WorldWideScience

Sample records for advanced reactivity measurement facility-1

  1. Reactivity measurements

    International Nuclear Information System (INIS)

    Digital reactivity meter, realized as an off-line Fortran program, the input to which is a record of 500 consecutive values of n(tsub(i)) obtained by on-line program on CDC 1700 from the linear power channel of the TRIGA reactor, has been tested at low powers at which the reactor fuel temperature feedback reactivity is negligible. Calibration of the meter by the regulating rod, the reactivity of which has been determined by the assymptotic reactor period, shows that the absolute error is below 1,6% for reactivities up to 1 $. The accuracy of the reactivity meter is proportional to the square of the product of the sampling interval and the period at which the neutron density changes. So the relative error of the reactivity remains at all operational states below 0.2% at 1 second sampling intervals and even at 3 seconds sampling it does not rises above 2.0%. The meter is useful for measurements of control rod drops into the reactor at sampling intervals of 0.1 sec. The meter sensitivity is 0.5 c/s at 1 sec sampling

  2. Further development of the Dynamic Control Assemblies Worth Measurement Method for Advanced Reactivity Computers

    International Nuclear Information System (INIS)

    The dynamic control assemblies worth measurement technique is a quick method for validation of predicted control assemblies worth. The dynamic control assemblies worth measurement utilize space-time corrections for the measured out of core ionization chamber readings calculated by DYN 3D computer code. The space-time correction arising from the prompt neutron density redistribution in the measured ionization chamber reading can be directly applied in the advanced reactivity computer. The second correction concerning the difference of spatial distribution of delayed neutrons can be calculated by simulation the measurement procedure by dynamic version of the DYN 3D code. In the paper some results of dynamic control assemblies worth measurement applied for NPP Mochovce are presented (Authors)

  3. Advances in reactive surfactants.

    Science.gov (United States)

    Guyot, A

    2004-05-20

    The study of reactive surfactants and their applications in the synthesis of latexes for waterborne coatings has been recently boosted by two successive European programmes, involving all together eight academic and five industrial laboratories. The most significant results were obtained using surfactants derived from maleic and related anhydrides, or both nonionic and anionic reactive polymeric surfactants. Such surfactants are able to improve the stability of styrenic and acrylic latexes vs. various constraints, such as electrolyte addition, freeze-thawing tests or extraction with alcohol or acetone. The properties of films used in waterborne coatings are also improved in case of water exposure (less water uptake, dimensional stability), as well as improved weatherability, and blocking properties. Formulations for woodstain varnishes, metal coating of printing inks, based on the use of simple polymerizable surfactants, are now in the market. PMID:15072924

  4. Advancing Reactive Tracer Methods for Measurement of Thermal Evolution in Geothermal Reservoirs: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell A. Plummer; Carl D. Palmer; Earl D. Mattson; Laurence C. Hull; George D. Redden

    2011-07-01

    The injection of cold fluids into engineered geothermal system (EGS) and conventional geothermal reservoirs may be done to help extract heat from the subsurface or to maintain pressures within the reservoir (e.g., Rose et al., 2001). As these injected fluids move along fractures, they acquire heat from the rock matrix and remove it from the reservoir as they are extracted to the surface. A consequence of such injection is the migration of a cold-fluid front through the reservoir (Figure 1) that could eventually reach the production well and result in the lowering of the temperature of the produced fluids (thermal breakthrough). Efficient operation of an EGS as well as conventional geothermal systems involving cold-fluid injection requires accurate and timely information about thermal depletion of the reservoir in response to operation. In particular, accurate predictions of the time to thermal breakthrough and subsequent rate of thermal drawdown are necessary for reservoir management, design of fracture stimulation and well drilling programs, and forecasting of economic return. A potential method for estimating migration of a cold front between an injection well and a production well is through application of reactive tracer tests, using chemical whose rate of degradation is dependent on the reservoir temperature between the two wells (e.g., Robinson 1985). With repeated tests, the rate of migration of the thermal front can be determined, and the time to thermal breakthrough calculated. While the basic theory behind the concept of thermal tracers has been understood for some time, effective application of the method has yet to be demonstrated. This report describes results of a study that used several methods to investigate application of reactive tracers to monitoring the thermal evolution of a geothermal reservoir. These methods included (1) mathematical investigation of the sensitivity of known and hypothetical reactive tracers, (2) laboratory testing of novel

  5. An advanced safeguards approach for a model 200t/a reprocessing facility, (1)

    International Nuclear Information System (INIS)

    This report describes an advanced safeguards approach which has been developed for a model 200 t/a reprocessing plant, using near-real-time materials accountancy in the process MBA, and borrowing advanced ideas from TASTEX, the IWG-RPS, or the authors own invention for the spent fuel storage and plutonium nitrate storage MBAs. In the spent fuel storage MBA primary reliance is placed on 100% inspector observation and verification of all spent fuel receipts, and on surveillance measures to ensure that the inspector is aware of all receipts or other activities in the spent fuel cask receiving bay. The advanced safeguards approach gives more detailed consideration to the mechanical or chop-leach cell than most conventional approaches. Safeguards in the process MBA are based on n.r.t. accountancy. The n.r.t. accountancy model used assumes weekly in-process physical inventories of solution in some five buffer storage tanks. The safeguards approach suggested for the plutonium nitrate storage MBA is not significantly different from conventional approaches. The use of sequential statistical techniques for the analysis of n.r.t. accountancy data requires a significantly different philosophical approach to anomalies and anomaly resolution. This report summarizes anomaly resolution procedures, at least through the earlier stages, and describes a summary estimate of inspection effort likely to be needed to implement the advanced safeguards approach. (author)

  6. Regarding KUR Reactivity Measurement System

    International Nuclear Information System (INIS)

    This article reported: (1) the outline of the reactivity measurement system of Kyoto University Research Reactor (KUR), (2) the calibration data of control rod, (3) the problems and the countermeasures for range switching of linear output meter. For the laptop PC for the reactivity measurement system, there are four input signals: (1) linear output meter, (2) logarithmic output meter, (3) core temperature gauge, and (4) control rod position. The hardware of reactivity measurement system is controlled with Labview installed on the laptop. Output, reactivity, reactor period, and the change in reactivity due to temperature effect or Xenon effect are internally calculated and displayed in real-time with Labview based on the four signals above. Calculation results are recorded in the form of a spreadsheet. At KUR, the reactor core arrangement was changed, so the control rod was re-calibrated. At this time, calculated and experimental values of reactivity based on the reactivity measurement system were compared, and it was confirmed that the reactivity calculation by Labview was accurate. The range switching of linear output meter in the nuclear instrumentation should automatically change within the laptop, however sometimes this did not function properly in the early stage. It was speculated that undefined percent values during the transition of percent value were included in the calculation and caused calculation errors. The range switching started working properly after fixing this issue. (S.K.)

  7. Evaluating advanced LMR reactivity feedbacks using SSC

    International Nuclear Information System (INIS)

    Analyses of the PRISM and SAFR liquid metal reactor transients, using SSC, are discussed. These two advanced reactors incorporate innovative approaches to safety, utilizing passive rather than active engineered safety systems. A key feature of these designs is their reliance on the inherent negative reactivity feedbacks of the metal fuel to accommodate unscrammed events passively. These feedbacks include Doppler, sodium density, and thermal expansion of the reactor and the control rod drive lines. Each of these feedbacks is discussed, as is the modeling implemented into the SSC code. These calculations provide an independent evaluation of the proposed reactors, and show how the reactivity feedbacks can provide an inherent shutdown in response to key anticipated events. The results from the SSC calculations support the contention that the inherent reactivity feedbacks can provide an extra degree of safety for the proposed liquid metal reactors

  8. Research Works on Reactivity Measurement in Japan

    International Nuclear Information System (INIS)

    In Japan, many research works have been performed for the wide range of the field on the reactivity measurement from the basic discussion to the application of on-line computers. The works on the reactivity measurement may be classified into the following categories. 1. The theoretical work - on the definition or the meaning of the reactivity and its application to the experiment. 2. The improvement of the principle of the reactivity measurement and its application to the experiment. 3. The works whose interests are in the values of the' reactivity to be measured. 4. Reactivity measurement on the on-power reactor. 5. On-line reactivity measurement. The works on the reactivity measurement in Japan will be briefly reviewed following the above classification

  9. Reactivity Measurements. Proceedings of a Panel

    International Nuclear Information System (INIS)

    The general idea of this Panel was to make an evaluation of the concept of reactivity from the standpoint both of theory and experiment. Sixteen papers were presented describing different types of reactivity measurement for different types of reactor systems. The scope of the Panel was divided into four sections: a) Theory of Reactivity Measurement; b) Measurement of Reactivity in the Time Domain; c) Measurement of Reactivity by Statistical Methods; d) Reactivity Measurement in Large Power Reactors. Certain types of reactivity measurements were discussed and considered in sufficient detail. On the basis of the presentations and discussions, the Conclusions and General. Recommendations have been prepared. This part of the report does not pretend to give a full and complete picture of the problem but should be regarded as a first step to approach it as a whole

  10. Initial tank calibration at NUCEF critical facility. 1. Measurement procedure and its result

    International Nuclear Information System (INIS)

    Initial tank calibrations were carried out prior to hot operation of critical facilities in NUCEF: Nuclear Fuel Cycle Safety Engineering Research Facility, for the purpose of the nuclear material accountancy and control for the facility. Raw calibration data were collected from single run per one tank by measuring differential pressure with dip-tube systems, weight of calibration liquid (demineralized water) poured into the tank, temperature in the tank and so on, without operation of tank ventilation system. Volume and level data were obtained by applying density and buoyancy corrections to the raw data. As a result, the evaluated measurement errors of volume and level were small enough, e.g. within 0.2 lit. and 1.0 mm, respectively, for Pu accountancy tanks. This paper summarizes the above-mentioned measurement procedures, collected data, data correction procedures and evaluated measurement errors. (author)

  11. Kalman filtering technique for reactivity measurement

    International Nuclear Information System (INIS)

    Measurement of reactivity and its on-line display is of great help in calibration of reactivity control and safety devices and in the planning of suitable actions during the reactor operation. In traditional approaches the reactivity is estimated from reactor period or by solving the inverse point kinetic equation. In this paper, an entirely new approach based on the Kalman filtering technique has been presented. The theory and design of the reactivity measuring instrument based on the approach has been explained. Its performance has been compared with traditional approaches by estimation of transient reactivity from flux variation data recorded in a research reactor. It is demonstrated that the Kalman filtering approach is superior to other methods from the viewpoints of accuracy, noise suppression, and robustness against uncertainties in the reactor parameters. (author). 1 fig

  12. Advanced oxidation of acid and reactive dyes

    DEFF Research Database (Denmark)

    Arslan-Alaton, I.; Gursoy, B.H.; Schmidt, Jens Ejbye

    2008-01-01

    The effect of untreated and Fenton-treated acid dyes (C.I. Acid Red 183 and C.I. Acid Orange 51) and a reactive dye (C.I. Reactive Blue 4) on aerobic, anoxic and anaerobic processes was investigated. The optimum Fe2+:H2O2 molar ratio was selected as 1:5 (4:hsp sp="0.25" mM:20:hsp sp="0.25"mM) for...... 10:hsp sp="0.25" min Fenton treatment at pH 3, resulting in reduced chemical oxygen demand and dissolved organic carbon removal efficiencies; only acetate was detected as a stable dye oxidation end product. During anaerobic digestion, 100, 29% and no inhibition in methane production was observed for...... the untreated blue, red and orange dyes, respectively. The inhibitory effect of the blue reactive dye on methane production was ∼21% after Fenton treatment. Neither untreated nor treated dyes exhibited an inhibitory effect on denitrification. Aerobic glucose degradation was inhibited by 23-29% by...

  13. Statistical error analysis of reactivity measurement

    Energy Technology Data Exchange (ETDEWEB)

    Thammaluckan, Sithisak; Hah, Chang Joo [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2013-10-15

    After statistical analysis, it was confirmed that each group were sampled from same population. It is observed in Table 7 that the mean error decreases as core size increases. Application of bias factor obtained from this research reduces mean error further. The point kinetic model had been used to measure control rod worth without 3D spatial information of neutron flux or power distribution, which causes inaccurate result. Dynamic Control rod Reactivity Measurement (DCRM) was employed to take into account of 3D spatial information of flux in the point kinetics model. The measured bank worth probably contains some uncertainty such as methodology uncertainty and measurement uncertainty. Those uncertainties may varies with size of core and magnitude of reactivity. The goal of this research is to investigate the effect of core size and magnitude of control rod worth on the error of reactivity measurement using statistics.

  14. Reactive arthritis: advances in diagnosis and treatment

    Directory of Open Access Journals (Sweden)

    A. Petricca

    2011-09-01

    Full Text Available Reactive Arthritis (ReA is an aseptic synovitis developing after a primary infection distant from the joint, mainly localized in the gastrointestinal (Enteroarthritis or genitourinary tract (Uroarthritis. Because of either the asymmetric joint involvement, the possibility of involvement of the spine and enthesis, and the HLA-B27 association ReA is considered one of the spondylarthropathies. Recently, bacterial components or viable bacteria were found in joints during ReA. For this reason, the limits between ReA itself and infectious arthritis are now less definite. Generally accepted diagnostic and classification criteria are still lacking but the improvement in techniques for detection of bacteria increase the possibility to identify the triggering agents. Several studies have examined the role of antimicrobial drugs in ameliorating the natural course of ReA, with some positive results for Uroarthritis only. However, more conventional treatments based on NSAIDs, Sulfasalazine and steroids are effective in many cases.

  15. Airborne measurement of OH reactivity during INTEX-B

    OpenAIRE

    J. Mao; Ren, X.; Brune, W. H.; J. R. Olson; Crawford, J. H.; A. Fried; Huey, L.G.; Cohen, R. C.; B. Heikes; Singh, H. B.; Blake, D. R.; Sachse, G. W.; Diskin, G. S.; S. R. Hall; Shetter, R. E.

    2009-01-01

    The measurement of OH reactivity, the inverse of the OH lifetime, provides a powerful tool to investigate atmospheric photochemistry. A new airborne OH reactivity instrument was designed and deployed for the first time on the NASA DC-8 aircraft during the second phase of Intercontinental Chemical Transport Experiment-B (INTEX-B) campaign, which was focused on the Asian pollution outflow over Pacific Ocean and was based in Hawaii and Alaska. The OH reactivity was measured by adding OH, generat...

  16. Development of direct digital reactivity computer system (DDRCS) for dynamic control rod reactivity measurement(DCRM)

    Energy Technology Data Exchange (ETDEWEB)

    Woo, I. T.; Ryu, S. J.; Sin, H. C.; Lee, E. K.; Bae, S. M.; Lee, C. S. [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    2002-10-01

    Neutron Flux level may be rapidly decreased to 1/100{approx}1/1000th order of magnitude during DCRM(Dynamic Control rod Reactivity Measurement) test. Because the conventional DRCS(Digital Reactivity Computer System) converts NIS current signal to analog one with the range from 0 to 2 volt, and computes reactivity, the DRCS can not measure the widely changed flux level during DCRM test. The DDRCS(Direct Digital Reactivity Computer System) which is developed in this study can measure the current of all the range directly and reduce the burden to maintain the equipments, because of its simplified structure. The function of DDRCS was fully validated through three times of plant low power physics tests. The software program to handle all the items of low power physics test will be developed.

  17. Measurements of low reactivities using a reactor oscillator

    International Nuclear Information System (INIS)

    Most of the methods of measuring reactivity are limited to the region from several hundreds to several thousands of pcm. The present work develops a method of measuring low reactivities from several pcm to about 600 pcm using the ROB-1 reactor oscillator on the RB reactor of the Boris Kidric Institute of Nuclear Sciences at Vinca. The accuracy of measurement is better than 1%. Several methods are used to measure low reactivities. The most often used is the method based on measuring the stable reactor period. The bottom limit of this method is about 30 porn /1,2/. For control rod calibration the method of rod oscillation is used /3,4/. This method is confronted with considerable influence of space effects /5/. Reference /6/ reports on a method for measuring the reactivity coefficient at a critical level in liquid-moderated reactors. The method is based on measuring reactor response to the oscillation of the moderator about the critical level. The present work reports on a method of determining the reactivity by measuring the phase shift between the perturbation of the effective multiplication factor and reactor response. With the use of the ROB-1 reactor oscillator, the method allows measurement of the reactivity from several pcm to about 600 pcm with an accuracy of 1% (author)

  18. Isothermal temperature reactivity coefficient measurement in TRIGA reactor

    International Nuclear Information System (INIS)

    Direct measurement of an isothermal temperature reactivity coefficient at room temperatures in TRIGA Mark II research reactor at Jozef Stefan Institute in Ljubljana is presented. Temperature reactivity coefficient was measured in the temperature range between 15 oC and 25 oC. All reactivity measurements were performed at almost zero reactor power to reduce or completely eliminate nuclear heating. Slow and steady temperature decrease was controlled using the reactor tank cooling system. In this way the temperatures of fuel, of moderator and of coolant were kept in equilibrium throughout the measurements. It was found out that TRIGA reactor core loaded with standard fuel elements with stainless steel cladding has small positive isothermal temperature reactivity coefficient in this temperature range.(author)

  19. The Comparative Reactivity Method – a new tool to measure total OH reactivity in ambient air

    Directory of Open Access Journals (Sweden)

    J. Lelieveld

    2007-12-01

    Full Text Available Hydroxyl (OH radicals play a vital role in maintaining the oxidizing capacity of the atmosphere. To understand variations in OH radicals both source and sink terms must be understood. Currently the overall sink term, or the total atmospheric reactivity to OH, is poorly constrained. Here, we present a new on-line method to directly measure the total OH reactivity (i.e.~total loss rate of OH radicals in a sampled air mass. In this method, a reactive molecule (X, not normally present in air, is passed through a glass reactor and its concentration is monitored with a suitable detector. OH radicals are then introduced in the glass reactor at a constant rate to react with X, first in the presence of zero air and then in the presence of ambient air containing VOCs and other OH reactive species. Comparing the amount of X exiting the reactor with and without the ambient air allows the air reactivity to be determined. In our existing set up, X is pyrrole and the detector used is a proton transfer reaction mass spectrometer. The present dynamic range for ambient air reactivity is about 6 to 300 s−1. The system has been tested and calibrated with different single and mixed hydrocarbon standards showing excellent linearity and accountability with the reactivity of the standards. Field tests in the tropical rainforest of Suriname (~53 s−1 and the urban atmosphere of Mainz (~10 s−1 Germany, show the promise of the new method and indicate that a significant fraction of OH reactive species in the tropical forests is likely missed by current measurements. Suggestions for improvements to the technique and future applications are discussed.

  20. The role of advanced reactive surface area characterization in improving predictions of mineral reaction rates

    Science.gov (United States)

    Beckingham, L. E.; Zhang, S.; Mitnick, E.; Cole, D. R.; Yang, L.; Anovitz, L. M.; Sheets, J.; Swift, A.; Kneafsey, T. J.; Landrot, G.; Mito, S.; Xue, Z.; Steefel, C. I.; DePaolo, D. J.; Ajo Franklin, J. B.

    2014-12-01

    Geologic sequestration of CO2 in deep sedimentary formations is a promising means of mitigating carbon emissions from coal-fired power plants but the long-term fate of injected CO2 is challenging to predict. Reactive transport models are used to gain insight over long times but rely on laboratory determined mineral reaction rates that have been difficult to extrapolate to field systems. This, in part, is due to a lack of understanding of mineral reactive surface area. Many models use an arbitrary approximation of reactive surface area, applying orders of magnitude scaling factors to measured BET or geometric surface areas. Recently, a few more sophisticated approaches have used 2D and 3D image analyses to determine mineral-specific reactive surface areas that account for the accessibility of minerals. However, the ability of these advanced surface area estimates to improve predictions of mineral reaction rates has yet to be determined. In this study, we fuse X-ray microCT, SEM QEMSCAN, XRD, SANS, and SEM-FIB analysis to determine mineral-specific accessible reactive surface areas for a core sample from the Nagaoka pilot CO2 injection site (Japan). This sample is primarily quartz, plagioclase, smectite, K-feldspar, and pyroxene. SEM imaging shows abundant smectite cement and grain coatings that decrease the fluid accessibility of other minerals. However, analysis of FIB-SEM images reveals that smectite nano-pores are well connected such that access to underlying minerals is not occluded by smectite coatings. Mineral-specific accessible surfaces are determined, accounting for the connectivity of the pore space with and without connected smectite nano-pores. The large-scale impact of variations in accessibility and dissolution rates are then determined through continuum scale modeling using grid-cell specific information on accessible surface areas. This approach will be compared with a traditional continuum scale model using mineral abundances and common surface area

  1. Total OH Reactivity Measurements in the Boreal Forest

    Science.gov (United States)

    Praplan, A. P.; Hellén, H.; Hakola, H.; Hatakka, J.

    2015-12-01

    INTRODUCTION Atmospheric total OH reactivity (Rtotal) can be measured (Kovacs and Brune, 2001; Sinha et al., 2008) or it can be calculated according to Rtotal = ∑i kOH+X_i [Xi] where kOH+X_i corresponds to the reaction rate coefficient for the reaction of OH with a given compound Xi and [Xi] its concentration. Studies suggest that in some environments a large fraction of missing reactivity, comparing calculated Rtotal with ambient total OH reactivity measurements (Di Carlo et al., 2004; Hofzumahaus et al., 2009). In this study Rtotal has been measured using the Comparative Reactivity Method (Sinha et al., 2008). Levels of the reference compound (pyrrole, C4H5N) are monitored by gas chromatography every 2 minutes and Rtotal is derived from the difference of reactivity between zero and ambient air. RESULTS Around 36 hours of preliminary total OH reactivity data (30 May until 2 June 2015) are presented in Fig. 1. Its range matches previous studies for this site (Nölscher et al., 2012; Sinha et al., 2010) and is similar to values in another pine forest (Nakashima et al., 2014). The setup used during the period presented here has been updated and more recent data will be presented, as well as a comparison with calculated OH reactivity from measured individual species. ACKNOWLEDGEMENTS This work was supported by Academy of Finland (Academy Research Fellowship No. 275608). The authors acknowledge Juuso Raine for technical support. REFERENCES Di Carlo et al. (2004). Science 304, 722-725.Hofzumahaus et al. (2009). Science 324, 1702-1704.Kovacs and Brune (2001). J. Atmos. Chem. 39, 105-122.Nakashima et al. (2014). Atmos. Env. 85, 1-8.Nölscher et al. (2012). Atmos. Chem. Phys. 12, 8257-8270.Sinha et al. (2008). Atmos. Chem. Phys. 8, 2213-2227.Sinha et al. (2010). Environ. Sci. Technol. 44, 6614-6620.

  2. Airborne measurement of OH reactivity during INTEX-B

    Directory of Open Access Journals (Sweden)

    J. Mao

    2009-01-01

    Full Text Available The measurement of OH reactivity, the inverse of the OH lifetime, provides a powerful tool to investigate atmospheric photochemistry. A new airborne OH reactivity instrument was designed and deployed for the first time on the NASA DC-8 aircraft during the second phase of Intercontinental Chemical Transport Experiment-B (INTEX-B campaign, which was focused on the Asian pollution outflow over Pacific Ocean and was based in Hawaii and Alaska. The OH reactivity was measured by adding OH, generated by photolyzing water vapor with 185 nm UV light in a moveable wand, to the flow of ambient air in a flow tube and measuring the OH signal with laser induced fluorescence. As the wand was pulled back away from the OH detector, the OH signal decay was recorded; the slope of −Δln(signal/Δ time was the OH reactivity. The overall absolute uncertainty at the 2σ confidence levels is about 1 s−1 at low altitudes (for decay about 6 s−1, and 0.7 s−1 at high altitudes (for decay about 2 s−1. From the median vertical profile obtained in the second phase of INTEX-B, the measured OH reactivity (4.0±1.0 s−1 is higher than the OH reactivity calculated from assuming that OH was in steady state (3.3±0.8 s−1, and even higher than the OH reactivity that was calculated from the total measurements of all OH reactants (1.6±0.4 s−1. Model calculations show that the missing OH reactivity is consistent with the over-predicted OH and under-predicted HCHO in the boundary layer and lower troposphere. The over-predicted OH and under-predicted HCHO suggest that the missing OH sinks are most likely related to some highly reactive VOCs that have HCHO as an oxidation product.

  3. The Comparative Reactivity Method ─ a new tool to measure total OH Reactivity in ambient air

    Directory of Open Access Journals (Sweden)

    J. Lelieveld

    2008-04-01

    Full Text Available Hydroxyl (OH radicals play a vital role in maintaining the oxidizing capacity of the atmosphere. To understand variations in OH radicals both source and sink terms must be understood. Currently the overall sink term, or the total atmospheric reactivity to OH, is poorly constrained. Here, we present a new on-line method to directly measure the total OH reactivity (i.e.~total loss rate of OH radicals in a sampled air mass. In this method, a reactive molecule (X, not normally present in air, is passed through a glass reactor and its concentration is monitored with a suitable detector. OH radicals are then introduced in the glass reactor at a constant rate to react with X, first in the presence of zero air and then in the presence of ambient air containing VOCs and other OH reactive species. Comparing the amount of X exiting the reactor with and without the ambient air allows the air reactivity to be determined. In our existing set up, X is pyrrole and the detector used is a proton transfer reaction mass spectrometer. The present dynamic range for ambient air reactivity is about 6 to 300 s−1, with an overall maximum uncertainty of 25% above 8 s−1 and up to 50% between 6–8 s−1. The system has been tested and calibrated with different single and mixed hydrocarbon standards showing excellent linearity and accountability with the reactivity of the standards. Potential interferences such as high NO in ambient air, varying relative humidity and photolysis of pyrrole within the setup have also been investigated. While interferences due changing humidity and photolysis of pyrrole are easily overcome by ensuring that humidity in the set up does not change drastically and the photolytic loss of pyrrole is measured and taken into account, respectively, NO>10 ppb in ambient air remains a significant interference for the current configuration of the instrument. Field tests in the tropical rainforest of Suriname (~53 s and the urban atmosphere of Mainz

  4. Advanced hydraulic fracturing methods to create in situ reactive barriers

    Energy Technology Data Exchange (ETDEWEB)

    Murdoch, L. [FRx Inc., Cincinnati, OH (United States)]|[Clemson Univ., SC (United States); Siegrist, B. [Oak Ridge National Lab., TN (United States); Vesper, S. [Univ. of Cincinnati, OH (United States)] [and others

    1997-12-31

    Many contaminated areas consist of a source area and a plume. In the source area, the contaminant moves vertically downward from a release point through the vadose zone to an underlying saturated region. Where contaminants are organic liquids, NAPL may accumulate on the water table, or it may continue to migrate downward through the saturated region. Early developments of permeable barrier technology have focused on intercepting horizontally moving plumes with vertical structures, such as trenches, filled with reactive material capable of immobilizing or degrading dissolved contaminants. This focus resulted in part from a need to economically treat the potentially large volumes of contaminated water in a plume, and in part from the availability of construction technology to create the vertical structures that could house reactive compounds. Contaminant source areas, however, have thus far remained largely excluded from the application of permeable barrier technology. One reason for this is the lack of conventional construction methods for creating suitable horizontal structures that would place reactive materials in the path of downward-moving contaminants. Methods of hydraulic fracturing have been widely used to create flat-lying to gently dipping layers of granular material in unconsolidated sediments. Most applications thus far have involved filling fractures with coarse-grained sand to create permeable layers that will increase the discharge of wells recovering contaminated water or vapor. However, it is possible to fill fractures with other compounds that alter the chemical composition of the subsurface. One early application involved development and field testing micro-encapsulated sodium percarbonate, a solid compound that releases oxygen and can create aerobic conditions suitable for biodegradation in the subsurface for several months.

  5. Advanced hydraulic fracturing methods to create in situ reactive barriers

    International Nuclear Information System (INIS)

    Many contaminated areas consist of a source area and a plume. In the source area, the contaminant moves vertically downward from a release point through the vadose zone to an underlying saturated region. Where contaminants are organic liquids, NAPL may accumulate on the water table, or it may continue to migrate downward through the saturated region. Early developments of permeable barrier technology have focused on intercepting horizontally moving plumes with vertical structures, such as trenches, filled with reactive material capable of immobilizing or degrading dissolved contaminants. This focus resulted in part from a need to economically treat the potentially large volumes of contaminated water in a plume, and in part from the availability of construction technology to create the vertical structures that could house reactive compounds. Contaminant source areas, however, have thus far remained largely excluded from the application of permeable barrier technology. One reason for this is the lack of conventional construction methods for creating suitable horizontal structures that would place reactive materials in the path of downward-moving contaminants. Methods of hydraulic fracturing have been widely used to create flat-lying to gently dipping layers of granular material in unconsolidated sediments. Most applications thus far have involved filling fractures with coarse-grained sand to create permeable layers that will increase the discharge of wells recovering contaminated water or vapor. However, it is possible to fill fractures with other compounds that alter the chemical composition of the subsurface. One early application involved development and field testing micro-encapsulated sodium percarbonate, a solid compound that releases oxygen and can create aerobic conditions suitable for biodegradation in the subsurface for several months

  6. Skin test reactivity among Danish children measured 15 years apart

    DEFF Research Database (Denmark)

    Thomsen, SF; Ulrik, Charlotte Suppli; Porsbjerg, C;

    2006-01-01

    (n = 527) and the second in 2001 (n = 480). Skin test reactivity to nine common aeroallergens was measured at both occasions. RESULTS: The prevalence of positive SPT to at least one allergen decreased from 24.1% in 1986 to 18.9% in 2001, (p = 0.05). We found a declining prevalence of sensitization to...

  7. Equivalency of open loop and closed loop reactivity measurement techniques

    International Nuclear Information System (INIS)

    There is a need for integral physics data on reactivity worth of minor actinides (transmutation studies) and fission products (burn-up credit) for validation of differential data. In France, the MINERVE facility has been used to determine low-worth reactivity measurements using a closed-loop oscillator technique. However, it has been deemed unfeasible to perform such measurements in a simulated fast reactor spectrum in MINERVE as was done in the past. We propose that reactivity worth measurements could be directly performed in the fast reactor MASURCA using an open loop oscillator technique. Theoretically, these two methods should be equal in how well a measurement can be known. This paper compares open loop techniques (pile oscillator method analyzed with harmonic analysis and inverse kinetics) with the closed loop technique (reactivity oscillator method). Open and closed loop techniques are defined in the classic control sense – closed loop utilizes feedback while open loop has no imposed feedback. Experiments were performed to show variations based on frequency and power as well as the determination of a small worth sample on the order of 0.04 cents with standard deviations on the order of 0.003 cents. All techniques were shown to produce results that were limited only by reactor noise. (author)

  8. Measuring and monitoring KIPT Neutron Source Facility Reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yan [Argonne National Lab. (ANL), Argonne, IL (United States); Gohar, Yousry [Argonne National Lab. (ANL), Argonne, IL (United States); Zhong, Zhaopeng [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-08-01

    Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on developing and constructing a neutron source facility at Kharkov, Ukraine. The facility consists of an accelerator-driven subcritical system. The accelerator has a 100 kW electron beam using 100 MeV electrons. The subcritical assembly has keff less than 0.98. To ensure the safe operation of this neutron source facility, the reactivity of the subcritical core has to be accurately determined and continuously monitored. A technique which combines the area-ratio method and the flux-to-current ratio method is purposed to determine the reactivity of the KIPT subcritical assembly at various conditions. In particular, the area-ratio method can determine the absolute reactivity of the subcritical assembly in units of dollars by performing pulsed-neutron experiments. It provides reference reactivities for the flux-to-current ratio method to track and monitor the reactivity deviations from the reference state while the facility is at other operation modes. Monte Carlo simulations are performed to simulate both methods using the numerical model of the KIPT subcritical assembly. It is found that the reactivities obtained from both the area-ratio method and the flux-to-current ratio method are spatially dependent on the neutron detector locations and types. Numerical simulations also suggest optimal neutron detector locations to minimize the spatial effects in the flux-to-current ratio method. The spatial correction factors are calculated using Monte Carlo methods for both measuring methods at the selected neutron detector locations. Monte Carlo simulations are also performed to verify the accuracy of the flux-to-current ratio method in monitoring the reactivity swing during a fuel burnup cycle.

  9. Advanced hydraulic fracturing methods to create in situ reactive barriers

    International Nuclear Information System (INIS)

    This article describes the use of hydraulic fracturing to increase permeability in geologic formations where in-situ remedial action of contaminant plumes will be performed. Several in-situ treatment strategies are discussed including the use of hydraulic fracturing to create in situ redox zones for treatment of organics and inorganics. Hydraulic fracturing methods offer a mechanism for the in-situ treatment of gently dipping layers of reactive compounds. Specialized methods using real-time monitoring and a high-energy jet during fracturing allow the form of the fracture to be influenced, such as creation of assymmetric fractures beneath potential sources (i.e. tanks, pits, buildings) that should not be penetrated by boring. Some examples of field applications of this technique such as creating fractures filled with zero-valent iron to reductively dechlorinate halogenated hydrocarbons, and the use of granular activated carbon to adsorb compounds are discussed

  10. Cardiovascular reactivity in real life settings: Measurement, mechanisms and meaning

    OpenAIRE

    Zanstra, Ydwine Jieldouw; Johnston, Derek William

    2010-01-01

    Cardiovascular reactivity to stress is most commonly studied in the laboratory. Laboratory stressors may have limited ecological validity due to the many constraints, operating in controlled environments. This paper will focus on paradigms that involve the measurement of cardiovascular reactions to stress in real life using ambulatory monitors. Probably the most commonly used paradigm in this field is to measure the response to a specific real life stressor, such as sitting an exam or public ...

  11. Theoretical and experimental studies on measurement of large negative reactivities

    International Nuclear Information System (INIS)

    A theoretical modification method for obtaining the static reactivity by experiment, and its experimental verification, reliability and applicability in power reactors are described. A formulation of the correction factor is given for neutron source multiplication method, source jerk method, rod drop method and pulsed neutron source method respectively. Experimental verification is made on FCA assemblies VI-2 B2 and VII-1, using up to 9 simulating control rods; the reactivity ranges from -0.43%Δk/k to -10%Δk/k. The three methods are used for verification. By application of the theoretical modification to the experiments, the reactivities not depending on the detector position are obtained, which are in good agreement between the different measuring methods. Reliability of the correction factor is examined both numerically and analytically with variational method. The error of the correction factor caused by errors in group constants etc. is much smaller than that of the calculated reactivity with the same group constants. (author)

  12. Optimized CANDU-6 cell and reactivity device supercell models for advanced fuels reactor database generation

    International Nuclear Information System (INIS)

    Highlights: • Propose an optimize 2-D model for CANDU lattice cell. • Propose a new 3-D simulation model for CANDU reactivity devices. • Implement other acceleration techniques for reactivity device simulations. • Reactivity device incremental cross sections for advanced CANDU fuels with thorium. - Abstract: Several 2D cell and 3D supercell models for reactivity device simulation have been proposed along the years for CANDU-6 reactors to generate 2-group cross section databases for finite core calculations in diffusion. Although these models are appropriate for natural uranium fuel, they are either too approximate or too expensive in terms of computer time to be used for optimization studies of advanced fuel cycles. Here we present a method to optimize the 2D spatial mesh to be used for a collision probability solution of the transport equation for CANDU cells. We also propose a technique to improve the modeling and accelerate the evaluation, in deterministic transport theory, of the incremental cross sections and diffusion coefficients associated with reactivity devices required for reactor calculations

  13. Development and Investigation of Reactivity Measurement Methods in Subcritical Cores

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Johanna

    2005-05-01

    Subcriticality measurements during core loading and in future accelerator driven systems have a clear safety relevance. In this thesis two subcriticality methods are treated: the Feynman-alpha and the source modulation method. The Feynman-alpha method is a technique to determine the reactivity from the relative variance of the detector counts during a measurement period. The period length is varied to get the full time dependence of the variance-to-mean. The corresponding theoretical formula was known only with stationary sources. In this thesis, due to its relevance for novel reactivity measurement methods, the Feynman-alpha formulae for pulsed sources for both the stochastic and the deterministic cases are treated. Formulae neglecting as well as including the delayed neutrons are derived. The formulae neglecting delayed neutrons are experimentally verified with quite good agreement. The second reactivity measurement technique investigated in this thesis is the so-called source modulation technique. The theory of the method was elaborated on the assumption of point kinetics, but in practice the method will be applied by using the signal from a single local neutron detector. Applicability of the method therefore assumes point kinetic behaviour of the core. Hence, first the conditions of the point kinetic behaviour of subcritical cores was investigated. After that the performance of the source modulation technique in the general case as well as and in the limit of exact point kinetic behaviour was examined. We obtained the unexpected result that the method has a finite, non-negligible error even in the limit of point kinetic behaviour, and a substantial error in the operation range of future accelerator driven subcritical reactors (ADS). In practice therefore the method needs to be calibrated by some other method for on-line applications.

  14. Development and Investigation of Reactivity Measurement Methods in Subcritical Cores

    International Nuclear Information System (INIS)

    Subcriticality measurements during core loading and in future accelerator driven systems have a clear safety relevance. In this thesis two subcriticality methods are treated: the Feynman-alpha and the source modulation method. The Feynman-alpha method is a technique to determine the reactivity from the relative variance of the detector counts during a measurement period. The period length is varied to get the full time dependence of the variance-to-mean. The corresponding theoretical formula was known only with stationary sources. In this thesis, due to its relevance for novel reactivity measurement methods, the Feynman-alpha formulae for pulsed sources for both the stochastic and the deterministic cases are treated. Formulae neglecting as well as including the delayed neutrons are derived. The formulae neglecting delayed neutrons are experimentally verified with quite good agreement. The second reactivity measurement technique investigated in this thesis is the so-called source modulation technique. The theory of the method was elaborated on the assumption of point kinetics, but in practice the method will be applied by using the signal from a single local neutron detector. Applicability of the method therefore assumes point kinetic behaviour of the core. Hence, first the conditions of the point kinetic behaviour of subcritical cores was investigated. After that the performance of the source modulation technique in the general case as well as and in the limit of exact point kinetic behaviour was examined. We obtained the unexpected result that the method has a finite, non-negligible error even in the limit of point kinetic behaviour, and a substantial error in the operation range of future accelerator driven subcritical reactors (ADS). In practice therefore the method needs to be calibrated by some other method for on-line applications

  15. Reactivity measurements and neutron spectroscopy in the MUSE-4 experiment

    International Nuclear Information System (INIS)

    Reactivity measurement gives access to an important parameter in reactor physics, which can be achieved by many experimental techniques. This paper describes our current efforts to develop and test a method which makes use of the Pulsed Neutron Source technique. To do so, the MASURCA fast neutron reactor was coupled to the pulsed neutron generator GENEPI. For various subcritical configurations, the decay of the neutron population which follows a neutron burst was recorded using in-core fission chambers. The analysis relies on the distribution of time intervals between fission events belonging to the same fission chain. An excellent agreement is found between the measured reactivities and the expected ones, from a near criticality configuration down to very deep subcritical levels. The second part of the paper is devoted to the measurement of the neutron energy distribution. A proportional counter was used to measure the energy deposition of the neutrons in the 3He active gas. A calibration of the counter response allows us to reconstruct the neutron flux at the detector location. A reasonable agreement is found with a Monte Carlo prediction. This gives us a direct test of the stochastic approach to the neutron transport. (authors)

  16. On Line Measurement of Reactivity Worth of TRIGA Mark-II Research Reactor Control Rods

    OpenAIRE

    Nusrat Jahan; Mamunur M. Rashid; F. Ahmed; M. G. S. Islam; M. Aliuzzaman; Islam, S.M.A

    2011-01-01

    The reactivity worth measurement system for control rods of the TRIGA MARK-II research reactor of Bangladesh has been design and developed. The theory of the kinetic technique of measuring reactivity has been used by this measurement system. The system comprises of indigenous hardware and software for online acquisition of neutron flux signals from reactor console and then computes the reactivity worth accordingly. Here for the TRIGA MARK-II research reactor, the reactivity measurement system...

  17. Levels of procalcitonin, C-reactive protein and neopterin in patients with advanced HIV-1 infection

    Directory of Open Access Journals (Sweden)

    P Bipath

    2012-06-01

    Full Text Available Objectives. To compare the value of procalcitonin, C-reactive protein (CRP and neopterin as indicators of immune deficiency, co-infection, efficacy of treatment, and disease progression, in patients with advanced HIV-1 infection. Design. Cross-sectional, investigating baseline blood measurements and clinical observations in 82 HIV-positive patients divided into an antiretroviral treatment (ART group and an ART-naïve group. Setting. Secondary general hospital in Pretoria. Results. Procalcitonin and CRP levels showed no significant differences between the ART and ART-naïve groups, and no correlations with CD4 counts or viral loads. CRP levels were significantly higher with TB co-infection (p<0.05. Neopterin levels were raised above normal in 92% of the ART-naïve group and in 75% of the ART group. The levels were significantly higher (p<0.05 in the ART- naïve group. Negative correlations were found between neopterin and CD4 counts for the total patient group (r=-0.482; p<0.001. Neopterin was significantly (p<0.05 higher in the HIV/TB co-infection group than in those without TB. Higher neopterin levels at baseline were associated with a decline in CD4 counts over the ensuing 6-month period, and patients with higher baseline neopterin levels developed more complications over the 6-month period. Conclusions. Compared with procalcitonin and CRP, neopterin appears to be associated with the degree of immunodeficiency and of co-infection with TB. Neopterin levels may be investigated further as a measure of disease progression or treatment response. S Afr J HIV Med 2012;13(2:78-82.

  18. Measurement of xenon reactivity in the reactor of the nuclear ship 'MUTSU'

    Energy Technology Data Exchange (ETDEWEB)

    Itagaki, Masafumi; Miyoshi, Yoshinori (Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment); Gakuhari, Kazuhiko; Okada, Noboru

    1993-07-01

    This report deals with the measurement of reactivity changes caused by the increase and decrease of xenon concentration in the reactor core of the nuclear ship 'MUTSU' after a change from long-term operation at 70 % to zero power. The change in xenon reactivity was compensated by control-rod movements and the compensated reactivity was measured using a digital reactivity meter. The xenon override peak was recognized five and half hours after the start of power reduction. The equilibrium and peak reactivities of xenon were estimated by reading the initial and peak values of a theoretical curve which was fitted to the measured variation in xenon reactivity. The xenon reactivity results obtained by the present method can be considered to be accurate since no control-rod worth data were used and the measured quantity was the reactivity itself. (author).

  19. Skin test reactivity among Danish children measured 15 years apart

    DEFF Research Database (Denmark)

    Thomsen, SF; Ulrik, Charlotte Suppli; Porsbjerg, C;

    2006-01-01

    test (SPT) positivity in Danish children has changed from 1986 to 2001. METHODS: Serial cross-sectional studies of two different random population samples of children aged 7 to 17 years of age, living in urban Copenhagen, Denmark, were performed 15 years apart. The first cohort was investigated in 1986...... (n = 527) and the second in 2001 (n = 480). Skin test reactivity to nine common aeroallergens was measured at both occasions. RESULTS: The prevalence of positive SPT to at least one allergen decreased from 24.1% in 1986 to 18.9% in 2001, (p = 0.05). We found a declining prevalence of sensitization...... to most allergens tested, statistically significant; however, only for mugwort and Alternaria iridis. Among subjects, who were sensitized to only one allergen, we found significantly fewer individuals with reactions to D. pteronyssinus and mugwort. CONCLUSIONS: The prevalence of atopic sensitization...

  20. Atmospheric measurements of total OH reactivity: Intercomparison of the pump-probe technique and the comparative reactivity method

    Science.gov (United States)

    Dusanter, Sebastien; Hansen, Robert; Leonardis, Thierry; Schoemaecker, Coralie; Blocquet, Marion; Fittschen, Christa; Hanoune, Benjamin; Sinha, Vinayak; Stevens, Philip; Locoge, Nadine

    2013-04-01

    The hydroxyl radical (OH) drives the oxidation of organic trace gases that can lead to the production of ozone and secondary organic aerosols in the atmosphere. A complete understanding of the sources and sinks of OH is therefore important to address issues related to both air quality and climate change. However, recent measurements of total OH reactivity [1-2], which is the inverse of the OH lifetime, have pointed out that our understanding of OH sinks is still incomplete and important reactive trace gases have not yet been identified. These measurements of total OH reactivity are of particular interest since they provide a critical test of our understanding of the OH budget. Three techniques are available to measure the total OH reactivity, including the total OH loss rate method [3], the pump-probe method [4], and the comparative reactivity method (CRM) [5]. While the first two methods are based on direct measurements of OH decays using laser-induced fluorescence instruments, the CRM is based on a different approach in which a tracer molecule is detected instead of OH to determine the ambient OH loss rate. As these instruments were deployed in different field campaigns, intercomparison exercises would be useful to ensure the accuracy of the measurements. However, such intercomparisons have not yet been published. An informal intercomparison involving a CRM instrument from the Ecole des Mines de Douai (EMD) and a pump-probe instrument from the laboratory Physicochimie des Processus de Combustion et de l'Atmosphere (PC2A) took place in an urban environment at the university of Lille (France). The two OH reactivity instruments measured continuously side by side for a duration of two weeks. Collocated measurements of trace gases were also performed using O3, NOx and SO2 monitors, as well as two automated chromatographic instruments capable of measuring more than 50 volatile organic compounds (VOC). We will present cross calibrations of the two OH reactivity

  1. Advances in near-infrared measurements

    CERN Document Server

    Patonay, Gabor

    1991-01-01

    Advances in Near-Infrared Measurements, Volume 1 provides an overview of near-infrared spectroscopy. The book is comprised of six chapters that tackle various areas of near-infrared measurement. Chapter 1 discusses remote monitoring techniques in near-infrared spectroscopy with an emphasis on fiber optics. Chapter 2 covers the applications of fibers using Raman techniques, and Chapter 3 tackles the difficulties associated with near-infrared data analysis. The subsequent chapters present examples of the capabilities of near-infrared spectroscopy from various research groups. The text wi

  2. ADVANCING REACTIVE TRACER METHODS FOR MONITORING THERMAL DRAWDOWN IN GEOTHERMAL ENHANCED GEOTHERMAL RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell A. Plummer; Carl D. Palmer; Earl D. Mattson; George D. Redden; Laurence C. Hull

    2010-10-01

    Reactive tracers have long been considered a possible means of measuring thermal drawdown in a geothermal system, before significant cooling occurs at the extraction well. Here, we examine the sensitivity of the proposed method to evaluate reservoir cooling and demonstrate that while the sensitivity of the method as generally proposed is low, it may be practical under certain conditions.

  3. The Measurement of Reactivity In Multiregion Subcritical Systems by the Pulsed Neutron Technique

    International Nuclear Information System (INIS)

    The prompt decay of a thermalized burst of neutrons in a multiregion subcritical system is examined using a two-group diffusion theory. It is shown that a relationship can be established between the prompt decay constant of the fundamental mode and the effective multiplication factor of the system in terms of two parameters, defined, for the purposes of this paper, as the reactor response coefficient and the prompt decay correction and which depend to a large extent on the spatial flux patterns within the system. For the uniform bare system, the response coefficient can be identified with the mean neutron lifetime in the system; for a multiregion system it represents a compound of the lifetimes in each region weighted by perturbation type integrals. The second parameter, the decay correction, can have no physical meaning in that it arises from an attempt to relate the two scales of reactivity involved; that is the scale using the prompt decay constant and the scale derived using the effective multiplication factor. The properties of these parameters are examined here with reference to an enriched uranium graphitemoderated reactor consisting of uniform core and reflector and it is shown that the two parameters are not uniquely defined by the reactivity of the system but depend on the method chosen to make the system subcritical. Two sets of measurements are treated by the theory. In one, the Windscale Advanced Gas-Cooled Reactor was shut down by a uniform poison. In the other the reactivity of a core in the zero-energy reactor HERO was varied by altering the loaded radius. The neutron pulse measurements are all shown to be in good agreement with more conventional methods of reactivity determination. Some discussion of the experimental techniques and the difficulties encountered in the graphite-moderated systems is presented. (author)

  4. Advanced high frequency partial discharge measuring system

    Science.gov (United States)

    Karady, George G.

    1994-01-01

    This report explains the Advanced Partial Discharge Measuring System in ASU's High Voltage Laboratory and presents some of the results obtained using the setup. While in operation an insulation is subjected to wide ranging temperature and voltage stresses. Hence, it is necessary to study the effect of temperature on the behavior of partial discharges in an insulation. The setup described in this report can be used to test samples at temperatures ranging from -50 C to 200 C. The aim of conducting the tests described herein is to be able to predict the behavior of an insulation under different operating conditions in addition to being able to predict the possibility of failure.

  5. Reactivity worth measurements on the CALIBAN reactor: interpretation of integral experiments for the nuclear data validation

    International Nuclear Information System (INIS)

    The good knowledge of nuclear data, input parameters for the neutron transport calculation codes, is necessary to support the advances of the nuclear industry. The purpose of this work is to bring pertinent information regarding the nuclear data integral validation process. Reactivity worth measurements have been performed on the Caliban reactor, they concern four materials of interest for the nuclear industry: gold, lutetium, plutonium and uranium 238. Experiments which have been conducted in order to improve the characterization of the core are also described and discussed, the latter are necessary to the good interpretation of reactivity worth measurements. The experimental procedures are described with their associated uncertainties, measurements are then compared to numerical results. The methods used in numerical calculations are reported, especially the multigroup cross sections generation for deterministic codes. The modeling of the experiments is presented along with the associated uncertainties. This comparison led to an interpretation concerning the qualification of nuclear data libraries. Discrepancies are reported, discussed and justify the need of such experiments. (author)

  6. Heterogeneous reactive transport under unsaturated transient conditions characterized by 3D electrical resistivity tomography and advanced lysimeter methods

    Science.gov (United States)

    Wehrer, Markus; Slater, Lee

    2015-04-01

    Our ability to predict flow and transport processes in the unsaturated critical zone is considerably limited by two characteristics: heterogeneity of flow and transience of boundary conditions. The causes of heterogeneous flow and transport are fairly well understood, yet the characterization and quantification of such processes in natural profiles remains challenging. This is due to current methods of observation, such as staining and isotope tracers, being unable to observe multiple events on the same profile and offering limited spatial information. In our study we demonstrate an approach to characterize preferential flow and transport processes applying a combination of geoelectrical methods and advanced lysimeter techniques. On an agricultural soil profile, which was transferred undisturbed into a lysimeter container, we systematically applied a variety of input flow boundary conditions, resembling natural precipitation events. We measured breakthroughs of a conservative tracer and of nitrate, originating from the application of a slow release fertilizer and serving as a reactive tracer. Flow and transport in the soil column were observed using electrical resistivity tomography (ERT), tensiometers, water content probes and a multicompartment suction plate (MSP). These techniques allowed a direct validation of water content dynamics and tracer breakthrough under transient boundary conditions characterized noninvasively by ERT. We were able to image the advancing infiltration front and the advancing front of tracer and nitrate using time lapse ERT. Water content changes associated with the advancing infiltration front dominated over pore fluid conductivity changes during short term precipitation events. Conversely, long-term displacement of the solute fronts was monitored during periods of constant water content in between infiltration events. We observed preferential flow phenomena through ERT and through the MSP, which agreed in general terms. The preferential

  7. Measurements and calculation of reactivity in the IEA-R1 nuclear reactor

    International Nuclear Information System (INIS)

    Techniques and experimentals procedures utilized in the measurement of some nuclear parameters related to reactivity are presented. Measurements of reactivity coefficients, such as void, temperature and power, and control rod worth were made in the IEA-R1 Research Reactor. The techniques used to perform the measurements were: i) stable period (control rod calibration), ii) inverse kinetics (digital reactivity meter), iii) aluminium slab insertion in the fuel element coolant channels (void reactivity), iv) nuclear reactor core temperature changes by means of the changes in the coolant systems of reactor core (isothermal reactivity coefficient) and v) by making perturbation in the core through the control rod motions (power reactivity coefficient and control rod calibration). By using the computer codes HAMMER, HAMMER-TECHNION and CITATION, the experiments realized in the IEA-R1 reactor were simulated. From this simulation, the theoretical reactivity parameters were estimated and compared with the respective experimental results. Furthermore, in the second fuel load of Angra-1 Nuclear Power Station, the IPEN-CNEN/SP digital reactivity - meter were used in the lower power test with the aim to assess the equipment performance. Among several tests, the reacticity-meter were used in parallel with a Westinghouse analogic reativimeter-meter) to measure the heat additiona point, critical boron concentration, control rod calibration, isothermal and moderator reactivity coefficient. These tests, and the results obtained by the digital reactivity-meter are described. The results were compared with those obtained by Westinghouse analogic reactivity meter, showing excellent agreement. (author)

  8. On Line Measurement of Reactivity Worth of TRIGA Mark-II Research Reactor Control Rods

    Directory of Open Access Journals (Sweden)

    Nusrat Jahan

    2011-09-01

    Full Text Available The reactivity worth measurement system for control rods of the TRIGA MARK-II research reactor of Bangladesh has been design and developed. The theory of the kinetic technique of measuring reactivity has been used by this measurement system. The system comprises of indigenous hardware and software for online acquisition of neutron flux signals from reactor console and then computes the reactivity worth accordingly. Here for the TRIGA MARK-II research reactor, the reactivity measurement system was implemented with a dedicated circuit assembly and a conventional personal computer. A high-level Visual Basic real-time programming has been developed for data acquisition, reactivity calculation, online display (numerically as well as graphically, saving data, etc. To measure reactivity worth of TRIGA reactor control rods the rod drop experimental technique has been adopted. The results of tests experiments, carried out with the rod drop method for measuring various reactivity worth of control rods have been presented in the paper. A comparison between this results with the results using period method and that of computation method, demonstrated that the response of this reactivity measurement system is fast enough to monitor and measure the safety-related reactivity and power excursions in the reactor.

  9. Measurement and Analysis of Sodium Void Reactivity Effect in CEFR

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The sodium void reactivity effect (SVRE) is one of the important parameters in the design and safety analysis of sodium-cooled fast reactors. In some serious accident conditions, for example the total instantaneous blockage (TIB) accident,

  10. Analytical estimation of control rod shadowing effect for excess reactivity measurement of HTTR

    International Nuclear Information System (INIS)

    The fuel addition method is generally used for the excess reactivity measurement of the initial core. The control rod shadowing effect for the excess reactivity measurement has been estimated analytically for High Temperature Engineering Test Reactor (HTTR). 3-dimensional whole core analyses were carried out. The movements of control rods in measurements were simulated in the calculation. It was made clear that the value of excess reactivity strongly depend on combinations of measuring control rods and compensating control rods. The differences in excess reactivity between combinations come from the control rod shadowing effect. The shadowing effect is reduced by the use of plural number of measuring and compensating control rods to prevent deep insertion of them into the core. The measured excess reactivity in the experiments is, however, smaller than the estimated value with shadowing effect. (author)

  11. Reactivity measurement in estimation of benzoquinone and benzoquinone derivatives' allergenicity.

    Science.gov (United States)

    Mbiya, Wilbes; Chipinda, Itai; Simoyi, Reuben H; Siegel, Paul D

    2016-01-01

    Benzoquinone (BQ) and benzoquinone derivatives (BQD) are used in the production of dyes and cosmetics. While BQ, an extreme skin sensitizer, is an electrophile known to covalently modify proteins via Michael Addition (MA) reaction whilst halogen substituted BQD undergo nucleophilic vinylic substitution (SNV) mechanism onto amine and thiol moieties on proteins, the allergenic effects of adding substituents on BQ have not been reported. The effects of inserting substituents on the BQ ring has not been studied in animal assays. However, mandated reduction/elimination of animals used in cosmetics testing in Europe has led to an increased need for alternatives for the prediction of skin sensitization potential. Electron withdrawing and electron donating substituents on BQ were assessed for effects on BQ reactivity toward nitrobenzene thiol (NBT). The NBT binding studies demonstrated that addition of EWG to BQ as exemplified by the chlorine substituted BQDs increased reactivity while addition of EDG as in the methyl substituted BQDs reduced reactivity. BQ and BQD skin allerginicity was evaluated in the murine local lymph node assay (LLNA). BQD with electron withdrawing groups had the highest chemical potency followed by unsubstituted BQ and the least potent were the BQD with electron donating groups. The BQD results demonstrate the impact of inductive effects on both BQ reactivity and allergenicity, and suggest the potential utility of chemical reactivity data for electrophilic allergen identification and potency ranking. PMID:26612505

  12. Advanced computational methods for the assessment of reactor core behaviour during reactivity initiated accidents. Final report

    International Nuclear Information System (INIS)

    The document at hand serves as the final report for the reactor safety research project RS1183 ''Advanced Computational Methods for the Assessment of Reactor Core Behavior During Reactivity-Initiated Accidents''. The work performed in the framework of this project was dedicated to the development, validation and application of advanced computational methods for the simulation of transients and accidents of nuclear installations. These simulation tools describe in particular the behavior of the reactor core (with respect to neutronics, thermal-hydraulics and thermal mechanics) at a very high level of detail. The overall goal of this project was the deployment of a modern nuclear computational chain which provides, besides advanced 3D tools for coupled neutronics/ thermal-hydraulics full core calculations, also appropriate tools for the generation of multi-group cross sections and Monte Carlo models for the verification of the individual calculational steps. This computational chain shall primarily be deployed for light water reactors (LWR), but should beyond that also be applicable for innovative reactor concepts. Thus, validation on computational benchmarks and critical experiments was of paramount importance. Finally, appropriate methods for uncertainty and sensitivity analysis were to be integrated into the computational framework, in order to assess and quantify the uncertainties due to insufficient knowledge of data, as well as due to methodological aspects.

  13. Advances in the MQDT approach of electron/molecular cation reactive collisions: High precision extensive calculations for applications

    Directory of Open Access Journals (Sweden)

    Motapon O.

    2015-01-01

    Full Text Available Recent advances in the stepwise multichannel quantum defect theory approach of electron/molecular cation reactive collisions have been applied to perform computations of cross sections and rate coefficients for dissociative recombination and electron-impact ro-vibrational transitions of H2+, BeH+ and their deuterated isotopomers. At very low energy, rovibronic interactions play a significant role in the dynamics, whereas at high energy, the dissociative excitation strongly competes with all other reactive processes.

  14. Measurement of OH reactivity by laser flash photolysis coupled with laser-induced fluorescence spectroscopy

    Science.gov (United States)

    Stone, Daniel; Whalley, Lisa K.; Ingham, Trevor; Edwards, Peter M.; Cryer, Danny R.; Brumby, Charlotte A.; Seakins, Paul W.; Heard, Dwayne E.

    2016-07-01

    OH reactivity (k'OH) is the total pseudo-first-order loss rate coefficient describing the removal of OH radicals to all sinks in the atmosphere, and is the inverse of the chemical lifetime of OH. Measurements of ambient OH reactivity can be used to discover the extent to which measured OH sinks contribute to the total OH loss rate. Thus, OH reactivity measurements enable determination of the comprehensiveness of measurements used in models to predict air quality and ozone production, and, in conjunction with measurements of OH radical concentrations, to assess our understanding of OH production rates. In this work, we describe the design and characterisation of an instrument to measure OH reactivity using laser flash photolysis coupled to laser-induced fluorescence (LFP-LIF) spectroscopy. The LFP-LIF technique produces OH radicals in isolation, and thus minimises potential interferences in OH reactivity measurements owing to the reaction of HO2 with NO which can occur if HO2 is co-produced with OH in the instrument. Capabilities of the instrument for ambient OH reactivity measurements are illustrated by data collected during field campaigns in London, UK, and York, UK. The instrumental limit of detection for k'OH was determined to be 1.0 s-1 for the campaign in London and 0.4 s-1 for the campaign in York. The precision, determined by laboratory experiment, is typically < 1 s-1 for most ambient measurements of OH reactivity. Total uncertainty in ambient measurements of OH reactivity is ˜ 6 %. We also present the coupling and characterisation of the LFP-LIF instrument to an atmospheric chamber for measurements of OH reactivity during simulated experiments, and provide suggestions for future improvements to OH reactivity LFP-LIF instruments.

  15. A practical method to determine background signals in dynamic control rod reactivity measurement

    International Nuclear Information System (INIS)

    A practical method to eliminate background signals from measured detector signals was developed for the Dynamic Control rod Reactivity Measurement (DCRM). The developed method is applied to determine the rod worth of Nuclear Power Plants in KOREA. (author)

  16. Uncertainty Evaluation of Reactivity Coefficients for a large advanced SFR Core Design

    International Nuclear Information System (INIS)

    Sodium Cooled Fast Reactors are currently being reshaped in order to meet Generation IV goals on economics, safety and reliability, sustainability and proliferation resistance. Recent studies have led to large SFR cores for a 3600 MWth power plants, cores which exhibit interesting features. The designs have had to balance between competing aspects such as sustainability and safety characteristics. Sustainability in neutronic terms is translated into positive breeding gain and safety into rather low Na void reactivity effects. The studies have been done on two SFR concepts using oxide and carbide fuels. The use of the sensitivity theory in the ERANOS determinist code system has been used. Calculations have been performed with different sodium evaluations: JEF2.2, ERALIB-1 and the most recent JEFF3.1 and ENDF/B-VII in order to make a broad comparison. Values for the Na void reactivity effect exhibit differences as large as 14% when using the different sodium libraries. Uncertainties due to nuclear data on the reactivity coefficients were performed with BOLNA variances-covariances data, the Na Void Effect uncertainties are near to 12% at 1 σ. Since, the uncertainties are far beyond the target accuracy for a design achieving high performance, two directions are envisaged: the first one is to perform new differential measurements or in a second attempt use integral experiments to improve effectively the nuclear data set and its uncertainties such as performed in the past with ERALIB1. (authors)

  17. Total OH reactivity measurements at Manitou Experimental Forest in summer season during BEACHON-SRM08

    Science.gov (United States)

    Nakashima, Y.; Kato, S.; Kajii, Y.; Greenberg, J.; Karl, T.; Turnipseed, A.; Apel, E. C.; Guenther, A. B.; Harley, P. C.; Smith, J. N.

    2009-12-01

    The hydroxyl radical (OH) is well known to play a central role in initiating the oxidation of a number of atmospheric species. Measurement of total OH reactivity is important not only to understand mechanisms of oxidant formation in the troposphere but also to estimate the total amount of trace gas species, especially volatile organic compounds (VOCs). We have developed an OH reactivity measurement system using a laser pump probe technique. OH was artificially generated by the photolysis of ozone to produce O(1D) followed by reaction of O(1D) with water vapor. The lifetime of OH was then measured by a laser induced fluorescence technique. We measured OH reactivity at urban and suburban areas of Tokyo and confirmed the existence of unknown reactive species. The measurement of OH reactivity in rural areas where the effect of anthropogenic emissions is thought to be small is another essential test to ascertain the existence of unknown species and their oxidant formation potential. Total OH reactivity was measured at Manitou Experimental Forest (MEF) during August 8th-6thand 22th-28th, 2008. MEF is located in the southern part of the Rocky Mountains and about 80 km south from Denver. MEF is covered with ponderosa pine and observations indicate that the effect of anthropogenic emissions is small. The value of OH reactivity was about 5-10 s-1, smaller than that measured in urban or suburban areas of Tokyo. During the measurement period, a strong thunderstorm and tornado formed near MEF: this coincided with a rapid increase in OH reactivity. Sporadically high OH reactivity was also observed during some days due to transport of pollutants from the Front Range Urban Corridor. Together with the measurement of OH reactivity, traces species such as CO, NO, NOy, O3 and SO2 were analyzed. VOCs were analyzed by GC-FID and PTR-MS techniques. From the calculation of OH reactivity based on the analysis of traces species, about 60% of OH reactivity for VOCs came from biogenic VOCs

  18. Total OH reactivity measurement in a BVOC dominated temperate forest during a summer campaign, 2014

    Science.gov (United States)

    Ramasamy, Sathiyamurthi; Ida, Akira; Jones, Charlotte; Kato, Shungo; Tsurumaru, Hiroshi; Kishimoto, Iori; Kawasaki, Shio; Sadanaga, Yasuhiro; Nakashima, Yoshihiro; Nakayama, Tomoki; Matsumi, Yutaka; Mochida, Michihiro; Kagami, Sara; Deng, Yange; Ogawa, Shuhei; Kawana, Kaori; Kajii, Yoshizumi

    2016-04-01

    A total OH reactivity measurement was conducted in coniferous forest located in Wakayama prefecture, Japan, during the summer of 2014. The average total OH reactivity, measured using a laser-induced pump and probe technique was 7.1 s-1. The measured OH reactivity was comparable with other coniferous and temperate forest measurements and much lower than that of tropical forests. OH reactivity varied diurnally and showed moderate linear correlation with temperature (r2 = 0.66) and light (r2 = 0.53). Monoterpene emitters, Cryptomeria japonica and Chamaecyparis obutsa, are the dominant tree species in this forest. Although clean air from the sea was predominant, the beginning of the campaign was influenced by transported anthropogenic pollutants and consequently a higher average OH reactivity of 9.8 s-1 with high missing sinks of 37.3% was determined. Cleaner conditions, along with cooler day-time temperatures during in the second half of the campaign resulted in a lower average OH reactivity of 6.0 s-1 with a lower missing OH reactivity of 21.5%. Monoterpenes, isoprene, acetaldehyde were the dominant contributors to the total OH reactivity, accounting for 23.7%, 17.0% and 14.5%, respectively.

  19. Detailed characterization of a Comparative Reactivity Method (CRM) instrument for ambient OH reactivity measurements: experiments vs. modeling

    Science.gov (United States)

    Michoud, Vincent; Locoge, Nadine; Dusanter, Sébastien

    2015-04-01

    The Hydroxyl radical (OH) is the main daytime oxidant in the troposphere, leading to the oxidation of Volatile Organic Compounds (VOCs) and the formation of harmful pollutants such as ozone (O3) and Secondary Organic Aerosols (SOA). While OH plays a key role in tropospheric chemistry, recent studies have highlighted that there are still uncertainties associated with the OH budget, i.e the identification of sources and sinks and the quantification of production and loss rates of this radical. It has been demonstrated that ambient measurements of the total OH loss rate (also called total OH reactivity) can be used to identify and reduce these uncertainties. In this context, the Comparative Reactivity Method (CRM), developed by Sinha et al. (ACP, 2008), is a promising technique to measure total OH reactivity in ambient air and has already been used during several field campaigns. This technique relies on monitoring competitive reactions of OH with ambient trace gases and a reference compound (pyrrole) in a sampling reactor to derive ambient OH reactivity. However, this technique requires a complex data processing chain that has yet to be carefully investigated in the laboratory. In this study, we present a detailed characterization of a CRM instrument developed at Mines Douai, France. Experiments have been performed to investigate the dependence of the CRM response on humidity, ambient NOx levels, and the pyrrole-to-OH ratio inside the sampling reactor. Box modelling of the chemistry occurring in the reactor has also been performed to assess our theoretical understanding of the CRM measurement. This work shows that the CRM response is sensitive to both humidity and NOx, which can be accounted for during data processing using parameterizations depending on the pyrrole-to-OH ratio. The agreement observed between laboratory studies and model results suggests a good understanding of the chemistry occurring in the sampling reactor and gives confidence in the CRM

  20. Advanced Chemical Reduction of Reduced Graphene Oxide and Its Photocatalytic Activity in Degrading Reactive Black 5

    Directory of Open Access Journals (Sweden)

    Christelle Pau Ping Wong

    2015-10-01

    Full Text Available Textile industries consume large volumes of water for dye processing, leading to undesirable toxic dyes in water bodies. Dyestuffs are harmful to human health and aquatic life, and such illnesses as cholera, dysentery, hepatitis A, and hinder the photosynthetic activity of aquatic plants. To overcome this environmental problem, the advanced oxidation process is a promising technique to mineralize a wide range of dyes in water systems. In this work, reduced graphene oxide (rGO was prepared via an advanced chemical reduction route, and its photocatalytic activity was tested by photodegrading Reactive Black 5 (RB5 dye in aqueous solution. rGO was synthesized by dispersing the graphite oxide into the water to form a graphene oxide (GO solution followed by the addition of hydrazine. Graphite oxide was prepared using a modified Hummers’ method by using potassium permanganate and concentrated sulphuric acid. The resulted rGO nanoparticles were characterized using ultraviolet-visible spectrophotometry (UV-Vis, X-ray powder diffraction (XRD, Raman, and Scanning Electron Microscopy (SEM to further investigate their chemical properties. A characteristic peak of rGO-48 h (275 cm−1 was observed in the UV spectrum. Further, the appearance of a broad peak (002, centred at 2θ = 24.1°, in XRD showing that graphene oxide was reduced to rGO. Based on our results, it was found that the resulted rGO-48 h nanoparticles achieved 49% photodecolorization of RB5 under UV irradiation at pH 3 in 60 min. This was attributed to the high and efficient electron transport behaviors of rGO between aromatic regions of rGO and RB5 molecules.

  1. Advanced Measurement Techniques for Spray Investigations

    OpenAIRE

    Bodoc, V.; Laurent, C; Biscos, Y.; Lavergne, G.

    2009-01-01

    International audience The objective of this paper is to present recent advances at Onera in the spray diagnostic and simulation fields. In the context of the reduction of engine pollutant emissions, the optimization of fuel spray injection represents phenomena of great fundamental and practical interest and is an important feature in the design of new prototypes of turbojet injection devices. The physics of spray formation, transport, evaporation and combustion are not completely understo...

  2. Hot gas flow cell for optical measurements on reactive gases

    DEFF Research Database (Denmark)

    Grosch, Helge; Fateev, Alexander; Nielsen, Karsten Lindorff; Clausen, Sønnik

    was validated for high resolution measurements at temperatures of up to 800 K (527 degrees C) in the ultraviolet (UV) and infrared (IR) regions (190-20 000 nm). Verification of the gas temperature in the cell is provided by a thermocouple and emission/transmission measurements in the IR and UV regions...

  3. Instantaneous Active and Reactive Power Measuring Method in Three Phase Power System

    Directory of Open Access Journals (Sweden)

    A. TAHRI

    2005-01-01

    Full Text Available This paper describes an electronic means of measuring the instantaneous active and reactive power absorbed by any electrical equipment. The measurements are based on the Clark (a-b and Park (d-q transformations. The system is useful to teach electrical machines in Park’s coordinates and it allows also the study and control of some power electronics converters that are connected to three phase power network, such as static VAR compensator. The principle of the measuring method of the active and reactive power is described, and analyzed for different tests. The effectiveness of the proposed measuring method is confirmed by experimental investigation employing a test system.

  4. Reactivity change measurements on plutonium-uranium fuel elements in hector experimental techniques and results

    International Nuclear Information System (INIS)

    The techniques used in making reactivity change measurements on HECTOR are described and discussed. Pile period measurements were used in the majority of oases, though the pile oscillator technique was used occasionally. These two methods are compared. Flux determinations were made in the vicinity of the fuel element samples using manganese foils, and the techniques used are described and an error assessment made. Results of both reactivity change and flux measurements on 1.2 in. diameter uranium and plutonium-uranium alloy fuel elements are presented, these measurements being carried out in a variety of graphite moderated lattices at temperatures up to 450 deg. C. (author)

  5. Integral reactivity measurement a multi-detector integrated concept for nuclear instrumentation systems: Description and results

    International Nuclear Information System (INIS)

    The typical use of a reactivity-meter is generally limited to the validation of a new fuel loading by computing the physical parameters (temperature coefficient, rod worth...). The reactivity calculation needs an input signal from a neutron detector proportional to the neutron flux. This measurement is directly linked to the NIS a new concept includes the reactivity-meter as a functional processing unit implemented into the monitoring part of the NIS. The up-to-date digital techniques operating safety networks allow the connection of the reactivity-meter to several detectors at the same time in order to improve the measurement. This paper shows the principles of these new concepts based on the experience acquired by DS and S on several projects in France and abroad. (authors)

  6. Integral measurement of fission-product reactivity worths in some fast reactor spectra

    International Nuclear Information System (INIS)

    The reactivity worth per atom for a number of fission-product isotopes relative to that of 235U was measured in three various fast-reactor spectra. The following isotopes were studied: 95Mo, 97Mo, 99Tc, 101Ru, 102Ru, 104Ru, 103Rh, 133Cs, 147Pm and 149Sm. A fission product mock-up sample was also included in the measurements. The reactivity worths were measured by the pile-oscillator technique. The fundamental mode amplitude of the perturbation signal was obtained through Fourier analysis. The experimental results are compared with calculated values obtained from perturbation calculations using published cross-sections for the sample materials. From a comparison between the measured and the calculated reactivity worths it is concluded that only the 95Mo, 104Ru and 149Sm worths are well predicted in all three systems. For the other samples, the calculated values are generally too high. (author)

  7. Loeb measures in practice recent advances

    CERN Document Server

    Cutland, Nigel J

    2000-01-01

    This expanded version of the 1997 European Mathematical Society Lectures given by the author in Helsinki, begins with a self-contained introduction to nonstandard analysis (NSA) and the construction of Loeb Measures, which are rich measures discovered in 1975 by Peter Loeb, using techniques from NSA. Subsequent chapters sketch a range of recent applications of Loeb measures due to the author and his collaborators, in such diverse fields as (stochastic) fluid mechanics, stochastic calculus of variations ("Malliavin" calculus) and the mathematical finance theory. The exposition is designed for a general audience, and no previous knowledge of either NSA or the various fields of applications is assumed.

  8. Advances in optical water isotope ratio measurements

    International Nuclear Information System (INIS)

    Isotope ratio mass spectrometers routinely achieve impressive measurement precision and high throughput. In spite of this, a number of fundamental and practical problems are encountered. These are most notable in the case of water, arguably the most important molecule in the environment. Optical techniques to measure stable isotope ratios are able to address at least some of these issues; particularly, in relation to sample pretreatment and the difficulty of in-situ measurements. After discussing some general design criteria for infrared laser-based isotope ratio spectrometers, the case made above will be illustrated with a number of different instruments in applications from earthbound to the atmospheric: From laboratory based ice-core water isotope analyses to in-situ water isotope measurements in the upper troposphere and lower stratosphere. (author)

  9. Lifetime measurement in Proserpine by reactivity modulation (1960)

    International Nuclear Information System (INIS)

    The measurement method consists in varying the neutron flux periodically by means of an oscillator with cadmium sectors. From the signal received on a detector the lifetime τ can be determined; for various velocities ω, we have: (n/δn)2 = (βeff/δk)2 + (τ/δk)2ω2. Various corrections are involved, in particular the calculation of the rates of different harmonics in the oscillator signal. (author)

  10. Control Rod Reactivity Measurements in the Aagesta Reactor with the Pulsed Neutron Method

    International Nuclear Information System (INIS)

    An extensive series of control rod measurements was made in the Aagesta reactor during the low power experimental period following the first criticality. This report describes the part of these investigations made with the pulsed neutron method, comprising nearly 300 measurements. The main objective was the determination of control rod reactivity worths for different rods and groups of rods, but some supplementary measurements were also made, e.g. a determination of the prompt neutron decay constant for the delayed critical condition and four different cores. The cores consisted of 20, 32, 68, and 140 fuel elements respectively, and measurements were made at room temperature and with the moderator level close to critical for each core, and for the 140-element core also with full moderator height and at the temperatures 140 deg C and 215 deg C. Both fully and partly inserted control rod groups were investigated. The measurements at critical water level give directly the control rod reactivity worths, whereas those with full water height give the shut-down reactivity. A comparison was made between measured reactivity worths for a number of rod groups and those calculated with the HETERO code. The prompt neutron decay constant at delayed criticality α0=β/l, for the full core at 215 deg C was found to be 9.60 ± 0.30/sec, corresponding to l = 0.76 ± 0.02 msec. The shut-down reactivity with 16 coarse control rods in pos. A-D 22, 40-04, 44, 26 is -5% at 25 deg C and -13% at 215 deg C. The relative error is usually around 8% in the reactivity worths, originating mainly from the higher harmonics content in the measured curves

  11. The MUSE-4 experiment: prompt reactivity and neutron spectrum measurements

    International Nuclear Information System (INIS)

    In the case of the use of ADS for incineration of nuclear waste and energy production a better knowledge of the ways to monitor the different reactor parameters is required. To do so, the MASURCA fast neutron reactor in different subcritical configurations has been coupled to a deuteron accelerator producing a pulse of neutrons in the middle of the core. We performed both dynamic and spectroscopic measurements. First, the time response of the core after a pulse is measured with a 235U fission chamber and a 3He proportional counter. We show that for a core close to criticality the neutron population behaves as predicted by the point kinetics theory. On the other hand, for subcriticality level relevant for ADS, the evolution of the neutron population is not a pure exponential and thus the point kinetics cannot be used to deduce the prompt multiplication factor. So we propose a new approach based partly on MCNP simulations and with less restrictive assumptions than those of the point kinetics. This method allows a determination of different prompt k values which are in good agreement with the expected ones. Spectroscopic measurements are also performed with a 3He proportional counter. From the specific response of the detector to monoenergetic neutrons it is possible to reconstruct the neutron energy spectrum at the detector location, which is found in good agreement with the simulated one below 0.6 MeV. Above this energy some studies are in progress to improve the detector response. These very preliminary results will be completed by further tests and experiments planned till the end of 2003. (authors)

  12. Recent advances in residual stress measurement

    International Nuclear Information System (INIS)

    Until recently residual stresses have been included in structural integrity assessments of nuclear pressure vessels and piping in a very primitive manner due to the lack of reliable residual stress measurement or prediction tools. This situation is changing the capabilities of newly emerging destructive (i.e. the contour method) and non-destructive (i.e. magnetic and high-energy synchrotron X-ray strain mapping) residual stress measurement techniques for evaluating ferritic and austenitic pressure vessel components are contrasted against more well-established methods. These new approaches offer the potential for obtaining area maps of residual stress or strain in welded plants, mock-up components or generic test-pieces. The mapped field may be used directly in structural integrity calculations, or indirectly to validate finite element process/structural models on which safety cases for pressurised nuclear systems are founded. These measurement methods are complementary in terms of application to actual plant, cost effectiveness and measurements in thick sections. In each case an exemplar case study is used to illustrate the method and to highlight its particular capabilities

  13. Advances in Delta-md measurements

    OpenAIRE

    Ronga, Frederic Jean

    2003-01-01

    We report the current status of Delta-md measurements at B-factories. The most recent world average is Delta-md = 0.502+-0.007 1/ps (1.4% accuracy). An estimate of the errors for 500 1/fb data is also given.

  14. IASI measurements of reactive trace species in biomass burning plumes

    Directory of Open Access Journals (Sweden)

    P.-F. Coheur

    2009-08-01

    Full Text Available This work presents observations of a series of short-lived species in biomass burning plumes from the Infrared Atmospheric Sounding Interferometer (IASI, launched onboard the MetOp-A platform in October 2006. The strong fires that have occurred in the Mediterranean Basin – and particularly Greece – in August 2007, and those in Southern Siberia and Eastern Mongolia in the early spring of 2008 are selected to support the analyses. We show that the IASI infrared spectra in these fire plumes contain distinctive signatures of ammonia (NH3, ethene (C2H4, methanol (CH3OH and formic acid (HCOOH in the atmospheric window between 800 and 1200 cm−1, with some noticeable differences between the plumes. Peroxyacetyl nitrate (CH3COOONO2, abbreviated as PAN was also observed with good confidence in some plumes and a tentative assignment of a broadband absorption spectral feature to acetic acid (CH3COOH is made. For several of these species these are the first reported measurements made from space in nadir geometry. The IASI measurements are analyzed for plume height and concentration distributions of NH3, C2H4 and CH3OH. The Greek fires are studied in greater detail for the days associated with the largest emissions. In addition to providing information on the spatial extent of the plume, the IASI retrievals allow an estimate of the total mass emissions for NH3, C2H4 and CH3OH. Enhancement ratios are calculated for the latter relative to carbon monoxide (CO, giving insight in the chemical processes occurring during the transport, the first day after the emission.

  15. Verification of assumptions in measurement of reactivity-time function of safety rods in RB reactor

    International Nuclear Information System (INIS)

    For accidental analyses of nuclear reactor devices it is necessary to know an accurate reactivity-time function p(t) for the reactor safety rods. It is, usually, determined in two steps. First, measuring safety rods reactivity-position function p(z). and second, rod position-time function z(t). In most of the cases function z(t) is determined by measurement of rod drop times and using assumption that acceleration during any particular interval of a rod motion is constant. To validate this assumption. Several numerical analyses have been done in this paper (author)

  16. Intercomparison of the comparative reactivity method (CRM) and pump-probe technique for measuring total OH reactivity in an urban environment

    Science.gov (United States)

    Hansen, R. F.; Blocquet, M.; Schoemaecker, C.; Léonardis, T.; Locoge, N.; Fittschen, C.; Hanoune, B.; Stevens, P. S.; Sinha, V.; Dusanter, S.

    2015-10-01

    The investigation of hydroxyl radical (OH) chemistry during intensive field campaigns has led to the development of several techniques dedicated to ambient measurements of total OH reactivity, which is the inverse of the OH lifetime. Three techniques are currently used during field campaigns, including the total OH loss rate method, the pump-probe method, and the comparative reactivity method. However, no formal intercomparison of these techniques has been published so far, and there is a need to ensure that measurements of total OH reactivity are consistent among the different techniques. An intercomparison of two OH reactivity instruments, one based on the comparative reactivity method (CRM) and the other based on the pump-probe method, was performed in October 2012 in a NOx-rich environment, which is known to be challenging for the CRM technique. This study presents an extensive description of the two instruments, the CRM instrument from Mines Douai (MD-CRM) and the pump-probe instrument from the University of Lille (UL-FAGE), and highlights instrumental issues associated with the two techniques. It was found that the CRM instrument used in this study underestimates ambient OH reactivity by approximately 20 % due to the photolysis of volatile organic compounds (VOCs) inside the sampling reactor; this value is dependent on the position of the lamp within the reactor. However, this issue can easily be fixed, and the photolysis of VOCs was successfully reduced to a negligible level after this intercomparison campaign. The UL-FAGE instrument may also underestimate ambient OH reactivity due to the difficulty to accurately measure the instrumental zero. It was found that the measurements are likely biased by approximately 2 s-1, due to impurities in humid zero air. Two weeks of ambient sampling indicate that the measurements performed by the two OH reactivity instruments are in agreement, within the measurement uncertainties for each instrument, for NOx mixing ratios

  17. Measurement of the power and temperature reactivity coefficients of the RTP TRIGA reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rabir, Mohamad Hairie, E-mail: m_hairie@nuclearmalaysia.gov.my

    2013-12-15

    This paper presents the experimental results of the power and temperature coefficients of reactivity of the RTP TRIGA reactor at the Malaysian Nuclear Agency. The power coefficient of reactivity obtained was approximately −0.26 ¢ kW{sup −1} (−1.81 × 10{sup −5} kW{sup –1}), and the measured temperature reactivity coefficient of the reactor was −0.82 ¢ °C{sup −1} (−5.77 × 10{sup −5} °C{sup −1}) and −1.15 ¢ °C{sup −1} (−8.08 × 10{sup −5} °C{sup −1}) in IFE C12 and IFE F16, respectively. The power defect, which is the change in reactivity taking place between zero power and the power of 850 kW was ∼2.19 $. Because of the negative temperature coefficient, a significant amount of reactivity is needed to compensate for the temperature change and allows the reactor to operate at the higher power levels in steady state. Throughout this experiment, it is the temperature of the fuel that was measured, not the isothermal temperature coefficient (ITC), which comprises both moderator and fuel.

  18. Reactivity and neutron emission measurements of burnt PWR fuel rod samples in LWR-PROTEUS phase II

    International Nuclear Information System (INIS)

    Measurements have been made of the reactivity effects and the neutron emission rates of uranium oxide and mixed oxide burnt fuel samples having a wide range of burnup values and coming from a Pressurised Water Reactor (PWR). The reactivity measurements have been made in a PWR lattice moderated in turn with: water, a water and heavy water mixture, and water containing boron. An interesting relationship has been found between the neutron emission rate and the measured reactivity. (authors)

  19. A simple approach to eliminate background signals in dynamic control rod reactivity measurements for LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E. K.; Woo, I. T.; Shin, H. C.; Ryu, S. J.; Bae, S. M. [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    2003-07-01

    Dynamic rod worth measurement (DRWM{sup TM}) methodology commercialized by Westinghouse was successfully applied to many nuclear power plants in USA to measure the control rod worth at Low Power Physics Tests. But in Korea, to increase the capacity of nuclear power plant, KEPRI has developed Dynamic Control rod Reactivity Measurement (DCRM) system using more rapid and sophisticated reactivity measurement methodology without the change of boron concentration. The object of this paper is to consider the practical method to eliminate background signals from measured ex-core detector signals. Because of relatively low rod insertion speed (40 {approx} 48 steps/min), the background signals affect the final results severely. Therefore a simple and practical method based on the behavior of integral rod worth curve was developed and applied. A total of 26 experimental results show that the proposed approach works to figure out the background signals.

  20. Strategies for measuring flows of reactive nitrogen at the landscape scale

    DEFF Research Database (Denmark)

    Theobald, M.R.; Akkal, N.; Bienkowski, J.;

    2011-01-01

    Within a rural landscape there are flows of reactive nitrogen (Nr) through and between the soil, vegetation, atmosphere and hydrological systems as well as transfer as a result of agricultural activities. Measurements of these flows and transfers have generally been limited to individual media (e...

  1. Measurement Reactivity and Fatigue Effects in Daily Diary Research with Families

    Science.gov (United States)

    Reynolds, Bridget M.; Robles, Theodore F.; Repetti, Rena L.

    2016-01-01

    Methodological challenges associated with measurement reactivity and fatigue were addressed using diary data collected from mothers (n = 47), fathers (n = 39), and children (n = 47; 8-13 years) across 56 consecutive days. Demonstrating the feasibility of extended diary studies with families, on-time compliance rates were upward of 90% for all…

  2. Analysis of reactivity coefficients measured in fast critical assemblies. Application to fissile elements in Masurca

    International Nuclear Information System (INIS)

    A simple, fast and sufficiently accurate method to interpret measurements of reactivity effects from sample oscillations is defined. This first-order perturbation method, based on the collision probability theory, accounts for the position of the sample in the cell and for the flux perturbation due to the sample and to its self-shielding. The method has been applied to a set of reactivity experiments carried out on a series of Pu or U cores in the Masurca, Sneak and Hermine assemblies; these provided basic information, especially on the capture cross-sections of Pu-239, U-238, higher isotopes of Pu and structural materials

  3. Development and application of dynamic control rod reactivity measurements methodology for LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Woo, I. T.; Lee, E. K.; Sin, H. C.; Ryu, S. J.; Bae, S. M.; Park, M.K.; Lee, C. S. [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    2002-10-01

    Dynamic rod worth measurement (DRWM{sup TM}) methodology commercialized by Westinghouse Co. was successfully applied to many nuclear power plants in USA to measure the control rod worth at Low Power Physics Tests. But in Korea, to increase the nuclear power plant economy using more quick and sophisticated reactivity measurement methodology without the change of boron concentration, KEPRI has developed Dynamic Control rod Reactivity Measurement (DCRM{sup TM}) methodology that was the results of a cooperative work with KAERI except the development of core analysis codes. And KAERI recently published the preliminary results for 4 control rod worths using their own inverse kinetics code and measured detector signals. The object of this paper is to show some DCRM results for the same measured data using KEPRI tools, RAST-K and INVERSE, and introduce DCRM system that could measure top and bottom detector signals fully digitally. As a result, background and noises signals at the region of low signal strength were very important to determine the rod worth. But for now, because there was no numerical model to describe the behavior of background signals, a method reflecting the characteristics of dynamic reactivity was suggested. And for noise, traditional data averaging technique was adopted. Each static worth of 8 control assemblies well agreed with those of NDR within 15%, the requirement of Tech. Spec.

  4. Radiosensitivity and hydroxyl radical reactivity of phosphate esters as measured by radiation-induced dephosphorylation

    International Nuclear Information System (INIS)

    The yields of inorganic phosphate from irradiated phosphate esters of biological interest have been measured in the presence of various free-radical scavengers. These studies indicated that hydroxyl radical attack on the phosphate esters accounts for most of this damage. Competition kinetics using different hydroxyl radical scavengers whose reactivities are known to have been used to estimate the rate-constants for the overall hydroxyl radical reactivities of the phosphate esters. The extent of hydroxyl-radical-induced dephosphorylation was very low for nucleotide derivatives, but high for some sugar and glycerol phosphates, reflecting the probability of hydroxyl radical abstraction at the α or β carbon atoms adjacent to the phosphate ester linkage. The hydroxyl radical reactivities of nucleotides, coenzymes, sugar phosphates and phospholipid components were all high (1 to 10x109M-1sec-1), indicating the importance of hydroxyl radical attack in the inactivation of these components in living cells, although not necessarily by dephosphorylation. (author)

  5. Preparation of bilinear weighted kinetics parameters for WWER-440 reactivity measurement

    International Nuclear Information System (INIS)

    A practical procedure for the computation of bilinear weighted core kinetics parameters of WWER-440 reactors, intended to be used in experimental reactivity determination by the inverse kinetics method is described. The results from its application are benchmarked against those obtained on the basis of a many-group fine-mesh two dimensional solution of the core boundary problem The sensitivity of core kinetics parameters and of the resultant experimental reactivity values to the variation of primary delayed neutron data is evaluated. The AER kinetics parameters benchmark is solved and the results are commented. Statistical data about calculated and measured reactivity effects during the start-up tests of units 1-4 of the Kozloduy NPP presented and discussed (Authors)

  6. Recent advances in low temperature studies on reactivity of radiation produced species in condensed media

    International Nuclear Information System (INIS)

    The advantages of low-temperature trapping as alternative to pulse methods are well recognized for determination of the structre of radiation produced intermediates. Now it is turning out that studies on reactivity of species trapped in vitrified systems may be more than complementary to those by pulse techniques at the ambient temperature. (author) 9 refs.; 2 figs

  7. Reactivity in Rapidly Collected Hygiene and Toilet Spot Check Measurements: A Cautionary Note for Longitudinal Studies

    OpenAIRE

    Arnold, Benjamin F.; Khush, Ranjiv S.; Ramaswamy, Padmavathi; Rajkumar, Paramasivan; Durairaj, Natesan; Ramaprabha, Prabhakar; Balakrishnan, Kalpana; Colford Jr., John M.

    2015-01-01

    Discreet collection of spot check observations to measure household hygiene conditions is a common measurement technique in epidemiologic studies of hygiene in low-income countries. The objective of this study was to determine whether the collection of spot check observations in longitudinal studies could itself induce reactivity (i.e., change participant behavior). We analyzed data from a 12-month prospective cohort study in rural Tamil Nadu, India that was conducted in the absence of any hy...

  8. Advanced Measuring (Instrumentation Methods for Nuclear Installations: A Review

    Directory of Open Access Journals (Sweden)

    Wang Qiu-kuan

    2012-01-01

    Full Text Available The nuclear technology has been widely used in the world. The research of measurement in nuclear installations involves many aspects, such as nuclear reactors, nuclear fuel cycle, safety and security, nuclear accident, after action, analysis, and environmental applications. In last decades, many advanced measuring devices and techniques have been widely applied in nuclear installations. This paper mainly introduces the development of the measuring (instrumentation methods for nuclear installations and the applications of these instruments and methods.

  9. C.I. Reactive Black 5 degradation by advanced electrochemical oxidation process, AEOP

    OpenAIRE

    Esteves, M. de Fátima; Sousa, Elisabete,1954-

    2007-01-01

    In the last decades, an increasing number of procedures to remove pollutants from wastewater have been reported. Advanced oxidation processes (AOPs) are one of those technologies used for this purpose, namely, for textile wastewater treatment. AOPs are environmentally friendly methods based on chemical, photochemical or photocatalytical production of hydroxyl radical (HO•). This strong oxidant can react with most organic compounds present in wastewater, as dyestuffs. In this paper, an Advance...

  10. Recursive Pyramid Algorithm-Based Discrete Wavelet Transform for Reactive Power Measurement in Smart Meters

    Directory of Open Access Journals (Sweden)

    Mahin K. Atiq

    2013-09-01

    Full Text Available Measurement of the active, reactive, and apparent power is one of the most fundamental tasks of smart meters in energy systems. Recently, a number of studies have employed the discrete wavelet transform (DWT for power measurement in smart meters. The most common way to implement DWT is the pyramid algorithm; however, this is not feasible for practical DWT computation because it requires either a log N cascaded filter or O (N word size memory storage for an input signal of the N-point. Both solutions are too expensive for practical applications of smart meters. It is proposed that the recursive pyramid algorithm is more suitable for smart meter implementation because it requires only word size storage of L × Log (N-L, where L is the length of filter. We also investigated the effect of varying different system parameters, such as the sampling rate, dc offset, phase offset, linearity error in current and voltage sensors, analog to digital converter resolution, and number of harmonics in a non-sinusoidal system, on the reactive energy measurement using DWT. The error analysis is depicted in the form of the absolute difference between the measured and the true value of the reactive energy.

  11. Measurements of the Reactivity Properties of the Aagesta Nuclear Power Reactor at Zero Power

    International Nuclear Information System (INIS)

    The moderator level and temperature coefficients of reactivity and control rod differential reactivity worths have been determined at zero power by means of period measurements. The moderator level coefficient and the corresponding critical level have been measured for the 32, 68 and 136 fuel assembly cores at room temperature for cores with and without control rods. From these results the worths of control rods have been derived. HETERO calculations give up to 15 % lower values than the experimental results. The cold fresh core has an excess reactivity of 9.0 ± 0.2 %. The temperature coefficient and differential control rod worths were measured for the fully loaded core with filled tank in the temperature range between 30 and 210 deg C. Critical positions as a function of temperature were obtained for the corresponding control rod groups. No relevant calculations of the temperature coefficient for comparison with the experimental values have yet been made, but the experimental results together with measured critical control rod positions give good opportunities to check calculational programs. HETERO has been shown in these cases to reproduce differential control rod worths and critical positions fairly well. However, a certain underestimation of the rod effectiveness is quite noticeable. The relative increase in control rod effectiveness with a temperature change from 20 to 220 deg C has been estimated to be 0.29 ± 0.06

  12. On reactivity of metallic zinc used for preparation of samples for hydrogen isotope ratio measurement

    International Nuclear Information System (INIS)

    As the reagent which is suitable to the reduction of water to hydrogen for preparing the samples for hydrogen isotope ratio measurement, the supply of the zinc of BDH Co. which has been widely used so far was stopped, consequently, for the purpose of searching for its substitute, several kinds of metallic zinc were obtained, and their reactivity was examined. As the criteria of the reactivity, the points that the experimental setup used so far can be used and that the accuracy of measurement and efficiency similar to those of heretofore can be obtained were selected, then, it was found that the zinc made by Bio Geochemical Laboratory, Indiana University, and the powder zinc on the market satisfied the criteria. In order to measure hydrogen isotope ratio within the measurement error of ±1%, it is necessary to maintain the quantities of zinc and water to be used and reaction temperature constant, to prepare the standard sample and an unknown sample under the same conditions, and to do the mass analysis as quickly as possible. The researches carried out so far, the reactivity test on various kinds of zinc and so on are reported. The optimum reaction conditions are shown. (K.I.)

  13. Retinal hemodynamic oxygen reactivity assessed by perfusion velocity, blood oximetry and vessel diameter measurements

    DEFF Research Database (Denmark)

    Klefter, Oliver Niels; Lauritsen, Anne Øberg; Larsen, Michael

    2015-01-01

    PURPOSE: To test the oxygen reactivity of a fundus photographic method of measuring macular perfusion velocity and to integrate macular perfusion velocities with measurements of retinal vessel diameters and blood oxygen saturation. METHODS: Sixteen eyes in 16 healthy volunteers were studied at two...... perfusion velocities, short-term ICCs were 0.79-0.82 and long-term ICCs were 0.06-0.11. Intersession increases in blood glucose were associated with reductions in perfusion velocities (arterial p = 0.0067; venous p = 0.018). CONCLUSION: Oxygen reactivity testing supported that motion-contrast velocimetry is...... a valid method for assessing macular perfusion. Results were consistent with previous observations of hyperoxic blood flow reduction using blue field entoptic and laser Doppler velocimetry. Retinal perfusion seemed to be regulated around individual set points according to blood glucose levels...

  14. Development of dynamic control rod reactivity measurement methodology and computer code system for PWR

    Energy Technology Data Exchange (ETDEWEB)

    Zee, Sung Quun; Lee, Chung Chan; Song, Jae Seung [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-09-01

    In order to apply dynamic control rod reactivity measurement (DCRM) method to domestic nuclear power reactor, the methodology of EPRC, 'Dynamic Reactivity Measurement of Rod Worth', was reviewed. It was also reviewed that items should be improve in three-dimensional kinetics code MASTER, which was developed by Korea Atomic Energy Research Institute, for use in DCRM. The validity of DORT two-dimensional synthesis method to calculate excore detector weighting factor were benchmarked via Yonggwang Unit 3 three-dimensional TORT calculation. The consistency of MASTER static core calculation results using neutron cross sections generated by commercial design tools PHENIX/ANC and DIT/ROCS were also verified via rodded and unrodded radial power distributions and control rod worth comparisons. 14 refs., 28 figs., 3 tabs. (Author)

  15. Reactivity measurement of the lead fast subcritical VENUS-F reactor using beam interruption experiments

    International Nuclear Information System (INIS)

    In order to incinerate minor actinides and thus to reduce the issues linked to nuclear waste management, Accelerator-Driven Systems (ADS) are being under study. An ADS consists in the coupling of a particle accelerator with a sub-critical fast reactor. The on-line reactivity monitoring is a serious issue regarding safety, therefore several methods to estimate the reactivity of such sub-critical systems have to be investigated. Here, we present one method based on the study of the neutron population evolution during beam interruption experiments carried out in the framework of the FREYA FP7 program at the GUINEVERE facility, which couples the fast lead sub-critical reactor VENUS-F with the deuteron accelerator GENEPI-3C at SCK-CEN in Mol, Belgium. After describing the facility, the analysis based on point kinetics theory and preliminary results of the reactivity measurements will be presented. Then, spatial effects that are not taken into account by point kinetics theory will be highlighted using MCNP simulations, and correction factors to raw results will be calculated. In the end, final results will be compared to reference reactivity values obtained with the Modified Source Multiplication (MSM) method. (author)

  16. Measurement of the vacuum reactivity coefficient of the RP-0 reactor 7A4 core

    International Nuclear Information System (INIS)

    Estimate results of the vacuum reactivity coefficient of the RP-0 reactor 7A4 core through the inverse kinetics and neutronic noise are presented. For this effect, a compensated ionization chamber was used at the position E2 of the core. Experience was carried out at 0,47 W power which was monitored by the same measurement equipment. Aluminum blades were used as vacuum in different configurations within the reactor core. Results were assessed through perturbation theory to an energy group

  17. Inverse kinetics equations for on line measurement of reactivity using personal computer

    International Nuclear Information System (INIS)

    Computer with their astonishing speed of calculations along with their easy connection to real systems, are very appropriate for digital measurements of real system variables. In the nuclear industry, such computer application will produce compact control rooms of real power plants, where information and results display can be obtained through push button concept. In our study, we use two personal computers for the purpose of simulation and measurement. One of them is used as a digital simulator to a real reactor, where we effectively simulate the reactor power through a cross talk network. The computed power is passed at certain chosen sampling time to the other computer. The purpose of the other computer is to use the inverse kinetics equations to calculate the reactivity parameter based on the received power and then it performs on line display of the power curve and the reactivity curve using color graphics. In this study, we use the one group version of the inverse kinetics algorithm which can easily be extended to larger group version. The language of programming used in Turbo BASIC, which is very comparable, in terms of efficiency, to FORTRAN language, besides its effective graphics routines. With the use of the extended version of the Inverse Kinetics algorithm, we can effectively apply this techniques of measurement for the purpose of on line display of the reactivity of the Tajoura Research Reactor. (author)

  18. Direct N2O5 reactivity measurements at a polluted coastal site

    Directory of Open Access Journals (Sweden)

    C. J. Gaston

    2012-03-01

    Full Text Available Direct measurements of N2O5 reactivity on ambient aerosol particles were made during September 2009 at the Scripps Institution of Oceanography (SIO Pier facility located in La Jolla, CA. N2O5 reactivity measurements were made using a custom flow reactor and the particle modulation technique alongside measurements of aerosol particle size distributions and non-refractory composition. The pseudo-first order rate coefficients derived from the particle modulation technique and the particle surface area concentrations were used to determine the population average N2O5 reaction probability, γ(N2O5, approximately every 50 min. Insufficient environmental controls within the instrumentation trailer led us to restrict our analysis primarily to nighttime measurements. Within this subset of data, γ(N2O5 ranged from γ(N2O5 are important, such as organic coatings or non-aqueous particles. The largest apparent driver of day-to-day variability in the measured γ(N2O5 at this site was the particle nitrate loading, as inferred from both the measured particle composition and the parameterizations. The relative change in measured γ(N2O5 as a function of particle nitrate loading appears to be consistent with expectations based on laboratory data, providing direct support for the atmospheric importance of the so-called "nitrate effect".

  19. Test results of dynamic control rod reactivity measurements method for LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E. K.; Woo, I. T.; Shin, H. C.; Ryu, S. J.; Bae, S. M.; Lee, Y. G. [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    2003-10-01

    Recently, KEPRI has developed the Dynamic Control rod Reactivity Measurement (DCRMTM) methodology to measure the worths of control rod bank and safety rod bank which should be verified during the Low Power Physics Test (LPPT). DCRM has been applied to measure the worths of total 27 banks of six different nuclear power plants, including 2-and 3-Loop WH reactors and Korea Standard Nuclear Plants. The most sensitive part in the method is how to extract the background signals from the original data. To solve it, a simple approach reflecting the characteristic of dynamic reactivity was developed. Final results of 27 cases show that the average and standard difference between measurements and the estimations of core design code is 3.6%, 2.5% respectively, while the current rod worth measurement method 4.3% and 3.2%. Maximum error also decreases from 12.8% to 9%. It takes about 15 minutes to measure one rod bank. From the all observations, one knows definitely that DCRM can be an appropriate method to substitute the current boron dilution and rod swap method for measuring the rod worth.

  20. Reactive Strength Index Modified Is a Valid Measure of Explosiveness in Collegiate Female Volleyball Players.

    Science.gov (United States)

    Kipp, Kristof; Kiely, Michael T; Geiser, Christopher F

    2016-05-01

    Kipp, K, Kiely, MT, and Geiser, CF. Reactive strength index modified is a valid measure of explosiveness in collegiate female volleyball players. J Strength Cond Res 30(5): 1341-1347, 2016-The purpose of this study was to investigate the validity of the reactive strength index modified (RSImod) as a measure of lower body explosiveness. Fifteen female, National Collegiate Athletic Association Division I volleyball players performed vertical countermovement jumps (CMJs) while standing on a force plate. Each player performed 3 CMJs. The vertical ground reaction forces collected during each jump were used to calculate jump height, time to take-off, time to peak force, peak force, peak rate of force development, and peak power; the latter 3 variables were all normalized to body mass. Reactive strength index modified was calculated as the ratio between jump height and time to take-off. All variables, except for jump height, were then entered a factor analysis, which reduced the input data into 2 factors: a force factor and a speed factor. Although RSImod loaded more strongly onto the force factor, further analysis showed that RSImod loaded positively onto both force and speed factors. Visual analysis of the Cartesian coordinates also showed that RSImod loaded into the quadrant of greater force and speed abilities. These results indicate that the construct of RSImod, as derived from CMJ force-time data, captures a combination of speed-force factors that can be interpreted as lower body explosiveness during the CMJ. Reactive strength index modified therefore seems to be a valid measure to study lower body explosiveness. PMID:26439787

  1. Feasibility of direct reactivity measurement in multi-canister overpacks at the Cold Vacuum Drying Facility

    International Nuclear Information System (INIS)

    A proposed method for measuring the chemical reaction rate (power) of breached N-Reactor fuel elements with water in a Multi-canister overpack (MCO) based on hydrogen release rate is evaluated. The reaction rate is measured at 50 C in an oxygen free water by applying a vacuum to boil the water and adding a low, measured flow of helium. The ratio of helium to hydrogen is used to infer the reaction rate. A test duration of less than 8 hours was found to provide sufficient accuracy for confidence in the measurement results. A more rigorous treatment of system measurement accuracy, which may yield shorter test durations, should be performed if this reactivity measurement is to be employed

  2. High-speed tomographic PIV and OH PLIF measurements in turbulent reactive flows

    Science.gov (United States)

    Coriton, Bruno; Steinberg, Adam M.; Frank, Jonathan H.

    2014-06-01

    High-speed tomographic particle image velocimetry (TPIV) is demonstrated in turbulent reactive flows at acquisition rates ranging from 10 to 16 kHz. The 10-kHz TPIV measurements are combined with planar laser-induced fluorescence (PLIF) imaging of OH to mark the high-temperature reaction zone of the flame. Simultaneous TPIV/OH PLIF measurements are applied to the stabilization region of a weakly turbulent lifted dimethyl ether (DME)/air jet flame ( Re D = 7,600) and the mixing layer of a turbulent partially premixed DME/air jet flame ( Re D = 29,300). In the lifted jet flame, vortical structures exhibit time-dependent morphological changes and eventually dissipate as they approach the flame. In the near field of the turbulent jet flame, dynamics of localized extinction are captured as coherent structures with high compressive strain rates interact with the reaction zone and subsequently break apart. The principal axis of compressive strain has a strong preferential orientation at 45° with respect to the jet axis. The three-dimensional velocity field measurements are used to evaluate biases in two-dimensional (2D) measurements of compressive strain rates in a turbulent jet flame. The biases in the 2D measurements primarily stem from out-of-plane orientation of the principal axis of compressive strain. Comparisons with a constant density turbulent non-reactive jet ( Re D = 22,600) show that the jet flame has larger coherent structures that are confined near the reaction zone. Data from the non-reactive jet are also used to evaluate effects of noise, bias, and spatial averaging on measurements of the velocity and velocity gradients.

  3. On the Rod Drop technique in integral reactivity measures in control banks and reactor safety

    International Nuclear Information System (INIS)

    This work presents a study on the effect of shading in neutron detectors, when used in measures of reactivity with the rod drop technique. Shading can be understood as a change in the efficiency of the detectors, when it is given in detected neutrons fission occurred in the reactor, more evident in the detectors closest to the bank being inserted. The method of analysis was based on simulations of reactor IPEN/MB-01, using the code CITATION and MCNP program. In both cases, the results were static, showing Neutronic flows in only two situations: before insertion of the control rod and after insertion. The measure of reactivity in this case was achieved using the expression derived from the source jerk technique. In addition to theoretical study, data from a rod drop experiment conducted in the reactor IPEN/MB-01 were also used. In this case, the reactivity was obtained using inverse kinetic method, since experimental data were set of values that vary with time. In all cases, correction factors for the shadowing effect have been proposed. (author)

  4. Recursive Pyramid Algorithm-Based Discrete Wavelet Transform for Reactive Power Measurement in Smart Meters

    OpenAIRE

    Atiq, Mahin K.; Waleed Ejaz; Najam ul Hasan; Hyung Seok Kim

    2013-01-01

    Measurement of the active, reactive, and apparent power is one of the most fundamental tasks of smart meters in energy systems. Recently, a number of studies have employed the discrete wavelet transform (DWT) for power measurement in smart meters. The most common way to implement DWT is the pyramid algorithm; however, this is not feasible for practical DWT computation because it requires either a log N cascaded filter or O (N) word size memory storage for an input signal of the N-point. Both ...

  5. Removal of C.I. Reactive Red 2 by low pressure UV/chlorine advanced oxidation.

    Science.gov (United States)

    Wu, Qianyuan; Li, Yue; Wang, Wenlong; Wang, Ting; Hu, Hongying

    2016-03-01

    Azo dyes are commonly found as pollutants in wastewater from the textile industry, and can cause environmental problems because of their color and toxicity. The removal of a typical azo dye named C.I. Reactive Red 2 (RR2) during low pressure ultraviolet (UV)/chlorine oxidation was investigated in this study. UV irradiation at 254nm and addition of free chlorine provided much higher removal rates of RR2 and color than UV irradiation or chlorination alone. Increasing the free chlorine dose enhanced the removal efficiency of RR2 and color by UV/chlorine oxidation. Experiments performed with nitrobenzene (NB) or benzoic acid (BA) as scavengers showed that radicals (especially OH) formed during UV/chlorine oxidation are important in the RR2 removal. Addition of HCO3(-) and Cl(-) to the RR2 solution did not inhibit the removal of RR2 during UV/chlorine oxidation. PMID:26969069

  6. Development of NDA reactivity measurement method to determine the fissile contents for spent fuel

    International Nuclear Information System (INIS)

    NDA reactivity measurement method was developed and simulated for the possible use in determination of fissile content and its reactivity characteristics of spent fuel material. This is necessary and practical for the purpose of safeguards implementation and timely control of process line under the condition of very high radiation environment. The neutron detector response due to induced fission from fissile material in spent fuel is calculated by using the MCNP model. The effects of detector response on fissile content, burnup and initial enrichment of fuel are investigated. It shows that the detector response of spent fuel contained 239Pu and fission products is slightly higher than that of flesh fuel with coresponding 235U enrichment

  7. Reactivity measurements of the IPR-R1 TRIGA reactor fuel elements

    International Nuclear Information System (INIS)

    The thermal power of the IPR-R1 TRIGA reactor, belonging to the Centro de Desenvolvimento da Tecnologia Nuclear, will be upgraded from 100 k W to 250 k W. To attain this objective, mew additional fuel elements will be inserted in the reactor core. In order to provide information to the calculations of the new core arrangement, some fuel rods reactivity measurements were carried out as well as the determination of the reactivity increase due to the substitution of the present fuel by a new one. A first estimate indicates that the addition of 5 new fuel elements might be sufficient to reach the desired value of 3$ ρ excess. (author). 5 refs., 1 fig., 2 tabs

  8. Central Reactivity Measurements on Assemblies 1 and 3 of the Fast Reactor FR0

    International Nuclear Information System (INIS)

    The reactivity effects of small samples of various materials have been measured, by the period method at the core centre of Assemblies 1 and 3 of the fast zero power reactor FR0. For some materials the reactivity change as a function of sample size has also been determined experimentally. The core of Assembly 1 consisted only of uranium enriched to 20 % whereas the core of Assembly 3 was diluted with 30 % graphite. The results have been compared with calculated values obtained with a second-order transport-theoretical perturbation model and using differently shielded cross sections depending upon sample size. Qualitative agreement has generally been found, although discrepancies still exist. The spectrum perturbation caused by the experimental arrangement has been analyzed and found to be rather important

  9. Measuring Sensory Reactivity in Autism Spectrum Disorder: Application and Simplification of a Clinician-Administered Sensory Observation Scale

    Science.gov (United States)

    Tavassoli, Teresa; Bellesheim, Katherine; Siper, Paige M.; Wang, A. Ting; Halpern, Danielle; Gorenstein, Michelle; Grodberg, David; Kolevzon, Alexander; Buxbaum, Joseph D.

    2016-01-01

    Sensory reactivity is a new DSM-5 criterion for autism spectrum disorder (ASD). The current study aims to validate a clinician-administered sensory observation in ASD, the Sensory Processing Scale Assessment (SPS). The SPS and the Short Sensory Profile (SSP) parent-report were used to measure sensory reactivity in children with ASD (n = 35) and…

  10. Self-reported trait mindfulness and affective reactivity: a motivational approach using multiple psychophysiological measures.

    Directory of Open Access Journals (Sweden)

    Danielle Cosme

    Full Text Available As a form of attention, mindfulness is qualitatively receptive and non-reactive, and is thought to facilitate adaptive emotional responding. One suggested mechanism is that mindfulness facilitates disengagement from an affective stimulus and thereby decreases affective reactivity. However, mindfulness has been conceptualized as a state, intervention, and trait. Because evidence is mixed as to whether self-reported trait mindfulness decreases affective reactivity, we used a multi-method approach to study the relationship between individual differences in self-reported trait mindfulness and electrocortical, electrodermal, electromyographic, and self-reported responses to emotional pictures. Specifically, while participants (N = 51 passively viewed pleasant, neutral, and unpleasant IAPS pictures, we recorded high-density (128 channels electrocortical, electrodermal, and electromyographic data to the pictures as well as to acoustic startle probes presented during the pictures. Afterwards, participants rated their subjective valence and arousal while viewing the pictures again. If trait mindfulness spontaneously reduces general emotional reactivity, then for individuals reporting high rather than low mindfulness, response differences between emotional and neutral pictures would show relatively decreased early posterior negativity (EPN and late positive potential (LPP amplitudes, decreased skin conductance responses, and decreased subjective ratings for valence and arousal. High mindfulness would also be associated with decreased emotional modulation of startle eyeblink and P3 amplitudes. Although results showed clear effects of emotion on the dependent measures, in general, mindfulness did not moderate these effects. For most measures, effect sizes were small with rather narrow confidence intervals. These data do not support the hypothesis that individual differences in self-reported trait mindfulness are related to spontaneous emotional responses

  11. Advanced measurement approach with loss distribution in operational risk management

    OpenAIRE

    Atilla ÇİFTER; Chambers, Nurgül

    2007-01-01

    According to the last proposal by Basel Committee, commercial banks are allowed to use advanced measurement approach for operational risk. Since basic indicator and standard approach considers operational risk as a percentage of gross profit, these methodologies are not satisfactory as real lost or probability of lost are not taken into consideration. In this article, loss distribution approach is applied with simulated data. 20 nonparametric loss distributions and mixing internal and externa...

  12. Photothermal cathode measurements at the Advanced Photon Source

    International Nuclear Information System (INIS)

    The Advanced Photon Source (APS) ballistic bunch compression (BBC) gun in the Injector Test Stand (ITS) presently uses an M-type thermionic dispenser cathode as a photocathode. This photothermal cathode offers substantial advantages over conventional metal photocathodes, including easy replacement and easy cleaning via the cathode's built-in heater. We present the results of photoemission measurements as a function of cathode heater power, laser pulse energy, and applied rf field strength.

  13. Operation and reactivity measurements of an accelerator driven subcritical TRIGA reactor

    Science.gov (United States)

    O'Kelly, David Sean

    Experiments were performed at the Nuclear Engineering Teaching Laboratory (NETL) in 2005 and 2006 in which a 20 MeV linear electron accelerator operating as a photoneutron source was coupled to the TRIGA (Training, Research, Isotope production, General Atomics) Mark II research reactor at the University of Texas at Austin (UT) to simulate the operation and characteristics of a full-scale accelerator driven subcritical system (ADSS). The experimental program provided a relatively low-cost substitute for the higher power and complexity of internationally proposed systems utilizing proton accelerators and spallation neutron sources for an advanced ADSS that may be used for the burning of high-level radioactive waste. Various instrumentation methods that permitted ADSS neutron flux monitoring in high gamma radiation fields were successfully explored and the data was used to evaluate the Stochastic Pulsed Feynman method for reactivity monitoring.

  14. Insertion device magnet measurements for the Advanced Light Source

    International Nuclear Information System (INIS)

    Allowable magnetic field errors for the 4.6 m long insertion devices for the Advanced Light Source (ALS) are extremely small and are driven by electron beam and radiation requirements. Detailed measurements and adjustments of each insertion device are performed to qualify them for installation in the ALS. To accomplish this, a high speed, precision magnetic measurement facility has been designed and built. Hall probe mapping equipment, capable of completing a 2500 sample, 6 m scan with precision axial position monitoring using a laser interferometer in under one minute, is used to obtain both local and integrated field information. A 5.5 m long, 1 cm wide coil is used to measure the field integral through an entire insertion device. This paper describes magnetic measurement equipment, and results of measurements on IDA, the first of the ALS insertion devices

  15. Application of the dynamic control rod reactivity measurement method to Korea standard nuclear power plants

    International Nuclear Information System (INIS)

    To measure and validate the worth of control bank or shutdown bank, the dynamic control rod reactivity measurement (DCRM) technique has been developed and applied to six cases of Low Power Physics Tests of PWRs including Korea Standard Nuclear Power plant (KSNP) based on the CE System 80 NSSS. Through the DORT results for each two ex-ore detector response and the three dimensional core transient simulations for rod movements, the key parameters of DCRM method are determined to implement into the Direct Digital Reactivity Computer System (DDRCS). A total of 9 bank worths of two KSNP plants were measured to compare with the worths of the conventional rod worth measurement method. The results show that the average error of DCRM method is nearly the same as the conventional Rod Swap and Boron Dilution Method but lower standard deviation. It takes about twenty minutes from the beginning of rod movement to final estimation of the integral static worth of a control bank. (authors)

  16. Development of electronic system for reactivity measurement and reactor noise analysis

    International Nuclear Information System (INIS)

    In nuclear power reactors, the neutron detector signal is dependent of the number of fissions and the reactor power level. The detector signal can be divided into two components; a DC component, proportional to the average value and an AC component, which is the fluctuating part superimposed to the DC component. The analysis of the fluctuating part of the signal is called noise analysis and allow us to investigate phenomena occurring within the reactor vessel, such as vibration of fuels elements and coolant density, temperature, pressure and flow changes. On the other hand, the measure of the static DC part allow us to measure the local power density. This paper describes the development of a personal computer based signal conditioning card that, together with a personal computer commercial data acquisition card, can be used for noise analysis measurements and reactivity measurements of signals coming from ionization chambers or SPD's. (author)

  17. Spent fuel measurements. passive neutron albedo reactivity (PNAR) and photon signatures

    Energy Technology Data Exchange (ETDEWEB)

    Eigenbrodt, Julia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Menlove, Howard Olsen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-29

    The International Atomic Energy Agency’s (IAEA) safeguards technical objective is the timely detection of a diversion of a significant quantity of nuclear material from peaceful activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection. An important IAEA task towards meeting this objective is the ability to accurately and reliably measure spent nuclear fuel (SNF) to verify reactor operating parameters and verify that the fuel has not been removed from reactors or SNF storage facilities. This dissertation analyzes a method to improve the state-of-the-art of nuclear material safeguards measurements using two combined measurement techniques: passive neutron albedo reactivity (PNAR) and passive spectral photon measurements.

  18. Measurements of reactive trace gases in the marine boundary layer using novel DOAS methods

    OpenAIRE

    Lampel, Johannes

    2014-01-01

    Reactive Halogen Species (RHS) can have a large impact on tropospheric chemistry. Already small concentrations in the marine boundary layer (MBL) can have a significant impact on the global budget of ozone and other trace-gases. Shipborne measurements of BrO and IO were conducted in the MBL from 70°S to 90°N to obtain a global picture of their distribution over several years. A focus were upwelling regions, which can provide large amounts of precursor substances for RHS in the MBL, of which s...

  19. Measurements of reactive nitrogen above the canopy of a South East Asian tropical rainforest

    Science.gov (United States)

    Moller, Sarah; Lee, James; Pike, Rachel; Reeves, Claire; Stewart, David

    2010-05-01

    The potential for NOx species to influence local chemistry is significant in remote tropical areas due to the high concentrations of both OH and volatile organic compounds and the low background NOx concentrations. It has been suggested that emissions from soil could be a major biogenic source of nitrogen oxides but fluxes from tropical areas are poorly quantified. To understand the potential influence of soil emissions we must understand the sources and sinks of NOx in the boundary layer above a forest canopy. Measurements of NO, NO2 and total reactive nitrogen (NOy) were made in an opening above a rainforest canopy at the Bukit Atur Global Atmosphere Watch station in Sabah, Borneo as part of the Oxidant and particle photochemical processes above a South-East Asian tropical rainforest (OP3) project. Measurements of total reactive nitrogen using a gold catalytic converter followed by chemiluminesence detection of the resulting NO are compared to individual measurements of different NOy species (NO, NO2, PAN, Alkyl nitrates, HNO3) in an attempt to understand the nitrogen chemistry occurring and to assess any outstanding contributions to the nitrogen budget. The ground measurements above the rainforest canopy are compared to measurements taken from an aircraft platform within the boundary layer and free troposphere above the rainforest. The aircraft measurements from within the boundary layer agree well with the ground-based measurements suggesting that these are representative of the boundary layer above a rainforest canopy. A box model containing a simple chemical mechanism was used to explore the ability of a simplified global model chemical mechanism to capture the chemistry occurring at this rainforest site with a view towards improving the ability of global models to predict important trace gas levels over tropical rainforest.

  20. Measurement based analysis of active and reactive power losses in a distribution network with wind farms and chips

    OpenAIRE

    Lund, Torsten

    2007-01-01

    The paper presents an investigation of the active and reactive power losses in a distribution network with wind turbines and combined heat and power plants. The investigation is based on 15 min average power measurements and load flow calculations in the power system simulation tool PowerFactory®. Based on the measurements and simulations, a regressive model for calculation and allocation of active and reactive power losses has been derived. The influence of the covariance between load and pr...

  1. TRANC – a novel fast-response converter to measure total reactive atmospheric nitrogen

    Directory of Open Access Journals (Sweden)

    V. Wolff

    2012-05-01

    Full Text Available The input and loss of plant available nitrogen (reactive nitrogen: Nr from/to the atmosphere can be an important factor for the productivity of ecosystems and thus for its carbon and greenhouse gas exchange. We present a novel converter for reactive nitrogen (TRANC: Total Reactive Atmospheric Nitrogen Converter, which offers the opportunity to quantify the sum of all airborne reactive nitrogen compounds (∑Nr in high time resolution. The basic concept of the TRANC is the full conversion of all Nr to nitrogen monoxide (NO within two reaction steps. Initially, reduced Nr compounds are being oxidised, and oxidised Nr compounds are thermally converted to lower oxidation states. Particulate Nr is being sublimated and oxidised or reduced afterwards. In a second step, remaining higher nitrogen oxides or those generated in the first step are catalytically converted to NO with carbon monoxide used as reduction gas. The converter is combined with a fast response chemiluminescence detector (CLD for NO analysis and its performance was tested for the most relevant gaseous and particulate Nr species under both laboratory and field conditions. Recovery rates during laboratory tests for NH3 and NO2 were found to be 95 and 99%, respectively, and 97% when the two gases were combined. In-field longterm stability over an 11-month period was approved by a value of 91% for NO2. Effective conversion was also found for ammonium and nitrate containing particles. The recovery rate of total ambient Nr was tested against the sum of individual measurements of NH3, HNO3, HONO, NH4+, NO3−, and NOx using a combination of different well-established devices. The results show that the TRANC-CLD system precisely captures fluctuations in ∑Nr concentrations and also matches the sum of all individual Nr compounds measured by the different single techniques. The TRANC features a specific design with very short distance between the sample air inlet and the place where the thermal

  2. Advanced Measurement Devices for the Microgravity Electromagnetic Levitation Facility EML

    Science.gov (United States)

    Brillo, Jurgen; Fritze, Holger; Lohofer, Georg; Schulz, Michal; Stenzel, Christian

    2012-01-01

    This paper reports on two advanced measurement devices for the microgravity electromagnetic levitation facility (EML), which is currently under construction for the use onboard the "International Space Station (ISS)": the "Sample Coupling Electronics (SCE)" and the "Oxygen Sensing and Control Unit (OSC)". The SCE measures by a contactless, inductive method the electrical resistivity and the diameter of a spherical levitated metallic droplet by evaluating the voltage and electrical current applied to the levitation coil. The necessity of the OSC comes from the insight that properties like surface tension or, eventually, viscosity cannot seriously be determined by the oscillating drop method in the EML facility without knowing the conditions of the surrounding atmosphere. In the following both measurement devices are explained and laboratory test results are presented.

  3. Advances in measuring ocean salinity with an optical sensor

    International Nuclear Information System (INIS)

    Absolute salinity measurement of seawater has become a key issue in thermodynamic models of the oceans. One of the most direct ways is to measure the seawater refractive index which is related to density and can therefore be related to the absolute salinity. Recent advances in high resolution position sensitive devices enable us to take advantage of small beam deviation measurements using refractometers. This paper assesses the advantages of such technology with respect to the current state-of-the-art technology. In particular, we present the resolution dependence on refractive index variations and derive the limits of such a solution for designing seawater sensors well suited for coastal and deep-sea applications. Particular attention has been paid to investigate the impact of environmental parameters, such as temperature and pressure, on an optical sensor, and ways to mitigate or compensate them have been suggested here. The sensor has been successfully tested in a pressure tank and in open oceans 2000 m deep

  4. A Survey of Advanced Microwave Frequency Measurement Techniques

    Directory of Open Access Journals (Sweden)

    Anand Swaroop Khare

    2012-06-01

    Full Text Available Microwaves are radio waves with wavelengths ranging from as long as one meter to as short as one millimeter, or equivalently, with frequencies between 300 MHz and 300 GHz. The science of photonics includes the generation, emission, modulation, signal processing, switching, transmission, amplification, detection and sensing of light. Microwave photonics has been introduced for achieving ultra broadband signal processing. Instantaneous Frequency Measurement (IFM receivers play an important role in electronic warfare. Technologies used for signal processing, include conventional direct Radio Frequency (RF techniques, digital techniques, intermediate frequency (IF techniques and photonic techniques. Direct RF techniques suffer an increased loss, high dispersion, and unwanted radiation problems in high frequencies. The systems that use traditional RF techniques can be bulky and often lack the agility required to perform advanced signal processing in rapidly changing environments. In this paper we discussed a survey of Microwave Frequency Measurement Techniques. The microwaves techniques are categorized based upon different approaches. This paper provides the major advancement in the Microwave Frequency MeasurementTechniques research; using these approaches the features and categories in the surveyed existing work.

  5. Importance weighting of local flux measurements to improve reactivity predictions in nuclear systems

    Energy Technology Data Exchange (ETDEWEB)

    Dulla, Sandra; Hoh, Siew Sin; Nervo, Marta; Ravetto, Piero [Politecnico di Torino, Dipt. Energia (Italy)

    2015-07-15

    The reactivity monitoring is a key aspect for the safe operation of nuclear reactors, especially for subcritical source-driven systems. Various methods are available for both, off-line and on-line reactivity determination from direct measurements carried out on the reactor. Usually the methods are based on the inverse point kinetic model applied to signals from neutron detectors and results may be severely affected by space and spectral effects. Such effects need to be compensated and correction procedures have to be applied. In this work, a new approach is proposed, by using the full information from different local measurements to generate a global signal through a proper weighting of the signals provided by single neutron detectors. A weighting techique based on the use of the adjoint flux proves to be efficient in improving the prediction capability of inverse techniques. The idea is applied to the recently developed algorithm, named MAρTA, that can be used in both off-line and online modes.

  6. Reactivity of dogs' brain oscillations to visual stimuli measured with non-invasive electroencephalography.

    Directory of Open Access Journals (Sweden)

    Miiamaaria V Kujala

    Full Text Available Studying cognition of domestic dogs has gone through a renaissance within the last decades. However, although the behavioral studies of dogs are beginning to be common in the field of animal cognition, the neural events underlying cognition remain unknown. Here, we employed a non-invasive electroencephalography, with adhesive electrodes attached to the top of the skin, to measure brain activity of from 8 domestic dogs (Canis familiaris while they stayed still to observe photos of dog and human faces. Spontaneous oscillatory activity of the dogs, peaking in the sensors over the parieto-occipital cortex, was suppressed statistically significantly during visual task compared with resting activity at the frequency of 15-30 Hz. Moreover, a stimulus-induced low-frequency (~2-6 Hz suppression locked to the stimulus onset was evident at the frontal sensors, possibly reflecting a motor rhythm guiding the exploratory eye movements. The results suggest task-related reactivity of the macroscopic oscillatory activity in the dog brain. To our knowledge, the study is the first to reveal non-invasively measured reactivity of brain electrophysiological oscillations in healthy dogs, and it has been based purely on positive operant conditional training, without the need for movement restriction or medication.

  7. Measurements of nitric oxide and total reactive nitrogen in the Antarctic stratosphere: Observations and chemical implications

    International Nuclear Information System (INIS)

    Measurements of NO and the sum of reactive nitrogen species, NOy, were made as part of the Airborne Antarctic Ozone Experiment (AAOE) on flights of the NASA ER-2 aircraft over the Antarctic continent. Reactive nitrogen species include NO,NO2, NO3, N2O5, HNO3, and ClONO2. The technique utilized the conversion of NOy components to NO on a gold catalyst and the subsequent detection of NO by the chemiluminescent reaction of NO with O3. NO was measured on two of the flights by removing the catalyst from the sample line. The boundary of a chemically perturbed region (CPR) above the continent occurred on average near 66 degree S as indicated by a sharp increase in the level of ClO. Outside or equatorward of the CPR, NOy mixing ratios ranged between 6 and 12 parts per billion by volume (ppbv), with values increasing with latitude. At the edge of the CPR, large latitude gradients of NOyand NO were found with values decreasing poleward. Total NOy levels dropped to 4 ppbv or less within 5 degree poleward of the boundary. NO values were 0.1-0.2 ppbv outside and below the detection limit of 0.03 ppbv inside the CPR. The levels of NO and NOy observed preclude a chemical loss of ozone due to reaction with NO

  8. Total OH reactivity measurements using a new fast Gas Chromatographic Photo-Ionization Detector (GC-PID

    Directory of Open Access Journals (Sweden)

    V. Sinha

    2012-12-01

    Full Text Available The primary and most important oxidant in the atmosphere is the hydroxyl radical (OH. Currently OH sinks, particularly gas phase reactions, are poorly constrained. One way to characterize the overall sink of OH is to measure directly the ambient loss rate of OH, the total OH reactivity. To date, direct measurements of total OH reactivity have been either performed using a Laser-Induced Fluorescence (LIF system ("pump-and-probe" or "flow reactor" or the Comparative Reactivity Method (CRM with a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS. Both techniques require large, complex and expensive detection systems. This study presents a feasibility assessment for CRM total OH reactivity measurements using a new detector, a Gas Chromatographic Photoionization Detector (GC-PID. Such a system is smaller, more portable, less power consuming and less expensive than other total OH reactivity measurement techniques.

    Total OH reactivity is measured by the CRM using a competitive reaction between a reagent (here pyrrole with OH alone and in the presence of atmospheric reactive molecules. The new CRM method for total OH reactivity has been tested with parallel measurements of the GC-PID and the previously validated PTR-MS as detector for the reagent pyrrole during laboratory experiments, plant chamber and boreal field studies. Excellent agreement of both detectors was found when the GC-PID was operated under optimum conditions. Time resolution (60–70 s, sensitivity (LOD 3–6 s−1 and overall uncertainty (25% in optimum conditions for total OH reactivity were similar to PTR-MS based total OH reactivity measurements. One drawback of the GC-PID system was the steady loss of sensitivity and accuracy during intensive measurements lasting several weeks, and a possible toluene interference. Generally, the GC-PID system has been shown to produce closely comparable results to the PTR-MS and thus in suitable environments (e.g. forests it

  9. A new method for total OH reactivity measurements using a fast Gas Chromatographic Photo-Ionization Detector (GC-PID

    Directory of Open Access Journals (Sweden)

    A. C. Nölscher

    2012-05-01

    Full Text Available The primary and most important oxidant in the atmosphere is the hydroxyl radical (OH. Currently OH sinks, particularly gas phase reactions, are poorly constrained. One way to characterize the overall sink of OH is to measure directly the ambient loss rate of OH, the total OH reactivity. To date direct measurements of total OH reactivity have been either performed using a Laser Induced Fluorescence (LIF system ("pump-and-probe" or "flow reactor" or the Comparative Reactivity Method (CRM with a Proton Transfer Reaction Mass Spectrometer (PTR-MS. Both techniques require large, complex and expensive detection systems. This study presents a feasibility assessment for CRM total OH reactivity measurements using a new detector, a Gas Chromatographic Photo-Ionization Detector (GC-PID. Such a system is smaller, more portable, less power consuming and less expensive than other total OH reactivity measurement techniques.

    Total OH reactivity is measured by the CRM using a competitive reaction between a reagent (here pyrrole with OH alone and in the presence of atmospheric reactive molecules. The new CRM method for total OH reactivity has been tested with parallel measurements of the GC-PID and the previously validated PTR-MS as detector for the reagent pyrrole during laboratory experiments, plant chamber and boreal field studies. Excellent agreement of both detectors was found when the GC-PID was operated under optimum conditions. Time resolution (60–70 s, sensitivity (LOD 3–6 s−1 and overall uncertainty (25% in optimum conditions for total OH reactivity were equivalent to PTR-MS based total OH reactivity measurements. One drawback of the GC-PID system was the steady loss of sensitivity and accuracy during intensive measurements lasting several weeks, and a possible toluene interference. Generally, the GC-PID system has been shown to produce closely comparable results to the PTR-MS and thus in suitable environments (e.g. forests it

  10. Neutronic characterization of cylindrical core of minor excess reactivity in the nuclear reactor IPEN/MB-01 from the measure of neutron flux distribution and its reactivity ratio

    International Nuclear Information System (INIS)

    When compared to a rectangular parallelepiped configuration the cylindrical configuration of a nuclear reactor core has a better neutron economy because in this configuration the probability of the neutron leakage is smaller, causing an increase in overall reactivity in the system to the same amount of fuel used. In this work we obtained a critical cylindrical configuration with the control rods 89.50% withdraw from the active region of the IPEN/MB-01 core. This is the cylindrical configuration minimum possible excess of reactivity. Thus we obtained a cylindrical configuration with a diameter of only 28 fuel rods with lowest possible excess of reactivity. For this purpose, 112 peripheral fuel rods are removed from standard reactor core (rectangular parallelepiped of 28x28 fuel rods). In this configuration the excesses of reactivity is approximated 279 pcm. From there, we characterize the neutron field by measuring the spatial distribution of the thermal and epithermal neutron flux for the reactor operating power of 83 watts measured by neutron noise analysis technique and 92.08± 0.07 watts measured by activation technique [10]. The values of thermal and epithermal neutron flux in different directions, axial, radial north-south and radial east-west, are obtained in the asymptotic region of the reactor core, away from the disturbances caused by the reflector and control bar, by irradiating thin gold foils infinitely diluted (1% Au - 99% Al) with and without (bare) cadmium cover. In addition to the distribution of neutron flux, the moderator temperature coefficient, the void coefficient, calibration of the control rods were measured. (author)

  11. Advanced Measurements of Silicon Carbide Ceramic Matrix Composites

    Energy Technology Data Exchange (ETDEWEB)

    Farhad Farzbod; Stephen J. Reese; Zilong Hua; Marat Khafizov; David H. Hurley

    2012-08-01

    Silicon carbide (SiC) is being considered as a fuel cladding material for accident tolerant fuel under the Light Water Reactor Sustainability (LWRS) Program sponsored by the Nuclear Energy Division of the Department of Energy. Silicon carbide has many potential advantages over traditional zirconium based cladding systems. These include high melting point, low susceptibility to corrosion, and low degradation of mechanical properties under neutron irradiation. In addition, ceramic matrix composites (CMCs) made from SiC have high mechanical toughness enabling these materials to withstand thermal and mechanical shock loading. However, many of the fundamental mechanical and thermal properties of SiC CMCs depend strongly on the fabrication process. As a result, extrapolating current materials science databases for these materials to nuclear applications is not possible. The “Advanced Measurements” work package under the LWRS fuels pathway is tasked with the development of measurement techniques that can characterize fundamental thermal and mechanical properties of SiC CMCs. An emphasis is being placed on development of characterization tools that can used for examination of fresh as well as irradiated samples. The work discuss in this report can be divided into two broad categories. The first involves the development of laser ultrasonic techniques to measure the elastic and yield properties and the second involves the development of laser-based techniques to measurement thermal transport properties. Emphasis has been placed on understanding the anisotropic and heterogeneous nature of SiC CMCs in regards to thermal and mechanical properties. The material properties characterized within this work package will be used as validation of advanced materials physics models of SiC CMCs developed under the LWRS fuels pathway. In addition, it is envisioned that similar measurement techniques can be used to provide process control and quality assurance as well as measurement of

  12. Reactive ion etching-assisted surface-enhanced Raman scattering measurements on the single nanoparticle level

    International Nuclear Information System (INIS)

    Single-nanoparticle surface-enhanced Raman scattering (SERS) measurement is of essential importance for both fundamental research and practical applications. In this work, we develop a class of single-particle SERS approaches, i.e., reactive ion etching (RIE)-assisted SERS measurements correlated with scanning electron microscopy (SEM) strategy (RIE/SERS/SEM), enabling precise and high-resolution identification of single gold nanoparticle (AuNP) in facile and reliable manners. By using AuNP-coated silicon wafer and quartz glass slide as models, we further employ the developed RIE/SERS/SEM method for interrogating the relationship between SERS substrates and enhancement factor (EF) on the single particle level. Together with theoretical calculation using an established finite-difference-time-domain (FDTD) method, we demonstrate silicon wafer as superior SERS substrates, facilitating improvement of EF values.

  13. Characterisation of advanced windows. Determination of thermal properties by measurements

    Energy Technology Data Exchange (ETDEWEB)

    Duer, K.

    2001-04-01

    This report describes work carried out with the aim of facilitating a full energy performance characterisation of advanced windows and glazings by means of measurements. The energy performance of windows and glazings are characterised by two parameters: The thermal transmittance (U-value) and the total solar energy transmittance (g-value) and methods to determine these two parameters by measurements have been investigated. This process has included the improvement of existing equipment and existing measuring methods as well as the development of new measuring equipment and new methods of measuring and data treatment. Measurements of the thermal transmittance of windows and glazings in a guarded hot box have been investigated. The calibration and measuring procedures for determining the U-values of facade windows were analysed and a suggestion for a new calibration and measuring procedure for determining the U-values of roof windows in a guarded hot box was elaborated. The accuracy of the guarded hot box measurements was examined by comparisons to measurements in a hot-plate device and excellent agreement between the results was obtained. Analysis showed that the expected uncertainty in the U-value measurement is about 5% for a specimen with a U-value of 1.75 W/m{sup 2}K. The U-values of three different windows were measured in two separate round robin tests applying two different calibration procedures. The windows U-values where ranging from 1.1 to 2.5 W/m{sup 2}K and all measured results were within the expected uncertainties of the measurements. On the basis of the investigations on hot box measurements a high degree of confidence in the measurement accuracy and the measuring procedure of the guarded hot box at the Department of Buildings and Energy has been obtained. Indoor g-value measurements in a calorimetric test facility (the METSET) mounted in a solar simulator have been investigated and a number of problems regarding these measurements have been

  14. Determination of reactivity by a revised rod-drop technique in the muse-4 programme - comparison with dynamic measurements

    International Nuclear Information System (INIS)

    The MUSE-4 experimental programme in the zero power fast facility MASURCA at CEA Cadarache aims at studying accelerator-driven-systems (ADS). One of the main objectives is the qualification of measuring and monitoring sub-critical reactivities. Rossi α and Feynman α and pulsed neutron source techniques based on the use of the GENEPI deuteron accelerator are investigated to assess the prompt neutron decay constant a and to deduce the reactivity. Reactivity reference levels are determined using a revised rod drop technique and static source multiplication methods for comparison with values extracted from dynamic measurements. This article focuses on the determination of the inherent source and the reactivity sensitivity to kinetic constants and counting rate in the rod drop technique using the point kinetic model. (author)

  15. The Perceived Stress Reactivity Scale: Measurement Invariance, Stability, and Validity in Three Countries

    Science.gov (United States)

    Schlotz, Wolff; Yim, Ilona S.; Zoccola, Peggy M.; Jansen, Lars; Schulz, Peter

    2011-01-01

    There is accumulating evidence that individual differences in stress reactivity contribute to the risk for stress-related disease. However, the assessment of stress reactivity remains challenging, and there is a relative lack of questionnaires reliably assessing this construct. We here present the Perceived Stress Reactivity Scale (PSRS), a…

  16. Advanced deep reactive-ion etching technology for hollow microneedles for transdermal blood sampling and drug delivery.

    Science.gov (United States)

    Liu, Yufei; Eng, Pay F; Guy, Owen J; Roberts, Kerry; Ashraf, Huma; Knight, Nick

    2013-06-01

    Using an SPTS Technologies Ltd. Pegasus deep reactive-ion etching (DRIE) system, an advanced two-step etching process has been developed for hollow microneedles in applications of transdermal blood sampling and drug delivery. Because of the different etching requirements of both narrow deep hollow and large open cavity, hollow etch and cavity etch steps have been achieved separately. This novel two-step etching process is assisted with a bi-layer etching mask. Results show that the etch rate of silicon during this hollow etch step was about 7.5 microm/min and the etch rate of silicon during this cavity etch step was about 8-10 microm/min, using the coil plasma etching power between 2.0 and 2.8 kW. Especially for the microneedle bores etch, the deeper it etched, the slower the etch rate was. The microneedle bores have successfully been obtained 75-150 microm in inner diametre and 700-1000 microm long with high aspect ratio DRIE, meanwhile, the vertical sidewall structures have been achieved with the high etch load exposed area over 70% for the cavity etch step. PMID:24046906

  17. Front-End Electronics for Verification Measurements: Performance Evaluation and Viability of Advanced Tamper Indicating Measures

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency (IAEA) continues to expand its use of unattended, remotely monitored measurement systems. An increasing number of systems and an expanding family of instruments create challenges in terms of deployment efficiency and the implementation of data authentication measures. A collaboration between Pacific Northwest National Laboratory (PNNL), Idaho National Laboratory (INL), and Los Alamos National Laboratory (LANL) is working to advance the IAEA's capabilities in these areas. The first objective of the project is to perform a comprehensive evaluation of a prototype front-end electronics package, as specified by the IAEA and procured from a commercial vendor. This evaluation begins with an assessment against the IAEA's original technical specifications and expands to consider the strengths and limitations over a broad range of important parameters that include: sensor types, cable types, and the spectrum of industrial electromagnetic noise that can degrade signals from remotely located detectors. A second objective of the collaboration is to explore advanced tamper-indicating (TI) measures that could help to address some of the long-standing data authentication challenges with IAEA's unattended systems. The collaboration has defined high-priority tampering scenarios to consider (e.g., replacement of sensor, intrusion into cable), and drafted preliminary requirements for advanced TI measures. The collaborators are performing independent TI investigations of different candidate approaches: active time-domain reflectometry (PNNL), passive noise analysis (INL), and pulse-by-pulse analysis and correction (LANL). The initial investigations focus on scenarios where new TI measures are retrofitted into existing IAEA UMS deployments; subsequent work will consider the integration of advanced TI methods into new IAEA UMS deployments where the detector is separated from the front-end electronics. In this paper, project progress

  18. The influence of spatial effects on the measurement results of reactivity in 'fast disturbances' of core parameters

    International Nuclear Information System (INIS)

    The analysis of methods for the determination of reactivity revealed an essential influence of spatial effect on the measurement precision. Using of reverse point kinetic equation for reactivity meter is assumed that the average neutron flux weigh with the importance function is known at every moment of the transient. In fact, reactivity meter represent behaviour of the neutron flux only of the part of the core, so measured value of reactivity can differ from really reactivity. Three-dimensional dynamic model of the core allow to evaluate such difference. It is supposed to evaluate correction factor for the neutron flux measured at the place where ion chamber situated with the three-dimensional model NOSTRA of the WWER core. On the basis of such algorithm we propose to build module allowing the influence of spatial effects on the results of the reactivity meter to be eliminated at real time regime. This code will be incorporated into the core monitoring system 'BLOK' (SCORPIO type) which is being developed for the Kola and Rostov NPP. The report illustrates utilization of such algorithm (Authors)

  19. Role of skin prick test and serological measurement of specific IgE in the diagnosis of occupational asthma resulting from exposure to vinyl sulphone reactive dyes

    OpenAIRE

    Park, J.; Kim, C.; Kim, K; Choi, S.; Kang, D.; S. Ko; Won, J; Yang, J; Hong, C

    2001-01-01

    OBJECTIVES—Some patients with occupational asthma resulting from exposure to reactive dyes have skin reactivity to the causative dyes and specific IgE to reactive dyes have been found in these patients. However, the usefulness of skin prick tests (SPTs) and serological measurement of specific IgE in screening, diagnosis, and monitoring the occupational asthma resulting from exposure to reactive dyes have not yet been assessed. In this study, the clinical validation of SPTs and measurement of ...

  20. Practice of Reactivity Measurement at Central Research Institute for Physics, Budapest

    International Nuclear Information System (INIS)

    At the Central Research Institute for Physics, Budapest /CRIP/ a series of critical assemblies has been built and investigated since 1960, namely: - ZR-1 and ZR-2 critical assemblies fueled by 10% enriched fuel pins /EK-lo type/ moderated and reflected by light water. Both assemblies had a highly variable lattice pitch. - ZE-3 system fueled by 36% enriched hexagonal-tubular fuel-assemblies /WWR-M type/ moderated by light water and reflected by Be. - ZR-4 solid homogeneous zero-power reactor fueled by 20 % enriched U3O8 dispersed in polyethylene/ and reflected by graphite. When investigating these systems the following methods have been chosen and applied routine for reactivity measurements

  1. Using reactive strength index-modified as an explosive performance measurement tool in Division I athletes.

    Science.gov (United States)

    Suchomel, Timothy J; Bailey, Christopher A; Sole, Christopher J; Grazer, Jacob L; Beckham, George K

    2015-04-01

    The purposes of this study included examining the reliability of reactive strength index-modified (RSImod), the relationships between RSImod and force-time variables, and the differences in RSImod between male and female collegiate athletes. One hundred six Division I collegiate athletes performed unloaded and loaded countermovement jumps (CMJs). Intraclass correlation coefficients and typical error expressed as a coefficient of variation were used to establish the relative and absolute reliability of RSImod, respectively. Pearson zero-order product-moment correlation coefficients were used to examine the relationships between RSImod and rate of force development, peak force (PF), and peak power (PP) during unloaded and loaded jumping conditions. Finally, independent samples t-tests were used to examine the sex differences in RSImod between male and female athletes. Intraclass correlation coefficient values for RSImod ranged from 0.96 to 0.98, and typical error values ranged from 7.5 to 9.3% during all jumping conditions. Statistically significant correlations existed between RSImod and all force-time variables examined for male and female athletes during both jumping conditions (p ≤ 0.05). Statistically significant differences in RSImod existed between male and female athletes during both unloaded and loaded CMJs (p strength index-modified seems to be a reliable performance measurement in male and female athletes. Reactive strength index-modified may be described and used as a measure of explosiveness. Stronger relationships between RSImod, PF, and PP existed in female athletes as compared with that in male athletes; however, further evidence investigating these relationships is needed before conclusive statements can be made. Male athletes produced greater RSImod values as compared with that produced by female athletes. PMID:25426515

  2. Measuring the Resilience of Advanced Life Support Systems

    Science.gov (United States)

    Bell, Ann Maria; Dearden, Richard; Levri, Julie A.

    2002-01-01

    Despite the central importance of crew safety in designing and operating a life support system, the metric commonly used to evaluate alternative Advanced Life Support (ALS) technologies does not currently provide explicit techniques for measuring safety. The resilience of a system, or the system s ability to meet performance requirements and recover from component-level faults, is fundamentally a dynamic property. This paper motivates the use of computer models as a tool to understand and improve system resilience throughout the design process. Extensive simulation of a hybrid computational model of a water revitalization subsystem (WRS) with probabilistic, component-level faults provides data about off-nominal behavior of the system. The data can then be used to test alternative measures of resilience as predictors of the system s ability to recover from component-level faults. A novel approach to measuring system resilience using a Markov chain model of performance data is also developed. Results emphasize that resilience depends on the complex interaction of faults, controls, and system dynamics, rather than on simple fault probabilities.

  3. Cerebral Blood Flow and Transcranial Doppler Sonography Measurements of CO(2)-Reactivity in Acute Traumatic Brain Injured Patients

    DEFF Research Database (Denmark)

    Reinstrup, Peter; Ryding, Erik Hilmer; Asgeirsson, Bogi; Hesselgard, Karin; Unden, Johan; Romner, Bertil

    2013-01-01

    BACKGROUND: Cerebral blood flow (CBF) measurements are helpful in managing patients with traumatic brain injury (TBI), and testing the cerebrovascular reactivity to CO(2) provides information about injury severity and outcome. The complexity and potential hazard of performing CBF measurements lim...

  4. A transparent Pyrex μ-reactor for combined in situ optical characterization and photocatalytic reactivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Dionigi, F.; Hansen, O. [CINF, Department of Physics, Building 312, Fysikvej, Technical University of Denmark, DTU, DK-2800 Kgs. Lyngby (Denmark); Department of Micro- and Nanotechnology, Nanotech, Building 345 East, Technical University of Denmark, DTU, DK-2800 Kgs. Lyngby (Denmark); Nielsen, M. G.; Chorkendorff, I.; Vesborg, P. C. K. [CINF, Department of Physics, Building 312, Fysikvej, Technical University of Denmark, DTU, DK-2800 Kgs. Lyngby (Denmark); Pedersen, T. [Department of Micro- and Nanotechnology, Nanotech, Building 345 East, Technical University of Denmark, DTU, DK-2800 Kgs. Lyngby (Denmark)

    2013-10-15

    A new Pyrex-based μ-reactor for photocatalytic and optical characterization experiments is presented. The reactor chamber and gas channels are microfabricated in a thin poly-silicon coated Pyrex chip that is sealed with a Pyrex lid by anodic bonding. The device is transparent to light in the UV-vis-near infrared range of wavelengths (photon energies between ∼0.4 and ∼4.1 eV). The absorbance of a photocatalytic film obtained with a light transmission measurement during a photocatalytic reaction is presented as a proof of concept of a photocatalytic reactivity measurement combined with in situ optical characterization. Diffuse reflectance measurements of highly scattering photocatalytic nanopowders in a sealed Pyrex μ-reactor are also possible using an integrating sphere as shown in this work. These experiments prove that a photocatalyst can be characterized with optical techniques after a photocatalytic reaction without removing the material from the reactor. The catalyst deposited in the cylindrical reactor chamber can be illuminated from both top and bottom sides and an example of application of top and bottom illumination is presented.

  5. Wavelet filter based de-noising of weak neutron flux signal for dynamic control rod reactivity measurement

    Energy Technology Data Exchange (ETDEWEB)

    Park, Moon Ghu; Bae Sung Man; Lee, Chang Sup [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    2002-10-01

    The measurement and validation of control rod bank (group) worths are typically required by the start-up physics test standard programs for Pressurized Water Reactors (PWR). Recently, the method of DCRM{sup TM} (Dynamic Control rod Reactivity Measurement) technique is developed by KEPRI and will be implemented in near future. The method is based on the fast and complete bank insertion within the short period of time which makes the range of the reactivity variation very large from the below of the background gamma level to the vicinity of nuclear heating point. The weak flux signal below background gamma level is highly noise contaminated, which invokes the large reactivity fluctuation. This paper describes the efficient noise filtering method with wavelet filters. The performance of developed method is demonstrated with the measurement data at YGN-3 cycle 7.

  6. Quantitative measurements of C-reactive protein using silicon nanowire arrays

    Directory of Open Access Journals (Sweden)

    Min-Ho Lee

    2008-03-01

    Full Text Available Min-Ho Lee, Kuk-Nyung Lee, Suk-Won Jung, Won-Hyo Kim, Kyu-Sik Shin, Woo-Kyeong SeongKorea Electronics Technology Institute, Gyeonggi, KoreaAbstract: A silicon nanowire-based sensor for biological application showed highly desirable electrical responses to either pH changes or receptor-ligand interactions such as protein disease markers, viruses, and DNA hybridization. Furthermore, because the silicon nanowire can display results in real-time, it may possess superior characteristics for biosensing than those demonstrated in previously studied methods. However, despite its promising potential and advantages, certain process-related limitations of the device, due to its size and material characteristics, need to be addressed. In this article, we suggest possible solutions. We fabricated silicon nanowire using a top-down and low cost micromachining method, and evaluate the sensing of molecules after transfer and surface modifications. Our newly designed method can be used to attach highly ordered nanowires to various substrates, to form a nanowire array device, which needs to follow a series of repetitive steps in conventional fabrication technology based on a vapor-liquid-solid (VLS method. For evaluation, we demonstrated that our newly fabricated silicon nanowire arrays could detect pH changes as well as streptavidin-biotin binding events. As well as the initial proof-of-principle studies, C-reactive protein binding was measured: electrical signals were changed in a linear fashion with the concentration (1 fM to 1 nM in PBS containing 1.37 mM of salts. Finally, to address the effects of Debye length, silicon nanowires coupled with antigen proteins underwent electrical signal changes as the salt concentration changed.Keywords: silicon nanowire array, C-reactive protein, vapor-liquid-solid method

  7. Measurements of UV-generated free radicals/reactive oxygen species (ROS) in skin

    Science.gov (United States)

    Herrling, Th.; Jung, K.; Fuchs, J.

    2006-03-01

    Free radicals/reactive oxygen species (ROS) generated in skin by UV irradiation were measured by electron spin resonance (ESR). To increase the sensitivity of measurement the short life free radicals/ROS were scavenged and accumulated by using the nitroxyl probe 3-carboxy-2,2,5,5-tetrametylpyrrolidine-1-oxyl (PCA). The spatial distribution of free radicals/ROS measured in pig skin biopsies with ESR imaging after UV irradiation corresponds to the intensity decay of irradiance in the depth of the skin. The main part of free radicals/ROS were generated by UVA (320-400 nm) so that the spatial distribution of free radicals reaches up to the lower side of the dermis. In vivo measurements on human skin were performed with a L-band ESR spectrometer and a surface coil integrating the signal intensities from all skin layers to get a sufficient signal amplitude. Using this experimental arrangement the protection of UVB and UVA/B filter against the generation of free radicals/ROS in skin were measured. The protection against ROS and the repair of damages caused by them can be realized with active antioxidants characterized by a high antioxidative power (AP). The effect of UV filter and antioxidants corresponding to their protection against free radicals/ROS in skin generated by UVAB irradiation can be quantified by the new radical sun protection factor (RSF). The RSF indicates the increase of time for staying in the sun to generate the same number of free radicals/ROS in the skin like for the unprotected skin. Regarding the amount of generated free radicals/ROS in skin as an biophysical endpoint the RSF characterizes both the protection against UVB and UVA radiation.

  8. Impact of Measurement System Characteristics on Advanced Sounder Information Content

    Science.gov (United States)

    Larar, Allen M.; Liu, Xu; Zhou, Daniel K.

    2011-01-01

    Advanced satellite sensors are tasked with improving global observations of the Earth's atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring capability, and environmental change detection. Achieving such an improvement in geophysical information inferred from these observations requires optimal usage of data from current systems as well as instrument system enhancements for future sensors. This presentation addresses results of tradeoff studies evaluating the impact of spectral resolution, spectral coverage, instrument noise, and a priori knowledge on remote sensing system information content, with a specific emphasis on thermodynamic state and trace species information obtainable from advanced atmospheric sounders. Particular attention will be devoted toward information achievable from the Atmospheric InfraRed Sounder (AIRS) on the NASA EOS Aqua satellite in orbit since 2002, the Infrared Atmospheric Sounding Interferometer (IASI) aboard MetOp-A since 2006, and the Cross-track Infrared Sounder (CrIS) instrument to fly aboard the NPP and JPSS series of satellites expected to begin in late 2011. While all of these systems cover nearly the same infrared spectral extent, they have very different number of channels, instrument line shapes, coverage continuity, and instrument noise. AIRS is a grating spectrometer having 2378 discrete spectral channels ranging from about 0.4 to 2.2/cm resolution; IASI is a Michelson interferometer with 8461 uniformly-spaced spectral channels of 0.5/cm (apodized) resolution; and CrIS is a Michelson interferometer having 1305 spectral channels of 0.625, 1.250, and 2.50/cm (unapodized) spectral resolution, respectively, over its three continuous but non-overlapping bands. Results of tradeoff studies showing information content sensitivity to assumed measurement system characteristics will be presented.

  9. Measurement based analysis of active and reactive power losses in a distribution network with wind farms and CHPs

    DEFF Research Database (Denmark)

    Lund, Torsten

    2007-01-01

    The paper presents an investigation of the active and reactive power losses in a distribution network with wind turbines and combined heat and power plants. The investigation is based on 15 min average power measurements and load flow calculations in the power system simulation tool Power......Factory®. Based on the measurements and simulations, a regressive model for calculation and allocation of active and reactive power losses has been derived. The influence of the covariance between load and production on the system losses is investigated separately....

  10. Measurement of reactivity worths of Sm, Cs, Gd, Nd, Rh, Eu, B and Er aqueous solution samples

    Energy Technology Data Exchange (ETDEWEB)

    Komuro, Yuichi; Suzaki, Takenori; Sakurai, Kiyoshi; Horiki, Oichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ohtomo, Shoichi

    1997-11-01

    From the view point of burnup credit for spent fuels, it remains as an important issue to validate nuclear data of fission products. Aiming to obtain benchmark data for that purpose, reactivity worths of Sm, Cs, Gd, Nd, Rh and Eu aqueous solution samples of various concentrations were measured by the critical-water-level method at Tank-type Critical Assembly (TCA). Samples of B and Er were included for the purpose of comparison. Neutron activation distributions of Au wires crossing the sample region were also measured in several cases. A linear correlation was found between the thermal neutron flux peakings in the sample region and the reactivity worths. (author)

  11. Development of a nomogram incorporating serum C-reactive protein level to predict overall survival of patients with advanced urothelial carcinoma and its evaluation by decision curve analysis

    OpenAIRE

    Ishioka, J.; Saito, K.; Sakura, M; Yokoyama, M.; Matsuoka, Y.; Numao, N; Koga, F; Masuda, H.; Fujii, Y.; S. Kawakami; Kihara, K.

    2012-01-01

    Background: The purpose of this study is to investigate the prognostic impact of C-reactive protein (CRP) on patients with advanced urothelial carcinoma and to develop a novel nomogram predicting survival. Methods: A total of 223 consecutive patients were treated at Tokyo Medical and Dental Hospital. A nomogram incorporating V was developed based on the result of a Cox proportional hazards model. Its efficacy and clinical usefulness was evaluated by concordance index (c-index) and decision cu...

  12. Advances in the Rising Bubble Technique for discharge measurement

    Science.gov (United States)

    Hilgersom, Koen; Luxemburg, Willem; Willemsen, Geert; Bussmann, Luuk

    2014-05-01

    Already in the 19th century, d'Auria described a discharge measurement technique that applies floats to find the depth-integrated velocity (d'Auria, 1882). The basis of this technique was that the horizontal distance that the float travels on its way to the surface is the image of the integrated velocity profile over depth. Viol and Semenov (1964) improved this method by using air bubbles as floats, but still distances were measured manually until Sargent (1981) introduced a technique that could derive the distances from two photographs simultaneously taken from each side of the river bank. Recently, modern image processing techniques proved to further improve the applicability of the method (Hilgersom and Luxemburg, 2012). In the 2012 article, controlling and determining the rising velocity of an air bubble still appeared a major challenge for the application of this method. Ever since, laboratory experiments with different nozzle and tube sizes lead to advances in our self-made equipment enabling us to produce individual air bubbles with a more constant rising velocity. Also, we introduced an underwater camera to on-site determine the rising velocity, which is dependent on the water temperature and contamination, and therefore is site-specific. Camera measurements of the rising velocity proved successful in a laboratory and field setting, although some improvements to the setup are necessary to capture the air bubbles also at depths where little daylight penetrates. References D'Auria, L.: Velocity of streams; A new method to determine correctly the mean velocity of any perpendicular in rivers and canals, (The) American Engineers, 3, 1882. Hilgersom, K.P. and Luxemburg, W.M.J.: Technical Note: How image processing facilitates the rising bubble technique for discharge measurement, Hydrology and Earth System Sciences, 16(2), 345-356, 2012. Sargent, D.: Development of a viable method of stream flow measurement using the integrating float technique, Proceedings of

  13. Monitoring shipping emissions with MAX-DOAS measurements of reactive trace gases

    Science.gov (United States)

    Wittrock, Folkard; Peters, Enno; Seyler, André; Kattner, Lisa; Mathieu-Üffing, Barbara; Burrows, John P.; Chirkov, Maksym; Meier, Andreas C.; Richter, Andreas; Schönhardt, Anja; Schmolke, Stefan; Theobald, Norbert

    2014-05-01

    Air pollution from ships contributes to overall air quality problems and it has direct health effects on the population in particular in coastal regions, and in harbor cities. In order to reduce the emissions the International Maritime Organisation (IMO) have tightened the regulations for air pollution. E.g. Sulfur Emission Control Areas (SECA) have been introduced where the sulfur content of marine fuel is limited. However, up to now there is no regular monitoring system available to verify that ships are complying with the new regulations. Furthermore measurements of reactive trace gases in marine environments are in general sparse. The project MeSMarT (Measurements of shipping emissions in the marine troposphere, www.mesmart.de) has been established as a cooperation between the University of Bremen and the German Bundesamt für Seeschifffahrt und Hydrographie (Federal Maritime and Hydrographic Agency) with support of the Helmholtz Research Centre Geesthacht to estimate the influence of ship emissions on the chemistry of the atmospheric boundary layer and to establish a monitoring system for main shipping routes. Here we present MAX-DOAS observations of NO2 and SO2 carried out during ship campaigns in the North and Baltic Sea and from two permanent sites close to the Elbe river (Wedel, Germany) and on the island Neuwerk close to the mouths of Elbe and Weser river. Mixing ratios of both trace gases have been retrieved using different approaches (pure geometric and taking into account the radiative transfer) and compared to in situ and air borne observations (see Kattner et al., Monitoring shipping emissions with in-situ measurements of trace gases, and Meier et al., Airborne measurements of NO2 shipping emissions using imaging DOAS) observations. Furthermore simple approaches have been used to calculate emission factors of NOx and SO2 for single ships.

  14. Measurement and modeling of advanced coal conversion processes, Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. [and others

    1993-06-01

    A two dimensional, steady-state model for describing a variety of reactive and nonreactive flows, including pulverized coal combustion and gasification, is presented. The model, referred to as 93-PCGC-2 is applicable to cylindrical, axi-symmetric systems. Turbulence is accounted for in both the fluid mechanics equations and the combustion scheme. Radiation from gases, walls, and particles is taken into account using a discrete ordinates method. The particle phase is modeled in a lagrangian framework, such that mean paths of particle groups are followed. A new coal-general devolatilization submodel (FG-DVC) with coal swelling and char reactivity submodels has been added.

  15. New Directions in Measuring Reactive and Proactive Aggression: Validation of a Teacher Questionnaire

    Science.gov (United States)

    Polman, Hanneke; de Castro, Bram Orobio; Thomaes, Sander; van Aken, Marcel

    2009-01-01

    The well-known distinction between reactive and proactive aggression is theoretically important but empirically controversial. Recently, aggression researchers have argued that we should separate the form and function of aggression to make a clearer distinction between reactive and proactive aggression. This article describes the validation of a…

  16. The measurement of subcritical reactivity in nuclear reactors by use of a high frequency sine-wave modulated neutron source

    International Nuclear Information System (INIS)

    In this report the frequency response characteristics for phase and gain of the fundamental reactor mode of the zero power kinetics are given for various subcritical reactivities in a fast reactor and in a thermal reactor. Results, of a study on harmonic effects based on a small zero energy thermal reactor are presented which demonstrate the importance of spatial harmonic effects. A harmonic theory for thermal reactors is developed. A new method of measuring, subcritical reactivity at moderately high frequencies is suggested which circumvents the harmonic problem. It is shown that at high frequencies there is more sensitivity than at low frequencies and that this could lead to an increased range over which subcritical reactivity can be measured. (author)

  17. Advanced quantitative measurement methodology in physics education research

    Science.gov (United States)

    Wang, Jing

    The ultimate goal of physics education research (PER) is to develop a theoretical framework to understand and improve the learning process. In this journey of discovery, assessment serves as our headlamp and alpenstock. It sometimes detects signals in student mental structures, and sometimes presents the difference between expert understanding and novice understanding. Quantitative assessment is an important area in PER. Developing research-based effective assessment instruments and making meaningful inferences based on these instruments have always been important goals of the PER community. Quantitative studies are often conducted to provide bases for test development and result interpretation. Statistics are frequently used in quantitative studies. The selection of statistical methods and interpretation of the results obtained by these methods shall be connected to the education background. In this connecting process, the issues of educational models are often raised. Many widely used statistical methods do not make assumptions on the mental structure of subjects, nor do they provide explanations tailored to the educational audience. There are also other methods that consider the mental structure and are tailored to provide strong connections between statistics and education. These methods often involve model assumption and parameter estimation, and are complicated mathematically. The dissertation provides a practical view of some advanced quantitative assessment methods. The common feature of these methods is that they all make educational/psychological model assumptions beyond the minimum mathematical model. The purpose of the study is to provide a comparison between these advanced methods and the pure mathematical methods. The comparison is based on the performance of the two types of methods under physics education settings. In particular, the comparison uses both physics content assessments and scientific ability assessments. The dissertation includes three

  18. The reactivity meter and core reactivity

    International Nuclear Information System (INIS)

    The point kinetic equations and the characteristics of the point kinetic reactivity meter are discussed, particularly for large negative reactivities. From a given input signal representing the neutron flux seen by a detector, the meter computes a value of reactivity in dollars (ρ/β), based on inverse point kinetics. The prompt jump point of view is emphasised. A simple point model of the reactor and a local flux distortion factor are used to generate input signals into a simulated reactivity meter. The obtained results show how the reading of the reactivity meter will approach the reactivity of the core model, if the reactivity is lower than -1 dollars. However, for reactivity values higher than -1 dollars, the influence of the flux distortion on the reading of the reactivity meter persists. Reactivity meter measurements taken during typical rod drop experiments in VVER-440 reactors do not produce accurate indications of the (static) core reactivity. (author)

  19. Comparison of Reactive Mercury Concentrations Measured Simultaneously Using KCl-coated Denuders, Nylon Membranes, and Cation Exchange Membranes

    Science.gov (United States)

    Gustin, M. S.; Huang, J.; Miller, M. B.; Weiss-Penzias, P. S.

    2012-12-01

    There is much debate about the chemistry of reactive gaseous and particle bound mercury (Hg) in the atmosphere, and the processes associated with formation. In addition, there are concerns regarding the interferences and calibration of the widely used Tekran® 2537/1130/1135 Hg measurement system. To investigate these we developed simple laboratory and field sampling systems designed to collect and analyze reactive Hg (Hg (II), Hg (I) and/or particle bound). A manifold system was applied in the laboratory, and in the field, in-series and -parallel membranes, flow controllers and pumps were utilized. Both systems actively collected reactive Hg using nylon membranes and cation exchange membranes alongside measurements made using the Tekran® system. The analytical system consisted of step wise 2.5 minute thermo-desorption and Hg quantification by cold vapor atomic fluorescence. In the laboratory, we compared the efficiency of these surfaces for collection of HgO, HgCl2, and HgBr2 when permeated into Hg and oxidant free air, and ambient filtered air. Other tests are ongoing. Thus far, results show concentrations measured by the cation exchange membrane were two-to-three fold greater than that measured by the nylon membranes, and three-to -four fold greater than that measured by the KCl-coated annual denuder. Thermo-desorption profiles obtained using nylon membranes show slightly different patterns associated with the reactive Hg compounds as permeated and tested. Field measurements were made at two locations in Reno, Nevada (a high traffic site and an agricultural area) and at Elkhorn Slough, California (marine site). Desorption profiles from nylon membrane differed by site and by time of year. Although the influence of aerosol on this measurement has not been explored, field results suggest different forms of reactive Hg were present in the atmosphere as a function of season and location.

  20. Advanced metrology of surface defects measurement for aluminum die casting

    Directory of Open Access Journals (Sweden)

    D. Myszka

    2011-07-01

    Full Text Available The scientific objective of the research is to develop a strategy to build computer based vision systems for inspection of surface defects inproducts, especially discontinuities which appear in castings after machining. In addition to the proposed vision inspection method theauthors demonstrates the development of the advanced computer techniques based on the methods of scanning to measure topography ofsurface defect in offline process control. This method allow to identify a mechanism responsible for the formation of casting defects. Also,the method allow investigating if the, developed vision inspection system for identification of surface defects have been correctlyimplemented for an online inspection. Finally, in order to make casting samples with gas and shrinkage porosity defects type, the LGT gas meter was used . For this task a special camera for a semi-quantitative assessment of the gas content in aluminum alloy melts, using a Straube-Pfeiffer method was used. The results demonstrate that applied solution is excellent tool in preparing for various aluminum alloysthe reference porosity samples, identified next by the computer inspection system.

  1. Measurements of negative reactivity in Masurca and Phenix control rods: Prospects for Superphenix

    International Nuclear Information System (INIS)

    Experimental assessment of the negative reactivity of the control rods in an industrial reactor has recently been the subject of numerous studies conducted in the light of forthcoming startup tests on the core of Superphenix. Representative tests have been carried out both on Phenix and on the Masurca critical mockup, and a test programme for Superphenix has been drawn up. Subcritical measurements (source multiplication technique) have been carried out on Phenix without absolute measurement of a standard. However, a precise relative interpretation using two counters demonstrates good agreement following the correction of spatial effects. The chief value of the rod drop measurements conducted on Masurca was that it provided a means of cross-checking the kinetic method to be validated against a standard source multiplication method. The results demonstrate complete agreement between the two methods. The acceptability of the rod drop method is therefore considered to be established. The programme foreseen for startup of Superphenix and the objectives which have been set are briefly indicated. The calculation methods to be used in respect of the startup tests have been established on the basis of experience gained through interpreting the experiments conducted in the course of the Racine (Masurca) programme. An analysis of these experiments included, among other things, a parametric study that has made it possible to devise a standard calculation method for predicting Superphenix rod worth values. The main feature is a scattering calculation with three energy groups and three dimensions. Two-dimensional scattering and transport calculations are therefore necessary in order to define the corrective factors to be applied to this initial result. The final result of this analysis is thus made equivalent to a 25-energy-group transport calculation with an extremely small spatial mesh

  2. Biosphere-atmosphere exchange of reactive nitrogen and greenhouse gases at the NitroEurope core flux measurement sites: Measurement strategy and first data sets

    DEFF Research Database (Denmark)

    Skiba, U.; Drewer, J.; Tang, Y.S.;

    2009-01-01

    The NitroEurope project aims to improve understanding of the nitrogen (N) cycle at the continental scale and quantify the major fluxes of reactive N by a combination of reactive N measurements and modelling activities. As part of the overall measurement strategy, a network of 13 flux ‘super sites...... the N budgets for some sites. The quantitative roles played by CO2, N2O and CH4 in defining net greenhouse gas exchange differ widely between ecosystems depending on the interactions of climate, soil type, land use and management.......The NitroEurope project aims to improve understanding of the nitrogen (N) cycle at the continental scale and quantify the major fluxes of reactive N by a combination of reactive N measurements and modelling activities. As part of the overall measurement strategy, a network of 13 flux ‘super sites......-agricultural ecosystems. The NO and N2O emission ratio is influenced by soil type and precipitation. First budgets of reactive N entering and leaving the ecosystem and of net greenhouse gas exchange are outlined. Further information on rates of denitrification to N2 and biological N2 fixation is required to complete...

  3. Measuring Empathic Tendencies: Reliability And Validity of the Dutch Version of the Interpersonal Reactivity Index

    Directory of Open Access Journals (Sweden)

    Kim De Corte

    2007-10-01

    Full Text Available The Interpersonal Reactivity Index (IRI; Davis, 1980 is a commonly used self-report instrument designed to assess empathic tendencies. The IRI consists of four separate subscales: Perspective Taking (PT, Fantasy (FS, Empathic Concern (EC, and Personal Distress (PD. The objective of this study was to examine the psychometric properties of a Dutch version of the IRI. The IRI was administered to a Dutch sample of 651 normal functioning adults. The factor structure of the IRI was examined by using confirmatory factor analysis (CFA. The results of the CFA revealed that there is room for improvement and modification of the original theoretical model. The validity of the IRI was tested using internal criteria (i. e., scale intercorrelations and external criteria (i. e., correlations with subscales of the EQ-i (Bar-On, 1997, the NEO-FFI (Hoekstra, Ormel, De Fruyt, 1996, Mach-IV (Van Kenhove, Vermeir, Verniers, 2001, Rosenberg Self-esteem Scale (Rosenberg, 1965, and the WAIS-III (Wechsler, 2000. Overall, the internal consistency, construct validity, and factor structure of scores from the Dutch version of the IRI suggest that it is a useful instrument to measure people's self-reported empathic tendencies.

  4. Reactivity measurements during startup physics tests for the cycle 7 of Angra-1 Nuclear Power Station

    International Nuclear Information System (INIS)

    Angra Nuclear Power Station, Unit 1, in Angra dos Reis, RJ, Brazil, with a PWR - Pressurized Water Reactor - has an installed capacity of 1876 MW thermal and 657 MW electrical. The ongoing seventh operating cycle is designed for a duration of 217 Effective Full Power Days. The Physics Tests for the cycle 7 were started on 03/dec/97, following internal technical and administrative procedures and based also on the code ANSI-ANS-19.6.1-1985-Reload Startup Physics Tests for Pressurized Water Reactors. The purpose of the Physics Tests is to confirm by measurements the predicted core parameters as stated in the Nuclear Design report for each specific cycle and the adherence to Technical Specifications. As a minimum the Physics Tests program comprises the following determinations: reactivity computer checkout, reactor coolant system boron concentration for control rods inserted and withdrawn, control rod worthies; moderator and isothermal temperature coefficient; neutron flux symmetry; zero and full power boron concentration. This paper describes the Lower Physics Tests only, that is, the tests performed between zero and around 2% power, before the admission of steam to the turbine-generator, and consequently, before the synchronism of the Unit to the electrical distribution network of the region center-south. (author)

  5. Measuring Empathic Tendencies: Reliability And Validity of the Dutch Version of the Interpersonal Reactivity Index

    Directory of Open Access Journals (Sweden)

    Kim De Corte

    2007-10-01

    Full Text Available The Interpersonal Reactivity Index (IRI; Davis, 1980 is a commonly used self-report instrument designed to assess empathic tendencies. The IRI consists of four separate subscales: Perspective Taking (PT, Fantasy (FS, Empathic Concern (EC, and Personal Distress (PD. The objective of this study was to examine the psychometric properties of a Dutch version of the IRI. The IRI was administered to a Dutch sample of 651 normal functioning adults. The factor structure of the IRI was examined by using confirmatory factor analysis (CFA. The results of the CFA revealed that there is room for improvement and modification of the original theoretical model. The validity of the IRI was tested using internal criteria (i. e., scale intercorrelations and external criteria (i. e., correlations with subscales of the EQ-i (Bar-On, 1997, the NEO-FFI (Hoekstra, Ormel, & De Fruyt, 1996, Mach-IV (Van Kenhove, Vermeir, & Verniers, 2001, Rosenberg Self-esteem Scale (Rosenberg, 1965, and the WAIS-III (Wechsler, 2000. Overall, the internal consistency, construct validity, and factor structure of scores from the Dutch version of the IRI suggest that it is a useful instrument to measure people's self-reported empathic tendencies.

  6. Direct measurement of the chemical reactivity of silicon electrodes with LiPF6-based battery electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Veith, Gabriel M [ORNL; Baggetto, Loic [ORNL; Sacci, Robert L [ORNL; Unocic, Raymond R [ORNL; Tenhaeff, Wyatt E [ORNL; Browning, Jim [ORNL

    2014-01-01

    We report the first direct measurement of the chemistry and extent of reactivity between a lithium ion battery electrode surface (Si) and a liquid electrolyte (1.2M LiPF6-3:7 wt% ethylene carbonate:dimethyl carbonate). This layer is estimated to be 3.6 nm thick and partially originates from the consumption of the silicon surface.

  7. Oscillator measurements of the reactivity changes resulting from the irradiation of low enrichment particulate fuel in the Dragon reactor

    International Nuclear Information System (INIS)

    This Report describes a series of experiments carried out as a joint UKAEA/CEA/DRAGON project to determine the reactivity changes of low-enrichment particulate fuel samples following their irradiation in the DRAGON reactor to various levels up to approximately 60,000 MWD/Te. The samples are described, together with the method of measurement of reactivity in the Winfrith reactor HECTOR, which was an extension of the well-known Oscillator Technique to yield simultaneously overall reactivity changes and changes in macroscopic absorption cross-sections. Measurements were carried out at room temperature in two reactor spectra; a thermal spectrum and one typical of an HTR type reactor. The resultant reactivity changes are presented together with the relevant sample burn-ups as determined by #betta#-scanning methods and, in some cases, by rigorous chemical analysis. The results of supporting measurements are also reported, carried out to characterise the neutron spectra in which the oscillator measurements were made and to determine the neutron flux distributions in the HECTOR reactor. (author)

  8. TRANC – a novel fast-response converter to measure total reactive atmospheric nitrogen

    Directory of Open Access Journals (Sweden)

    O. Marx

    2011-12-01

    Full Text Available The input and loss of plant available nitrogen (N from/to the atmosphere can be an important factor for the productivity of ecosystems and thus for its carbon and greenhouse gas exchange. We present a novel converter for the measurement of total reactive nitrogen (TRANC: Total Reactive Atmospheric Nitrogen Converter, which offers the opportunity to quantify the sum of all airborne reactive nitrogen (Nr compounds in high time resolution. The basic concept of the TRANC is the full conversion of total Nr to nitrogen monoxide (NO within two reaction steps. Initially, reduced N compounds are being oxidised, and oxidised N compounds are thermally converted to lower oxidation states. Particulate N is being sublimated and oxidised or reduced afterwards. In a second step, remaining higher N oxides or those originated in the first step are catalytically converted to NO with carbon monoxide used as reduction gas. The converter is combined with a fast response chemiluminescence detector (CLD for NO analysis and its performance was tested for the most relevant gaseous and particulate Nr species under both laboratory and field conditions. Recovery rates during laboratory tests for NH3 and NO2 were found to be 95 and 99%, respectively, and 97% when the two gases were combined. In-field longterm stability over an 11-month period was approved by a value of 91% for NO2. Effective conversion was also found for ammonium and nitrate containing particles. The recovery rate of total ambient Nr was tested against the sum of individual measurements of NH3, HNO3, HONO, NH4+, NO3, and NOx using a combination of different well-established devices. The results show that the TRANC-CLD system precisely captures fluctuations in Nr concentrations and also matches the sum of all

  9. Determination of reactivity coefficients from measurable effects of small external perturbations using a bank of Kalman filters

    International Nuclear Information System (INIS)

    The goal of this paper is to present a method for the determination of reactivity coefficients in a nuclear power reactor in operation. A method based on Kalman filtering technique and the Magill-Bogler test is proposed for the determination of reactivity coefficients from measured effects of small external perturbation introduced into a steady-state power reactor. Numerical experiments are presented to justify the procedure. A realistic problem is considered: the calculation of the control rod worth. Finally a possible way is given to check the goodness of the estimation. (author) 16 refs.; 4 figs

  10. Application of subcriticality measuring methods for studying the temperature effect of the reactivity of uranium-water lattice assemblies

    International Nuclear Information System (INIS)

    This paper presents some results of investigations of the temperature dependence of the reactivity of the MATR-1 stand of the Physics Power Institute; two techniques were used: a pulsed neutron source and an expelled source. The proposed scheme of the investigations was checked in uranium-water assemblies in which a reflector is important for the reactivity balance. The kinetic parameters were assumed for U 235 in both the experiments and calculations. The calculations were made in the two-group diffusion approximation in two dimensional geometry with the FACTOR and DNESTR programs. The constnats of the thermal neutron group were determined taking into account the heterogeneous core structure by averaging over the space-energy distribution of the neutron flux in modeled Wigner-Seitz cells. Results show that the systematic application of subcriticality measuring methods allows the direct determination of the importance of the core and reflector shapes i nthe development of the temperature dependence of the reactivity

  11. A review of hemorheology: Measuring techniques and recent advances

    Science.gov (United States)

    Sousa, Patrícia C.; Pinho, Fernando T.; Alves, Manuel A.; Oliveira, Mónica S. N.

    2016-02-01

    Significant progress has been made over the years on the topic of hemorheology, not only in terms of the development of more accurate and sophisticated techniques, but also in terms of understanding the phenomena associated with blood components, their interactions and impact upon blood properties. The rheological properties of blood are strongly dependent on the interactions and mechanical properties of red blood cells, and a variation of these properties can bring further insight into the human health state and can be an important parameter in clinical diagnosis. In this article, we provide both a reference for hemorheological research and a resource regarding the fundamental concepts in hemorheology. This review is aimed at those starting in the field of hemodynamics, where blood rheology plays a significant role, but also at those in search of the most up-to-date findings (both qualitative and quantitative) in hemorheological measurements and novel techniques used in this context, including technical advances under more extreme conditions such as in large amplitude oscillatory shear flow or under extensional flow, which impose large deformations comparable to those found in the microcirculatory system and in diseased vessels. Given the impressive rate of increase in the available knowledge on blood flow, this review is also intended to identify areas where current knowledge is still incomplete, and which have the potential for new, exciting and useful research. We also discuss the most important parameters that can lead to an alteration of blood rheology, and which as a consequence can have a significant impact on the normal physiological behavior of blood.

  12. Application of microchip assay system for the measurement of C-reactive protein in human saliva.

    Science.gov (United States)

    Christodoulides, Nicolaos; Mohanty, Sanghamitra; Miller, Craig S; Langub, M Chris; Floriano, Pierre N; Dharshan, Priya; Ali, Mehnaaz F; Bernard, Bruce; Romanovicz, Dwight; Anslyn, Eric; Fox, Philip C; McDevitt, John T

    2005-03-01

    In the last decade, saliva has been advocated as a non-invasive alternative to blood as a diagnostic fluid. However, use of saliva has been hindered by the inadequate sensitivity of current methods to detect the lower salivary concentrations of many constituents compared to serum. Furthermore, developments in the areas related to lab-on-a-chip systems for saliva-based point of care diagnostics are complicated by the high viscosity and heterogeneous properties associated with this diagnostic fluid. The biomarker C-reactive protein (CRP) is an acute phase reactant and a well-accepted indicator of inflammation. Numerous clinical studies have established elevated serum CRP as a strong, independent risk factor for the development of cardiovascular disease (CVD). CVD has also been associated with oral infections (i.e. periodontal diseases) and there is evidence that systemic CRP may be a link between the two. Clinical measurements of CRP in serum are currently performed with "high sensitivity" CRP (hsCRP) enzyme-linked immunosorbent assay (ELISA) tests that lack the sensitivity for the detection of this important biomarker in saliva. Because measurement of salivary CRP may represent a novel approach for diagnosing and monitoring chronic inflammatory disease, including CVD and periodontal diseases, the objective of this study was to apply an ultra-sensitive microchip assay system for the measurement of CRP in human saliva. Here, we describe this novel lab-on-a-chip system in its first application for the measurement of CRP in saliva and demonstrate its advantages over the traditional ELISA method. The increased sensitivity of the microchip system (10 pg ml(-1) of CRP with 1000-fold dilution of saliva sample) is attributed to its inherent increased signal to noise ratio, resulting from the higher bead surface area available for antigen/antibody interactions and the high stringency washes associated with this approach. Finally, the microchip assay system was utilized in

  13. Reactivity of chlorine radical with submicron palmitic acid particles: kinetic measurements and products identification

    Directory of Open Access Journals (Sweden)

    M. Mendez

    2013-06-01

    Full Text Available The heterogeneous reaction of Cl. radicals with sub-micron palmitic acid (PA particles was studied in an aerosol flow tube in the presence or in the absence of O2. Fine particles were generated by homogeneous condensation of PA vapors and introduced in the reactor where chlorine atoms are produced by photolysis of Cl2 using UV lamps surrounding the reactor. The effective reactive uptake coefficient (γ has been determined from the rate loss of PA measured by GC/MS analysis of reacted particles as a function of the chlorine exposure. In the absence of O2, γ = 14 ± 5 indicates efficient secondary chemistry involving Cl2. GC/MS analyses have shown the formation of monochlorinated and polychlorinated compounds in the oxidized particles. Although, the PA particles are solid, the complete mass can be consumed. In the presence of oxygen, the reaction is still dominated by secondary chemistry but the propagation chain length is smaller than in the absence of O2 which leads to an uptake coefficient γ = 3 ± 1. In the particulate phase, oxocarboxylic acids and dicarboxylic acids are identified by GC/MS. Formation of alcohols and monocarboxylic acids are also suspected. All these results show that solid organic particles could be efficiently oxidized by gas-phase radicals not only on their surface, but also in bulk by mechanisms which are still unclear. Furthermore the identified reaction products are explained by a chemical mechanism showing the pathway of the formation of more functionalized products. They help to understand the aging of primary tropospheric aerosol containing fatty acids.

  14. Ambient measurements of OH and HO2 radicals and the OH reactivity in and above the Borneo Rainforest

    Science.gov (United States)

    Heard, D. E.; Whalley, L. K.; Furneaux, K. L.; Edwards, P.; Commane, R.; Goddard, A.; Ingham, T.; Evans, M.

    2008-12-01

    Ground-based measurements of OH, HO2 and the OH reactivity have been made as part of the OP3 project that took place at the Bukit Atur Global Atmospheric Watch station in the Danum Valley forest conservation area in Sabah, Borneo in 2008. The project consisted of two intensive measurement periods in April and July. Aircraft measurements of OH and HO2 above the ground site were also performed and preliminary data will be presented. The OH and HO2 radicals exhibit a distinct diurnal profile, broadly following the j(O1D) profile that was measured simultaneously (daytime [OH] ~ 2 - 5 x 106 molecule cm-3, [HO2] ~ 1 - 1.5 x 108 molecule cm-3). NO, which peaked in the early morning hours ([NO] ~ 100 pptV) and isoprene, which peaked in the afternoon ([isoprene] ~ 2 - 5 ppbV) were found to influence the OH profile. Both OH and HO2 persisted into the night and were detectable even after j(O1D) had fallen to zero (nighttime [OH] ~ 2.5 x 105 molecule cm-3, [HO2] ~ 2 x 107 molecule cm-3), suggesting night-time radical sources. The OH reactivity tracked the isoprene concentration, exhibiting maximum reactivity just after midday when isoprene levels peaked. Zero dimensional models, using a variety of mechanisms, have been used to predict the [OH], [HO2] and the OH reactivity that were observed. The models, constrained with measured OH sources and sinks, are used to test the hypothesis that OH is recycled from isoprene oxidation in this low NOx environment

  15. Measurement of storage ring motion at the advanced light source

    International Nuclear Information System (INIS)

    The mechanical stability of the Advanced Light Source storage ring is examined over a period of 1.5 years from the point of view of floor motion. The storage ring beam position monitor stability is examined under various operating conditions

  16. A flow-tube based laser-induced fluorescence instrument to measure OH reactivity in the troposphere

    Science.gov (United States)

    Ingham, T.; Goddard, A.; Whalley, L. K.; Furneaux, K. L.; Edwards, P. M.; Seal, C. P.; Self, D. E.; Johnson, G. P.; Read, K. A.; Lee, J. D.; Heard, D. E.

    2009-08-01

    A field instrument utilising the artificial generation of OH radicals in a sliding injector flow-tube reactor with detection by laser-induced fluorescence spectroscopy has been developed to measure the rate of decay of OH by reaction with its atmospheric sinks. The OH reactivity instrument has been calibrated using known concentrations of CO, NO2 and single hydrocarbons in a flow of zero air, and the impact of recycling of OH via the reaction HO2+NO→OH+NO2 on the measured OH reactivity has been quantified. As well as a detailed description of the apparatus, the capabilities of the new instrument are illustrated using representative results from deployment in the semi-polluted marine boundary layer at the Weybourne Atmospheric Observatory, UK, and in a tropical rainforest at the Bukit Atur Global Atmospheric Watch station, Danum Valley, Borneo.

  17. Measuring Physical Activity with Pedometers in Older Adults with Intellectual Disability : Reactivity and Number of Days

    NARCIS (Netherlands)

    Hilgenkamp, Thessa; Van Wijck, Ruud; Evenhuis, Heleen

    2012-01-01

    The minimum number of days of pedometer monitoring needed to estimate valid average weekly step counts and reactivity was investigated for older adults with intellectual disability. Participants (N = 268) with borderline to severe intellectual disability ages 50 years and older were instructed to we

  18. QUALITATIVE MEASUREMENTS OF IGE AND IGG IN HUMAN ASTHMATIC SERUM FOR MOLD REACTIVITY

    Science.gov (United States)

    Rational: Molds have the ability to induce allergic asthma-like responses in mouse models; however, their role in human disease is unclear. This study was to develop a screening tool for reactivity of human sera to mold extracts by using a minimal amount of sera for a qual...

  19. Measurement of affective state during chronic nicotine treatment and withdrawal by affective taste reactivity in mice: the role of endocannabinoids.

    Science.gov (United States)

    Wing, Victoria C; Cagniard, Barbara; Murphy, Niall P; Shoaib, Mohammed

    2009-10-01

    Despite tobacco being highly addictive, it is unclear if nicotine has significant affective properties. To address this, we studied taste reactions to gustatory stimuli, palatable sucrose and unpalatable quinine, which are believed to reflect ongoing affective state. Taste reactivity was assessed during chronic nicotine administration and spontaneous withdrawal and the role of the endogenous cannabinoids was also investigated. C57BL6J mice were implanted with intraoral fistula to allow passive administration of solutions. In the first study, taste reactivity was tracked throughout chronic vehicle or nicotine (12 mg/kg/day) infusion via osmotic minipumps and spontaneous withdrawal following removal of minipumps. In the second study, the endocannabinoid CB1-receptor antagonist AM251 (1, 3 and 10mg/kg, intraperitoneal) or vehicle was acutely administered before taste reactivity measurement during chronic nicotine administration. Chronic nicotine treatment and spontaneous withdrawal did not influence taste reactions to sucrose or quinine. AM251 decreased positive reactions to sucrose and increased negative reactions to quinine. The effects of AM251 were respectively attenuated and enhanced in nicotine infused mice. These results suggest chronic nicotine exposure and withdrawal has no apparent affective sequelae, as probed by taste reactivity, and thus may not explain the difficulty tobacco-users have in achieving abstinence. In contrast, endocannabinoids elevate affective state in drug-naïve animals and changes in endogenous endocannabinoid tone may underlie compensations in affective state during chronic nicotine exposure. PMID:19540830

  20. Measurement of very low reactivities using the pulsed response of a reactor, determined by inter correlation. Interpretation of certain results

    International Nuclear Information System (INIS)

    The present report deals with measurements of low reactivities carried out on the reactors RUBEOLE and then ULYSSE, using the pulsed response of these reactors. This response is obtained by a method of inter-correlation between a source excitation of a square-wave form and the resulting output. An interpretation has been put forward for certain results having a space-time origin. (authors)

  1. Measuring Success of Advanced Technology Program Participation Using Archival Data

    OpenAIRE

    Lynne G. ZUCKER; Michael R. Darby

    2003-01-01

    This paper examines the value of collecting archival data to evaluate the Advanced Technology Program's (ATP) impact on participants' short- and long-term business success. We use two types of indicators of business success: patenting activity which can be tracked for all participants, and financial market data which is extensive for public firms but limited for start-up and other private firms to receipt of venture capital, membership in joint ventures and strategic alliances, and going publ...

  2. Advancements in picosecond resolution time interval measurement techniques

    Energy Technology Data Exchange (ETDEWEB)

    Dobos, L. [Tektronix, Inc., Beaverton, OR (United States)

    1994-12-31

    New, efficient measurement techniques are used to adequately characterize the actual performance of the new generation of programmable equivalent time sequential sampling oscilloscopes. These instruments provide new time interval measurement capabilities with increased repeatability and accuracy. Subpicosecond repeatability for risetime measurements of fast step generators (20 ps transition time) has been observed. A typical timebase related peak error of 3ps for short time interval measurements (up to tens of ns) has been shown. A brief introduction on the horizontal timebase error sources is followed by the description of the automated measurement techniques. Finally actual measurement results are shown using the described techniques.

  3. Predicting post-trauma stress symptoms from pre-trauma psychophysiologic reactivity, personality traits and measures of psychopathology

    Directory of Open Access Journals (Sweden)

    Orr Scott P

    2012-05-01

    Full Text Available Abstract Background Most individuals exposed to a traumatic event do not develop post-traumatic stress disorder (PTSD, although many individuals may experience sub-clinical levels of post-traumatic stress symptoms (PTSS. There are notable individual differences in the presence and severity of PTSS among individuals who report seemingly comparable traumatic events. Individual differences in PTSS following exposure to traumatic events could be influenced by pre-trauma vulnerabilities for developing PTSS/PTSD. Methods Pre-trauma psychological, psychophysiological and personality variables were prospectively assessed for their predictive relationships with post-traumatic stress symptoms (PTSS. Police and firefighter trainees were tested at the start of their professional training (i.e., pre-trauma; n = 211 and again several months after exposure to a potentially traumatic event (i.e., post-trauma, n = 99. Pre-trauma assessments included diagnostic interviews, psychological and personality measures and two psychophysiological assessment procedures. The psychophysiological assessments measured psychophysiologic reactivity to loud tones and the acquisition and extinction of a conditioned fear response. Post-trauma assessment included a measure of psychophysiologic reactivity during recollection of the traumatic event using a script-driven imagery task. Results Logistic stepwise regression identified the combination of lower IQ, higher depression score and poorer extinction of forehead (corrugator electromyogram responses as pre-trauma predictors of higher PTSS. The combination of lower IQ and increased skin conductance (SC reactivity to loud tones were identified as pre-trauma predictors of higher post-trauma psychophysiologic reactivity during recollection of the traumatic event. A univariate relationship was also observed between pre-trauma heart rate (HR reactivity to fear cues during conditioning and post-trauma psychophysiologic reactivity

  4. Advanced Tethersonde for High-Speed Flux Measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Flux measurements of trace gases and other quantities, such as latent heat, are of great importance in scientific field research. One typical flux measurement setup...

  5. Multi-Objective Advanced Inverter Controls to Dispatch the Real and Reactive Power of Many Distributed PV Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Reno, Matthew J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lave, Matthew Samuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Broderick, Robert Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Seuss, John [Georgia Inst. of Technology, Atlanta, GA (United States); Grijalva, Santiago [Georgia Inst. of Technology, Atlanta, GA (United States)

    2016-01-01

    The research presented in this report compares several real - time control strategies for the power output of a large number of PV distributed throughout a large distribution feeder circuit. Both real and reactive power controls are considered with the goal of minimizing network over - voltage violations caused by large amounts of PV generation. Several control strategies are considered under various assumptions regarding the existence and latency of a communication network. The control parameters are adjusted to maximize the effectiveness of each control. The controls are then compared based on their ability to achieve multiple objectiv es. These objectives include minimizing the total number of voltage violations , minimizing the total amount of PV energy curtailed or reactive power generated, and maximizing the fairness of any control action among all PV systems . The controls are simulat ed on the OpenDSS platform using time series load and spatially - distributed irradiance data.

  6. Total OH reactivity measurements in ambient air in a southern Rocky Mountain ponderosa pine forest during BEACHON-SRM08 summer campaign

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Yoshihiro; Kato, Shungo; Greenberg, Jim; Harley, P.; Karl, Thomas G.; Turnipseed, A.; Apel, Eric; Guenther, Alex B.; Smith, Jim; Kajii, Yoshizumi

    2014-03-01

    Total OH reactivity was measured during the Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen-Southern Rocky Mountain 2008 field campaign (BEACHON-SRM08) held at Manitou Experimental Forest (MEF) in Colorado USA during the summer season in August, 2008. The averaged total OH reactivity was 6.8 s-1, smaller than that measured in urban or suburban areas, while sporadically high OH reactivity was also observed during some evenings. The total OH reactivity measurements were accompanied by observations of traces species such as CO, NO, NOy, O3 and SO2 and VOCs. From the calculation of OH reactivity based on the analysis of these trace species, 35.3-46.3% of OH reactivity for VOCs came from biogenic species that are dominated by 2-methyl-3-butene-2-ol (MBO), and monoterpenes. MBO was the most prominent contribution to OH reactivity of any other trace species. A comparison of observed and calculated OH reactivity shows that the calculated OH reactivity is 29.5-34.8% less than the observed value, implying the existence of missing OH sink. One of the candidates of missing OH was thought to be the oxidation products of biogenic species.

  7. Branch-level measurement of total OH reactivity for constraining unknown BVOC emission during the CABINEX (Community Atmosphere-Biosphere INteractions Experiments-09 Field Campaign

    Directory of Open Access Journals (Sweden)

    S. Kim

    2011-03-01

    Full Text Available We present OH reactivity measurements using the comparative reactivity method with a branch enclosure technique for four different tree species (red oak, white pine, beech and red maple in the UMBS PROPHET tower footprint during the Community Atmosphere Biosphere INteraction EXperiment (CABINEX field campaign in July of 2009. Proton Transfer Reaction-Mass Spectrometry (PTR-MS was sequentially used as a detector for OH reactivity and BVOC including isoprene and monoterpenes (MT, in enclosure air, so that the measurement dataset contains both measured OH reactivity and calculated OH reactivity from well-known BVOC. The results indicate that isoprene and MT, and in one case a sesquiterpene, can account for the measured OH reactivity. Significant discrepancy between measured OH reactivity and calculated OH reactivity from isoprene and MT is found for the red maple enclosure dataset but it can be reconciled by adding reactivity from emission of a sesquiterpene, α-farnesene, detected by GC-MS. This leads us to conclude that no significant unknown BVOC emission contributed to ambient OH reactivity from these trees at least during the study period. This conclusion leads us to explore the contribution from unmeasured isoprene (the dominant OH sink in this ecosystem oxidation products such as hydroxyacetone, glyoxal, methylglyoxal and C4 and C5-hydroxycarbonyl using recently published isoprene oxidation mechanisms (Mainz Isoprene Mechanism II and Leuven Isoprene Mechanism. Evaluation of conventionally unmeasured first generation oxidation products of isoprene and their possible contribution to ambient missing OH reactivity indicates that the ratio of OH reactivity from unmeasured products over OH reactivity from MVK + MACR is strongly dependent on NO concentrations. The unmeasured oxidation products can contribute ~7.2% (8.8% from LIM and 5.6% by MIM 2 when NO = 100 pptv of the isoprene contribution towards total ambient OH reactivity. This amount can

  8. Handbook of microwave component measurements with advanced VNA techniques

    CERN Document Server

    Dunsmore, Joel P

    2012-01-01

    This book provides state-of-the-art coverage for making measurements on RF and Microwave Components, both active and passive. A perfect reference for R&D and Test Engineers, with topics ranging from the best practices for basic measurements, to an in-depth analysis of errors, correction methods, and uncertainty analysis, this book provides everything you need to understand microwave measurements. With primary focus on active and passive measurements using a Vector Network Analyzer, these techniques and analysis are equally applicable to measurements made with Spectrum Analyzers or Noise Figure

  9. Two-Group Theory of the Feynman-Alpha Method for Reactivity Measurement in ADS

    Directory of Open Access Journals (Sweden)

    Lénárd Pál

    2012-01-01

    Full Text Available The theory of the Feynman-alpha method, which is used to determine the subcritical reactivity of systems driven by an external source such as an ADS, is extended to two energy groups with the inclusion of delayed neutrons. This paper presents a full derivation of the variance to mean formula with the inclusion of two energy groups and delayed neutrons. The results are illustrated quantitatively and discussed in physical terms.

  10. A comparative study on the CANDU-6 reactivity device model based on Wolsong-2 physics measurement data

    International Nuclear Information System (INIS)

    A benchmark calculation of a 713 MWe Canada deuterium uranium (CANDU) reactor was performed based on the physics measurement data of Wolsong-2 nuclear power plant by using WIMS-AECL, DRAGON, and RFSP codes. The benchmark calculation included sensitivity analyses on the number of energy groups, cross-section library, and the weighting spectrum of the homogenized lattice parameters. The effective multiplication factor, critical boron concentration, reactivity device worth and the flux distribution were estimated and compared with those obtained by the measurement and standard CANDU reactor physics design tools. In general, the prediction errors by WIMS-AECL, DRAGON and RFSP codes were within the acceptance limit for all the sensitivity calculations. The sensitivity calculations also showed that the calculation accuracy was improved when two energy groups were used especially for the prediction of the reactivity worth of strong absorbers such as mechanical control absorbers and shutoff rods. However, the prediction error increased when calculating the reactivity worth of the adjuster banks with two energy groups. Therefore a further study is recommended to obtain consistent results for the benchmark calculation. (authors)

  11. Analysis of reactivity worths of highly-burnt PWR fuel samples measured in LWR-PROTEUS Phase II

    International Nuclear Information System (INIS)

    The reactivity loss of PWR fuel with burnup has been determined experimentally by inserting fresh and highly-burnt fuel samples in a PWR test lattice in the framework of the LWR-PROTEUS Phase II programme. Seven UO2 samples irradiated in a Swiss PWR plant with burnups ranging from ∼40 to ∼120 MWd/kg and four MOX samples with burnups up to ∼70 MWd/kg were oscillated in a test region constituted of actual PWR UO2 fuel rods in the centre of the PROTEUS zero-power experimental facility. The measurements were analyzed using the CASMO-4E fuel assembly code and a cross section library based on the ENDF/B-VI evaluation. The results show close proximity between calculated and measured reactivity effects and no trend for a deterioration of the quality of the prediction at high burnup. The analysis thus demonstrates the high accuracy of the calculation of the reactivity of highly-burnt fuel. (authors)

  12. RCRA corrective measures using a permeable reactive iron wall US Coast Guard Support Center, Elizabeth City, North Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Schmithors, W.L. [Parsons Engineering Science, Inc., Cary, NC (United States); Vardy, J.A. [Coast Guard Civil Engineering Unit, Elizabeth City, NC (United States)

    1997-12-31

    A chromic acid release was discovered at a former electroplating shop at the U.S. Coast Guard Support Center in Elizabeth City, North Carolina. Initial investigative activities indicated that chromic acid had migrated into the subsurface soils and groundwater. In addition, trichloroethylene (TCE) was also discovered in groundwater during subsequent investigations of the hexavalent chromium (Cr VI) plume. Corrective measures were required under the Resource Conservation and Recovery Act (RCRA). The in-situ remediation method, proposed under RCRA Interim Measures to passively treat the groundwater contaminants, uses reactive zero-valent iron to reductively dechlorinate the chlorinated compounds and to mineralize the hexavalent chromium. A 47 meter by 0.6 meter subsurface permeable iron wall was installed downgradient of the source area to a depth of 7 meters using a direct trenching machine. The iron filings were placed in the ground as the soils were excavated from the subsurface. This is the first time that direct trenching was used to install reactive zero-valent iron filings. Over 250 metric tons of iron filings were used as the reactive material in the barrier wall. Installation of the iron filings took one full day. Extensive negotiations with regulatory agencies were required to use this technology under the current facility Hazardous Waste Management Permit. All waste soils generated during the excavation activities were contained and treated on site. Once contaminant concentrations were reduced the waste soils were used as fill material.

  13. Advanced optical measurements for characterizing photophysical properties of single nanoparticles.

    Energy Technology Data Exchange (ETDEWEB)

    Polsky, Ronen; Davis, Ryan W.; Arango, Dulce C.; Brozik, Susan Marie; Wheeler, David Roger

    2009-09-01

    Formation of complex nanomaterials would ideally involve single-pot reaction conditions with one reactive site per nanoparticle, resulting in a high yield of incrementally modified or oriented structures. Many studies in nanoparticle functionalization have sought to generate highly uniform nanoparticles with tailorable surface chemistry necessary to produce such conjugates, with limited success. In order to overcome these limitations, we have modified commercially available nanoparticles with multiple potential reaction sites for conjugation with single ssDNAs, proteins, and small unilamellar vesicles. These approaches combined heterobifunctional and biochemical template chemistries with single molecule optical methods for improved control of nanomaterial functionalization. Several interesting analytical results have been achieved by leveraging techniques unique to SNL, and provide multiple paths for future improvements for multiplex nanoparticle synthesis and characterization. Hyperspectral imaging has proven especially useful for assaying substrate immobilized fluorescent particles. In dynamic environments, temporal correlation spectroscopies have been employed for tracking changes in diffusion/hydrodynamic radii, particle size distributions, and identifying mobile versus immobile sample fractions at unbounded dilution. Finally, Raman fingerprinting of biological conjugates has been enabled by resonant signal enhancement provided by intimate interactions with nanoparticles and composite nanoshells.

  14. Reactivity and neutron flux measurements in IPEN/MB-01 reactor with B4C burnable poison

    International Nuclear Information System (INIS)

    Burnable poison rods, made of B4C- Al2 O3 pellets with 5.01 mg/cm310 B concentration, have been manufactured for a set of experiments in the IPEN/MB-01 zero-power reactor. Several core parameters which are affected by the burnable poisons rods have been measured. The principal results, for the situation in which the burnable poison rods are located near the absorber rods of a control rod, are they cause a 29% rod worth shadowing, a reduction of 39% in the local void coefficient of reactivity, a reduction of 4.8% in the isothermal temperature coefficient of reactivity, and a reduction of 9% in the thermal neutron flux in the region where the burnable poison rods are located. These experimental results will be used for the validation of burnable poison calculation methods in the CTMSP. (author)

  15. Advances in traceability of Freeform Measurements on CMMs

    DEFF Research Database (Denmark)

    Savio, Enrico; Hansen, Hans Nørgaard; Larsen, Erik;

    2001-01-01

    Poster Presentation: The work here presented is concerned with the calibration of freeform surfaces using coordinate measuring machines (CMMs). The approach to calibration is based on repeated measurements of an uncalibrated object in multiple orthogonal positions. The basic idea is to eleminate ...

  16. Measuring reactive pools of Cd, Pb and Zn in coal fly ash from the UK using isotopic dilution assays

    International Nuclear Information System (INIS)

    Highlights: ► Isotope dilution is a useful method to resolve the reactivity of Cd and Pb in ash. ► Only 0.3–3% of the total Pb and Zn and 4–13% of the total Cd in coal ash are labile. ► Fly ash weathering exerts little impact on the lability of Cd, Pb and Zn. ► A 0.05 M EDTA extraction can be used as a simple proxy for isotope dilution assays. - Abstract: Large volumes of coal fly ash are continually being produced and stockpiled around the world and can be a source of environmentally sensitive trace elements. Whilst leaching tests are used for regulatory purposes, these provide little information about the true geochemical behaviour and ‘reactivity’ of trace elements in coal ash because they are poorly selective. Isotope dilution (ID) assays are frequently used in soil geochemistry as a means of measuring the reactive pools of trace metals that are in equilibrium with soil pore waters. This paper examines the applicability of multi-element ID assays in measuring the labile or reactive pool of Cd, Pb and Zn in a range of fresh and weathered fly ash, where pH is generally much more alkaline than in soils. The method generally worked well using 0.0005 M EDTA as a background electrolyte as it provided robust analytical ICP-MS measurements as well as fulfilling the important principle of ID that non-labile metal should not be solubilised. Reactive pools were equivalent to 0.5–3% of the total Pb pool and 4–13% of the total Cd pool. For Zn, where samples had pH < 11.5, the reactive Zn pool varied between 0.3% and 2%; when fresh ash samples with pH > 11.5 were tested, the method failed as the spiked isotope appeared to be sorbed or precipitated. Ash weathering was found to exert little impact on the lability of Cd, Pb and Zn. Isotope dilution results were compared with 0.43 M HNO3 and 0.05 M EDTA extractions, these commonly being used as analogues of the ID assay, and concluded that these can be used as fast, cost-effective and simple proxies for the

  17. Concepts and recent advances in generalized information measures and statistics

    CERN Document Server

    Kowalski, Andres M

    2013-01-01

    Since the introduction of the information measure widely known as Shannon entropy, quantifiers based on information theory and concepts such as entropic forms and statistical complexities have proven to be useful in diverse scientific research fields. This book contains introductory tutorials suitable for the general reader, together with chapters dedicated to the basic concepts of the most frequently employed information measures or quantifiers and their recent applications to different areas, including physics, biology, medicine, economics, communication and social sciences. As these quantif

  18. Advances in Swept-Wavelength Interferometry for Precision Measurements

    Science.gov (United States)

    Moore, Eric D.

    2011-12-01

    Originally developed for radar applications in the 1950s, swept-wavelength interferometry (SWI) at optical wavelengths has been an active area of research for the past thirty years, with applications in fields ranging from fiber optic telecommunications to biomedical imaging. It now forms the basis of several measurement techniques, including optical frequency domain reflectometry (OFDR), swept-source optical coherence tomography (SS-OCT), and frequency-modulated continuous-wave (FMCW) lidar. In this thesis, I present several novel contributions to the field of SWI that include improvements and extensions to the state of the art in SWI for performing precision measurements. The first is a method for accurately monitoring the instantaneous frequency of the tunable source to accommodate nonlinearities in the source tuning characteristics. This work ex- tends the commonly used method incorporating an auxiliary interferometer to the increasingly relevant cases of long interferometer path mismatches and high-speed wavelength tuning. The second contribution enables precision absolute range measurements to within a small fraction of the transform-limited range resolution of the SWI system. This is accomplished through the use of digital filtering in the time domain and phase slope estimation in the frequency domain. Measurements of optical group delay with attosecond-level precision are experimentally demonstrated and applied to measurements of group refractive index and physical thickness. The accuracy of the group refractive index measurement is shown to be on the order of 10-6, while measurements of absolute thicknesses of macroscopic samples are accomplished with accuracy on the order of 10 nm. Furthermore, sub-nanometer uncertainty for relative thickness measurements can be achieved. For the case of crystalline silicon wafers, the achievable uncertainty is on the same order as the Si-Si bond length, opening the door to potential thickness profiling with single atomic

  19. Experimental subcritical reactivity determinations employing APSD measurements with pulse mode detectors in the IPEN/MB-01 reactor

    International Nuclear Information System (INIS)

    This work aims to determine experimentally the subcritical reactivity levels of several configurations of the IPEN/MB-01 reactor in an approach based on the subcritical kinetic model developed by Gandini and Salvatores. The procedure employs the measurements of the APSD (Auto Power Spectral Density) using pulse mode detectors. The proposed approach is based only on measured quantities such as counting rates and the parameters arising from the least square approach of the APSD. Other difficult quantity such as detector efficiencies is not needed in the method. Several measurements of APSD were performed in varying degrees of sub-criticality (up to around -7000 pcm). The APSD data were least-square fitted to get the prompt decay mode (α). Beside the startup source, an external neutron sources of Am-Be was installed near the core in order to improve neutron count statistics. The final experimental results are of very good quality. The experiment shows clearly that the classical one point kinetic theory cannot describe the measured reactivity. MCNP Keff results were compared to the corresponding experimental results. The agreement was fairly good. (author)

  20. Advanced computational methods for the assessment of reactor core behaviour during reactivity initiated accidents. Final report; Fortschrittliche Rechenmethoden zum Kernverhalten bei Reaktivitaetsstoerfaellen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Pautz, A.; Perin, Y.; Pasichnyk, I.; Velkov, K.; Zwermann, W.; Seubert, A.; Klein, M.; Gallner, L.; Krzycacz-Hausmann, B.

    2012-05-15

    The document at hand serves as the final report for the reactor safety research project RS1183 ''Advanced Computational Methods for the Assessment of Reactor Core Behavior During Reactivity-Initiated Accidents''. The work performed in the framework of this project was dedicated to the development, validation and application of advanced computational methods for the simulation of transients and accidents of nuclear installations. These simulation tools describe in particular the behavior of the reactor core (with respect to neutronics, thermal-hydraulics and thermal mechanics) at a very high level of detail. The overall goal of this project was the deployment of a modern nuclear computational chain which provides, besides advanced 3D tools for coupled neutronics/ thermal-hydraulics full core calculations, also appropriate tools for the generation of multi-group cross sections and Monte Carlo models for the verification of the individual calculational steps. This computational chain shall primarily be deployed for light water reactors (LWR), but should beyond that also be applicable for innovative reactor concepts. Thus, validation on computational benchmarks and critical experiments was of paramount importance. Finally, appropriate methods for uncertainty and sensitivity analysis were to be integrated into the computational framework, in order to assess and quantify the uncertainties due to insufficient knowledge of data, as well as due to methodological aspects.

  1. Measurement and modeling of advanced coal conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. (Advanced Fuel Research, Inc., East Hartford, CT (United States)); Smoot, L.D.; Brewster, B.S. (Brigham Young Univ., Provo, UT (United States))

    1992-01-01

    The objectives of this proposed study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines. This report describes progress during twenty second quarter of the program. Specifically, the paper discusses progress in three task areas: (1) Submodel development and evaluation: coal to char chemistry submodel; fundamental high-pressure reaction rate data; secondary reaction of pyrolysis product and burnout submodels; ash physics and chemistry submodel; large particle submodels; large char particle oxidation at high pressures; and SO[sub x]-NO[sub x] submodel development and evaluation; (2) Comprehensive model development and evaluation: integration of advanced submodels into entrained-flow code, with evaluation and documentation; comprehensive fixed-bed modeling review, development evaluation and implementation; and generalized fuels feedstock submodel; and (3) Application of integrated codes: application of generalized pulverized coal comprehensive code and application of fixed-bed code.

  2. Safety Assessment of Advanced Imaging Sequences I: Measurements.

    Science.gov (United States)

    Jensen, Jorgen Arendt; Rasmussen, Morten Fischer; Pihl, Michael Johannes; Holbek, Simon; Hoyos, Carlos Armando Villagómez; Bradway, David P; Stuart, Matthias Bo; Tomov, Borislav Gueorguiev

    2016-01-01

    A method for rapid measurement of intensities (I(spta)), mechanical index (MI), and probe surface temperature for any ultrasound scanning sequence is presented. It uses the scanner's sampling capability to give an accurate measurement of the whole imaging sequence for all emissions to yield the true distributions. The method is several orders of magnitude faster than approaches using an oscilloscope, and it also facilitates validating the emitted pressure field and the scanner's emission sequence software. It has been implemented using the experimental synthetic aperture real-time ultrasound system (SARUS) scanner and the Onda AIMS III intensity measurement system (Onda Corporation, Sunnyvale, CA, USA). Four different sequences have been measured: a fixed focus emission, a duplex sequence containing B-mode and flow emissions, a vector flow sequence with B-mode and flow emissions in 17 directions, and finally a SA duplex flow sequence. A BK8820e (BK Medical, Herlev, Denmark) convex array probe is used for the first three sequences and a BK8670 linear array probe for the SA sequence. The method is shown to give the same intensity values within 0.24% of the AIMS III Soniq 5.0 (Onda Corporation, Sunnyvale, CA, USA) commercial intensity measurement program. The approach can measure and store data for a full imaging sequence in 3.8-8.2 s per spatial position. Based on I(spta), MI, and probe surface temperature, the method gives the ability to determine whether a sequence is within U.S. FDA limits, or alternatively indicate how to scale it to be within limits. PMID:26625411

  3. Curriculum-Based Measurement of Reading: Recent Advances

    Science.gov (United States)

    Madelaine, Alison; Wheldall, Kevin

    2004-01-01

    A significant amount of literature has been published on curriculum-based measurement (CBM) in the last decade. Much of the conceptual work on CBM was done in the 1980s and early 1990s. This review concentrates on the large body of research published within the last 10 years on CBM of reading, including further research demonstrating its technical…

  4. Advances in methods for measuring patterns of endemic plant diversity

    Directory of Open Access Journals (Sweden)

    Jihong Huang

    2013-01-01

    Full Text Available Endemism, the restriction of a taxon’s distribution to a specified geographical area, is central to the study of biogeography. Understanding endemism not only concerns a number of evolutionary and biogeographical issues, but also plays an important role in maintaining biodiversity and in the selection of priority areas for conservation. In recent years, various measures and analytical methods have been used to investigate patterns of endemism for various taxa from different regions. The emergence of these new measurements has benefited from the construction of phylogenetic trees and the implementation of data from spatial statistics. Some of these measures, such as phylogenetic diversity, phylogenetic endemism, and biogeographically weighted evolutionary distinctiveness deserve much more attention. Here, we review progress in the methodology used to measure the distribution patterns of endemism. These metrics have generally developed from a single time or space perspective to space-time united patterns. Specifically, the metrics include species richness, phylogenetic diversity and evolutionary distinctiveness, plus all there in combination as well as the weight of species range size. Moreover, we propose that studies on the distribution patterns of Chinese endemic taxa should pay attention to species diversity, phylogenetic diversity, species β-diversity, and phylogenetic β-diversity. In particular, model simulation analysis should be emphasized and implemented during investigations. These studies will provide fundamental knowledge for comprehensive recognition of scale-induced differences and for the detection of mechanisms underlying the distribution patterns of endemic taxa, and therefore provide theoretical support for biodiversity conservation.

  5. Advances in the Conceptualization and Measurement of Critical Consciousness

    Science.gov (United States)

    Diemer, Matthew A.; McWhirter, Ellen Hawley; Ozer, Emily J.; Rapa, Luke J.

    2015-01-01

    This article reviews three emergent measures of critical consciousness (CC), which refers to marginalized or oppressed people's critical reflection on oppressive social, economic, or political conditions, the motivation to address perceived injustice, and action taken to counter such injustice in a liberatory manner (Freire in "Education for…

  6. Studies on influence of sodium void reactivity effect on the concept of the core and safety of advanced fast reactor

    International Nuclear Information System (INIS)

    The paper is devoted to studies on influence of sodium void reactivity effect (SVRE) on safety and technical and economical characteristics of BN-1200 type reactor. Different core options are considered as applied to this reactor. These core options differ in designs, dimensions and, hence, SVRE value. It is shown by the analysis that most flattened core with sodium plenum at the top assures reactor self-protection under beyond design basis accident conditions. Sodium plenum abandonment and core height increase causing SVRE increase deteriorate reactor self-protection, but at the same time, improve some technical and economical characteristics of the reactor. Issues of choosing optimal core design under these conditions are discussed. (author)

  7. Simultaneous measurement of X-ray small angle scattering, absorption and reactivity: A continuous flow catalysis reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sungsik; Lee, Byeongdu; Seifert, Soenke [X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Vajda, Stefan [Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Department of Chemical Engineering, Yale University, 9 Hillhouse Avenue, New Haven, CT 06520 (United States); Winans, Randall E., E-mail: rewinans@anl.gov [X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2011-09-01

    A fixed-bed, continuous flow catalysis reactor is described, in which GISAXS (grazing incidence small angle X-ray scattering)/GIXAS (grazing incidence X-ray absorption spectroscopy) and TPR (temperature-programmed reaction) can be measured simultaneously on samples with low metal coverage. The capabilities offered by this setup are illustrated in the example of the dehydrogenation of cyclohexene, where the size, oxidation state and reactivity of supported cobalt clusters were investigated under ambient pressure conditions. The GIXAS data reveal an evolution of the oxidation state of the catalytic particles with temperature. Simultaneously recorded GISAXS data show stable clusters, without any indication of sintering under employed reaction conditions.

  8. A summary period measure of immigrant advancement in the U.S.

    Directory of Open Access Journals (Sweden)

    John Pitkin

    2011-02-01

    Full Text Available This paper proposes a method for summarizing the pace of advancement of the foreign-born population in a given period. The method standardizes for variations in the duration of residence or age composition of immigrant groups, attainments possessed by different groups when first observed after entry, and other temporal effects on measured advances, forming an index of Expected Lifetime Advance based on the pace of change in a period. The measure is applied to Mexican and Asian immigrants. Between the 1980s and the 1990s, the rates of advancement for Mexicans accelerated in six out of seven social, economic, and civic outcomes. Rates of advancement for Asians were similar in both decades.

  9. Enteral Feeding During Chemoradiotherapy for Advanced Head-and-Neck Cancer: A Single-Institution Experience Using a Reactive Approach

    International Nuclear Information System (INIS)

    Purpose: The optimal method for providing enteral nutrition to patients with head-and-neck cancer is unclear. The purpose of the present study was to evaluate the safety and efficacy of our reactive policy, which consists of the installation of a nasogastric (NG) feeding tube only when required by the patient's nutritional status. Methods and Materials: The records of all patients with Stage III and IV head-and-neck cancer treated with concomitant chemotherapy and radiotherapy between January 2003 and December 2006 were reviewed. The overall and disease-free survival rates were estimated using the Kaplan-Meier method and compared with the log-rank test. Results: The present study included 253 patients, and the median follow-up was 33 months. At 3 years, the estimated overall survival and disease-free survival rate was 82.8% and 77.8%, respectively, for the whole population. No survival difference was observed when the patients were compared according to the presence and absence of a NG tube or stratified by weight loss quartile. The mean weight loss during treatment for all patients was 10.4%. The proportion of patients requiring a NG tube was 49.8%, and the NG tube remained in place for a median duration of 40 days. No major complications were associated with NG tube installation. Only 3% of the patients were still dependent on enteral feeding at 6 months. Conclusion: These results suggest that the use of a reactive NG tube with an interdisciplinary team approach is a safe and effective method to manage malnutrition in patients treated with concomitant chemotherapy and radiotherapy for head-and-neck cancer.

  10. Advanced spherical near-field antenna measurement techniques

    DEFF Research Database (Denmark)

    Nielsen, Jeppe Majlund; Pivnenko, Sergey; Breinbjerg, Olav

    2011-01-01

    The DTU-ESA facility has since the 1980es provided highly accurate antenna radiation pattern measurements and gain calibration by use of the probe corrected spherical nearfield technique, both for ESA (the European Space Agency) and other customers and continues to do so. Recent years activities...... and research carried out at the facility are presented in the article. Since 2004 several antenna test facility comparison campaigns were carried out between a number of European antenna measurement facilities. The first campaigns laid the foundation for the later comparisons in providing experience...... and showing the capabilities of each participating facility. A special campaign was carried out with the aim of establishing a reference radiation pattern for the DTU-ESA VAST-12 antenna. The on-ground calibration of the MIRAS space radiometer for ESA's SMOS mission was carried out at the DTU...

  11. Safety Assessment of Advanced Imaging Sequences I: Measurements

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Rasmussen, Morten Fischer; Pihl, Michael Johannes;

    2016-01-01

    distributions. The method is several orders of magnitude faster than approaches using an oscilloscope, and it also facilitates validating the emitted pressure field and the scanner’s emission sequence software. It has been implemented using the experimental SARUS scanner and the Onda AIMS III intensity...... measurement system (Onda Corporation, Sunnyvale, CA, USA). Four different sequences have been measured: a fixed focus emission, a duplex sequence containing B-mode and flow emissions, a vector flow sequence with B-mode and flow emissions in 17 directions, and finally a synthetic aperture (SA) duplex flow...... sequence. A BK8820e (BK Medical, Herlev, Denmark) convex array probe is used for the first three sequences and a BK8670 linear array probe for the SA sequence. The method is shown to give the same intensity values within 0.24% of the AIMS III Soniq 5.0 (Onda Corporation, Sunnyvale, CA, USA) commercial...

  12. Advanced Plasma Analyzer for Measurements in the Magnetosphere of Jupiter

    OpenAIRE

    Stude, Joan

    2016-01-01

    The Jupiter Icy Moons Explorer is a planetary exploration mission that aims to study the moons of Jupiter in the planet’s vast magnetosphere. Among the various instruments on board is the Particle Environment Package (PEP), that is led by the Swedish Institute of Space Physics (IRF) in Kiruna. The Jovian plasma Dynamics and Composition analyzer (JDC) is one of six sensors within PEP and focuses on the characterization of positive ions. To be able to measure their three-dimensional distributio...

  13. Advanced measures in dust control from surface sources in mines

    OpenAIRE

    Atanasov, Simon

    2013-01-01

    The base of this master work is analyzing the existing methodologies for fugitive dust emission estimation fro mine and surface sources in mine industries and defining the most appropriate methodology for fugitive dust emission estimation from line and surface sources in Rek-Bitola, which in fact is a base for developing an appropriate methodologies for fugitive dust emission measuring fro the main dust sources. The purpose is to analyze the specifics for all fugitive emission sources aris...

  14. A Survey of Advanced Microwave Frequency Measurement Techniques

    OpenAIRE

    Anand Swaroop Khare,

    2012-01-01

    Microwaves are radio waves with wavelengths ranging from as long as one meter to as short as one millimeter, or equivalently, with frequencies between 300 MHz and 300 GHz. The science of photonics includes the generation, emission, modulation, signal processing, switching, transmission, amplification, detection and sensing of light. Microwave photonics has been introduced for achieving ultra broadband signal processing. Instantaneous Frequency Measurement (IFM) receivers play an important ro...

  15. Advanced wavefront measurement and analysis of laser system modeling

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, C.R.; Auerback, J.M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    High spatial resolution measurements of the reflected or transmitted wavefronts of large aperture optical components used in high peak power laser systems is now possible. These measurements are produced by phase shifting interferometry. The wavefront data is in the form of 3-D phase maps that reconstruct the wavefront shape. The emphasis of this work is on the characterization of wavefront features in the mid-spatial wavelength range (from 0.1 to 10.0 mm) and has been accomplished for the first time. Wavefront structure from optical components with spatial wavelengths in this range are of concern because their effects in high peak power laser systems. At high peak power, this phase modulation can convert to large magnitude intensity modulation by non-linear processes. This can lead to optical damage. We have developed software to input the measured phase map data into beam propagation codes in order to model this conversion process. We are analyzing this data to: (1) Characterize the wavefront structure produced by current optical components, (2) Refine our understanding of laser system performance, (3) Develop a database from which future optical component specifications can be derived.

  16. An evaluation of electrochemical potentiokinetic reactivation techniques for in-service measurements on Type 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Stoner, K.J.

    1989-01-01

    Electrochemical potentiokinetic reactivation (EPR) tests can be used to measure quantitatively the sensitization of Type 304 stainless steel. The single loop (SL) and double loop (DL) EPR techniques were compared as non-destructive methods for determining sensitization under both laboratory and simulated field environments. Measurements were performed on specimens heat-treated to produce levels of sensitization from no sensitization to heavy sensitization. At temperatures of 22/degree/C and 30/degree/C testing with standard laboratory and portable field apparatus, both EPR techniques were capable of distinguishing sensitization levels at the range spanning those characterized as being non-susceptible and susceptible to intergranular stress corrosion cracking (IGSCC). Through correlations developed for the test data, it is possible to translate field results to the standard laboratory test conditions. This was demonstrated for the SL test through measurements performed on a pipe specimen containing IGSCC. 12 refs., 12 figs., 2 tabs.

  17. Advances in traceability of solar ultraviolet radiation measurements

    International Nuclear Information System (INIS)

    Measurements of solar ultraviolet radiation (UVR) at STUK (Radiation and Nuclear Safety Authority, Finland) commenced in 1989, five years after the alarming observation of the ozone depletion in the Antarctic and in association with the establishment of the solar UV monitoring network of the Finnish Meteorological Institute. It was soon realised that the instrumentation for solar UVR measurements was far from adequate for the challenging task of measuring the solar UV spectrum. In addition, the intercomparison of lamps used as secondary standards of UV irradiance between the National Standard Laboratories revealed significant discrepancies. In the course of this study, a national lamp-based scale for UV irradiance was established by STUK and subsequently was confirmed with the detector-based scale of the Helsinki University of Technology (HUT). Methods for (i) radiometric testing, (ii) calibration and (iii) data correction were developed for solar UV spectroradiometers and for broadband erythemally weighted (EW) solar UV radiometers. A common opinion in the early 1990s was that EW radiometers were not good enough for solar UV monitoring; spectroradiometers or multi-channel narrow band radiometers were seen as the only option for reliable solar UV radiometry. Later on, several intercomparisons revealed that, without stringent methods of quality control (QC) and quality assurance (QA), even high precision spectroradiometers easily yield UV data erroneous by 20% or more. The reliability of the spectroradiometric solar UVR measurements made by STUK was verified in the Nordic solar UV radiometer intercomparisons in 1993 and 1996 and in the largest European intercomparison of solar UV spectroradiometers in 1997. At STUK, it was considered that the low cost and easy-to-operate EW radiometers also had a role in solar UV monitoring. After developing the calibration methods for EW radiometers and gaining experience in testing of 16 EW radiometers, STUK organised the first

  18. Advanced interferometry systems for dimensional measurement in nanometrology

    Czech Academy of Sciences Publication Activity Database

    Lazar, Josef; Holá, Miroslava; Hrabina, Jan; Oulehla, Jindřich; Číp, Ondřej; Vychodil, M.; Sedlář, P.; Provazník, M.

    Bellingham: SPIE, 2014, 94420P: 1-6. ISBN 9781628415575. ISSN 0277-786X. [Optics and Measurement Conference 2014 (OaM 2014). Liberec (CZ), 07.10.2014-10.10.2014] R&D Projects: GA ČR GB14-36681G; GA TA ČR TA02010711; GA TA ČR TA01010995; GA TA ČR TE01020233; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : interferometry * highly-coherent lasers * signal processing Subject RIV: BH - Optics, Masers, Lasers

  19. Advanced technologies for radioactive waste characterization and free release measurement

    International Nuclear Information System (INIS)

    Nuclear power generation, medicine and heavy industry are widely using radioactive materials and, as a result, are generating large amounts of radwaste that has to either be stored or free-released to the environment. Free-release procedures require precise detection of radionuclides that can remain in waste. The low activity of such nuclides can be on a level of natural background or even below. That requires the background influence to be removed. ENVINET has developed very low radioactivity materials which can be used to form a low background measuring chamber. The concrete composite based material has several advantages when compare with lead, which is usually used for such purposes. (author)

  20. Advanced bridge (interferometric) phase and amplitude noise measurements

    CERN Document Server

    Rubiola, E; Rubiola, Enrico; Giordano, Vincent

    2005-01-01

    The measurement of the close-to-the-carrier noise of rf and microwave devices is a relevant issue in time and frequency metrology and in some fields of electronics, physics and optics. While phase noise is the main concern, amplitude noise is often of interest. The highest sensitivity is achieved with the bridge (interferometric) method, which consists of the amplification and synchronous detection of the noise sidebands after suppressing the carrier by vector subtraction of an equal signal. A substantial progress in understanding the flicker noise mechanism of the interferometer results in new schemes that improve by 20--30 dB the sensitivity at low Fourier frequencies. The article provides the complete theory and detailed design criteria, and reports on the implementation of a prototype. In real-time measurements, a background noise of -175 -180 dBrad^2/Hz has been obtained at f=1 Hz off the 100 MHz carrier. Exploiting correlation and averaging in similar conditions, the sensitivity exceeds -185 dBrad^2/Hz ...

  1. Advances in Non-contact Measurement of Creep Properties

    Science.gov (United States)

    Hyers, Robert W.; Canepari, Stacy; Rogers, Jan. R.

    2009-01-01

    Our team has developed a novel approach to measuring creep at extremely high temperatures using electrostatic levitation (ESL). This method has been demonstrated on niobium up to 2300 C, while ESL has melted tungsten (3400 C). High-precision machined spheres of the sample are levitated in the NASA MSFC ESL, a national user facility, and heated with a laser. The laser is aligned off-center so that the absorbed photons transfer their momentum to the sample, causing it to rotate at up to 250,000+ RPM. The rapid rotation loads the sample through centripetal acceleration, causing it to deform. The deformation of the sample is captured on high-speed video, which is analyzed by machine-vision software from the University of Massachusetts. The deformations are compared to finite element models to determine the constitutive constants in the creep relation. Furthermore, the noncontact method exploits stress gradients within the sample to determine the stress exponent in a single test. This method was validated in collaboration with the University of Tennessee for niobium at 1985 C, with agreement within the uncertainty of the conventional measurements. A similar method is being employed on Ultra-High-Temperature ZrB2- SiC composites, which may see application in rocket nozzles and sharp leading edges for hypersonic vehicles.

  2. Summer Support of the Advanced Structures and Measurements Group

    Science.gov (United States)

    Stuber, Alexander Lee

    2010-01-01

    This presentation is my exit presentation summarizing the work that I did this summer during my 10 week summer internship. It is primarily focused on tensile testing of composite coupons including the use of the ARAMIS optical strain measurement system, but it also includes some discussion of other support that I provided for the Dryden composites working group effort. My main efforts in that area were focused on T-joint design for an upcoming hands-on-workshop as well as design of a fixture to test joint coupons. Finally, there is a brief discussion of the other small projects that I worked on, including support of structurally integrated thermal protection system (STIPS) research and the Global Observer wing loads test.

  3. Advanced measurements and techniques in high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, L.J.; Rickel, D.G. [Los Alamos National Lab., NM (United States); Lacerda, A.H. [Florida State Univ., Tallahassee, FL (United States); Kim, Y. [Northeastern Univ., Boston, MA (United States)

    1997-07-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). High magnetic fields present a unique environment for studying the electronic structure of materials. Two classes of materials were chosen for experiments at the national high Magnetic Field Laboratory at Los Alamos: highly correlated electron systems and semiconductors. Magnetotransport and thermodynamic experiments were performed on the renormalized ground states of highly correlated electron systems (such as heavy fermion materials and Kondo insulators) in the presence of magnetic fields that are large enough to disrupt the many-body correlations. A variety of optical measurements in high magnetic fields were performed on semiconductor heterostructures including GaAs/AlGaAs single heterojunctions (HEMT structure), coupled double quantum wells (CDQW), asymmetric coupled double quantum wells (ACDQW), multiple quantum wells and a CdTe single crystal thin film.

  4. Advanced measurements and techniques in high magnetic fields

    International Nuclear Information System (INIS)

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). High magnetic fields present a unique environment for studying the electronic structure of materials. Two classes of materials were chosen for experiments at the national high Magnetic Field Laboratory at Los Alamos: highly correlated electron systems and semiconductors. Magnetotransport and thermodynamic experiments were performed on the renormalized ground states of highly correlated electron systems (such as heavy fermion materials and Kondo insulators) in the presence of magnetic fields that are large enough to disrupt the many-body correlations. A variety of optical measurements in high magnetic fields were performed on semiconductor heterostructures including GaAs/AlGaAs single heterojunctions (HEMT structure), coupled double quantum wells (CDQW), asymmetric coupled double quantum wells (ACDQW), multiple quantum wells and a CdTe single crystal thin film

  5. Advances in Radioactive-Isotope Science from Mass Measurements

    Science.gov (United States)

    Lunney, David

    Mass is a fundamental property that is indispensable for the study of nuclear structure, for applications in stellar nucleosynthesis and neutron-star composition, as well as studies of atomic and weak-interaction physics. We briefly review the mass-measurement programs at radioactive-beam facilities worldwide and examine the wealth of new mass data, compare the strengths of the different installations and reflect on the multitude of physics results. The series of ENAM meetings from 1995 to 2008 saw the rise and subsequent dominance of Penning traps in the field of mass spectrometry, which has continued through the new era of the ARIS meetings. As for the ARIS 2011 conference, we attempt a nomination for "Penning trap of the year."

  6. Advancing the science of cancer cost measurement: challenges and opportunities

    Directory of Open Access Journals (Sweden)

    Silvia Francisci

    2013-03-01

    Full Text Available OBJECTIVES. Cancer accounts for a major proportion of national health expenditures, which are expected to increase in the future. This paper aims to identify major challenges with estimating cancer related costs, and discuss international comparisons, and recommendations for future research. METHODS. It starts from the experience of an international workshop aimed at comparing cancer burden evaluation methods, improving results comparability, discussing strengths and criticisms of different approaches. RESULTS. Three methodological themes necessary to inform the analysis are identified and discussed: data availability; costs definition; epidemiological measures. CONCLUSIONS. Cost evaluation is applied to cancer control interventions and is relevant for public health planners. Despite their complexity, international comparisons are fundamental to improve, generalize and extend cost evaluation to different contexts.

  7. Measurements of reactivity effects and isotopic composition of highly burnt fuel in LWR-PROTEUS Phase II

    International Nuclear Information System (INIS)

    The Swiss Nuclear Utilities and the Paul Scherrer Institute (PSI) are conducting the LWR-PROTEUS experimental program at PSI's PROTEUS zero-power facility. The current Phase II is focused on the investigation of the reactivity loss with burnup in highly burnt PWR fuel for code validation in the context of both in-core fuel management and burnup credit applications. Burnt fuel rod samples (∼40 cm in length), constituted from fuel irradiated in a Swiss PWR with local burnups of up to 82 GWd/t for UO2 and 53 GWd/t for MOX, as well as UO2 samples doped with the 5 most important fission product nuclides (149Sm, 155Gd, 103Rh, 143Nd, 133Cs), are being investigated. The reactivity worths of these samples are measured by repeated insertion and withdrawal in test zones featuring various neutron spectra and compared to those of reference UO2 samples and calibration samples doped with boron. The burnt samples will also be assayed chemically in the PSI Hotlab. The first criticality of the Phase II configuration was achieved in 2001 and commissioning experiments have been performed using inactive UO2 samples. The measurements of the burnt samples will be carried out during the year 2002. (author)

  8. Studies on influence of sodium void reactivity effect on the concept of the core and safety of advanced fast reactor

    International Nuclear Information System (INIS)

    The paper is devoted to studies on the influence of the sodium void reactivity effect (SVRE) on the safety and technical and economical characteristics of the BN-1200-type reactor. Different core options are considered for application to this reactor. These core options differ in design, dimensions, and, hence, SVRE value. It is shown by the analysis that the most flattened core with sodium plenum at the top assures reactor self-protection under beyond-design-basis accident conditions. Sodium plenum abandonment and core height increase causing an SVRE value increase deteriorate reactor self-protection, but at the same time, improve some technical and economical characteristics of the reactor. Self-protection means the possibility to avoid rapid core meltdown under conditions of the above-listed beyond-design accidents. The possibility of controlling beyond-design accidents (for instance, by restoring the power supply of the main pumps in a rather short time) is taken into account. Issues of choosing the optimal core design under these conditions are discussed. (author)

  9. Recent advances in high performance poly(lactide: From green plasticization to super-tough materials via (reactive compounding

    Directory of Open Access Journals (Sweden)

    Georgio eKfoury

    2013-12-01

    Full Text Available Due to its origin from renewable resources, its biodegradability, and recently, its industrial implementation at low costs, poly(lactide (PLA is considered as one of the most promising ecological, bio-sourced and biodegradable plastic materials to potentially and increasingly replace traditional petroleum derived polymers in many commodity and engineering applications. Beside its relatively high rigidity (high tensile strength and modulus compared with many common thermoplastics such as poly(ethylene terephthalate (PET, high impact poly(styrene (HIPS and poly(propylene (PP, PLA suffers from an inherent brittleness, which can limit its applications especially where mechanical toughness such as plastic deformation at high impact rates or elongation is required. Therefore, the curve plotting stiffness vs. impact resistance and ductility must be shifted to higher values for PLA-based materials, while being preferably fully bio-based and biodegradable upon the application.This review aims to establish a state of the art focused on the recent progresses and preferably economically viable strategies developed in the literature for significantly improve the mechanical performances of PLA. A particular attention is given to plasticization as well as to impact resistance modification of PLA in the case of (reactive blending PLA-based systems.

  10. Measurement-Based Performance Evaluation of Advanced MIMO Transceiver Designs

    Directory of Open Access Journals (Sweden)

    Schneider Christian

    2005-01-01

    Full Text Available This paper describes the methodology and the results of performance investigations on a multiple-input multiple-output (MIMO transceiver scheme for frequency-selective radio channels. The method relies on offline simulations and employs real-time MIMO channel sounder measurement data to ensure a realistic channel modeling. Thus it can be classified in between the performance evaluation using some predefined channel models and the evaluation of a prototype hardware in field experiments. New aspects for the simulation setup are discussed, which are frequently ignored when using simpler model-based evaluations. Example simulations are provided for an iterative ("turbo" MIMO equalizer concept. The dependency of the achievable bit error rate performance on the propagation characteristics and on the variation in some system design parameters is shown, whereas the antenna constellation is of particular concern for MIMO systems. Although in many of the considered constellations turbo MIMO equalization appears feasible in real field scenarios, there exist cases with poor performance as well, indicating that in practical applications link adaptation of the transmitter and receiver processing to the environment is necessary.

  11. Technological advances in MRI measurement of brain perfusion.

    Science.gov (United States)

    Duyn, Jeff H; van Gelderen, Peter; Talagala, Lalith; Koretsky, Alan; de Zwart, Jacco A

    2005-12-01

    Measurement of brain perfusion using arterial spin labeling (ASL) or dynamic susceptibility contrast (DSC) based MRI has many potential important clinical applications. However, the clinical application of perfusion MRI has been limited by a number of factors, including a relatively poor spatial resolution, limited volume coverage, and low signal-to-noise ratio (SNR). It is difficult to improve any of these aspects because both ASL and DSC methods require rapid image acquisition. In this report, recent methodological developments are discussed that alleviate some of these limitations and make perfusion MRI more suitable for clinical application. In particular, the availability of high magnetic field strength systems, increased gradient performance, the use of RF coil arrays and parallel imaging, and increasing pulse sequence efficiency allow for increased image acquisition speed and improved SNR. The use of parallel imaging facilitates the trade-off of SNR for increases in spatial resolution. As a demonstration, we obtained DSC and ASL perfusion images at 3.0 T and 7.0 T with multichannel RF coils and parallel imaging, which allowed us to obtain high-quality images with in-plane voxel sizes of 1.5 x 1.5 mm(2). PMID:16267852

  12. Nanoindentation and atomic force microscopy measurements on reactively sputtered TiN coatings

    Indian Academy of Sciences (India)

    Harish C Barshilia; K S Rajam

    2004-02-01

    Titanium nitride (TiN) coatings were deposited by d.c. reactive magnetron sputtering process. The films were deposited on silicon (111) substrates at various process conditions, e.g. substrate bias voltage (B) and nitrogen partial pressure. Mechanical properties of the coatings were investigated by a nanoindentation technique. Force vs displacement curves generated during loading and unloading of a Berkovich diamond indenter were used to determine the hardness () and Young’s modulus () of the films. Detailed investigations on the role of substrate bias and nitrogen partial pressure on the mechanical properties of the coatings are presented in this paper. Considerable improvement in the hardness was observed when negative bias voltage was increased from 100–250 V. Films deposited at |B| = 250 V exhibited hardness as high as 3300 kg/mm2. This increase in hardness has been attributed to ion bombardment during the deposition. The ion bombardment considerably affects the microstructure of the coatings. Atomic force microscopy (AFM) of the coatings revealed fine-grained morphology for the films prepared at higher substrate bias voltage. The hardness of the coatings was found to increase with a decrease in nitrogen partial pressure.

  13. Advanced Measurement and Modeling Techniques for Improved SOFC Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Adler; L. Dunyushkina; S. Huff; Y. Lu; J. Wilson

    2006-12-31

    The goal of this project was to develop an improved understanding of factors governing performance and degradation of mixed-conducting SOFC cathodes. Two new diagnostic tools were developed to help achieve this goal: (1) microelectrode half-cells for improved isolation of cathode impedance on thin electrolytes, and (2) nonlinear electrochemical impedance spectroscopy (NLEIS), a variant of traditional impedance that allows workers to probe nonlinear rates as a function of frequency. After reporting on the development and efficacy of these tools, this document reports on the use of these and other tools to better understand performance and degradation of cathodes based on the mixed conductor La{sub 1-x}Sr{sub x}CoO{sub 3-{delta}} (LSC) on gadolinia or samaria-doped ceria (GDC or SDC). We describe the use of NLEIS to measure O{sub 2} exchange on thin-film LSC electrodes, and show that O{sub 2} exchange is most likely governed by dissociative adsorption. We also describe parametric studies of porous LSC electrodes using impedance and NLEIS. Our results suggest that O{sub 2} exchange and ion transport co-limit performance under most relevant conditions, but it is O{sub 2} exchange that is most sensitive to processing, and subject to the greatest degradation and sample-to-sample variation. We recommend further work that focuses on electrodes of well-defined or characterized geometry, and probes the details of surface structure, composition, and impurities. Parallel work on primarily electronic conductors (LSM) would also be of benefit to developers, and to improved understanding of surface vs. bulk diffusion.

  14. Detectability of T Measurable diseases in advanced gastric cancer in FDG PET CT

    International Nuclear Information System (INIS)

    Usefulness of FDG PET CT in monitoring response in locally advanced gastric cancer has been reported. The purpose of this study was to evaluate the related factors to detect measurable diseases in advanced gastric cancer on FDG PET CT. We retrospectively reviewed 38 patients diagnosed as having advanced gastric cancer. We defined the measurable diseases when there was visualized tumor of which maximum standardized uptake value(SUVmax) was higher than 1.35*SUVmax of liver + 2*SD of liver SUV. We evaluated what kinds of factors from the clinicopathologic features were related to identifying measurable diseases. Of 38 patients with advanced gastric cancer, 18 (50%) had measurable tumors on FDG PET CT. Measurable tumors were significantly more frequent in well or moderately differentiated adenocarcinoma (70.5% vs 35.3%, p<0.05), in the tumors located at antrum or angle (66.7% vs 29.4%, p<0.05) and in the elderly group (age of 55 years old or more, 72.0% vs 8.3%, p<0.001) than the others, respectively. By multivariate analysis, age at diagnosis was the only independent predictor for the measurable disease on FDG PET CT. We found that age at diagnosis, as well as histologic types and location of tumors, were the affecting factors to detect measurable disease on FDG PET CT in patients with advanced gastric cancer. Our study suggests that elderly patients of age of 55 years old or more can frequently have T measurable disease on FDG PET CT in advanced gastric cancer and FDG PET CT will be helpful to monitor measurable disease

  15. Detectability of T Measurable diseases in advanced gastric cancer in FDG PET CT

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Sun Young; Cheon, Gi Jeong; Kim, Young Chul; Jeong, Eugene; Kim, Seung Eun; Choe, Jae Gol [Korea Univ. Medical Center, Seoul (Korea, Republic of)

    2012-12-15

    Usefulness of FDG PET CT in monitoring response in locally advanced gastric cancer has been reported. The purpose of this study was to evaluate the related factors to detect measurable diseases in advanced gastric cancer on FDG PET CT. We retrospectively reviewed 38 patients diagnosed as having advanced gastric cancer. We defined the measurable diseases when there was visualized tumor of which maximum standardized uptake value(SUVmax) was higher than 1.35*SUVmax of liver + 2*SD of liver SUV. We evaluated what kinds of factors from the clinicopathologic features were related to identifying measurable diseases. Of 38 patients with advanced gastric cancer, 18 (50%) had measurable tumors on FDG PET CT. Measurable tumors were significantly more frequent in well or moderately differentiated adenocarcinoma (70.5% vs 35.3%, p<0.05), in the tumors located at antrum or angle (66.7% vs 29.4%, p<0.05) and in the elderly group (age of 55 years old or more, 72.0% vs 8.3%, p<0.001) than the others, respectively. By multivariate analysis, age at diagnosis was the only independent predictor for the measurable disease on FDG PET CT. We found that age at diagnosis, as well as histologic types and location of tumors, were the affecting factors to detect measurable disease on FDG PET CT in patients with advanced gastric cancer. Our study suggests that elderly patients of age of 55 years old or more can frequently have T measurable disease on FDG PET CT in advanced gastric cancer and FDG PET CT will be helpful to monitor measurable disease.

  16. Prototype system for phase advance measurements of LHC small beam oscillations

    CERN Document Server

    Olexa, J; Brezovic, Z; Gasior, M

    2013-01-01

    Magnet lattice parameters of the Large Hadron Collider (LHC) are measured by exciting beam transverse oscillations that allow measuring their phase advance using the beam position measurement (BPM) system. However, the BPM system requires millimetre oscillation amplitudes, with which nominal high intensity beams would cause large particle loss, dangerous for the LHC superconducting magnets. Therefore, such measurements cannot be done often, as they require special low intensity beams with important set-up time. After its first long shut-down the LHC will be equipped with new collimators with embedded BPMs, for which a new front-end electronics has been developed. Its main processing channels based on compensated diode detectors are designed for beam orbit measurement with sub-micrometre resolution. It is planned to extend this system by adding dedicated channels optimised for phase advance measurement, allowing continuous LHC optics measurement with much smaller beam excitation. This subsystem will be based o...

  17. Measurement and modelling of reactive transport in geological barriers for nuclear waste containment.

    Science.gov (United States)

    Xiong, Qingrong; Joseph, Claudia; Schmeide, Katja; Jivkov, Andrey P

    2015-11-11

    Compacted clays are considered as excellent candidates for barriers to radionuclide transport in future repositories for nuclear waste due to their very low hydraulic permeability. Diffusion is the dominant transport mechanism, controlled by a nano-scale pore system. Assessment of the clays' long-term containment function requires adequate modelling of such pore systems and their evolution. Existing characterisation techniques do not provide complete pore space information for effective modelling, such as pore and throat size distributions and connectivity. Special network models for reactive transport are proposed here using the complimentary character of the pore space and the solid phase. This balances the insufficient characterisation information and provides the means for future mechanical-physical-chemical coupling. The anisotropy and heterogeneity of clays is represented using different length parameters and percentage of pores in different directions. Resulting networks are described as mathematical graphs with efficient discrete calculus formulation of transport. Opalinus Clay (OPA) is chosen as an example. Experimental data for the tritiated water (HTO) and U(vi) diffusion through OPA are presented. Calculated diffusion coefficients of HTO and uranium species are within the ranges of the experimentally determined data in different clay directions. This verifies the proposed pore network model and validates that uranium complexes are diffusing as neutral species in OPA. In the case of U(vi) diffusion the method is extended to account for sorption and convection. Rather than changing pore radii by coarse grained mathematical formula, physical sorption is simulated in each pore, which is more accurate and realistic. PMID:26524292

  18. Development of the effectiveness measure for an advanced alarm system using signal detection theory

    International Nuclear Information System (INIS)

    Since many alarms which are activated during major process deviations or accidents in nuclear power plants can result in negative effects for operators, various types of advanced alarm systems that can select important alarms for the identification of process deviation have been developed to reduce the operator's workload. However, the irrelevant selection of important alarms could distract the operator from correct identification of process deviation. Therefore, to evaluate the effectiveness of the advanced alarm system, a tradeoff between the alarm reduction rate (how many alarms are reduced?) and informativeness (how many important alarms that are conducive to identifying process deviation are provided?) of an advanced alarm system should be considered. In this paper, a new measure is proposed to evaluate the effectiveness of an advanced alarm system with regard to the identification of process deviation. Here, the effectiveness measure is the combination of informativeness measure and reduction rate, and the informativeness measure means the information processing capability performed by the advanced alarm system including wrong rejection and wrong acceptance, and it can be calculated using the signal detection theory (SDT). The effectiveness of the prototype alarm system was evaluated using the loss of coolant accident (LOCA) scenario, and the validity of the effectiveness measure was investigated from two types of the operator response, such as the identification accuracy and the operator's preference for the identification of LOCA

  19. Experimental Antithrombotic Effect of Garlic Varieties Measured by a Global In Vitro Test of Platelet Reactivity and Spontaneous Thrombolytic Activity

    Directory of Open Access Journals (Sweden)

    Yoshinobu Ijiri

    2016-06-01

    Full Text Available Prevention of arterial thrombotic diseases has high priority over treatment in developed countries. Unsuitable life style such as inappropriate quality and quantity of daily diet is known to increase the risk for acute thrombotic events, while a regular diet with proven antithrombotic effects might be beneficial in preventing the disease. The present study was undertaken as a part of a series of research in screening vegetables, fruits and medicinal herbs for antithrombotic activity by animal models of thrombosis. In the present study the effects of fifteen garlic varieties (accessions on platelet reactivity and spontaneous (endogenous thrombolytic activity were measured ex vivo from saline-diluted rat blood by the Global Thrombosis Test (GTT. All accessions showed antithrombotic activity but the activity varied between accessions. The heat stable antithrombotic activity was dominantly due to inhibition of platelet reactivity to high shear stress while the spontaneous thrombolytic activity was not affected. These findings suggest that daily intake of garlic as part of an antithrombotic diet may be beneficial for the prevention of arterial thrombotic disorders.

  20. Measurements of reactive nitrogen oxides (NO/y/) within and above a tropical forest canopy in the wet season

    Science.gov (United States)

    Bakwin, Peter S.; Wofsy, Steven C.; Fan, Song-Miao

    1990-01-01

    Measurements of ambient concentrations of reactive nitrogen oxides were made in the Amazon rain forest, near Manaus, Brazil, continuously at 39 m (above the canopy), and on several days and nights at 19 m (within the canopy). Concentrations were very low, typically 100-700 pptv, except for brief periods when up to 5000 pptv of NO(y) was observed, indicating polluted air from the urban area of Manaus. The forest was a net sink for NO(y) with the NO(y) flux = -7.6 + or - 5.0) x 10 to the 9th molecules/sq cm per sec in unpolluted periods, even though soils emitted NO at a significant rate (8.9 + or - 1.5 x 10 to the 9th molecules/sq cm per sec). The deposition rate for NO(y) appeared to be much larger during the daytime than at night, suggesting that uptake was controlled either by plant processes (stomatal opening) or by supply of reactive components of NO(y) (e.g., HNO3) during the daytime. Implications for regional and global atmospheric chemistry are discussed.

  1. Association of Serum C-Reactive Protein Levels With Lupus Disease Activity in the Absence of Measurable Interferon-α and a C-Reactive Protein Gene Variant

    OpenAIRE

    Enocsson, Helena; Sjöwall, Christopher; Kastbom, Alf; Skogh, Thomas; Eloranta, Maija-Leena; Rönnblom, Lars; Wetterö, Jonas

    2014-01-01

    Objectives: The type I interferon (IFN) system is important in the pathogenesis of systemic lupus erythematosus (SLE). We previously demonstrated an inhibitory effect of IFNα on interleukin 6 (IL-6) induced C-reactive protein (CRP) in vitro, hypothetically explaining the poor correlation between disease activity and CRP levels in SLE. Herein we investigated disease activity, IL-6 and CRP in relation to a CRP gene polymorphism and IFN. Methods: Sera from 155 SLE patients and 100 controls were ...

  2. Validation of BWR advanced core and fuel nuclear designs with power reactor measurements

    International Nuclear Information System (INIS)

    Power reactor measurements have been important in validating the reliability, performance characteristics and economics of BWR advanced core and fuel designs. Such measurements go beyond the data obtainable from normal reactor operation and provide detailed benchmark data necessary to verify design and licensing computer design and simulation models. In some cases, such as in the validation of the performance of zirconium barrier pellet-cladding-interaction (PCI) resistant cladding, the BWR power reactor measurements have subjected the advanced fuel design to operating conditions more severe than normal operating conditions, thereby providing nuclear-thermal-mechanical-corrosion performance data for accelerated or extended conditions of operation. In some cases destructive measurements have been carried out on BWR power reactor fuel to provide microscopic and macroscopic data of importance in validating design and licensing analysis methods. There is not uniform agreement among core and fuel designers on the needs for special power reactor core and fuel measurements for validation of advanced designs. The General Electric approach has been to error on the side of extensive, detailed measurements so as to assure reliable performance licensing and economic design and predictive capability. This paper is a summary of some of the validative power reactor measurements that have been carried out on advanced BWR core and fuel designs. Some comparisons of predictions with the data are summarized

  3. Operator’s cognitive, communicative and operative activities based workload measurement of advanced main control room

    International Nuclear Information System (INIS)

    Highlights: • An advanced MMIS in the advanced MCR requires new roles and tasks of operators. • A new workload evaluation framework is needed for a new MMIS environment. • This work suggests a new workload measurement approach (COCOA) for an advanced MCR. • COCOA enables 3-dimensional measurement of cognition, communication and operation. • COCOA workload evaluation of the reference plant through simulation was performed. - Abstract: An advanced man–machine interface system (MMIS) with a computer-based procedure system and high-tech control/alarm system is installed in the advanced main control room (MCR) of a nuclear power plant. Accordingly, though the task of the operators has been changed a great deal, owing to a lack of appropriate guidelines on the role allocation or communication method of the operators, operators should follow the operating strategies of conventional MCR and the problem of an unbalanced workload for each operator can be raised. Thus, it is necessary to enhance the operation capability and improve the plant safety by developing guidelines on the role definition and communication of operators in an advanced MCR. To resolve this problem, however, a method for measuring the workload according to the work execution of the operators is needed, but an applicable method is not available. In this research, we propose a COgnitive, Communicative and Operational Activities measurement approach (COCOA) to measure and evaluate the workload of operators in an advanced MCR. This paper presents the taxonomy for additional operation activities of the operators to use the computerized procedures and soft control added to an advanced MCR, which enables an integrated measurement of the operator workload in various dimensions of cognition, communication, and operation. To check the applicability of COCOA, we evaluated the operator workload of an advanced MCR of a reference power plant through simulation training experiments. As a result, the amount

  4. Measurement of the moderator temperature coefficient of reactivity for pressurized water reactors

    International Nuclear Information System (INIS)

    The measurements of the moderator temperature coefficient (MTC) are performed to demonstrate that the calculational model produces results that are consistent with the measurements. Since negative MTC is also a technical specification value that may limit the cycle length, it is important to measure it as accurately as possible. In this report, preferred choice of test method depending on the time in cycle, best power indication and temperature definition in MTC calculation were determined based on the MTC test results taken during initial startup testing and at 2/3 cycle burnup in the Yonggwang nuclear power plant. The results show that the ratio and rodded methods provided good agreement with the predictions during initial startup testing. However, near end-of-cycle the depletion method gives better results, and so is suggested to be used in the MTC measurements at 2/3 cycle burnup. The use of primary Delta T power as a power indicator in the MTC calculations is highly advisable since it responds with good consistent results very quickly to changes unlike secondary calorimetric power. For the appropriate temperature definitions used in the MTC calculations, it is considered that the arithmetic average temperature measured simply by inlet and outlet thermocouples is preferred. Although volumetric average temperature provides better results, the improvement is not sufficient to compensate for the simplicity of calculations by arithmetic average temperature. (author)

  5. Method development for thermal analyses testing on Reillex HPQ resin using the advanced reactive system screening tool (ARSST)

    Energy Technology Data Exchange (ETDEWEB)

    Best, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    Reillex™ HPQ resin was developed by Los Alamos Laboratory and Reilly Industries Inc. in an effort to increase safety and process efficiency during the recovery and purification of plutonium. Ionac™ A-641, another strong base macroporous anion exchange resin used in the nuclear industry, was known to undergo a runaway reaction in hot nitric acid solutions. Because of this, an extensive amount of thermal analyses testing on the Reillex™ HPQ resin in SRNL was performed in 1999-2001 prior to use. A report on the thermal stability qualification of the Reillex™ HPQ resin in 8M (35%) and 12M (53%) HNO3 was reported in 2000. In 2001, the reactivity of Reillex™ HPQ resin in 14.4M (64%) HNO3 was evaluated. In January of 2001, thermal stability scoping tests were performed on irradiated Reillex™ HPQ resin in 14.4M (64%) HNO3 (as a worst case scenario) and the results sent to Fauske and Associates to calculate a rupture disk size for the HB-Line resin column. A technical report by Fauske and Associates was issued in February 2001 recommending a 2.0” vent line with a rupture disk set pressure of 60 psig. This calculation was based on ARSST thermal analyses scoping tests at SRNL in which 4 grams of dried resin and 6.0 grams of 64% nitric acid in a 10 gram test cell, produced a maximum pressure rate (dP/dt) of 720 psi/min (12 psi/sec) and a maximum temperature of 250 °C. In 2015, a new batch of Reillex™ HPQ resin was manufactured by Vertellus Industries. A test sample of the resin was sent to SRNL to perform acceptance and qualification thermal stability testing using the ARSST. During these tests, method development was performed to ensure that a representative resin to acid ratios were used while running the tests in the ARSST. Fauske and Associates recommended to either use a full test cell representative of the HB-Line column or a 10 gram sample in the test cell that was representative of the ratios of resin to nitric acid in

  6. In situ measurements of IO and reactive iodine aboard the RV Sonne during SHIVA

    Science.gov (United States)

    Heard, Dwayne; Walker, Hannah; Ingham, Trevor; Huang, Ru-Jin; Wittrock, Folker

    2013-04-01

    Halogenated very short-lived substances (VSLS) are emitted from the oceans by marine species such as macroalgae and phytoplankton and contribute to halogen loading in the troposphere and lower stratosphere. The SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) project combined ship-borne, aircraft-based and ground-based measurements in and over the South China Sea and the Sulu Sea, and around the coast of Malaysian Borneo. In this paper we present measurements of IO radicals in coastal and open ocean regions made onboard the German research vessel RV Sonne in November 2011 between Singapore and Manila, via the northern coast of Malaysian Borneo (South China Sea) and the Sulu Sea. In situ measurements of IO were made on 12 days by the University of Leeds laser-induced fluorescence (LIF) instrument, with a detection limit of 0.3 pptv for a 30 minute averaging period. The cruise average IO concentration was found to be 1.2 pptv, with a maximum concentration of 2.4 pptv in the middle of the Sulu Sea, an area known for high biological activity. Only a weak diurnal profile was observed, with IO detected above the detection limit on 10 out of the 11 nights when the LIF instrument was operational. Measurements of IO at night in the open ocean have not previously been reported and indicate the presence of gas phase or heterogeneous mechanisms that recycle iodine species without requiring light. There was reasonable agreement for IO concentrations measured by the University of Leeds LIF and the University of Bremen MAX-DOAS instruments, for which a comparison will be presented. I2, ICl and HOI were measured by the University of Mainz using a coupled diffusion denuder system followed by analysis using gas chromatography coupled with ion trap mass spectroscopy, with a detection of 0.17 pptv for 30 mins (I2). The cruise average I2 concentration was found to be 2.0 pptv, with a maximum concentration observed during one night of 12.7 pptv on the northern coast

  7. ADVANCING THE FUNDAMENTAL UNDERSTANDING AND SCALE-UP OF TRISO FUEL COATERS VIA ADVANCED MEASUREMENT AND COMPUTATIONAL TECHNIQUES

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Pratim; Al-Dahhan, Muthanna

    2012-11-01

    to advance the fundamental understanding of the hydrodynamics by systematically investigating the effect of design and operating variables, to evaluate the reported dimensionless groups as scaling factors, and to establish a reliable scale-up methodology for the TRISO fuel particle spouted bed coaters based on hydrodynamic similarity via advanced measurement and computational techniques. An additional objective is to develop an on-line non-invasive measurement technique based on gamma ray densitometry (i.e. Nuclear Gauge Densitometry) that can be installed and used for coater process monitoring to ensure proper performance and operation and to facilitate the developed scale-up methodology. To achieve the objectives set for the project, the work will use optical probes and gamma ray computed tomography (CT) (for the measurements of solids/voidage holdup cross-sectional distribution and radial profiles along the bed height, spouted diameter, and fountain height) and radioactive particle tracking (RPT) (for the measurements of the 3D solids flow field, velocity, turbulent parameters, circulation time, solids lagrangian trajectories, and many other of spouted bed related hydrodynamic parameters). In addition, gas dynamic measurement techniques and pressure transducers will be utilized to complement the obtained information. The measurements obtained by these techniques will be used as benchmark data to evaluate and validate the computational fluid dynamic (CFD) models (two fluid model or discrete particle model) and their closures. The validated CFD models and closures will be used to facilitate the developed methodology for scale-up, design and hydrodynamic similarity. Successful execution of this work and the proposed tasks will advance the fundamental understanding of the coater flow field and quantify it for proper and safe design, scale-up, and performance. Such achievements will overcome the barriers to AGR applications and will help assure that the US maintains

  8. Reactivity of Dogs' Brain Oscillations to Visual Stimuli Measured with Non-Invasive Electroencephalography

    OpenAIRE

    Kujala, Miiamaaria V.; Törnqvist, Heini; Somppi, Sanni; Hänninen, Laura; Christina M. Krause; Vainio, Outi; Kujala, Jan

    2013-01-01

    Studying cognition of domestic dogs has gone through a renaissance within the last decades. However, although the behavioral studies of dogs are beginning to be common in the field of animal cognition, the neural events underlying cognition remain unknown. Here, we employed a non-invasive electroencephalography, with adhesive electrodes attached to the top of the skin, to measure brain activity of from 8 domestic dogs (Canis familiaris) while they stayed still to observe photos of dog and hum...

  9. Reactivity measurements using rod drop and 3D kinetics interpretation in PWRs

    International Nuclear Information System (INIS)

    A new method for the PWR control rods worth measurement has been developed and validated within the frame of a joint CEA/EDF/FRAMATOME research program. This method consists in the interpretation of the neutron detectors signals evolution during a rod drop transient. This paper gives the general principles of the method, insisting upon the issues of space and kinetic effects compensation and presents overall results of the on-site experimental validation tests

  10. ADS reactivity measurements from MUSE to TRADE (and where do we go from here?)

    International Nuclear Information System (INIS)

    This paper provides a link between the MUSE (Multiplication avec Source Externe) program performed at CEA-Cadarache in France, and the TRADE (TRIGA Accelerator Driven Experiment) program performed at ENEA-Casaccia in Italy. In both programs, extensive measurements were made to determine the best methods for sub-criticality measurements in an accelerator-driven system. A very serious attempt was made to quantify the uncertainties associated with such measurements. While both MUSE and TRADE studied the methods of sub-criticality determination, in fact the two systems are very different. MUSE was a fast system with MOX fuel (generation time around 0.5 μs), and TRADE was performed in a TRIGA reactor (generation time around 50 μs). This paper will summarize the important results of these two experiments, with the main purpose being to tie them together to attempt to draw generic conclusions that can be applied in the future to a real ADS. In addition, this paper will briefly discuss the next series of experiments that will continue this work in the U.S. (RACE, Reactor Accelerator Coupled Experiments), Belarus (YALINA), Belgium (GUINEVERE), and Russia (SAD, Sub-critical Assembly Dubna). MUSE and TRADE have contributed greatly to our understanding of the uncertainties associated with sub-critical measurements, but there are still some gaps that must be covered. This paper will describe the gaps that exist, and demonstrate how the above future programs will fill in the missing information needed for the design of an actual ADS system in the future. (authors)

  11. Viscoelasticity measurement of gel formed at the liquid-liquid reactive interfaces

    Science.gov (United States)

    Ujiie, Tomohiro

    2012-11-01

    We have experimentally studied a reacting liquid flow with gel formation by using viscous fingering (VF) as a flow field. Here, two systems were employed. In one system, sodium polyacrylate (SPA) solution and ferric ion solution were used as the more and less viscous liquids, respectively. In another system, xthantan gum (XG) solution and the ferric ion solution were used as the more and less viscous liquids, respectively. We showed that influence of gel formation on VF were qualitatively different in these two systems. We consider that the difference in the two systems will be caused by the difference in the properties of the gels. Therefore, we have measured the rheological properties of the gels by means of a rheometer. In the present study, viscoelasticity measurement was performed by two methods. One is the method which uses Double Wall Ring sensor (TA instrument) and another is the method using parallel plate. In both viscoelasticity measurements, the behavior of the formed gel was qualitatively consistent. We have found that the gel in the SPA system shows viscoelastic fluid like behavior. Moreover, we have found that the gel in the XG system shows solid like behavior.

  12. Measurement of the CNA I's (Atucha I nuclear power plant) control rods reactivity during its commissioning on January 8th, 1990

    International Nuclear Information System (INIS)

    Measurements were made on integral and differential calibration of rod 16, fuel racks RG and R3 and extinction reactivity during Atucha I nuclear power plant's commissioning on January 8th., 1990. These were the first physical measurements performed after the first critical nuclear power plant's commissioning. (Author)

  13. Final Report for SERDP Project RC-1649: Advanced Chemical Measurements of Smoke from DoD-prescribed Burns

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Timothy J.; Weise, David; Lincoln, E. N.; Sams, Robert L.; Cameron, Melanie; Veres, Patrick; Yokelson, Robert J.; Urbanski, Shawn; Profeta, Luisa T.; Williams, S.; Gilman, Jessica; Kuster, W. C.; Akagi, Sheryl; Stockwell, Chelsea E.; Mendoza, Albert; Wold, Cyle E.; Warneke, Carsten; de Gouw, Joost A.; Burling, Ian R.; Reardon, James; Schneider, Matthew D.; Griffith, David WT; Roberts, James M.

    2013-12-17

    Objectives: Project RC-1649, “Advanced Chemical Measurement of Smoke from DoD-prescribed Burns” was undertaken to use advanced instrumental techniques to study in detail the particulate and vapor-phase chemical composition of the smoke that results from prescribed fires used as a land management tool on DoD bases, particularly bases in the southeastern U.S. The statement of need (SON) called for “(1) improving characterization of fuel consumption” and “(2) improving characterization of air emissions under both flaming and smoldering conditions with respect to volatile organic compounds, heavy metals, and reactive gases.” The measurements and fuels were from several bases throughout the southeast (Camp Lejeune, Ft. Benning, and Ft. Jackson) and were carried out in collaboration and conjunction with projects 1647 (models) and 1648 (particulates, SW bases). Technical Approach: We used an approach that featured developing techniques for measuring biomass burning emission species in both the laboratory and field and developing infrared (IR) spectroscopy in particular. Using IR spectroscopy and other methods, we developed emission factors (EF, g of effluent per kg of fuel burned) for dozens of chemical species for several common southeastern fuel types. The major measurement campaigns were laboratory studies at the Missoula Fire Sciences Laboratory (FSL) as well as field campaigns at Camp Lejeune, NC, Ft. Jackson, SC, and in conjunction with 1648 at Vandenberg AFB, and Ft. Huachuca. Comparisons and fusions of laboratory and field data were also carried out, using laboratory fuels from the same bases. Results: The project enabled new technologies and furthered basic science, mostly in the area of infrared spectroscopy, a broadband method well suited to biomass burn studies. Advances in hardware, software and supporting reference data realized a nearly 20x improvement in sensitivity and now provide quantitative IR spectra for potential detection of ~60 new

  14. Buckling measurement in the IPEN/MB-01 nuclear reactor in cylindrical configuration of minor excess of reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Purgato, Rafael Turrini; Bitelli, Ulysses d' Utra; Aredes, Vitor Ottoni; Silva, Alexandre F. Povoa da; Santos, Diogo Feliciano dos; Lima, Ana Cecilia de Souza, E-mail: ubitelli@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    This work presents the results of experimental Buckling in the IPEN/MB-01 nuclear reactor in its cylindrical configuration with 28 fuel rods along its diameter. The IPEN/MB-01 is a zero power reactor designed to operate at a maximum power of 100 watts. It is a versatile nuclear facility, which allows for the simulation of all the characteristics of a nuclear power reactor making it an ideal test bed for this kind of measurement. A mapping of neutron flux inside the reactor is carried out in order to determine the total Buckling of the cylindrical configuration. The reactor was operated for one hour. Then, the activity of the fuel rods is measured by gamma ray spectrometry using a HPGe solid state detector and a suitable rod scanner. Photon energies of 276.6keV from {sup 239}Np (neutron capture (n,?) nuclear reaction) and 293.3keV from {sup 143}Ce (fission (n,f) nuclear reaction on both {sup 238}U and {sup 235}U) , are respectively along both axial and radial directions. Other measurements are performed using gold wires and foils along radial and axial directions of the reactor core. The three methods above resulted in a weighted average value of 93.18 ± 8.47 m-2 for the Total Buckling of this cylindrical core configuration with 28 control rods along its diameter with 568 fuel rods and only 271 pcm of excess reactivity. (author)

  15. Measurement of tumour reactive antibody and antibody conjugate by competition, quantitated by flow cytofluorimetry.

    Science.gov (United States)

    Robins, R A; Laxton, R R; Garnett, M; Price, M R; Baldwin, R W

    1986-06-24

    Binding of unlabelled monoclonal antibody preparations has been assessed by competition at saturation with fluorochrome labelled homologous antibody for binding to antigen bearing target cells. The extent of competition was measured by quantitative flow cytofluorimetry, and simple mathematical procedures have been developed to allow the interpretation of competition data in terms of antibody binding activity. In the system studied, non-specific (non-competitive) fluorescence was minimal, but an iterative method to calculate its contribution to the measured signal is given. This approach has the advantage that the antibody preparation to be tested does not need to be labelled or modified; this is particularly important when evaluating the binding activity of therapeutic antibody conjugates. Comparison with a well characterized standard antibody preparation provides a rapid, sensitive and accurate quality control procedure. This test is also simple to perform, requiring only the mixing of labelled and unlabelled antibodies with target cells, a single incubation, followed by analysis without washing of the target cells. PMID:2424997

  16. Proceedings of the OECD/CSNI specialist meeting on advanced instrumentation and measurement techniques

    International Nuclear Information System (INIS)

    In the last few years, tremendous advances in the local instrumentation technology for two-phase flow have been accomplished by the applications of new sensor techniques, optical or beam methods and electronic technology. The detailed measurements gave new insight to the true nature of local mechanisms of interfacial transfer between phases, interfacial structure and two-phase flow turbulent transfers. These new developments indicate that more accurate and reliable two-phase flow models can be obtained, if focused experiments are designed and performed by utilizing this advanced instrumentation. The purpose of this Specialist Meeting on Advanced Instrumentation and Measurement Techniques was to review the recent instrumentation developments and the relation between thermal-hydraulic codes and instrumentation capabilities. Four specific objectives were identified for this meeting: bring together international experts on instrumentation, experiments, and modeling; review recent developments in multiphase flow instrumentation; discuss the relation between modeling needs and instrumentation capabilities, and discuss future directions for instrumentation development, modeling, and experiments

  17. C-reactive protein in patients with advanced metastatic renal cell carcinoma: Usefulness in identifying patients most likely to benefit from initial nephrectomy

    International Nuclear Information System (INIS)

    C-reactive protein (CRP) is considered a useful serum marker for patients with RCC. However, its clinical utility in advanced metastatic renal cell carcinoma (AM-RCC), particularly in deciding whether to perform nephrectomy at the onset, is not well studied. We retrospectively evaluated 181 patients with AM-RCC, including 18 patients underwent potentially curative surgery, 111 underwent cytoreductive nephrectomy, and 52 received medical treatment only. CRP cutoff points were determined by receiver operating characteristic (ROC) curve analysis. Kaplan-Meier and Cox regression analyses were used for survival tests. ROC analysis suggested that grouping patients according to 3 CRP ranges was a rational model. Patients with highly elevated CRP (≥67.0 mg/L) presented remarkably poor prognosis despite treatment (nephrectomy or medical treatment only). Cox regression models demonstrated that risk factors of overall survival for patients who underwent nephrectomy were the CRP ranges defined in this study (≤18.0 mg/L, >18.0 and <67.0 mg/L, and ≥67.0 mg/L), ECOG PS (0, 1, and ≥2), and number of metastatic organ sites (0–1 and ≥2). The retrospective design is a limitation of this study. Our study demonstrated that the serum CRP level is a statistically significant prognostic parameter for patients with AM-RCC. The data also indicated that pretreatment serum CRP level provides useful prognostic information that helps in deciding whether to perform initial nephrectomy for patients with AM-RCC

  18. Reactivity and reaction rate measurements in U--D/sub 2/O lattices with coaxial fuel

    Energy Technology Data Exchange (ETDEWEB)

    Pellarin, D.J.; Morris, B.M.

    1976-12-01

    Integral reaction rate parameters, intracell thermal neutron flux profiles, and material bucklings were measured for D/sub 2/O-moderated uniform lattices in the exponential facility at the Savannah River Laboratory. Two different slightly enriched coaxial uranium fuel assemblies were examined over a wide range of triangular lattice pitches. Integral parameters are reported for inner and outer fuel separately providing data for a more detailed and rigorous comparison with computation than has been previously available. Results are compared with RAHAB calculations using ENDF/B-IV cross sections. Large discrepancies in agreement between calculation and experiment, outside of experimental errors and uncertainties in the input cross sections, probably result from the resonance capture models used by RAHAB.

  19. Reactivity and reaction rate measurements in U--D2O lattices with coaxial fuel

    International Nuclear Information System (INIS)

    Integral reaction rate parameters, intracell thermal neutron flux profiles, and material bucklings were measured for D2O-moderated uniform lattices in the exponential facility at the Savannah River Laboratory. Two different slightly enriched coaxial uranium fuel assemblies were examined over a wide range of triangular lattice pitches. Integral parameters are reported for inner and outer fuel separately providing data for a more detailed and rigorous comparison with computation than has been previously available. Results are compared with RAHAB calculations using ENDF/B-IV cross sections. Large discrepancies in agreement between calculation and experiment, outside of experimental errors and uncertainties in the input cross sections, probably result from the resonance capture models used by RAHAB

  20. A New Computerised Advanced Theory of Mind Measure for Children with Asperger Syndrome: The ATOMIC

    Science.gov (United States)

    Beaumont, Renae B.; Sofronoff, Kate

    2008-01-01

    This study examined the ability of children with Asperger Syndrome (AS) to attribute mental states to characters in a new computerised, advanced theory of mind measure: The Animated Theory of Mind Inventory for Children (ATOMIC). Results showed that children with AS matched on IQ, verbal comprehension, age and gender performed equivalently on…

  1. Advanced Two Media (ATM) method for measurement of linear attenuation coefficient

    International Nuclear Information System (INIS)

    Highlights: ► Advanced Two Media (ATM) method is given in this communication. ► Linear attenuation coefficient for pure metallic compounds has been measured with regular and irregular shaped targets. ► Concept of thickness for the linear attenuation coefficient measurement has been completely removed. ► Homogeneity of the medium improved by using solid pure metallic foil. ► Error in the measurement has been improved approximately up to 0.17%. - Abstract: Linear attenuation coefficient of irregular targets having unknown thickness (La, Pr, Nd, Gd, Tb, Ho and Er) and regular targets of known thickness (Mo, Ag, Sn, W and Pb) at 59.54 keV have been measured by using a new technique named Advanced Two Media (ATM) method. In this modified Advanced Two Media method pure metallic foils have been used as a mediums 1 and 2. The obtained results from Advanced Two Media method and transmission geometry are in good agreement with theoretical values of WinXCOM

  2. Recent experimental advances in precision Casimir force measurements with the atomic force microscope

    International Nuclear Information System (INIS)

    Advances in experimental methodology and analysis implemented in the precision measurement of the Casimir force with semiconductor surfaces are discussed. An experiment for the alteration of the Casimir force through a modification of the free carrier density in semiconductors is presented

  3. Recent experimental advances in precision Casimir force measurements with the atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Chen, F; Mohideen, U [Department of Physics, University of California, Riverside, CA 92521 (United States)

    2006-05-26

    Advances in experimental methodology and analysis implemented in the precision measurement of the Casimir force with semiconductor surfaces are discussed. An experiment for the alteration of the Casimir force through a modification of the free carrier density in semiconductors is presented.

  4. The Advanced REACH Tool (ART) : Incorporation of an Exposure Measurement Database

    NARCIS (Netherlands)

    Schinkel, J.; Richie, P.; Goede, H.; Fransman, W.; Tongeren, M. van; Cherrie, J.W.; Tielemans, E.; Kromhout, H.; Warren, N.

    2013-01-01

    This article describes the structure, functionalities, and content of the Advanced REACH Tool (ART) exposure database (version 1.5). The incorporation of the exposure database into ART allows users who do not have their own measurement data for their exposure scenario, to update the exposure estimat

  5. Advances in Treatment Integrity Research: Multidisciplinary Perspectives on the Conceptualization, Measurement, and Enhancement of Treatment Integrity

    Science.gov (United States)

    Schulte, Ann C.; Easton, Julia E.; Parker, Justin

    2009-01-01

    Documenting treatment integrity is an important issue in research and practice in any discipline concerned with prevention and intervention. However, consensus concerning the dimensions of treatment integrity and how they should be measured has yet to emerge. Advances from three areas in which significant treatment integrity work has taken…

  6. Measured performance of 12 demonstation projects - IEA Task 13 "advanced solar low energy buildings"

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund; Schultz, Jørgen Munthe; Poel, Bart

    2005-01-01

    This paper presents the results obtained from measurements and experiences gained from interviews on 12 advanced solar low energy houses designed and built as part of the IEA Solar Heating and Cooling Programme – Task 13. Three years after the IEA Task 13 formally ended, the results were collected...

  7. Advances in Children's Rights and Children's Well-Being Measurement: Implications for School Psychologists

    Science.gov (United States)

    Kosher, Hanita; Jiang, Xu; Ben-Arieh, Asher; Huebner, E. Scott

    2014-01-01

    Recent years have brought important changes to the profession of school psychology, influenced by larger social, scientific, and political trends. These trends include the emergence of children's rights agenda and advances in children's well-being measurement. During these years, a growing public attention and commitment to the notion of…

  8. A new method for direct total OH reactivity measurements using a fast Gas Chromatographic Photo-Ionization Detector (GC-PID)

    Science.gov (United States)

    Nölscher, A. C.; Sinha, V.; Bockisch, S.; Klüpfel, T.; Williams, J.

    2012-04-01

    The primary and most important oxidant in the troposphere is the hydroxyl radical (OH). Currently the atmospheric sinks of OH are poorly constrained. One way to characterize the overall sink term of OH is to measure directly the ambient loss rate of OH, the total OH reactivity. The first direct measurements of total OH reactivity were performed using laser induced fluorescence (LIF) [1], [2]. Recently a new method for determining OH reactivity was developed called the comparative reactivity method (CRM) [3]. The measurement principle is based on a competitive reaction between a reactive molecule not normally present in air with OH, and atmospheric OH reactive molecules with OH. The reactive molecule (X), is passed through a Teflon coated glass reactor and its concentration is monitored with a suitable detector. OH radicals are then introduced into the reactor at a constant rate to react with X, first in the presence of zero air and then in the presence of ambient air containing OH reactive species. Comparing the amount of X exiting the reactor with and without the competing ambient air molecules directly provides the atmospheric total OH reactivity. In the first version of this set up, molecule X is pyrrole (C5H4N) and the detector used is a proton transfer reaction mass spectrometer (PTR-MS). In comparison to the original LIF based system, the PTR-MS has the advantage of being smaller, less expensive, and commercially available. However, using the PTR-MS for total OH reactivity measurements prevents it from probing the broad variety of volatile organic compounds in ambient air. Moreover, even smaller, less expensive and more portable detectors are available. This work examines the potential for a GC-PID in order to make the total OH reactivity measurement accessible to more practitioners. This study presents measurements of total OH reactivity with a custom built GC-PID (VOC-Analyzer from IUT-Berlin, now ENIT (Environics-IUT GmbH))[4]. The GC-PID is small (260

  9. In situ measurements and modeling of reactive trace gases in a small biomass burning plume

    Science.gov (United States)

    Müller, M.; Anderson, B.; Beyersdorf, A.; Crawford, J. H.; Diskin, G.; Eichler, P.; Fried, A.; Keutsch, F. N.; Mikoviny, T.; Thornhill, K. L.; Walega, J. G.; Weinheimer, A. J.; Yang, M.; Yokelson, R.; Wisthaler, A.

    2015-11-01

    An instrumented NASA P-3B aircraft was used for airborne sampling of trace gases in a plume that had emanated from a small forest understory fire in Georgia, USA. The plume was sampled at its origin for deriving emission factors and followed ~ 13.6 km downwind for observing chemical changes during the first hour of atmospheric aging. The P-3B payload included a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS), which measured non-methane organic gases (NMOGs) at unprecedented spatio-temporal resolution (10 m/0.1 s). Quantitative emission data are reported for CO2, CO, NO, NO2, HONO, NH3 and 16 NMOGs (formaldehyde, methanol, acetonitrile, propene, acetaldehyde, formic acid, acetone plus its isomer propanal, acetic acid plus its isomer glycolaldehyde, furan, isoprene plus isomeric pentadienes and cyclopentene, methyl vinyl ketone plus its isomers crotonaldehyde and methacrolein, methylglyoxal, hydroxy acetone plus its isomers methyl acetate and propionic acid, benzene, 2,3-butandione and 2-furfural) with molar emission ratios relative to CO larger than 1 ppbV ppmV-1. Formaldehyde, acetaldehyde, 2-furfural and methanol dominated NMOG emissions. No NMOGs with more than 10 carbon atoms were observed at mixing ratios larger than 50 ppbV ppmV-1 CO emitted. Downwind plume chemistry was investigated using the observations and a 0-D photochemical box model simulation. The model was run on a near-explicit chemical mechanism (MCM v3.3) and initialized with measured emission data. Ozone formation during the first hour of atmospheric aging was well captured by the model, with carbonyls (formaldehyde, acetaldehyde, 2,3-butanedione, methylglyoxal, 2-furfural) in addition to CO and CH4 being the main drivers of peroxy radical chemistry. The model also accurately reproduced the sequestration of NOx into PAN and the OH-initiated degradation of furan and 2-furfural at an average OH concentration of 7.45 ± 1.07 × 106 cm-3 in the plume. Formaldehyde, acetone

  10. In situ measurements and modeling of reactive trace gases in a small biomass burning plume

    Science.gov (United States)

    Müller, Markus; Anderson, Bruce E.; Beyersdorf, Andreas J.; Crawford, James H.; Diskin, Glenn S.; Eichler, Philipp; Fried, Alan; Keutsch, Frank N.; Mikoviny, Tomas; Thornhill, Kenneth L.; Walega, James G.; Weinheimer, Andrew J.; Yang, Melissa; Yokelson, Robert J.; Wisthaler, Armin

    2016-03-01

    An instrumented NASA P-3B aircraft was used for airborne sampling of trace gases in a plume that had emanated from a small forest understory fire in Georgia, USA. The plume was sampled at its origin to derive emission factors and followed ˜ 13.6 km downwind to observe chemical changes during the first hour of atmospheric aging. The P-3B payload included a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS), which measured non-methane organic gases (NMOGs) at unprecedented spatiotemporal resolution (10 m spatial/0.1 s temporal). Quantitative emission data are reported for CO2, CO, NO, NO2, HONO, NH3, and 16 NMOGs (formaldehyde, methanol, acetonitrile, propene, acetaldehyde, formic acid, acetone plus its isomer propanal, acetic acid plus its isomer glycolaldehyde, furan, isoprene plus isomeric pentadienes and cyclopentene, methyl vinyl ketone plus its isomers crotonaldehyde and methacrolein, methylglyoxal, hydroxy acetone plus its isomers methyl acetate and propionic acid, benzene, 2,3-butanedione, and 2-furfural) with molar emission ratios relative to CO larger than 1 ppbV ppmV-1. Formaldehyde, acetaldehyde, 2-furfural, and methanol dominated NMOG emissions. No NMOGs with more than 10 carbon atoms were observed at mixing ratios larger than 50 pptV ppmV-1 CO. Downwind plume chemistry was investigated using the observations and a 0-D photochemical box model simulation. The model was run on a nearly explicit chemical mechanism (MCM v3.3) and initialized with measured emission data. Ozone formation during the first hour of atmospheric aging was well captured by the model, with carbonyls (formaldehyde, acetaldehyde, 2,3-butanedione, methylglyoxal, 2-furfural) in addition to CO and CH4 being the main drivers of peroxy radical chemistry. The model also accurately reproduced the sequestration of NOx into peroxyacetyl nitrate (PAN) and the OH-initiated degradation of furan and 2-furfural at an average OH concentration of 7.45 ± 1.07 × 106 cm-3 in the

  11. Recent Advances on Surface Ground Deformation Measurement by means of Repeated Space-borne SAR Observations

    OpenAIRE

    Prati, C.; Ferretti, A.; Perissin, D.

    2010-01-01

    Abstract Space-borne Synthetic Aperture Radar Interferometry (INSAR) is a well known widely used remote sensing technique to get precise (sub centimetric) surface deformation measurements on large areas (thousands of km2) and high spatial density of measurement points (hundreds per km2). In this work the recent technological advances of this technique are presented. First, a short review of the INSAR basics is dedicated to readers who are not INSAR specialists. Then, an analysis of...

  12. Scanning Laser Polarimetry for Measurement of Retinal Nerve Fiber Layer in Absolute, Advanced and Early Glaucoma

    Directory of Open Access Journals (Sweden)

    Jen-Chia Tsai

    2006-04-01

    Full Text Available Background: To detect differences in retinal nerve fiber layer (RNFL measurements inabsolute, advanced and early glaucoma with scanning laser polarimetry (TheNerve Fiber Analyzer GDx, and to assess the usefulness and limitations ofthis technique for longitudinal follow-up of glaucoma patients.Methods: This is a prospective, cross-sectional study. Twenty-one eyes of 21 patientswith absolute glaucoma, twenty-six eyes of 26 patients with advanced glaucomaand twenty-four eyes of 24 patients with early glaucoma were imagedusing scanning laser polarimetry. The twelve standard GDx measurementparameters were compared using ANOVA (analysis of variance and theTukey test.Results: No significant differences were demonstrated for any of the twelve GDxmeasurement parameters between absolute and advanced glaucoma cases.There were significant differences for some GDx parameters, including theGDx number (p < 0.0001 superior ratio (p < 0.0001, inferior ratio (p <0.0001, superior/nasal ratio (p < 0.0001, maximum modulation (p <0.0001, ellipse modulation (p < 0.0001 and inferior average (p = 0.001between early and advanced glaucoma, and, between early and absoluteglaucoma. Significant differences were demonstrated for the superior average(p = 0.01 parameter between early and absolute glaucoma, but notbetween early and advanced glaucoma.Conclusions: For follow-up of glaucoma progression, RNFL measurements using scanninglaser polarimetry are more useful in the early stage than in the advancedstage.

  13. Coastal measurements of short-lived reactive iodocarbons and bromocarbons at Roscoff, Brittany during the RHaMBLe campaign

    Directory of Open Access Journals (Sweden)

    L. J. Carpenter

    2009-11-01

    Full Text Available Atmospheric concentrations of the volatile reactive iodocarbons C2H5I, 1-C3H7I, 2-C3H7I, CH2ICl, CH2IBr, CH2I2 and bromocarbons CH2Br2 and CHBr3 were determined by GC/MS analysis of marine boundary layer air at Roscoff, Brittany on the northwest coast of France during September 2006. Comparison with other coastal studies suggests that emissions of these trace gases are strongly influenced by site topography, seaweed populations and distribution, as well as wind speed and direction and tide height. Concentrations of the very short-lived dihalomethanes CH2IBr and CH2I2 in particular showed evidence of tidal dependence, with higher concentrations observed at low tide during maximum exposure of seaweed beds. We also present a limited number of halocarbon measurements in surface seawater and estimate sea-air fluxes based on these and simultaneous air measurements. CH2Br2 and CHBr3 were strongly correlated both in air and in seawater, with CH2Br2/CHBr3 ratios of 0.19 in air and 0.06 in water. The combined midday I atom flux from the photolabile diahlomethanes CH2I2, CH2IBr and CH2ICl of ~5×103 molecules cm−3 s−1 is several orders of magnitude lower than the estimated I atom flux from I2 based on coinciding measurements at the same site, which indicates that at Roscoff the major I atom precursor was I2 rather than reactive iodocarbons.

  14. Lipid peroxidation measured as thiobarbituric acid-reactive substances in tissue slices: characterization and comparison with homogenates and microsomes.

    Science.gov (United States)

    Fraga, C G; Leibovitz, B E; Tappel, A L

    1988-01-01

    Liver slices were used to measure lipid peroxidation induced by bromotrichloromethane, tert-butyl hydroperoxide (t-BOOH), or ferrous iron. The responses of liver homogenates and microsomes to oxidative conditions were compared with the response of tissue slices. Lipid peroxidation was evaluated by the production of thiobarbituric acid-reactive substances (TBARS). As was observed in homogenates and microsomes, TBARS production by liver slices depended upon the amount of tissue, the incubation time, inducer, the amount of inducer, and the presence of antioxidant. Control liver slices incubated at 37 degrees C for 2 h produced 19 nmol of TBARS per g of liver. When slices were incubated in the presence of 1 mM BrCCl3, 1 mM t-BOOH, or 50 microM ferrous iron, TBARS production increased 4.6-, 8.2-, or 6.7-fold over the control value, respectively. Comparable induction of TBARS by liver homogenates and microsomes was observed when these preparations were incubated with the same inducers. Addition of 5 microM butylated hydroxytoluene (BHT) prevented the induction of TBARS by 50 microM ferrous iron by liver slices. The results indicate the usefulness of tissue slices to measure lipid peroxidation. The usefulness of tissue slices is emphasized when a number of compounds or tissues are studied and tissue integrity is desired as in toxicological, pharmacological, and nutritional studies where reduced numbers of experimental animals is a relevant issue. PMID:3356355

  15. Real-Time, Online Automated System for Measurement of Water-Soluble Reactive Phosphate Ions in Atmospheric Particles.

    Science.gov (United States)

    Violaki, Kalliopi; Fang, Ting; Mihalopoulos, Nikos; Weber, Rodney; Nenes, Athanasios

    2016-07-19

    We present a novel automated system for real-time measurements of water-soluble reactive phosphate (SRP) ions in atmospheric particles. Detection of SRP is based on molybdenum blue chemistry with Sn(II) chloride dihydrate reduction. The instrumentation consists of one particle-into-liquid sampler (PILS) coupled with a 250 cm path length liquid waveguide capillary cell (LWCC) and miniature fiber optic spectrometer, with detection wavelength set at 690 nm. The detection limit was 0.4 nM P, equivalent to 0.03 nmol P m(-3) in atmospheric particles. Comparison of SRP in collocate PM2.5 aerosol filter sampling with the PILS-LWCC on line system were in good agreement (n = 49, slope = 0.84, R(2) = 0.78). This novel technique offers at least an order of magnitude enhancement in sensitivity over existing approaches allowing for SRP measurements of unprecedented frequency (8 min), which will lead to greater understanding of the sources and impacts of SRP in atmospheric chemistry. PMID:27301315

  16. Coastal measurements of short-lived reactive iodocarbons and bromocarbons at Roscoff, Brittany during the RHaMBLe campaign

    Directory of Open Access Journals (Sweden)

    C. E. Jones

    2009-08-01

    Full Text Available Atmospheric concentrations of the volatile reactive iodocarbons C2H5I, 1-C3H7I, 2-C3H7I, CH2ICl, CH2IBr, CH2I2 and bromocarbons CH2Br2 and CHBr3 were determined by GC/MS analysis of marine boundary layer air at Roscoff, Brittany on the northwest coast of France during September 2006. Comparison with other coastal studies suggests that emissions of these trace gases are strongly influenced by site topography, seaweed populations and distribution, as well as tide height. Concentrations of the very short-lived dihalomethanes CH2IBr and CH2I2 in particular showed evidence of tidal dependence, with higher concentrations observed at low tide during maximum exposure of seaweed beds. We also present a limited number of halocarbon concentrations in surface seawater and estimate sea-air fluxes based on simultaneous water and air measurements of these gases. CH2Br2 and CHBr3 were strongly correlated both in air and in seawater, with CH2Br2/CHBr3 ratios of 0.19 in air and 0.06 in water. The combined midday I atom flux from the photolabile diahlomethanes CH2I2, CH2IBr and CH2ICl of ~5×103 molecules cm−3 s−1 is several orders of magnitude lower than the estimated I atom flux from I2 based on coinciding measurements at the same site, which indicates that at Roscoff the major I atom precursor was I2 rather than reactive iodocarbons.

  17. Reactivity of young chars via energetic distribution measurements. Final report, 1 September 1990--31 December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Calo, J.M.; Zhang, L.; Lu, W.; Lilly, W.D.

    1996-01-01

    We have developed what we believe to be the very first, a priori, correlation/prediction technique for the gasification reactivity of coal char. With this method the gasification reactivity of a coal char as a function of temperature can be correlated using the data from a temperature programmed desorption (TPD) experiment following gasification under conditions where the reactivity is controlled by the thermal desorption of oxygen surface complexes formed during gasification. The current project was directed at extending and developing related techniques for the characterization and prediction/correlation of the reactivity of the ``young`` chars to CO{sub 2} and steam. Of particular interest was mapping of the reactivity behavior of the resultant chars, as revealed by the energetic heterogeneity of the complexes with char preparation conditions.

  18. Measurement of reactivity worths of burnable poison rods in enriched uranium graphite-moderated core simulated to high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    As the core design for the Experimental Very High Temperature Gas Cooled Reactor progresses, evaluation of design precision has become increasingly important. For a high precision design, it is required to have adequate group constants based on accurate nuclear data, as well as calculation methods properly describing the physical behavior of neutrons. We, therefore, assembled a simulation core for VHTR, SHE-14, using a graphite-moderated 20%-enriched uranium Semi-Homogeneous Experimental Critical Facility (SHE), and obtained useful experimental data in evaluating the design precision. The VHTR is designed to accommodate burnable poison and control rods for reactivity compensation. Accordingly, the experimental burnable poison rods which are similar to those to be used in the experimental reactor were prepared, and their reactivity values were measured in the SHE-14 core. One to three rods of the above experimental burnable poison rods were inserted into the central column of the SHE-14 core, and the reactivity values were measured by the period and fuel rod substitution method. The results of the measurements have clearly shown that due to the self-shielding effect of B4C particles the reactivity value decreases with increasing particle diameter. For the particle diameter, the reactivity value is found to increase linearly with the logarithm of boron content. The measured values and those calculated are found to agree with each other within 5%. These results indicate that the reactivity of the burnable poison rod can be estimated fairly accurately by taking into account the self-shielding effect of B4C particles and the heterogeneity of the lattice cell. (author)

  19. Flows of Reactive Fluids

    CERN Document Server

    Prud'homme, Roger

    2010-01-01

    The modeling of reactive flows has progressed mainly with advances in aerospace, which gave birth to a new science called aerothermochemistry, as well as through developments in chemical and process engineering. The methods employed, the phenomena investigated, and the aims of modeling differ for each field; however, in all cases, the results obtained have considerably enriched the working knowledge of reactive flows. This work examines basic concepts and methods necessary to study reactive flows and transfer phenomena in areas such as fluid mechanics, thermodynamics, and chemistry. Specific topics covered include: * Equations of state * Transfer phenomena and chemical kinetics * Balance equations of reactive flows * Dimensionless numbers and similarity * Chemical reactors * Coupled phenomena * Turbulent flow concepts * Boundary layers and fluid layers * Reactive and nonreactive waves * Interface phenomena * Multiphase flow concepts The book presents tools of interest to graduate students, researchers in math...

  20. Advancement of experimentation for measuring hydraulic conductivity of bentonite using high-pressure consolidation test apparatus

    International Nuclear Information System (INIS)

    In the geological disposal facility of high-level radioactive wastes, it is important to grasp the hydraulic conductivity characteristic of bentonite. The purpose of this study is the advancement of the examination method for the measurement of a more reliable hydraulic conductivity using high-pressure consolidation test apparatus (maximum consolidation pressure 10MPa). Consequently, it succeeded in improving the reliability of data by raising the resolution of displacement used for an examination, increasing to 80 the number of measurement data for 2 minutes after making each consolidation pressure act on the occasion of measurement and adopting the data of a high consolidation pressure (more than 5.88MPa) stage. (author)

  1. How to measure human performance in main control room of an advanced NPP?

    International Nuclear Information System (INIS)

    As CRT-based display and advanced information technology were applied to advanced reactor such as APR-1400 (Advanced Power Reactor-1400), human operators' tasks became more cognitive works. Human Factors Engineering (HFE) became more important in designing the MCR (Main Control Room) of an advanced reactor. In order to support the advanced reactor design certification reviews, the Human Factors Engineering Program Review Model (HFE PRM) was developed with the support of U.S. NRC. The HFE PRM describes the HFE program elements that are necessary and sufficient to develop an acceptable detailed design specification and an acceptable implemented design and provides the review criteria for their evaluation. One of the review elements is human factors verification and validation (V and V). The role of V and V evaluations in the HFE PRM is to comprehensively determine that the design conforms to HFE design principles and it enables plant personnel to successfully perform their tasks to achieve plant safety and other operational goals. Integrated System Validation (ISV) is part of this review activity. An integrated system design is evaluated through performance-based tests to determine whether it acceptably supports safe operation of the plant. The performance- based tests are based on several human (operator) performance measures such as plant performance, personnel task, situation awareness, workload, team work, and anthropometric/physiological factors. In this work, some techniques already developed in nuclear or other industry and new techniques are incorporated into a methodology for the human performance evaluation

  2. Experimental measurements and techniques in turbulent reactive and non-reactive flows; Proceedings of the Winter Annual Meeting, New Orleans, LA, December 9-14, 1984

    International Nuclear Information System (INIS)

    Laser-based diagnostics for flowfield measurements are discussed along with considerations for the application of CARS to turbulent reacting flows, Raman measurements of surface deposition from combustion flows, laser light scattering methods for simultaneous particle size and velocity measurements, and the characterization of sprays. Attention is given to concentration distributions in cylindrical combustors, scalar and momentum turbulent transport experiments with swirling and nonswirling flows, velocity and concentration measurements in a model diesel engine, an LDV system for turbulence length scale measurements, and laser measurement techniques applied to turbulent combustion in piston engines. Other topics explored are related to the role of vortex shedding in a bluff-body combustor, the structure and dynamics of reacting two stream plane mixing layers, conditional sampling of velocity and scalars in turbulent flames using simultaneous LDV-Raman scattering, and an investigation of temperature and velocity correlations in turbulent flames

  3. Measurements of OH and HO2 Radicals and OH Reactivity at Tropical Locations Using Laser-Induced Fluorescence Spectroscopy

    Science.gov (United States)

    Furneaux, K. L.; Whalley, L. K.; Edwards, P.; Goddard, A.; Ingham, T.; Evans, M. J.; Heard, D. E.

    2009-04-01

    included, indicating a missing HOx source. Both OH and HO2 were observed at night. Measurements of HOx at the Cape Verde Atmospheric Observatory (16.9N, 24.9W) were made from May - June 2007 as part of the RHaMBLe (Reactive Halogens in the Marine Boundary Layer) programme. The site is located adjacent to the ocean with an absence of macro algae, providing conditions analogous to open ocean, clean marine air. However, background tropical conditions were not dictated by simple chemistry. Peak OH and HO2 concentrations were 9 × 106 molecule cm-3 and 6 ×108 molecule cm-3, respectively. HO2 was observed at night between 5 - 20 × 106 molecule cm-3. Modelling studies determined oxygenated-VOCs and halogen chemistry to play an important role in HOx chemistry. A comparison of HOx measurements at tropical open ocean and tropical rainforest locations shows that HOx chemistry varies greatly throughout the tropics. Higher HOx sinks in tropical rainforest environments result in a decrease of HOx compared to the tropical open ocean. 1. Lelieveld, J., T. M. Butler, et al. (2008). Atmospheric oxidation capacity sustained by a tropical forest, Nature, 452(7188): 737-740. 2. Martinez, M., Harder, H., et al. (2008). Hydroxyl radicals in the tropical troposphere over the Suriname rainforest: airborne measurements, ACPD, 8, 15491-15536.

  4. Remote Bridge Deflection Measurement Using an Advanced Video Deflectometer and Actively Illuminated LED Targets.

    Science.gov (United States)

    Tian, Long; Pan, Bing

    2016-01-01

    An advanced video deflectometer using actively illuminated LED targets is proposed for remote, real-time measurement of bridge deflection. The system configuration, fundamental principles, and measuring procedures of the video deflectometer are first described. To address the challenge of remote and accurate deflection measurement of large engineering structures without being affected by ambient light, the novel idea of active imaging, which combines high-brightness monochromatic LED targets with coupled bandpass filter imaging, is introduced. Then, to examine the measurement accuracy of the proposed advanced video deflectometer in outdoor environments, vertical motions of an LED target with precisely-controlled translations were measured and compared with prescribed values. Finally, by tracking six LED targets mounted on the bridge, the developed video deflectometer was applied for field, remote, and multipoint deflection measurement of the Wuhan Yangtze River Bridge, one of the most prestigious and most publicized constructions in China, during its routine safety evaluation tests. Since the proposed video deflectometer using actively illuminated LED targets offers prominent merits of remote, contactless, real-time, and multipoint deflection measurement with strong robustness against ambient light changes, it has great potential in the routine safety evaluation of various bridges and other large-scale engineering structures. PMID:27563901

  5. Reactivity measurements in subcritical assemblies by means of neutron noise techniques in the frequency domain. Correction of spatial and model effects

    International Nuclear Information System (INIS)

    The first section of this paper contains a review of the randomly pulsed neutron and Rossi α methods. Then the c.p.s.d. (Cross-Power Spectral Density) between two detectors in the unimodal expansion has been obtained taking into account the spatial effects. The following section is devoted to derive the formulae which allow us to perform reactivity measurements in subcritical assemblies from spectral densities, taking into account spatial source and modal effects. A typical experiment in a subcritical assembly is described where the previous method of reactivity calculation is applied analyzing the optimal position of source and detectors in order to minimize the modal contamination. (author)

  6. An Assessment of Wind Plant Complex Flows Using Advanced Doppler Radar Measurements

    Science.gov (United States)

    Gunter, W. S.; Schroeder, J.; Hirth, B.; Duncan, J.; Guynes, J.

    2015-12-01

    As installed wind energy capacity continues to steadily increase, the need for comprehensive measurements of wind plant complex flows to further reduce the cost of wind energy has been well advertised by the industry as a whole. Such measurements serve diverse perspectives including resource assessment, turbine inflow and power curve validation, wake and wind plant layout model verification, operations and maintenance, and the development of future advanced wind plant control schemes. While various measurement devices have been matured for wind energy applications (e.g. meteorological towers, LIDAR, SODAR), this presentation will focus on the use of advanced Doppler radar systems to observe the complex wind flows within and surrounding wind plants. Advanced Doppler radars can provide the combined advantage of a large analysis footprint (tens of square kilometers) with rapid data analysis updates (a few seconds to one minute) using both single- and dual-Doppler data collection methods. This presentation demonstrates the utility of measurements collected by the Texas Tech University Ka-band (TTUKa) radars to identify complex wind flows occurring within and nearby operational wind plants, and provide reliable forecasts of wind speeds and directions at given locations (i.e. turbine or instrumented tower sites) 45+ seconds in advance. Radar-derived wind maps reveal commonly observed features such as turbine wakes and turbine-to-turbine interaction, high momentum wind speed channels between turbine wakes, turbine array edge effects, transient boundary layer flow structures (such as wind streaks, frontal boundaries, etc.), and the impact of local terrain. Operational turbine or instrumented tower data are merged with the radar analysis to link the observed complex flow features to turbine and wind plant performance.

  7. Final Technical Report: Advanced Measurement and Analysis of PV Derate Factors.

    Energy Technology Data Exchange (ETDEWEB)

    King, Bruce Hardison [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Burton, Patrick D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hansen, Clifford [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Christian Birk [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    The Advanced Measurement and Analysis of PV Derate Factors project focuses on improving the accuracy and reducing the uncertainty of PV performance model predictions by addressing a common element of all PV performance models referred to as “derates”. Widespread use of “rules of thumb”, combined with significant uncertainty regarding appropriate values for these factors contribute to uncertainty in projected energy production.

  8. Sensitivity analysis of scenario models for operational risk Advanced Measurement Approach

    OpenAIRE

    Chaudhary, Dinesh

    2014-01-01

    Scenario Analysis (SA) plays a key role in determination of operational risk capital under Basel II Advanced Measurement Approach. However, operational risk capital based on scenario data may exhibit high sensitivity or wrong-way sensitivity to scenario inputs. In this paper, we first discuss scenario generation using quantile approach and parameter estimation using quantile matching. Then we use single-loss approximation (SLA) to examine sensitivity of scenario based capital to scenario inputs.

  9. Measurement of longitudinal and rayleigh wave velocities by advanced one-sided technique in concrete

    International Nuclear Information System (INIS)

    A new procedure for the advanced one-sided measurement of longitudinal wave and surface wave velocities in concrete is presented in this paper. Stress waves are generated in a consistent fashion with a DC solenoid. Two piezoelectric accelerometers are mounted on the surface of a specimen as receivers. Stress waves propagate along the surface of the specimen and are detected by the receivers. In order to reduce the large incoherent noise levels of the signals, signals are collected and manipulated by a computer program for each velocity measurement. For a known distance between the two receivers and using the measured flight times, the velocities of the longitudinal wave and the surface wave are measured. The velocities of the longitudinal wave determined by this method are compared with those measured by conventional methods on concrete, PMMA and steel.

  10. 1/f noise measurements for faster evaluation of electromigration in advanced microelectronics interconnections

    Science.gov (United States)

    Beyne, Sofie; Croes, Kristof; De Wolf, Ingrid; Tőkei, Zsolt

    2016-05-01

    The use of 1/f noise measurements is explored for the purpose of finding faster techniques for electromigration (EM) characterization in advanced microelectronic interconnects, which also enable a better understanding of its underlying physical mechanisms. Three different applications of 1/f noise for EM characterization are explored. First, whether 1/f noise measurements during EM stress can serve as an early indicator of EM damage. Second, whether the current dependence of the noise power spectral density (PSD) can be used for a qualitative comparison of the defect concentration of different interconnects and consequently also their EM lifetime t50. Third, whether the activation energies obtained from the temperature dependence of the 1/f noise PSD correspond to the activation energies found by means of classic EM tests. In this paper, the 1/f noise technique has been used to assess and compare the EM properties of various advanced integration schemes and different materials, as they are being explored by the industry to enable advanced interconnect scaling. More concrete, different types of copper interconnects and one type of tungsten interconnect are compared. The 1/f noise measurements confirm the excellent electromigration properties of tungsten and demonstrate a dependence of the EM failure mechanism on copper grain size and distribution, where grain boundary diffusion is found to be a dominant failure mechanism.

  11. Combination of Fibrinogen and High-sensitivity C-reactive Protein Measurements is Potential in Identification of Acute Coronary Syndrome

    Directory of Open Access Journals (Sweden)

    Djanggan Sargowo

    2015-04-01

    Full Text Available BACKGROUND: Acute myocardial infarction (AMI is one of cardiovascular diseases with high morbidity and mortality rates. Novel biomarkers that can detect accurately acute coronary syndrome (ACS at early stage, are necessary to improve current strategies and/or to identify subjects who are at risk. Fibrinogen and high-sensitivity C-reactive protein (hs-CRP roles in inflammation process could be potential for ACS early detection. This study was conducted to evaluate measurements of fibrinogen and hs-CRP on ACS. METHODS: An analytic observational study with cross sectional approach was conducted on patients with Troponin I positive. After signing informed consent, anamnesis and complete blood count were conducted. Besides that, liver function, renal function, and blood glucose tests were conducted as well. Samples of selected subjects were quantified with enzyme-linked immunosorbent assay (ELISA for Troponin I, fibrinogen and hs-CRP. Then statistical analyses were performed. RESULTS: There were 76 subjects in each ACS and non-ACS groups. ACS group showed significant higher levels of both fibrinogen and hs-CRP compared to Non-ACS group (p=0.000. Among evaluated risk factors, diabetes mellitus (DM (p=0.003 and hypertension (p=0.000 were significantly higher in ACS group than in non-ACS group. Among evaluated clinical factors, blood glucose (p=0.001 and age (p=0.000 were significantly higher in ACS group than in non-ACS group. Combination of fibrinogen and hs-CRP measurements showed the highest sensitivity (75.00%, specificity (80.26%, accuracy (77.63%, positive predictive value (79.19% and negative predictive value (76.25%. CONCLUSIONS: Since fibrinogen and hs-CRP were increased in ACS group and combination of fibrinogen and hs-CRP measurements showed the highest sensitivity, specificity, accuracy, positive predictive value and negative predictive value, we suggest that combination of fibrinogen and hs-CRP measurements could give added value to

  12. Evaluation of the applicable reactivity range of a reactivity computer for a CANDU-6 reactor

    International Nuclear Information System (INIS)

    Recently, a CANDU digital reactivity computer system (CDRCS) to measure the worth of the liquid zone controller in a CANDU-6 was developed and successfully applied to a physics test of refurbished Wolsong Unit 1. In advance of using the CDRCS, its measurable reactivity range should be investigated and confirmed. There are two reasons for this investigation. First, the CANDU-6 has a larger reactor and smaller excore detectors than a general PWR and consequently the measured reactivity is likely to reflect the peripheral power variation only, not the whole core. The second reason is photo neutrons generated from the interaction of the moderator and gamma-rays, which are never considered in a PWR. To evaluate the limitations of the CDRCS, several tens of three-dimensional steady and transient simulations were performed. The simulated detector signals were used to obtain the dynamic reactivity. The difference between the dynamic reactivity and the static worth increases in line with the water level changes. The maximum allowable reactivity was determined to be 1.4 mk in the case of CANDU-6 by confining the difference to less than 1%.

  13. Recent technological advances for modular active harmonic load-pull measurement systems

    OpenAIRE

    Madonna, Gian Luigi; Pisani, Umberto; Ferrero, Andrea Pierenrico

    1999-01-01

    Abstract Load-pull systems are today widely accepted as fundamental tools for non-linear performance evaluation, from device design and modeling in R&D labs to MMIC production testing. This paper presents an overview of the recent innovations in load-pull measurements. After a brief introduction on novelties regarding passive set-ups, the survey deals with technological advances for active systems. Finally, a realization of a modular broadband system for on-wafer measurements in the 0.5-18 GH...

  14. Measures to minimize cross-contamination risks in Advanced Therapy Medicinal Product manufacturing

    Directory of Open Access Journals (Sweden)

    Livia Roseti

    2014-12-01

    Full Text Available Current European regulations define in vitro expanded cells for clinical purposes as substantially manipulated and include them in the class of Advanced Therapy Medicinal Products to be manufactured in compliance with current Good Manufacturing Practice. These quality requirements are generally thought to be elaborate and costly. However, they ensure three main product characteristics: safety, consistency, and absence of cross-contamination. The term crosscontamination is used to indicate misidentification of one cell line or culture by another. The Good Manufacturing Practice Guidelines suggest some recommendations in order to prevent cross-contaminations and require a demonstration that the implemented actions are effective. Here we report some practical examples useful both to minimize crosscontamination risks in an Advanced Therapy Medicinal Products production process and to evaluate the efficacy of the adopted measures.

  15. Measuring the reactivity of commercially available zero-valent iron nanoparticles used for environmental remediation with iopromide.

    Science.gov (United States)

    Schmid, Doris; Micić, Vesna; Laumann, Susanne; Hofmann, Thilo

    2015-10-01

    The high specific surface area and high reactivity of nanoscale zero-valent iron (nZVI) particles have led to much research on their application to environmental remediation. The reactivity of nZVI is affected by both the water chemistry and the properties of the particular type of nZVI particle used. We have investigated the reactivity of three types of commercially available Nanofer particles (from Nanoiron, s.r.o., Czech Republic) that are currently either used in, or proposed for use in full scale environmental remediation projects. The performance of one of these, the air-stable and thus easy-to-handle Nanofer Star particle, has not previously been reported. Experiments were carried out first in batch shaking reactors in order to derive maximum reactivity rates and provide a rapid estimate of the Nanofer particle's reactivity. The experiments were performed under near-natural environmental conditions with respect to the pH value of water and solute concentrations, and results were compared with those obtained using synthetic water. Thereafter, the polyelectrolyte-coated Nanofer 25S particles (having the highest potential for transport within porous media) were chosen for the experiments in column reactors, in order to elucidate nanoparticle reactivity under a more field-site realistic setting. Iopromide was rapidly dehalogenated by the investigated nZVI particles, following pseudo-first-order reaction kinetics that was independent of the experimental conditions. The specific surface area normalized reaction rate constant (kSA) value in the batch reactors ranged between 0.12 and 0.53Lm(-2)h(-1); it was highest for the uncoated Nanofer 25 particles, followed by the polyacrylic acid-coated Nanofer 25S and air-stable Nanofer Star particles. In the batch reactors all particles were less reactive in natural water than in synthetic water. The kSA values derived from the column reactor experiments were about 1000 times lower than those from the batch reactors, ranging

  16. Advanced flow measurement and active flow control of aircraft with MEMS

    Institute of Scientific and Technical Information of China (English)

    Jiang Chengyu; Deng Jinjun; Ma Binghe; Yuan Weizheng

    2012-01-01

    Advanced flow measurement and active flow control need the development of new type devices and systems. Micro-electro-mechanical systems (MEMS) technologies become the important and feasible approach for micro transducers fabrication. This paper introduces research works of MEMS/NEMS Lab in flow measurement sensors and active flow control actuators. Micro sensors include the flexible thermal sensor array, capacitive shear stress sensor and high sensitivity pressure sensor. Micro actuators are the balloon actuator and synthetic jet actuator respectively. Through wind tunnel test, these micro transducers achieve the goals of shear stress and pressure distribution measurement, boundary layer separation control, lift enhancement, etc. And unmanned aerial vehicle (UAV) flight test verifies the ability of maneuver control of micro actuator. In the future work, micro sensor and actuator can be combined into a closed-loop control system to construct aerodynamic smart skin system for aircraft.

  17. Virtual charge state separator as an advanced tool coupling measurements and simulations

    Science.gov (United States)

    Yaramyshev, S.; Vormann, H.; Adonin, A.; Barth, W.; Dahl, L.; Gerhard, P.; Groening, L.; Hollinger, R.; Maier, M.; Mickat, S.; Orzhekhovskaya, A.

    2015-05-01

    A new low energy beam transport for a multicharge uranium beam will be built at the GSI High Current Injector (HSI). All uranium charge states coming from the new ion source will be injected into GSI heavy ion high current HSI Radio Frequency Quadrupole (RFQ), but only the design ions U4 + will be accelerated to the final RFQ energy. A detailed knowledge about injected beam current and emittance for pure design U4 + ions is necessary for a proper beam line design commissioning and operation, while measurements are possible only for a full beam including all charge states. Detailed measurements of the beam current and emittance are performed behind the first quadrupole triplet of the beam line. A dedicated algorithm, based on a combination of measurements and the results of advanced beam dynamics simulations, provides for an extraction of beam current and emittance values for only the U4 + component of the beam. The proposed methods and obtained results are presented.

  18. Applications of Advanced Nondestructive Measurement Techniques to Address Safety of Flight Issues on NASA Spacecraft

    Science.gov (United States)

    Prosser, Bill

    2016-01-01

    Advanced nondestructive measurement techniques are critical for ensuring the reliability and safety of NASA spacecraft. Techniques such as infrared thermography, THz imaging, X-ray computed tomography and backscatter X-ray are used to detect indications of damage in spacecraft components and structures. Additionally, sensor and measurement systems are integrated into spacecraft to provide structural health monitoring to detect damaging events that occur during flight such as debris impacts during launch and assent or from micrometeoroid and orbital debris, or excessive loading due to anomalous flight conditions. A number of examples will be provided of how these nondestructive measurement techniques have been applied to resolve safety critical inspection concerns for the Space Shuttle, International Space Station (ISS), and a variety of launch vehicles and unmanned spacecraft.

  19. Advanced Method for In-Field Measurement, Monitoring and Verification of Total Soil Carbon

    Science.gov (United States)

    Ebinger, M. H.; Harris, R. D.; Ploss, J. C.; Clegg, S. M.

    2005-12-01

    The Earth`s oceans, forests, agricultural lands and other natural areas absorb about half of the carbon dioxide emitted from anthropogenic sources. Terrestrial carbon sequestration strategies are immediately available to bridge the gap between current terrestrial sequestration capacity and high-capacity geologic sequestration projects available in 10 to 20 years. Terrestrial carbon sequestration strategies consist of implementing land management practices aimed at decreasing CO2 emitted into the atmosphere and developing advanced measurement tools to inventory and monitor carbon processes in soils and biota. In addition to atmospheric CO2 mitigation and carbon trading advantages, terrestrial carbon sequestration produces a variety of benefits which include reclamation of degraded lands, increased soil productivity, increased land value and a more secure food source. Carbon storage in soil depends on climate and management practices, with potential yearly increases estimated from 0 to 150 kg-C ha-1 yr-1 in semiarid environments and up to 1000 kg-C ha-1 yr-1 in more humid environments. Measuring these increases, or in some cases losses of C, is currently a challenge with conventional instrumentation. Development of rapid, accurate, and cost effective and methods of measuring soil carbon are needed to address terrestrial sequestration issues and other aspects of global change. Laser-induced breakdown spectroscopy (LIBS) is one promising advanced measurement method for soil carbon. LIBS has several advantages to conventional analytical tools including speed, analysis takes minutes, and portability as well as increased accuracy and precision. We will show the development of LIBS instrumentation for soil carbon measurement and test results to demonstrate the potential of LIBS to help address the measurement challenge.

  20. Advances in hydrocarbons spill remediation in Barreal-Belen: proposed measures for the protection of aquifers

    International Nuclear Information System (INIS)

    The advances accomplished with regard to hydrocarbons spill remediation, through 2009 are shown and the costs made in the process are listed. In the Central Valley have been located about 160 gas stations on major aquifers at risk of contamination, in light of the case of hydrocarbons spill happened in Barreal-Belen in 2004, discovered by chance during the inspection to a nearby well. The study instruments of the vulnerability to contamination of aquifers are analyzed. A proposal of measures is presented, which should be taken to ensure control over the risk of further spillage and for proper management of waters. (author)

  1. Measurements of neutron cross sections for advanced nuclear energy systems at n_TOF (CERN

    Directory of Open Access Journals (Sweden)

    Barbagallo M.

    2014-03-01

    Full Text Available The n_TOF facility operates at CERN with the aim of addressing the request of high accuracy nuclear data for advanced nuclear energy systems as well as for nuclear astrophysics. Thanks to the features of the neutron beam, important results have been obtained on neutron induced fission and capture cross sections of U, Pu and minor actinides. Recently the construction of another beam line has started; the new line will be complementary to the first one, allowing to further extend the experimental program foreseen for next measurement campaigns.

  2. Obtainment of the subcritical reactivity by mean of measurement of APSD and CPSD employing pulse mode detectors in the IPEN/MB-01 reactor

    International Nuclear Information System (INIS)

    This work presents a new experimental approach to determine the reactivity levels of subcritical systems. The method employs the subcritical kinetic model developed by Gandini and Salvatores and it is based only on measured quantities such as counting rates of the detectors employed in the experiments and the parameters arising from the least squares fitting of the APSD (Auto Power Spectral Density) and CPSD (Cross Power Spectral Density). Detector efficiencies, quantity required in other procedures such as Neutron Source Multiplication (NSM) method, are not needed in the proposed method. The only hypothesis made in the method was the independence of the effective delayed neutron fraction and the prompt neutron generation time to the subcriticality level of the system. The proposed method was applied to measure the reactivity of several subcritical configurations of the IPEN/MB-01 reactor. Measurements of APSD and CPSD were performed in several degrees of subcriticality (up to around -7000 pcm). The spectral densities data were least squares fitted to get the prompt decay mode (α) and other quantities. Beside the startup source of the facility, an external neutron source of Am-Be was installed near the core in order to improve neutron counting statistics. The final experimental results are of good quality. The proposed experimental method shows clearly that the classical point kinetic theory cannot describe the measured reactivity. Instead, the reactivity inferred from this model follows closely the subcriticality index (ζ) for the source arrangements in the experiment. The agreement of the MCNP5 and GPT-TORT results, both with ENDF/B-VII.0 as the basic nuclear data library, when compared to the corresponding experimental ones was also good. (author)

  3. Airborne Measurements of Nitric Oxide, Nitrogen Dioxide, Ozone, and Total Reactive Nitrogen During the NASA Global Tropospheric Experiment

    Science.gov (United States)

    Carroll, Mary Anne

    2000-01-01

    Fabrication of the University of Michigan Multichannel Chemiluminescence Instrument (UMMCI) was completed in early 1996 and the instrument participated in test flights on the NASA P3B at Wallops Island prior to integration and deployment for the PEM- Tropics A Mission. The UMMCI consists of 4 channels for simultaneous measurements of ozone and NO with the option for measurements of NO2 and NOy (total reactive nitrogen) when converters are placed upstream of the NO channels. Each NO channel consists of a zeroing volume and reaction vessel, while the ozone channel consists of an ozone catalyst (or scrubber) trap that is not in line with the reaction vessel. The detectors in all for channels are Hamamatsu photomultiplier tubes, which are followed by pulse amplifier discriminators on the NO channels and an electrometer on the ozone channel. Schematics of the Detector Module and NOx/03 Probe Insert and Diagrams of the Control and Data System, the Power and Ground System, the Gas Flow System, and the Calibration System Flow are attached. Intercomparisons were conducted with G. Gregory, NASA/Langley, during the test flights (following prior calibration of the ozone generator/calibrators at the Wallops Long-Path Absorption facility). Initial test results appeared to be reasonable, and instrument characterization studies proceeded for the ozone channel and the 3 NO channels until deployment for integration for the PEM-Tropics Mission. Ozone data was obtained for Flights #4, and 6-2 1, and finalized data was submitted to the PEM-Tropics Data Archive and to the Science Team during the April 1997 Data Workshop. Although it initially appeared that the instrument sensitivity varied, subsequent tests showed that this was the fault of a leak in the ozone calibrator. In fact; the instrument sensitivity has not been observed to vary in a large number of tests over the years since the PEM-Tropics mission. We have, therefore, a very high degree of confidence in the O3 data that we

  4. Advanced experimental techniques for measuring oscillator strengths of vacuum ultraviolet lines

    International Nuclear Information System (INIS)

    Advanced experimental techniques for measuring oscillator strengths of atomic and ionic transitions in the vacuum ultraviolet (VUV) are described. A VUV time-resolved laser-induced-fluorescence experiment for radiative lifetime measurements on atoms and ions in a beam is operational. Recent work on VUV transitions of Si I and B I is described. These lifetimes provide the essential absolute normalization for converting relative oscillator strengths to absolute transition probabilities. Emission measurements of branching fractions at VUV and longer wavelengths are proposed. A large echelle spectrograph equipped with a CCD detector array will be used. This experiment will provide the sensitivity, resolving power, and data handling capability required for extensive high quality emission branching fraction measurements. We further propose to use absorption measurements on hollow cathode discharges to determine relative absorption oscillator strengths. A demonstration of a new technique for absorption spectroscopy on glow discharges is reported. The new technique provides the sensitivity, dynamic range, and data handling capability required for extensive high quality absorption measurements. Relative absorption and emission oscillator strengths will be least-square adjusted using the bowtie method and normalized with accurate radiative lifetimes. (orig.)

  5. Industrial application of advanced measuring and evaluation methods for cylinder liners of engine blocks

    International Nuclear Information System (INIS)

    To facilitate the development and monitor the manufacturing process of cylinder bore surfaces it is state of the art to use two-dimensional tactile roughness measurements as well as a subjective user-oriented method known as 'fax-image analysis'. The surface design of cylinder bores changed in the last few years from a regularly structured surface to an irregularly structured surface. Furthermore, the requirements of the produced surface became more stringent due to ecological performance enhancements and technical advances in the manufacturing process. Looking at the fax-image analysis it is not possible to support all technological requirements and developments. This paper describes a new measurement method of micro-structured surfaces of cylinder bores applied to silicon–aluminium alloy engine blocks. Here, a micro- and nano-measuring method is presented to replace the subjective evaluation method with objective quantified measuring values. Based on optical measuring methods in combination with an interpretation module, it is now possible to evaluate the quality of the manufacturing process by measuring silicon particle sizes and micro-structure distribution on the liner surface. It is also possible to observe changes in the surface structure during the life cycle of an engine block, which provides long-term performance feedback to the development process

  6. Advanced Liquid-Free, Piezoresistive, SOI-Based Pressure Sensors for Measurements in Harsh Environments

    Directory of Open Access Journals (Sweden)

    Ha-Duong Ngo

    2015-08-01

    Full Text Available In this paper we present and discuss two innovative liquid-free SOI sensors for pressure measurements in harsh environments. The sensors are capable of measuring pressures at high temperatures. In both concepts media separation is realized using a steel membrane. The two concepts represent two different strategies for packaging of devices for use in harsh environments and at high temperatures. The first one is a “one-sensor-one-packaging_technology” concept. The second one uses a standard flip-chip bonding technique. The first sensor is a “floating-concept”, capable of measuring pressures at temperatures up to 400 °C (constant load with an accuracy of 0.25% Full Scale Output (FSO. A push rod (mounted onto the steel membrane transfers the applied pressure directly to the center-boss membrane of the SOI-chip, which is placed on a ceramic carrier. The chip membrane is realized by Deep Reactive Ion Etching (DRIE or Bosch Process. A novel propertied chip housing employing a sliding sensor chip that is fixed during packaging by mechanical preloading via the push rod is used, thereby avoiding chip movement, and ensuring optimal push rod load transmission. The second sensor can be used up to 350 °C. The SOI chips consists of a beam with an integrated centre-boss with was realized using KOH structuring and DRIE. The SOI chip is not “floating” but bonded by using flip-chip technology. The fabricated SOI sensor chip has a bridge resistance of 3250 Ω. The realized sensor chip has a sensitivity of 18 mV/µm measured using a bridge current of 1 mA.

  7. Proactive and Reactive Response Inhibition across the Lifespan.

    Science.gov (United States)

    Smittenaar, Peter; Rutledge, Robb B; Zeidman, Peter; Adams, Rick A; Brown, Harriet; Lewis, Glyn; Dolan, Raymond J

    2015-01-01

    One expression of executive control involves proactive preparation for future events, and this contrasts with stimulus driven reactive control exerted in response to events. Here we describe findings from a response inhibition task, delivered using a smartphone-based platform, that allowed us to index proactive and reactive inhibitory self-control in a large community sample (n = 12,496). Change in stop-signal reaction time (SSRT) when participants are provided with advance information about an upcoming trial, compared to when they are not, provides a measure of proactive control while SSRT in the absence of advance information provides a measure of reactive control. Both forms of control rely on overlapping frontostriatal pathways known to deteriorate in healthy aging, an age-related decline that occurs at an accelerated rate in men compared to women. Here we ask whether these patterns of age-related decline are reflected in similar changes in proactive and reactive inhibitory control across the lifespan. As predicted, we observed a decline in reactive control with natural aging, with a greater rate of decline in men compared to women (~10 ms versus ~8 ms per decade of adult life). Surprisingly, the benefit of preparation, i.e. proactive control, did not change over the lifespan and women showed superior proactive control at all ages compared to men. Our results suggest that reactive and proactive inhibitory control partially rely on distinct neural substrates that are differentially sensitive to age-related change. PMID:26488166

  8. Measurements of Bauschinger effect and transient behavior of a quenched and partitioned advanced high strength steel

    International Nuclear Information System (INIS)

    In recent decades, the needs for new advanced high strength steels (AHSS) with high ductility and strength have rapidly increased to achieve the targets of more fuel-efficient and safer vehicles in automotive industry. However, several undesirable phenomena are experimentally observed during the forming of such materials, particularly with complex loading and large plastic deformation. Springback is one of the most important problems that should be compensated in sheet metal forming process. In this paper, we investigated the hardening behavior of a Q and P (quench and partitioning) steel designated by QP980CR, which is a new third generation advance high strength steel, from the Baosteel Group Corp. in Shanghai, China. The uni-axial tensile and cyclic simple shear tests were conducted. The uni-axial tensile tests were performed on the specimens at 0°, 45° and 90° to rolling direction (RD). The flow stress and transverse strain evolution were obtained in view of the digital image correlation (DIC) measurement. The plastic anisotropy was optimized from the uni-axial tensile tests and thereafter incorporated into the simulations of cyclic simple shear tests. The cyclic simple shear tests were conducted with three prestrains to measure the Bauschinger effect, transient behavior and permanent softening, and to determine the material parameters of the combined isotropic-kinematic hardening model

  9. Measurements of Bauschinger effect and transient behavior of a quenched and partitioned advanced high strength steel

    Energy Technology Data Exchange (ETDEWEB)

    Zang, Shun-lai, E-mail: shawn@mail.xjtu.edu.cn [School of Mechanical Engineering, Xi' an Jiaotong University, No. 28, Xianning Road, Xi' an, Shaanxi (China); Sun, Li [Manufacturing Process Research, General Motors China Science Lab, No. 56, Jinwan Road, Shanghai (China); Niu, Chao [School of Mechanical Engineering, Xi' an Jiaotong University, No. 28, Xianning Road, Xi' an, Shaanxi (China)

    2013-12-01

    In recent decades, the needs for new advanced high strength steels (AHSS) with high ductility and strength have rapidly increased to achieve the targets of more fuel-efficient and safer vehicles in automotive industry. However, several undesirable phenomena are experimentally observed during the forming of such materials, particularly with complex loading and large plastic deformation. Springback is one of the most important problems that should be compensated in sheet metal forming process. In this paper, we investigated the hardening behavior of a Q and P (quench and partitioning) steel designated by QP980CR, which is a new third generation advance high strength steel, from the Baosteel Group Corp. in Shanghai, China. The uni-axial tensile and cyclic simple shear tests were conducted. The uni-axial tensile tests were performed on the specimens at 0°, 45° and 90° to rolling direction (RD). The flow stress and transverse strain evolution were obtained in view of the digital image correlation (DIC) measurement. The plastic anisotropy was optimized from the uni-axial tensile tests and thereafter incorporated into the simulations of cyclic simple shear tests. The cyclic simple shear tests were conducted with three prestrains to measure the Bauschinger effect, transient behavior and permanent softening, and to determine the material parameters of the combined isotropic-kinematic hardening model.

  10. Advances in civic engagement research: issues of civic measures and civic context.

    Science.gov (United States)

    Zaff, Jonathan F; Kawashima-Ginsberg, Kei; Lin, Emily S

    2011-01-01

    Civic engagement has gained prominence over the past two decades as an important topic in developmental science. Much has been learned about what civic engagement means, how it is measured, and how young people develop civic engagement. In this chapter, we discuss emerging areas of research for civic engagement and core questions that we believe need to be explored. In particular, we focus on a broader conceptualization of civic engagement beyond behavioral measures, consider the relevance of cultural and political contexts on the development of civic engagement among under-served populations, and discuss the implications of advancing the civic engagement field on the civic participation of youth in the United States and throughout the world. PMID:23259196

  11. Application of visible bremsstrahlung to Z(eff) measurement on the Experimental Advanced Superconducting Tokamak.

    Science.gov (United States)

    Chen, Yingjie; Wu, Zhenwei; Gao, Wei; Ti, Ang; Zhang, Ling; Jie, Yinxian; Zhang, Jizong; Huang, Juan; Xu, Zong; Zhao, Junyu

    2015-02-01

    The multi-channel visible bremsstrahlung measurement system has been developed on Experimental Advanced Superconducting Tokamak (EAST). In addition to providing effective ion charge Zeff as a routine diagnostic, this diagnostic can also be used to estimate other parameters. With the assumption that Zeff can be seen as constant across the radius and does not change significantly during steady state discharges, central electron temperature, averaged electron density, electron density profile, and plasma current density profile have been obtained based on the scaling of Zeff with electron density and the relations between Zeff and these parameters. The estimated results are in good coincidence with measured values, providing an effective and convenient method to estimate other plasma parameters. PMID:25725844

  12. Advancement of gamma-spectroscopic measuring systems of BfS and adaptation of measuring and evaluation techniques to the requirements of emergency response. Final report

    International Nuclear Information System (INIS)

    The final report on advancement of gamma-spectroscopic measuring systems of BfS and adaptation of measuring and evaluation techniques to the requirements of emergency response covers the following issues: results of literature search, calculation of geometric factors, calibration for the helicopter, combination of geometric factors and calibration, measuring flights, detection limit and performance optimization, identification of activities in the air volume.

  13. Measurements of the subcriticality using advanced technique of shooting source during operation of NPP reactors

    International Nuclear Information System (INIS)

    According to the rules of nuclear safety, the measurements of the subcriticality of reactors should be carried out in the process of performing nuclear hazardous operations. An advanced technique of shooting source of neutrons is proposed to meet this requirement. As such a source, a pulsed neutron source (PNS) is used. In order to realize this technique, it is recommended to enable a PNS with a frequency of 1–20 Hz. The PNS is stopped after achieving a steady-state (on average) number of neutrons in the reactor volume. The change in the number of neutrons in the reactor volume is measured in time with an interval of discreteness of ∼0.1 s. The results of these measurements with the application of a system of point-kinetics equations are used in order to calculate the sought subcriticality. The basic idea of the proposed technique used to measure the subcriticality is elaborated in a series of experiments on the Kvant assembly. The conditions which should be implemented in order to obtain a positive result of measurements are formulated. A block diagram of the basic version of the experimental setup is presented, whose main element is a pulsed neutron generator

  14. Automated tune measurements in the Advanced Light Source storage ring using a LabVIEW application

    International Nuclear Information System (INIS)

    Horizontal and vertical betatron tunes and the synchrotron tune are measured frequently during storage ring commissioning. The measurements are tedious and subject to human errors. Automating this kind of repetitive measurement is underway using LabVIEW for Windows, a software application supplied by National Instruments Corporation, that provides acquisition, graphing, and analysis of data as well as instrument control through the General Purpose Interface Bus (GPIB). We have added LabVIEW access to the Advanced Light Source (ALS) data base and control system. LabVIEW is a fast and efficient tool for accelerator commissioning and beam physics studies. Hardware used to perform tune measurements include a tracking generator (or a white noise generator), strip line electrodes for external ''citation of the beam, button monitors, and a spectrum analyzer. All three tunes are displayed simultaneously on the spectrum analyzer. Our program automatically identifies three tunes by applying and analyzing small variations and reports the results. This routine can be encapsulated in other applications, for instance, in a chromaticity measurement and correction program

  15. Potential of advance NDT method for water measurement in a bulk paper-recycling

    International Nuclear Information System (INIS)

    Paper recycling industries usually buy their raw material from suppliers. Bulk used paper supplied to recycling industry may contain water in their internal voids. This is because the price of the used paper is currently based on their weight and has a huge potential of suppliers to add water to increase the price. The aims of our experiment are to establish the neutron calibration curve and to develop a correction factor of weight measurement during purchasing. This study presents an advance non-destructive testing technique for rapid and in-situ measurement of water content in a bulk used paper. A fast neutron source (Am-Be 241) and a portable backscattering neutron detector were used for water measurement. The experiments were conducted by measuring a series of wet paper added with certain amount of water. As a result, a neutron calibration curve for water measurement in bulk used paper was established. A total of six bands for weight correction based on the calibration curve have been proposed. (author)

  16. Measurement of affective state during chronic nicotine treatment and withdrawal by affective taste reactivity in mice: the role of endocannabinoids

    OpenAIRE

    Wing, Victoria C.; Cagniard, Barbara; Murphy, Niall P; Shoaib, Mohammed

    2009-01-01

    Abstract Despite tobacco being highly addictive, it is unclear if nicotine has significant affective properties. To address this, we studied taste reactions to gustatory stimuli, palatable sucrose and unpalatable quinine, which are believed to reflect ongoing affective state. Taste reactivity was assessed during chronic nicotine administration and spontaneous withdrawal and the role of the endogenous cannabinoids was also investigated. C57BL6J mice were implanted with intra-oral fi...

  17. Measurement and analysis of reactivity worth of Th232, U233 and Eu plate in the core with KUCA-Th

    International Nuclear Information System (INIS)

    The reactivity worth of 1/8''Th232, 2mmtU233 and 2mmtEU plate were measured in the center of core of B4/8''P24EU-Th-EU(5). C/E was about 0.92 to 0.95 for U233 plate and Eu plate, and about 1.0 to 1.3 for Th232 plate, respectively, higher value. The core construction consisted of the fuel region inside and it encircled with polyethylene reflector and the control and safety rods are set in the boundary. Each reactivity worth of materials was determined by the difference between the average excess reactivity of each material at loading and that of aluminum at loading. The results were expressed as the following; Δk/k = 4.931E-04 + 1.99E-05 (2 mmtU233), Δk/k = 2.979E-04 + 1.67E-05 (2 mmtEU) and Δk/k = -4.874E-04 + 1.29E-05 (1/8''Th232). The experimental values agreed with the calculated values and were reproducible to the measurement values on KUCA. (S.Y.)

  18. Recent advances in hardware and software are to improve spent fuel measurements

    International Nuclear Information System (INIS)

    Vast quantities of spent fuel are available for safeguard measurements, primarily in Commonwealth of Independent States (CIS) of the former Soviet Union. This spent fuel, much of which consists of long-cooling-time material, is going to become less unique in the world safeguards arena as reprocessing projects or permanent repositories continue to be delayed or postponed. The long cooling time of many of the spent fuel assemblies being prepared for intermediate term storage in the CIS countries promotes the possibility of increased accuracy in spent fuel assays. This improvement is made possible through the process of decay of the Curium isotopes and of fission products. An important point to consider for the future that could advance safeguards measurements for reverification and inspection would be to determine what safeguards requirements should be imposed upon this 'new' class of spent fuel, Improvements in measurement capability will obviously affect the safeguards requirements. What most significantly enables this progress in spent fuel measurements is the improvement in computer processing power and software enhancements leading to user-friendly Graphical User Interfaces (GUT's). The software used for these projects significantly reduces the IAEA inspector's time expenditure for both learning and operating computer and data acquisition systems, At the same time, by standardizing the spent fuel measurements, it is possible to increase reproducibility and reliability of the measurement data. Hardware systems will be described which take advantage of the increased computer control available to enable more complex measurement scenarios. A specific example of this is the active regulation of a spent fuel neutron coincident counter's 3He tubes high voltage, and subsequent scaling of measurement results to maintain a calibration for direct assay of the plutonium content of Fast Breeder Reactor spent fuel. The plutonium content has been successfully determined for

  19. Robust quantitative parameter estimation by advanced CMP measurements for vadose zone hydrological studies

    Science.gov (United States)

    Koyama, C.; Wang, H.; Khuut, T.; Kawai, T.; Sato, M.

    2015-12-01

    Soil moisture plays a crucial role in the understanding of processes in the vadose zone hydrology. In the last two decades ground penetrating radar (GPR) has been widely discussed has nondestructive measurement technique for soil moisture data. Especially the common mid-point (CMP) technique, which has been used in both seismic and GPR surveys to investigate the vertical velocity profiles, has a very high potential for quantitaive obervsations from the root zone to the ground water aquifer. However, the use is still rather limited today and algorithms for robust quantitative paramter estimation are lacking. In this study we develop an advanced processing scheme for operational soil moisture reetrieval at various depth. Using improved signal processing, together with a semblance - non-normalized cross-correlation sum combined stacking approach and the Dix formula, the interval velocities for multiple soil layers are obtained from the RMS velocities allowing for more accurate estimation of the permittivity at the reflecting point. Where the presence of a water saturated layer, like a groundwater aquifer, can be easily identified by its RMS velocity due to the high contrast compared to the unsaturated zone. By using a new semi-automated measurement technique the acquisition time for a full CMP gather with 1 cm intervals along a 10 m profile can be reduced significantly to under 2 minutes. The method is tested and validated under laboratory conditions in a sand-pit as well as on agricultural fields and beach sand in the Sendai city area. Comparison between CMP estimates and TDR measurements yield a very good agreement with RMSE of 1.5 Vol.-%. The accuracy of depth estimation is validated with errors smaller than 2%. Finally, we demonstrate application of the method in a test site in semi-arid Mongolia, namely the Orkhon River catchment in Bulgan, using commercial 100 MHz and 500 MHz RAMAC GPR antennas. The results demonstrate the suitability of the proposed method for

  20. Advancements in Root Growth Measurement Technologies and Observation Capabilities for Container-Grown Plants

    Directory of Open Access Journals (Sweden)

    Lesley A. Judd

    2015-07-01

    Full Text Available The study, characterization, observation, and quantification of plant root growth and root systems (Rhizometrics has been and remains an important area of research in all disciplines of plant science. In the horticultural industry, a large portion of the crops grown annually are grown in pot culture. Root growth is a critical component in overall plant performance during production in containers, and therefore it is important to understand the factors that influence and/or possible enhance it. Quantifying root growth has varied over the last several decades with each method of quantification changing in its reliability of measurement and variation among the results. Methods such as root drawings, pin boards, rhizotrons, and minirhizotrons initiated the aptitude to measure roots with field crops, and have been expanded to container-grown plants. However, many of the published research methods are monotonous and time-consuming. More recently, computer programs have increased in use as technology advances and measuring characteristics of root growth becomes easier. These programs are instrumental in analyzing various root growth characteristics, from root diameter and length of individual roots to branching angle and topological depth of the root architecture. This review delves into the expanding technologies involved with expertly measuring root growth of plants in containers, and the advantages and disadvantages that remain.

  1. Advanced measurement and analysis of surface textures produced by micro-machining processes

    International Nuclear Information System (INIS)

    Surface texture of a part or a product has significant effects on its functionality, physical-mechanical properties and visual appearance. In particular for miniature products, the implication of surface quality becomes critical owing to the presence of geometrical features with micro/nano-scale dimensions. Qualitative and quantitative assessments of surface texture are carried out predominantly by profile parameters, which are often insufficient to address the contribution of constituent spatial components with varied amplitudes and wavelengths. In this context, this article presents a novel approach for advanced measurement and analysis of profile average roughness (Ra) and its spatial distribution at different wavelength intervals. The applicability of the proposed approach was verified for three different surface topographies prepared by grinding, laser micro-polishing and micro-milling processes. From the measurement and analysis results, Ra(λ) spatial distribution was found to be an effective measure of revealing the contributions of various spatial components within specific wavelength intervals towards formation of the entire surface profile. In addition, the approach was extended to the measurement and analysis of areal average roughness Sa(λ) spatial distribution within different wavelength intervals. Besides, the proposed method was demonstrated to be a useful technique in developing a functional correlation between a manufacturing process and its corresponding surface profile. (paper)

  2. Statistical metrology - measurement and modeling of variation for advanced process development and design rule generation

    International Nuclear Information System (INIS)

    Advanced process technology will require more detailed understanding and tighter control of variation in devices and interconnects. The purpose of statistical metrology is to provide methods to measure and characterize variation, to model systematic and random components of that variation, and to understand the impact of variation on both yield and performance of advanced circuits. Of particular concern are spatial or pattern-dependencies within individual chips; such systematic variation within the chip can have a much larger impact on performance than wafer-level random variation. Statistical metrology methods will play an important role in the creation of design rules for advanced technologies. For example, a key issue in multilayer interconnect is the uniformity of interlevel dielectric (ILD) thickness within the chip. For the case of ILD thickness, we describe phases of statistical metrology development and application to understanding and modeling thickness variation arising from chemical-mechanical polishing (CMP). These phases include screening experiments including design of test structures and test masks to gather electrical or optical data, techniques for statistical decomposition and analysis of the data, and approaches to calibrating empirical and physical variation models. These models can be integrated with circuit CAD tools to evaluate different process integration or design rule strategies. One focus for the generation of interconnect design rules are guidelines for the use of 'dummy fill' or 'metal fill' to improve the uniformity of underlying metal density and thus improve the uniformity of oxide thickness within the die. Trade-offs that can be evaluated via statistical metrology include the improvements to uniformity possible versus the effect of increased capacitance due to additional metal

  3. Advanced video extensometer for non-contact, real-time, high-accuracy strain measurement.

    Science.gov (United States)

    Pan, Bing; Tian, Long

    2016-08-22

    We developed an advanced video extensometer for non-contact, real-time, high-accuracy strain measurement in material testing. In the established video extensometer, a "near perfect and ultra-stable" imaging system, combining the idea of active imaging with a high-quality bilateral telecentric lens, is constructed to acquire high-fidelity video images of the test sample surface, which is invariant to ambient lighting changes and small out-of-plane motions occurred between the object surface and image plane. In addition, an efficient and accurate inverse compositional Gauss-Newton algorithm incorporating a temporal initial guess transfer scheme and a high-accuracy interpolation method is employed to achieve real-time, high-accuracy displacement tracking with negligible bias error. Tensile tests of an aluminum sample and a carbon fiber filament sample were performed to demonstrate the efficiency, repeatability and accuracy of the developed advanced video extensometer. The results indicate that longitudinal and transversal strains can be estimated and plotted at a rate of 117 fps and with a maximum strain error less than 30 microstrains. PMID:27557188

  4. Key nuclear data measurements for advanced fission energy and white neutron source at CSNS

    International Nuclear Information System (INIS)

    The key nuclear data for advanced fission energy are important in designing advanced nuclear reactors and facilities for nuclear-waste transmutation. Because the present nuclear data library is limited by experimental condition and energy range, the precision of some nuclear data is low, even some nuclear data are blank. In this paper, the status of the nuclear data and white neutron sources were presented. The back-streaming neutron beam at China Spallation Neutron Source (CSNS) has very wide energy spectrum (0.01 eV-200 MeV) and excellent time structure. From the simulation results, it's obtained that the uncollimated neutron fluence rate is around 9.3 × 106 cm-2 · s-1 within the given energy range at 80 m away from the target, which accounts for about 53% of the total neutrons. The time resolution of 0.3%-0.9%, which is important for the Time-of-Flight method, can be obtained for both the parasite operation mode with two proton bunches and the dedicated operation mode with a single proton bunch. CSNS white neutron source will be a good facility for nuclear data measurement. (authors)

  5. Advanced intensity-modulation continuous-wave lidar techniques for ASCENDS CO2 column measurements

    Science.gov (United States)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. W.; Obland, Michael D.; Meadows, Byron

    2015-10-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  6. In-situ measurements of the onset of bulk exothermicity in shock initiation of reactive powder mixtures

    Science.gov (United States)

    Jetté, François-Xavier; Higgins, Andrew J.; Goroshin, Samuel; Frost, David L.; Charron-Tousignant, Yannick; Radulescu, Matei I.; Lee, Julian J.

    2011-04-01

    The shock initiation process was directly observed in different powder mixtures that produce little or no gas upon reaction. The samples of reactive powder were contained in recovery capsules that permitted the samples to be analyzed after being shocked and that allowed the initiation of reaction to be monitored using three different methods. The microsecond time-scale processes were observed via a fast two-color pyrometer. Light intensity detected from the bottom of reactive samples was slightly greater compared to inert simulants in the first 10 μs after shock arrival. However, this light was much less intense than that which would correspond to the bulk of the material reacting. Thus it seemed that only small, localized zones, or hot spots, had begun to react on a time scale of less than 30 μs. Light emissions were then recorded over longer time scales, and intense light appeared at the bottom of samples a few milliseconds to a few hundreds of milliseconds after shock arrival at the bottom of the test samples. Thus it appeared that the bulk of the material reacted as the hot spots spread via convective/diffusive means. This bulk reaction was also observed using thermocouples for a large number of mixtures and incident shock pressures. The delay time for the onset of bulk reaction was found to be not strongly dependent upon shock pressure but seemed to correlate with the burning speed of the mixtures. The shock initiation process appeared to take place via the initiation and growth of hot spots, as in high explosives, except that burning speeds are much slower in reactive powders that produce little gas.

  7. Using highly sensitive C-reactive protein measurement to diagnose MODY in a family with suspected type 2 diabetes

    OpenAIRE

    Besser, Rachel E. J.; Jones, Jackie; McDonald, Timothy J; Smith, Rebecca; Shepherd, Maggie H; Hattersley, Andrew T

    2012-01-01

    The authors report an adolescent who was found to have diabetes on routine blood testing. The initial diagnosis was type 2 diabetes because she was obese, did not have type 1 diabetes antibodies and both parents had diabetes. Highly sensitive C-reactive protein (hsCRP) was low in the proband and her father (≤0.1 mg/l) indicating that type 2 diabetes was unlikely, and that hepatocyte nuclear factor 1-α-maturity onset diabetes of the young (HNF1A-MODY) was the most likely diagnosis. Following a...

  8. Functional connectivity measures as schizophrenia intermediate phenotypes: advances, limitations, and future directions.

    Science.gov (United States)

    Cao, Hengyi; Dixson, Luanna; Meyer-Lindenberg, Andreas; Tost, Heike

    2016-02-01

    The search for quantifiable biological mediators of genetic risk or 'intermediate phenotypes' is an essential strategy in psychiatric neuroscience and a useful tool for exploring the complex relationships between genes, neural circuits and behaviors. In recent years, the examination of connectivity-based intermediate phenotypes has gained increasing popularity in the study of schizophrenia, a brain disorder that manifests in early adulthood and disturbs a wide range of neural network functions. To date, several potential connectivity phenotypes have been identified that link neuroimaging measures of neural circuit interaction to genetic susceptibility for schizophrenia. This paper briefly reviews recent advances, current limitations and future directions in the search for functional connectivity intermediate phenotypes for schizophrenia across different cognitive domains. PMID:26276700

  9. Precise Nuclear Data Measurements Possible with the NIFFTE fissionTPC for Advanced Reactor Designs

    Science.gov (United States)

    Towell, Rusty; Niffte Collaboration

    2015-10-01

    The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) Collaboration has applied the proven technology of Time Projection Chambers (TPC) to the task of precisely measuring fission cross sections. With the NIFFTE fission TPC, precise measurements have been made during the last year at the Los Alamos Neutron Science Center from both U-235 and Pu-239 targets. The exquisite tracking capabilities of this device allow the full reconstruction of charged particles produced by neutron beam induced fissions from a thin central target. The wealth of information gained from this approach will allow systematics to be controlled at the level of 1%. The fissionTPC performance will be presented. These results are critical to the development of advanced uranium-fueled reactors. However, there are clear advantages to developing thorium-fueled reactors such as Liquid Fluoride Thorium Reactors over uranium-fueled reactors. These advantages include improved reactor safety, minimizing radioactive waste, improved reactor efficiency, and enhanced proliferation resistance. The potential for using the fissionTPC to measure needed cross sections important to the development of thorium-fueled reactors will also be discussed.

  10. Advancement of an Infra-Red Technique for Whole-Field Concentration Measurements in Fluidized Beds.

    Science.gov (United States)

    Medrano, Jose A; de Nooijer, Niek C A; Gallucci, Fausto; van Sint Annaland, Martin

    2016-01-01

    For a better understanding and description of the mass transport phenomena in dense multiphase gas-solids systems such as fluidized bed reactors, detailed and quantitative experimental data on the concentration profiles is required, which demands advanced non-invasive concentration monitoring techniques with a high spatial and temporal resolution. A novel technique based on the selective detection of a gas component in a gas mixture using infra-red properties has been further developed. The first stage development was carried out using a very small sapphire reactor and CO₂ as tracer gas. Although the measuring principle was demonstrated, the real application was hindered by the small reactor dimensions related to the high costs and difficult handling of large sapphire plates. In this study, a new system has been developed, that allows working at much larger scales and yet with higher resolution. In the new system, propane is used as tracer gas and quartz as reactor material. In this study, a thorough optimization and calibration of the technique is presented which is subsequently applied for whole-field measurements with high temporal resolution. The developed technique allows the use of a relatively inexpensive configuration for the measurement of detailed concentration fields and can be applied to a large variety of important chemical engineering topics. PMID:26927127

  11. Reactive Arthritis

    Directory of Open Access Journals (Sweden)

    Eren Erken

    2013-06-01

    Full Text Available Reactive arthritis is an acute, sterile, non-suppurative and inflammatory arthropaty which has occured as a result of an infectious processes, mostly after gastrointestinal and genitourinary tract infections. Reiter syndrome is a frequent type of reactive arthritis. Both reactive arthritis and Reiter syndrome belong to the group of seronegative spondyloarthropathies, associated with HLA-B27 positivity and characterized by ongoing inflammation after an infectious episode. The classical triad of Reiter syndrome is defined as arthritis, conjuctivitis and urethritis and is seen only in one third of patients with Reiter syndrome. Recently, seronegative asymmetric arthritis and typical extraarticular involvement are thought to be adequate for the diagnosis. However, there is no established criteria for the diagnosis of reactive arthritis and the number of randomized and controlled studies about the therapy is not enough. [Archives Medical Review Journal 2013; 22(3.000: 283-299

  12. Integration of field measurements and reactive transport modelling to evaluate contaminant transport at a sulfide mine tailings impoundment

    Science.gov (United States)

    Brookfield, A. E.; Blowes, D. W.; Mayer, K. U.

    2006-11-01

    Over a decade of field observations including geochemical, mineralogical and hydrological information are available on the generation of acid mine drainage from the Pistol Dam region of the P-area of Inco's tailings impoundment in Copper Cliff, Ontario. This work focuses on the integration and quantitative assessment of this data set using reactive transport modeling. The results of the reactive transport simulations are in general agreement with the field observations; however, exact agreement between the field and simulated results was not the objective of this study, and was not attained. Many factors contribute to the discrepancies between the field observations and simulation results including geochemical and hydrogeological complexities and necessary model simplifications. For example, fluctuating water levels observed at the site were averaged and described using a steady state flow system. In addition, the lack of representative thermodynamic and rate expression data contributed to the discrepancies between observations and simulation results, thus further research into the applicability of laboratory-derived thermodynamic and rate expression data to field conditions could minimize these discrepancies. Despite the discrepancies between the field observations and simulated results, integrating field observations with numerical modelling of the P-area tailings impoundment allowed for a more complete understanding of what affects the complex geochemical reactions.

  13. Reactive Safety

    OpenAIRE

    Rüdiger Ehlers; Bernd Finkbeiner

    2011-01-01

    The distinction between safety and liveness properties is a fundamental classification with immediate implications on the feasibility and complexity of various monitoring, model checking, and synthesis problems. In this paper, we revisit the notion of safety for reactive systems, i.e., for systems whose behavior is characterized by the interplay of uncontrolled environment inputs and controlled system outputs. We show that reactive safety is a strictly larger class of properties than standard...

  14. 电网功率因数的测量及无功自动补偿控制%Power-factor measurement and reactive automitic compensation control

    Institute of Scientific and Technical Information of China (English)

    刘骏跃

    2001-01-01

    提出一种精度较高的功率因数测量方法。利用单片计算机实现对低压电网无功补偿电容器组的自动投切控制,可适用于各种负载、各类用户。%A high precision method of power-factor measurement is researched,and a reactive power compensation control system to low voltage network with capacitor bank is realized by sing-chip computer 8031.The controller apply to every user and every load.

  15. Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River, Alaska

    Science.gov (United States)

    Spencer, R.G.M.; Aiken, G.R.; Butler, K.D.; Dornblaser, M.M.; Striegl, R.G.; Hernes, P.J.

    2009-01-01

    The quality and quantity of dissolved organic matter (DOM) exported by Arctic rivers is known to vary with hydrology and this exported material plays a fundamental role in the biogeochemical cycling of carbon at high latitudes. We highlight the potential of optical measurements to examine DOM quality across the hydrograph in Arctic rivers. Furthermore, we establish chromophoric DOM (CDOM) relationships to dissolved organic carbon (DOC) and lignin phenols in the Yukon River and model DOC and lignin loads from CDOM measurements, the former in excellent agreement with long-term DOC monitoring data. Intensive sampling across the historically under-sampled spring flush period highlights the importance of this time for total export of DOC and particularly lignin. Calculated riverine DOC loads to the Arctic Ocean show an increase from previous estimates, especially when new higher discharge data are incorporated. Increased DOC loads indicate decreased residence times for terrigenous DOM in the Arctic Ocean with important implications for the reactivity and export of this material to the Atlantic Ocean. Citation: Spencer, R. G. M., G. R. Aiken, K. D. Butler, M. M. Dornblaser, R. G. Striegl, and P. J. Hernes (2009), Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River, Alaska, Geophys. Res. Lett., 36, L06401, doi:10.1029/ 2008GL036831. Copyright 2009 by the American Geophysical Union.

  16. A structured review of health utility measures and elicitation in advanced/metastatic breast cancer

    Directory of Open Access Journals (Sweden)

    Hao Y

    2016-06-01

    Full Text Available Yanni Hao,1 Verena Wolfram,2 Jennifer Cook2 1Novartis Pharmaceuticals, East Hanover, NJ, USA; 2Adelphi Values, Bollington, UK Background: Health utilities are increasingly incorporated in health economic evaluations. Different elicitation methods, direct and indirect, have been established in the past. This study examined the evidence on health utility elicitation previously reported in advanced/metastatic breast cancer and aimed to link these results to requirements of reimbursement bodies. Methods: Searches were conducted using a detailed search strategy across several electronic databases (MEDLINE, EMBASE, Cochrane Library, and EconLit databases, online sources (Cost-effectiveness Analysis Registry and the Health Economics Research Center, and web sites of health technology assessment (HTA bodies. Publications were selected based on the search strategy and the overall study objectives. Results: A total of 768 publications were identified in the searches, and 26 publications, comprising 18 journal articles and eight submissions to HTA bodies, were included in the evidence review. Most journal articles derived utilities from the European Quality of Life Five-Dimensions questionnaire (EQ-5D. Other utility measures, such as the direct methods standard gamble (SG, time trade-off (TTO, and visual analog scale (VAS, were less frequently used. Several studies described mapping algorithms to generate utilities from disease-specific health-related quality of life (HRQOL instruments such as European Organization for Research and Treatment of Cancer Quality of Life Questionnaire – Core 30 (EORTC QLQ-C30, European Organization for Research and Treatment of Cancer Quality of Life Questionnaire – Breast Cancer 23 (EORTC QLQ-BR23, Functional Assessment of Cancer Therapy – General questionnaire (FACT-G, and Utility-Based Questionnaire-Cancer (UBQ-C; most used EQ-5D as the reference. Sociodemographic factors that affect health utilities, such as age, sex

  17. EDITORIAL: Advances in Measurement Technology and Intelligent Instruments for Production Engineering

    Science.gov (United States)

    Gao, Wei; Takaya, Yasuhiro; Gao, Yongsheng; Krystek, Michael

    2008-08-01

    . Neuschaefer-Rube et al, also from PTB, present procedures and standards to test tactile and optical microsensors and micro-computed tomography systems, which are similar to the established tests for classical coordinate measuring machines and assess local and global sensor characteristics. The last three papers are related to micro/nano-metrology and intelligent instrumentation. Jiang et al from Tohoku University describe the fabrication of piezoresistive nanocantilevers for ultra-sensitive force detection by using spin-out diffusion, EB lithography and FAB etching, respectively. Y-C Liu et al from National Taiwan University develop an economical and highly sensitive optical accelerometer using a commercial optical pickup head. Michihata et al from Osaka University experimentally investigate the positioning sensing property and accuracy of a laser trapping probe for a nano-coordinate measuring machine. As guest editors, we believe that this special feature presents the newest information on advances in measurement technology and intelligent instruments from basic research to applied systems for Production Engineering. We would like to thank all the authors for their great contributions to this special feature and the referees for their careful reviews of the papers. We would also like to express our thanks and appreciation to Professor P Hauptmann, Editor-in-Chief of MST, for his kind offer to publish selected ISMTII 2007 papers in MST, and to the publishing staff of MST for their dedicated efforts that have made this special feature possible.

  18. Neutron measurements for advanced nuclear systems: The n{sub T}OF project at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Colonna, N., E-mail: nicola.colonna@ba.infn.it [Istituto Nazionale di Fisica Nucleare, Bari (Italy); Andriamonje, S. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Andrzejewski, J. [Uniwersytet Lodzki, Lodz (Poland); Audouin, L. [Centre National de la Recherche Scientifique/IN2P3, IPN, Orsay (France); Barbagallo, M. [Istituto Nazionale di Fisica Nucleare, Bari (Italy); Becares, V. [Centro de Investigaciones Energeticas Medioambientales y Technologicas (CIEMAT), Madrid (Spain); Becvar, F. [Charles University, Prague (Czech Republic); Belloni, F. [Commissariat a l' Energie Atomique (CEA) Saclay - Irfu, Gif-sur-Yvette (France); Berthier, B. [Centre National de la Recherche Scientifique/IN2P3, IPN, Orsay (France); Berthoumieux, E. [Commissariat a l' Energie Atomique (CEA) Saclay - Irfu, Gif-sur-Yvette (France); Brugger, M.; Calviani, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Calvino, F. [Universitat Politecnica de Catalunya, Barcelona (Spain); Cano-Ott, D. [Centro de Investigaciones Energeticas Medioambientales y Technologicas (CIEMAT), Madrid (Spain); Carrapico, C. [Instituto Tecnologico e Nuclear (ITN), Lisbon (Portugal); Cennini, P.; Cerutti, F.; Chiaveri, E.; Chin, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Cortes, G. [Universitat Politecnica de Catalunya, Barcelona (Spain); and others

    2011-12-15

    A few years ago, the neutron time-of-flight facility n{sub T}OF was built at CERN to address some of the urgent needs of high-accuracy nuclear data for Accelerator Driven Systems and other advanced nuclear energy systems, as well as for nuclear astrophysics and fundamental nuclear physics. Thanks to the characteristics of the neutron beam, and to state-of-the-art detection and acquisition systems, high quality neutron cross-section data have been obtained for a variety of isotopes, many of which radioactive. Following an important upgrade of the spallation target and of the experimental area, a new measurement campaign has started last year. After a brief review of the most important results obtained so far at n{sub T}OF, the new features of the facility are presented, together with the first results on the commissioning of the neutron beam. The plans for future measurements, in particular related to nuclear technology are finally discussed.

  19. Recent measurements with the NIFFTE fission TPC and the potential to advance thorium fuelled reactors

    International Nuclear Information System (INIS)

    The NIFFTE Fission Time Projection Chamber (TPC) is a powerful tool that is being developed to take precision measurements of neutron-induced fission cross sections of transuranic elements. These improved data are needed for many applications including the development of future generations of nuclear reactors. During the last run at the Los Alamos Neutron Science Center (LANSCE) the fully instrumented TPC took data with several different targets for the first time. The exquisite tracking capabilities of this device allow the full reconstruction of charged particles produced by neutron beam induced fissions from a thin central target. The wealth of information gained from this approach will allow cross section systematics to be controlled at the level of 1%. Results from this run will be shared. These results are critical to the development of advanced uranium-fuelled reactors. However, there are clear advantages to developing thorium-fuelled reactors including the abundance of thorium verses uranium, minimizing radioactive waste, improved reactor safety, and enhanced proliferation resistance. The potential for using the NIFFTE fission TPC to measure needed cross sections important to the development of thorium fuelled nuclear reactors will also be discussed. (author)

  20. 2-Micron Coherent Doppler Lidar Instrument Advancements for Tropospheric Wind Measurement

    Science.gov (United States)

    Petros, Mulugeta; Singh, U. N.; Yu, J.; Kavaya, M. J.; Koch, G.

    2014-01-01

    Knowledge derived from global tropospheric wind measurement is an important constituent of our overall understanding of climate behavior [1]. Accurate weather prediction saves lives and protects properties from destructions. High-energy 2-micron laser is the transmitter of choice for coherent Doppler wind detection. In addition to the eye-safety, the wavelength of the transmitter suitably matches the aerosol size in the lower troposphere. Although the technology of the 2-micron laser has been maturing steadily, lidar derived wind data is still a void in the global weather database. In the last decade, researchers at NASA Langley Research Center (LaRC) have been engaged in this endeavor, contributing to the scientific database of 2-micron lidar transmitters. As part of this effort, an in depth analysis of the physics involved in the workings of the Ho: Tm laser systems have been published. In the last few years, we have demonstrated lidar transmitter with over1Joule output energy. In addition, a large body of work has been done in characterizing new laser materials and unique crystal configurations to enhance the efficiency and output energy of the 2-micron laser systems. At present 2-micron lidar systems are measuring wind from both ground and airborne platforms. This paper will provide an overview of the advancements made in recent years and the technology maturity levels attained.

  1. Experiences with Some Methods for the Measurement of Reactivity, with Comments on the Applicability for On-Line Computers

    International Nuclear Information System (INIS)

    A short summary is given of some experiences obtained at Petten with reactor kinetics techniques, as far as they are concerned with the determination of reactivity. The following subjects are covered: the digital solution of the inverse kinetics equations, the pulsed source technique (especially a correction method for spatial modal shape), reactor noise analysis (information contained in noise, notably with regard to the prompt neutron decay constant; correlation function analysis; some neutron counter techniques). In connection with the future use of a small on-line computer for a new reactor physics experiment some comments are given on the. application of such a computer for an inverse kinetics program, for the Rossi-a-experiment, and for the determination of correlation functions (including the polarity correlation technique). (author)

  2. Advances in technologies for the measurement of uranium in diverse matrices.

    Science.gov (United States)

    Rathore, D P S

    2008-10-19

    An overview of the advances in technologies, which can be used in the field as well as in a laboratory for the measurement of uranium in diverse matrices like, waters, minerals, mineralized rocks, and other beneficiation products for its exploration and processing industries is presented. Laser based technologies, ion chromatography, microsample X-ray analysis method followed by energy dispersive X-ray fluorescence technique (MXA-EDXRF), sensors for electrochemical detection followed by cyclic voltammogram and alpha liquid scintillation counting techniques are the most promising techniques. Among these techniques, laser fluorimetry/spectrofluorimetry, in particular, is the technique of choice because of its high performance qualification (PQ), inherent sensitivity, simplicity, cost effectiveness, minimum generation of analytical waste, rapidity, easy calibration and operation. It also fulfills the basic essential requirements of reliability, applicability and practicability (RAPs) for the analysis of uranium in solution of diverse matrices in entire nuclear fuel cycle. A very extensive range of uranium concentrations may be covered. Laser fluorimetry is suitable for direct determination of uranium in natural water systems within the microg L(-1) and mg L(-1) range while differential technique in laser fluorimetry (DT-LIF) is suitable for mineralized rocks and concentrates independent of matrix effects (uranium in samples containing >0.01% uranium). The most interesting feature of TRLIF is its capability of performing speciation of complexes directly in solution as well as remote determination via fiber optics and optrode. Future trend and advances in lasers, miniaturization and automation via flow injection analysis (FIA) has been discussed. PMID:18804592

  3. Measurement of stray neutron doses around KEK PS-facility, (1)

    International Nuclear Information System (INIS)

    A very sensitive neutron detection system was made with use of a 5.8''-BF3 detector and equipped in the radiation monitoring car. Distribution of the stray neutron dose equivalent around the KEK Proton Synchrotron was surveyed and the characteristics of the propagation of the neutron dose equivalent due to the sky-shine effect was investigated. (auth.)

  4. Reactive arthritis.

    Science.gov (United States)

    Keat, A

    1999-01-01

    Reactive arthritis is one of the spondyloarthropathy family of clinical syndromes. The clinical features are those shared by other members of the spondyloarthritis family, though it is distinguished by a clear relationship with a precipitating infection. Susceptibility to reactive arthritis is closely linked with the class 1 HLA allele B27; it is likely that all sub-types pre-dispose to this condition. The link between HLA B27 and infection is mirrored by the development of arthritis in HLA B27-transgenic rats. In this model, arthritis does not develop in animals maintained in a germ-free environment. Infections of the gastrointestinal, genitourinary and respiratory tract appear to provoke reactive arthritis and a wide range of pathogens has now been implicated. Although mechanistic parallels may exist, reactive arthritis is distinguished from Lyme disease, rheumatic fever and Whipple's disease by virtue of the distinct clinical features and the link with HLA B27. As in these conditions both antigens and DNA of several micro-organisms have been detected in joint material from patients with reactive arthritis. The role of such disseminated microbial elements in the provocation or maintenance of arthritis remains unclear. HLA B27-restricted T-cell responses to microbial antigens have been demonstrated and these may be important in disease pathogenesis. The importance of dissemination of bacteria from sites of mucosal infection and their deposition in joints has yet to be fully understood. The role of antibiotic therapy in the treatment of reactive arthritis is being explored; in some circumstances, both the anti-inflammatory and anti-microbial effects of certain antibiotics appear to be valuable. The term reactive arthritis should be seen as a transitory one, reflecting a concept which may itself be on the verge of replacement, as our understanding of the condition develops. Nevertheless it appropriately describes arthritis that is associated with demonstrable

  5. Methodological considerations of electron spin resonance spin trapping techniques for measuring reactive oxygen species generated from metal oxide nanomaterials

    Science.gov (United States)

    Jeong, Min Sook; Yu, Kyeong-Nam; Chung, Hyun Hoon; Park, Soo Jin; Lee, Ah Young; Song, Mi Ryoung; Cho, Myung-Haing; Kim, Jun Sung

    2016-05-01

    Qualitative and quantitative analyses of reactive oxygen species (ROS) generated on the surfaces of nanomaterials are important for understanding their toxicity and toxic mechanisms, which are in turn beneficial for manufacturing more biocompatible nanomaterials in many industrial fields. Electron spin resonance (ESR) is a useful tool for detecting ROS formation. However, using this technique without first considering the physicochemical properties of nanomaterials and proper conditions of the spin trapping agent (such as incubation time) may lead to misinterpretation of the resulting data. In this report, we suggest methodological considerations for ESR as pertains to magnetism, sample preparation and proper incubation time with spin trapping agents. Based on our results, each spin trapping agent should be given the proper incubation time. For nanomaterials having magnetic properties, it is useful to remove these nanomaterials via centrifugation after reacting with spin trapping agents. Sonication for the purpose of sample dispersion and sample light exposure should be controlled during ESR in order to enhance the obtained ROS signal. This report will allow researchers to better design ESR spin trapping applications involving nanomaterials.

  6. A multiple metrics approach to prioritizing strategies for measuring and managing reactive nitrogen in the San Joaquin Valley of California

    Science.gov (United States)

    Horowitz, Ariel I.; Moomaw, William R.; Liptzin, Daniel; Gramig, Benjamin M.; Reeling, Carson; Meyer, Johanna; Hurley, Kathleen

    2016-06-01

    Human alteration of the nitrogen cycle exceeds the safe planetary boundary for the use of reactive nitrogen (Nr). We complement global analysis by analyzing regional mass flows and the relative consequences of multiple chemical forms of Nr as they ‘cascade’ through multiple environmental media. The goals of this paper are (1) to identify the amounts of Nr that flow through a specific nitrogen rich region, (2) develop multiple metrics to characterize and compare multiple forms of Nr and the different damages that they cause, and (3) to use these metrics to assess the most societally acceptable and cost effective means for addressing the many dimensions of Nr damage. This paper uses a multiple metrics approach that in addition to mass flows considers economic damage, health and mitigation costs and qualitative damages to evaluate options for mitigating Nr flows in California’s San Joaquin Valley (SJV). Most analysis focuses attention on agricultural Nr because it is the largest flow in terms of mass. In contrast, the multiple metrics approach identifies mobile source Nr emissions as creating the most economic and health damage in the SJV. Emissions of Nr from mobile sources are smaller than those from crop agriculture and dairy in the SJV, but the benefits of abatement are greater because of reduced health impacts from air pollution, and abatement costs are lower. Our findings illustrate the benefit of a comprehensive multiple metrics approach to Nr management.

  7. Requirements and Technology Advances for Global Wind Measurement with a Coherent Lidar: A Shrinking Gap

    Science.gov (United States)

    Kavaya, Michael J.; Kavaya, Michael J.; Yu, Jirong; Koch, Grady J.; Amzajerdian, Farzin; Singh, Upendra N.; Emmitt, G. David

    2007-01-01

    Early concepts to globally measure vertical profiles of vector horizontal wind from space planned on an orbit height of 525 km, a single pulsed coherent Doppler lidar system to cover the full troposphere, and a continuously rotating telescope/scanner that mandated a vertical line of sight wind profile from each laser shot. Under these conditions system studies found that laser pulse energies of approximately 20 J at 10 Hz pulse repetition rate with a rotating telescope diameter of approximately 1.5 m was required. Further requirements to use solid state laser technology and an eyesafe wavelength led to the relatively new 2-micron solid state laser. With demonstrated pulse energies near 20 mJ at 5 Hz, and no demonstration of a rotating telescope maintaining diffraction limited performance in space, the technology gap between requirements and demonstration was formidable. Fortunately the involved scientists and engineers set out to reduce the gap, and through a combination of clever ideas and technology advances over the last 15 years, they have succeeded. This paper will detail the gap reducing factors and will present the current status.

  8. Design and Laboratory Evaluation of Future Elongation and Diameter Measurements at the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    K. L. Davis; D. L. Knudson; J. L. Rempe; J. C. Crepeau; S. Solstad

    2015-07-01

    New materials are being considered for fuel, cladding, and structures in next generation and existing nuclear reactors. Such materials can undergo significant dimensional and physical changes during high temperature irradiations. In order to accurately predict these changes, real-time data must be obtained under prototypic irradiation conditions for model development and validation. To provide such data, researchers at the Idaho National Laboratory (INL) High Temperature Test Laboratory (HTTL) are developing several instrumented test rigs to obtain data real-time from specimens irradiated in well-controlled pressurized water reactor (PWR) coolant conditions in the Advanced Test Reactor (ATR). This paper reports the status of INL efforts to develop and evaluate prototype test rigs that rely on Linear Variable Differential Transformers (LVDTs) in laboratory settings. Although similar LVDT-based test rigs have been deployed in lower flux Materials Testing Reactors (MTRs), this effort is unique because it relies on robust LVDTs that can withstand higher temperatures and higher fluxes than often found in other MTR irradiations. Specifically, the test rigs are designed for detecting changes in length and diameter of specimens irradiated in ATR PWR loops. Once implemented, these test rigs will provide ATR users with unique capabilities that are sorely needed to obtain measurements such as elongation caused by thermal expansion and/or creep loading and diameter changes associated with fuel and cladding swelling, pellet-clad interaction, and crud buildup.

  9. Recent advances in real-time analysis of ionograms and ionospheric drift measurements with digisondes

    Science.gov (United States)

    Reinisch, B. W.; Huang, X.; Galkin, I. A.; Paznukhov, V.; Kozlov, A.

    2005-08-01

    Reliable long distance RF communication and transionospheric radio links depend critically on space weather, and specifically ionospheric conditions. Modern ground-based ionosondes provide space weather parameters in real-time including the vertical electron density distribution up to ˜1000 km and the velocity components of the ionospheric F region drift. A global network of digisondes distributes this information in real-time via internet connections. The quality of the automatic scaling of the echo traces in ionograms was a continuous concern ever since first attempts have been reported. The modern low-power ionosonde with ˜100 W transmitters (compared to several kilowatt for the older ionosondes) relies on more sophisticated signal processing to enhance the signal-to-noise ratio and to retrieve the essential ionospheric characteristics. Recent advances in the automatic scaling algorithm ARTIST have significantly increased the reliability of the autoscaled data, making the data, in combination with models, more useful for ionospheric now-casting. Vertical and horizontal F region drift velocities are a new real-time output of the digisondes. The “ionosonde drift” is derived from the measured Doppler frequency shift and angle of arrival of ionospherically reflected HF echoes, a method similar to that used by coherent VHF and incoherent scatter radars.

  10. OECD/CSNI specialist meeting on advanced instrumentation and measurements techniques: summary and conclusions

    International Nuclear Information System (INIS)

    This specialist meeting on Advanced Instrumentation and Measurements Techniques was held in Santa Barbara (USA) in 1997 and attracted some 70 participants in ten technical sessions and a session of the round table discussions, with a total of 41 papers. It was intended to bring together the international experts in multi-phase flow instrumentation, experiment and modeling to review the state-of-the-art of the two-phase flow instrumentation methods and to discuss the relation between modeling needs and instrumentation capabilities. The following topics were included: Modeling needs and future direction for improved constitutive relations, interfacial area transport equation, and multi-dimensional two-fluid model formulation; local instrumentation developments for void fraction, interfacial area, phase velocities, turbulence, entrainment, particle size, thermal non-equilibrium, shear stress, nucleation, condensation and boiling; global instrumentation developments for void fraction, mass flow, two-phase level, non-condensable concentration, flow regimes, low flow and break flow; relation between modeling needs and instrumentation capabilities, future directions for experiments focused on modeling needs and for instrumentation developments

  11. Characterization of geolocation accuracy of Suomi NPP Advanced Technology Microwave Sounder measurements

    Science.gov (United States)

    Han, Yang; Weng, Fuzhong; Zou, Xiaolei; Yang, Hu; Scott, Deron

    2016-05-01

    The Advanced Technology Microwave Sounder (ATMS) onboard Suomi National Polar-orbiting Partnership satellite has 22 channels at frequencies ranging from 23 to 183 GHz for probing the atmospheric temperature and moisture under all weather conditions. As part of the ATMS calibration and validation activities, the geolocation accuracy of ATMS data must be well characterized and documented. In this study, the coastline crossing method (CCM) and the land-sea fraction method (LFM) are utilized to characterize and quantify the ATMS geolocation accuracy. The CCM is based on the inflection points of the ATMS window channel measurements across the coastlines, whereas the LFM collocates the ATMS window channel data with high-resolution land-sea mask data sets. Since the ATMS measurements provide five pairs of latitude and longitude data for K, Ka, V, W, and G bands, respectively, the window channels 1, 2, 3, 16, and 17 from each of these five bands are chosen for assessing the overall geolocation accuracy. ATMS geolocation errors estimated from both methods are generally consistent from 40 cases in June 2014. The ATMS along-track (cross-track) errors at nadir are within ±4.2 km (±1.2 km) for K/Ka, ±2.6 km (±2.7 km) for V bands, and ±1.2 km (±0.6 km) at W and G bands, respectively. At the W band, the geolocation errors derived from both algorithms are probably less reliable due to a reduced contrast of brightness temperatures in coastal areas. These estimated ATMS along-track and cross-track geolocation errors are well within the uncertainty requirements for all bands.

  12. Measurement of gas bremsstrahlung from the insertion device beamlines of the advanced photon source

    International Nuclear Information System (INIS)

    High energy electron storage rings generate energetic bremsstrahlung photons through radiative interaction of the electrons (or positrons) with the residual gas molecules inside the storage ring. The resulting radiation exits at an average emittance angle of (m0c2/E) radian with respect to the electron beam path, where m0c2 is the rest mass of E the electron and E its kinetic energy. Thus, at straight sections of the storage rings, moving electrons will produce a narrow and intense monodirectional photon beam. At synchrotron radiation facilities, where beamlines are channeled out of the storage ring, a continuous gas bremsstrahlung spectrum, with a maximum energy of the electron beam, will be present. There are a number of compelling reasons that a measurement of the bremsstrahlung characteristics be conducted at the Advanced Photon Source (APS) storage ring. Although the number of residual gas molecules present in the storage ring at typical nTorr vacuum is low, because of the long straight paths of the electrons in the storage ring at APS, significant production of bremsstrahlung will be produced. This may pose a radiation hazard. It is then imperative that personnel be shielded from dose rates due to this radiation. There are not many measurements available for gas bremsstrahlung, especially for higher electron beam energies. The quantitative estimates of gas bremsstrahlung from storage rings as evaluated by Monte Carlo codes also have several uncertainties. They are in general calculated for air at atmospheric pressure, the results of which are then extrapolated to typical storage ring vacuum values (of the order of 10-9 Torr). Realistically, the actual pressure profile can vary inside the narrow vacuum chamber. Also, the actual chemical composition of the residual gas inside the storage ring is generally different from that of air

  13. Measurement of gas bremsstrahlung from the insertion device beamlines of the advanced photon source

    Energy Technology Data Exchange (ETDEWEB)

    Pisharody, M.; Job, P.K.; Magill, S. [and others

    1997-03-01

    High energy electron storage rings generate energetic bremsstrahlung photons through radiative interaction of the electrons (or positrons) with the residual gas molecules inside the storage ring. The resulting radiation exits at an average emittance angle of (m{sub 0}c{sub 2}/E) radian with respect to the electron beam path, where m{sub 0}c{sup 2} is the rest mass of E the electron and E its kinetic energy. Thus, at straight sections of the storage rings, moving electrons will produce a narrow and intense monodirectional photon beam. At synchrotron radiation facilities, where beamlines are channeled out of the storage ring, a continuous gas bremsstrahlung spectrum, with a maximum energy of the electron beam, will be present. There are a number of compelling reasons that a measurement of the bremsstrahlung characteristics be conducted at the Advanced Photon Source (APS) storage ring. Although the number of residual gas molecules present in the storage ring at typical nTorr vacuum is low, because of the long straight paths of the electrons in the storage ring at APS, significant production of bremsstrahlung will be produced. This may pose a radiation hazard. It is then imperative that personnel be shielded from dose rates due to this radiation. There are not many measurements available for gas bremsstrahlung, especially for higher electron beam energies. The quantitative estimates of gas bremsstrahlung from storage rings as evaluated by Monte Carlo codes also have several uncertainties. They are in general calculated for air at atmospheric pressure, the results of which are then extrapolated to typical storage ring vacuum values (of the order of 10{sup -9} Torr). Realistically, the actual pressure profile can vary inside the narrow vacuum chamber. Also, the actual chemical composition of the residual gas inside the storage ring is generally different from that of air.

  14. Multi-axial load application and DIC measurement of advanced composite beam deformation behavior

    Directory of Open Access Journals (Sweden)

    Berggreen C.

    2010-06-01

    Full Text Available For the validation of a new beam element formulation, a wide set of experimental data consisting of deformation patterns obtained for a number of specially designed composite beam elements, have been obtained. The composite materials applied in the beams consist of glass-fiber reinforced plastic with specially designed layup configurations promoting advanced coupling behavior. Furthermore, the beams are designed with different cross-section shapes. The data obtained from the experiments are also used in order to improve the general understanding related to practical implementation of mechanisms of elastic couplings due to anisotropic properties of composite materials. The knowledge gained from these experiments is therefore essential in order to facilitate an implementation of passive control in future large wind turbine blades. A test setup based on a four-column MTS servo-hydraulic testing machine with a maximum capacity of 100 kN was developed, see Figure 1. The setup allows installing and testing beams of different cross-sections applying load cases such as axial extension, shear force bending, pure bending in two principal directions as well as pure torsion, see Figure 2. In order to apply multi-axial loading, a load application system consisting of three hydraulic actuators were mounted in two planes using multi-axial servo-hydraulic control. The actuator setup consists of the main actuator on the servo-hydraulic test machine working in the vertical axis (depicted on Figure 1 placed at the testing machine crosshead and used for application of vertical forces to the specimens. Two extra actuators are placed in a horizontal plane on the T-slot table of the test machine in different positions in order to apply loading at the tip of the specimen in various configurations. In order to precisely characterize the global as well as surface deformations of the beam specimens tested, a combination of different measurement systems were used during

  15. Sunlight-Triggered Nanoparticle Synergy: Teamwork of Reactive Oxygen Species and Nitric Oxide Released from Mesoporous Organosilica with Advanced Antibacterial Activity.

    Science.gov (United States)

    Gehring, Julia; Trepka, Bastian; Klinkenberg, Nele; Bronner, Hannah; Schleheck, David; Polarz, Sebastian

    2016-03-01

    Colonization of surfaces by microorganisms is an urging problem. In combination with the increasing antibiotic resistance of pathogenic bacteria, severe infections are reported more frequently in medical settings. Therefore, there is a large demand to explore innovative surface coatings that provide intrinsic and highly effective antibacterial activity. Materials containing silver nanoparticles have been developed in the past for this purpose, but this solution has come into criticism due to various disadvantages like notable toxicity against higher organisms, the high price, and low abundance of silver. Here, we introduce a new, sunlight-mediated organosilica nanoparticle (NP) system based on silver-free antibacterial activity. The simultaneous release of nitric oxide (NO) in combination with singlet oxygen and superoxide radicals (O2(•-)) as reactive oxygen species (ROS) leads to the emergence of highly reactive peroxynitrite molecules with significantly enhanced biocidal activity. This special cooperative effect can only be realized, if the ROS-producing moieties and the functional entities releasing NO are spatially separated from each other. In one type of particle, Rose Bengal as an efficient singlet oxygen ((1)O2) producer was covalently bound to SH functionalities applying thiol-ene click chemistry. "Charging" the second type of particles with NO was realized by quantitatively transferring the thiol groups into S-nitrosothiol functionalities. We probed the oxidation power of ROS-NP alone and in combination with NO-NP using sunlight as a trigger. The high antibacterial efficiency of dual-action nanoparticles was demonstrated using disinfection assays with the pathogenic bacterium Pseudomonas aeruginosa. PMID:26883897

  16. Validation of multigroup neutron cross sections for the Advanced Neutron Source against the FOEHN critical experimental measurements

    International Nuclear Information System (INIS)

    The FOEHN critical experiments were analyzed to validate the use of multigroup cross sections in the design of the Advanced Neutron Source. Eleven critical configurations were evaluated using the KENO, DORT, and VENTURE neutronics codes. Eigenvalue and power density profiles were computed and show very good agreement with measured values

  17. Surface Renewal: An Advanced Micrometeorological Method for Measuring and Processing Field-Scale Energy Flux Density Data

    OpenAIRE

    McElrone, Andrew J.; Shapland, Thomas M.; Calderon, Arturo; Fitzmaurice, Li; Paw U, Kyaw Tha; Snyder, Richard L.

    2013-01-01

    Advanced micrometeorological methods have become increasingly important in soil, crop, and environmental sciences. For many scientists without formal training in atmospheric science, these techniques are relatively inaccessible. Surface renewal and other flux measurement methods require an understanding of boundary layer meteorology and extensive training in instrumentation and multiple data management programs. To improve accessibility of these techniques, we describe the underlying theory o...

  18. Reactive Systems

    DEFF Research Database (Denmark)

    Aceto, Luca; Ingolfsdottir, Anna; Larsen, Kim Guldstrand;

    A reactive system comprises networks of computing components, achieving their goals through interaction among themselves and their environment. Thus even relatively small systems may exhibit unexpectedly complex behaviours. As moreover reactive systems are often used in safety critical systems......, the need for mathematically based formal methodology is increasingly important. There are many books that look at particular methodologies for such systems. This book offers a more balanced introduction for graduate students and describes the various approaches, their strengths and weaknesses, and when...... they are best used. Milner's CCS and its operational semantics are introduced, together with the notions of behavioural equivalences based on bisimulation techniques and with recursive extensions of Hennessy-Milner logic. In the second part of the book, the presented theories are extended to take timing issues...

  19. Study of the reactivity of pure minerals in presence of CO2 at the supercritical state. Measurement of the portlandite carbonation kinetics

    International Nuclear Information System (INIS)

    The efficiency on the long term of CO2 geological storage will rely on trapping mechanisms and good sealing properties of the cap rock and the eventual access wells. A series of experiments has been devised to observe and quantify the reactivity of portlandite with supercritical CO2. The portlandite has been chosen as a key component of calcium-rich cement for its interest in borehole cement degradation. Initial carbonation rates have been measured under different conditions: pressure 160 bar, temperatures 80, 120, and 200 C and with various amount of water. SEM observations show that the reacting fluid state (absence or presence of liquid phase) controls strongly the carbonation behaviour and the reaction path. A specific geochemical model has been developed in order to account for the particular conditions of our experiments. These results (portlandite carbonation rate and water-poor geochemical system modelling techniques) should be useful to simulate well-bore cement degradation. (author)

  20. Comparison of OH concentration measurements by DOAS and LIF during SAPHIR chamber experiments at high OH reactivity and low NO concentration

    Science.gov (United States)

    Fuchs, H.; Dorn, H.-P.; Bachner, M.; Bohn, B.; Brauers, T.; Gomm, S.; Hofzumahaus, A.; Holland, F.; Nehr, S.; Rohrer, F.; Tillmann, R.; Wahner, A.

    2012-07-01

    During recent field campaigns, hydroxyl radical (OH) concentrations that were measured by laser-induced fluorescence (LIF) were up to a factor of ten larger than predicted by current chemical models for conditions of high OH reactivity and low NO concentration. These discrepancies, which were observed in forests and urban-influenced rural environments, are so far not entirely understood. In summer 2011, a series of experiments was carried out in the atmosphere simulation chamber SAPHIR in Jülich, Germany, in order to investigate the photochemical degradation of isoprene, methyl-vinyl ketone (MVK), methacrolein (MACR) and aromatic compounds by OH. Conditions were similar to those experienced during the PRIDE-PRD2006 campaign in the Pearl River Delta (PRD), China, in 2006, where a large difference between OH measurements and model predictions was found. During experiments in SAPHIR, OH was simultaneously detected by two independent instruments: LIF and differential optical absorption spectroscopy (DOAS). Because DOAS is an inherently calibration-free technique, DOAS measurements are regarded as a reference standard. The comparison of the two techniques was used to investigate potential artifacts in the LIF measurements for PRD-like conditions of OH reactivities of 10 to 30 s-1 and NO mixing ratios of 0.1 to 0.3 ppbv. The analysis of twenty experiment days shows good agreement. The linear regression of the combined data set (averaged to the DOAS time resolution, 2495 data points) yields a slope of 1.02 ± 0.01 with an intercept of (0.10 ± 0.03) × 106 cm-3 and a linear correlation coefficient of R2 = 0.86. This indicates that the sensitivity of the LIF instrument is well-defined by its calibration procedure. No hints for artifacts are observed for isoprene, MACR, and different aromatic compounds. LIF measurements were approximately 30-40% (median) larger than those by DOAS after MVK (20 ppbv) and toluene (90 ppbv) had been added. However, this discrepancy has a

  1. Comparison of OH concentration measurements by DOAS and LIF during SAPHIR chamber experiments at high OH reactivity and low NO concentration

    Directory of Open Access Journals (Sweden)

    H. Fuchs

    2012-07-01

    Full Text Available During recent field campaigns, hydroxyl radical (OH concentrations that were measured by laser-induced fluorescence (LIF were up to a factor of ten larger than predicted by current chemical models for conditions of high OH reactivity and low NO concentration. These discrepancies, which were observed in forests and urban-influenced rural environments, are so far not entirely understood. In summer 2011, a series of experiments was carried out in the atmosphere simulation chamber SAPHIR in Jülich, Germany, in order to investigate the photochemical degradation of isoprene, methyl-vinyl ketone (MVK, methacrolein (MACR and aromatic compounds by OH. Conditions were similar to those experienced during the PRIDE-PRD2006 campaign in the Pearl River Delta (PRD, China, in 2006, where a large difference between OH measurements and model predictions was found. During experiments in SAPHIR, OH was simultaneously detected by two independent instruments: LIF and differential optical absorption spectroscopy (DOAS. Because DOAS is an inherently calibration-free technique, DOAS measurements are regarded as a reference standard. The comparison of the two techniques was used to investigate potential artifacts in the LIF measurements for PRD-like conditions of OH reactivities of 10 to 30 s−1 and NO mixing ratios of 0.1 to 0.3 ppbv. The analysis of twenty experiment days shows good agreement. The linear regression of the combined data set (averaged to the DOAS time resolution, 2495 data points yields a slope of 1.02 ± 0.01 with an intercept of (0.10 ± 0.03 × 106 cm−3 and a linear correlation coefficient of R2 = 0.86. This indicates that the sensitivity of the LIF instrument is well-defined by its calibration procedure. No hints for artifacts are observed for isoprene, MACR, and different aromatic compounds. LIF measurements were approximately 30–40% (median larger than those by DOAS after MVK (20 ppbv and

  2. Digital reactivity meter

    International Nuclear Information System (INIS)

    Digital reactivity meters (DRM) are mostly used as measuring instruments, e.g. for calibration of control rods, and there are only a few cases of their incorporation into the control systems of the reactors. To move in this direction there is more development work needed. First of all, fast algorithms are needed for inverse kinetics equations to relieve the computer for more important tasks of reactor model solving in real time. The next problem, currently under investigation, is the incorporation of the reactor thermal-hydraulic model into the DRM so that it can be used in the power range. Such an extension of DHM allows presentation not only of the instantaneous reactivity of the system, but also the inserted reactivity can be estimated from the temperature reactivity feed-backs. One of the applications of this concept is the anomalous digital reactivity monitor (ADRN) as part of the reactor protection system. As a solution of the first problem, a fast algorithm for solving the inverse kinetics equations has been implemented in the off-line program RODCAL on CDC 1700 computer and tested for its accuracy by performing different control rod calibrations on the reactor TRIGA

  3. Direct measurement of the chemical reactivity of silicon electrodes with LiPF6-based battery electrolytes.

    Science.gov (United States)

    Veith, Gabriel M; Baggetto, Loïc; Sacci, Robert L; Unocic, Raymond R; Tenhaeff, Wyatt E; Browning, James F

    2014-03-21

    We report the first direct measurement of the extent of the spontaneous non-electrochemically driven reaction between a lithium ion battery electrode surface (Si) and a liquid electrolyte (1.2 M LiPF6-3 : 7 wt% ethylene carbonate : dimethyl carbonate). This layer is estimated to be 35 Å thick with a SLD of ∼ 4 × 10(-6) Å(-2) and likely originates from the consumption of the silicon surface. PMID:24513965

  4. Land Surface Microwave Emissivities Derived from AMSR-E and MODIS Measurements with Advanced Quality Control

    Science.gov (United States)

    Moncet, Jean-Luc; Liang, Pan; Galantowicz, John F.; Lipton, Alan E.; Uymin, Gennady; Prigent, Catherine; Grassotti, Christopher

    2011-01-01

    A microwave emissivity database has been developed with data from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and with ancillary land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the same Aqua spacecraft. The primary intended application of the database is to provide surface emissivity constraints in atmospheric and surface property retrieval or assimilation. An additional application is to serve as a dynamic indicator of land surface properties relevant to climate change monitoring. The precision of the emissivity data is estimated to be significantly better than in prior databases from other sensors due to the precise collocation with high-quality MODIS LST data and due to the quality control features of our data analysis system. The accuracy of the emissivities in deserts and semi-arid regions is enhanced by applying, in those regions, a version of the emissivity retrieval algorithm that accounts for the penetration of microwave radiation through dry soil with diurnally varying vertical temperature gradients. These results suggest that this penetration effect is more widespread and more significant to interpretation of passive microwave measurements than had been previously established. Emissivity coverage in areas where persistent cloudiness interferes with the availability of MODIS LST data is achieved using a classification-based method to spread emissivity data from less-cloudy areas that have similar microwave surface properties. Evaluations and analyses of the emissivity products over homogeneous snow-free areas are presented, including application to retrieval of soil temperature profiles. Spatial inhomogeneities are the largest in the vicinity of large water bodies due to the large water/land emissivity contrast and give rise to large apparent temporal variability in the retrieved emissivities when satellite footprint locations vary over time. This issue will be dealt with in the future by

  5. A structured review of health utility measures and elicitation in advanced/metastatic breast cancer

    Science.gov (United States)

    Hao, Yanni; Wolfram, Verena; Cook, Jennifer

    2016-01-01

    Background Health utilities are increasingly incorporated in health economic evaluations. Different elicitation methods, direct and indirect, have been established in the past. This study examined the evidence on health utility elicitation previously reported in advanced/metastatic breast cancer and aimed to link these results to requirements of reimbursement bodies. Methods Searches were conducted using a detailed search strategy across several electronic databases (MEDLINE, EMBASE, Cochrane Library, and EconLit databases), online sources (Cost-effectiveness Analysis Registry and the Health Economics Research Center), and web sites of health technology assessment (HTA) bodies. Publications were selected based on the search strategy and the overall study objectives. Results A total of 768 publications were identified in the searches, and 26 publications, comprising 18 journal articles and eight submissions to HTA bodies, were included in the evidence review. Most journal articles derived utilities from the European Quality of Life Five-Dimensions questionnaire (EQ-5D). Other utility measures, such as the direct methods standard gamble (SG), time trade-off (TTO), and visual analog scale (VAS), were less frequently used. Several studies described mapping algorithms to generate utilities from disease-specific health-related quality of life (HRQOL) instruments such as European Organization for Research and Treatment of Cancer Quality of Life Questionnaire – Core 30 (EORTC QLQ-C30), European Organization for Research and Treatment of Cancer Quality of Life Questionnaire – Breast Cancer 23 (EORTC QLQ-BR23), Functional Assessment of Cancer Therapy – General questionnaire (FACT-G), and Utility-Based Questionnaire-Cancer (UBQ-C); most used EQ-5D as the reference. Sociodemographic factors that affect health utilities, such as age, sex, income, and education, as well as disease progression, choice of utility elicitation method, and country settings, were identified

  6. Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes

    Directory of Open Access Journals (Sweden)

    D. W. T. Griffith

    2012-09-01

    Full Text Available In October–November 2011 we measured trace gas emission factors from seven prescribed fires in South Carolina (SC, US, using two Fourier transform infrared spectrometer (FTIR systems and whole air sampling (WAS into canisters followed by gas-chromatographic analysis. A total of 97 trace gas species were quantified from both airborne and ground-based sampling platforms, making this one of the most detailed field studies of fire emissions to date. The measurements include the first emission factors for a suite of monoterpenes produced by heating vegetative fuels during field fires. The first quantitative FTIR observations of limonene in smoke are reported along with an expanded suite of monoterpenes measured by WAS including α-pinene, β-pinene, limonene, camphene, 4-carene, and myrcene. The known chemistry of the monoterpenes and their measured abundance of 0.4–27.9% of non-methane organic compounds (NMOCs and ~21% of organic aerosol (mass basis suggests that they impacted secondary formation of ozone (O3, aerosols, and small organic trace gases such as methanol and formaldehyde in the sampled plumes in first few hours after emission. The variability in the initial terpene emissions in the SC fire plumes was high and, in general, the speciation of the initially emitted gas-phase NMOCs was 13–195% different from that observed in a similar study in nominally similar pine forests in North Carolina ~20 months earlier. It is likely that differences in stand structure and environmental conditions contributed to the high variability observed within and between these studies. Similar factors may explain much of the variability in initial emissions in the literature. The ΔHCN/ΔCO emission ratio, however, was found to be fairly consistent with previous airborne fire measurements in other coniferous-dominated ecosystems, with the mean for these studies being 0.90 ± 0.06%, further confirming the value of HCN as a biomass burning tracer. The SC

  7. Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes

    Directory of Open Access Journals (Sweden)

    D. W. T. Griffith

    2013-02-01

    Full Text Available In October–November 2011 we measured trace gas emission factors from seven prescribed fires in South Carolina (SC, US, using two Fourier transform infrared spectrometer (FTIR systems and whole air sampling (WAS into canisters followed by gas-chromatographic analysis. A total of 97 trace gas species were quantified from both airborne and ground-based sampling platforms, making this one of the most detailed field studies of fire emissions to date. The measurements include the first emission factors for a suite of monoterpenes produced by heating vegetative fuels during field fires. The first quantitative FTIR observations of limonene in smoke are reported along with an expanded suite of monoterpenes measured by WAS including α-pinene, β-pinene, limonene, camphene, 4-carene, and myrcene. The known chemistry of the monoterpenes and their measured abundance of 0.4–27.9% of non-methane organic compounds (NMOCs and ~ 21% of organic aerosol (mass basis suggests that they impacted secondary formation of ozone (O3, aerosols, and small organic trace gases such as methanol and formaldehyde in the sampled plumes in the first few hours after emission. The variability in the initial terpene emissions in the SC fire plumes was high and, in general, the speciation of the initially emitted gas-phase NMOCs was 13–195% different from that observed in a similar study in nominally similar pine forests in North Carolina ~ 20 months earlier. It is likely that differences in stand structure and environmental conditions contributed to the high variability observed within and between these studies. Similar factors may explain much of the variability in initial emissions in the literature. The ΔHCN/ΔCO emission ratio, however, was found to be fairly consistent with previous airborne fire measurements in other coniferous-dominated ecosystems, with the mean for these studies being 0.90 ± 0.06%, further confirming the value of HCN as a biomass burning tracer. The

  8. Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes

    Science.gov (United States)

    Akagi, S. K.; Yokelson, R. J.; Burling, I. R.; Meinardi, S.; Simpson, I.; Blake, D. R.; McMeeking, G. R.; Sullivan, A.; Lee, T.; Kreidenweis, S.; Urbanski, S.; Reardon, J.; Griffith, D. W. T.; Johnson, T. J.; Weise, D. R.

    2013-02-01

    In October-November 2011 we measured trace gas emission factors from seven prescribed fires in South Carolina (SC), US, using two Fourier transform infrared spectrometer (FTIR) systems and whole air sampling (WAS) into canisters followed by gas-chromatographic analysis. A total of 97 trace gas species were quantified from both airborne and ground-based sampling platforms, making this one of the most detailed field studies of fire emissions to date. The measurements include the first emission factors for a suite of monoterpenes produced by heating vegetative fuels during field fires. The first quantitative FTIR observations of limonene in smoke are reported along with an expanded suite of monoterpenes measured by WAS including α-pinene, β-pinene, limonene, camphene, 4-carene, and myrcene. The known chemistry of the monoterpenes and their measured abundance of 0.4-27.9% of non-methane organic compounds (NMOCs) and ~ 21% of organic aerosol (mass basis) suggests that they impacted secondary formation of ozone (O3), aerosols, and small organic trace gases such as methanol and formaldehyde in the sampled plumes in the first few hours after emission. The variability in the initial terpene emissions in the SC fire plumes was high and, in general, the speciation of the initially emitted gas-phase NMOCs was 13-195% different from that observed in a similar study in nominally similar pine forests in North Carolina ~ 20 months earlier. It is likely that differences in stand structure and environmental conditions contributed to the high variability observed within and between these studies. Similar factors may explain much of the variability in initial emissions in the literature. The ΔHCN/ΔCO emission ratio, however, was found to be fairly consistent with previous airborne fire measurements in other coniferous-dominated ecosystems, with the mean for these studies being 0.90 ± 0.06%, further confirming the value of HCN as a biomass burning tracer. The SC results also

  9. In-situ measurements of total reactive nitrogen, total water vapor, and aerosols in polar stratospheric clouds in the Antarctic stratosphere

    Science.gov (United States)

    Fahey, D. W.; Kelly, K. K.; Ferry, G. V.; Poole, L. R.; Wilson, J. C.; Murphy, D. M.; Chan, K. Roland

    1988-01-01

    Measurements of total reactive nitrogen, NOy, total water vapor, and aerosols were made as part of the Airborne Antarctic Ozone Experiment. The measurements were made using instruments located onboard the NASA ER-2 aircrafts which conducted twelve flights over the Antarctic continent reaching altitudes of 18 km at 72 S latitude. Each instrument utilized an ambient air sample and provided a measurement up to 1 Hz or every 200 m of flight path. The data presented focus on the flights of Aug. 17th and 18th during which Polar Stratospheric Clouds (PSCs) were encountered containing concentrations of 0.5 to 1.0 micron diameter aerosols greater than 1 cm/cu. The temperature pressure during these events ranged as low as 184 K near 75 mb pressure, with water values near 3.5 ppm by volume (ppmv). With the exception of two short periods, the PSC activity was observed at temperatures above the frost point of water over ice. The data gathered during these flights are analyzed and presented.

  10. Simulated Performance of the Integrated Passive Neutron Albedo Reactivity and Self-Interrogation Neutron Resonance Densitometry Detector Designed for Spent Fuel Measurement at the Fugen Reactor in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Ulrich, Timothy J. II [Los Alamos National Laboratory; Lafleur, Adrienne M. [Los Alamos National Laboratory; Menlove, Howard O. [Los Alamos National Laboratory; Swinhoe, Martyn T. [Los Alamos National Laboratory; Tobin, Stephen J. [Los Alamos National Laboratory; Seya, Michio [Los Alamos National Laboratory; Bolind, Alan M. [Los Alamos National Laboratory

    2012-07-16

    An integrated nondestructive assay instrument, which combined the Passive Neutron Albedo Reactivity (PNAR) and the Self-Interrogation Neutron Resonance Densitometry (SINRD) techniques, is the research focus for a collaborative effort between Los Alamos National Laboratory (LANL) and the Japanese Atomic Energy Agency as part of the Next Generation Safeguard Initiative. We will quantify the anticipated performance of this experimental system in two physical environments: (1) At LANL we will measure fresh Low Enriched Uranium (LEU) assemblies for which the average enrichment can be varied from 0.2% to 3.2% and for which Gd laced rods will be included. (2) At Fugen we will measure spent Mixed Oxide (MOX-B) and LEU spent fuel assemblies from the heavy water moderated Fugen reactor. The MOX-B assemblies will vary in burnup from {approx}3 GWd/tHM to {approx}20 GWd/tHM while the LEU assemblies ({approx}1.9% initial enrichment) will vary from {approx}2 GWd/tHM to {approx}7 GWd/tHM. The estimated count rates will be calculated using MCNPX. These preliminary results will help the finalization of the hardware design and also serve a guide for the experiment. The hardware of the detector is expected to be fabricated in 2012 with measurements expected to take place in 2012 and 2013. This work is supported by the Next Generation Safeguards Initiative, Office of Nuclear Safeguards and Security, National Nuclear Security Administration.

  11. What Is Reactive Arthritis?

    Science.gov (United States)

    ... Arthritis PDF Version Size: 69 KB November 2014 What is Reactive Arthritis? Fast Facts: An Easy-to- ... Information About Reactive Arthritis and Other Related Conditions What Causes Reactive Arthritis? Sometimes, reactive arthritis is set ...

  12. Flow field velocity measurements for non-isothermal systems. [of chemically reactive flow inside fused silica CVD reactor vessels

    Science.gov (United States)

    Johnson, E. J.; Hyer, P. V.; Culotta, P. W.; Clark, I. O.

    1991-01-01

    Experimental techniques which can be potentially utilized to measure the gas velocity fields in nonisothermal CVD systems both in ground-based and space-based investigations are considered. The advantages and disadvantages of a three-component laser velocimetry (LV) system that was adapted specifically for quantitative determination of the mixed convective flows in a chamber for crystal growth and film formation by CVD are discussed. Data from a horizontal research CVD reactor indicate that current models for the effects of thermophoretic force are not adequate to predict the thermophoretic bias in arbitrary flow configurations. It is concluded that LV techniques are capable of characterizing the fluid dynamics of a CVD reactor at typical growth temperatures. Thermal effects are shown to dominate and stabilize the fluid dynamics of the reactor. Heating of the susceptor increases the gas velocities parallel to the face of a slanted susceptor by up to a factor of five.

  13. Measures of improvement MUVoT, a Blended Learning course on the topic of Measurement Uncertainty for advanced Vocational Training

    OpenAIRE

    Groschl, Andreas; Gotz, Jurgen; Loderer, Andreas; Bills, Paul J.; Hausotte, Tino

    2015-01-01

    In verifying the tolerance specification and identifying the zone of conformity of a particular component an adequate determination of the task-related measurement uncertainty relevant to the utilized measurement method is required, in accordance with part one of the standard “Geometrical Product Specifications” as well as with the “Guide to the Expression of Uncertainty in Measurement”. Although, measurement uncertainty is a central subject in the field of metrology and is certainly consider...

  14. Understanding Fluorescence Measurements through a Guided-Inquiry and Discovery Experiment in Advanced Analytical Laboratory

    Science.gov (United States)

    Wilczek-Vera, Grazyna; Salin, Eric Dunbar

    2011-01-01

    An experiment on fluorescence spectroscopy suitable for an advanced analytical laboratory is presented. Its conceptual development used a combination of the expository and discovery styles. The "learn-as-you-go" and direct "hands-on" methodology applied ensures an active role for a student in the process of visualization and discovery of concepts.…

  15. Boon or bane of advance tax rulings as a measure to mitigate tax uncertainty and foster investment

    OpenAIRE

    Diller, Markus; Kortebusch, Pia; Schneider, Georg; Sureth, Caren

    2015-01-01

    Tax uncertainty often negatively affects investment. Advance tax rulings (ATRs) are commonly used as a measure to provide tax certainty. Rulings are currently controversially discussed in the context of tax planning activities of multinational firms (Luxembourg Leaks). We analyze ATRs as tax uncertainty shields from both the taxpayers' and the tax authorities' perspectives. In general, tax authorities charge ATR fees and investors request ATRs provided the fee does not exceed a certain thresh...

  16. Development of a three dimensional homogeneous calculation model for the BFS-62 critical experiment. Preparation of adjusted equivalent measured values for sodium void reactivity values. Final report

    International Nuclear Information System (INIS)

    The BFS-62 critical experiments are currently used as 'benchmark' for verification of IPPE codes and nuclear data, which have been used in the study of loading a significant amount of Pu in fast reactors. The BFS-62 experiments have been performed at BFS-2 critical facility of IPPE (Obninsk). The experimental program has been arranged in such a way that the effect of replacement of uranium dioxied blanket by the steel reflector as well as the effect of replacing UOX by MOX on the main characteristics of the reactor model was studied. Wide experimental program, including measurements of the criticality-keff, spectral indices, radial and axial fission rate distributions, control rod mock-up worth, sodium void reactivity effect SVRE and some other important nuclear physics parameters, was fulfilled in the core. Series of 4 BFS-62 critical assemblies have been designed for studying the changes in BN-600 reactor physics from existing state to hybrid core. All the assemblies are modeling the reactor state prior to refueling, i.e. with all control rod mock-ups withdrawn from the core. The following items are chosen for the analysis in this report: Description of the critical assembly BFS-62-3A as the 3rd assembly in a series of 4 BFS critical assemblies studying BN-600 reactor with MOX-UOX hybrid zone and steel reflector; Development of a 3D homogeneous calculation model for the BFS-62-3A critical experiment as the mock-up of BN-600 reactor with hybrid zone and steel reflector; Evaluation of measured nuclear physics parameters keff and SVRE (sodium void reactivity effect); Preparation of adjusted equivalent measured values for keff and SVRE. Main series of calculations are performed using 3D HEX-Z diffusion code TRIGEX in 26 groups, with the ABBN-93 cross-section set. In addition, precise calculations are made, in 299 groups and Ps-approximation in scattering, by Monte-Carlo code MMKKENO and discrete ordinate code TWODANT. All calculations are based on the common system

  17. A National Initiative to Advance School Mental Health Performance Measurement in the US

    Science.gov (United States)

    Connors, Elizabeth Halsted; Stephan, Sharon Hoover; Lever, Nancy; Ereshefsky, Sabrina; Mosby, Amanda; Bohnenkamp, Jill

    2016-01-01

    Standardized health performance measurement has increasingly become an imperative for assuring quality standards in national health care systems. As compared to somatic health performance measures, behavioral health performance measures are less developed. There currently is no national standardized performance measurement system for monitoring…

  18. Comparison of Quality Oncology Practice Initiative (QOPI) Measure Adherence Between Oncology Fellows, Advanced Practice Providers, and Attending Physicians.

    Science.gov (United States)

    Zhu, Jason; Zhang, Tian; Shah, Radhika; Kamal, Arif H; Kelley, Michael J

    2015-12-01

    Quality improvement measures are uniformly applied to all oncology providers, regardless of their roles. Little is known about differences in adherence to these measures between oncology fellows, advance practice providers (APP), and attending physicians. We investigated conformance across Quality Oncology Practice Initiative (QOPI) measures for oncology fellows, advance practice providers, and attending physicians at the Durham Veterans Affairs Medical Center (DVAMC). Using data collected from the Spring 2012 and 2013 QOPI cycles, we abstracted charts of patients and separated them based on their primary provider. Descriptive statistics and the chi-square test were calculated for each QOPI measure between fellows, advanced practice providers (APPs), and attending physicians. A total of 169 patients were reviewed. Of these, 31 patients had a fellow, 39 had an APP, and 99 had an attending as their primary oncology provider. Fellows and attending physicians performed similarly on 90 of 94 QOPI metrics. High-performing metrics included several core QOPI measures including documenting consent for chemotherapy, recommending adjuvant chemotherapy when appropriate, and prescribing serotonin antagonists when prescribing emetogenic chemotherapies. Low-performing metrics included documentation of treatment summary and taking action to address problems with emotional well-being by the second office visit. Attendings documented the plan for oral chemotherapy more often (92 vs. 63%, P=0.049). However, after the chart audit, we found that fellows actually documented the plan for oral chemotherapy 88% of the time (p=0.73). APPs and attendings performed similarly on 88 of 90 QOPI measures. The quality of oncology care tends to be similar between attendings and fellows overall; some of the significant differences do not remain significant after a second manual chart review, highlighting that the use of manual data collection for QOPI analysis is an imperfect system, and there may

  19. Advances in quantitative hepcidin measurements by time-of-flight mass spectrometry

    OpenAIRE

    Swinkels, D. W.; Girelli, D.; Laarakkers, C.; Kroot, J.; Campostrini, N.; Kemna, E.H.J.M.; Tjalsma, H.

    2008-01-01

    Assays for the detection of the iron regulatory hormone hepcidin in plasma or urine have not yet been widely available, whereas quantitative comparisons between hepcidin levels in these different matrices were thus far even impossible due to technical restrictions. To circumvent these limitations, we here describe several advances in time-of flight mass spectrometry (TOF MS), the most important of which concerned spiking of a synthetic hepcidin analogue as internal standard into serum and uri...

  20. In-flight Quality and Accuracy of Attitude Measurements from the CHAMP Advanced Stellar Compass

    DEFF Research Database (Denmark)

    Jørgensen, Peter Siegbjørn; Jørgensen, John Leif; Denver, Troelz;

    2005-01-01

    The German geo-observations satellite CHAMP carries highly accurate vector instruments. The orientation of these relative to the inertial reference frame is obtained using star trackers. These advanced stellar compasses (ASC) are fully autonomous units, which provide, in real time, the absolute...... with modeling external noise sources often arise. The special CHAMP configuration with two star tracker cameras mounted fixed together provides an excellent opportunity to determine the AIA in-flight using the inter boresight angle....

  1. Exchange of information by the introduction of the advanced measurement and control systems; Utveksling av informasjon ved innfoering av AMS

    Energy Technology Data Exchange (ETDEWEB)

    2010-05-15

    Data from the advanced measurement and control systems (in Norwegian: AMS) can provide significant new impacts to society, given that the relevant information from the systems made available to customers, utilities, power suppliers and any providers of other services. There are three types of information that is important: quality-assured data, raw data and general information. Quality assured data should be collected and sent out automatically weekly to third parties (power suppliers and independent providers of services) as soon as possible after they are assured, in a handy format. Raw data, ie current consumption (instant values), should be made available for electricity suppliers and independent third parties by sending the meter to the local receiver, or via measuring system. Raw data and functionality for control may also be useful for the network owner and / or system operator. The measurement system should be used to control if possible. Customers must be given access to raw data, either via the display, PC, TV or similar. If the system opens to control through measuring system, third parties should also be given the right to send the signal through the company's computer system. The advanced measurement and control systems can also provide the ability to send customer information, including so-called statutory information (prices, disconnection, etc.). In this context it should be considered whether it might be appropriate to offer customers the display or software to receive information. (AG)

  2. Final Report Full-Scale Test of DWPF Advanced Liquid-Level and Density Measurement Bubblers

    International Nuclear Information System (INIS)

    As requested by the Technical Task Request (1), a full-scale test was carried out on several different liquid-level measurement bubblers as recommended from previous testing (2). This final report incorporates photographic evidence (Appendix B) of the bubblers at different stages of testing, along with the preliminary results (Appendix C) which were previously reported (3), and instrument calibration data (Appendix D); while this report contains more detailed information than previously reported (3) the conclusions remain the same. The test was performed under highly prototypic conditions from November 26, 1996 to January 23, 1997 using the full-scale SRAT/SME tank test facilities located in the 672-T building at TNX. Two different types of advanced bubblers were subjected to approximately 58 days of slurry operation; 14 days of which the slurry was brought to boiling temperatures.The test showed that the large diameter tube bubbler (2.64 inches inside diameter) operated successfully throughout the2-month test by not plugging with the glass-frit ladened slurry which was maintained at a minimum temperature of 50 deg Cand several days of boiling temperatures. However, a weekly blow-down with air or water is recommended to minimize the slurry which builds up.The small diameter porous tube bubbler (0.62 inch inside diameter; water flow > 4 milliliters/hour = 1.5 gallons/day) operated successfully on a daily basis in the glass-frit ladened slurry which was maintained at a minimum temperature of 50 degrees C and several days of boiling temperatures. However, a daily blow-down with air, or air and water, is necessary to maintain accurate readings.For the small diameter porous tube bubbler (0.62 inch inside diameter; water flow > 4 milliliters/hour = 1.5 gallons/day) there were varying levels of success with the lower water-flow tubes and these tubes would have to be cleaned by blowing with air, or air and water, several times a day to maintain them plug free. This may be

  3. Final Report Full-Scale Test of DWPF Advanced Liquid-Level and Density Measurement Bubblers

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M.R. [Westinghouse Savannah River Company, AIKEN, SC (United States); Weeks, G.E.

    1999-07-01

    As requested by the Technical Task Request (1), a full-scale test was carried out on several different liquid-level measurement bubblers as recommended from previous testing (2). This final report incorporates photographic evidence (Appendix B) of the bubblers at different stages of testing, along with the preliminary results (Appendix C) which were previously reported (3), and instrument calibration data (Appendix D); while this report contains more detailed information than previously reported (3) the conclusions remain the same. The test was performed under highly prototypic conditions from November 26, 1996 to January 23, 1997 using the full-scale SRAT/SME tank test facilities located in the 672-T building at TNX. Two different types of advanced bubblers were subjected to approximately 58 days of slurry operation; 14 days of which the slurry was brought to boiling temperatures.The test showed that the large diameter tube bubbler (2.64 inches inside diameter) operated successfully throughout the2-month test by not plugging with the glass-frit ladened slurry which was maintained at a minimum temperature of 50 deg Cand several days of boiling temperatures. However, a weekly blow-down with air or water is recommended to minimize the slurry which builds up.The small diameter porous tube bubbler (0.62 inch inside diameter; water flow {gt} 4 milliliters/hour = 1.5 gallons/day) operated successfully on a daily basis in the glass-frit ladened slurry which was maintained at a minimum temperature of 50 degrees C and several days of boiling temperatures. However, a daily blow-down with air, or air and water, is necessary to maintain accurate readings.For the small diameter porous tube bubbler (0.62 inch inside diameter; water flow {gt} 4 milliliters/hour = 1.5 gallons/day) there were varying levels of success with the lower water-flow tubes and these tubes would have to be cleaned by blowing with air, or air and water, several times a day to maintain them plug free. This

  4. Advanced measurement systems based on digital processing techniques for superconducting LHC magnets

    CERN Document Server

    Masi, Alessandro; Cennamo, Felice

    The Large Hadron Collider (LHC), a particle accelerator aimed at exploring deeper into matter than ever before, is currently being constructed at CERN. Beam optics of the LHC, requires stringent control of the field quality of about 8400 superconducting magnets, including 1232 main dipoles and 360 main quadrupoles to assure the correct machine operation. The measurement challenges are various: accuracy on the field strength measurement up to 50 ppm, harmonics in the ppm range, measurement equipment robustness, low measurement times to characterize fast field phenomena. New magnetic measurement systems, principally based on analog solutions, have been developed at CERN to achieve these goals. This work proposes the introduction of digital technologies to improve measurement performance of three systems, aimed at different measurement target and characterized by different accuracy levels. The high accuracy measurement systems, based on rotating coils, exhibit high performance in static magnetic field. With vary...

  5. Lithographic measurement of EUV flare in the 0.3-NA Micro Exposure Tool optic at the Advanced Light Source

    International Nuclear Information System (INIS)

    The level of flare present in a 0.3-NA EUV optic (the MET optic) at the Advanced Light Source at Lawrence Berkeley National Laboratory is measured using a lithographic method. Photoresist behavior at high exposure doses makes analysis difficult. Flare measurement analysis under scanning electron microscopy (SEM) and optical microscopy is compared, and optical microscopy is found to be a more reliable technique. In addition, the measured results are compared with predictions based on surface roughness measurement of the MET optical elements. When the fields in the exposure matrix are spaced far enough apart to avoid influence from surrounding fields and the data is corrected for imperfect mask contrast and aerial image proximity effects, the results match predicted values quite well. The amount of flare present in this optic ranges from 4.7% for 2 (micro)m features to 6.8% for 500 nm features

  6. Advanced power cycling test for power module with on-line on-state VCE measurement

    DEFF Research Database (Denmark)

    Choi, Ui-min; Trintis, Ionut; Blaabjerg, Frede; Jørgensen, Søren; Svarre, Morten Liengaard

    Recent research has made an effort to improve the reliability of power electronic systems to comply with more stringent constraints on cost, safety, predicted lifetime and availability in many applications. For this, studies about failure mechanisms of power electronic components and lifetime...... estimation of power semiconductor devices and capacitors have been done. Accelerated power cycling test is one of the common tests to assess the power device module and develop the lifetime model considering the physics of failure. In this paper, a new advanced power cycling test setup is proposed for power...

  7. Measurement of Health Disparities, Health Inequities, and Social Determinants of Health to Support the Advancement of Health Equity.

    Science.gov (United States)

    Penman-Aguilar, Ana; Talih, Makram; Huang, David; Moonesinghe, Ramal; Bouye, Karen; Beckles, Gloria

    2016-01-01

    Reduction of health disparities and advancement of health equity in the United States require high-quality data indicative of where the nation stands vis-à-vis health equity, as well as proper analytic tools to facilitate accurate interpretation of these data. This article opens with an overview of health equity and social determinants of health. It then proposes a set of recommended practices in measurement of health disparities, health inequities, and social determinants of health at the national level to support the advancement of health equity, highlighting that (1) differences in health and its determinants that are associated with social position are important to assess; (2) social and structural determinants of health should be assessed and multiple levels of measurement should be considered; (3) the rationale for methodological choices made and measures chosen should be made explicit; (4) groups to be compared should be simultaneously classified by multiple social statuses; and (5) stakeholders and their communication needs can often be considered in the selection of analytic methods. Although much is understood about the role of social determinants of health in shaping the health of populations, researchers should continue to advance understanding of the pathways through which they operate on particular health outcomes. There is still much to learn and implement about how to measure health disparities, health inequities, and social determinants of health at the national level, and the challenges of health equity persist. We anticipate that the present discussion will contribute to the laying of a foundation for standard practice in the monitoring of national progress toward achievement of health equity. PMID:26599027

  8. Development of an automated sampling-analysis system for simultaneous measurement of reactive oxygen species (ROS) in gas and particle phases: GAC-ROS

    Science.gov (United States)

    Huang, Wei; Zhang, Yuanxun; Zhang, Yang; Zeng, Limin; Dong, Huabin; Huo, Peng; Fang, Dongqing; Schauer, James J.

    2016-06-01

    A novel online system, GAC-ROS, for simultaneous measurement of reactive oxygen species (ROS) in both gas and particle phases was developed based on 2‧,7‧-dichlorofluorescin (DCFH) assay to provide fast sampling and analysis of atmospheric ROS. The GAC-ROS, composed of a Gas and Aerosol Collector (GAC), a series of reaction and transportation systems, and a fluorescence detector, was tested for instrumental performance in laboratory. Results showed good performance with a favorable R2 value for the calibration curve (above 0.998), high penetration efficiencies of ROS (above 99.5%), and low detection limits (gas-phase ROS: 0.16 nmol H2O2 m-3; particle-phase ROS: 0.12 nmol H2O2 m-3). Laboratorial comparison between online and offline methods for particle-bound ROS showed significant loss of ROS due to the relatively long time off-line treatment. Field observations in Beijing found that concentrations of ROS in winter time were significantly higher than those observed in spring. Only a few weak positive correlations were found between ROS and some air pollutants, which reflects the complexities of ROS generation and transformation in atmosphere. This study was the first to simultaneously obtain concentrations of gas and particle-phase ROS using an online method. Consequently, it provides a powerful tool to characterize the oxidizing capacity of the atmosphere and the sources of the oxidizing capacity.

  9. Investigation of space-energy effects in the reactivity measurement by neutron noise with ex-core detectors in a reflected LWR

    International Nuclear Information System (INIS)

    Practical application of the zero-crossing correlation method for measuring slightly subcritical reactivities in a swimming pool reactor required the use of detector locations in the reflector zone near to the core boundary. Experimental investigations of neutron-noise cross-power spectra showed significant deviations from the point reactor model at higher frequencies (> 100 Hz). Nevertheless, the use of the point reactor model was found to be an useful approach in the analysis of the zero-crossing correlation method yielding results which agreed well with those obtained from the rod-drop method. The theoretical part of the work is concerned with a space-dependent model calculation in two-group diffusion theory to support the experimental findings. The model calculation can explain the trends observed in the neutron-noise spectra as well as the applicability of the point reactor model to the zero-crossing correlation method. To obtain better insight, the calculations have been extended to neutron-noise spectra when one or both detectors are located in the core zone. In the case of a large core and widely spaced detectors, with at least one detector in the core zone, a sink frequency appears in the spectra. This effect is well-known in coupled-core kinetics. (Auth.)

  10. Measurement of C-reactive protein and prostaglandin F2α metabolite concentrations in differentiation of canine pyometra and cystic endometrial hyperplasia/mucometra.

    Science.gov (United States)

    Enginler, S O; Ateş, A; Diren Sığırcı, B; Sontaş, B H; Sönmez, K; Karaçam, E; Ekici, H; Evkuran Dal, G; Gürel, A

    2014-08-01

    Canine pyometra is a dioestrus period disease in which systemic inflammatory response syndrome (SIRS) is a common outcome due to the response of the body to the bacterial infection. The purpose of this study was i) to differentiate canine pyometra and cystic endometrial hyperplasia (CEH)/mucometra by measuring serum C-reactive protein (CRP) and prostaglandin F2α metabolite (PGFM) concentrations in blood and ii) to compare serum concentrations of CRP and PGFM in bitches with a pathological uterus (pyometra or CEH/mucometra) to concentrations in bitches with a healthy uterus. Mean CRP concentrations were found significantly higher (p pyometra compared to those with CEH/mucometra or healthy uterus. However, no statistical difference could be detected between the groups for mean PGFM concentrations. Mean white blood cell count (WBC), alkaline phosphatase (ALP) and total protein concentrations were found significantly higher (p pyometra. Escherichia coli was the most frequently isolated microorganism from dogs with pyometra (64.3%). Edwardsiella spp. was detected in a single case of pyometra for the first time. In conclusion, our results demonstrate that serum CRP concentrations were increased in dogs with pyometra and thus we conclude that serum CRP concentration but not PGFM might be useful as a marker to differentiate a case of CEH/mucometra from pyometra in female dogs. To the authors' knowledge, this is the first report in which Edwardsiella spp. has been isolated in the canine uterus. PMID:24889379

  11. Measurement of sulphur-35 in the coolant gas of the Windscale Advanced Gas-Cooled Reactor

    International Nuclear Information System (INIS)

    Sulphur is an important element in some food chains and the release of radioactive sulphur to the environment must be closely controlled if the chemical form is such that it is available or potentially available for entering food chains. The presence of sulphur-35 in the coolant gas of the Windscale Advanced Gas-Cooled Reactor warranted a study to assess the quantity and chemical form of the radioactive sulphur in order to estimate the magnitude of the potential environmental hazard which might arise from the release of coolant gas from Civil Advanced Gas-Cooled Reactors. A combination of gas chromatographic and radiochemical analyses revealed carbonyl sulphide to be the only sulphur-35 compound present in the coolant gas of the Windscale Reactor. The concentration of carbonyl sulphide was found to lie in the range 40 to 100 x 10-9 parts by volume and the sulphur-35 specific activity was about 20 mCi per gramme. The analytical techniques are described in detail. The sulphur-35 appears to be derived from the sulphur and chlorine impurities in the graphite. A method for the preparation of carbonyl sulphide labelled with sulphur-35 is described. (author)

  12. Methods for measurement of reactive metabolites as a basis for cancer risk assessment: Application to 1,3-butadiene and isoprene

    International Nuclear Information System (INIS)

    1,3-Butadiene is a general air pollutant associated with combustion of organic matter and is also an extensively used monomer in polymer production. The cancer risk estimation of 1,3-butadiene is encumbered with large uncertainties. Extrapolation from tumour frequencies in long-term animal tests has led to a relatively high figure for the risk associated with 1,3-butadiene exposure. This is mainly based on observations of very high tumour incidences in butadiene-exposed mice, which in this respect are about 100 times more sensitive than rats. It has been hypothesized that a high cancer risk from 1,3-butadiene could be associated with its metabolism to the bifunctional 1,2:3,4-diepoxybutane (DEB) which, in comparison with monofunctional epoxides, 1,2-epoxy-3-butene (EB) and 1,2-epoxy-3,4-butanediol (EBdiol), is a highly effective mutagen, i.e. cancer initiator. Measurement of in vivo doses of DEB is therefore essential for the risk assessment of 1,3-butadiene. Reaction products with hemoglobin offer a possibility of measuring reactive metabolites in vivo. Hemoglobin adducts from EBdiol have in this study been measured with available methods, which are, however, not applicable to the bifunctional DEB, and method development was therefore needed. This work presents a procedure for measurement of a specific, ring-closed adduct, Pyr-Val, formed from the reaction of DEB with N-terminal valines in hemoglobin. It is based on LC-ESI-MS/MS analysis of the Pyr-modified N-terminal peptides enriched after trypsin digestion of globin. Mouse and rat could be compared regarding the metabolism of EB, DEB and EBdiol. From the data it was concluded that, in 1,3-butadiene exposure, about 60 times higher levels of DEB are formed in mice compared to rats. Estimates of in vivo doses in published cancer tests showed that carcinogenesis in mice is mainly due to DEB, whereas in rat, and possibly man, the monofunctional EBdiol is the predominant causative factor. Preliminarily, the cancer

  13. Advanced User Interface Generation in the Software Framework for Magnetic Measurements at CERN

    CERN Document Server

    Arpaia, P; La Commara, Giuseppe; Arpaia, Pasquale

    2010-01-01

    A model-based approach, the Model-View-Interactor Paradigm, for automatic generation of user interfaces in software frameworks for measurement systems is proposed. The Model-View-Interactor Paradigm is focused on the ``interaction{''} typical in a software framework for measurement applications: the final user interacts with the automatic measurement system executing a suitable high-level script previously written by a test engineer. According to the main design goal of frameworks, the proposed approach allows the user interfaces to be separated easily from the application logic for enhancing the flexibility and reusability of the software. As a practical case study, this approach has been applied to the flexible software framework for magnetic measurements at the European Organization for Nuclear research (CERN). In particular, experimental results about the scenario of permeability measurements are reported.

  14. A Tariff for Reactive Power

    Energy Technology Data Exchange (ETDEWEB)

    Kueck, John D [ORNL; Kirby, Brendan J [ORNL; Li, Fangxing [ORNL; Tufon, Christopher [Pacific Gas and Electric Company; Isemonger, Alan [California Independent System Operator

    2008-07-01

    Two kinds of power are required to operate an electric power system: real power, measured in watts, and reactive power, measured in volt-amperes reactive or VARs. Reactive power supply is one of a class of power system reliability services collectively known as ancillary services, and is essential for the reliable operation of the bulk power system. Reactive power flows when current leads or lags behind voltage. Typically, the current in a distribution system lags behind voltage because of inductive loads such as motors. Reactive power flow wastes energy and capacity and causes voltage droop. To correct lagging power flow, leading reactive power (current leading voltage) is supplied to bring the current into phase with voltage. When the current is in phase with voltage, there is a reduction in system losses, an increase in system capacity, and a rise in voltage. Reactive power can be supplied from either static or dynamic VAR sources. Static sources are typically transmission and distribution equipment, such as capacitors at substations, and their cost has historically been included in the revenue requirement of the transmission operator (TO), and recovered through cost-of-service rates. By contrast, dynamic sources are typically generators capable of producing variable levels of reactive power by automatically controlling the generator to regulate voltage. Transmission system devices such as synchronous condensers can also provide dynamic reactive power. A class of solid state devices (called flexible AC transmission system devices or FACTs) can provide dynamic reactive power. One specific device has the unfortunate name of static VAR compensator (SVC), where 'static' refers to the solid state nature of the device (it does not include rotating equipment) and not to the production of static reactive power. Dynamic sources at the distribution level, while more costly would be very useful in helping to regulate local voltage. Local voltage regulation would

  15. Measuring social support in patients with advanced medical illnesses: An analysis of the Duke–UNC Functional Social Support Questionnaire

    Science.gov (United States)

    SARACINO, REBECCA; KOLVA, ELISSA; ROSENFELD, BARRY; BREITBART, WILLIAM

    2016-01-01

    Objective To date, no measure of social support has been developed specifically for either palliative care or oncology settings. The present study examined the psychometric properties of the Duke–University of North Carolina Functional Social Support Questionnaire (DUFSS) in order to (1) assess the adequacy of the scale in the context of severe medical illness and (2) evaluate whether a brief subset of items might generate roughly comparable utility. Method The 14-item DUFSS was administered to 1,362 individuals with advanced cancer or AIDS. Classical test theory (CTT) and item response theory (IRT) analyses were utilized to develop an abbreviated version of the DUFSS that maintained adequate reliability and validity and might increase the feasibility of its administration in a palliative care setting. The reliability and concurrent validity of the DUFSS-5 were evaluated in a separate validation sample of patients with advanced cancer. Results Analyses generated a five-item version of the DUFSS (the DUFSS-5) that collapsed response levels into only three options, instead of five. Correlations between the DUFSS-5 and measures of depression, quality of life, and desire for hastened death, as well as regression models testing the main-effect and buffering models of social support, provided support for the utility of the DUFSS-5. Significance of results Both the DUFSS and the abbreviated DUFSS-5 appear to have adequate reliability and validity in this setting. Moreover, the DUFSS-5 represents a potentially important option for healthcare researchers, particularly for those working in palliative care settings where issues of patient burden are paramount. Such analyses are critical for advancing the development and refinement of psychosocial measures, but have often been neglected. PMID:25201170

  16. Advanced laboratory for testing plasma thrusters and Hall thruster measurement campaign

    Directory of Open Access Journals (Sweden)

    Szelecka Agnieszka

    2016-06-01

    Full Text Available Plasma engines are used for space propulsion as an alternative to chemical thrusters. Due to the high exhaust velocity of the propellant, they are more efficient for long-distance interplanetary space missions than their conventional counterparts. An advanced laboratory of plasma space propulsion (PlaNS at the Institute of Plasma Physics and Laser Microfusion (IPPLM specializes in designing and testing various electric propulsion devices. Inside of a special vacuum chamber with three performance pumps, an environment similar to the one that prevails in space is created. An innovative Micro Pulsed Plasma Thruster (LμPPT with liquid propellant was built at the laboratory. Now it is used to test the second prototype of Hall effect thruster (HET operating on krypton propellant. Meantime, an improved prototype of krypton Hall thruster is constructed.

  17. Development of an alternating integrator for magnetic measurements for experimental advanced superconducting tokamak.

    Science.gov (United States)

    Liu, D M; Wan, B N; Zhao, W Z; Shen, B; He, Y G; Chen, B; Huang, J; Liu, H Q

    2014-11-01

    A high-performance integrator is one of the key electronic devices for reliably controlling plasma in the experimental advanced superconducting tokamak for long pulse operation. We once designed an integrator system of real-time drift compensation, which has a low integration drift. However, it is not feasible for really continuous operations due to capacitive leakage error and nonlinearity error. To solve the above-mentioned problems, this paper presents a new alternating integrator. In the new integrator, the integrator system of real-time drift compensation is adopted as one integral cell while two such integral cells work alternately. To achieve the alternate function, a Field Programmable Gate Array built in the digitizer is utilized. The performance test shows that the developed integrator with the integration time constant of 20 ms has a low integration drift (<15 mV) for 1000 s. PMID:25430391

  18. Smart image sensors: an emerging key technology for advanced optical measurement and microsystems

    Science.gov (United States)

    Seitz, Peter

    1996-08-01

    Optical microsystems typically include photosensitive devices, analog preprocessing circuitry and digital signal processing electronics. The advances in semiconductor technology have made it possible today to integrate all photosensitive and electronical devices on one 'smart image sensor' or photo-ASIC (application-specific integrated circuits containing photosensitive elements). It is even possible to provide each 'smart pixel' with additional photoelectronic functionality, without compromising the fill factor substantially. This technological capability is the basis for advanced cameras and optical microsystems showing novel on-chip functionality: Single-chip cameras with on- chip analog-to-digital converters for less than $10 are advertised; image sensors have been developed including novel functionality such as real-time selectable pixel size and shape, the capability of performing arbitrary convolutions simultaneously with the exposure, as well as variable, programmable offset and sensitivity of the pixels leading to image sensors with a dynamic range exceeding 150 dB. Smart image sensors have been demonstrated offering synchronous detection and demodulation capabilities in each pixel (lock-in CCD), and conventional image sensors are combined with an on-chip digital processor for complete, single-chip image acquisition and processing systems. Technological problems of the monolithic integration of smart image sensors include offset non-uniformities, temperature variations of electronic properties, imperfect matching of circuit parameters, etc. These problems can often be overcome either by designing additional compensation circuitry or by providing digital correction routines. Where necessary for technological or economic reasons, smart image sensors can also be combined with or realized as hybrids, making use of commercially available electronic components. It is concluded that the possibilities offered by custom smart image sensors will influence the design

  19. A concept for quantitative NDA measurements of advanced reprocessing product materials

    International Nuclear Information System (INIS)

    As new reprocessing methods for spent nuclear fuel are developed, such as the uranium extraction (UREX) process, methods using nondestructive assay (NDA) techniques must also be developed to allow for quantitative measurements of product materials. Currently developed NDA techniques cannot directly quantify materials containing U, Np, Pu, and Am. This research investigates the ability to quantify these actinides in an oxide form using neutron multiplicity measurements. This technique assumes that the isotopic composition of the sample is known, either through gamma spectroscopy or other means. This measurement technique is based on performing three different neutron measurements and analyzing their neutron multiplicity response. The first is a passive measurement of the product material to determine the effective plutonium-240 (240Pueff) content, self multiplication (M), and alpha-neutron reaction rate (α). The second is an active, AmLi (α, n) source, measurement of the product material to determine the effective 235U content. The third is an active, AmB (α, n) source, measurement of the product material to determine the effective 237Np content. The quantity of Am in the sample can be determined from α. Simulated results using Monte Carlo N-Particle eXtended (MCNPX) version 2.6 will illustrate the viability of this technique and its practical limitations. (author)

  20. Optical diagnostics of gas-dynamic flows using advanced laser measurement techniques

    Science.gov (United States)

    Gross, K. P.

    1985-01-01

    Using laser-induced fluorescence to probe nitrogen flows seeded with small amounts of nitric oxide, simultaneous measurements of all three thermodynamic scalar quantities temperature, density, and pressure, were demonstrated in a supersonic turbulent boundary layer. Instrumental uncertainty is 1% for temperature and 2% for density and pressure, making the techniques suitable for measurements of turbulent fluctuations. This technology is currently being transferred to an experimental program designed to use these optical techniques in conjunction with traditional methods to make measurements in turbulent flowfields that were not possible before. A detailed descritpion of the research progress and pertinent results are presented.

  1. Advances in the simulation and automated measurement of well-sorted granular material: 2. Direct measures of particle properties

    Science.gov (United States)

    Buscombe, Daniel D.; Rubin, David M.

    2012-01-01

    1. In this, the second of a pair of papers on the structure of well-sorted natural granular material (sediment), new methods are described for automated measurements from images of sediment, of: 1) particle-size standard deviation (arithmetic sorting) with and without apparent void fraction; and 2) mean particle size in material with void fraction. A variety of simulations of granular material are used for testing purposes, in addition to images of natural sediment. Simulations are also used to establish that the effects on automated particle sizing of grains visible through the interstices of the grains at the very surface of a granular material continue to a depth of approximately 4 grain diameters and that this is independent of mean particle size. Ensemble root-mean squared error between observed and estimated arithmetic sorting coefficients for 262 images of natural silts, sands and gravels (drawn from 8 populations) is 31%, which reduces to 27% if adjusted for bias (slope correction between observed and estimated values). These methods allow non-intrusive and fully automated measurements of surfaces of unconsolidated granular material. With no tunable parameters or empirically derived coefficients, they should be broadly universal in appropriate applications. However, empirical corrections may need to be applied for the most accurate results. Finally, analytical formulas are derived for the one-step pore-particle transition probability matrix, estimated from the image's autocorrelogram, from which void fraction of a section of granular material can be estimated directly. This model gives excellent predictions of bulk void fraction yet imperfect predictions of pore-particle transitions.

  2. High-temperature metal alloy radiant property measurements in conjunction with advanced surface spectroscopy

    International Nuclear Information System (INIS)

    The purpose of this work is to study the radiative and optical properties of pure liquid metal surfaces using both a state-of-the-art radiation property measurement system and the recently developed techniques of surface analysis. These techniques allow detailed analysis of the atomic composition of a metal surface. Research reported to date has not utilized these tools, so sample materials have been impure and of unknown surface composition. An apparatus was fabricated which will allow complete radiative property measurements and surface spectroscopy to be done in the same device. This system employs argon ion sputtering, Auger electron spectroscopy (AES), and ultra high vacuum techniques and makes radiative property measurements as a function of angle, wavelength, and temperature. After assembly and shakedown, the apparatus was used to make two sets of measurements. The data are being analyzed. Theoretical work to compare our data to predictions derived from the Fresnel equations and free electron theory has been initiated

  3. Recent Advances in Measurement and Dietary Mitigation of Enteric Methane Emissions in Ruminants.

    Science.gov (United States)

    Patra, Amlan K

    2016-01-01

    Methane (CH4) emission, which is mainly produced during normal fermentation of feeds by the rumen microorganisms, represents a major contributor to the greenhouse gas (GHG) emissions. Several enteric CH4 mitigation technologies have been explored recently. A number of new techniques have also been developed and existing techniques have been improved in order to evaluate CH4 mitigation technologies and prepare an inventory of GHG emissions precisely. The aim of this review is to discuss different CH4 measuring and mitigation technologies, which have been recently developed. Respiration chamber technique is still considered as a gold standard technique due to its greater precision and reproducibility in CH4 measurements. With the adoption of recent recommendations for improving the technique, the SF6 method can be used with a high level of precision similar to the chamber technique. Short-term measurement techniques of CH4 measurements generally invite considerable within- and between-animal variations. Among the short-term measuring techniques, Greenfeed and methane hood systems are likely more suitable for evaluation of CH4 mitigation studies, if measurements could be obtained at different times of the day relative to the diurnal cycle of the CH4 production. Carbon dioxide and CH4 ratio, sniffer, and other short-term breath analysis techniques are more suitable for on farm screening of large number of animals to generate the data of low CH4-producing animals for genetic selection purposes. Different indirect measuring techniques are also investigated in recent years. Several new dietary CH4 mitigation technologies have been explored, but only a few of them are practical and cost-effective. Future research should be directed toward both the medium- and long-term mitigation strategies, which could be utilized on farms to accomplish substantial reductions of CH4 emissions and to profitably reduce carbon footprint of livestock production systems. This review presents

  4. Recent advances in measurement and dietary mitigation of enteric methane emissions in ruminants

    Directory of Open Access Journals (Sweden)

    Amlan Kumar Patra

    2016-05-01

    Full Text Available Methane (CH4 emission, which is mainly produced during normal fermentation of feeds by the rumen microorganisms, represents a major contributor to the greenhouse gas (GHG emissions. Several enteric CH4 mitigation technologies have been explored recently. A number of new techniques have also been developed and existing techniques have been improved in order to evaluate CH4 mitigation technologies and prepare an inventory of GHG emissions precisely. The aim of this review is to discuss different CH4 measuring and mitigation technologies, which have been recently developed. Respiration chamber technique is still considered as a gold standard technique due to its greater precision and reproducibility in CH4 measurements. With the adoption of recent recommendations for improving the technique, the SF6 method can be used with a high level of precision similar to the chamber technique. Short-term measurement techniques of CH4 measurements generally invite considerable within- and between animal variations. Among the short-term measuring techniques, Greenfeed and methane hood systems are likely more suitable for evaluation of CH4 mitigation studies, if measurements could be obtained at different times of the day relative to the diurnal cycle of the CH4 production. Carbon dioxide and CH4 ratio, sniffer and other short-term breath analysis techniques are more suitable for on farm screening of large number of animals to generate the data of low CH4 producing animals for genetic selection purposes. Different indirect measuring techniques are also investigated in recent years. Several new dietary CH4 mitigation technologies have been explored, but only a few of them are practical and cost-effective. Future research should be directed towards both the medium- and long-term mitigation strategies, which could be utilized on farms to accomplish substantial reductions of CH4 emissions and to profitably reduce carbon footprint of livestock production systems. This

  5. Recent Advances in Measurement and Dietary Mitigation of Enteric Methane Emissions in Ruminants

    Science.gov (United States)

    Patra, Amlan K.

    2016-01-01

    Methane (CH4) emission, which is mainly produced during normal fermentation of feeds by the rumen microorganisms, represents a major contributor to the greenhouse gas (GHG) emissions. Several enteric CH4 mitigation technologies have been explored recently. A number of new techniques have also been developed and existing techniques have been improved in order to evaluate CH4 mitigation technologies and prepare an inventory of GHG emissions precisely. The aim of this review is to discuss different CH4 measuring and mitigation technologies, which have been recently developed. Respiration chamber technique is still considered as a gold standard technique due to its greater precision and reproducibility in CH4 measurements. With the adoption of recent recommendations for improving the technique, the SF6 method can be used with a high level of precision similar to the chamber technique. Short-term measurement techniques of CH4 measurements generally invite considerable within- and between-animal variations. Among the short-term measuring techniques, Greenfeed and methane hood systems are likely more suitable for evaluation of CH4 mitigation studies, if measurements could be obtained at different times of the day relative to the diurnal cycle of the CH4 production. Carbon dioxide and CH4 ratio, sniffer, and other short-term breath analysis techniques are more suitable for on farm screening of large number of animals to generate the data of low CH4-producing animals for genetic selection purposes. Different indirect measuring techniques are also investigated in recent years. Several new dietary CH4 mitigation technologies have been explored, but only a few of them are practical and cost-effective. Future research should be directed toward both the medium- and long-term mitigation strategies, which could be utilized on farms to accomplish substantial reductions of CH4 emissions and to profitably reduce carbon footprint of livestock production systems. This review presents

  6. Improved equilibrium reconstructions by advanced statistical weighting of the internal magnetic measurements

    Science.gov (United States)

    Murari, A.; Gelfusa, M.; Peluso, E.; Gaudio, P.; Mazon, D.; Hawkes, N.; Point, G.; Alper, B.; Eich, T.

    2014-12-01

    In a Tokamak the configuration of the magnetic fields remains the key element to improve performance and to maximise the scientific exploitation of the device. On the other hand, the quality of the reconstructed fields depends crucially on the measurements available. Traditionally in the least square minimisation phase of the algorithms, used to obtain the magnetic field topology, all the diagnostics are given the same weights, a part from a corrective factor taking into account the error bars. This assumption unduly penalises complex diagnostics, such as polarimetry, which have a limited number of highly significant measurements. A completely new method to choose the weights, to be given to the internal measurements of the magnetic fields for improved equilibrium reconstructions, is presented in this paper. The approach is based on various statistical indicators applied to the residuals, the difference between the actual measurements and their estimates from the reconstructed equilibrium. The potential of the method is exemplified using the measurements of the Faraday rotation derived from JET polarimeter. The results indicate quite clearly that the weights have to be determined carefully, since the inappropriate choice can have significant repercussions on the quality of the magnetic reconstruction both in the edge and in the core. These results confirm the limitations of the assumption that all the diagnostics have to be given the same weight, irrespective of the number of measurements they provide and the region of the plasma they probe.

  7. Advances in Raman Lidar Measurements of Water Vapor, Cirrus Clouds and Carbon Dioxide

    Science.gov (United States)

    Whiteman, David N.; Potter, John R.; Tola, Rebecca; Rush, Kurt; Veselovskii, Igor; Cadirola, Martin; Comer, Joseph

    2006-01-01

    Narrow-band interference filters with improved transmission in the ultraviolet have been developed under NASA-funded research and used in the Raman Airborne Spectroscopic Lidar (RASL) in ground- based, upward-looking tests. RASL is an airborne Raman Lidar system designed to measure water vapor mixing ratio, and aerosol backscatter/extinction/depolarization. It also possesses the capability to make experimental measurements of cloud liquid water and carbon dioxide. It is being prepared for first flight tests during the summer of 2006. With the newly developed filters installed in RASL, measurements were made of atmospheric water vapor, cirrus cloud optical properties and carbon dioxide that improve upon any previously demonstrated using Raman lidar. Daytime boundary layer profiling of water vapor mixing ratio is performed with less than 5% random error using temporal and spatial resolution of 2-minutes and 60 - 210, respectively. Daytime cirrus cloud optical depth and extinction- to-backscatter ratio measurements are made using 1-minute average. Sufficient signal strength is demonstrated to permit the simultaneous profiling of carbon dioxide and water vapor mixing ratio into the free troposphere during the nighttime. Downward-looking from an airborne RASL should possess the same measurement statistics with approximately a factor of 5 - 10 decrease in averaging time. A description of the technology improvements are provided followed by examples of the improved Raman lidar measurements.

  8. Rapid measurements of intensities for safety assessment of advanced imaging sequences

    Science.gov (United States)

    Jensen, Jørgen Arendt; Rasmussen, Morten Fischer; Stuart, Matthias Bo; Tomov, Borislav G.

    2014-03-01

    FDA requires that intensity and safety parameters are measured for all imaging schemes for clinical imaging. This is often cumbersome, since the scan sequence has to broken apart, measurements conducted for the individually emitted beams, and the final intensity levels calculated by combining the intensities from the individual beams. This paper suggests a fast measurement scheme using the multi-line sampling capability of modern scanners and research systems. The hydrophone is connected to one sampling channel in the research system, and the intensity is measured for all imaging lines in one emission sequence. This makes it possible to map out the pressure field and hence intensity level for all imaging lines in a single measurement. The approach has several advantages: the scanner does not have to be re-programmed and can use the scan sequence without modification. The measurements are orders of magnitude faster (minutes rather than hours) and the final intensity level calculation can be made generic and reused for any kind of scan sequence by just knowing the number of imaging lines and the pulse repetition time. The scheme has been implemented on the Acoustic Intensity Measurement System AIMS III (Onda, Sunnyvale, California, USA). The research scanner SARUS is used for the experiments, where one of the channels is used for the hydrophone signal. A 3 MHz BK 8820e (BK Medical, Herlev, Denmark) convex array with 192 elements is used along with an Onda HFL-0400 hydrophone connected to a AH-2010 pre-amplifier (Onda Corporation, Sunnyvale, USA). A single emission sequence is employed for testing and calibrating the approach. The measurements using the AIMS III and SARUS systems after calibration agree within a relative standard deviation of 0.24%. A duplex B-mode and flow sequence is also investigated. The complex intensity map is measured and the time averaged spatial peak intensity is found. A single point measurement takes 3.43 seconds and the whole sequence can

  9. Probabilistic measurement of non-physical constructs during early childhood: Epistemological implications for advancing psychosocial science

    Science.gov (United States)

    Bezruczko, N.; Fatani, S. S.

    2010-07-01

    Social researchers commonly compute ordinal raw scores and ratings to quantify human aptitudes, attitudes, and abilities but without a clear understanding of their limitations for scientific knowledge. In this research, common ordinal measures were compared to higher order linear (equal interval) scale measures to clarify implications for objectivity, precision, ontological coherence, and meaningfulness. Raw score gains, residualized raw gains, and linear gains calculated with a Rasch model were compared between Time 1 and Time 2 for observations from two early childhood learning assessments. Comparisons show major inconsistencies between ratings and linear gains. When gain distribution was dense, relatively compact, and initial status near item mid-range, linear measures and ratings were indistinguishable. When Time 1 status was distributed more broadly and magnitude of change variable, ratings were unrelated to linear gain, which emphasizes problematic implications of ordinal measures. Surprisingly, residualized gain scores did not significantly improve ordinal measurement of change. In general, raw scores and ratings may be meaningful in specific samples to establish order and high/low rank, but raw score differences suffer from non-uniform units. Even meaningfulness of sample comparisons, as well as derived proportions and percentages, are seriously affected by rank order distortions and should be avoided.

  10. Advanced Soil Moisture Network Technologies; Developments in Collecting in situ Measurements for Remote Sensing Missions

    Science.gov (United States)

    Moghaddam, M.; Silva, A. R. D.; Akbar, R.; Clewley, D.

    2015-12-01

    The Soil moisture Sensing Controller And oPtimal Estimator (SoilSCAPE) wireless sensor network has been developed to support Calibration and Validation activities (Cal/Val) for large scale soil moisture remote sensing missions (SMAP and AirMOSS). The technology developed here also readily supports small scale hydrological studies by providing sub-kilometer widespread soil moisture observations. An extensive collection of semi-sparse sensor clusters deployed throughout north-central California and southern Arizona provide near real time soil moisture measurements. Such a wireless network architecture, compared to conventional single points measurement profiles, allows for significant and expanded soil moisture sampling. The work presented here aims at discussing and highlighting novel and new technology developments which increase in situ soil moisture measurements' accuracy, reliability, and robustness with reduced data delivery latency. High efficiency and low maintenance custom hardware have been developed and in-field performance has been demonstrated for a period of three years. The SoilSCAPE technology incorporates (a) intelligent sensing to prevent erroneous measurement reporting, (b) on-board short term memory for data redundancy, (c) adaptive scheduling and sampling capabilities to enhance energy efficiency. A rapid streamlined data delivery architecture openly provides distribution of in situ measurements to SMAP and AirMOSS cal/val activities and other interested parties.

  11. Measure and integration an advanced course in basic procedures and applications

    CERN Document Server

    König, Heinz

    1997-01-01

    This book sets out to restructure certain fundamentals in measure and integration theory, and thus to fee the theory from some notorious drawbacks. It centers around the ubiquitous task of producing appropriate contents and measures from more primitive data, in order to extend elementary contents and to represent elementary integrals. This task has not been met with adequate unified means so far. The traditional main tools, the Carathéodory and Daniell-Stone theorems, are too restrictive and had to be supplemented by other ad-hoc procedures. Around 1970 a new approach emerged, based on the notion of regularity, which in traditional measure theory is linked to topology. The present book develops the new approach into a systematic theory. The theory unifies the entire context and is much more powerful than the former means. It has striking implications all over measure theory and beyond. Thus it extends the Riesz representation theorem in terms of Randon measures from locally compact to arbitrary Hausdorff top...

  12. Recent advances in ultrasonic downcomer flow-measurement techniques for recirculating steam generators

    International Nuclear Information System (INIS)

    Non-intrusive ultrasonic measurements of downcomer flow velocity have been successfully used in the past to determine recirculation ratios and water inventory in CANDU steam generators. Knowledge of these process conditions allows operators to assess the effectiveness of maintenance programs, monitor the effects of tube fouling, and observe flow conditions following component modifications. It also provides designers with a means to verify or improve code predictions. Ultrasonic measurement systems have recently been installed on sixteen steam generators at the Bruce B Nuclear Generating Station, as part of an investigation into the possible effects of long-term boiler degradation. The most recent version of AECL's downcomer-flow technology was used, which features high-temperature transducers that are attached magnetically and then welded to the steam-generator outer shell. This method eliminates the complications of precision surface preparation, high-temperature couplants and awkward mechanical attachments. The paper will outline the method and summarize flow velocities measured during normal operation, over extended periods of time. It will also describe how the information might be used, e.g., to assess thermalhydraulic conditions, verify design calculations and support the case for reactor uprating. Further improvements that may allow the reliable measurement of flow in steam generators with steam carry-under are suggested, and preliminary results are presented from a dual-purpose single- and two-phase flow-measurement system. (author)

  13. Multifunctional reactive nanocomposite materials

    Science.gov (United States)

    Stamatis, Demitrios

    Many multifunctional nanocomposite materials have been developed for use in propellants, explosives, pyrotechnics, and reactive structures. These materials exhibit high reaction rates due to their developed reaction interfacial area. Two applications addressed in this work include nanocomposite powders prepared by arrested reactive milling (ARM) for burn rate modifiers and reactive structures. In burn rate modifiers, addition of reactive nanocomposite powders to aluminized propellants increases the burn rate of aluminum and thus the overall reaction rate of an energetic formulation. Replacing only a small fraction of aluminum by 8Al·MoO3 and 2B·Ti nanocomposite powders enhances the reaction rate with little change to the thermodynamic performance of the formulation; both the rate of pressure rise and maximum pressure measured in the constant volume explosion test increase. For reactive structures, nanocomposite powders with bulk compositions of 8Al·MoO3, 12Al·MoO3, and 8Al·3CuO were prepared by ARM and consolidated using a uniaxial die. Consolidated samples had densities greater than 90% of theoretical maximum density while maintaining their high reactivity. Pellets prepared using 8Al·MoO3 powders were ignited by a CO2 laser. Ignition delays increased at lower laser powers and greater pellet densities. A simplified numerical model describing heating and thermal initiation of the reactive pellets predicted adequately the observed effects of both laser power and pellet density on the measured ignition delays. To investigate the reaction mechanisms in nanocomposite thermites, two types of nanocomposite reactive materials with the same bulk compositions 8Al·MoO3 were prepared by different methods. One of the materials was manufactured by ARM and the other, so called metastable interstitial composite (MIC), by mixing of nano-scaled individual powders. Clear differences in the low-temperature redox reactions, welldetectable by differential scanning calorimetry

  14. Residence time distribution measurements in an Advanced Pressurized Fluidized Bed Gasifier (APFBG) using radiotracer technique

    International Nuclear Information System (INIS)

    Residence time distributions (RTDs) of coal were measured at different operating conditions in a pressurized fluidized bed gasifier using radiotracer technique. Two different tracers i.e. coal labeled with gold-198 and lanthanum-140 were used as tracers. The comparison of the results obtained with the two tracers indicated that lanthanum-140 was suitable tracer for tracing coal phase in the gasifier. From the measured RTD curves, mean residence times were determined and measured data was simulated using tanks-in-series model. The simulation of data indicated that the gasifier behaved as a well-mixed reactor with minor bypassing. The results of the study were used to modify/optimize the design of the gasifier. (author)

  15. Optical modeling and polarization calibration for CMB measurements with ACTPol and Advanced ACTPol

    CERN Document Server

    Koopman, Brian; Cho, Hsiao-Mei; Coughlin, Kevin P; Duff, Shannon M; Gallardo, Patricio A; Hasselfield, Matthew; Henderson, Shawn W; Ho, Shuay-Pwu Patty; Hubmayr, Johannes; Irwin, Kent D; Li, Dale; McMahon, Jeff; Nati, Federico; Niemack, Michael D; Newburgh, Laura; Page, Lyman A; Salatino, Maria; Schillaci, Alessandro; Schmitt, Benjamin L; Simon, Sara M; Vavagiakis, Eve M; Ward, Jonathan T; Wollack, Edward J

    2016-01-01

    The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive upgrade to the Atacama Cosmology Telescope. Located at an elevation of 5190 m, ACTPol measures the Cosmic Microwave Background (CMB) temperature and polarization with arcminute-scale angular resolution. Calibration of the detector angles is a critical step in producing maps of the CMB polarization. Polarization angle offsets in the detector calibration can cause leakage in polarization from E to B modes and induce a spurious signal in the EB and TB cross correlations, which eliminates our ability to measure potential cosmological sources of EB and TB signals, such as cosmic birefringence. We present our optical modeling and measurements associated with calibrating the detector angles in ACTPol.

  16. Improved density profile measurements in the C-2U advanced beam-driven FRC plasmas

    Science.gov (United States)

    Beall, Michael; Deng, B. H.; Schroeder, Jon; Settles, Greg; Kinley, John; Gota, Hiroshi; Thompson, Matt; the TAE Team

    2015-11-01

    The goal of Tri Alpha Energy's C-2U experiment is to demonstrate FRC sustainment via neutral beam injection. Accurate equilibrium profiles are essential for determining optimum operating regimes and studying physics phenomena. Electron density profiles in C-2 were measured by a CO2/HeNe laser interferometer. All C-2 chords were located below the machine axis causing difficulties due to spatial under-sampling in case of vertical plasma motion. As part of C-2U, additional chords were added above the axis and a complimentary 4-chord far-infrared (FIR) interferometer was developed. The FIR system is based on 2 HCOOH lasers optically pumped by a CO2 laser. This upgrade allowed for higher density resolution and broad spectral bandwidth. Results of improved density profile measurement will be presented, including fast ion effects. Plasma wobble is also characterized via density centroid measurements.

  17. Evaluation of dead time measurement for Monju control systems using advanced wavelet analysis method

    International Nuclear Information System (INIS)

    Dead times appear inevitably in responses of plant control systems, which often make the stable control difficult in case with improper values. It is necessary to evaluate them correctly in order to realize the stability of the control systems. A correlation method by a maximum-length linear shift register sequence (M-sequence) was proposed to evaluate the dead time as an accurate method. In nuclear power plants (NPPs), however, response data against M-sequence signals are unavailable at some parts of control systems, because the target locations and signal specifications are highly restricted not to disturb the stable operations. A wavelet analysis method against step responses was applied to Japanese prototype fast breeder reactor MONJU control system in the heat transfer system; one was the primary sodium flow control system and another was the secondary sodium flow control system. This method was considered as a promising method without application of M-sequence signals to the control systems. We also evaluated the dead times by the M-sequence method in the same control systems in order to validate the accuracy. Accordingly, the dead times evaluated by the wavelet analysis method also agreed well with those by the M-sequence method in the two control systems. From these results, we concluded that the present advanced method could predict the dead times with good accuracy in any control systems of NPPs. (author)

  18. Electrical Detection of C-Reactive Protein Using a Single Free-Standing, Thermally Controlled Piezoresistive Microcantilever for Highly Reproducible and Accurate Measurements

    Directory of Open Access Journals (Sweden)

    Long-Sun Huang

    2013-07-01

    Full Text Available This study demonstrates a novel method for electrical detection of C-reactive protein (CRP as a means of identifying an infection in the body, or as a cardiovascular disease risk assay. The method uses a single free-standing, thermally controlled piezoresistive microcantilever biosensor. In a commonly used sensing arrangement of conventional dual cantilevers in the Wheatstone bridge circuit, reference and gold-coated sensing cantilevers that inherently have heterogeneous surface materials and different multilayer structures may yield independent responses to the liquid environmental changes of chemical substances, flow field and temperature, leading to unwanted signal disturbance for biosensing targets. In this study, the single free-standing microcantilever for biosensing applications is employed to resolve the dual-beam problem of individual responses in chemical solutions and, in a thermally controlled system, to maintain its sensor performance due to the sensitive temperature effect. With this type of single temperature-controlled microcantilever sensor, the electrical detection of various CRP concentrations from 1 µg/mL to 200 µg/mL was performed, which covers the clinically relevant range. Induced surface stresses were measured at between 0.25 N/m and 3.4 N/m with high reproducibility. Moreover, the binding affinity (KD of CRP and anti-CRP interaction was found to be 18.83 ± 2.99 µg/mL, which agreed with results in previous reported studies. This biosensing technique thus proves valuable in detecting inflammation, and in cardiovascular disease risk assays.

  19. ADVANCED 3D LASER MICROSCOPY FOR MEASUREMENTS AND ANALYSIS OF VITRIFIED BONDED ABRASIVE TOOLS

    Directory of Open Access Journals (Sweden)

    WOJCIECH KAPLONEK

    2012-12-01

    Full Text Available In many applications, when a precise non-contact assessment of an abrasive tools’ surface is required, alternative measurement methods are often used. Their use offers numerous advantages (referential method as they introduce new qualities into routinely realized measurements. Over the past few years there has been a dynamic increase in the interest for using new types of classical confocal microscopy. These new types are often defined as 3D laser microscopy. This paper presents select aspects of one such method’s application – confocal laser scanning microscopy – for diagnostic analysis of abrasive tools. In addition this paper also looks at the basis for operation, the origins and the development of this measurement technique.The experimental part of this paper presents the select results of tests carried out on grinding wheel active surfaces with sintered microcrystalline corundum grains SG™ bound with glass-crystalline bond. The 3D laser measuring microscopes LEXT OLS3100 and LEXT OLS4000 by Olympus were used in the experiments. Analysis of the obtained measurement data was carried out in dedicated OLS 5.0.9 and OLS4100 2.1 programs, supported by specialist TalyMap Platinum 5.0 software. The realized experiments confirmed the possibility of using the offered measurement method. This concerns both the assessment of grinding wheel active surfaces and their defects, as well as the internal structures of the tools (grain-bond connections. The method presented is an interesting alternative to the typical methods used in the diagnostics of abrasive tools.

  20. Advanced high speed X-ray CT scanner for measurement and visualization of multi-phase flow

    International Nuclear Information System (INIS)

    The development of an ultra-fast X-ray computed tomography (CT) scanner has been performed. The object of interest is in a transient or unsettled state, which makes the conventional CT scanner inappropriate. A concept of electrical switching of electron beam of X-ray generation unit is adopted to reduce the scanning time instead of a mechanical motion adopted by a conventional CT scanner. The mechanical motion is a major obstacle to improve the scanning speed. A prototype system with a scanning time of 3.6 milliseconds was developed at first. And, the feasibility was confirmed to measure the dynamic events of two-phase flow. However, faster scanning speed is generally required for the practical use in the thermalhydraulics research field. Therefore, the development of advanced type has been performed. This advanced type can operate under the scanning time of 0.5 milliseconds and is applicable for the measurement of the multi-phase flow with velocity up to 4-5 m/s. (author)

  1. Design measures for prevention and mitigation of severe accidents at advanced water cooled reactors. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    Over 8500 reactor-years of operating experience have been accumulated with the current nuclear energy systems. New generations of nuclear power plants are being developed, building upon this background of experience. During the last decade, requirements for equipment specifically intended to minimize releases of radioactive material to the environment in the event of a core melt accident have been introduced, and designs for new plants include measures for preventing and mitigating a range of severe accident scenarios. The IAEA Technical Committee Meeting on Impact of Severe Accidents on Plant Design and Layout of Advanced Water Cooled Reactors was jointly organized by the Department of Nuclear Energy and the Department of Nuclear Safety to review measures which are being incorporated into advanced water cooled reactor designs for preventing and mitigating severe accidents, the status of experimental and analytical investigations of severe accident phenomena and challenges which support design decisions and accident management procedures, and to understand the impact of explicitly addressing severe accidents on the cost of nuclear power plants. This publication is intended to provide an objective source of information on this topic. It includes 14 papers presented at the Technical Committee meeting held in Vienna between 21-25 October 1996. It also includes a Summary and Findings of the Working Groups. The papers were grouped in three sections. A separate abstract was prepared for each paper

  2. Commentary: Advancing Measurement of ASD Severity and Social Competence: A Reply to Constantino and Frazier (2013)

    Science.gov (United States)

    Hus, Vanessa; Bishop, Somer; Gotham, Katherine; Huerta, Marisela; Lord, Catherine

    2013-01-01

    The Social Responsiveness Scale (SRS) is currently being used in clinical and genetic studies of autism as both a screener and as a quantitative measure of autistic traits. This article assesses the influence of nonspecific factors on SRS scores to aid researchers in their interpretations of these scores. In their commentary, Constantino and…

  3. Advanced in-situ measurement of soil carbon content using inelastic neutron scattering

    Science.gov (United States)

    Measurement and mapping of natural and anthropogenic variations in soil carbon stores is a critical component of any soil resource evaluation process. Emerging modalities for soil carbon analysis in the field is the registration of gamma rays from soil under neutron irradiation. The inelastic neutro...

  4. Recent Advances in the Tempest UAS for In-Situ Measurements in Highly-Dynamic Environments

    Science.gov (United States)

    Argrow, B. M.; Frew, E.; Houston, A. L.; Weiss, C.

    2014-12-01

    The spring 2010 deployment of the Tempest UAS during the VORTEX2 field campaign verified that a small UAS, supported by a customized mobile communications, command, and control (C3) architecture, could simultaneously satisfy Federal Aviation Administration (FAA) airspace requirements, and make in-situ thermodynamic measurements in supercell thunderstorms. A multi-hole airdata probe was recently integrated into the Tempest UAS airframe and verification flights were made in spring 2013 to collect in-situ wind measurements behind gust fronts produced by supercell thunderstorms in northeast Colorado. Using instantaneous aircraft attitude estimates from the autopilot, the in-situ measurements were converted to inertial wind estimates, and estimates of uncertainty in the wind measurements was examined. To date, the limited deployments of the Tempest UAS have primarily focused on addressing the engineering and regulatory requirements to conduct supercell research, and the Tempest UAS team of engineers and meteorologists is preparing for deployments with the focus on collecting targeted data for meteorological exploration and hypothesis testing. We describe the recent expansion of the operations area and altitude ceiling of the Tempest UAS, engineering issues for accurate inertial wind estimates, new concepts of operation that include the simultaneous deployment of multiple aircraft with mobile ground stations, and a brief description of our current effort to develop a capability for the Tempest UAS to perform autonomous path planning to maximize energy harvesting from the local wind field for increased endurance.

  5. Practical Intelligence and Tacit Knowledge: Advancements in the Measurement of Developing Expertise

    Science.gov (United States)

    Cianciolo, Anna T.; Grigorenko, Elena L.; Jarvin, Linda; Gil, Guillermo; Drebot, Michael E.; Sternberg, Robert J.

    2006-01-01

    Practical intelligence as measured by tacit-knowledge inventories generally has shown a weak relation to other intelligence constructs. However, the use of assessments capturing specialized, job-related knowledge may obscure the generality of practical intelligence and its relation to general intelligence. This article presents three studies in…

  6. Measuring intermediate mass black hole binaries with advanced gravitational wave detectors

    CERN Document Server

    Veitch, John; Mandel, Ilya

    2015-01-01

    We perform a systematic study to explore the accuracy with which the parameters of intermediate-mass black-hole binary systems can be measured from their gravitational wave (GW) signatures using second-generation GW detectors. We make use of the most recent reduced-order models containing inspiral, merger and ringdown signals of aligned-spin effective-one-body waveforms (SEOBNR) to significantly speed up the calculations. We explore the phenomenology of the measurement accuracies for binaries with total masses between 50 and 500 $M_\\odot$ and mass ratios between 0.1 and 1. We find that (i) at total masses below ~200 $M_\\odot$, where the signal-to-noise-ratio is dominated by the inspiral portion of the signal, the chirp mass parameter can be accurately measured; (ii) at higher masses, the information content is dominated by the ringdown, and total mass is measured more accurately; (iii) the mass of the lower-mass companion is poorly estimated, especially at high total mass and more extreme mass ratios; (iv) sp...

  7. Sea sand for reactive barriers

    International Nuclear Information System (INIS)

    Some phosphates have the property to suck in radioactive metals in solution, what it is taken in advance to make reactive barriers which are placed in the nuclear waste repositories. In an effort for contributing to the study of this type of materials, it has been obtained the zirconium silicate (ZrSiO4) and the alpha zirconium hydrogen phosphate (Zr(HPO4) 2H2O) starting from sea sand in an easy and economic way. (Author)

  8. Measuring Intermediate-Mass Black-Hole Binaries with Advanced Gravitational Wave Detectors.

    Science.gov (United States)

    Veitch, John; Pürrer, Michael; Mandel, Ilya

    2015-10-01

    We perform a systematic study to explore the accuracy with which the parameters of intermediate-mass black-hole binary systems can be measured from their gravitational wave (GW) signatures using second-generation GW detectors. We make use of the most recent reduced-order models containing inspiral, merger, and ringdown signals of aligned-spin effective-one-body waveforms to significantly speed up the calculations. We explore the phenomenology of the measurement accuracies for binaries with total masses between 50M(⊙) and 500M(⊙) and mass ratios between 0.1 and 1. We find that (i) at total masses below ∼200M(⊙), where the signal-to-noise ratio is dominated by the inspiral portion of the signal, the chirp mass parameter can be accurately measured; (ii) at higher masses, the information content is dominated by the ringdown, and total mass is measured more accurately; (iii) the mass of the lower-mass companion is poorly estimated, especially at high total mass and more extreme mass ratios; and (iv) spin cannot be accurately measured for our injection set with nonspinning components. Most importantly, we find that for binaries with nonspinning components at all values of the mass ratio in the considered range and at a network signal-to-noise ratio of 15, analyzed with spin-aligned templates, the presence of an intermediate-mass black hole with mass >100M(⊙) can be confirmed with 95% confidence in any binary that includes a component with a mass of 130M(⊙) or greater. PMID:26551801

  9. Measuring Intermediate-Mass Black-Hole Binaries with Advanced Gravitational Wave Detectors

    Science.gov (United States)

    Veitch, John; Pürrer, Michael; Mandel, Ilya

    2015-10-01

    We perform a systematic study to explore the accuracy with which the parameters of intermediate-mass black-hole binary systems can be measured from their gravitational wave (GW) signatures using second-generation GW detectors. We make use of the most recent reduced-order models containing inspiral, merger, and ringdown signals of aligned-spin effective-one-body waveforms to significantly speed up the calculations. We explore the phenomenology of the measurement accuracies for binaries with total masses between 50 M⊙ and 500 M⊙ and mass ratios between 0.1 and 1. We find that (i) at total masses below ˜200 M⊙, where the signal-to-noise ratio is dominated by the inspiral portion of the signal, the chirp mass parameter can be accurately measured; (ii) at higher masses, the information content is dominated by the ringdown, and total mass is measured more accurately; (iii) the mass of the lower-mass companion is poorly estimated, especially at high total mass and more extreme mass ratios; and (iv) spin cannot be accurately measured for our injection set with nonspinning components. Most importantly, we find that for binaries with nonspinning components at all values of the mass ratio in the considered range and at a network signal-to-noise ratio of 15, analyzed with spin-aligned templates, the presence of an intermediate-mass black hole with mass >100 M⊙ can be confirmed with 95% confidence in any binary that includes a component with a mass of 130 M⊙ or greater.

  10. An advanced vision-based system for real-time displacement measurement of high-rise buildings

    International Nuclear Information System (INIS)

    This paper introduces an advanced vision-based system for dynamic real-time displacement measurement of high-rise buildings using a partitioning approach. The partitioning method is based on the successive estimation of relative displacements and rotational angles at several floors using a multiple vision-based displacement measurement system. In this study, two significant improvements were made to realize the partitioning method: (1) time synchronization, (2) real-time dynamic measurement. Displacement data and time synchronization information are wirelessly transferred via a network using the TCP/IP protocol. The time synchronization process is periodically conducted by the master system to guarantee the system time at the master and slave systems are synchronized. The slave system is capable of dynamic real-time measurement and it is possible to economically expand measurement points at slave levels using commercial devices. To verify the accuracy and feasibility of the synchronized multi-point vision-based system and partitioning approach, many laboratory tests were carried out on a three-story steel frame model. Furthermore, several tests were conducted on a five-story steel frame tower equipped with a hybrid mass damper to experimentally confirm the effectiveness of the proposed system. (paper)

  11. Application of advanced one sided stress wave velocity measurement in concrete

    International Nuclear Information System (INIS)

    It is of interest to reliably measure the velocity of stress waves in concrete. At present, reliable measurement is not possible for dispersive and attenuating materials such as concrete when access to only one surface of the structure is available, such as in the case of pavement structures. In this paper, a new method for one-sided stress wave velocity determination in concrete is applied to investigate the effects of composition, age and moisture content. This method uses a controlled impact as a stress wave source and two sensitive receivers mounted on the same surface as the impact sites. The novel aspect of the technique is the data collection system which automatically determines the arrival of the generated longitudinal and surface wave arrivals. A conventional ultrasonic through transmission method is used to compare with the results determined by the one-sided method.

  12. Rapid Measurements of Intensities for Safety Assessment of Advanced Imaging Sequences

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Rasmussen, Morten Fischer; Stuart, Matthias Bo;

    2014-01-01

    faster (minutes rather than hours) and the nal intensity level calculation can be made generic and reused for any kind of scan sequence by just knowing the number of imaging lines and the pulse repetition time. The scheme has been implemented on the Acoustic Intensity Measurement System AIMS III (Onda......, Sunnyvale, California, USA). The research scanner SARUS is used for the experiments, where one of the channels is used for the hydrophone signal. A 3 MHz BK 8820e (BK Medical, Herlev, Denmark) convex array with 192 elements is used along with an Onda HFL-0400 hydrophone connected to a AH-2010 pre......-amplier (Onda Corporation, Sunnyvale, USA). A single emission sequence is employed for testing and calibrating the approach. The measurements using the AIMS III and SARUS systems after calibration agree within a relative standard deviation of 0.24%. A duplex B-mode and ow sequence is also investigated...

  13. Advanced Measurements of the Aggregation Capability of the MPT Network Layer Multipath Communication Library

    Directory of Open Access Journals (Sweden)

    Gábor Lencse

    2015-05-01

    Full Text Available The MPT network layer multipath communicationlibrary is a novel solution for several problems including IPv6transition, reliable data transmission using TCP, real-time transmissionusing UDP and also wireless network layer routingproblems. MPT can provide an IPv4 or an IPv6 tunnel overone or more IPv4 or IPv6 communication channels. MPT canalso aggregate the capacity of multiple physical channels. In thispaper, the channel aggregation capability of the MPT libraryis measured up to twelve 100Mbps speed channels. Differentscenarios are used: both IPv4 and IPv6 are used as the underlyingand also as the encapsulated protocols and also both UDP andTCP are used as transport protocols. In addition, measurementsare taken with both 32-bit and 64-bit version of the MPT library.In all cases, the number of the physical channels is increased from1 to 12 and the aggregated throughput is measured.

  14. Advances in reflectometric density profile measurements on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Significant improvements have been achieved in the accuracy and reliability of broadband frequency-swept (FM) reflectometer measurements on DIII-D. This has been achieved through several improvements, the most important of which has been the application of digital complex demodulation (CDM) analysis software, which can extract signal phase with subfringe accuracy. Using this new analysis technique, results from the broadband FM system look very promising: reflectometer measurements show excellent agreement with Thomson profiles in Ohmic and H-mode plasmas, and good agreement with Thomson data in L-mode. Clear resolution of the steep edge density profile in H-mode plasmas, where very small phase shifts are involved, confirm the accuracy of the system calibration and performance

  15. Measurement and Verification of Energy Savings and Performance from Advanced Lighting Controls

    Energy Technology Data Exchange (ETDEWEB)

    PNNL

    2016-02-21

    This document provides a framework for measurement and verification (M&V) of energy savings, performance, and user satisfaction from lighting retrofit projects involving occupancy-sensor-based, daylighting, and/or other types of automatic lighting. It was developed to provide site owners, contractors, and other involved organizations with the essential elements of a robust M&V plan for retrofit projects and to assist in developing specific project M&V plans.

  16. ADVANCES ON THE MEASURE OF JUDGMENT AND MEANING OF THE PRODUCT FOR BRAZIL

    OpenAIRE

    Solange Alfinito; Marcelo Vinhal Nepomuceno; Claudio Vaz Torres

    2012-01-01

    The purpose of this paper was the development a measure of judgment and meaning of the product valid for Brazilian consumers. It consisted in a two-stage study including both qualitative and quantitative approaches. In the qualitative stage, focus groups with 16 Brazilian participants allowed the generation of 40 items for a new scale of judgment and meaning of the product. After semantic validation and expert analysis, the found items composed a questionnaire administered to 684 participants...

  17. Advances in Atmospheric Radiation Measurements and Modeling Needed to Improve Air Safety

    Science.gov (United States)

    Tobiska, W. Kent; Atwell, William; Beck, Peter; Benton, Eric; Copeland, Kyle; Dyer, Clive; Gersey, Brad; Getley, Ian; Hands, Alex; Holland, Michael; Hong, Sunhak; Hwang, Junga; Jones, Bryn; Malone, Kathleen; Meier, Matthias M.; Mertens, Chris; Phillips, Tony; Ryden, Keith; Schwadron, Nathan; Wender, Stephen A.; Wilkins, Richard; Xapsos, Michael A.

    2015-04-01

    Air safety is tied to the phenomenon of ionizing radiation from space weather, primarily from galactic cosmic rays but also from solar energetic particles. A global framework for addressing radiation issues in this environment has been constructed, but more must be done at international and national levels. Health consequences from atmospheric radiation exposure are likely to exist. In addition, severe solar radiation events may cause economic consequences in the international aviation community due to exposure limits being reached by some crew members. Impacts from a radiation environment upon avionics from high-energy particles and low-energy, thermalized neutrons are now recognized as an area of active interest. A broad community recognizes that there are a number of mitigation paths that can be taken relative to the human tissue and avionics exposure risks. These include developing active monitoring and measurement programs as well as improving scientific modeling capabilities that can eventually be turned into operations. A number of roadblocks to risk mitigation still exist, such as effective pilot training programs as well as monitoring, measuring, and regulatory measures. An active international effort toward observing the weather of atmospheric radiation must occur to make progress in mitigating radiation exposure risks. Stakeholders in this process include standard-making bodies, scientific organizations, regulatory organizations, air traffic management systems, aircraft owners and operators, pilots and crew, and even the public.

  18. High-sensitivity measurements for low-level TRU wastes using advanced passive neutron techniques

    International Nuclear Information System (INIS)

    In recent years, both passive- and active-neutron nondestructive assay (NDA) systems have been used to measure the uranium and plutonium content in 200-ell drums. Because of the heterogeneity of the wastes, representative sampling is not possible and NDA methods are preferred over destructive analysis. Active-neutron assay systems are used to measure the fissile isotopes such as 235U, 23Pu, and 241Pu; the isotopic ratios are used to infer the total plutonium content and thus the specific disintegration rate. The active systems include 14-MeV-neutron (DT) generators with delayed-neutron counting, (D,T) generators with the differential die-away technique, and 252Cf delayed-neutron shufflers. Passive assay systems (for example, segmented gamma-ray scanners)5 have used gamma-ray sessions, while others (for example, passive drum counters) used passive-neutron signals. We have developed a new passive-neutron measurement technique to improve the accuracy and sensitivity of the NDA of plutonium scrap and waste. This new 200-ell-drum assay system combines the classical NDA method of counting passive-neutron totals and coincidences from plutonium with the new features of ''add-a-source'' (AS) and multiplicity counting to improve the accuracy of matrix corrections and statistical techniques that improve the low-level detectability limits. This paper describes the improvements we have made in passive-neutron assay systems and compares the accuracies and detectability limits of passive- and active-neutron assay systems

  19. Identification of a B cell-dependent subpopulation of multiple sclerosis by measurements of brain-reactive B cells in the blood.

    Science.gov (United States)

    Kuerten, Stefanie; Pommerschein, Giovanna; Barth, Stefanie K; Hohmann, Christopher; Milles, Bianca; Sammer, Fabian W; Duffy, Cathrina E; Wunsch, Marie; Rovituso, Damiano M; Schroeter, Michael; Addicks, Klaus; Kaiser, Claudia C; Lehmann, Paul V

    2014-01-01

    B cells are increasingly coming into play in the pathogenesis of multiple sclerosis (MS). Here, we screened peripheral blood mononuclear cells (PBMC) from patients with clinically isolated syndrome (CIS), MS, other non-inflammatory neurological, inflammatory neurological or autoimmune diseases, and healthy donors for their B cell reactivity to CNS antigen using the enzyme-linked immunospot technique (ELISPOT) after 96 h of polyclonal stimulation. Our data show that nine of 15 patients with CIS (60.0%) and 53 of 67 patients with definite MS (79.1%) displayed CNS-reactive B cells, compared to none of the control donors. The presence of CNS-reactive B cells in the blood of the majority of patients with MS or at risk to develop MS along with their absence in control subjects suggests that they might be indicative of a B cell-dependent subpopulation of the disease. PMID:24607792

  20. Advances in absorbed dose measurement standards at the australian radiation laboratory

    International Nuclear Information System (INIS)

    The applications of ionising radiation in the medical and industrial fields require both an accurate knowledge of the amount of ionising radiation absorbed by the medium in question and the capability of relating this to National and International standards. The most useful measure of the amount of radiation is the absorbed dose which is defined as the energy absorbed per unit mass. For radiotherapy, the reference medium is water, even though the measurement of the absorbed dose to water is not straightforward. Two methods are commonly used to provide calibrations in absorbed dose to water. The first is the calibration of the chamber in terms of exposure in a Cobalt-60 beam, followed by the conversion by a protocol into dose to water in this and higher energy beams. The other route is via the use of a graphite calorimeter as a primary standard device, where the conversion from absorbed dose to graphite to absorbed dose in water is performed either by theoretical means making use of cavity ionisation theory, or by experiment where the graphite calorimeter and secondary standard ionisation chamber are placed at scaled distances from the source of the radiation beam (known as the Dose-Ratio method). Extensive measurements have been made at Cobalt-60 at ARL using both the exposure and absorbed dose to graphite routes. Agreement between the ARL measurements and those based on standards maintained by ANSTO and NPL is within ± 0.3%. Absorbed dose measurements have also been performed at ARL with photon beams of nominal energy 16 and 19 MeV obtained from the ARL linac. The validity of the protocols at high photon energies, the validity of the methods used to convert from absorbed dose in graphite to absorbed dose in water and the validity of the indices used to specify the beams are discussed. Brief mention will also be made of the establishment of a calibration facility for neutron monitors at ARL and of progress in the development of ERP dosimetry

  1. Diagnostic Value of Serial Measurement of C-Reactive Protein in the Detection of a Surgical Complication after Laparoscopic Bowel Resection for Endometriosis

    DEFF Research Database (Denmark)

    Riiskjær, Mads; Forman, Axel; Kesmodel, Ulrik Schiøler;

    2016-01-01

    AIMS: The study aimed to assess the diagnostic value of serial monitoring of biochemical inflammatory markers (C-reactive protein (CRP) and white blood cell (WBC) count) in the postoperative diagnosis of anastomotic leakage or ureteral injury after bowel resection for deep infiltrating endometrio......AIMS: The study aimed to assess the diagnostic value of serial monitoring of biochemical inflammatory markers (C-reactive protein (CRP) and white blood cell (WBC) count) in the postoperative diagnosis of anastomotic leakage or ureteral injury after bowel resection for deep infiltrating...... subsequent postoperative course. The test is recommended when early discharge after rectal resection for deep infiltrating endometriosis is considered....

  2. Advanced Spatial-Division Multiplexed Measurement Systems Propositions—From Telecommunication to Sensing Applications: A Review

    Directory of Open Access Journals (Sweden)

    Yi Weng

    2016-08-01

    Full Text Available The concepts of spatial-division multiplexing (SDM technology were first proposed in the telecommunications industry as an indispensable solution to reduce the cost-per-bit of optical fiber transmission. Recently, such spatial channels and modes have been applied in optical sensing applications where the returned echo is analyzed for the collection of essential environmental information. The key advantages of implementing SDM techniques in optical measurement systems include the multi-parameter discriminative capability and accuracy improvement. In this paper, to help readers without a telecommunication background better understand how the SDM-based sensing systems can be incorporated, the crucial components of SDM techniques, such as laser beam shaping, mode generation and conversion, multimode or multicore elements using special fibers and multiplexers are introduced, along with the recent developments in SDM amplifiers, opto-electronic sources and detection units of sensing systems. The examples of SDM-based sensing systems not only include Brillouin optical time-domain reflectometry or Brillouin optical time-domain analysis (BOTDR/BOTDA using few-mode fibers (FMF and the multicore fiber (MCF based integrated fiber Bragg grating (FBG sensors, but also involve the widely used components with their whole information used in the full multimode constructions, such as the whispering gallery modes for fiber profiling and chemical species measurements, the screw/twisted modes for examining water quality, as well as the optical beam shaping to improve cantilever deflection measurements. Besides, the various applications of SDM sensors, the cost efficiency issue, as well as how these complex mode multiplexing techniques might improve the standard fiber-optic sensor approaches using single-mode fibers (SMF and photonic crystal fibers (PCF have also been summarized. Finally, we conclude with a prospective outlook for the opportunities and challenges of

  3. Advanced Spatial-Division Multiplexed Measurement Systems Propositions-From Telecommunication to Sensing Applications: A Review.

    Science.gov (United States)

    Weng, Yi; Ip, Ezra; Pan, Zhongqi; Wang, Ting

    2016-01-01

    The concepts of spatial-division multiplexing (SDM) technology were first proposed in the telecommunications industry as an indispensable solution to reduce the cost-per-bit of optical fiber transmission. Recently, such spatial channels and modes have been applied in optical sensing applications where the returned echo is analyzed for the collection of essential environmental information. The key advantages of implementing SDM techniques in optical measurement systems include the multi-parameter discriminative capability and accuracy improvement. In this paper, to help readers without a telecommunication background better understand how the SDM-based sensing systems can be incorporated, the crucial components of SDM techniques, such as laser beam shaping, mode generation and conversion, multimode or multicore elements using special fibers and multiplexers are introduced, along with the recent developments in SDM amplifiers, opto-electronic sources and detection units of sensing systems. The examples of SDM-based sensing systems not only include Brillouin optical time-domain reflectometry or Brillouin optical time-domain analysis (BOTDR/BOTDA) using few-mode fibers (FMF) and the multicore fiber (MCF) based integrated fiber Bragg grating (FBG) sensors, but also involve the widely used components with their whole information used in the full multimode constructions, such as the whispering gallery modes for fiber profiling and chemical species measurements, the screw/twisted modes for examining water quality, as well as the optical beam shaping to improve cantilever deflection measurements. Besides, the various applications of SDM sensors, the cost efficiency issue, as well as how these complex mode multiplexing techniques might improve the standard fiber-optic sensor approaches using single-mode fibers (SMF) and photonic crystal fibers (PCF) have also been summarized. Finally, we conclude with a prospective outlook for the opportunities and challenges of SDM

  4. Advanced Sine Wave Modulation of Continuous Wave Laser System for Atmospheric CO2 Differential Absorption Measurements

    Science.gov (United States)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.

    2014-01-01

    NASA Langley Research Center in collaboration with ITT Exelis have been experimenting with Continuous Wave (CW) laser absorption spectrometer (LAS) as a means of performing atmospheric CO2 column measurements from space to support the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission.Because range resolving Intensity Modulated (IM) CW lidar techniques presented here rely on matched filter correlations, autocorrelation properties without side lobes or other artifacts are highly desirable since the autocorrelation function is critical for the measurements of lidar return powers, laser path lengths, and CO2 column amounts. In this paper modulation techniques are investigated that improve autocorrelation properties. The modulation techniques investigated in this paper include sine waves modulated by maximum length (ML) sequences in various hardware configurations. A CW lidar system using sine waves modulated by ML pseudo random noise codes is described, which uses a time shifting approach to separate channels and make multiple, simultaneous online/offline differential absorption measurements. Unlike the pure ML sequence, this technique is useful in hardware that is band pass filtered as the IM sine wave carrier shifts the main power band. Both amplitude and Phase Shift Keying (PSK) modulated IM carriers are investigated that exibit perfect autocorrelation properties down to one cycle per code bit. In addition, a method is presented to bandwidth limit the ML sequence based on a Gaussian filter implemented in terms of Jacobi theta functions that does not seriously degrade the resolution or introduce side lobes as a means of reducing aliasing and IM carrier bandwidth.

  5. Effects of Black Carbon on Climate: Advances in Measurement and Modeling

    Science.gov (United States)

    Kondo, Y.

    2015-04-01

    Black carbon (BC) particles are non-spherical agglomerates consisting of hundreds or thousands of graphitic carbon spherules the diameters of which are about 15-50 nm. The spherules are graphitic in their molecular states and are, thus, strongly light-absorbing. BC particles are emitted by the incomplete combustion of carbon-based fossil fuels and biomass. BC mass in the atmosphere resides in agglomerates typically between 100 and 600 nm in diameter. They influence the global radiation budget by strongly absorbing solar radiation in the visible wavelengths and by changing the albedo of snow through deposition. Radiative forcing (RF) of BC is defined as the change in net radiative flux at the top of the atmosphere in W m-2 due to a change of BC between the pre-industrial time and present-day periods. The instantaneous direct radiative forcing of airborne BC particles (BC DRF), which does not include climate feedbacks, is determined by their absorption cross sections and spatial distributions. The distributions of BC are, in turn, controlled by its emission, dynamical transport, and loss during transport. The absorption cross section of BC is controlled by its optical properties (i.e., refractive index) and microphysical properties (size distribution, morphology, and mixing state). Because it is crucial to characterize these parameters, we first developed techniques to measure them accurately. Newly-developed BC measurement technologies constitute the firm basis of our studies. The techniques were applied to laboratory experiments and field observations of BC particles in air and rainwater. We also developed regional scale three-dimensional (3D) models to quantitatively interpret the observational results. One of the models calculates BC aging and optical/radiative processes explicitly without parameterizations. The reliable field measurements and model calculations of BC has enabled an improved understanding of the physical and chemical processes that control the

  6. Comparison of advanced Arctic Ocean model sea ice fields to satellite derived measurements

    OpenAIRE

    Dimitriou, David S.

    1998-01-01

    Numerical models have proven integral to the study of climate dynamics. Sea ice models are critical to the improvement of general circulation models used to study the global climate. The object of this study is to evaluate a high resolution ice-ocean coupled model by comparing it to derived measurements from SMMR and SSM/I satellite observations. Utilized for this study was the NASA Goddard Space Flight (GSFC) Sea Ice Concentration Data Set from the National Snow and Ice Data Center. Using an...

  7. Discrete event simulation methods applied to advanced importance measures of repairable components in multistate network flow systems

    International Nuclear Information System (INIS)

    Discrete event models are frequently used in simulation studies to model and analyze pure jump processes. A discrete event model can be viewed as a system consisting of a collection of stochastic processes, where the states of the individual processes change as results of various kinds of events occurring at random points of time. We always assume that each event only affects one of the processes. Between these events the states of the processes are considered to be constant. In the present paper we use discrete event simulation in order to analyze a multistate network flow system of repairable components. In order to study how the different components contribute to the system, it is necessary to describe the often complicated interaction between component processes and processes at the system level. While analytical considerations may throw some light on this, a simulation study often allows the analyst to explore more details. By producing stable curve estimates for the development of the various processes, one gets a much better insight in how such systems develop over time. These methods are particulary useful in the study of advanced importancez measures of repairable components. Such measures can be very complicated, and thus impossible to calculate analytically. By using discrete event simulations, however, this can be done in a very natural and intuitive way. In particular significant differences between the Barlow–Proschan measure and the Natvig measure in multistate network flow systems can be explored

  8. Surface renewal: an advanced micrometeorological method for measuring and processing field-scale energy flux density data.

    Science.gov (United States)

    McElrone, Andrew J; Shapland, Thomas M; Calderon, Arturo; Fitzmaurice, Li; Paw U, Kyaw Tha; Snyder, Richard L

    2013-01-01

    Advanced micrometeorological methods have become increasingly important in soil, crop, and environmental sciences. For many scientists without formal training in atmospheric science, these techniques are relatively inaccessible. Surface renewal and other flux measurement methods require an understanding of boundary layer meteorology and extensive training in instrumentation and multiple data management programs. To improve accessibility of these techniques, we describe the underlying theory of surface renewal measurements, demonstrate how to set up a field station for surface renewal with eddy covariance calibration, and utilize our open-source turnkey data logger program to perform flux data acquisition and processing. The new turnkey program returns to the user a simple data table with the corrected fluxes and quality control parameters, and eliminates the need for researchers to shuttle between multiple processing programs to obtain the final flux data. An example of data generated from these measurements demonstrates how crop water use is measured with this technique. The output information is useful to growers for making irrigation decisions in a variety of agricultural ecosystems. These stations are currently deployed in numerous field experiments by researchers in our group and the California Department of Water Resources in the following crops: rice, wine and raisin grape vineyards, alfalfa, almond, walnut, peach, lemon, avocado, and corn. PMID:24378712

  9. Recent advances in measurement of the water vapour continuum in the far-infrared spectral region.

    Science.gov (United States)

    Green, Paul D; Newman, Stuart M; Beeby, Ralph J; Murray, Jonathan E; Pickering, Juliet C; Harries, John E

    2012-06-13

    We present a new derivation of the foreign-broadened water vapour continuum in the far-infrared (far-IR) pure rotation band between 24 μm and 120 μm (85-420 cm(-1)) from field data collected in flight campaigns of the Continuum Absorption by Visible and IR radiation and Atmospheric Relevance (CAVIAR) project with Imperial College's Tropospheric Airborne Fourier Transform Spectrometer (TAFTS) far-IR spectro-radiometer instrument onboard the Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft; and compare this new derivation with those recently published in the literature in this spectral band. This new dataset validates the current Mlawer-Tobin-Clough-Kneizys-Davies (MT-CKD) 2.5 model parametrization above 300 cm(-1), but indicates the need to strengthen the parametrization below 300 cm(-1), by up to 50 per cent at 100 cm(-1). Data recorded at a number of flight altitudes have allowed measurements within a wide range of column water vapour environments, greatly increasing the sensitivity of this analysis to the continuum strength. PMID:22547236

  10. Measurement of fission cross-section of actinides at n_TOF for advanced nuclear reactors

    CERN Document Server

    Calviani, Marco; Montagnoli, G; Mastinu, P

    2009-01-01

    The subject of this thesis is the determination of high accuracy neutron-induced fission cross-sections of various isotopes - all of which radioactive - of interest for emerging nuclear technologies. The measurements had been performed at the CERN neutron time-of-flight facility n TOF. In particular, in this work, fission cross-sections on 233U, the main fissile isotope of the Th/U fuel cycle, and on the minor actinides 241Am, 243Am and 245Cm have been analyzed. Data on these isotopes are requested for the feasibility study of innovative nuclear systems (ADS and Generation IV reactors) currently being considered for energy production and radioactive waste transmutation. The measurements have been performed with a high performance Fast Ionization Chamber (FIC), in conjunction with an innovative data acquisition system based on Flash-ADCs. The first step in the analysis has been the reconstruction of the digitized signals, in order to extract the information required for the discrimination between fission fragm...

  11. Advancement in polarimetric glucose sensing: simulation and measurement of birefringence properties of cornea

    Science.gov (United States)

    Malik, Bilal H.; Coté, Gerard L.

    2011-03-01

    Clinical guidelines dictate that frequent blood glucose monitoring in diabetic patients is critical towards proper management of the disease. Although, several different types of glucose monitors are now commercially available, most of these devices are invasive, thereby adversely affecting patient compliance. To this end, optical polarimetric glucose sensing through the eye has been proposed as a potential noninvasive means to aid in the control of diabetes. Arguably, the most critical and limiting factor towards successful application of such a technique is the time varying corneal birefringence due to eye motion artifact. We present a spatially variant uniaxial eye model to serve as a tool towards better understanding of the cornea's birefringence properties. The simulations show that index-unmatched coupling of light is spatially limited to a smaller range when compared to the index-matched situation. Polarimetric measurements on rabbits' eyes indicate relative agreement between the modeled and experimental values of corneal birefringence. In addition, the observed rotation in the plane of polarized light for multiple wavelengths demonstrates the potential for using a dual-wavelength polarimetric approach to overcome the noise due to timevarying corneal birefringence. These results will ultimately aid us in the development of an appropriate eye coupling mechanism for in vivo polarimetric glucose measurements.

  12. New approach for measuring 3D space by using Advanced SURF Algorithm

    International Nuclear Information System (INIS)

    The nuclear disasters compared to natural disaster create a more extreme condition for analyzing and evaluating. In this paper, measuring 3D space and modeling was studied by simple pictures in case of small sand dune. The suggested method can be used for the acquisition of spatial information by robot at the disaster area. As a result, these data are helpful for identify the damaged part, degree of damage and determination of recovery sequences. In this study we are improving computer vision algorithm for 3-D geo spatial information measurement. And confirm by test. First, we can get noticeable improvement of 3-D geo spatial information result by SURF algorithm and photogrammetry surveying. Second, we can confirm not only decrease algorithm running time, but also increase matching points through epi polar line filtering. From the study, we are extracting 3-D model by open source algorithm and delete miss match point by filtering method. However on characteristic of SURF algorithm, it can't find match point if structure don't have strong feature. So we will need more study about find feature point if structure don't have strong feature

  13. New approach for measuring 3D space by using Advanced SURF Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Youm, Minkyo; Min, Byungil; Suh, Kyungsuk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Backgeun [Sungkyunkwan Univ., Suwon (Korea, Republic of)

    2013-05-15

    The nuclear disasters compared to natural disaster create a more extreme condition for analyzing and evaluating. In this paper, measuring 3D space and modeling was studied by simple pictures in case of small sand dune. The suggested method can be used for the acquisition of spatial information by robot at the disaster area. As a result, these data are helpful for identify the damaged part, degree of damage and determination of recovery sequences. In this study we are improving computer vision algorithm for 3-D geo spatial information measurement. And confirm by test. First, we can get noticeable improvement of 3-D geo spatial information result by SURF algorithm and photogrammetry surveying. Second, we can confirm not only decrease algorithm running time, but also increase matching points through epi polar line filtering. From the study, we are extracting 3-D model by open source algorithm and delete miss match point by filtering method. However on characteristic of SURF algorithm, it can't find match point if structure don't have strong feature. So we will need more study about find feature point if structure don't have strong feature.

  14. Advances on the Measure of Judgment and Meaning of the Product for Brazil

    Directory of Open Access Journals (Sweden)

    Solange Alfinito

    2012-09-01

    Full Text Available The purpose of this paper was the development a measure of judgment and meaning of the product valid for Brazilian consumers. It consisted in a two-stage study including both qualitative and quantitative approaches. In the qualitative stage, focus groups with 16 Brazilian participants allowed the generation of 40 items for a new scale of judgment and meaning of the product. After semantic validation and expert analysis, the found items composed a questionnaire administered to 684 participants in a paper-and-pencil survey. Results suggest that the items performed considerably better when compared to the previous version, indicating their potential of usage not only in Brazil, but also in other countries. The final measure remained with 20 items that were distributed in four factors, as pointed by the literature review. Two factors are related to judgment types (piecemeal and affective, whilst the other two are related to meaning types (utilitarian and symbolic. Additional results, as expected, showed that product's utilitarian meaning is positively correlated to a piecemeal judgment, whereas symbolic meaning is positively related to affective judgment. Managerial implications for marketing, and future research directions are proposed.

  15. Advanced Receiver Design for Mitigating Multiple RF Impairments in OFDM Systems: Algorithms and RF Measurements

    Directory of Open Access Journals (Sweden)

    Adnan Kiayani

    2012-01-01

    Full Text Available Direct-conversion architecture-based orthogonal frequency division multiplexing (OFDM systems are troubled by impairments such as in-phase and quadrature-phase (I/Q imbalance and carrier frequency offset (CFO. These impairments are unavoidable in any practical implementation and severely degrade the obtainable link performance. In this contribution, we study the joint impact of frequency-selective I/Q imbalance at both transmitter and receiver together with channel distortions and CFO error. Two estimation and compensation structures based on different pilot patterns are proposed for coping with such impairments. The first structure is based on preamble pilot pattern while the second one assumes a sparse pilot pattern. The proposed estimation/compensation structures are able to separate the individual impairments, which are then compensated in the reverse order of their appearance at the receiver. We present time-domain estimation and compensation algorithms for receiver I/Q imbalance and CFO and propose low-complexity algorithms for the compensation of channel distortions and transmitter IQ imbalance. The performance of the compensation algorithms is investigated with computer simulations as well as with practical radio frequency (RF measurements. The performance results indicate that the proposed techniques provide close to the ideal performance both in simulations and measurements.

  16. Advances in the simulation and automated measurement of well-sorted granular material: 1. Simulation

    Science.gov (United States)

    Daniel Buscombe; Rubin, David M.

    2012-01-01

    1. In this, the first of a pair of papers which address the simulation and automated measurement of well-sorted natural granular material, a method is presented for simulation of two-phase (solid, void) assemblages of discrete non-cohesive particles. The purpose is to have a flexible, yet computationally and theoretically simple, suite of tools with well constrained and well known statistical properties, in order to simulate realistic granular material as a discrete element model with realistic size and shape distributions, for a variety of purposes. The stochastic modeling framework is based on three-dimensional tessellations with variable degrees of order in particle-packing arrangement. Examples of sediments with a variety of particle size distributions and spatial variability in grain size are presented. The relationship between particle shape and porosity conforms to published data. The immediate application is testing new algorithms for automated measurements of particle properties (mean and standard deviation of particle sizes, and apparent porosity) from images of natural sediment, as detailed in the second of this pair of papers. The model could also prove useful for simulating specific depositional structures found in natural sediments, the result of physical alterations to packing and grain fabric, using discrete particle flow models. While the principal focus here is on naturally occurring sediment and sedimentary rock, the methods presented might also be useful for simulations of similar granular or cellular material encountered in engineering, industrial and life sciences.

  17. Measurement of the Thermal Conductivity of Nano-fluid for the advanced heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Shin; Lee, Jae Young [Handong Global University, Pohang (Korea, Republic of)

    2006-07-01

    The enhancement of heat transfer has been widely investigated to provide an effective way to cool down the modern electronic devices. Among the methods, Choi discovered a large amount of increase of thermal conductivity when nano sized particles were suspended in the fluid. It was first introduced by Masuda as a potential heat transfer enhancement media and since then, many researchers have investigated the nanofluids phenomena. Many researchers reported in substantially increasing the thermal conductivity of fluids by adding small amounts of suspended metallic oxide nanoparticles of Cu, CuO, Al{sub 2}O{sub 3} and carbon nano-tube. Masuda reported that the use Al{sub 2}O{sub 3} particles of 13 nm at 4.3% volume fraction increased the thermal conductivity of water by 30%. For carbon nano-tube nanofluids shows even greater enhancement. Xie et al. measured the thermal conductivity of carbon nanotube suspended in organic liquid and water with the enhancement of 10-20%. Recent studies have shown that inserting just 1% concentration of nano-particles sometimes increases about maximum 40% of thermal conductivity. However, there is still few experiments done for TiO{sub 2} nanoparticles. Murshed found that the enhancement of thermal conductivity shows about 30% with 15nm in diameter with maximum 5% volume fraction and about 40% enhancement is observed using 15nmD x 40nm rod-shape nanoparticles of TiO{sub 2}. The present experimental shows that a 20% maximum of enhancement in thermal conductivity using TiO{sub 2} of 10nm for 3% volume fraction. Theses results are compared with previous research with theoretical models. As the first step of the heat transfer of nano fluid, the theories related to the nanofluids investigations have been discussed to understand not only the mechanism of thermal conductivity measurement, but also to understand the nanofluid behavior. Colloidal stability is the key to the nanofluid considered to prevent the agglomeration. Through the results, we

  18. Advanced Scintillator-Based Compton Telescope for Solar Flare Gamma-Ray Measurements

    Science.gov (United States)

    Ryan, James Michael; Bloser, Peter; McConnell, Mark; Legere, Jason; Bancroft, Christopher; Murphy, Ronald; de Nolfo, Georgia

    2015-04-01

    A major goal of future Solar and Heliospheric Physics missions is the understanding of the particle acceleration processes taking place on the Sun. Achieving this understanding will require detailed study of the gamma-ray emission lines generated by accelerated ions in solar flares. Specifically, it will be necessary to study gamma-ray line ratios over a wide range of flare intensities, down to small C-class flares. Making such measurements over such a wide dynamic range, however, is a serious challenge to gamma-ray instrumentation, which must deal with large backgrounds for faint flares and huge counting rates for bright flares. A fast scintillator-based Compton telescope is a promising solution to this instrumentation challenge. The sensitivity of Compton telescopes to solar flare gamma rays has already been demonstrated by COMPTEL, which was able to detect nuclear emission from a C4 flare, the faintest such detection to date. Modern fast scintillators, such as LaBr3, and CeBr3, are efficient at stopping MeV gamma rays, have sufficient energy resolution (4% or better above 0.5 MeV) to resolve nuclear lines, and are fast enough (~15 ns decay times) to record at very high rates. When configured as a Compton telescope in combination with a modern organic scintillator, such as p-terphenyl, sub-nanosecond coincidence resolving time allows dramatic suppression of background via time-of-flight (ToF) measurements, allowing both faint and bright gamma-ray line flares to be measured. The use of modern light readout devices, such as silicon photomultipliers (SiPMs), eliminates passive mass and permits a more compact, efficient instrument. We have flown a prototype Compton telescope using modern fast scintillators with SiPM readouts on a balloon test flight, achieving good ToF and spectroscopy performance. A larger balloon-borne instrument is currently in development. We present our test results and estimates of the solar flare sensitivity of a possible full-scale instrument

  19. Advanced terahertz electric near-field measurements at sub-wavelength diameter metallic apertures.

    Science.gov (United States)

    Adam, A J L; Brok, J M; Seo, M A; Ahn, K J; Kim, D S; Kang, J H; Park, Q H; Nagel, M; Planken, P C M

    2008-05-12

    Using terahertz-light excitation, we have measured with sub-wavelength spatial, and sub-cycle temporal resolution the time- and frequency-dependent electric-field and surface-charge density in the vicinity of small metallic holes. In addition to a singularity like concentration of the electric field near the hole edges, we observe, that holes can act as differential operators whose near-field output is the time-derivative of the incident electric field. Our results confirm the well-known predictions made by Bouwkamp, Philips Res. Rep. 5, 321-332 (1950), and reveal, with unprecedented detail, what physically happens when light passes through a small hole. PMID:18545445

  20. Advanced sine wave modulation of continuous wave laser system for atmospheric CO2 differential absorption measurements

    CERN Document Server

    Campbell, Joel F; Nehrir, Amin R

    2014-01-01

    A CW lidar system using sine waves modulated by ML pseudo random noise codes is described, which uses a time shifting approach to separate online and offline wavelength transmitted and received channels and make multiple, simultaneous online/offline differential absorption measurements. Unlike the pure ML sequence, this technique is useful in hardware that is band pass filtered as the IM sine wave carrier shifts the main power band. Both amplitude and Phase Shift Keying (PSK) modulated IM carriers are investigated that exibit optimal autocorrelation properties down to one cycle per code bit with zero off mainlobe values to within numerical precision. In addition, a method is presented to bandwidth limit the ML sequence based on a filter implemented in terms of Jacobi theta functions that does not significantly degrade the resolution or introduce side lobes as a means of reducing aliasing and IM carrier bandwidth.

  1. Measurement and calculation of the 233Pa fission cross-section for advanced fuel cycles

    International Nuclear Information System (INIS)

    The energy dependence of the neutron-induced fission cross-section of 233Pa has been measured directly for the first time from the fission threshold up to 8.5 MeV. This fission cross-section is a key ingredient in feasibility studies on fast reactors and accelerator driven systems based on the Th-U fuel cycle. The results are at strong variance with the existing evaluations. The new experimental data give lower cross-section values and resolve the question about the threshold energy. Additionally a new theoretical calculation of the reaction cross-section has been performed with the statistical model code STATIS, showing a very good agreement with the experimental data. (authors)

  2. Advances in Understanding Global Water Cycle with Advent of Global Precipitation Measurement (GPM) Mission

    Science.gov (United States)

    Smith, Eric A.; Starr, David (Technical Monitor)

    2002-01-01

    Within this decade the internationally organized Global Precipitation Measurement (GPM) Mission will take an important step in creating a global precipitation observing system from space. One perspective for understanding the nature of GPM is that it will be a hierarchical system of datastreams beginning with very high caliber combined dual frequency radar/passive microwave (PMW) rain-radiometer retrievals, to high caliber PMW rain-radiometer only retrievals, and then on to blends of the former datastreams with additional lower-caliber PMW-based and IR-based rain retrievals. Within the context of the now emerging global water & energy cycle (GWEC) programs of a number of research agencies throughout the world, GPM serves as a centerpiece space mission for improving our understanding of the global water cycle from a global measurement perspective. One of the salient problems within our current understanding of the global water and energy cycle is determining whether a change in the rate of the water cycle is accompanying changes in climate, e.g., climate warming. As there are a number of ways in which to define a rate-change of the global water cycle, it is not entirely clear as to what constitutes such a determination. This paper presents an overview of the GPM Mission and how its observations can be used within the framework of the oceanic and continental water budget equations to determine whether a given perturbation in precipitation is indicative of an actual rate change in the global water cycle, consistent with required responses in water storage and/or water flux transport processes, or whether it is the natural variability of a fixed rate cycle.

  3. Conservation of reactive electromagnetic energy in reactive time

    CERN Document Server

    Kaiser, Gerald

    2015-01-01

    The complex Poynting theorem (CPT) is extended to a canonical time-scale domain $(t,s)$. Time-harmonic phasors are replaced by the positive-frequency parts of general fields, which extend analytically to complex time $t+is$, with $s>0$ interpreted as a time resolution scale. The real part of the extended CPT gives conservation in $t$ of a time-averaged field energy, and its imaginary part gives conservation in $s$ of a time-averaged reactive energy. In both cases, the averaging windows are determined by a Cauchy kernel of width $\\Delta t\\sim \\pm s$. This completes the time-harmonic CPT, whose imaginary part is generally supposed to be vaguely `related to' reactive energy without giving a conservation law, or even an expression, for the latter. The interpretation of $s$ as reactive time, tracking the leads and lags associated with stored capacitative and inductive energy, gives a simple explanation of the volt-ampere reactive (var) unit measuring reactive power: a var is simply one Joule per reactive second. T...

  4. Advances in hardware, software, and automation for 193nm aerial image measurement systems

    Science.gov (United States)

    Zibold, Axel M.; Schmid, R.; Seyfarth, A.; Waechter, M.; Harnisch, W.; Doornmalen, H. v.

    2005-05-01

    A new, second generation AIMS fab 193 system has been developed which is capable of emulating lithographic imaging of any type of reticles such as binary and phase shift masks (PSM) including resolution enhancement technologies (RET) such as optical proximity correction (OPC) or scatter bars. The system emulates the imaging process by adjustment of the lithography equivalent illumination and imaging conditions of 193nm wafer steppers including circular, annular, dipole and quadrupole type illumination modes. The AIMS fab 193 allows a rapid prediction of wafer printability of critical mask features, including dense patterns and contacts, defects or repairs by acquiring through-focus image stacks by means of a CCD camera followed by quantitative image analysis. Moreover the technology can be readily applied to directly determine the process window of a given mask under stepper imaging conditions. Since data acquisition is performed electronically, AIMS in many applications replaces the need for costly and time consuming wafer prints using a wafer stepper/ scanner followed by CD SEM resist or wafer analysis. The AIMS fab 193 second generation system is designed for 193nm lithography mask printing predictability down to the 65nm node. In addition to hardware improvements a new modular AIMS software is introduced allowing for a fully automated operation mode. Multiple pre-defined points can be visited and through-focus AIMS measurements can be executed automatically in a recipe based mode. To increase the effectiveness of the automated operation mode, the throughput of the system to locate the area of interest, and to acquire the through-focus images is increased by almost a factor of two in comparison with the first generation AIMS systems. In addition a new software plug-in concept is realised for the tools. One new feature has been successfully introduced as "Global CD Map", enabling automated investigation of global mask quality based on the local determination of

  5. Advances in regional cerebral blood flow measurement and patho-physiological analysis by SPECT

    International Nuclear Information System (INIS)

    Recently, two kinds of radiopharmaceuticals have been developed to represent the biodistribution of regional blood flow, which are N-isopropyl-p-[123I]iodoamphetamine (IMP) and 99mTc-hexamethylpropylene-amine-oxime (HMPAO). In this paper, I mentioned the charachteristics, clinical usage and imitation of these two radiolabeled agents. The advantage of 123I-IMP is that it has high first-pass extraction and long retention in brain tissue, hence it can be used to measure the absolute values of regional cerebral blood flow (rCBF). When the kinetics of 123I-IMP is assumed to be freely diffusible in the brain, its behavior is considered by 2-compartment model, especially which is assumed by the microsphere model in the early period after the i.v. injection of 123I-IMP. Comparing the rCBF measured by 123I-IMP with that by 133Xe inhalation SPECT method, we have to consider PaCO2 when both SPECT studies are performed, because PaCO2 is one of the big factors which make effects on the alteration of rCBF. 123I-IMP has an interesting character of the redistribution phenomenon which represrent the degree of ischemia in the cerebrovascular diseases. Distribution volume is one of the important information obtained by the SPECT study with 123I-IMP, which represent the degree of retention, i.e. binding potential of 123I-IMP in the brain tissue. I introduced the usage of the distribution volume of 123I-IMP, which was constructed in the rate constant square method, in the differential diagnosis of Parkinson's disease and progressive supranuclear palsy (PSP). The clinical usage of 99m Tc-HMPAT was mentioned, the advantage of which is the rapid fixation in the brain tissue and the distribution does not change for long time after the i.v. injection. Hence 99mTc-HMPAO is used for the diagnosis of epileptic foci and certain loading tests such as balloon occlusion test, postural test and acetazolamide loading test. (author)

  6. Advances in regional cerebral blood flow measurement and patho-physiological analysis by SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Odano, Ikuo (Niigata Univ. (Japan). School of Medicine)

    1994-04-01

    Recently, two kinds of radiopharmaceuticals have been developed to represent the biodistribution of regional blood flow, which are N-isopropyl-p-[[sup 123]I]iodoamphetamine (IMP) and [sup 99m]Tc-hexamethylpropylene-amine-oxime (HMPAO). The charachteristics, clinical usage and imitation of these two radiolabeled agents are discussed. The advantage of [sup 123]I-IMP is that it has high first-pass extraction and long retention in brain tissue, hence it can be used to measure the absolute values of regional cerebral blood flow (rCBF). When the kinetics of [sup 123]I-IMP is assumed to be freely diffusible in the brain, its behavior is considered by 2-compartment model, especially which is assumed by the microsphere model in the early period after the i.v. injection of [sup 123]I-IMP. Comparing the rCBF measured by [sup 123]I-IMP with that by [sup 133]Xe inhalation SPECT method, we have to consider PaCO[sub 2] when both SPECT studies are performed, because PaCO[sub 2] is one of the big factors which make effects on the alteration of rCBF. [sup 123]I-IMP has an interesting character of the redistribution phenomenon which represrent the degree of ischemia in the cerebrovascular diseases. Distribution volume an important datum obtained by the SPECT study with [sup 123]I-IMP, which represent the degree of retention, i.e. binding potential of [sup 123]I-IMP in the brain tissue. I introduced the usage of the distribution volume of [sup 123]I-IMP, which was constructed in the rate constant square method, in the differential diagnosis of Parkinson's disease and progressive supranuclear palsy (PSP). The clinical usage of [sup 99m] Tc-HMPAT was mentioned, the advantage of which is the rapid fixation in the brain tissue and the distribution does not change for long time after the i.v. injection. Hence [sup 99m]Tc-HMPAO is used for the diagnosis of epileptic foci and certain loading tests such as balloon occlusion test, postural test and acetazolamide loading test. (author).

  7. Design and characterization of a 32-channel heterodyne radiometer for electron cyclotron emission measurements on experimental advanced superconducting tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Han, X.; Liu, X.; Liu, Y., E-mail: liuyong@ipp.ac.cn; Li, E. Z.; Hu, L. Q.; Gao, X. [Institution of Plasma Physics, Chinese Academy of Sciences, P. O. Box 1126, Hefei, Anhui 230031 (China); Domier, C. W.; Luhmann, N. C. [Department of Electrical and Computer Engineering, University of California, Davis, California 95616 (United States)

    2014-07-15

    A 32-channel heterodyne radiometer has been developed for the measurement of electron cyclotron emission (ECE) on the experimental advanced superconducting tokamak (EAST). This system collects X-mode ECE radiation spanning a frequency range of 104–168 GHz, where the frequency coverage corresponds to a full radial coverage for the case with a toroidal magnetic field of 2.3 T. The frequency range is equally spaced every 2 GHz from 105.1 to 167.1 GHz with an RF bandwidth of ∼500 MHz and the video bandwidth can be switched among 50, 100, 200, and 400 kHz. Design objectives and characterization of the system are presented in this paper. Preliminary results for plasma operation are also presented.

  8. Gas Evolution Measurements on Reactor Irradiated Advanced Fusion Magnet Insulation Systems

    Science.gov (United States)

    Humer, K.; Seidl, E.; Weber, H. W.; Fabian, P. E.; Feucht, S. W.; Munshi, N. A.

    2006-03-01

    Glass-fiber reinforced plastics (GFRPs) are used as insulation materials for the superconducting magnet coils of the International Thermonuclear Experimental Reactor (ITER). The radiation environment present at the magnet location will lead to gas production, swelling and weight loss of the laminate, which may result in a pressure rise combined with undefined stresses on the magnet coil casing. Consequently, these effects are important parameters for the engineering and design criteria of superconducting magnet coil structures. In this study, newly developed epoxy and cyanate-ester (CE) based S2-glass fiber reinforced insulation systems were irradiated at ambient temperature in the TRIGA-Mark II reactor (Vienna) to a fast neutron fluence of 1 and 5×1021 m-2 (E>0.1 MeV) prior to measurements of gas evolution, swelling and weight loss. The CE based laminates show increased radiation resistance, i.e. less gas evolution. The highest radiation hardness up to the highest dose was observed in a pure CE system. In addition, the effects of swelling and weight loss are either negligible or less pronounced for all systems. The results prove that the newly developed CE based composites are serious candidate insulation systems for ITER.

  9. Modeling of beam dynamics and comparison with measurements for the advanced light source (ALS)

    International Nuclear Information System (INIS)

    The data collected during the April 1993 ALS commissioning period includes the measured closed orbit as a function of either dipole corrector strength or RF frequency, in addition to turn by turn data for the betatron motion as a function of RF frequency. The sensitivity matrix and dispersion function are extracted from this data by taking differences between orbits, whereas lattice functions and chromaticity are obtained using Fourier analysis and interpolation techniques. Lattice functions are also derived from the sensitivity matrix using a nonlinear least squares fit. The results are then compared with numerical simulations and analytical formulas derived using maps and a Lie product normal form approach. The Lie method is preferred to traditional Hamiltonian perturbation theory because it is easily generalized to the nonlinear case and also leads to a significantly reduced amount of algebra. The computer modeling uses state of the art single particle beam dynamics tools including: Tracy-2, DA-pascal, DA-Library and Lie-Lib. In particular, DA-Pascal allows for a straightforward implementation of a Krakpot style code, based on the open-quote exactclose quotes single particle local Hamiltonian and a symplectic integrator, necessary for correct modeling of the nonlinear chromaticity

  10. Channel Strain in Advanced Complementary Metal-Oxide-Semiconductor Field Effect Transistors Measured Using Nano-Beam Electron Diffraction

    Science.gov (United States)

    Toda, Akio; Nakamura, Hidetatsu; Fukai, Toshinori; Ikarashi, Nobuyuki

    2008-04-01

    Using high-precision nano-beam electron diffraction (NBD), we clarified the influences of stress liner and the stress of shallow trench isolation on channel strain in advanced metal-oxide-semiconductor field effect transistors (MOSFETs). For systematic strain measurements, we improved the precision of NBD by observing large reciprocal lattice vectors under appropriate diffraction conditions. The absolute value of the channel strain increases by stress liner as gate length decreases, although the drive current increase due to stress liner saturates at a shorter channel length. The normal strain in the gate length direction is inversely proportional to the distance from the gate electrode to the shallow trench isolation (STI). Furthermore, the relationship between measured channel strain induced by STI and drive current change was shown. The drive current of n- and p-MOSFET changes about 5% with 2×10-3 channel strain variation. This result suggests that reducing the shallow trench isolation stress is effective for controlling the drive current change, depending on the active region layout. We conclude that the experimental measurement of channel strain is necessary for device and circuit design.

  11. Advances In Global Aerosol Modeling Applications Through Assimilation of Satellite-Based Lidar Measurements

    Science.gov (United States)

    Campbell, James; Hyer, Edward; Zhang, Jianglong; Reid, Jeffrey; Westphal, Douglas; Xian, Peng; Vaughan, Mark

    2010-05-01

    Modeling the instantaneous three-dimensional aerosol field and its downwind transport represents an endeavor with many practical benefits foreseeable to air quality, aviation, military and science agencies. The recent proliferation of multi-spectral active and passive satellite-based instruments measuring aerosol physical properties has served as an opportunity to develop and refine the techniques necessary to make such numerical modeling applications possible. Spurred by high-resolution global mapping of aerosol source regions, and combined with novel multivariate data assimilation techniques designed to consider these new data streams, operational forecasts of visibility and aerosol optical depths are now available in near real-time1. Active satellite-based aerosol profiling, accomplished using lidar instruments, represents a critical element for accurate analysis and transport modeling. Aerosol source functions, alone, can be limited in representing the macrophysical structure of injection scenarios within a model. Two-dimensional variational (2D-VAR; x, y) assimilation of aerosol optical depth from passive satellite observations significantly improves the analysis of the initial state. However, this procedure can not fully compensate for any potential vertical redistribution of mass required at the innovation step. The expense of an inaccurate vertical analysis of aerosol structure is corresponding errors downwind, since trajectory paths within successive forecast runs will likely diverge with height. In this paper, the application of a newly-designed system for 3D-VAR (x,y,z) assimilation of vertical aerosol extinction profiles derived from elastic-scattering lidar measurements is described [Campbell et al., 2009]. Performance is evaluated for use with the U. S. Navy Aerosol Analysis and Prediction System (NAAPS) by assimilating NASA/CNES satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) 0.532 μm measurements [Winker et al., 2009

  12. Advances in structural damage assessment using strain measurements and invariant shape descriptors

    Science.gov (United States)

    Patki, Amol Suhas

    to the area surrounding the damage, while damage in orthotropic materials tends to have more global repercussions. This calls for analysis of full-field strain distributions adding to the complexity of post-damage life estimation. This study explores shape descriptors used in the field of medical imagery, military targeting and biometric recognition for obtaining a qualitative and quantitative comparison between full-field strain data recorded from damaged composite panels using sophisticated experimental techniques. These descriptors are capable of decomposing images with 103 to 106 pixels into a feature vector with only a few hundred elements. This ability of shape descriptors to achieve enormous reduction in strain data, while providing unique representation, makes them a practical choice for the purpose of structural damage assessment. Consequently, it is relatively easy to statistically compare the shape descriptors of the full-field strain maps using similarity measures rather than the strain maps themselves. However, the wide range of geometric and design features in engineering components pose difficulties in the application of traditional shape description techniques. Thus a new shape descriptor is developed which is applicable to a wide range of specimen geometries. This work also illustrates how shape description techniques can be applied to full-field finite element model validations and updating.

  13. Reactive transport benchmarks for subsurface environmental simulation

    Energy Technology Data Exchange (ETDEWEB)

    Steefel, Carl I.; Yabusaki, Steven B.; Mayer, K. U.

    2015-06-01

    Over the last 20 years, we have seen firsthand the evolution of multicomponent reactive transport modeling and the expanding range and increasing complexity of subsurface applications it is being used to address. There is a growing reliance on reactive transport modeling (RTM) to address some of the most compelling issues facing our planet: climate change, nuclear waste management, contaminant remediation, and pollution prevention. While these issues are motivating the development of new and improved capabilities for subsurface environmental modeling using RTM (e.g., biogeochemistry from cell-scale physiology to continental-scale terrestrial ecosystems, nonisothermal multiphase conditions, coupled geomechanics), there remain longstanding challenges in characterizing the natural variability of hydrological, biological, and geochemical properties in subsurface environments and limited success in transferring models between sites and across scales. An equally important trend over the last 20 years is the evolution of modeling from a service sought out after data has been collected to a multifaceted research approach that provides (1) an organizing principle for characterization and monitoring activities; (2) a systematic framework for identifying knowledge gaps, developing and integrating new knowledge; and (3) a mechanistic understanding that represents the collective wisdom of the participating scientists and engineers. There are now large multidisciplinary projects where the research approach is model-driven, and the principal product is a holistic predictive simulation capability that can be used as a test bed for alternative conceptualizations of processes, properties, and conditions. Much of the future growth and expanded role for RTM will depend on its continued ability to exploit technological advancements in the earth and environmental sciences. Advances in measurement technology, particularly in molecular biology (genomics), isotope fractionation, and high

  14. Reactivity monitoring in ADS systems

    International Nuclear Information System (INIS)

    Monitoring reactivity in an ADS should be performed on-line with a simple, accurate and robust technique. Within the range of experimental reactor techniques, no single technique can be selected which meet these requirements. Therefore a combination of different techniques has to be chosen in a way that various off-line techniques serve as a calibration for the on-line measurement technique. As an on-line measurement technique, the current/flux reactivity indicator is the most simple and robust solution. It is based on the fact that in a subcritical multiplying medium with a driving source the flux level is proportional to the driving source intensity, hence the beam current, and the reactivity level. However, since the proportionality constant depends on a number of core dependent parameters and detector characteristics, this current-to-flux indicator has to be calibrated on a regular basis. For this calibration, one could benefit from the occurrence of accelerator beam trips to determine the reactivity level in dollars by means of a prompt jump analysis of the flux level change. Hence, the prompt jump reactivity indicator could act as a first calibration tool of the current-to-flux indicator. Since the prompt jump indicator still relies on the value for the effective delayed neutron fraction to determine reactivity level, complementary techniques have to be used to obtain a more accurate determination of the reactivity. Techniques based on reactor noise methods such as RAPJA technique which is combination of the Rossi-alpha method and Prompt jump analysis can be used in this respect. In the future the bi-spectral ratio from the Cf - source driven noise analysis could be used for this purpose. (author)

  15. The responsive approach by the Basel Committee (on Banking Supervision) to regulation: Meta risk regulation, the Internal Ratings Based Approaches and the Advanced Measurement Approaches.

    OpenAIRE

    Ojo, Marianne

    2009-01-01

    The use of complex and sophisticated financial instruments, such as derivatives, in the modern financial environment, has triggered the emergence of new forms of risks. As well as the need to manage such types of risks, this paper investigates developments which have instigated the Basel Committee in developing advanced risk management techniques such as the Internal Ratings Based (IRB) approaches and the Advanced Measurement Approaches (AMA). Developments since the inception of the 1988 Base...

  16. Reactive Kripke semantics

    CERN Document Server

    Gabbay, Dov M

    2013-01-01

    This text offers an extension to the traditional Kripke semantics for non-classical logics by adding the notion of reactivity. Reactive Kripke models change their accessibility relation as we progress in the evaluation process of formulas in the model. This feature makes the reactive Kripke semantics strictly stronger and more applicable than the traditional one. Here we investigate the properties and axiomatisations of this new and most effective semantics, and we offer a wide landscape of applications of the idea of reactivity. Applied topics include reactive automata, reactive grammars, rea

  17. Modeling bidirectional radiance measurements collected by the advanced solid-state array spectroradiometer (ASAS) over Oregon transect conifer forests

    International Nuclear Information System (INIS)

    A geometric-optical model of the bidirectional reflectance of a forest canopy, developed by Li and Strahler, fits observed directional radiance measurements with good accuracy. This model treats the forest cover as a scene of discrete, three-dimensional objects (trees) that are illuminated and viewed from different positions in the hemisphere. The shapes of the objects, their count densities and patterns of placement, are the driving variables, and they condition the mixture of sunlit and shaded objects and background that are observed from a particular viewing direction, given a direction of illumination. This mixture, in turn, controls the brightness apparent to an observer or a radiometric instrument. The Advanced Solid-State Array Spectroradiometer (ASAS) was used to validate this model. This aircraft sensor presently acquires images in 29 spectral bands in the range (465–871 nm) and is pointable fore-and-aft, allowing directional measurements of radiance as a target is approached and imaged at view angles ranging ± 45° from nadir. Through atmospheric correction, ASAS radiances were reduced to bidirectional reflectance factors (BRFs). These were compared to corresponding BRF values computed from the Li-Strahler model using, wherever possible, ground measured component BRFs for calibration. The comparisons showed a good match between the modeled and measured reflectance factors for four of the five Oregon Transect Sites. Thus, the geometric-optical approach provides a realistic model for the bidirectional reflectance distribution function of such natural vegetation canopies. Further modifications are suggested to improve the predicted BRFs and yield still better results. (author)

  18. 25-OH-Vitamin D deficiency and cellular alloimmunity as measured by panel of reactive T cell testing in dialysis patients

    OpenAIRE

    Sawinski, Deirdre; Uribarri, Jaime; Peace, Denise; Yao, Tina; Wauhop, Praeophayom; Trzcinka, Paulina; Ostrow, Katya; Poggio, Emilio D.; Heeger, Peter S.

    2010-01-01

    Primed anti-donor alloreactive T cells are detrimental to transplant outcome, but factors that impact the strength of this immune response prior to transplantation are unknown. We tested peripheral blood mononuclear cells from dialysis patients, against panels of allogeneic, primary B cell lines in a newly standardized IFNγ ELISPOT panel of reactive T cell (PRT) assays. Results were correlated with known alloantibody sensitizing events and other clinical parameters. As 25-OH-vitamin D deficie...

  19. Elastohydrodynamic film thickness measurements with advanced ester, fluorocarbon, and polyphenyl ether lubricants to 589 K (600 F)

    Science.gov (United States)

    Parker, R. J.; Kannel, J. W.

    1971-01-01

    Elastohydrodynamic (EHD) film thicknesses have been measured, by means of an X-ray technique, under conditions that closely simulate the ball-race contact in advanced turbine engine thrust bearings. The experiments were conducted with a rolling-disk machine using disks which yield a contact zone similar to that in the actual bearing. Both the rolling and spinning motions of the ball relative to the race were simulated by the apparatus. Four lubricants were evaluated at temperatures to 600 F and maximum Hertz stresses to 350,000 psi. The X-ray film thickness data correlated well with observations of surface distress (or lack thereof) in full-scale bearing tests with the same lubricants under similar conditions of temperature and load. The predicted variation of film thickness with speed and viscosity as verified, although the magnitude of measured film thickness was generally one-half to one-third of predicted values. An effect of stress greater than predicted was consistently observed in the higher stress range.

  20. Dietary restraint and heightened reactivity to food.

    Science.gov (United States)

    Brunstrom, Jeffrey M; Yates, Heather M; Witcomb, Gemma L

    2004-03-01

    Previously, studies have explored the relationship between dietary behavior and salivary reactivity to food. Despite this, it remains unclear which behaviors are associated with enhanced reactivity. One problem is that measures of behavior have not been compared directly. In particular, it is unclear whether elevated reactivity is associated with measures of dietary restraint or with measures of failed dietary control and a tendency to overeat. To address this problem, we compared the association between salivary reactivity and scores on the subscales of the Three-Factor Eating Questionnaire (restraint, disinhibition, and hunger). Estimates of reactivity were derived from the difference between a baseline saliva measure and a similar measure taken in close proximity to hot pizza. Our second aim was to explore how salivary reactivity changes after a meal. Female participants (N=40) were tested before and after a lunch (cheese sandwiches). All tended to show reactivity to pizza before but not after lunch. No significant differences were associated with the disinhibition or hunger subscales. However, prelunch reactivity was significantly greater in those participants with high scores on the restraint scale. This does not appear to be related to reported levels of hunger before lunch. Rather, it may reveal an intrinsic difference between the reaction of restrained and unrestrained eaters to food. PMID:15059687

  1. Assessing the occurrence of the dibromide radical (Br{sub 2}{sup -{center_dot}}) in natural waters: Measures of triplet-sensitised formation, reactivity, and modelling

    Energy Technology Data Exchange (ETDEWEB)

    De Laurentiis, Elisa; Minella, Marco; Maurino, Valter; Minero, Claudio [Universita degli Studi di Torino, Dipartimento di Chimica, Via P. Giuria 5, 10125 Torino (Italy); Mailhot, Gilles; Sarakha, Mohamed [Clermont Universite, Universite Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, ICCF, F-63171 Aubiere (France); Brigante, Marcello, E-mail: marcello.brigante@univ-bpclermont.fr [Clermont Universite, Universite Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, ICCF, F-63171 Aubiere (France); Vione, Davide, E-mail: davide.vione@unito.it [Universita degli Studi di Torino, Dipartimento di Chimica, Via P. Giuria 5, 10125 Torino (Italy); Universita degli Studi di Torino, Centro Interdipartimentale NatRisk, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy)

    2012-11-15

    The triplet state of anthraquinone-2-sulphonate (AQ2S) is able to oxidise bromide to Br{sup {center_dot}}/Br{sub 2}{sup -{center_dot}}, with rate constant (2-4) Dot-Operator 10{sup 9} M{sup -1} s{sup -1} that depends on the pH. Similar processes are expected to take place between bromide and the triplet states of naturally occurring chromophoric dissolved organic matter ({sup 3}CDOM*). The brominating agent Br{sub 2}{sup -{center_dot}} could thus be formed in natural waters upon oxidation of bromide by both {sup {center_dot}}OH and {sup 3}CDOM*. Br{sub 2}{sup -{center_dot}} would be consumed by disproportionation into bromide and bromine, as well as upon reaction with nitrite and most notably with dissolved organic matter (DOM). By using the laser flash photolysis technique, and phenol as model organic molecule, a second-order reaction rate constant of {approx} 3 Dot-Operator 10{sup 2} L (mg C){sup -1} s{sup -1} was measured between Br{sub 2}{sup -{center_dot}} and DOM. It was thus possible to model the formation and reactivity of Br{sub 2}{sup -{center_dot}} in natural waters, assessing the steady-state [Br{sub 2}{sup -{center_dot}}] Almost-Equal-To 10{sup -13}-10{sup -12} M. It is concluded that bromide oxidation by {sup 3}CDOM* would be significant compared to oxidation by {sup {center_dot}}OH. The {sup 3}CDOM*-mediated process would prevail in DOM-rich and bromide-rich environments, the latter because elevated bromide would completely scavenge {sup {center_dot}}OH. Under such conditions, {sup {center_dot}}OH-assisted formation of Br{sub 2}{sup -{center_dot}} would be limited by the formation rate of the hydroxyl radical. In contrast, the formation rate of {sup 3}CDOM* is much higher compared to that of {sup {center_dot}}OH in most surface waters and would provide a large {sup 3}CDOM* reservoir for bromide to react with. A further issue is that nitrite oxidation by Br{sub 2}{sup -{center_dot}} could be an important source of the nitrating agent {sup {center

  2. Assessing the occurrence of the dibromide radical (Br2−·) in natural waters: Measures of triplet-sensitised formation, reactivity, and modelling

    International Nuclear Information System (INIS)

    The triplet state of anthraquinone-2-sulphonate (AQ2S) is able to oxidise bromide to Br·/Br2−·, with rate constant (2–4) ⋅ 109 M−1 s−1 that depends on the pH. Similar processes are expected to take place between bromide and the triplet states of naturally occurring chromophoric dissolved organic matter (3CDOM*). The brominating agent Br2−· could thus be formed in natural waters upon oxidation of bromide by both ·OH and 3CDOM*. Br2−· would be consumed by disproportionation into bromide and bromine, as well as upon reaction with nitrite and most notably with dissolved organic matter (DOM). By using the laser flash photolysis technique, and phenol as model organic molecule, a second-order reaction rate constant of ∼ 3 ⋅ 102 L (mg C)−1 s−1 was measured between Br2−· and DOM. It was thus possible to model the formation and reactivity of Br2−· in natural waters, assessing the steady-state [Br2−·] ≈ 10−13–10−12 M. It is concluded that bromide oxidation by 3CDOM* would be significant compared to oxidation by ·OH. The 3CDOM*-mediated process would prevail in DOM-rich and bromide-rich environments, the latter because elevated bromide would completely scavenge ·OH. Under such conditions, ·OH-assisted formation of Br2−· would be limited by the formation rate of the hydroxyl radical. In contrast, the formation rate of 3CDOM* is much higher compared to that of ·OH in most surface waters and would provide a large 3CDOM* reservoir for bromide to react with. A further issue is that nitrite oxidation by Br2−· could be an important source of the nitrating agent ·NO2 in bromide-rich, nitrite-rich and DOM-poor environments. Such a process could possibly account for significant aromatic photonitration observed in irradiated seawater and in sunlit brackish lagoons. Highlights: ► The triplet state of anthraquinone-2-sulphonate oxidises bromide to Br2−·. ► Dissolved organic matter is the main Br2−· scavenger in surface waters

  3. Reactive perforating collagenosis

    Directory of Open Access Journals (Sweden)

    Yadav Mukesh

    2009-01-01

    Full Text Available Reactive perforating collagenosis is a rare cutaneous disorder of unknown etiology. We hereby describe a case of acquired reactive perforating collagenosis in a patient of diabetes and chronic renal failure.

  4. Reactive perforating collagenosis

    OpenAIRE

    Yadav Mukesh; Sangal B; Bhargav Puneet; Jai P; Goyal Mukul

    2009-01-01

    Reactive perforating collagenosis is a rare cutaneous disorder of unknown etiology. We hereby describe a case of acquired reactive perforating collagenosis in a patient of diabetes and chronic renal failure.

  5. Reactivity and neutron dynamics

    International Nuclear Information System (INIS)

    Basing on the results of experiments mad with the full-scale WWER-1000 reactor core the problems of simulating neutron distributed transients, reactivity role in their description and uncertainties connected with reactivity value determination are discussed. Adiabatic approximation application and reactivity insertions lead to multiplicative representation of the solution kinetics equation including amplitude multiplier and form function

  6. Fracture Reactivation in Chemically Reactive Rock Systems

    Science.gov (United States)

    Eichhubl, P.; Hooker, J. N.

    2013-12-01

    Reactivation of existing fractures is a fundamental process of brittle failure that controls the nucleation of earthquake ruptures, propagation and linkage of hydraulic fractures in oil and gas production, and the evolution of fault and fracture networks and thus of fluid and heat transport in the upper crust. At depths below 2-3 km, and frequently shallower, brittle processes of fracture growth, linkage, and reactivation compete with chemical processes of fracture sealing by mineral precipitation, with precipitation rates similar to fracture opening rates. We recently found rates of fracture opening in tectonically quiescent settings of 10-20 μm/m.y., rates similar to euhedral quartz precipitation under these conditions. The tendency of existing partially or completely cemented fractures to reactivate will vary depending on strain rate, mineral precipitation kinetics, strength contrast between host rock and fracture cement, stress conditions, degree of fracture infill, and fracture network geometry. Natural fractures in quartzite of the Cambrian Eriboll Formation, NW Scotland, exhibit a complex history of fracture formation and reactivation, with reactivation involving both repeated crack-seal opening-mode failure and shear failure of fractures that formed in opening mode. Fractures are partially to completely sealed with crack-seal or euhedral quartz cement or quartz cement fragmented by shear reactivation. Degree of cementation controls the tendency of fractures for later shear reactivation, to interact elastically with adjacent open fractures, and their intersection behavior. Using kinematic, dynamic, and diagenetic criteria, we determine the sequence of opening-mode fracture formation and later shear reactivation. We find that sheared fracture systems of similar orientation display spatially varying sense of slip We attribute these inconsistent directions of shear reactivation to 1) a heterogeneous stress field in this highly fractured rock unit and 2

  7. Brain-wave measures of workload in advanced cockpits: The transition of technology from laboratory to cockpit simulator, phase 2

    Science.gov (United States)

    Horst, Richard L.; Mahaffey, David L.; Munson, Robert C.

    1989-01-01

    The present Phase 2 small business innovation research study was designed to address issues related to scalp-recorded event-related potential (ERP) indices of mental workload and to transition this technology from the laboratory to cockpit simulator environments for use as a systems engineering tool. The project involved five main tasks: (1) Two laboratory studies confirmed the generality of the ERP indices of workload obtained in the Phase 1 study and revealed two additional ERP components related to workload. (2) A task analysis' of flight scenarios and pilot tasks in the Advanced Concepts Flight Simulator (ACFS) defined cockpit events (i.e., displays, messages, alarms) that would be expected to elicit ERPs related to workload. (3) Software was developed to support ERP data analysis. An existing ARD-proprietary package of ERP data analysis routines was upgraded, new graphics routines were developed to enhance interactive data analysis, and routines were developed to compare alternative single-trial analysis techniques using simulated ERP data. (4) Working in conjunction with NASA Langley research scientists and simulator engineers, preparations were made for an ACFS validation study of ERP measures of workload. (5) A design specification was developed for a general purpose, computerized, workload assessment system that can function in simulators such as the ACFS.

  8. Advances in LWD pressure measurements: smart, time optimized pretests and on demand real-time transmission applications

    Energy Technology Data Exchange (ETDEWEB)

    Serafim, Robson; Ferraris, Paolo [Schlumberger, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The StethoScope Logging While Drilling (LWD) Pressure Measurement, introduced in Brazil in 2005, has been extensively used in deep water environment to provide reservoir pressure and mobility in real-time. In the last three years the StethoScope service was further enhanced to allow better real time monitoring using a larger transmission rate, higher RT data resolution and remote visualization. In order to guarantee stable formation pressures with a limited test duration under a wide range of conditions, Time Optimized Pretests (TOP) were developed. These tests adjust automatically drawdown and buildup parameters as a function of formation characteristics (pressure/mobility) without requiring any input from the operator. On-demand frame (ODF), an advanced telemetry triggered automatically during the pressure tests, allowed to increase equivalent transmission rate and resolution and to include quality indices computed downhole. This paper is focused on the TOP and ODF Field Test results in Brazil, which proved to be useful and reliable options for better real-time decisions together with remote monitoring visualization implemented by the RTMonitor program. (author)

  9. The clustering of massive Primordial Black Holes as Dark Matter: measuring their mass distribution with Advanced LIGO

    CERN Document Server

    Clesse, Sebastien

    2016-01-01

    The recent detection by Advanced LIGO of gravitational waves (GW) from the merging of a binary black hole system sets new limits on the merging rates of massive primordial black holes (PBH) that could be a significant fraction or even the totality of the dark matter in the Universe. aLIGO opens the way to the determination of the distribution and clustering of such massive PBH. If PBH clusters have a similar density to the one observed in ultra-faint dwarf galaxies, we find merging rates comparable to aLIGO expectations. Massive PBH dark matter predicts the existence of thousands of those dwarf galaxies where star formation is unlikely because of gas accretion onto PBH, which would possibly provide a solution to the missing satellite and too-big-to-fail problems. Finally, we study the possibility of using aLIGO and future GW antennas to measure the abundance and mass distribution of PBH in the range [5 - 200] Msun to 10\\% accuracy.

  10. Evaluation of Feedback Reactivity in Monju Start-Up Test

    International Nuclear Information System (INIS)

    The feedback reactivity measurement was conducted in Monju Start-up test in 2010. The total feedback reactivity was evaluated together with its two reactivity components related either to power or to the core inlet coolant temperature. The corresponding calculated values were evaluated by simulating temperature distribution in the core under experimental conditions of the power and the inlet coolant temperature. The calculated and measured values of the feedback reactivity showed a reasonable agreement. (author)

  11. Measurement of film thickness and void fraction in stratified horizontal gas-liquid flow using an advanced ultrasonic technique

    International Nuclear Information System (INIS)

    The main objective of this work is to present the development and assembling of a new ultrasonic system for the dynamic measurements of liquid film thickness, void fraction and liquid speed of air-water two-phase flow in a horizontal circular pipe test section by using an advanced time averaging ultrasonic technique. Together we present the experimental results of the system tests and its performance on different static and dynamic conditions of stratified air-water flow. In a stratified air-water flow through the horizontal circular pipe, one part of ultrasound pulse discharged from an emitter-receiver transducer, placed at bottom of tube, will be transmitted through the water and then reflected back to the same transducer from air-water or tube wall-water interfaces. These signals can be acquired by an oscilloscope over a period of time, stored on a computer and then plotted as the waveforms. The transit time of a pulse is calculated and converted to the distance between the interfaces, as the sound velocity in water is known at a given temperature. In this way it is possible to determine both water film thickness and void fraction. Other parameters could be deduced too as the wall thickness and the inner diameter of pipe. To determine the liquid speed a pair of ultrasonic transducers were placed respectively upstream and downstream outside tube wall on the same side. The difference in the transit time between the pair of the transducers can be measured and is used to calculate the water speed in the tube. (author)

  12. Validation of multigroup neutron cross sections and calculational methods for the advanced neutron source against the FOEHN critical experiments measurements

    Energy Technology Data Exchange (ETDEWEB)

    Smith, L.A.; Gallmeier, F.X. [Oak Ridge Institute for Science and Energy, TN (United States); Gehin, J.C. [Oak Ridge National Lab., TN (United States)] [and others

    1995-05-01

    The FOEHN critical experiment was analyzed to validate the use of multigroup cross sections and Oak Ridge National Laboratory neutronics computer codes in the design of the Advanced Neutron Source. The ANSL-V 99-group master cross section library was used for all the calculations. Three different critical configurations were evaluated using the multigroup KENO Monte Carlo transport code, the multigroup DORT discrete ordinates transport code, and the multigroup diffusion theory code VENTURE. The simple configuration consists of only the fuel and control elements with the heavy water reflector. The intermediate configuration includes boron endplates at the upper and lower edges of the fuel element. The complex configuration includes both the boron endplates and components in the reflector. Cross sections were processed using modules from the AMPX system. Both 99-group and 20-group cross sections were created and used in two-dimensional models of the FOEHN experiment. KENO calculations were performed using both 99-group and 20-group cross sections. The DORT and VENTURE calculations were performed using 20-group cross sections. Because the simple and intermediate configurations are azimuthally symmetric, these configurations can be explicitly modeled in R-Z geometry. Since the reflector components cannot be modeled explicitly using the current versions of these codes, three reflector component homogenization schemes were developed and evaluated for the complex configuration. Power density distributions were calculated with KENO using 99-group cross sections and with DORT and VENTURE using 20-group cross sections. The average differences between the measured values and the values calculated with the different computer codes range from 2.45 to 5.74%. The maximum differences between the measured and calculated thermal flux values for the simple and intermediate configurations are {approx} 13%, while the average differences are < 8%.

  13. Dynamic Rod Worth Measurement

    International Nuclear Information System (INIS)

    The dynamic rod worth measurement (DRWM) technique is a method of quickly validating the predicted bank worth of control rods and shutdown rods. The DRWM analytic method is based on three-dimensional, space-time kinetic simulations of the rapid rod movements. Its measurement data is processed with an advanced digital reactivity computer. DRWM has been used as the method of bank worth validation at numerous plant startups with excellent results. The process and methodology of DRWM are described, and the measurement results of using DRWM are presented

  14. 21 CFR 866.5270 - C-reactive protein immuno-logical test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false C-reactive protein immuno-logical test system. 866....5270 C-reactive protein immuno-logical test system. (a) Identification. A C-reactive protein... the C-reactive protein in serum and other body fluids. Measurement of C-reactive protein aids...

  15. Changes in reactivity and in the margins to thermal limits by the inclusion of control rods of advanced type in the Laguna Verde Power plant; Cambios en la reactividad y en los margenes a limites termicos por la inclusion de barras de control de tipo avanzado en la Central Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, J.L.; Perusquia, R.; Montes, J.L.; Ortiz, J.J.; Ramirez, J.R. [ININ, Depto. de Sistemas Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)]. E-mail: jlhm@nuclear.inin.mx

    2004-07-01

    The obtained results are presented when simulating with CM-PRESTO code the cycle 10 of the unit 1 of the Laguna Verde Central, using two advanced types of control bars, besides the originally loaded ones. The two advanced types, to those that are denominated 1AV and 2AV in this work, are of different design, however both have in some place of the bar, a section with hafnium like neutron absorber material. They thought about three different scenarios, in the first one, used as reference, is simulated the cycle 10 using the original control bars, while in the other two cases the advanced types are used. The values of the reactivity were compared and of some margins to the thermal limits obtained when using the bars of advanced type, with those obtained in the case in that alone they are considered those original bars. It was found that in condition of power both advanced types present bigger absorber power of neutrons that the original bars, being quantified in average this bigger power in 0.22 pcm/notch for the type 1AV and in 0.51 pcm/notch for the type 2AV. The affectation of the margins to the observed thermal limits is minimum. (Author)

  16. Dynamic reactive astrocytes after focal ischemia

    Institute of Scientific and Technical Information of China (English)

    Shinghua Ding

    2014-01-01

    Astrocytes are specialized and most numerous glial cell type in the central nervous system and play important roles in physiology. Astrocytes are also critically involved in many neural disor-ders including focal ischemic stroke, a leading cause of brain injury and human death. One of the prominent pathological features of focal ischemic stroke is reactive astrogliosis and glial scar for-mation associated with morphological changes and proliferation. This review paper discusses the recent advances in spatial and temporal dynamics of morphology and proliferation of reactive astrocytes after ischemic stroke based on results from experimental animal studies. As reactive astrocytes exhibit stem cell-like properties, knowledge of dynamics of reactive astrocytes and glial scar formation will provide important insights for astrocyte-based cell therapy in stroke.

  17. Advancing the Study of a Movement: The Status of Methods and Measures in First-Year Experience and Student Transition Research

    Science.gov (United States)

    Kinzie, Jillian

    2013-01-01

    The essay examines the variety of research methods and measures used in the first-year experience and students-in-transition field over the past 25 years. Interrogating the extant research, Kinzie explores whether the methods and analytic processes most commonly employed are adequate to advance our understanding of complex issues in the field. The…

  18. International benchmark study of advanced thermal hydraulic safety analysis codes against measurements on IEA-R1 research reactor

    International Nuclear Information System (INIS)

    Highlights: • A set of advanced system thermal hydraulic codes are benchmarked against IFA of IEA-R1. • Comparative safety analysis of IEA-R1 reactor during LOFA by 7 working teams. • This work covers both experimental and calculation effort and presents new out findings on TH of RR that have not been reported before. • LOFA results discrepancies from 7% to 20% for coolant and peak clad temperatures are predicted conservatively. - Abstract: In the framework of the IAEA Coordination Research Project on “Innovative methods in research reactor analysis: Benchmark against experimental data on neutronics and thermal hydraulic computational methods and tools for operation and safety analysis of research reactors” the Brazilian research reactor IEA-R1 has been selected as reference facility to perform benchmark calculations for a set of thermal hydraulic codes being widely used by international teams in the field of research reactor (RR) deterministic safety analysis. The goal of the conducted benchmark is to demonstrate the application of innovative reactor analysis tools in the research reactor community, validation of the applied codes and application of the validated codes to perform comprehensive safety analysis of RR. The IEA-R1 is equipped with an Instrumented Fuel Assembly (IFA) which provided measurements for normal operation and loss of flow transient. The measurements comprised coolant and cladding temperatures, reactor power and flow rate. Temperatures are measured at three different radial and axial positions of IFA summing up to 12 measuring points in addition to the coolant inlet and outlet temperatures. The considered benchmark deals with the loss of reactor flow and the subsequent flow reversal from downward forced to upward natural circulation and presents therefore relevant phenomena for the RR safety analysis. The benchmark calculations were performed independently by the participating teams using different thermal hydraulic and safety

  19. International benchmark study of advanced thermal hydraulic safety analysis codes against measurements on IEA-R1 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hainoun, A., E-mail: pscientific2@aec.org.sy [Atomic Energy Commission of Syria (AECS), Nuclear Engineering Department, P.O. Box 6091, Damascus (Syrian Arab Republic); Doval, A. [Nuclear Engineering Department, Av. Cmdt. Luis Piedrabuena 4950, C.P. 8400 S.C de Bariloche, Rio Negro (Argentina); Umbehaun, P. [Centro de Engenharia Nuclear – CEN, IPEN-CNEN/SP, Av. Lineu Prestes 2242-Cidade Universitaria, CEP-05508-000 São Paulo, SP (Brazil); Chatzidakis, S. [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States); Ghazi, N. [Atomic Energy Commission of Syria (AECS), Nuclear Engineering Department, P.O. Box 6091, Damascus (Syrian Arab Republic); Park, S. [Research Reactor Design and Engineering Division, Basic Science Project Operation Dept., Korea Atomic Energy Research Institute (Korea, Republic of); Mladin, M. [Institute for Nuclear Research, Campului Street No. 1, P.O. Box 78, 115400 Mioveni, Arges (Romania); Shokr, A. [Division of Nuclear Installation Safety, Research Reactor Safety Section, International Atomic Energy Agency, A-1400 Vienna (Austria)

    2014-12-15

    Highlights: • A set of advanced system thermal hydraulic codes are benchmarked against IFA of IEA-R1. • Comparative safety analysis of IEA-R1 reactor during LOFA by 7 working teams. • This work covers both experimental and calculation effort and presents new out findings on TH of RR that have not been reported before. • LOFA results discrepancies from 7% to 20% for coolant and peak clad temperatures are predicted conservatively. - Abstract: In the framework of the IAEA Coordination Research Project on “Innovative methods in research reactor analysis: Benchmark against experimental data on neutronics and thermal hydraulic computational methods and tools for operation and safety analysis of research reactors” the Brazilian research reactor IEA-R1 has been selected as reference facility to perform benchmark calculations for a set of thermal hydraulic codes being widely used by international teams in the field of research reactor (RR) deterministic safety analysis. The goal of the conducted benchmark is to demonstrate the application of innovative reactor analysis tools in the research reactor community, validation of the applied codes and application of the validated codes to perform comprehensive safety analysis of RR. The IEA-R1 is equipped with an Instrumented Fuel Assembly (IFA) which provided measurements for normal operation and loss of flow transient. The measurements comprised coolant and cladding temperatures, reactor power and flow rate. Temperatures are measured at three different radial and axial positions of IFA summing up to 12 measuring points in addition to the coolant inlet and outlet temperatures. The considered benchmark deals with the loss of reactor flow and the subsequent flow reversal from downward forced to upward natural circulation and presents therefore relevant phenomena for the RR safety analysis. The benchmark calculations were performed independently by the participating teams using different thermal hydraulic and safety

  20. Design, fabrication, and calibration of curved integral coils for measuring transfer function, uniformity, and effective length of LBL ALS [Lawrence Berkeley Laboratory Advanced Light Source] Booster Dipole Magnets

    International Nuclear Information System (INIS)

    A matched pair of curved integral coils has been designed, fabricated and calibrated at Lawrence Berkeley Laboratory for measuring Advanced Light Source (ALS) Booster Dipole Magnets. Distinctive fabrication and calibration techniques are described. The use of multifilar magnet wire in fabrication integral search coils is described. Procedures used and results of AC and DC measurements of transfer function, effective length and uniformity of the prototype booster dipole magnet are presented in companion papers. 8 refs