped with a Co:MgF2 laser and yielding over 100 mW of output power. The most recent result is the development of a compact tunable over 700 nm continuous-wave room-temperature Cr 2+ :ZnS laser, pumped by the diode-pumped Er-fiber laser at 1.6 μm and generating 0.7 W of the linearly polarized radiation. We also demonstrated direct diode-pumping at 1.6 μm of the Cr 2+ :ZnS. Although the Cr:ZnS exhibited lower (relatively to the Cr:ZnSe) efficiency and output power due to the higher passive losses of the available Cr:ZnS samples, the analysis of the spectroscopic and laser data indicates the high potential of Cr:ZnS for compact broadly tunable mid-infrared systems, as well as for high power applications. The physics of the novel diode-pumped laser systems is highly interesting. It comprises the features of the ion-doped dielectric crystalline lasers and semiconductors. For example, we observe in these media, for the first time to our knowledge, a new nonlinear phenomenon, which is analogous to the opto-optical switching process, where the laser output of the diode-pumped continuous-wave Cr:ZnSe and Cr:ZnS lasers around 2.5 μm is modulated by only a few milliwatt of the visible (470-500 nm) and near-infrared radiation (740-770 nm). We present a physical explanation of the observed effect. Refs. 4 (author)

  15. Development of longitudinally excited CO2 laser

    Science.gov (United States)

    Masroon, N. S.; Tanaka, M.; Tei, M.; Uno, K.; Tsuyama, M.; Nakano, H.

    2018-05-01

    Simple, compact, and affordable discharged-pumped CO2 laser controlled by a fast high voltage solid state switch has been developed. In this study, longitudinal excitation scheme has been adapted for simple configuration. In the longitudinal excitation scheme, the discharge is produced along the direction of the laser axis, and the electrodes are well separated with a small discharge cross-section. Triggered spark gap switch is usually used to switch out the high voltage because of simple and low cost. However, the triggered spark gap operates in the arc mode and suffer from recovery problem causing a short life time and low efficiency for high repetition rate operation. As a result, there is now considerable interest in replacing triggered spark gap switch with solid state switches. Solid state switches have significant advantages compared to triggered spark gap switch which include longer service lifetime, low cost and stable high trigger pulse. We have developed simple and low cost fast high voltage solid state switch that consists of series connected-MOSFETs. It has been installed to the longitudinally excited CO2 laser to realize the gap switch less operation. Characteristics of laser oscillation by varying the discharge length, charging voltage, capacitance and gas pressure have been evaluated. Longer discharge length produce high power of laser oscillation. Optimum charging voltage and gas pressure were existed for longitudinally excited CO2 laser.

  16. Solid-state polymerisation via [2+2] cycloaddition reaction involving coordination polymers.

    Science.gov (United States)

    Medishetty, Raghavender; Park, In-Hyeok; Lee, Shim Sung; Vittal, Jagadese J

    2016-03-14

    Highly crystalline metal ions containing organic polymers are potentially useful to manipulate the magnetic and optical properties to make advanced multifunctional materials. However, it is challenging to synthesise monocrystalline metal complexes of organic polymers and single-phase hybrid materials made up of both coordination and organic polymers by traditional solution crystallisation. This requires an entirely different approach in the solid-state by thermal or photo polymerisation of the ligands. Among the photochemical methods available, [2+2] cycloaddition reaction has been recently employed to generate cyclobutane based coordination polymers from the metal complexes. Cyclobutane polymers have also been integrated into coordination polymers in this way. Recent advancements in the construction of polymeric chains of cyclobutane rings through photo-dimerisation reaction in the monocrystalline solids containing metal complexes, coordination polymers and metal-organic framework structures are discussed here.

  17. Multi-photon microscope driven by novel green laser pump

    Science.gov (United States)

    Marti, Dominik; Djurhuus, Martin; Jensen, Ole Bjarlin; Andersen, Peter E.

    2016-03-01

    Multi-photon microscopy is extensively used in research due to its superior possibilities when compared to other microscopy modalities. The technique also has the possibility to advance diagnostics in clinical applications, due to its capabilities complementing existing technology in a multimodal system. However, translation is hindered due to the high cost, high training demand and large footprint of a standard setup. We show in this article that minification of the setup, while also reducing cost and complexity, is indeed possible without compromising on image quality, by using a novel diode laser replacing the commonly used conventional solid state laser as the pump for the femtosecond system driving the imaging.

  18. Nanocarbon-Based Materials for Flexible All-Solid-State Supercapacitors.

    Science.gov (United States)

    Lv, Tian; Liu, Mingxian; Zhu, Dazhang; Gan, Lihua; Chen, Tao

    2018-04-01

    Because of the rapid development of flexible electronics, it is important to develop high-performance flexible energy-storage devices, such as supercapacitors and metal-ion batteries. Compared with metal-ion batteries, supercapacitors exhibit higher power density, longer cycling life, and excellent safety, and they can be easily fabricated into all-solid-state devices by using polymer gel electrolytes. All-solid-state supercapacitors (ASSSCs) have the advantages of being lightweight and flexible, thus showing great potential to be used as power sources for flexible portable electronics. Because of their high specific surface area and excellent electrical and mechanical properties, nanocarbon materials (such as carbon nanotubes, graphene, carbon nanofibers, and so on) have been widely used as efficient electrode materials for flexible ASSSCs, and great achievements have been obtained. Here, the recent advances in flexible ASSSCs are summarized, from design strategies to fabrication techniques for nanocarbon electrodes and devices. Current challenges and future perspectives are also discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. High-powered, solid-state rf systems

    International Nuclear Information System (INIS)

    Reid, D.W.

    1987-01-01

    Over the past two years, the requirement to supply megawatts of rf power for space-based applications at uhf and L-band frequencies has caused dramatic increases in silicon solid-state power capabilities in the frequency range from 10 to 3000 MHz. Radar and communications requirements have caused similar increases in gallium arsenide solid-state power capabilities in the frequency ranges from 3000 to 10,000 MHz. This paper reviews the present state of the art for solid-state rf amplifiers for frequencies from 10 to 10,000 MHz. Information regarding power levels, size, weight, and cost will be given. Technical specifications regarding phase and amplitude stability, efficiency, and system architecture will be discussed. Solid-stage rf amplifier susceptibility to radiation damage will also be examined

  20. Solid-state lithium battery

    Science.gov (United States)

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  1. Ten years optically pumped semiconductor lasers: review, state-of-the-art, and future developments

    Science.gov (United States)

    Kannengiesser, Christian; Ostroumov, Vasiliy; Pfeufer, Volker; Seelert, Wolf; Simon, Christoph; von Elm, Rüdiger; Zuck, Andreas

    2010-02-01

    Optically Pumped Semiconductor Lasers - OPSLs - have been introduced in 2001. Their unique features such as power scalability and wavelength flexibility, their excellent beam parameters, power stability and reliability opened this pioneering technology access to a wide range of applications such as flow cytometry, confocal microscopy, sequencing, medical diagnosis and therapy, semiconductor inspection, graphic arts, forensic, metrology. This talk will introduce the OPSL principles and compare them with ion, diode and standard solid state lasers. It will revue the first 10 years of this exciting technology, its current state and trends. In particular currently accessible wavelengths and power ranges, frequency doubling, ultra-narrow linewidth possibilities will be discussed. A survey of key applications will be given.

  2. Recent Advances in Conjugated Polymers for Light Emitting Devices

    Science.gov (United States)

    AlSalhi, Mohamad Saleh; Alam, Javed; Dass, Lawrence Arockiasamy; Raja, Mohan

    2011-01-01

    A recent advance in the field of light emitting polymers has been the discovery of electroluminescent conjugated polymers, that is, kind of fluorescent polymers that emit light when excited by the flow of an electric current. These new generation fluorescent materials may now challenge the domination by inorganic semiconductor materials of the commercial market in light-emitting devices such as light-emitting diodes (LED) and polymer laser devices. This review provides information on unique properties of conjugated polymers and how they have been optimized to generate these properties. The review is organized in three sections focusing on the major advances in light emitting materials, recent literature survey and understanding the desirable properties as well as modern solid state lighting and displays. Recently, developed conjugated polymers are also functioning as roll-up displays for computers and mobile phones, flexible solar panels for power portable equipment as well as organic light emitting diodes in displays, in which television screens, luminous traffic, information signs, and light-emitting wallpaper in homes are also expected to broaden the use of conjugated polymers as light emitting polymers. The purpose of this review paper is to examine conjugated polymers in light emitting diodes (LEDs) in addition to organic solid state laser. Furthermore, since conjugated polymers have been approved as light-emitting organic materials similar to inorganic semiconductors, it is clear to motivate these organic light-emitting devices (OLEDs) and organic lasers for modern lighting in terms of energy saving ability. In addition, future aspects of conjugated polymers in LEDs were also highlighted in this review. PMID:21673938

  3. Lasers: principles, applications and energetic measures

    International Nuclear Information System (INIS)

    Subran, C.; Sagaut, J.; Lapointe, S.

    2009-01-01

    After having recalled the principles of a laser and the properties of the laser beam, the authors describe the following different types of lasers: solid state lasers, fiber lasers, semiconductor lasers, dye lasers and gas lasers. Then, their applications are given. Very high energy lasers can reproduce the phenomenon of nuclear fusion of hydrogen atoms. (O.M.)

  4. Molecular-beam epitaxy growth of high-performance midinfrared diode lasers

    International Nuclear Information System (INIS)

    Turner, G.W.; Choi, H.K.; Calawa, D.R.

    1994-01-01

    Recent advances in the performance of GaInAsSb/AlGaAsSb quantum-well diode lasers have been directly related to improvements in the quality of the molecular-beam epitaxy (MBE)-grown epitaxial layers. These improvements have been based on careful measurement and control of lattice matching and intentional strain, changes in shutter sequencing at interfaces, and a generally better understanding of the growth of Sb-based epitaxial materials. By using this improved MBE-grown material, significantly enhanced performance has been obtained for midinfrared lasers. These lasers, which are capable of ∼2-μm emission at room temperature, presently exhibit threshold current densities of 143 A/cm 2 , continuous wave powers of 1.3 W, and diffraction-limited powers of 120 mW. Such high-performance midinfrared diode lasers are of interest for a wide variety of applications, including eye-safe laser radar, remote sensing of atmospheric contaminants and wind turbulence, laser surgery, and pumping of solid-state laser media. 12 refs., 3 figs

  5. Fluidized Bed Reactor as Solid State Fermenter

    Directory of Open Access Journals (Sweden)

    Krishnaiah, K.

    2005-01-01

    Full Text Available Various reactors such as tray, packed bed, rotating drum can be used for solid-state fermentation. In this paper the possibility of fluidized bed reactor as solid-state fermenter is considered. The design parameters, which affect the performances are identified and discussed. This information, in general can be used in the design and the development of an efficient fluidized bed solid-state fermenter. However, the objective here is to develop fluidized bed solid-state fermenter for palm kernel cake conversion into enriched animal and poultry feed.

  6. Solid state physics for metallurgists

    CERN Document Server

    Weiss, Richard J

    2013-01-01

    Metal Physics and Physical Metallurgy, Volume 6: Solid State Physics for Metallurgists provides an introduction to the basic understanding of the properties that make materials useful to mankind. This book discusses the electronic structure of matter, which is the domain of solid state physics.Organized into 12 chapters, this volume begins with an overview of the electronic structure of free atoms and the electronic structure of solids. This text then examines the basis of the Bloch theorem, which is the exact periodicity of the potential. Other chapters consider the fundamental assumption in

  7. Solid-State Powered X-band Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Mohamed A.K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Nann, Emilio A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Dolgashev, Valery A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Tantawi, Sami [SLAC National Accelerator Lab., Menlo Park, CA (United States); Neilson, Jeff [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2017-03-06

    In this report we disseminate the hot test results of an X-band 100-W solid state amplifier chain for linear accelerator (linac) applications. Solid state power amplifiers have become increasingly attractive solutions for achieving high power in radar and maritime applications. Here the performance of solid state amplifiers when driving an RF cavity is investigated. Commercially available, matched and fully-packaged GaN on SiC HEMTs are utilized, comprising a wideband driver stage and two power stages. The amplifier chain has a high poweradded- efficiency and is able to supply up to ~1.2 MV/m field gradient at 9.2 GHz in a simple test cavity, with a peak power exceeding 100 W. These findings set forth the enabling technology for solid-state powered linacs.

  8. High power multiple wavelength diode laser stack for DPSSL application without temperature control

    Science.gov (United States)

    Hou, Dong; Yin, Xia; Wang, Jingwei; Chen, Shi; Zhan, Yun; Li, Xiaoning; Fan, Yingmin; Liu, Xingsheng

    2018-02-01

    High power diode laser stack is widely used in pumping solid-state laser for years. Normally an integrated temperature control module is required for stabilizing the output power of solid-state laser, as the output power of the solid-state laser highly depends on the emission wavelength and the wavelength shift of diode lasers according to the temperature changes. However the temperature control module is inconvenient for this application, due to its large dimension, high electric power consumption and extra adding a complicated controlling system. Furthermore, it takes dozens of seconds to stabilize the output power when the laser system is turned on. In this work, a compact hard soldered high power conduction cooled diode laser stack with multiple wavelengths is developed for stabilizing the output power of solid-state laser in a certain temperature range. The stack consists of 5 laser bars with the pitch of 0.43mm. The peak output power of each bar in the diode laser stack reaches as much as 557W and the combined lasing wavelength spectrum profile spans 15nm. The solidstate laser, structured with multiple wavelength diode laser stacks, allows the ambient temperature change of 65°C without suddenly degrading the optical performance.

  9. Prospect of laser fusion power generation

    International Nuclear Information System (INIS)

    Nakai, Sadao

    1998-01-01

    Inertial fusion ignition, burn and energy gain are expected to be achieved within the first decade of next century with new Megajoule laser facilities which are under construction in the USA and France. Fusion reactor design studies indicate that Inertial Fusion Energy(IFE) power plants are technically feasible and have attractive safety and environmental features. The recent progress on implosion physics and relevant technologies require us to consider a strategic approach toward IFE development. The design study for a laser fusion power plant KOYO has been conducted as a joint program of universities, national laboratories and industries in Japan and also with international collaborations. The progress of high power laser technology gives us feasible project toward a laser driven IFE Power Plant. The technical breakthrough in the field of diode pumped solid state laser (DPSSL) has opened wide application of power laser to industrial technologies. Laser fusion energy development will be proceeded jointly with industrial photonics research and development. International collaborations are also promoted for efficient progress and activation of R and D on advanced technologies which are required for IFE and also useful for modern industries. (author). 7 refs., 1 tab., 7 figs

  10. Diode lasers and arrays

    International Nuclear Information System (INIS)

    Streifer, W.

    1988-01-01

    This paper discusses the principles of operation of III-V semiconductor diode lasers, the use of distributed feedback, and high power laser arrays. The semiconductor laser is a robust, miniature, versatile device, which directly converts electricity to light with very high efficiency. Applications to pumping solid-state lasers and to fiber optic and point-to-point communications are reviewed

  11. Advance in physics of laser thermonuclear fusion

    International Nuclear Information System (INIS)

    Afanasev, J.; Basov, N.; Gamalij, J.; Krokhin, O.; Rozanov, V.

    1977-01-01

    A survey is given of current advance in the physics of laser thermonuclear fusion (LTF). The LTF physical model is discussed with regard to the optimal laser-target systems not only for attaining the physical limit but also for future thermonuclear reactors. The basic physical principles of LTF are formulated which make use of the fact that in focusing laser radiation on the surface of a substance a high density may be attained of the energy flux (10 5 to 10 6 J) and thereby also a high velocity of energy release in the substance. A detailed description is given of the processes which take place in laser irradiation of a spherical target. The problem is discussed of hydrodynamic stability in the compression of matter in laser thermonuclear targets, the concept is explained of the physical threshold of a thermonuclear reaction in laser excitation as are the conditions for attaining this threshold. The quantitative criterion is examined of the attainment of the physical threshold of LTF for pulsed systems. (B.S.)

  12. Optical properties of Sm3+ -doped TeO2sbnd WO3sbnd GeO2 glasses for solid state lasers

    Science.gov (United States)

    Subrahmanyam, T.; Gopal, K. Rama; Suvarna, R. Padma; Jamalaiah, B. Chinna; Rao, Ch Srinivasa

    2018-03-01

    Sm3+ -doped oxyfluoride tellurite-tungsten (TWGSm) glasses were prepared by conventional melt quenching method. The optical properties were investigated through photoluminescence excitation, emission and luminescence decay analysis. The optical band gap energy was determined as ∼3.425 eV for 1.0 mol% of Sm3+ -doped TWGSm glass. Upon 404 nm excitation, the TWGSm glasses emit luminescence through 4G5/2 → 6H5/2 (563 nm), 4G5/2 → 6H7/2 (600 nm), 4G5/2 → 6H9/2 (645 nm) and 4G5/2 → 6H11/2 (705 nm) transitions. The Judd-Ofelt analysis was performed using absorption spectrum and obtained radiative parameters were used to estimate the laser characteristics of present glasses. The concentration of Sm3+ has been optimized as 1.0 mol% for efficient luminescence. The luminescence decay of 4G5/2 emission level was studied by monitoring the emission and excitation wavelengths at 600 and 404 nm, respectively. The experimental lifetime of 4G5/2 level was decrease with increase of Sm3+ concentration. The 1.0 mol% of Sm3+ -doped TWGSm glass could be the best choice for solid state visible lasers to emit orange luminescence.

  13. Advanced fusion welding processes, solid state joining and a successful marriage. [production of aerospace structures

    Science.gov (United States)

    Miller, F. R.

    1972-01-01

    Joining processes for aerospace systems combine fusion welding and solid state joining during production of metal structures. Detailed characteristics of electron beam welding, plasma arc welding, diffusion welding, inertia welding and weldbond processes are discussed.

  14. The development of laser fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Mima, Kunioki [Osaka Univ., Suita (Japan). Inst. of Laser Engineering

    1998-11-01

    Laser fusion research started soon after the invention of laser. In 1972, the research was declassified and nuclear fusion by laser inplosion was proposed by J. Nuckolls. Since then, 26 years has passed and laser implosion experiments demonstrated 1000 times solid density compression. By the demonstration of 1000 times solid density, the mission of the laser fusion research shifted from `implosion physics` to `ignition and high gain`, namely demonstration of fusion output of 100 times input laser energy. By the recent developments of laser technology, ultra intense laser became available and opened up a new ignition scheme which is called `Fast Ignition`. The technology for the diode pumped solid state laser (DPSSL) is developed toward a laser driver for reactor. U.S. and France are constructing MJ lasers for demonstrating ignition and burn and Osaka University is investigating the fast ignition and the equivalent plasma of confinement (EPOC) toward high gain. (author)

  15. The development of laser fusion research

    International Nuclear Information System (INIS)

    Mima, Kunioki

    1998-01-01

    Laser fusion research started soon after the invention of laser. In 1972, the research was declassified and nuclear fusion by laser inplosion was proposed by J. Nuckolls. Since then, 26 years has passed and laser implosion experiments demonstrated 1000 times solid density compression. By the demonstration of 1000 times solid density, the mission of the laser fusion research shifted from 'implosion physics' to 'ignition and high gain', namely demonstration of fusion output of 100 times input laser energy. By the recent developments of laser technology, ultra intense laser became available and opened up a new ignition scheme which is called 'Fast Ignition'. The technology for the diode pumped solid state laser (DPSSL) is developed toward a laser driver for reactor. U.S. and France are constructing MJ lasers for demonstrating ignition and burn and Osaka University is investigating the fast ignition and the equivalent plasma of confinement (EPOC) toward high gain. (author)

  16. Measurement of product of solid state laser materials by an ...

    Indian Academy of Sciences (India)

    In this method a microchip laser is formed by keeping a small piece of the sample in plane–plane resonator and a diode laser (808 nm) is used for pumping. The pump power induced thermal lensing effect is used to make the cavity stable. The cavity mode area is estimated by measuring the thermal lens focal length at the ...

  17. Design windows of laser fusion power plants and conceptual design of laser-diode pumped slab laser

    International Nuclear Information System (INIS)

    Kozaki, Y.; Eguchi, T.; Izawa, Y.

    1999-01-01

    An analysis of the design space available to laser fusion power plants has been carried out, in terms of design key parameters such as target gain, laser energy and laser repetition rate, the number of fusion react ion chambers, and plant size. The design windows of economically attractive laser fusion plants is identified with the constraints of key design parameters and the cost conditions. Especially, for achieving high repetition rate lasers, we have proposed and designed a diode-pumped solid-state laser driver which consists of water-cooled zig-zag path slab amplifiers. (author)

  18. Lasers

    CERN Document Server

    Milonni, Peter W

    1988-01-01

    A comprehensive introduction to the operating principles and applications of lasers. Explains basic principles, including the necessary elements of classical and quantum physics. Provides concise discussions of various laser types including gas, solid state, semiconductor, and free electron lasers, as well as of laser resonators, diffraction, optical coherence, and many applications including holography, phase conjugation, wave mixing, and nonlinear optics. Incorporates many intuitive explanations and practical examples. Discussions are self-contained in a consistent notation and in a style that should appeal to physicists, chemists, optical scientists and engineers.

  19. Kinetics studies following state-selective laser excitation

    International Nuclear Information System (INIS)

    Keto, J.W.

    1994-04-01

    The objective of this contract was the study of state-to-state, electronic energy transfer reactions relevant to the excited state chemistry observed in discharges. We studied deactivation reactions and excitation transfer in collisions of excited states of xenon and krypton atoms with Ar, Kr, Xe and chlorine. The reactant states were excited selectively in two-photon transitions using tunable u.v. and v.u.v. lasers. Excited states produced by the collision were observed by their fluorescence. Reaction rates were measured by observing the time dependent decay of signals from reactant and product channels. In addition we measured interaction potentials of the reactants by laser spectroscopy where the laser induced fluorescence or ionization is measured as a function of laser wavelength (excitation spectra) or by measuring fluorescence spectra at fixed laser frequencies with monochromators. The spectra were obtained in the form of either lineshapes or individual lines from rovibrational transitions of bound states. Our research then required several categories of experiments in order to fully understand a reaction process: 1. High resolution laser spectroscopy of bound molecules or lineshapes of colliding pairs is used to determine potential curves for reactants. 2. Direct measurements of state-to-state reaction rates were measured by studying the time dependent loss of excited reactants and the time dependent formation of products. 3. The energy selectivity of a laser can be used to excite reactants on an excited surface with controlled internuclear configurations. For free states of reactants (as exist in a gas cell) this has been termed laser assisted reactions, while for initially bound states (as chemically bound reactants or dimers formed in supersonic beams) the experiments have been termed photo-fragmentation spectroscopy

  20. LEDs for the Implementation of Advanced Hydrogenation Using Hydrogen Charge-State Control

    Directory of Open Access Journals (Sweden)

    Chee Mun Chong

    2018-01-01

    Full Text Available Light-induced degradation (LID of p-type Cz solar cells has plagued the industry for many decades. However, in recent years, new techniques for solving this LID have been developed, with hydrogen passivation of the boron-oxygen defects appearing to be an important contributor to the solution. Advanced hydrogenation approaches involving the control of the charge state for the hydrogen atoms in silicon to enhance their diffusivity and reactivity are developed and evaluated in this work for commercial application using a prototype industrial tool in conjunction with solar cells manufactured on commercial production lines. This prototype tool, unlike the previous successful laser-based laboratory approaches, is based on the use of LEDs for controlling the charge state of the hydrogen atoms. The illumination from the LEDs is also used in this work to passivate process-induced defects and contamination from the respective production lines with significant improvements in both efficiency and stability. The results indicate that the low-cost LED-based industrial tool performs as well as the laser-based laboratory tool for implementing these advanced hydrogen passivation approaches.

  1. Solid state laser applications in photovoltaics manufacturing

    Science.gov (United States)

    Dunsky, Corey; Colville, Finlay

    2008-02-01

    Photovoltaic energy conversion devices are on a rapidly accelerating growth path driven by increasing government and societal pressure to use renewable energy as part of an overall strategy to address global warming attributed to greenhouse gas emissions. Initially supported in several countries by generous tax subsidies, solar cell manufacturers are relentlessly pushing the performance/cost ratio of these devices in a quest to reach true cost parity with grid electricity. Clearly this eventual goal will result in further acceleration in the overall market growth. Silicon wafer based solar cells are currently the mainstay of solar end-user installations with a cost up to three times grid electricity. But next-generation technology in the form of thin-film devices promises streamlined, high-volume manufacturing and greatly reduced silicon consumption, resulting in dramatically lower per unit fabrication costs. Notwithstanding the modest conversion efficiency of thin-film devices compared to wafered silicon products (around 6-10% versus 15-20%), this cost reduction is driving existing and start-up solar manufacturers to switch to thin-film production. A key aspect of these devices is patterning large panels to create a monolithic array of series-interconnected cells to form a low current, high voltage module. This patterning is accomplished in three critical scribing processes called P1, P2, and P3. Lasers are the technology of choice for these processes, delivering the desired combination of high throughput and narrow, clean scribes. This paper examines these processes and discusses the optimization of industrial lasers to meet their specific needs.

  2. Proteomic analysis of extracellular proteins from Aspergillus oryzae grown under submerged and solid-state culture conditions.

    Science.gov (United States)

    Oda, Ken; Kakizono, Dararat; Yamada, Osamu; Iefuji, Haruyuki; Akita, Osamu; Iwashita, Kazuhiro

    2006-05-01

    Filamentous fungi are widely used for the production of homologous and heterologous proteins. Recently, there has been increasing interest in Aspergillus oryzae because of its ability to produce heterologous proteins in solid-state culture. To provide an overview of protein secretion by A. oryzae in solid-state culture, we carried out a comparative proteome analysis of extracellular proteins in solid-state and submerged (liquid) cultures. Extracellular proteins prepared from both cultures sequentially from 0 to 40 h were subjected to two-dimensional electrophoresis, and protein spots at 40 h were identified by peptide mass fingerprinting using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. We also attempted to identify cell wall-bound proteins of the submerged culture. We analyzed 85 spots from the solid-state culture and 110 spots from the submerged culture. We identified a total of 29 proteins, which were classified into 4 groups. Group 1 consisted of extracellular proteins specifically produced in the solid-state growth condition, such as glucoamylase B and alanyl dipeptidyl peptidase. Group 2 consisted of extracellular proteins specifically produced in the submerged condition, such as glucoamylase A (GlaA) and xylanase G2 (XynG2). Group 3 consisted of proteins produced in both conditions, such as xylanase G1. Group 4 consisted of proteins that were secreted to the medium in the solid-state growth condition but trapped in the cell wall in the submerged condition, such as alpha-amylase (TAA) and beta-glucosidase (Bgl). A Northern analysis of seven genes from the four groups suggested that the secretion of TAA and Bgl was regulated by trapping these proteins in the cell wall in submerged culture and that secretion of GlaA and XynG2 was regulated at the posttranscriptional level in the solid-state culture.

  3. Diagnostic and therapeutic applications of diode lasers and solid state lasers in medicine. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, S.L. [Texas Univ., Houston, TX (United States). Cancer Center; Welch, A.J. [Texas Univ., Austin, TX (United States); Motamedi, M. [Texas Univ., Galveston, TX (United States). Medical Branch; Rastegar, S. [Texas A and M Univ., College Station, TX (United States); Tittel, F. [Rice Univ., Houston, TX (United States); Esterowitz, L. [Naval Research Lab., Washington, DC (United States)

    1992-05-01

    The Texas Medical Center in Houston and the nearby UT Medical Branch at Galveston together constitute a major center of medical research activities. Laser applications in medicine are under development with the engineering assistance of the colloborating engineering centers at Rice University, UT-Austin, and Texas A&M Univ. In addition, this collective is collaborating with the Naval Research Laboratory, where new developments in laser design are underway, in order to transfer promising new laser technology rapidly into the medical environment.

  4. Diagnostic and therapeutic applications of diode lasers and solid state lasers in medicine. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, S.L. [Texas Univ., Houston, TX (United States). Cancer Center; Welch, A.J. [Texas Univ., Austin, TX (United States); Motamedi, M. [Texas Univ., Galveston, TX (United States). Medical Branch; Rastegar, S. [Texas A and M Univ., College Station, TX (United States); Tittel, F. [Rice Univ., Houston, TX (United States); Esterowitz, L. [Naval Research Lab., Washington, DC (United States)

    1993-05-01

    The Texas Medical Center in Houston and the nearby UT Medical Branch at Galveston together constitute a major center of medical research activities. Laser applications in medicine are under development with the engineering assistance of the collaborating engineering enters at Rice University, UT-Austin, Texas A&M Univ. In addition, this collective is collaborating with the naval Research Laboratory, where new developments in laser design are underway, in order to transfer promising new laser technology rapidly into the medical environment.

  5. Solid-state lighting-a benevolent technology

    International Nuclear Information System (INIS)

    Schubert, E Fred; Kim, Jong Kyu; Luo Hong; Xi, J-Q

    2006-01-01

    Solid-state light sources are in the process of profoundly changing the way humans generate light for general lighting applications. Solid-state light sources possess two highly desirable features, which set them apart from most other light sources: (i) they have the potential to create light with essentially unit power efficiency and (ii) the properties of light, such as spectral composition and temporal modulation, can be controlled to a degree that is not possible with conventional light sources such as incandescent and fluorescent lamps. The implications are enormous and, as a consequence, many positive developments are to be expected including a reduction in global energy consumption, reduction of global-warming-gas and pollutant emissions and a multitude of new functionalities benefiting numerous applications. This review will assess the impact of solid-state lighting technology on energy consumption, the environment and on emerging application fields that make use of the controllability afforded by solid-state sources. The review will also discuss technical areas that fuel continued progress in solid-state lighting. Specifically, we will review the use of novel phosphor distributions in white light-emitting diodes (LEDs) and show the strong influence of phosphor distribution on efficiency. We will also review the use of reflectors in LEDs with emphasis on 'perfect' reflectors, i.e. reflectors with highly reflective omni-directional characteristics. Finally, we will discuss a new class of thin-film materials with an unprecedented low refractive index. Such low-n materials may strongly contribute to the continuous progress in solid-state lighting

  6. Laser materials development by means of a solid-state bonding method

    International Nuclear Information System (INIS)

    Sugiyama, Akira

    2011-01-01

    This paper reviews laser materials development via a bonding method without adhesives. Instead of conventional chemical etching, a dry etching technique using an argon beam has been newly developed for the bonding method. This method meets the requirement for the use of optical materials. We succeeded in the fabrication of a composite laser crystal with good heat conductivity by bonding two kinds of crystals; one is neodymium-doped YVO 4 crystal (Nd:YVO 4 ) and the other is its host crystal YVO 4 . In the comparison of the laser performance between the normal and composite crystal, the composite one shows the good lasing capability of increasing laser output without fracture of the crystal due to thermal stress which appeared in the normal one. (author)

  7. Laser technology and applications in gynaecology.

    Science.gov (United States)

    Adelman, M R; Tsai, L J; Tangchitnob, E P; Kahn, B S

    2013-04-01

    The term 'laser' is an acronym for Light Amplification by Stimulated Emission of Radiation. Lasers are commonly described by the emitted wavelength, which determines the colour of the light, as well as the active lasing medium. Currently, over 40 types of lasers have been developed with a wide range of both industrial and medical uses. Gas and solid-state lasers are frequently used in surgical applications, with CO2 and Ar being the most common examples of gas lasers, and the Nd:YAG and KTP:YAG being the most common examples of solid-state lasers. At present, it appears that the CO2, Nd:YAG, and KTP lasers provide alternative methods for achieving similar results, as opposed to superior results, when compared with traditional endoscopic techniques, such as cold-cutting monopolar and bipolar energy. This review focuses on the physics, tissue interaction, safety and applications of commonly used lasers in gynaecological surgery.

  8. Progress towards realization of a laser IFE solid wall chamber

    International Nuclear Information System (INIS)

    Raffray, A.R.; Blanchard, J.; Latkowski, J.; Najmabadi, F.; Renk, T.; Sethian, J.; Sharafat, S.; Snead, L.

    2006-01-01

    The high average power laser (HAPL) program aims at developing laser inertial fusion energy (Laser IFE) based on lasers, direct drive targets and a solid wall chamber. The preferred first wall configuration is based on tungsten and ferritic steel as armor and structural materials, respectively. A key concern is the survival of the first wall under the X-ray and ion energy deposition from the fusion micro-explosion. The HAPL design and R and D effort in the chamber and material area is focused toward understanding and resolving the key armor survival issues. This includes modeling and experimental testing of the armor thermo-mechanical behavior in facilities utilizing ion, X-rays and laser sources to simulate IFE conditions. Helium management is addressed by conducting implantation experiments along with modeling of He behavior in tungsten. This paper summarizes the HAPL chamber activities. The first wall/armor configuration and design analysis are described, key chamber issues are discussed, and the R and D to address them is highlighted

  9. Two dimensional solid state NMR

    International Nuclear Information System (INIS)

    Kentgens, A.P.M.

    1987-01-01

    This thesis illustrates, by discussing some existing and newly developed 2D solid state experiments, that two-dimensional NMR of solids is a useful and important extension of NMR techniques. Chapter 1 gives an overview of spin interactions and averaging techniques important in solid state NMR. As 2D NMR is already an established technique in solutions, only the basics of two dimensional NMR are presented in chapter 2, with an emphasis on the aspects important for solid spectra. The following chapters discuss the theoretical background and applications of specific 2D solid state experiments. An application of 2D-J resolved NMR, analogous to J-resolved spectroscopy in solutions, to natural rubber is given in chapter 3. In chapter 4 the anisotropic chemical shift is mapped out against the heteronuclear dipolar interaction to obtain information about the orientation of the shielding tensor in poly-(oxymethylene). Chapter 5 concentrates on the study of super-slow molecular motions in polymers using a variant of the 2D exchange experiment developed by us. Finally chapter 6 discusses a new experiment, 2D nutation NMR, which makes it possible to study the quadrupole interaction of half-integer spins. 230 refs.; 48 figs.; 8 tabs

  10. Advances in commercial ICF technology since 1986

    International Nuclear Information System (INIS)

    Kulcinski, G.L.

    1989-01-01

    Progress in the march toward commercial ICF fusion reactors has been uneven in the past few years. Considerable advances have been made in the area of light ion beam fusion through the development of rep ratable drivers (i.e., HERMES-III technology) and diodes (i.e., applied B configuration with renewable Li surfaces). Significant progress in the development of lasers to compress targets has also been made through the KrF Aurura program. The possibility of lowering the cost of glass in the advanced solid state lasers has been given serious consideration. The development of the Induced Spatial Incoherence (ISI) technique to improve the uniformity of the laser beam has allowed physicists and engineers to once again contemplate the use of symmetric illumination. This would reduce the driver energy required to achieve high gains but it also introduces difficulty in the reactor design. Relatively little progress in commercial heavy ion beam drivers has been made over the past few years aside from an indepth study (HIFSA) of the desirable operating regimes to be pursued. Other areas where little progress has been made are conceptual reactor studies, target declassification and specific experimental programs to address commercial ICF reactor technology needs

  11. Laser-induced vibrational dynamics of ozone in solid argon

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Amstrup, B.; Henriksen, Niels Engholm

    1997-01-01

    We consider the vibrational dynamics, induced by an intense infrared laser pulse, in an ozone molecule with isotopic substitution, that is, (OOO)-O-16-O-16-O-18 and compare the dynamics in the gas phase and in solid ar on. not perturbed by argon on a time-scale of a few picoseconds and selective...

  12. Equation of state of laser-shocked compressed iron; Equation d'etat du fer comprime par choc laser

    Energy Technology Data Exchange (ETDEWEB)

    Huser, G

    2004-01-01

    This thesis enters the field of highly compressed materials equation of state studies. In particular, it focuses on the case of laser shock compressed iron. This work indeed aims at getting to the conditions of the earth's core, comprising a solid inner core and a liquid outer core. The understanding of phenomena governing the core's thermodynamics and the geodynamic process requires the knowledge of iron melting line locus around the solid-liquid interface at 3.3 Mbar. Several experiments were performed to that extent. First, an absolute measurement of iron Hugoniot was obtained. Following is a study of partially released states of iron into a window material: lithium fluoride (LiF). This configuration enables direct access to compressed iron optical properties such as reflectivity and self-emission. Interface velocity measurement is dominated by compressed LiF optical properties and is used as a pressure gauge. Using a dual wavelength reflectivity diagnostic, compressed iron electrical conductivity was estimated and found to be in good agreement with previous results found in geophysics literature. Self-emission diagnostic was used to measure temperature of partially released iron and revealed a solid-liquid phase transition at Mbar pressures. (author)

  13. Review of Solid State Hydrogen Storage Methods Adopting Different Kinds of Novel Materials

    Directory of Open Access Journals (Sweden)

    Renju Zacharia

    2015-01-01

    Full Text Available Overview of advances in the technology of solid state hydrogen storage methods applying different kinds of novel materials is provided. Metallic and intermetallic hydrides, complex chemical hydride, nanostructured carbon materials, metal-doped carbon nanotubes, metal-organic frameworks (MOFs, metal-doped metal organic frameworks, covalent organic frameworks (COFs, and clathrates solid state hydrogen storage techniques are discussed. The studies on their hydrogen storage properties are in progress towards positive direction. Nevertheless, it is believed that these novel materials will offer far-reaching solutions to the onboard hydrogen storage problems in near future. The review begins with the deficiencies of current energy economy and discusses the various aspects of implementation of hydrogen energy based economy.

  14. Management of vascular lesions using advanced laser technology

    Directory of Open Access Journals (Sweden)

    Christofer Tzermias

    2017-04-01

    Full Text Available One of the most widely used cutaneous applications of Light Amplification by Stimulated Emission of Radiation (laser concerns the treatment of vascular lesions. During the past two decades, very significant advances in the application of laser technology in dermatology have occurred, with selective photothermolysis being the most important. This review focuses on the application of modern laser devices (Pulsed Dye Laser, or PDL; potassium titanyl phosphate laser, or KTP; diode laser; and neodymium-doped yttrium-aluminium-garnet laser, or Nd:YAG, as well as the combination of laser and photodynamic therapy (PDT for the treatment of vascular lesions. In particular, both congenital (haemangiomas and port-wine stains and acquired vascular lesions (facial and leg telangiectasias, rosacea, Poikiloderma of Civatte, spider angioma, pyogenic granuloma, and venous lakes are discussed. The review of many recent research studies demonstrates that modern applications of lasers in dermatology constitute the finest method for the treatment of vascular lesions, combining the advantages of invasive therapy with the security offered by non-invasive therapy, while in certain cases they are the single and only choice for the treatment of these lesions.

  15. Solid state modulator for klystron power supply XFEL TDS INJ

    Science.gov (United States)

    Zavadtsev, A. A.; Zavadtsev, D. A.; Zybin, D. A.; Churanov, D. V.; Shemarykin, P. V.

    2016-09-01

    The transverse deflecting system XFEL TDS INJ for European X-ray Free Electron Laser includes power supply for the CPI VKS-8262HS klystron. It has been designed for pulse high-voltage, cathode heating, solenoid and klystron ion pump. The klystron power supply includes solid state modulator, pulse transformer, controlled power supply for cathode heating and commercial power supplies for solenoid and ion pump. Main parameters of the modulator are 110 kV of peak voltage, 72 A peak current, and pulse length up to 6 μs. The klystron power supply has been developed, designed, manufactured, tuned, tested and installed in the XFEL building. All designed parameters are satisfied.

  16. Improving Lifetime of Quasi-CW Laser Diode Arrays for Pumping 2-Micron Solid State Lasers

    Science.gov (United States)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Singh, Upendra N.; Kavaya, Michael J.

    2007-01-01

    Operating high power laser diode arrays in long pulse regime of about 1 msec, which is required for pumping 2-micron thulium and holmium-based lasers, greatly limits their useful lifetime. This paper describes performance of laser diode arrays operating in long pulse mode and presents experimental data on the active region temperature and pulse-to-pulse thermal cycling that are the primary cause of their premature failure and rapid degradation. This paper will then offer a viable approach for determining the optimum design and operational parameters leading to the maximum attainable lifetime.

  17. Macroscopic modelling of solid-state fermentation

    NARCIS (Netherlands)

    Hoogschagen, M.J.

    2007-01-01

    Solid-state fermentation is different from the more well known process of liquid fermentation because no free flowing water is present. The technique is primarily used in Asia. Well-known products are the foods tempe, soy sauce and saké. In industrial solid-state fermentation, the substrate usually

  18. Tunable laser applications

    CERN Document Server

    Duarte, FJ

    2008-01-01

    Introduction F. J. Duarte Spectroscopic Applications of Tunable Optical Parametric Oscillators B. J. Orr, R. T. White, and Y. He Solid-State Dye Lasers Costela, I. García-Moreno, and R. Sastre Tunable Lasers Based on Dye-Doped Polymer Gain Media Incorporating Homogeneous Distributions of Functional Nanoparticles F. J. Duarte and R. O. James Broadly Tunable External-Cavity Semiconductor Lasers F. J. Duarte Tunable Fiber Lasers T. M. Shay and F. J. Duarte Fiber Laser Overview and Medical Applications

  19. Excimer-laser-induced permanent electrical conductivity in solid C60 films

    International Nuclear Information System (INIS)

    Ning, D.; Lou, Q.H.; Dong, J.X.; Wei, Y.R.

    1996-01-01

    After being irradiated in air by a XeCl (308 nm) excimer laser, the electrical conductivity of solid thin-film C 60 has been improved by more than six orders of magnitudes. The products resulting from laser irradiation of C 60 films have been investigated by Raman scattering and the onset of conductivity can be attributed to laser-induced oxygenation and disintegration of the fullerene. Irradiated by ∼40 ns laser pulses with different fluence, products with different microstructure were observed. At lower fluence, the Raman features of microcrystalline graphite and fullerene polymer were observed. At a fluence just below the ablation threshold (36 mJ/cm 2 ), the fullerene molecules in the film were disintegrated completely and transformed to amorphous graphite. (orig.). With 5 figs

  20. Materials for spaceborne laser systems

    International Nuclear Information System (INIS)

    Gusarov, A.

    2006-01-01

    Advanced laser systems are attracting a growing interest for space missions, in particular for LIDAR (LIght Detection And Ranging) applications. An important issue for the LIDARs is the very strict requirements on the optical performance and more specifically the need for a high optical output power combined with a nearly perfect output beam quality. These features are traditionally in conflict with each other. Thermally induced phase distortions indeed corrupt the beam quality of high-power solid-state lasers and it becomes increasingly difficult to maintain a good beam quality while increasing the output power. A possible solution of the problem is to use the optical phase conjugation, which provides a method to dynamically correct for those aberrations. A process by which phase-conjugated waves can be generated is the SBS (stimulated Brillouin scattering). SBS mirrors commonly used in terrestrial application are based on liquids or gases, which are not 'space-friendly' and often toxic. The solid-state alternative seems the most appropriate for space. Such PCMs (Phase-Conjugating Mirrors) have been the subject of many research efforts in recent years and a significant progress in improving their characteristics has been achieved. However, the issue of space qualification remains open. To address it, the European Space Agency initiated in 2004 the research project named Solid-State Phase Conjugation, Radiation Testing and Evaluation for Core Laser Technologies with the TRT (Thales Research and Technology), France, as the prime contractor, and the CSL (Centre Spatial de Liege) and SCKCEN as the subcontractors. The project is to be completed in 2006. To qualify a PCM for a spaceborne laser system, one has to address a number of specific issues. Such a component must be mechanically rugged to sustain vibrations during the launch phase, provide a low out-gassing to prevent optical surfaces contamination in vacuum, be highly reliable to operate properly without

  1. Laser-induced nuclear fusion

    International Nuclear Information System (INIS)

    Jablon, Claude

    1977-01-01

    Research programs on laser-induced thermonuclear fusion in the United States, in Europe and in USSR are reviewed. The principle of the fusion reactions induced is explained, together with the theoretical effects of the following phenomena: power and type of laser beams, shape and size of the solid target, shock waves, and laser-hydrodynamics coupling problems [fr

  2. Photodetachment in the gaseous, liquid, and solid states of matter

    International Nuclear Information System (INIS)

    Christophorou, L.G.; Datskos, P.G.; Faidas, H.

    1994-01-01

    We have made absolute cross section measurements of laser photodetachment of C 6 F - 6 ions embedded in gaseous tetramethylsilane (TMS) and compared the results at low gas densities with measurements in nonpolar liquids and solids. The measurements indicate that the photodetachment cross section of C 6 F - 6 in gaseous TMS is about three times larger than in liquid TMS. This is rationalized by considering the effect of the medium on both the photoabsorption and the autodetachment processes. The photodetachment cross section in both the gas and the liquid exhibits (at least) two maxima due to autodetaching negative ion states. It is argued that these are due to σ*→σ* transitions in C 6 F - 6 . The relative positions of these ''superexcited'' anionic states did not change appreciably in going from the gas to the liquid and the solid, indicating similar influences of the medium on them. As expected, the photodetachment threshold in the condensed phase is shifted to higher energies compared to the gaseous phase. This shift is consistent with recent photoelectron studies of photodetachment of C 6 F - 6 clusters. The present study clearly shows that the photodetachment from negative ions embedded in all states of matter proceeds directly or indirectly via negative ion autodetaching states, and that for nonpolar media, the effect of the medium can be accounted for by considering the macroscopic properties of the medium described by its dielectric constant ε and refractive index n

  3. Status of advanced ground-based laser interferometers for gravitational-wave detection

    Science.gov (United States)

    Dooley, K. L.; Akutsu, T.; Dwyer, S.; Puppo, P.

    2015-05-01

    Ground-based laser interferometers for gravitational-wave (GW) detection were first constructed starting 20 years ago and as of 2010 collection of several years’ worth of science data at initial design sensitivities was completed. Upgrades to the initial detectors together with construction of brand new detectors are ongoing and feature advanced technologies to improve the sensitivity to GWs. This conference proceeding provides an overview of the common design features of ground-based laser interferometric GW detectors and establishes the context for the status updates of each of the four gravitational-wave detectors around the world: Advanced LIGO, Advanced Virgo, GEO 600 and KAGRA.

  4. CO2 laser direct writing of silver lines on epoxy resin from solid film

    International Nuclear Information System (INIS)

    Liu, J.G.; Chen, C.H.; Zheng, J.S.; Huang, J.Y.

    2005-01-01

    A technique of CO 2 laser direct writing from solid film was proposed in this paper. Patterns of silver lines were locally deposited on the non-conductive substrate using a preset layer of silver compound solid film, which was irradiated by focused CO 2 laser beam. The deposits were analyzed by XPS and EPMA. Results showed that metallic silver was dominant with an even distribution on the surface of the substrate, and part of the deposited silver had diffused into the substrate interior. The deposits had catalytic activity for the further electroless copper plating and had strong adhesion to the substrate. At last, the deposition mechanism and the dependence of the width of silver lines on the laser power and scan speed were roughly explored

  5. Advances in high field laser physics

    CERN Document Server

    Sheng, Zhengming; Chen, Liming; Lu, Wei; Shen, Baifei

    2019-01-01

    High field laser physics emerged with the advent of ultrashort intense lasers about 25 years ago. It has developed into a frontier of cross-disciplinary studies, covering attosecond X-ray physics, particle accelerator physics, and physics of inertial confined fusion, etc., with prospects of wide applications. Because this is a new and rapidly developing field, so far there are only 2-3 related books available. There are a few review articles in some journals, which are limited to specific topics in high field physics. There are quite a few conference proceedings in this field, which are the collections of papers presented at conferences. In this book, a few leading experts working on different subjects in this field are invited to introduce the key topics in high field laser physics, which cover the involved fundamental physics, the recent advances, as well as the prospects of future applications. It shall be very useful to graduate students, young researchers, and people who want to have an overview of thi...

  6. Directed Acceleration of Electrons from a Solid Surface by Sub-10-fs Laser Pulses

    International Nuclear Information System (INIS)

    Brandl, F.; Hidding, B.; Osterholz, J.; Hemmers, D.; Pretzler, G.; Karmakar, A.; Pukhov, A.

    2009-01-01

    Electrons have been accelerated from solid target surfaces by sub-10-fs laser pulses of 120 μJ energy which were focused to an intensity of 2x10 16 W/cm 2 . The electrons have a narrow angular distribution, and their observed energies exceed 150 keV. We show that these energies are not to be attributed to collective plasma effects but are mainly gained directly via repeated acceleration in the transient field pattern created by incident and reflected laser, alternating with phase-shift-generating scattering events in the solid.

  7. The Advanced Solid Rocket Motor

    Science.gov (United States)

    Mitchell, Royce E.

    1992-01-01

    The Advanced Solid Rocket Motor will utilize improved design features and automated manufacturing methods to produce an inherently safer propulsive system for the Space Shuttle and future launch systems. This second-generation motor will also provide an additional 12,000 pounds of payload to orbit, enhancing the utility and efficiency of the Shuttle system. The new plant will feature strip-wound, asbestos-free insulation; propellant continuous mixing and casting; and extensive robotic systems. Following a series of static tests at the Stennis Space Center, MS flights are targeted to begin in early 1997.

  8. Laser ablation/ionization characterization of solids: Second interim progress report of the strategic environmental research development program

    International Nuclear Information System (INIS)

    Hess, W.P.; Bushaw, B.A.; McCarthy, M.I.; Campbell, J.A.; Colson, S.D.; Dickinson, J.T.

    1996-10-01

    The Department of Energy is undertaking the enormous task of remediating defense wastes and environmental insults which have occurred over 50 years of nuclear weapons production. It is abundantly clear that significant technology advances are needed to characterize, process, and store highly radioactive waste and to remediate contaminated zones. In addition to the processing and waste form issues, analytical technologies needed for the characterization of solids, and for monitoring storage tanks and contaminated sites do not exist or are currently expensive labor-intensive tasks. This report describes progress in developing sensitive, rapid, and widely applicable laser-based mass spectrometry techniques for analysis of mixed chemical wastes and contaminated soils

  9. Solid polymer electrolyte composite membrane comprising laser micromachined porous support

    Science.gov (United States)

    Liu, Han [Waltham, MA; LaConti, Anthony B [Lynnfield, MA; Mittelsteadt, Cortney K [Natick, MA; McCallum, Thomas J [Ashland, MA

    2011-01-11

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 5 microns, are made by laser micromachining and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  10. Solid-state NMR basic principles and practice

    CERN Document Server

    Apperley, David C; Hodgkinson, Paul

    2014-01-01

    Nuclear Magnetic Resonance (NMR) has proved to be a uniquely powerful and versatile tool for analyzing and characterizing chemicals and materials of all kinds. This book focuses on the latest developments and applications for "solid-state" NMR, which has found new uses from archaeology to crystallography to biomaterials and pharmaceutical science research. The book will provide materials engineers, analytical chemists, and physicists, in and out of lab, a survey of the techniques and the essential tools of solid-state NMR, together with a practical guide on applications. In this concise introduction to the growing field of solid-state nuclear magnetic resonance spectroscopy The reader will find: * Basic NMR concepts for solids, including guidance on the spin-1/2 nuclei concept * Coverage of the quantum mechanics aspects of solid state NMR and an introduction to the concept of quadrupolar nuclei * An understanding relaxation, exchange and quantitation in NMR * An analysis and interpretation of NMR data, with e...

  11. Solid hydrogen target for laser driven proton acceleration

    Science.gov (United States)

    Perin, J. P.; Garcia, S.; Chatain, D.; Margarone, D.

    2015-05-01

    The development of very high power lasers opens up new horizons in various fields, such as laser plasma acceleration in Physics and innovative approaches for proton therapy in Medicine. Laser driven proton acceleration is commonly based on the so-called Target Normal Sheath Acceleration (TNSA) mechanisms: a high power laser is focused onto a solid target (thin metallic or plastic foil) and interact with matter at very high intensity, thus generating a plasma; as a consequence "hot" electrons are produced and move into the forward direction through the target. Protons are generated at the target rear side, electrons try to escape from the target and an ultra-strong quasi-electrostatic field (~1TV/m) is generated. Such a field can accelerate protons with a wide energy spectrum (1-200 MeV) in a few tens of micrometers. The proton beam characteristics depend on the laser parameters and on the target geometry and nature. This technique has been validated experimentally in several high power laser facilities by accelerating protons coming from hydrogenated contaminant (mainly water) at the rear of metallic target, however, several research groups are investigating the possibility to perform experiments by using "pure" hydrogen targets. In this context, the low temperature laboratory at CEA-Grenoble has developed a cryostat able to continuously produce a thin hydrogen ribbon (from 40 to 100 microns thick). A new extrusion concept, without any moving part has been carried out, using only the thermodynamic properties of the fluid. First results and perspectives are presented in this paper.

  12. Plasmas produced by incident laser in solids

    International Nuclear Information System (INIS)

    Oliveira Campos, D. de; Boeckelmann, H.K.

    1984-01-01

    The experimental arrangement for plasma production by incident laser in solids and a system of diagnostics are presented. The system of diagnostics allows: verify the plasma generation and expansion through the ultrahigh-speed photography; obtain measurements of temperature and density by spectroscopy (using an optical analyser of multichannels) and obtain measurements of kinetic energy of ions through his fly time, using a 'Faraday cup'. A vacuum system with an adsorption pump for pre-vacuum and ionic pump was used to reduce pressure and avoid mechanical vibrations and system contaminations. (M.C.K.) [pt

  13. Acquisition of an All-Solid State Femtosecond Laser System

    National Research Council Canada - National Science Library

    Apkarian, V

    2003-01-01

    ... of 160 fs, 800mW, at 1KHz. The output of the pump laser is split successively with 50% beam splitters, to use 200 mW beams to pump two home-built Non-collinear Optical Parametric Amplifiers (NOPA...

  14. Mid-Infrared Lasers

    Data.gov (United States)

    National Aeronautics and Space Administration — Mid infrared solid state lasers for Differential Absorption Lidar (DIAL) systems required for understanding atmospheric chemistry are not available. This program...

  15. Laser-activated solid protein bands for peripheral nerve repair: an vivo study.

    Science.gov (United States)

    Lauto, A; Trickett, R; Malik, R; Dawes, J M; Owen, E R

    1997-01-01

    Severed tibial nerves in rats were repaired using a novel technique, utilizing a semiconductor diode-laser-activated protein solder applied longitudinally across the join. Welding was produced by selective laser denaturation of solid solder bands containing the dye indocyanine green. An in vivo study, using 48 adult male Wistar rats, compared conventional microsuture-repaired tibial nerves with laser solder-repaired nerves. Nerve repairs were characterised immediately after surgery and after 3 months. Successful regeneration with average compound muscle action potentials of 2.5 +/- 0.5 mV and 2.7 +/- 0.3 mV (mean and standard deviation) was demonstrated for the laser-soldered nerves and the sutured nerves, respectively. Histopathology confirmed comparable regeneration of axons in laser- and suture-operated nerves. The laser-based nerve repair technique was easier and faster than microsuture repair, minimising manipulation damage to the nerve.

  16. Performance of solid-state sensors for continuous, real-time measurement of soil CO2 concentrations

    Science.gov (United States)

    Recent advances in sensor technology provide a robust capability for continuous measurement of soil gases. The performance of solid-state CO2 sensors (Model GMM220 series, Vaisala, Finland) was evaluated in laboratory, greenhouse, and irrigated wheat (Triticum aestivum L.). In ambient CO2 concentrat...

  17. Photoemission from solids: the transition from solid-state to atomic physics

    International Nuclear Information System (INIS)

    Shirley, D.A.

    1980-08-01

    As the photon energy is increased, photoemission from solids undergoes a slow transition from solid-state to atomic behavior. However, throughout the energy range hν = 10 to 1000 eV or higher both types of phenomena are present. Thus angle-resolved photoemission can only be understood quantitatively if each experimenter recognizes the presence of band-structure, photoelectron diffraction, and photoelectron asymmetry effects. The quest for this understanding will build some interesting bridges between solid-state and atomic physics and should also yield important new insights about the phenomena associated with photoemission

  18. Lithium-ion transport in inorganic solid state electrolyte

    International Nuclear Information System (INIS)

    Gao Jian; Li Hong; Zhao Yu-Sheng; Shi Si-Qi

    2016-01-01

    An overview of ion transport in lithium-ion inorganic solid state electrolytes is presented, aimed at exploring and designing better electrolyte materials. Ionic conductivity is one of the most important indices of the performance of inorganic solid state electrolytes. The general definition of solid state electrolytes is presented in terms of their role in a working cell (to convey ions while isolate electrons), and the history of solid electrolyte development is briefly summarized. Ways of using the available theoretical models and experimental methods to characterize lithium-ion transport in solid state electrolytes are systematically introduced. Then the various factors that affect ionic conductivity are itemized, including mainly structural disorder, composite materials and interface effects between a solid electrolyte and an electrode. Finally, strategies for future material systems, for synthesis and characterization methods, and for theory and calculation are proposed, aiming to help accelerate the design and development of new solid electrolytes. (topical review)

  19. Atomic layer deposition of lithium phosphates as solid-state electrolytes for all-solid-state microbatteries

    International Nuclear Information System (INIS)

    Wang, Biqiong; Liu, Jian; Sun, Qian; Li, Ruying; Sun, Xueliang; Sham, Tsun-Kong

    2014-01-01

    Atomic layer deposition (ALD) has been shown as a powerful technique to build three-dimensional (3D) all-solid-state microbattery, because of its unique advantages in fabricating uniform and pinhole-free thin films in 3D structures. The development of solid-state electrolyte by ALD is a crucial step to achieve the fabrication of 3D all-solid-state microbattery by ALD. In this work, lithium phosphate solid-state electrolytes were grown by ALD at four different temperatures (250, 275, 300, and 325 °C) using two precursors (lithium tert-butoxide and trimethylphosphate). A linear dependence of film thickness on ALD cycle number was observed and uniform growth was achieved at all four temperatures. The growth rate was 0.57, 0.66, 0.69, and 0.72 Å/cycle at deposition temperatures of 250, 275, 300, and 325 °C, respectively. Furthermore, x-ray photoelectron spectroscopy confirmed the compositions and chemical structures of lithium phosphates deposited by ALD. Moreover, the lithium phosphate thin films deposited at 300 °C presented the highest ionic conductivity of 1.73 × 10 −8 S cm −1 at 323 K with ∼0.51 eV activation energy based on the electrochemical impedance spectroscopy. The ionic conductivity was calculated to be 3.3 × 10 −8 S cm −1 at 26 °C (299 K). (paper)

  20. Solid-state membrane module

    Science.gov (United States)

    Gordon, John Howard [Salt Lake City, UT; Taylor, Dale M [Murray, UT

    2011-06-07

    Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

  1. New and Advanced Picosecond Lasers for Tattoo Removal.

    Science.gov (United States)

    Adatto, Maurice A; Amir, Ruthie; Bhawalkar, Jayant; Sierra, Rafael; Bankowski, Richard; Rozen, Doran; Dierickx, Christine; Lapidoth, Moshe

    2017-01-01

    Early methods of tattoo removal ultimately resulted in unacceptable cosmetic outcomes. While the introduction of laser technology was an improvement over the existing chemical, mechanical, and surgical procedures, the use of nonselective tattoo removal with carbon dioxide and argon lasers led to scarring. Q-switched lasers with nanosecond (10-9) pulse domains were considered to have revolutionized tattoo treatment, by selectively heating the tattoo particles, while reducing the adverse sequelae to adjacent normal skin. Theoretical considerations of restricting pulse duration, to heat tattoo particles to higher temperatures, proposed the use of sub-nanosecond pulses to target particles with thermal relaxation times lower than the nanosecond pulses in Q-switched lasers. Initial studies demonstrated that picosecond (10-12) pulses were more effective than nanosecond pulses in clearing black tattoos. Advances in picosecond technology led to the development of commercially available lasers, incorporating several different wavelengths, to further refine pigment targeting. © 2017 S. Karger AG, Basel.

  2. Status of advanced ground-based laser interferometers for gravitational-wave detection

    International Nuclear Information System (INIS)

    Dooley, K L; Akutsu, T; Dwyer, S; Puppo, P

    2015-01-01

    Ground-based laser interferometers for gravitational-wave (GW) detection were first constructed starting 20 years ago and as of 2010 collection of several years’ worth of science data at initial design sensitivities was completed. Upgrades to the initial detectors together with construction of brand new detectors are ongoing and feature advanced technologies to improve the sensitivity to GWs. This conference proceeding provides an overview of the common design features of ground-based laser interferometric GW detectors and establishes the context for the status updates of each of the four gravitational-wave detectors around the world: Advanced LIGO, Advanced Virgo, GEO 600 and KAGRA. (paper)

  3. Oriented solid-state NMR spectrosocpy

    DEFF Research Database (Denmark)

    Bertelsen, Kresten

    This thesis is concerned with driving forward oriented solid-state NMR spectroscopy as a viable technique for studying peptides in membrane bilayers. I will show that structural heterogeneity is an intrinsic part of the peptide/lipid system and that NMR can be used to characterize static...... and dynamic structural features of the peptides and its local surroundings. In fact one need to take into account the dynamical features of the system in order to correctly predict the structure from oriented solid-state NMR spectra.      ...

  4. Solid State Lighting Reliability Components to Systems

    CERN Document Server

    Fan, XJ

    2013-01-01

    Solid State Lighting Reliability: Components to Systems begins with an explanation of the major benefits of solid state lighting (SSL) when compared to conventional lighting systems including but not limited to long useful lifetimes of 50,000 (or more) hours and high efficacy. When designing effective devices that take advantage of SSL capabilities the reliability of internal components (optics, drive electronics, controls, thermal design) take on critical importance. As such a detailed discussion of reliability from performance at the device level to sub components is included as well as the integrated systems of SSL modules, lamps and luminaires including various failure modes, reliability testing and reliability performance. This book also: Covers the essential reliability theories and practices for current and future development of Solid State Lighting components and systems Provides a systematic overview for not only the state-of-the-art, but also future roadmap and perspectives of Solid State Lighting r...

  5. Advanced ultrafast fiber laser sources enabled by fiber nonlinearities

    International Nuclear Information System (INIS)

    Liu, Wei

    2017-05-01

    Development of high power/energy ultrafast fiber lasers for scientific research and industrial applications is one of the most exciting fields in ultrafast optics. This thesis demonstrated new means to improve two essential properties - which are indispensable for novel applications such as high-harmonic generation (HHG) and multiphoton microscopy (MPM) - of an ultrafast fiber laser system: energy scaling capability and wavelength tunability. High photon-flux extreme ultraviolet sources enabled by HHG desire high power (>100 W), high repetition-rate (>1 MHz) ultrafast driving laser sources. We have constructed from scratch a high-power Yb-fiber laser system using the well-known chirped-pulse amplification (CPA) technique. Such a CPA system capable of producing ∝200-W average power consists of a monolithic Yb-fiber oscillator, an all-fiber stretcher, a pre-amplifier chain, a main amplifier constructed from rode-type large pitch fiber, and a diffraction-grating based compressor. To increase the HHG efficiency, ultrafast pulses with duration 130-W average power. The amplified pulses are compressed to 60-fs pulses with 100-W average power, constituting a suitable HHG driving source. MPM is a powerful biomedical imaging tool, featuring larger penetration depth while providing the capability of optical sectioning. Although femtosecond solid-state lasers have been widely accepted as the standard option as MPM driving sources, fiber-based sources have received growing research efforts due to their superior performance. In the second part of this thesis, we both theoretically and experimentally demonstrated a new method of producing wavelength widely tunable femtosecond pulses for driving MPM. We employed self-phase modulation to broaden a narrowband spectrum followed by bandpass filters to select the rightmost/leftmost spectral lobes. Widely tunable in 820-1225 nm, the resulting sources generated nearly transform-limited, ∝100 fs pulses. Using short fibers with large

  6. Self-seeded single-frequency solid-state ring laser and system using same

    Science.gov (United States)

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2007-02-20

    A method of operating a laser to obtain an output pulse having a single wavelength, comprises inducing an intracavity loss into a laser resonator having an amount that prevents oscillation during a time that energy from the pump source is being stored in the gain medium. Gain is built up in the gain medium with energy from the pump source until formation of a single-frequency relaxation oscillation pulse in the resonator. Upon detection of the onset of the relaxation oscillation pulse, the intracavity loss is reduced, such as by Q-switching, so that the built-up gain stored in the gain medium is output from the resonator in the form of an output pulse at a single frequency. An electronically controllable output coupler is controlled to affect output pulse characteristics. The laser acts a master oscillator in a master oscillator power amplifier configuration. The laser is used for laser peening.

  7. Solid state ionics: a Japan perspective

    Science.gov (United States)

    Yamamoto, Osamu

    2017-12-01

    The 70-year history of scientific endeavor of solid state ionics research in Japan is reviewed to show the contribution of Japanese scientists to the basic science of solid state ionics and its applications. The term 'solid state ionics' was defined by Takehiko Takahashi of Nagoya University, Japan: it refers to ions in solids, especially solids that exhibit high ionic conductivity at a fairly low temperature below their melting points. During the last few decades of exploration, many ion conducting solids have been discovered in Japan such as the copper-ion conductor Rb4Cu16I7Cl13, proton conductor SrCe1-xYxO3, oxide-ion conductor La0.9Sr0.9Ga0.9Mg0.1O3, and lithium-ion conductor Li10GeP2S12. Rb4Cu16I7Cl13 has a conductivity of 0.33 S cm-1 at 25 °C, which is the highest of all room temperature ion conductive solid electrolytes reported to date, and Li10GeP2S12 has a conductivity of 0.012 S cm-1 at 25 °C, which is the highest among lithium-ion conductors reported to date. Research on high-temperature proton conducting ceramics began in Japan. The history, the discovery of novel ionic conductors and the story behind them are summarized along with basic science and technology.

  8. Recent Advances in Fast Ion Conducting Materials and Devices - Proceedings of the 2nd Asian Conference on Solid State Ionics

    Science.gov (United States)

    Chowdari, B. V. R.; Liu, Qingguo; Chen, Liquan

    The Table of Contents for the book is as follows: * Preface * Invited Papers * Recent Trends in Solid State Ionics * Theoretical Aspects of Fast Ion Conduction in Solids * Chemical Bonding and Intercalation Processes in Framework Structures * Extra-Large Near-Electrode Regions and Diffusion Length on the Solid Electrolyte-Electrode Interface as Studied by Photo-EMF Method * Frequency Response of Glasses * XPS Studies on Ion Conducting Glasses * Characterization of New Ambient Temperature Lithium Polymer-Electrolyte * Recent Development of Polymer Electrolytes: Solid State Voltammetry in Polymer Electrolytes * Secondary Solid State Batteries: From Material Properties to Commercial Development * Silver Vanadium Oxide Bronze and its Applications for Electrochemical Devices * Study on β''-Alumina Solid Electrolyte and β Battery in SIC * Materials for Solid Oxide Fuel Cells * Processing for Super Superionic Ceramics * Hydrogen Production Using Oxide Ionic or Protonic Conductor * Ionically Conductive Sulfide-Based Lithium Glasses * Relation of Conductivity to Structure and Structural Relaxation in Ion-Conducting Glasses * The Mechanism of Ionic Conductivity in Glass * The Role of Synthesis and Structure in Solid State Ionics - Electrodes to Superconductors * Electrochromism in Spin-Coated Thin Films from Peroxo-Poly tungstate Solutions * Electrochemical Studies on High Tc Superconductors * Multivalence Fast Ionic Conductors - Montmorillonites * Contributed Papers * Volt-Ampere Characteristics and Interface Charge Transport in Solid Electrolytes * Internal Friction of Silver Chalcogenides * Thermal Expansion of Ionic and Superionic Solids * Improvement of PEO-LiCF3SO3 Complex Electrolytes Using Additives * Ionic Conductivity of Modified Poly (Methoxy Polyethylene Glycol Methacrylate) s-Lithium Salt Complexes * Solid Polymer Electrolytes of Crosslinked Polyethylene Glycol and Lithium Salts * Single Ionic Conductors Prepared by in Situ Polymerization of Methacrylic Acid

  9. Design for solid-state Rayleigh-Taylor experiments in tantalum at Omega

    International Nuclear Information System (INIS)

    Pollaine, S M; Remington, B A; Park, H S; Prisbrey, S T; Cavallo, R M

    2010-01-01

    We have designed an experiment for the Omega - EP laser facility to measure the Rayleigh-Taylor (RT) growth rate of solid-state Ta samples at ∼1 Mbar pressures and very high strain rates, 10 7 -10 8 s -1 . A thin walled, hohlraum based, ramp-wave, quasi-isentropic drive has been developed for this experiment. Thick samples (∼50 um) of Ta, with a pre-imposed sinusoidal rippled on the driven side, will be accelerated. The ripple growth due to the RT instability is greatly reduced due to the dynamic material strength. We will show detailed designs, and a thorough error analysis used to optimize the experiment and minimize uncertainty.

  10. Introduction to solid state electronics

    CERN Document Server

    Wang, FFY

    1989-01-01

    This textbook is specifically tailored for undergraduate engineering courses offered in the junior year, providing a thorough understanding of solid state electronics without relying on the prerequisites of quantum mechanics. In contrast to most solid state electronics texts currently available, with their generalized treatments of the same topics, this is the first text to focus exclusively and in meaningful detail on introductory material. The original text has already been in use for 10 years. In this new edition, additional problems have been added at the end of most chapters. These proble

  11. Solid waste management

    OpenAIRE

    Srebrenkoska, Vineta; Golomeova, Saska; Zhezhova, Silvana

    2013-01-01

    Waste is unwanted or useless materials from households, industry, agriculture, hospitals. Waste materials in solid state are classified as solid waste. Increasing of the amount of solid waste and the pressure what it has on the environment, impose the need to introduce sustainable solid waste management. Advanced sustainable solid waste management involves several activities at a higher level of final disposal of the waste management hierarchy. Minimal use of material and energy resources ...

  12. Ultrasonic methods in solid state physics

    CERN Document Server

    Truell, John; Elbaum, Charles

    1969-01-01

    Ultrasonic Methods in Solid State Physics is devoted to studies of energy loss and velocity of ultrasonic waves which have a bearing on present-day problems in solid-state physics. The discussion is particularly concerned with the type of investigation that can be carried out in the megacycle range of frequencies from a few megacycles to kilomegacycles; it deals almost entirely with short-duration pulse methods rather than with standing-wave methods. The book opens with a chapter on a classical treatment of wave propagation in solids. This is followed by separate chapters on methods and techni

  13. All-solid state flexible supercapacitors based on graphene/polymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Won; Choi, Bong Gill, E-mail: bgchoi@kangwon.ac.kr

    2015-06-01

    Recent advances in lightweight, flexible, and wearable electronic equipment has led to advancements in the development of sufficiently compact and flexible energy storage. A challenge remains to integrate the storage elements as closely as possible within a fully flexible device. Here, we demonstrate the fabrication of all-solid state flexible supercapacitors with the integration of two electrodes that consist of graphene/polymer composites. Robust conductive free-standing thin graphene/polymer composite electrodes were prepared through a simple “physical grinding” process. As-prepared composite electrodes store energy up to a reversible gravimetric capacitance of 90.6 F/g, at a constant current density of 0.5 A/g while also delivering long-term durability (90% retention) for excess of five-thousands of cycles. Notably, the enhancement of mechanical properties of supercapacitors enables them to maintain their electrochemical performance even when twisted or folded. This straightforward approach to the fabrication of fully flexible supercapacitors provides new design opportunities within wearable electronics and electrochemical applications. - Highlights: • All solid-sate supercapacitors were fabricated using graphene/polymer composite electrodes. • Supercapacitor devices show an excellent mechanical flexibility. • High electrochemical performances were demonstrated.

  14. All-solid state flexible supercapacitors based on graphene/polymer composites

    International Nuclear Information System (INIS)

    Kim, Jung Won; Choi, Bong Gill

    2015-01-01

    Recent advances in lightweight, flexible, and wearable electronic equipment has led to advancements in the development of sufficiently compact and flexible energy storage. A challenge remains to integrate the storage elements as closely as possible within a fully flexible device. Here, we demonstrate the fabrication of all-solid state flexible supercapacitors with the integration of two electrodes that consist of graphene/polymer composites. Robust conductive free-standing thin graphene/polymer composite electrodes were prepared through a simple “physical grinding” process. As-prepared composite electrodes store energy up to a reversible gravimetric capacitance of 90.6 F/g, at a constant current density of 0.5 A/g while also delivering long-term durability (90% retention) for excess of five-thousands of cycles. Notably, the enhancement of mechanical properties of supercapacitors enables them to maintain their electrochemical performance even when twisted or folded. This straightforward approach to the fabrication of fully flexible supercapacitors provides new design opportunities within wearable electronics and electrochemical applications. - Highlights: • All solid-sate supercapacitors were fabricated using graphene/polymer composite electrodes. • Supercapacitor devices show an excellent mechanical flexibility. • High electrochemical performances were demonstrated

  15. Singly-resonant sum frequency generation of visible light in a semiconductor disk laser

    DEFF Research Database (Denmark)

    Andersen, Martin Thalbitzer; Schlosser, P.J.; Hastie, J.E.

    2009-01-01

    In this paper a generic approach for visible light generation is presented. It is based on sum frequency generation between a semiconductor disk laser and a solid-state laser, where the frequency mixing is achieved within the cavity of the semiconductor disk laser using a singlepass of the solid......-state laser light. This exploits the good beam quality and high intra-cavity power present in the semiconductor disk laser to achieve high conversion efficiency. Combining sum frequency mixing and semiconductor disk lasers in this manner allows in principle for generation of any wavelength within the visible...

  16. Collective migration of adsorbed atoms on a solid surface in the laser radiation field

    International Nuclear Information System (INIS)

    Andreev, V V; Ignat'ev, D V; Telegin, Gennadii G

    2004-01-01

    The lateral (in the substrate plane) interaction between dipoles induced in particles adsorbed on a solid surface is studied in a comparatively weak laser radiation field with a Gaussian transverse distribution. It is shown that the particles migrate over the surface in the radial direction either outside an illuminated spot with the formation of a 'crater' or inside the spot with the formation of a 'mound'. (interaction of laser radiation with matter. laser plasma)

  17. New configurations for short-pulses high power solid-state lasers: conception and realization of highly doped waveguide amplifiers/lasers grown by liquid phase epitaxy and demonstration of Y2SiO5: Yb and Lu2SiO5: Yb femtosecond lasers

    International Nuclear Information System (INIS)

    Thibault, F.

    2006-04-01

    Yb-doped yttrium and lutetium ortho-silicates, Y 2 SiO 5 :Yb and Lu 2 SiO 5 :Yb respectively, exhibit spectroscopic properties favorable to an efficient laser operation in both high power cw and femtosecond regime. Their first diode-pumped femtosecond operation demonstration lead to exceptional performances in terms of output power and efficiency. In order to realize compact and efficient solid-state laser devices using those materials, we chose a configuration with an Yb-doped medium planar waveguide geometry, grown by liquid phase epitaxy, face-pumped by a single laser diode bar. The growth of highly doped Y 2 SiO 5 :Yb layers, within a large range of compositions and thicknesses, was demonstrated. The refractive index increase due to the substitution of the various dopants is analyzed. The layers spectroscopic properties are similar to the bulk ones, with an noticeably higher crystalline quality. The Yb ion lifetime evolution with respect to its doping shows up a particularly low decrease, proof of a low concentration of extrinsic quenching centers. The covered YSO:24%Yb waveguides exhibit lower than 0.3 dB/cm propagation losses, and provided up to 2.9 dB/cm net amplification at 1082 nm with a single mode output. The realization of the first diode-pumped monolithic cw waveguide lasers was also demonstrated. For a 4% output coupler, they provided up to 340 mW at 1082 nm with a 14% slope efficiency. (author)

  18. Advances in CMOS solid-state photomultipliers for scintillation detector applications

    Energy Technology Data Exchange (ETDEWEB)

    Christian, James F.; Stapels, Christopher J.; Johnson, Erik B.; McClish, Mickel; Dokhale, Purushotthom; Shah, Kanai S.; Mukhopadhyay, Sharmistha; Chapman, Eric [Radiation Monitoring Devices, 44 Hunt Street, Watertownm, MA 02472 (United States); Augustine, Frank L., E-mail: JChristian@RMDInc.co [Augustine Engineering, 2115 Park Dale Ln, Encinitas, CA 92024 (United States)

    2010-12-11

    Solid-state photomultipliers (SSPMs) are a compact, lightweight, potentially low-cost alternative to a photomultiplier tube for a variety of scintillation detector applications, including digital-dosimeter and medical-imaging applications. Manufacturing SSPMs with a commercial CMOS process provides the ability for rapid prototyping, and facilitates production to reduce the cost. RMD designs CMOS SSPM devices that are fabricated by commercial foundries. This work describes the characterization and performance of these devices for scintillation detector applications. This work also describes the terms contributing to device noise in terms of the excess noise of the SSPM, the binomial statistics governing the number of pixels triggered by a scintillation event, and the background, or thermal, count rate. The fluctuations associated with these terms limit the resolution of the signal pulse amplitude. We explore the use of pixel-level signal conditioning, and characterize the performance of a prototype SSPM device that preserves the digital nature of the signal. In addition, we explore designs of position-sensitive SSPM detectors for medical imaging applications, and characterize their performance.

  19. Experimental measurements of deep directional columnar heating by laser-generated relativistic electrons at near-solid density

    International Nuclear Information System (INIS)

    Koch, J.A.; Key, M.H.; Hatchett, S.P.; Lee, R.W.; Pennington, D.; Tabak, M.; Freeman, R.R.; Stephens, R.B.

    2002-01-01

    In our experiments, we irradiated solid CH targets with a 400 J, 5 ps, 3x10 19 W/cm 2 laser, and we used x-ray imaging and spectroscopic diagnostics to monitor the keV x-ray emission from thin Al or Au tracer layers buried within the targets. The experiments were designed to quantify the spatial distribution of the thermal electron temperature and density as a function of buried layer depth; these data provide insights into the behavior of relativistic electron currents which flow within the solid target and are directly and indirectly responsible for the heating. We measured ∼200-350 eV temperatures and near-solid densities at depths ranging from 5 to 100 μm beneath the target surface. Time-resolved x-ray spectra from Al tracers indicate that the tracers emit thermal x rays and cool slowly compared to the time scale of the laser pulse. Most intriguingly, we consistently observe annular x-ray images in all buried tracer-layer experiments, and these data show that the temperature distribution is columnar, with enhanced heating along the edges of the column. The ring diameters are much greater than the laser focal spot diameter and do not vary significantly with the depth of the tracer layer for depths greater than 30 μm. The local temperatures are 200-350 eV for all tracer depths. We discuss recent simulations of the evolution of electron currents deep within solid targets irradiated by ultra-high-intensity lasers, and we discuss how modeling and analytical results suggest that the annular patterns we observe may be related to locally strong growth of the Weibel instability. We also suggest avenues for future research in order to further illuminate the complex physics of relativistic electron transport and energy deposition inside ultra-high-intensity laser-irradiated solid targets

  20. Silicon solid state devices and radiation detection

    CERN Document Server

    Leroy, Claude

    2012-01-01

    This book addresses the fundamental principles of interaction between radiation and matter, the principles of working and the operation of particle detectors based on silicon solid state devices. It covers a broad scope with respect to the fields of application of radiation detectors based on silicon solid state devices from low to high energy physics experiments including in outer space and in the medical environment. This book covers stateof- the-art detection techniques in the use of radiation detectors based on silicon solid state devices and their readout electronics, including the latest developments on pixelated silicon radiation detector and their application.