WorldWideScience

Sample records for advanced mesoporous materials

  1. Preparation and characterization of multifunctional magnetic mesoporous calcium silicate materials

    International Nuclear Information System (INIS)

    Zhang, Jianhua; Tao, Cuilian; Zhu, Yufang; Zhu, Min; Li, Jie; Hanagata, Nobutaka

    2013-01-01

    We have prepared multifunctional magnetic mesoporous Fe–CaSiO 3 materials using triblock copolymer (P123) as a structure-directing agent. The effects of Fe substitution on the mesoporous structure, in vitro bioactivity, magnetic heating ability and drug delivery property of mesoporous CaSiO 3 materials were investigated. Mesoporous Fe–CaSiO 3 materials had similar mesoporous channels (5–6 nm) with different Fe substitution. When 5 and 10% Fe were substituted for Ca in mesoporous CaSiO 3 materials, mesoporous Fe–CaSiO 3 materials still showed good apatite-formation ability and had no cytotoxic effect on osteoblast-like MC3T3-E1 cells evaluated by the elution cell culture assay. On the other hand, mesoporous Fe–CaSiO 3 materials could generate heat to raise the temperature of the surrounding environment in an alternating magnetic field due to their superparamagnetic property. When we use gentamicin (GS) as a model drug, mesoporous Fe–CaSiO 3 materials release GS in a sustained manner. Therefore, magnetic mesoporous Fe–CaSiO 3 materials would be a promising multifunctional platform with bone regeneration, local drug delivery and magnetic hyperthermia. (paper)

  2. Synthesis and catalytic applications of combined zeolitic/mesoporous materials

    Directory of Open Access Journals (Sweden)

    Jarian Vernimmen

    2011-11-01

    Full Text Available In the last decade, research concerning nanoporous siliceous materials has been focused on mesoporous materials with intrinsic zeolitic features. These materials are thought to be superior, because they are able to combine (i the enhanced diffusion and accessibility for larger molecules and viscous fluids typical of mesoporous materials with (ii the remarkable stability, catalytic activity and selectivity of zeolites. This review gives an overview of the state of the art concerning combined zeolitic/mesoporous materials. Focus is put on the synthesis and the applications of the combined zeolitic/mesoporous materials. The different synthesis approaches and formation mechanisms leading to these materials are comprehensively discussed and compared. Moreover, Ti-containing nanoporous materials as redox catalysts are discussed to illustrate a potential implementation of combined zeolitic/mesoporous materials.

  3. Gyroidal mesoporous carbon materials and methods thereof

    Energy Technology Data Exchange (ETDEWEB)

    Wiesner, Ulrich B.; Werner, Joerg G.

    2017-07-25

    The present invention relates to, inter alia, gyroidal mesoporous carbon materials and methods of use and manufacture thereof. In one embodiment, the present invention relates to a mesoporous carbon composition comprising a gyroidal mesoporous carbon having an ordered gyroidal structure and mesopores having a pore size of greater than 2 nanometers (nm) in diameter, and more particularly greater than 11 nm in diameter.

  4. Mesoporous Silicate Materials in Sensing

    Directory of Open Access Journals (Sweden)

    Paul T. Charles

    2008-08-01

    Full Text Available Mesoporous silicas, especially those exhibiting ordered pore systems and uniform pore diameters, have shown great potential for sensing applications in recent years. Morphological control grants them versatility in the method of deployment whether as bulk powders, monoliths, thin films, or embedded in coatings. High surface areas and pore sizes greater than 2 nm make them effective as adsorbent coatings for humidity sensors. The pore networks also provide the potential for immobilization of enzymes within the materials. Functionalization of materials by silane grafting or through cocondensation of silicate precursors can be used to provide mesoporous materials with a variety of fluorescent probes as well as surface properties that aid in selective detection of specific analytes. This review will illustrate how mesoporous silicas have been applied to sensing changes in relative humidity, changes in pH, metal cations, toxic industrial compounds, volatile organic compounds, small molecules and ions, nitroenergetic compounds, and biologically relevant molecules.

  5. Mesoporous carbon materials

    Science.gov (United States)

    Dai, Sheng; Fulvio, Pasquale Fernando; Mayes, Richard T.; Wang, Xiqing; Sun, Xiao-Guang; Guo, Bingkun

    2014-09-09

    A conductive mesoporous carbon composite comprising conductive carbon nanoparticles contained within a mesoporous carbon matrix, wherein the conductive mesoporous carbon composite possesses at least a portion of mesopores having a pore size of at least 10 nm and up to 50 nm, and wherein the mesopores are either within the mesoporous carbon matrix, or are spacings delineated by surfaces of said conductive carbon nanoparticles when said conductive carbon nanoparticles are fused with each other, or both. Methods for producing the above-described composite, devices incorporating them (e.g., lithium batteries), and methods of using them, are also described.

  6. Ordered mesoporous silica materials with complicated structures

    KAUST Repository

    Han, Yu

    2012-05-01

    Periodically ordered mesoporous silicas constitute one of the most important branches of porous materials that are extensively employed in various chemical engineering applications including adsorption, separation and catalysis. This short review gives an introduction to recently developed mesoporous silicas with emphasis on their complicated structures and synthesis mechanisms. In addition, two powerful techniques for solving complex mesoporous structures, electron crystallography and electron tomography, are compared to elucidate their respective strength and limitations. Some critical issues and challenges regarding the development of novel mesoporous structures as well as their applications are also discussed. © 2011 Elsevier Ltd.

  7. Recent progress in mesoporous titania materials: adjusting morphology for innovative applications

    Directory of Open Access Journals (Sweden)

    Juan L Vivero-Escoto, Ya-Dong Chiang, Kevin C-W Wu and Yusuke Yamauchi

    2012-01-01

    Full Text Available This review article summarizes recent developments in mesoporous titania materials, particularly in the fields of morphology control and applications. We first briefly introduce the history of mesoporous titania materials and then review several synthesis approaches. Currently, mesoporous titania nanoparticles (MTNs have attracted much attention in various fields, such as medicine, catalysis, separation and optics. Compared with bulk mesoporous titania materials, which are above a micrometer in size, nanometer-sized MTNs have additional properties, such as fast mass transport, strong adhesion to substrates and good dispersion in solution. However, it has generally been known that the successful synthesis of MTNs is very difficult owing to the rapid hydrolysis of titanium-containing precursors and the crystallization of titania upon thermal treatment. Finally, we review four emerging fields including photocatalysis, photovoltaic devices, sensing and biomedical applications of mesoporous titania materials. Because of its high surface area, controlled porous structure, suitable morphology and semiconducting behavior, mesoporous titania is expected to be used in innovative applications.

  8. Interface chemistry of nanostructured materials: ion adsorption on mesoporous alumina.

    Science.gov (United States)

    Wang, Yifeng; Bryan, Charles; Xu, Huifang; Pohl, Phil; Yang, Yi; Brinker, C Jeffrey

    2002-10-01

    This paper presents a part of our work on understanding the effect of nanoscale pore space confinement on ion sorption by mesoporous materials. Acid-base titration experiments were performed on both mesoporous alumina and alumina particles under various ionic strengths. The point of zero charge (PZC) for mesoporous alumina was measured to be approximately 9.1, similar to that for nonmesoporous alumina materials, indicating that nanoscale pore space confinement does not have a significant effect on the PZC of pore surfaces. However, for a given pH deviation from the PZC, (pH-PZC), the surface charge per mass on mesoporous alumina was as much as 45 times higher than that on alumina particles. This difference cannot be fully explained by the surface area difference between the two materials. Our titration data have demonstrated that nanoscale confinement has a significant effect, most likely via the overlap of the electric double layer (EDL), on ion sorption onto mesopore surfaces. This effect cannot be adequately modeled by existing surface complexation models, which were developed mostly for an unconfined solid-water interface. Our titration data have also indicated that the rate of ion uptake by mesoporous alumina is relatively slow, probably due to diffusion into mesopores, and complete equilibration for sorption could take 4-5 min. A molecular simulation using a density functional theory was performed to calculate ion adsorption coefficients as a function of pore size. The calculation has shown that as pore size is reduced to nanoscales (<10 nm), the adsorption coefficients of ions can vary by more than two orders of magnitude relative to those for unconfined interfaces. The prediction is supported by our experimental data on Zn sorption onto mesoporous alumina. Owing to their unique surface chemistry, mesoporous materials can potentially be used as effective ion adsorbents for separation processes and environmental cleanup.

  9. Functionalized mesoporous silica materials for molsidomine adsorption: Thermodynamic study

    International Nuclear Information System (INIS)

    Alyoshina, Nonna A.; Parfenyuk, Elena V.

    2013-01-01

    A series of unmodified and organically modified mesoporous silica materials was prepared. The unmodified mesoporous silica was synthesized via sol–gel synthesis in the presence of D-glucose as pore-forming agent. The functionalized by phenyl, aminopropyl and mercaptopropyl groups silica materials were prepared via grafting. The fabricated adsorbent materials were characterized by Fourier transform infrared spectroscopy (FTIR) analysis, N 2 adsorption/desorption and elemental analysis methods. Then their adsorption properties for mesoionic dug molsidomine were investigated at 290–313 K and physiological pH value. Thermodynamic parameters of molsidomine adsorption on the synthesized materials have been calculated. The obtained results showed that the adsorption process of molsidomine on the phenyl modified silica is the most quantitatively and energetically favorable. The unmodified and mercaptopropyl modified silica materials exhibit significantly higher adsorption capacities and energies for molsidomine than the aminopropyl modified sample. The effects are discussed from the viewpoint of nature of specific interactions responsible for the adsorption. - Graphical abstract: Comparative analysis of the thermodynamic characteristics of molsidomine adsorption showed that the adsorption process on mesoporous silica materials is controlled by chemical nature of surface functional groups. Molsidomine adsorption on the phenyl modified silica is the most quantitatively and energetically favorable. Taking into account ambiguous nature of mesoionic compounds, it was found that molsidomine is rather aromatic than dipolar. Display Omitted - Highlights: • Unmodified and organically modified mesoporous silica materials were prepared. • Molsidomine adsorption on the silica materials was studied. • Phenyl modified silica shows the highest adsorption capacity and favorable energy. • Molsidomine exhibits the lowest affinity to aminopropyl modified silica

  10. Nanostructured Mesoporous Silicas for Bone Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Isabel Izquierdo-Barba

    2008-01-01

    Full Text Available The research on the development of new biomaterials that promote bone tissue regeneration is receiving great interest by the biomedical scientific community. Recent advances in nanotechnology have allowed the design of materials with nanostructure similar to that of natural bone. These materials can promote new bone formation by inducing the formation of nanocrystalline apatites analogous to the mineral phase of natural bone onto their surfaces, i.e. they are bioactive. They also stimulate osteoblast proliferation and differentiation and, therefore, accelerate the healing processes. Silica-based ordered mesoporous materials are excellent candidates to be used as third generation bioceramics that enable the adsorption and local control release of biological active agents that promote bone regeneration. This local delivery capability together with the bioactive behavior of mesoporous silicas opens up promising expectations in the bioclinical field. In this review, the last advances in nanochemistry aimed at designing and tailoring the chemical and textural properties of mesoporous silicas for biomedical applications are described. The recent developed strategies to synthesize bioactive glasses with ordered mesopore arrangements are also summarized. Finally, a deep discussion about the influence of the textural parameters and organic modification of mesoporous silicas on molecules adsorption and controlled release is performed.

  11. A review on chemical methodologies for preparation of mesoporous silica and alumina based materials.

    Science.gov (United States)

    Naik, Bhanudas; Ghosh, Narendra Nath

    2009-01-01

    The discovery of novel family of molecular sieves called M41S aroused a worldwide resurgence in the field of porous materials. According to IUPAC definition inorganic solids that contain pores with diameter in the size range of 20-500 A are considered mesoporous materials. Mesoporous silica and alumina based materials find applications in catalysis, adsorption, host- guest encapsulation etc. This article reviews the current state of art and outline the recent patents in mesoporous materials research in three general areas: Synthesis, various mechanisms involved for porous structure formation and applications of silica and alumina based mesoporous materials.

  12. Mesoporous materials for clean energy technologies.

    Science.gov (United States)

    Linares, Noemi; Silvestre-Albero, Ana M; Serrano, Elena; Silvestre-Albero, Joaquín; García-Martínez, Javier

    2014-11-21

    Alternative energy technologies are greatly hindered by significant limitations in materials science. From low activity to poor stability, and from mineral scarcity to high cost, the current materials are not able to cope with the significant challenges of clean energy technologies. However, recent advances in the preparation of nanomaterials, porous solids, and nanostructured solids are providing hope in the race for a better, cleaner energy production. The present contribution critically reviews the development and role of mesoporosity in a wide range of technologies, as this provides for critical improvements in accessibility, the dispersion of the active phase and a higher surface area. Relevant examples of the development of mesoporosity by a wide range of techniques are provided, including the preparation of hierarchical structures with pore systems in different scale ranges. Mesoporosity plays a significant role in catalysis, especially in the most challenging processes where bulky molecules, like those obtained from biomass or highly unreactive species, such as CO2 should be transformed into most valuable products. Furthermore, mesoporous materials also play a significant role as electrodes in fuel and solar cells and in thermoelectric devices, technologies which are benefiting from improved accessibility and a better dispersion of materials with controlled porosity.

  13. Functionalized mesoporous silica materials for molsidomine adsorption: Thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Alyoshina, Nonna A.; Parfenyuk, Elena V., E-mail: evp@iscras.ru

    2013-09-15

    A series of unmodified and organically modified mesoporous silica materials was prepared. The unmodified mesoporous silica was synthesized via sol–gel synthesis in the presence of D-glucose as pore-forming agent. The functionalized by phenyl, aminopropyl and mercaptopropyl groups silica materials were prepared via grafting. The fabricated adsorbent materials were characterized by Fourier transform infrared spectroscopy (FTIR) analysis, N{sub 2} adsorption/desorption and elemental analysis methods. Then their adsorption properties for mesoionic dug molsidomine were investigated at 290–313 K and physiological pH value. Thermodynamic parameters of molsidomine adsorption on the synthesized materials have been calculated. The obtained results showed that the adsorption process of molsidomine on the phenyl modified silica is the most quantitatively and energetically favorable. The unmodified and mercaptopropyl modified silica materials exhibit significantly higher adsorption capacities and energies for molsidomine than the aminopropyl modified sample. The effects are discussed from the viewpoint of nature of specific interactions responsible for the adsorption. - Graphical abstract: Comparative analysis of the thermodynamic characteristics of molsidomine adsorption showed that the adsorption process on mesoporous silica materials is controlled by chemical nature of surface functional groups. Molsidomine adsorption on the phenyl modified silica is the most quantitatively and energetically favorable. Taking into account ambiguous nature of mesoionic compounds, it was found that molsidomine is rather aromatic than dipolar. Display Omitted - Highlights: • Unmodified and organically modified mesoporous silica materials were prepared. • Molsidomine adsorption on the silica materials was studied. • Phenyl modified silica shows the highest adsorption capacity and favorable energy. • Molsidomine exhibits the lowest affinity to aminopropyl modified silica.

  14. Synthesis of Novel Mesoporous Silica Materials with Hierarchical Pore Structures

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Suk Bon; Choi, Wang Kyu; Choi, Byung Seon; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Porous materials with various pore sizes in the range of micropore (< 2 nm), mesopore (2-50 nm), and macropore (> 50 nm) are attractive due to their many emerging applications such as catalysts, separation systems, and low dielectric constant materials. The discovery of new M41S mesoporous silica families with pore sizes larger than 2 nm in diameter in 1992 extended the applications into much wider pore ranges, bringing in a new prosperous era in porous material research. The synthesis of these silica materials has been mainly accomplished through a self-assembly between surfactant molecules and inorganic species under various pH conditions. Recently, core-shell nanoparticles with a silica core and mesoporous shell under basic conditions were synthesized using the silica nanoparticles as a core, and a silica precursor (TEOS) and cationic surfactant (CTABr) as a material for the formation of the mesoporous shell. The resultant materials were very monodispersive in size and showed a narrow pore size distribution in the range of ca 2-3 nm in diameter, depending on the alkyl-chain length of the surfactants used. In this work, the mesoporous shell coated-fumed silicas (denoted as MS M-5s) were synthesized by using fumed silica instead of the silica nanoparticle as a core based on previous reports. Also, the structural properties of the MS M-5s such as the specific surface area and pore volume were easily controlled by varying the amount of the silica precursor and surfactant. The resultant materials exhibited a BET surface area of ca 279-446 m{sup 2}/g and total pore volume of ca 0.64-0.74 cm{sup 3}/g and showed a narrow pore size distribution (PSD) due to the removal of the organic surfactant molecules

  15. Ordered mesoporous silica materials with complicated structures

    KAUST Repository

    Han, Yu; Zhang, Daliang

    2012-01-01

    Periodically ordered mesoporous silicas constitute one of the most important branches of porous materials that are extensively employed in various chemical engineering applications including adsorption, separation and catalysis. This short review

  16. Functionalized Mesoporous Silica Membranes for CO2 Separation Applications

    Directory of Open Access Journals (Sweden)

    Hyung-Ju Kim

    2015-01-01

    Full Text Available Mesoporous silica molecular sieves are emerging candidates for a number of potential applications involving adsorption and molecular transport due to their large surface areas, high pore volumes, and tunable pore sizes. Recently, several research groups have investigated the potential of functionalized mesoporous silica molecular sieves as advanced materials in separation devices, such as membranes. In particular, mesoporous silica with a two- or three-dimensional pore structure is one of the most promising types of molecular sieve materials for gas separation membranes. However, several important challenges must first be addressed regarding the successful fabrication of mesoporous silica membranes. First, a novel, high throughput process for the fabrication of continuous and defect-free mesoporous silica membranes is required. Second, functionalization of mesopores on membranes is desirable in order to impart selective properties. Finally, the separation characteristics and performance of functionalized mesoporous silica membranes must be further investigated. Herein, the synthesis, characterization, and applications of mesoporous silica membranes and functionalized mesoporous silica membranes are reviewed with a focus on CO2 separation.

  17. Soft-Templating Synthesis of Mesoporous Silica-Based Materials for Environmental Applications

    Science.gov (United States)

    Gunathilake, Chamila Asanka

    Dissertation research is mainly focus on: 1) the development of mesoporous silica materials with organic pendant and bridging groups (isocyanurate, amidoxime, benzene) and incorporated metal (aluminum, zirconium, calcium, and magnesium) species for high temperature carbon dioxide (CO2) sorption, 2) phosphorous-hydroxy functionalized mesoporous silica materials for water treatment, and 3) amidoxime-modified ordered mesoporous silica materials for uranium sorption under seawater conditions. The goal is to design composite materials for environmental applications with desired porosity, surface area, and functionality by selecting proper metal oxide precursors, organosilanes, tetraethylorthosilicate, (TEOS), and block copolymer templates and by adjusting synthesis conditions. The first part of dissertation presents experimental studies on the merge of aluminum, zirconium, calcium, and magnesium oxides with mesoporous silica materials containing organic pendant (amidoxime) and bridging groups (isocyanurate, benzene) to obtain composite sorbents for CO2 sorption at ambient (0-25 °C) and elevated (60-120 °C) temperatures. These studies indicate that the aforementioned composite sorbents are fairly good for CO2 capture at 25 °C via physisorption mechanism and show a remarkably high affinity toward CO2 chemisorption at 60-120 °C. The second part of dissertation is devoted to silica-based materials with organic functionalities for removal of heavy metal ions such as lead from contaminated water and for recovery of metal ions such as uranium from seawater. First, ordered mesoporous organosilica (OMO) materials with diethylphosphatoethyl and hydroxyphosphatoethyl surface groups were examined for Pb2+ adsorption and showed unprecedented adsorption capacities up to 272 mg/g and 202 mg/g, respectively However, the amidoxime-modified OMO materials were explored for uranium extraction under seawater conditions and showed remarkable capacities reaching 57 mg of uranium per gram

  18. Functionalized mesoporous materials for adsorption and release of different drug molecules: A comparative study

    International Nuclear Information System (INIS)

    Wang Gang; Otuonye, Amy N.; Blair, Elizabeth A.; Denton, Kelley; Tao Zhimin; Asefa, Tewodros

    2009-01-01

    The adsorption capacity and release properties of mesoporous materials for drug molecules can be improved by functionalizing their surfaces with judiciously chosen organic groups. Functionalized ordered mesoporous materials containing various types of organic groups via a co-condensation synthetic method from 15% organosilane and by post-grafting organosilanes onto a pre-made mesoporous silica were synthesized. Comparative studies of their adsorption and release properties for various model drug molecules were then conducted. Functional groups including 3-aminopropyl, 3-mercaptopropyl, vinyl, and secondary amine groups were used to functionalize the mesoporous materials while rhodamine 6G and ibuprofen were utilized to investigate the materials' relative adsorption and release properties. The self-assembly of the mesoporous materials was carried out in the presence of cetyltrimethylammonium bromide (CTAB) surfactant, which produced MCM-41 type materials with pore diameters of ∼2.7-3.3 nm and moderate to high surface areas up to ∼1000 m 2 /g. The different functional groups introduced into the materials dictated their adsorption capacity and release properties. While mercaptopropyl and vinyl functionalized samples showed high adsorption capacity for rhodamine 6G, amine functionalized samples exhibited higher adsorption capacity for ibuprofen. While the diffusional release of ibuprofen was fitted on the Fickian diffusion model, the release of rhodamine 6G followed Super Case-II transport model. - Graphical abstract: The adsorption capacity and release properties of mesoporous materials for various drug molecules are tuned by functionalizing the surfaces of the materials with judiciously chosen organic groups. This work reports comparative studies of the adsorption and release properties of functionalized ordered mesoporous materials containing different hydrophobic and hydrophilic groups that are synthesized via a co-condensation and post-grafting methods for

  19. Designing advanced functional periodic mesoporous organosilicas for biomedical applications

    Directory of Open Access Journals (Sweden)

    Dolores Esquivel

    2014-03-01

    Full Text Available Periodic mesoporous organosilicas (PMOs, reported for the first time in 1999, constitute a new branch of organic-inorganic hybrid materials with high-ordered structures, uniform pore size and homogenous distribution of organic bridges into a silica framework. Unlike conventional mesoporous silicas, these materials offer the possibility to adjust the surface (hydrophilicity/hydrophobicity and physical properties (morphology, porosity as well as their mechanical stability through the incorporation of different functional organic moieties in their pore walls. A broad variety of PMOs has been designed for their subsequent application in many fields. More recently, PMOs have attracted growing interest in emerging areas as biology and biomedicine. This review provides a comprehensive overview of the most recent breakthroughs achieved for PMOs in biological and biomedical applications.

  20. Adsorption Of Water And Benzene Vapour In Mesoporous Materials

    Directory of Open Access Journals (Sweden)

    Paulina Taba

    2008-11-01

    Full Text Available Mesoporous materials have attracted the attention of many researchers due to the potential applications promised by the materials. This article discusses adsorption of water and benzene vapour in mesoporous materials (mesoporous silica: MCM-41, MCM-48 and their modification. MCM-41 and MCM-48 were synthesized hydrothermally at 100 oC using cethyltrimethylammonium chloride or dodecyltrimethylammonium bromide for MCM-41 (C16 or MCM-41 (C12 respectively and a mixture of cethyltrimethylammonium bromide and Triton X-100 for MCM-48 as templates. Their modifications were conducted by silylation of MCM-41 (C16 and MCM-48 with trimethylchloro silane (MCM16-TMCS and MCM48-TMCS and t-butyldimethylchloro silane (MCM16-TBDMCS and MCM48-TBDMCS. Results showed that MCM-41 and MCM-48 materials had hydrophobic features which were shown in the small amount of water adsorption at low P/P0. The hydrophobicity of samples used in this study decrease in the sequence: MCM-41 (C16 > MCM-48 > MCM-41 (C12. The hydrophobicity increased when MCM-41 and MCM-48 were silylated with TMCS or TBDMCS. All unsilylated MCM materials show higher affinity to benzene at low P/P0 than the silylated samples. The results of water and benzene adsorption showed that silylated samples are promising candidates as selective adsorbents for organic compounds.

  1. Study of Horseradish Peroxidase Fixed on Mesoporous Materials as a Chemical Reaction Catalyst

    Science.gov (United States)

    Gao, Mengdan; Dai, Rongji

    2017-12-01

    Nanostructured mesoporous materials is a new type of porous materials, which has been widely used. It has excellent capability in enzymes immobilization, but modification on the chemical bonds of the enzyme reduce the enzymatic activity and rarely used in chemical reactions. The horseradish peroxidase was immobilized on the mesoporous materials with appropriate aperture and its activity and stability was evaluated when catalyzing the nitration reaction of amines and oxidation reaction of thiourea. The optimum mesoporous material to fix the horseradish peroxidase can be obtained by mixing polyoxyethylene - polyoxypropylene-pol, yoxyethylene(P123), 1,3,5-trimethylbenzene(TMB), and tetramethoxysilane (TMOS) at a ratio of 10:1:1, whose surface area and pore volume and pore diameter calculated by BET and BJH model were 402.903m2/g, 1.084cm2/g, 1.084cm2/g respectively. The horseradish peroxidase, immobilized on the mesoporous materials, was applied for catalyzing the nitration reaction of anilines and oxidation reaction of thiourea, produced a high product yield and can be recycled. Thus, it is a strong candidate as a catalysts for oxidation reactions, to be produced at industral scale, due to its high efficiency and low cost.

  2. Steam-assisted crystallization of TPA+-exchanged MCM-41 type mesoporous materials with thick pore walls

    International Nuclear Information System (INIS)

    Chen, Hong Li; Zhang, Kun; Wang, Yi Meng

    2012-01-01

    Highlights: ► Mesoporous Ti-containing silica with thicker pore walls was synthesized. ► Ion-exchange and steam-assisted crystallization led to MCM-41/MFI composite. ► The introduction of Ti inhibited the formation of separated MFI particles. ► Lower temperature favored retaining mesoporous characteristics and morphology. -- Abstract: Hierarchical MCM-41/MFI composites were synthesized through ion-exchange of as-made MCM-41 type mesoporous materials with tetrapropylammonium bromide and subsequent steam-assisted recrystallization. The obtained samples were characterized by powder X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis, FT-IR, 1 H– 13 C CP/MAS and nitrogen adsorption–desorption. The XRD patterns show that the MCM-41/MFI composite possesses both ordered MCM-41 phase and zeolite MFI phase. SEM and TEM images indicate that the recrystallized materials retained the mesoporous characteristics and the morphology of as-made mesoporous materials without the formation of bulky zeolite, quite different from the mechanical mixture of MCM-41 and MFI structured zeolite. Among others, lower recrystallization temperature and the introduction of the titanium to the parent materials are beneficial to preserve the mesoporous structure during the recrystallization process.

  3. A tri-continuous mesoporous material with a silica pore wall following a hexagonal minimal surface

    KAUST Repository

    Han, Yu

    2009-04-06

    Ordered porous materials with unique pore structures and pore sizes in the mesoporous range (2-50nm) have many applications in catalysis, separation and drug delivery. Extensive research has resulted in mesoporous materials with one-dimensional, cage-like and bi-continuous pore structures. Three families of bi-continuous mesoporous materials have been made, with two interwoven but unconnected channels, corresponding to the liquid crystal phases used as templates. Here we report a three-dimensional hexagonal mesoporous silica, IBN-9, with a tri-continuous pore structure that is synthesized using a specially designed cationic surfactant template. IBN-9 consists of three identical continuous interpenetrating channels, which are separated by a silica wall that follows a hexagonal minimal surface. Such a tri-continuous mesostructure was predicted mathematically, but until now has not been observed in real materials. © 2009 Macmillan Publishers Limited. All rights reserved.

  4. A tri-continuous mesoporous material with a silica pore wall following a hexagonal minimal surface

    KAUST Repository

    Han, Yu; Zhang, Daliang; Chng, Leng Leng; Sun, Junliang; Zhao, L. J.; Zou, Xiaodong; Ying, Jackie

    2009-01-01

    Ordered porous materials with unique pore structures and pore sizes in the mesoporous range (2-50nm) have many applications in catalysis, separation and drug delivery. Extensive research has resulted in mesoporous materials with one-dimensional, cage-like and bi-continuous pore structures. Three families of bi-continuous mesoporous materials have been made, with two interwoven but unconnected channels, corresponding to the liquid crystal phases used as templates. Here we report a three-dimensional hexagonal mesoporous silica, IBN-9, with a tri-continuous pore structure that is synthesized using a specially designed cationic surfactant template. IBN-9 consists of three identical continuous interpenetrating channels, which are separated by a silica wall that follows a hexagonal minimal surface. Such a tri-continuous mesostructure was predicted mathematically, but until now has not been observed in real materials. © 2009 Macmillan Publishers Limited. All rights reserved.

  5. Mesoporous silica nanoparticles for stimuli-responsive controlled drug delivery: advances, challenges, and outlook

    Directory of Open Access Journals (Sweden)

    Song Y

    2016-12-01

    Full Text Available Yuanhui Song, Yihong Li, Qien Xu, Zhe Liu Wenzhou Institute of Biomaterials and Engineering (WIBE, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China Abstract: With the development of nanotechnology, the application of nanomaterials in the field of drug delivery has attracted much attention in the past decades. Mesoporous silica nanoparticles as promising drug nanocarriers have become a new area of interest in recent years due to their unique properties and capabilities to efficiently entrap cargo molecules. This review describes the latest advances on the application of mesoporous silica nanoparticles in drug delivery. In particular, we focus on the stimuli-responsive controlled release systems that are able to respond to intracellular environmental changes, such as pH, ATP, GSH, enzyme, glucose, and H2O2. Moreover, drug delivery induced by exogenous stimuli including temperature, light, magnetic field, ultrasound, and electricity is also summarized. These advanced technologies demonstrate current challenges, and provide a bright future for precision diagnosis and treatment. Keywords: mesoporous silica nanoparticle, drug delivery system, controlled release, stimuli-responsive, chemotherapy

  6. A novel, efficient and facile method for the template removal from mesoporous materials

    KAUST Repository

    Chen, Lu

    2014-11-12

    © 2014, Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH. A new catalytic-oxidation method was adopted to remove the templates from SBA-15 and MCM-41 mesoporous materials via Fenton-like techniques under microwave irradiation. The mesoporous silica materials were treated with different Fenton agents based on the template’s property and textural property. The samples were characterized by powder X-ray diffraction(XRD) measurement, N2 adsorption-desorption isotherms, infrared spectroscopy, 29Si MAS NMR and thermo gravimetric analysis(TGA). The results reveal that this is an efficient and facile approach to the thorough template-removal from mesoporous silica materials, as well as to offering products with more stable structures, higher BET surface areas, larger pore volumes and larger quantity of silanol groups.

  7. Mesoporous material grafted with luminescent molecules for the design of selective metal ion chemosensor

    International Nuclear Information System (INIS)

    Zhang Huidong; Zhang Ping; Ye Kaiqi; Sun Yinghui; Jiang Shimei; Wang Yue; Pang Wenqin

    2006-01-01

    Luminescent Schiff-base groups have been successfully grafted on the surface of mesoporous material MCM-48. The grafted Schiff-base groups were employed to prepare luminescent Schiff-base-Zn complex that was covalently bound to the MCM-48 surface. These luminescent mesoporous materials were characterized with X-ray, UV-VIS and emission spectroscopic methods. Experimental results demonstrated that MCM-48 modified with functional groups exhibited novel luminescent property. The chemosensing property of modified MCM-48 sample was investigated. It was demonstrated that the fluorescence of MCM-48 solid with Schiff-base groups could be completely quenched by Cu 2+ cation and this mesoporous material was suitable for sensing Cu 2+ cation in aqueous media

  8. Validity of the t-plot method to assess microporosity in hierarchical micro/mesoporous materials.

    Science.gov (United States)

    Galarneau, Anne; Villemot, François; Rodriguez, Jeremy; Fajula, François; Coasne, Benoit

    2014-11-11

    The t-plot method is a well-known technique which allows determining the micro- and/or mesoporous volumes and the specific surface area of a sample by comparison with a reference adsorption isotherm of a nonporous material having the same surface chemistry. In this paper, the validity of the t-plot method is discussed in the case of hierarchical porous materials exhibiting both micro- and mesoporosities. Different hierarchical zeolites with MCM-41 type ordered mesoporosity are prepared using pseudomorphic transformation. For comparison, we also consider simple mechanical mixtures of microporous and mesoporous materials. We first show an intrinsic failure of the t-plot method; this method does not describe the fact that, for a given surface chemistry and pressure, the thickness of the film adsorbed in micropores or small mesopores (plot method to estimate the micro- and mesoporous volumes of hierarchical samples is then discussed, and an abacus is given to correct the underestimated microporous volume by the t-plot method.

  9. Unexpected nitrile formation in bio-based mesoporous materials (Starbons®).

    Science.gov (United States)

    Attard, Jennifer; Milescu, Roxana; Budarin, Vitaliy; Matharu, Avtar S; Clark, James H

    2018-01-16

    The bio-based mesoporous materials made from polysaccharides, Starbons® can be modified by two different routes to give high levels of N-content, unexpectedly including significant quantities of nitrile groups which can improve the materials performance in applications including metal capture.

  10. Fluorescent Functionalized Mesoporous Silica for Radioactive Material Extraction

    International Nuclear Information System (INIS)

    Li, Juan; Zhu, Kake; Shang, Jianying; Wang, Donghai; Nie, Zimin; Guo, Ruisong; Liu, Chongxuan; Wang, Zheming; Li, Xiaolin; Liu, Jun

    2012-01-01

    Mesoporous silica with covalently bound salicylic acid molecules incorporated in the structure was synthesized with a one-pot, co-condensation reaction at room temperature. The as-synthesized material has a large surface area, uniform particle size, and an ordered pore structure as determined by characterization with transmission electron microscopy, thermal gravimetric analysis, and infrared spectra, etc. Using the strong fluorescence and metal coordination capability of salicylic acid, functionalized mesoporous silica (FMS) was developed to track and extract radionuclide contaminants, such as uranyl (U(VI)) ions encountered in subsurface environments. Adsorption measurements showed a strong affinity of the FMS toward U(VI) with a Kd value of 105 mL/g, which is four orders of magnitude higher than the adsorption of U(VI) onto most of the sediments in natural environments. The new materials have a potential for synergistic environmental monitoring and remediation of the radionuclide U(VI) from contaminated subsurface environments.

  11. Cumene cracking on modified mesoporous material type MCM-41

    African Journals Online (AJOL)

    AlMCM-41 materials, the method of its exchange mode and its grains form were investigated for the mesoporous catalytic activity in the cumene (i.e. isopropylbenzene) cracking reaction. Benzene, propylene and xylene derivatives are the main ...

  12. Preparation of mesoporous carbon/polypyrrole composite materials and their supercapacitive properties

    Directory of Open Access Journals (Sweden)

    WU-JUN ZOU

    2011-08-01

    Full Text Available We synthesized mesoporous carbons/polypyrrole composites, using a chemical oxidative polymerization and calcium carbonate as a sacrificial template. N2 adsorption-desorption method, Fourier infrared spectroscopy, and transmission electron microscopy were used to characterize the structure and morphology of the composites. The measurement results indicated that as-synthesized carbon with the disordered mesoporous structure and a pore size of approximately 5 nm was uniformly coated by polypyrrole. The electrochemical behavior of the resulting composite was examined by cyclic voltammetry and cycle life measurements, and the obtained results showed that the specific capacitance of the resulting composite electrode was as high as 313 F g−1, nearly twice the capacitance of pure mesoporous carbon electrode (163 F g–1. This reveals that the electrochemical performance of these materials is governed by a combination of the electric double layer capacitance of mesoporous carbon and pseudocapacitance of polypyrrole.

  13. Templating mesoporous zeolites

    DEFF Research Database (Denmark)

    Egeblad, Kresten; Christensen, Christina Hviid; Kustova, Marina

    2008-01-01

    The application of templating methods to produce zeolite materials with hierarchical bi- or trimodal pore size distributions is reviewed with emphasis on mesoporous materials. Hierarchical zeolite materials are categorized into three distinctly different types of materials: hierarchical zeolite...... crystals, nanosized zeolite crystals, and supported zeolite crystals. For the pure zeolite materials in the first two categories, the additional meso- or macroporosity can be classified as being either intracrystalline or intercrystalline, whereas for supported zeolite materials, the additional porosity...... originates almost exclusively from the support material. The methods for introducing mesopores into zeolite materials are discussed and categorized. In general, mesopores can be templated in zeolite materials by use of solid templating, supramolecular templating, or indirect templating...

  14. Formation of Micro and Mesoporous Amorphous Silica-Based Materials from Single Source Precursors

    Directory of Open Access Journals (Sweden)

    Mohd Nazri Mohd Sokri

    2016-03-01

    Full Text Available Polysilazanes functionalized with alkoxy groups were designed and synthesized as single source precursors for fabrication of micro and mesoporous amorphous silica-based materials. The pyrolytic behaviors during the polymer to ceramic conversion were studied by the simultaneous thermogravimetry-mass spectrometry (TG-MS analysis. The porosity of the resulting ceramics was characterized by the N2 adsorption/desorption isotherm measurements. The Fourier transform infrared spectroscopy (FT-IR and Raman spectroscopic analyses as well as elemental composition analysis were performed on the polymer-derived amorphous silica-based materials, and the role of the alkoxy group as a sacrificial template for the micro and mesopore formations was discussed from a viewpoint to establish novel micro and mesoporous structure controlling technologies through the polymer-derived ceramics (PDCs route.

  15. Advances in Multicompartment Mesoporous Silica Micro/Nanoparticles for Theranostic Applications.

    Science.gov (United States)

    Liu, Jian; Liu, Tingting; Pan, Jian; Liu, Shaomin; Lu, G Q Max

    2018-04-04

    Mesoporous silica nanoparticles (MSNs) are promising functional nanomaterials for a variety of biomedical applications, such as bioimaging, drug/gene delivery, and cancer therapy. This is due to their low density, low toxicity, high biocompatibility, large specific surface areas, and excellent thermal and mechanical stability. The past decade has seen rapid advances in the development of MSNs with multiple compartments. These include hierarchical porous structures and core-shell, yolk-shell, and Janus structured particles for efficient diagnosis and therapeutic applications. We review advances in this area, covering the categories of multicompartment MSNs and their synthesis methods, with an emphasis on hierarchical structures and the incorporation of multiple functions. We classify multicompartment mesoporous silica micro/nanostructures, ranging from core-shell and yolk-shell structures to Janus and raspberry-like nanoparticles, and discuss their synthesis methods. We review applications of these multicompartment MSNs, including bioimaging, targeted drug/gene delivery, chemotherapy, phototherapy, and in vitro diagnostics. We also highlight the latest trends and new opportunities. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering Volume 9 is June 7, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  16. Nanostructured nitrogen-doped mesoporous carbon derived from polyacrylonitrile for advanced lithium sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ying; Zhao, Xiaohui; Chauhan, Ghanshyam S. [Department of Chemical Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 501 Jinju-daero, Jinju 660-701 (Korea, Republic of); Ahn, Jou-Hyeon, E-mail: jhahn@gnu.ac.kr [Department of Chemical Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 501 Jinju-daero, Jinju 660-701 (Korea, Republic of); Department of Materials Engineering and Convergence Technology and RIGET, Gyeongsang National University, 501 Jinju-daero, Jinju 660-701 (Korea, Republic of)

    2016-09-01

    Graphical abstract: Well-ordered nitrogen-doped mesoporous carbon materials were prepared by in-situ polymerization of polyacrylonitrile in SBA-15 template. The composite of sulfur and nitrogen-doped carbon was successfully used as a cathode material for lithium sulfur battery. - Highlights: • N-doped mesoporous carbons were prepared with PAN as carbon source. • Highly ordered pore system facilitates sulfur loading. • Ladder-type carbon matrix provides good structural stability for confining sulfur. • N-doping ensures an improved absorbability of soluble polysulfides. - Abstract: Nitrogen doping in carbon matrix can effectively improve the wettability of electrolyte and increase electric conductivity of carbon by ensuring fast transfer of ions. We synthesized a series of nitrogen-doped mesoporous carbons (CPANs) via in situ polymerization of polyacrylonitrile (PAN) in SBA-15 template followed by carbonization at different temperatures. Carbonization results in the formation of ladder structure which enhances the stability of the matrix. In this study, CPAN-800, carbon matrix synthesized by the carbonization at 800 °C, was found to possess many desirable properties such as high specific surface area and pore volume, moderate nitrogen content, and highly ordered mesoporous structure. Therefore, it was used to prepare S/CPAN-800 composite as cathode material in lithium sulfur (Li-S) batteries. The S/CPAN-800 composite was proved to be an excellent material for Li-S cells which delivered a high initial discharge capacity of 1585 mAh g{sup −1} and enhanced capacity retention of 862 mAh g{sup −1} at 0.1 C after 100 cycles.

  17. Magnetic mesoporous material for the sequestration of algae

    Science.gov (United States)

    Trewyn, Brian G.; Kandel, Kapil; Slowing, Igor Ivan; Lee, Show-Ling

    2014-09-09

    The present invention provides a magnetic mesoporous nanoparticle that includes a mesoporous silicate nanoparticle and iron oxide. The present invention also provides a method of using magnetic mesoporous nanoparticles to sequester microorganisms from a media.

  18. A controlled release of ibuprofen by systematically tailoring the morphology of mesoporous silica materials

    International Nuclear Information System (INIS)

    Qu Fengyu; Zhu Guangshan; Lin Huiming; Zhang Weiwei; Sun Jinyu; Li Shougui; Qiu Shilun

    2006-01-01

    A series of mesoporous silica materials with similar pore sizes, different morphologies and variable pore geometries were prepared systematically. In order to control drug release, ibuprofen was employed as a model drug and the influence of morphology and pore geometry of mesoporous silica on drug release profiles was extensively studied. The mesoporous silica and drug-loaded samples were characterized by X-ray diffraction, Fourier transform IR spectroscopy, N 2 adsorption and desorption, scanning electron microscopy, and transmission electron microscopy. It was found that the drug-loading amount was directly correlated to the Brunauer-Emmett-Teller surface area, pore geometry, and pore volume; while the drug release profiles could be controlled by tailoring the morphologies of mesoporous silica carriers. - Graphical abstract: The release of ibuprofen is controlled by tailoring the morphologies of mesoporous silica. The mesoporous silica and drug-loaded samples are characterized by powder X-ray diffraction, Fourier transform IR spectroscopy, N 2 adsorption and desorption, scanning electron microscopy, and transmission electron microscopy. The drug-loading amount is directly correlated to the Brunauer-Emmett-Teller surface area, pore geometry, and pore volume; while the drug release profiles can be controlled by tailoring the morphologies of mesoporous silica carriers

  19. A mini review of designed mesoporous materials for energy-storage applications: from electric double-layer capacitors to hybrid supercapacitors

    Science.gov (United States)

    Lim, Eunho; Jo, Changshin; Lee, Jinwoo

    2016-04-01

    In recent years, porous materials have attracted significant attention in various research fields because of their structural merits. In particular, well-designed mesoporous structures with two- or three-dimensionally interconnected pores have been recognized as electrode materials of particular interest for achieving high-performance electrochemical capacitors (ECs). In this mini review, recent progress in the design of mesoporous electrode materials for ECs, from electric double-layer capacitors (EDLCs) and pseudocapacitors (PCs) to hybrid supercapacitors (HSCs), and research challenges for the development of new mesoporous electrode materials has been discussed.

  20. Functionalisation of mesoporous materials for application as additives in high temperature PEM fuel cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi, Monir

    2012-03-06

    The presented thesis contains six original research articles dedicated to the preparation and characterization of organic-inorganic mesoporous materials as additives for polymer electroly1e membrane fuel cells (PEMFCs). The mesoporous materials Si-MCM-41 and benzene-PMO (periodic mesoporous organosilica) were chosen for the investigations. These materials were modified with functional groups for enhanced proton conductivity and water-keeping properties. In order to improve these materials Broenstedt acidic groups were introduced in the framework of mesoporous Si-MCM-41. Therefore, some silicium atoms in the framework were substituted by aluminium using different aluminium sources. Here NaAlO{sub 2} exhibits clearly the best results because the entire aluminium incorporated within the framework is tetragonally coordinated as observed by {sup 2}7AI MAS NMR. The increase of the proton conductivities results from an improved hydrophilicity, a decreased particle size, and newly introduced Broenstedt acidity in the mesoporous Al-MCM-41. However, mesoporous Si-MCM-41 materials functionalised by co-condensation with sulphonic acid groups exhibit the best results concerning proton conductivity, compared to those prepared by grafting. Hence, these materials where characterized in more detail by SANS and by MAS NMR measurements. The first one indicated that by co-condensation the entire inner pore surface is altered by functional groups which are, thus, distributed much more homogeneously than samples functionalised by grafting. This result explains the improved proton conductivities. Additionally, {sup 2}9Si NMR spectra proved that samples prepared by co-condensation lead to a successful and almost complete incorporation of mercaptopropyltrimethoxysilan (MPMS) into the mesoporous framework. Furthermore, it was shown by {sup 1}3C MAS NMR spectroscopy that the majority of the organic functional groups remained intact after H{sub 2}0{sub 2}-oxidation. However, proton

  1. Facile route for synthesis of mesoporous Cr2O3 sheet as anode materials for Li-ion batteries

    International Nuclear Information System (INIS)

    Cao, Zhiqin; Qin, Mingli; Jia, Baorui; Zhang, Lin; Wan, Qi; Wang, Mingshan; Volinsky, Alex A.; Qu, Xuanhui

    2014-01-01

    Mesoporous Cr 2 O 3 with a high specific surface area of 162 m 2 g −1 is prepared by the solution combustion method. The mesoporous Cr 2 O 3 has a sheet structure, which consists of nanoparticles with an average size of 20 nm. As an anode electrode material for rechargeable lithium-ion batteries, the mesoporous Cr 2 O 3 nanoparticles display enhanced electrochemical performance. Stable and reversible capacity of 480 mA h g −1 after 55 cycles is demonstrated. The enhanced electrochemical performance of the Cr 2 O 3 can be attributed to the high surface area and morphological characteristics of mesoporous materials

  2. Mesoporous silica as carrier of antioxidant for food packaging materials

    Science.gov (United States)

    Buonocore, Giovanna Giuliana; Gargiulo, Nicola; Verdolotti, Letizia; Liguori, Barbara; Lavorgna, Marino; Caputo, Domenico

    2014-05-01

    Mesoporous silicas have been long recognized as very promising materials for the preparation of drug delivery systems. In this work SBA-15 mesoporous silica has been functionalized with amino-silane to be used as carrier of antioxidant compound in the preparation of active food packaging materials exhibiting tailored release properties. Active films have been prepared by loading the antioxidant tocopherol, the purely siliceous SBA-15 and the aminofunctionalized SBA-15 loaded with tocopherol into LDPE matrix trough a two-step process (mixing+extrusion). The aim of the present work is the study of the effect of the pore size and of the chemical functionality of the internal walls of the mesophase on the migration of tocopherol from active LDPE polymer films. Moreover, it has been proved that the addition of the active compound do not worsen the properties of the film such as optical characteristic and water vapor permeability, thus leading to the development of a material which could be favorably used mainly, but not exclusively, in the sector of food packaging.

  3. Comparative study of hydrogen storage on metal doped mesoporous materials

    Science.gov (United States)

    Carraro, P. M.; Sapag, K.; Oliva, M. I.; Eimer, G. A.

    2018-06-01

    The hydrogen adsorption capacity of mesoporous materials MCM-41 modified with Co, Fe, Ti, Mg and Ni at 77 K and 10 bar was investigated. Various techniques including XRD, N2 adsorption and DRUV-vis were employed for the materials characterization. The results showed that a low nickel loading on MCM-41 support promoted the presence of hydrogen-favorable sites, increasing the hydrogen storage capacity.

  4. Enantioselectively controlled release of chiral drug (metoprolol) using chiral mesoporous silica materials

    Energy Technology Data Exchange (ETDEWEB)

    Guo Zhen; Liu Xianbin; Ng, Siu-Choon; Chen Yuan; Yang Yanhui [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459 (Singapore); Du Yu, E-mail: du_yu@jlu.edu.cn, E-mail: yhyang@ntu.edu.sg [College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2010-04-23

    Chiral porous materials have attracted burgeoning attention on account of their potential applications in many areas, such as enantioseparation, chiral catalysis, chemical sensors and drug delivery. In this report, chiral mesoporous silica (CMS) materials with various pore sizes and structures were prepared using conventional achiral templates (other than chiral surfactant) and a chiral cobalt complex as co-template. The synthesized CMS materials were characterized by x-ray diffraction, nitrogen physisorption, scanning electron microscope and transmission electron microscope. These CMS materials, as carriers, were demonstrated to be able to control the enantioselective release of a representative chiral drug (metoprolol). The release kinetics, as modeled by the power law equation, suggested that the release profiles of metoprolol were remarkably dependent on the pore diameter and pore structure of CMS materials. More importantly, R- and S-enantiomers of metoprolol exhibited different release kinetics on CMS compared to the corresponding achiral mesoporous silica (ACMS), attributable to the existence of local chirality on the pore wall surface of CMS materials. The chirality of CMS materials on a molecular level was further substantiated by vibrational circular dichroism measurements.

  5. Enantioselectively controlled release of chiral drug (metoprolol) using chiral mesoporous silica materials

    International Nuclear Information System (INIS)

    Guo Zhen; Liu Xianbin; Ng, Siu-Choon; Chen Yuan; Yang Yanhui; Du Yu

    2010-01-01

    Chiral porous materials have attracted burgeoning attention on account of their potential applications in many areas, such as enantioseparation, chiral catalysis, chemical sensors and drug delivery. In this report, chiral mesoporous silica (CMS) materials with various pore sizes and structures were prepared using conventional achiral templates (other than chiral surfactant) and a chiral cobalt complex as co-template. The synthesized CMS materials were characterized by x-ray diffraction, nitrogen physisorption, scanning electron microscope and transmission electron microscope. These CMS materials, as carriers, were demonstrated to be able to control the enantioselective release of a representative chiral drug (metoprolol). The release kinetics, as modeled by the power law equation, suggested that the release profiles of metoprolol were remarkably dependent on the pore diameter and pore structure of CMS materials. More importantly, R- and S-enantiomers of metoprolol exhibited different release kinetics on CMS compared to the corresponding achiral mesoporous silica (ACMS), attributable to the existence of local chirality on the pore wall surface of CMS materials. The chirality of CMS materials on a molecular level was further substantiated by vibrational circular dichroism measurements.

  6. Cellular membrane trafficking of mesoporous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Fang, I-Ju [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    This dissertation mainly focuses on the investigation of the cellular membrane trafficking of mesoporous silica nanoparticles. We are interested in the study of endocytosis and exocytosis behaviors of mesoporous silica nanoparticles with desired surface functionality. The relationship between mesoporous silica nanoparticles and membrane trafficking of cells, either cancerous cells or normal cells was examined. Since mesoporous silica nanoparticles were applied in many drug delivery cases, the endocytotic efficiency of mesoporous silica nanoparticles needs to be investigated in more details in order to design the cellular drug delivery system in the controlled way. It is well known that cells can engulf some molecules outside of the cells through a receptor-ligand associated endocytosis. We are interested to determine if those biomolecules binding to cell surface receptors can be utilized on mesoporous silica nanoparticle materials to improve the uptake efficiency or govern the mechanism of endocytosis of mesoporous silica nanoparticles. Arginine-glycine-aspartate (RGD) is a small peptide recognized by cell integrin receptors and it was reported that avidin internalization was highly promoted by tumor lectin. Both RGD and avidin were linked to the surface of mesoporous silica nanoparticle materials to investigate the effect of receptor-associated biomolecule on cellular endocytosis efficiency. The effect of ligand types, ligand conformation and ligand density were discussed in Chapter 2 and 3. Furthermore, the exocytosis of mesoporous silica nanoparticles is very attractive for biological applications. The cellular protein sequestration study of mesoporous silica nanoparticles was examined for further information of the intracellular pathway of endocytosed mesoporous silica nanoparticle materials. The surface functionality of mesoporous silica nanoparticle materials demonstrated selectivity among the materials and cancer and normal cell lines. We aimed to determine

  7. Mesoporous aluminum phosphite

    International Nuclear Information System (INIS)

    El Haskouri, Jamal; Perez-Cabero, Monica; Guillem, Carmen; Latorre, Julio; Beltran, Aurelio; Beltran, Daniel; Amoros, Pedro

    2009-01-01

    High surface area pure mesoporous aluminum-phosphorus oxide-based derivatives have been synthesized through an S + I - surfactant-assisted cooperative mechanism by means of a one-pot preparative procedure from aqueous solution and starting from aluminum atrane complexes and phosphoric and/or phosphorous acids. A soft chemical extraction procedure allows opening the pore system of the parent as-prepared materials by exchanging the surfactant without mesostructure collapse. The nature of the pore wall can be modulated from mesoporous aluminum phosphate (ALPO) up to total incorporation of phosphite entities (mesoporous aluminum phosphite), which results in a gradual evolution of the acidic properties of the final materials. While phosphate groups in ALPO act as network building blocks (bridging Al atoms), the phosphite entities become basically attached to the pore surface, what gives practically empty channels. The mesoporous nature of the final materials is confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and N 2 adsorption-desorption isotherms. The materials present regular unimodal pore systems whose order decreases as the phosphite content increases. NMR spectroscopic results confirm the incorporation of oxo-phosphorus entities to the framework of these materials and also provide us useful information concerning the mechanism through which they are formed. - Abstract: TEM image of the mesoporous aluminum phosphite showing the hexagonal disordered pore array that is generated by using surfactant micelles as template. Also a scheme emphasizing the presence of an alumina-rich core and an ALPO-like pore surface is presented.

  8. Soft templating strategies for the synthesis of mesoporous materials: inorganic, organic-inorganic hybrid and purely organic solids.

    Science.gov (United States)

    Pal, Nabanita; Bhaumik, Asim

    2013-03-01

    With the discovery of MCM-41 by Mobil researchers in 1992 the journey of the research on mesoporous materials started and in the 21st century this area of scientific investigation have extended into numerous branches, many of which contribute significantly in emerging areas like catalysis, energy, environment and biomedical research. As a consequence thousands of publications came out in large varieties of national and international journals. In this review, we have tried to summarize the published works on various synthetic pathways and formation mechanisms of different mesoporous materials viz. inorganic, organic-inorganic hybrid and purely organic solids via soft templating pathways. Generation of nanoscale porosity in a solid material usually requires participation of organic template (more specifically surfactants and their supramolecular assemblies) called structure-directing agent (SDA) in the bottom-up chemical reaction process. Different techniques employed for the syntheses of inorganic mesoporous solids, like silicas, metal doped silicas, transition and non-transition metal oxides, mixed oxides, metallophosphates, organic-inorganic hybrids as well as purely organic mesoporous materials like carbons, polymers etc. using surfactants are depicted schematically and elaborately in this paper. Moreover, some of the frontline applications of these mesoporous solids, which are directly related to their functionality, composition and surface properties are discussed at the appropriate places. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Assessment of surface acidity in mesoporous materials containing aluminum and titanium

    Science.gov (United States)

    Araújo, Rinaldo S.; Maia, Débora A. S.; Azevedo, Diana C. S.; Cavalcante, Célio L., Jr.; Rodríguez-Castellón, E.; Jimenez-Lopez, A.

    2009-04-01

    The surface acidity of mesoporous molecular sieves of aluminum and titanium was evaluated using four different techniques: n-butylamine volumetry, cyclohexylamine thermodesorption, temperature-programmed desorption of ammonia and adsorption of pyridine. The nature, strength and concentration of the acid sites were determined and correlated to the results of a probe reaction of anthracene oxidation to 9,10-anthraquinone (in liquid phase). In general, the surface acidity was highly influenced by the nature, location and coordination of the metal species (Al and Ti) in the mesoporous samples. Moderate to strong Brönsted acid sites were identified for the Al-MCM-41 sample in a large temperature range. For mesoporous materials containing Ti, the acidity was represented by a combination of weak to moderate Brönsted and Lewis acid sites. The Ti-HMS sample exhibits a higher acidity of moderate strength together with a well-balanced concentration of Brönsted and Lewis acid sites, which enhanced both conversion and selectivity in the oxidation reaction of anthracene.

  10. Hydrodeoxygenation of Pyrolysis Bio-Oil Over Ni Impregnated Mesoporous Materials.

    Science.gov (United States)

    Lee, In-Gu; Lee, Heejin; Kang, Bo Sung; Kim, Young-Min; Kim, Sang Chai; Jung, Sang-Chul; Ko, Chang Hyun; Park, Young-Kwon

    2018-02-01

    The catalytic hydrodeoxygenation (HDO) of bio-oil over Ni-supported mesoporous materials was performed using a high pressure autoclave reactor. The actual pyrolysis oil of cork oak wood was used as a sample, and Ni/Al-SBA-15 and Ni/Al-MSU-F were used as catalysts. In addition, supercritical ethanol was added as solvent. Both Ni-supported mesoporous catalysts showed efficient HDO reaction ability. A higher heating value and pH of bio-oil were achieved by the HDO reaction over both catalysts and upgraded bio-oil had a lower viscosity. Compared to Ni/Al-MSU-F, Ni/Al- SBA-15 produced more upgraded bio-oil with a lower oxygen content and higher heating value via a catalytic HDO process.

  11. Hierarchical micro- and mesoporous carbide-derived carbon as a high-performance electrode material in supercapacitors.

    Science.gov (United States)

    Rose, Marcus; Korenblit, Yair; Kockrick, Emanuel; Borchardt, Lars; Oschatz, Martin; Kaskel, Stefan; Yushin, Gleb

    2011-04-18

    Ordered mesoporous carbide-derived carbon (OM-CDC) materials produced by nanocasting of ordered mesoporous silica templates are characterized by a bimodal pore size distribution with a high ratio of micropores. The micropores result in outstanding adsorption capacities and the well-defined mesopores facilitate enhanced kinetics in adsorption processes. Here, for the first time, a systematic study is presented, in which the effects of synthesis temperature on the electrochemical performance of these materials in supercapacitors based on a 1 M aqueous solution of sulfuric acid and 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid are reported. Cyclic voltammetry shows the specific capacitance of the OM-CDC materials exceeds 200 F g(-1) in the aqueous electrolyte and 185 F g(-1) in the ionic liquid, when measured in a symmetric configuration in voltage ranges of up to 0.6 and 2 V, respectively. The ordered mesoporous channels in the produced OM-CDC materials serve as ion-highways and allow for very fast ionic transport into the bulk of the OM-CDC particles. At room temperature the enhanced ion transport leads to 75% and 90% of the capacitance retention at current densities in excess of ∼10 A g(-1) in ionic liquid and aqueous electrolytes, respectively. The supercapacitors based on 250-300 μm OM-CDC electrodes demonstrate an operating frequency of up to 7 Hz in aqueous electrolyte. The combination of high specific capacitance and outstanding rate capabilities of the OM-CDC materials is unmatched by state-of-the art activated carbons and strictly microporous CDC materials. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Investigation of Room Temperature Synthesis of Titanium Dioxide Nanoclusters Dispersed on Cubic MCM-48 Mesoporous Materials

    OpenAIRE

    Sridhar Budhi; Chia-Ming Wu; Dan Zhao; Ranjit T. Koodali

    2015-01-01

    Titania containing cubic MCM-48 mesoporous materials were synthesized successfully at room temperature by a modified Stöber method. The integrity of the cubic mesoporous phase was retained even at relatively high loadings of titania. The TiO2-MCM-48 materials were extensively characterized by a variety of physico-chemical techniques. The physico-chemical characterization indicate that Ti4+ ions can be substituted in framework tetrahedral positions. The relative amount of Ti4+ ions in tetrahe...

  13. Synthesis and electrochemical performance of mesoporous SiO{sub 2}–carbon nanofibers composite as anode materials for lithium secondary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, Yura; Choi, Jin-Yeong [Department of Chemistry, Keimyung University (Korea, Republic of); Park, Heai-Ku [Department of Chemical Engineering, Keimyung University (Korea, Republic of); Bae, Jae Young [Department of Chemistry, Keimyung University (Korea, Republic of); Lee, Chang-Seop, E-mail: surfkm@kmu.ac.kr [Department of Chemistry, Keimyung University (Korea, Republic of)

    2016-10-15

    Highlights: • Mesoporous SiO{sub 2}–carbon nanofibers composite synthesized on Ni foam without any binder. • This composite was directly applied as anode material of Li secondary batteries. • Showed the highest initial (2420 mAh/g) and discharging (2092 mAh/g) capacity. • This material achieved a retention rate of 86.4% after 30 cycles. - Abstract: In this study, carbon nanofibers (CNFs) and mesoporous SiO{sub 2}–carbon nanofibers composite were synthesized and applied as the anode materials in lithium secondary batteries. CNFs and mesoporous SiO{sub 2}–CNFs composite were grown via chemical vapor deposition method with iron-copper catalysts. Mesoporous SiO{sub 2} materials were prepared by sol–gel method using tetraethylorthosilicate as the silica source and cetyltrimethylammoniumchloride as the template. Ethylene was used as the carbon source and passes into a quartz reactor of a tube furnace heated to 600 °C, and the temperature was maintained at 600 °C for 10 min to synthesize CNFs and mesoporous SiO{sub 2}–CNFs composite. The electrochemical characteristics of the as-prepared CNFs and mesoporous SiO{sub 2}–CNFs composite as the anode of lithium secondary batteries were investigated using a three-electrode cell. In particular, the mesoporous SiO{sub 2}–CNFs composites synthesized without binder after depositing mesoporous SiO{sub 2} on Ni foam showed the highest charging and discharging capacity and retention rate. The initial capacity (2420 mAh/g) of mesoporous SiO{sub 2}–CNFs composites decreased to 2092 mAh/g after 30 cycles at a retention rate of 86.4%.

  14. Mesoporous materials as fining agents in variety Cabernet Sauvignon wines

    Directory of Open Access Journals (Sweden)

    Dumitriu Georgiana-Diana

    2016-01-01

    Full Text Available Innovative oenological products and techniques constantly need to be optimized in order to produce high quality wines that are able to fulfill the demanding consumers, with a pleasant colour, astringency, bitterness and a balanced organoleptic profile. New mesoporous materials with viability and environmental safety characteristics, might be a feasible alternative to the use of bentonite, while nowadays in the winemaking there is a major challenge caused by wastes derivate mainly from wine clarification stages. This study was aimed at investigating the influence of conventional (bentonite and activated coal and alternative (MCM-41, SBA-15, KIT-6 fining agents on enological parameters, colour, as well as on the antioxidant activity of a Cabernet Sauvignon wines. Our results show that mesoporous materials, KIT-6 and SBA-15 (6 g/L present the highest reduction on antioxidant activity with 23.08% and 24.41%, while bentonite and activated coal (1.5 g/L reduced with 20.72%, respectively 33.18%. Cluster analysis performed with the values of antioxidant activity differentiated wines treated with activated carbon from other wines.

  15. Hexamethyldisilazane Removal with Mesoporous Materials Prepared from Calcium Fluoride Sludge.

    Science.gov (United States)

    Kao, Ching-Yang; Lin, Min-Fa; Nguyen, Nhat-Thien; Tsai, Hsiao-Hsin; Chang, Luh-Maan; Chen, Po-Han; Chang, Chang-Tang

    2018-05-01

    A large amount of calcium fluoride sludge is generated by the semiconductor industry every year. It also requires a high amount of fuel consumption using rotor concentrators and thermal oxidizers to treat VOCs. The mesoporous adsorbent prepared by calcium fluoride sludge was used for VOCs treatment. The semiconductor industry employs HMDS to promote the adhesion of photo-resistant material to oxide(s) due to the formation of silicon dioxide, which blocks porous adsorbents. The adsorption of HMDS (Hexamethyldisiloxane) was tested with mesoporous silica materials synthesized from calcium fluoride (CF-MCM). The resulting samples were characterized by XRD, XRF, FTIR, N2-adsorption-desorption techniques. The prepared samples possessed high specific surface area, large pore volume and large pore diameter. The crystal patterns of CF-MCM were similar with Mobil composite matter (MCM-41) from TEM image. The adsorption capacity of HMDS with CF-MCM was 40 and 80 mg g-1, respectively, under 100 and 500 ppm HMDS. The effects of operation parameters, such as contact time and mixture concentration, on the performance of CF-MCM were also discussed in this study.

  16. Mesoporous LiMnPO4/C nanoparticles as high performance cathode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Wen, Fang; Shu, Hongbo; Zhang, Yuanyuan; Wan, Jiajia; Huang, Weihua; Yang, Xiukang; Yu, Ruizhi; Liu, Li; Wang, Xianyou

    2016-01-01

    LiMnPO 4 has been considered as one of the most promising high voltage cathode materials for next-generation lithium ion batteries. However, LiMnPO 4 suffers from intrinsic drawbacks of extremely low electronic conductivity and ionic diffusivity between LiMnPO 4 /MnPO 4 . In this paper, mesoporous LiMnPO 4 nanoparticles are synthesized successfully via a facile glycine-assisted solvothermal rout. The as-prepared mesoporous LiMnPO 4 /C nanoparticles present well-defined abundant mesoporous structure (diameter of 3 ∼ 10 nm), uniform carbon layer (thickness of 3 ∼ 4 nm), high specific surface area (90.1 m 2 /g). As a result, the mesoporous LiMnPO 4 /C nanoparticles achieve excellent electrochemical performance as cathode materials for lithium ion batteries. It demonstrates a high discharge capacity of 167.7, 161.6, 156.4, 148.4 and 128.7 mAh/g at 0.1, 0.5, 1, 2 and 5C, and maintains a discharge capacity of 130.0 mAh/g after 100 cycles at 1C. The good electrochemical performance is attributed to its special interpenetrating mesoporous structure in LiMnPO 4 nanoparticles, which significantly enhances the ionic and electronic transport and additional capacitive behavior to compensate the sluggish kinetics.

  17. In Situ Growth of Mesoporous Silica with Drugs on Titanium Surface and Its Biomedical Applications.

    Science.gov (United States)

    Wan, Mimi; Zhang, Jin; Wang, Qi; Zhan, Shuyue; Chen, Xudong; Mao, Chun; Liu, Yuhong; Shen, Jian

    2017-06-07

    Mesoporous silica has been developed for the modification of titanium surfaces that are used as implant materials. Yet, the traditional modification methods failed to effectively construct mesoporous silica on the titanium surface evenly and firmly, in which the interaction between mesoporous silica and titanium was mainly physical. Here, in situ growth of mesoporous silica on a titanium surface was performed using a simple evaporation-induced self-assembly strategy. Meantime, in situ introduction of drugs (heparin and vancomycin) to mesoporous silica was also adopted to improve the drug-loading amount. Both the above-mentioned processes were completed at the same time. Transmission electron microscopy, N 2 adsorption-desorption isotherms, Fourier transform infrared spectroscopy, scanning electron microscopy, and water contact angle measurements were used to characterize the structure of the mesoporous silica film. Results indicated that the mesoporous silica film that in situ grew on the titanium surface was smooth, thin, transparent, and stable. Cytotoxicity, proliferation performance of osteoblast cells, and in vitro and in vivo studies of the antibacterial activity of the coating were tested. This is the first study to modify the titanium surface by the in situ growth of a mesoporous silica coating with two kinds of drugs. The stability of the mesoporous silica coating can be attributed to the chemical bonding between dopamine and silicon hydroxyl of the mesoporous silica coating, and the smooth surface of mesoporous silica is a result of the method of in situ growth. The large amount of drug-loading also could be ascribed to the in situ introduction of drugs during the synthetic process. The strategy proposed in this work will bring more possibilities for the preparation of advanced functional materials based on the combination of mesoporous structure and metallic materials.

  18. Micelle swelling agent derived cavities for increasing hydrophobic organic compound removal efficiency by mesoporous micelle@silica hybrid materials

    KAUST Repository

    Shi, Yifeng

    2012-06-01

    Mesoporous micelle@silica hybrid materials with 2D hexagonal mesostructures were synthesized as reusable sorbents for hydrophobic organic compounds (HOCs) removal by a facile one-step aqueous solution synthesis using 3-(trimethoxysily)propyl-octadecyldimethyl-ammonium chloride (TPODAC) as a structure directing agent. The mesopores were generated by adding micelle swelling agent, 1,3,5-trimethyl benzene, during the synthesis and removing it afterward, which was demonstrated to greatly increase the HOC removal efficiency. In this material, TPODAC surfactant is directly anchored on the pore surface of mesoporous silica via SiOSi covalent bond after the synthesis due to its reactive Si(OCH 3) 3 head group, and thus makes the synthesized materials can be easily regenerated for reuse. The obtained materials show great potential in water treatment as pollutants sorbents. © 2011 Elsevier Inc. All rights reserved.

  19. Mesoporous Carbon Produced from Tri-constituent Mesoporous Carbon-silica Composite for Water Purification

    KAUST Repository

    Yu, Yanjie

    2012-01-01

    Highly ordered mesoporous carbon-silica nanocomposites with interpenetrating carbon and silica networks were synthesized by the evaporation-induced tri-constituent co- assembly approach. The removal of silica by concentrated NaOH solution produced mesoporous carbons, which contained not only the primary large pores, but also the secondary mesopores in the carbon walls. The thus synthesized mesoporous carbon was further activated by using ZnCl2. The activated mesoporous carbon showed an improved surface area and pore volume. The synthesized mesoporous carbon was tested for diuron removal from water and the results showed that the carbon gave a fast diuron adsorption kinetics and a high diuron removal capacity, which was attributable to the primary mesopore channels being the highway for mass transfer, which led to short diffusion path length and easy accessibility of the interpenetrated secondary mesopores. The optimal adsorption capacity of the porous carbon was determined to be 390 mg/g, the highest values ever reported for diuron adsorption on carbon-based materials.

  20. Mesoporous Carbon Produced from Tri-constituent Mesoporous Carbon-silica Composite for Water Purification

    KAUST Repository

    Yu, Yanjie

    2012-05-01

    Highly ordered mesoporous carbon-silica nanocomposites with interpenetrating carbon and silica networks were synthesized by the evaporation-induced tri-constituent co- assembly approach. The removal of silica by concentrated NaOH solution produced mesoporous carbons, which contained not only the primary large pores, but also the secondary mesopores in the carbon walls. The thus synthesized mesoporous carbon was further activated by using ZnCl2. The activated mesoporous carbon showed an improved surface area and pore volume. The synthesized mesoporous carbon was tested for diuron removal from water and the results showed that the carbon gave a fast diuron adsorption kinetics and a high diuron removal capacity, which was attributable to the primary mesopore channels being the highway for mass transfer, which led to short diffusion path length and easy accessibility of the interpenetrated secondary mesopores. The optimal adsorption capacity of the porous carbon was determined to be 390 mg/g, the highest values ever reported for diuron adsorption on carbon-based materials.

  1. Recent Advances in Catalysis Over Mesoporous Molecular Sieves

    Czech Academy of Sciences Publication Activity Database

    Martín-Aranda, R. M.; Čejka, Jiří

    2010-01-01

    Roč. 53, 3-4 (2010), s. 141-153 ISSN 1022-5528 R&D Projects: GA AV ČR KAN100400701; GA AV ČR IAA400400805; GA ČR GA104/09/0561 Institutional research plan: CEZ:AV0Z40400503 Keywords : mesoporous molecular sieves * MCM-41 * SBA-15 * mesoporous alumina Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.359, year: 2010

  2. Carbon-coated mesoporous SnO2 nanospheres as anode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Wang, Fei; Song, Xiaoping; Yao, Gang; Zhao, Mingshu; Liu, Rui; Xu, Minwei; Sun, Zhanbo

    2012-01-01

    In this paper mesoporous SnO 2 nanospheres with an average diameter of about 83 nm, composed of many tiny primary particles (∼10 nm) and holes, are synthesized on a large scale by a simple hydrothermal route. The as-prepared mesoporous SnO 2 nanospheres were uniformly coated with carbon by a further hydrothermal treatment in glucose aqueous solution. As anode materials for lithium-ion batteries, the core–shell SnO 2 /C nanocomposites exhibit a markedly improved cycling performance.

  3. Cooperation of micro- and meso-porous carbon electrode materials in electric double-layer capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Cheng [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, Jilin Province (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Qi, Li; Wang, Hongyu [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, Jilin Province (China); Yoshio, Masaki [Advanced Research Center, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan)

    2010-07-01

    The capacitive characteristics of micro- and meso-porous carbon materials have been compared in cyclic voltammetric studies and galvanostatic charge-discharge tests. Meso-porous carbon can keep certain high capacitance values at high scan rates, whereas micro-porous carbon possesses very high capacitance values at low scan rates but fades quickly as the scan rate rises up. For better performance of electric double-layer capacitors (EDLCs), the cooperative application of both kinds of carbon materials has been proposed in the following two ways: mixing both kinds of carbons in the same electrode or using the asymmetric configuration of carbon electrodes in the same EDLC. The cooperative effect on the electrochemical performance has also been addressed. (author)

  4. Controlled synthesis of the tricontinuous mesoporous material IBN-9 and its carbon and platinum derivatives

    KAUST Repository

    Zhao, Yunfeng

    2011-08-23

    Controlled synthesis of mesoporous materials with ultracomplicated pore configurations is of great importance for both fundamental research of nanostructures and the development of novel applications. IBN-9, which is the only tricontinuous mesoporous silica with three sets of interpenetrating three-dimensional channel systems, appears to be an excellent model mesophase for such study. The extensive study of synthesis space diagrams proves mesophase transition among the cylindrical MCM-41, tricontinuous IBN-9 and bicontinuous MCM-48, and also allows a more precise control of phase-pure synthesis. On the other hand, rational design of structure-directing agents offers a possibility to extend the synthesis conditions of IBN-9, as well as tailor its pore size. Moreover, an unprecedented helical structure consisting of twisted 3-fold interwoven mesoporous channels is reported here for the first time. The unique tricontinuous mesostructure of IBN-9 has been well-replicated by other functional materials (e.g., carbon and platinum) via a "hard- templating" synthesis route. The obtained carbon material possesses large surface area (∼1900 m2/g), high pore volume (1.56 cm 3/g), and remarkable gas adsorption capability at both cryogenic temperatures and room temperature. The platinum material has an ordered mesostructure composed of highly oriented nanocrystals. © 2011 American Chemical Society.

  5. Low-cost route for synthesis of mesoporous silica materials with high silanol groups and their application for Cu(II) removal

    International Nuclear Information System (INIS)

    Wang Yangang; Huang Sujun; Kang Shifei; Zhang Chengli; Li Xi

    2012-01-01

    Graphical abstract: A simple and low-cost route to synthesize mesoporous silica materials with high silanol groups has been demonstrated by means of a sol–gel process using citric acid as the template and acid catalyst, further studies on the adsorption of Cu(II) onto the representative amine-functionalized mesoporous silica showed that it had a high Cu(II) removal efficiency. Highlights: ► A low-cost route to synthesize mesoporous silica with high silanol groups was demonstrated. ► Citric acid as the template and acid catalyst for the reaction of tetraethylorthosilicate. ► Water extraction method was an effective technique to remove template which can be recycled. ► The mesoporous silica with high silanol groups was easily modified by functional groups. ► A high Cu(II) removal efficiency on the amine-functionalized mesoporous silica. - Abstract: We report a simple and low-cost route for the synthesis of mesoporous silica materials with high silanol groups by means of a sol–gel process using citric acid as the template, tetraethylorthosilicate (TEOS) as the silica source under aqueous solution system. The citric acid can directly work as an acid catalyst for the hydrolysis of TEOS besides the function as a pore-forming agent in the synthesis. It was found that by using a water extraction method the citric acid template in as-prepared mesoporous silica composite can be easily removed and a high degree of silanol groups were retained in the mesopores, moreover, the citric acid template in the filtrate can be recycled after being dried. The structural properties of the obtained mesoporous silica materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and nitrogen adsorption–desorption analysis. Furthermore, an adsorption of Cu(II) from aqueous solution on the representative amine-functionalized mesoporous silica was investigated

  6. Polyaniline nanofiber/large mesoporous carbon composites as electrode materials for supercapacitors

    International Nuclear Information System (INIS)

    Liu, Huan; Xu, Bin; Jia, Mengqiu; Zhang, Mei; Cao, Bin; Zhao, Xiaonan; Wang, Yu

    2015-01-01

    Highlights: • The composites of polyaniline nanofiber and large mesoporous carbon were prepared for supercapacitors. • The large mesoporous carbons were simply prepared by nano-CaCO 3 template method. • The composites exhibit high capacitance and good rate capability and cycle stability. - Abstract: A composite of polyaniline nanofiber/large mesoporous carbon (PANI-F/LMC) hybrid was prepared by an in situ chemical oxidative polymerization of aniline monomer with nano-CaCO 3 templated LMC as host matrix for supercapacitors. The morphology, composition and electronic structure of the composites (PANI-F/LMC) together with pure PANI nanofibers and the LMC were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), FT-IR, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It is found that the PANI nanofibers were incorporated into the large mesochannels of LMC with interpenetrating framework formed. Such unique structure endows the PANI-F/LMC composite with a high capacitance of 473 F g −1 at a current load of 0.1 A g −1 with good rate performance and cycling stability, suggesting its potential application in the electrode material for supercapacitors

  7. Polyaniline nanofiber/large mesoporous carbon composites as electrode materials for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Huan; Xu, Bin; Jia, Mengqiu, E-mail: jiamq@mail.buct.edu.cn; Zhang, Mei; Cao, Bin; Zhao, Xiaonan; Wang, Yu

    2015-03-30

    Highlights: • The composites of polyaniline nanofiber and large mesoporous carbon were prepared for supercapacitors. • The large mesoporous carbons were simply prepared by nano-CaCO{sub 3} template method. • The composites exhibit high capacitance and good rate capability and cycle stability. - Abstract: A composite of polyaniline nanofiber/large mesoporous carbon (PANI-F/LMC) hybrid was prepared by an in situ chemical oxidative polymerization of aniline monomer with nano-CaCO{sub 3} templated LMC as host matrix for supercapacitors. The morphology, composition and electronic structure of the composites (PANI-F/LMC) together with pure PANI nanofibers and the LMC were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), FT-IR, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It is found that the PANI nanofibers were incorporated into the large mesochannels of LMC with interpenetrating framework formed. Such unique structure endows the PANI-F/LMC composite with a high capacitance of 473 F g{sup −1} at a current load of 0.1 A g{sup −1} with good rate performance and cycling stability, suggesting its potential application in the electrode material for supercapacitors.

  8. Importance of Micropore-Mesopore Interfaces in Carbon Dioxide Capture by Carbon-Based Materials.

    Science.gov (United States)

    Durá, Gema; Budarin, Vitaliy L; Castro-Osma, José A; Shuttleworth, Peter S; Quek, Sophie C Z; Clark, James H; North, Michael

    2016-08-01

    Mesoporous carbonaceous materials (Starbons®) derived from low-value/waste bio-resources separate CO2 from CO2 /N2 mixtures. Compared to Norit activated charcoal (AC), Starbons® have much lower microporosities (8-32 % versus 73 %) yet adsorb up to 65 % more CO2 . The presence of interconnected micropores and mesopores is responsible for the enhanced CO2 adsorption. The Starbons® also showed three-four times higher selectivity for CO2 adsorption rather than N2 adsorption compared to AC. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Electrochemical behavior of two and one electron redox systems adsorbed on to micro- and mesoporous silicate materials: Influence of the channels and the cationic environment of the host materials

    International Nuclear Information System (INIS)

    Senthil Kumar, K.; Natarajan, P.

    2009-01-01

    Electrochemical behavior of two electron redox system, phenosafranine (PS + ) adsorbed on to micro- and mesoporous materials is investigated by cyclic voltammetry and differential pulse voltammetry using modified micro- and mesoporous host electrodes. Two redox peaks were observed when phenosafranine is adsorbed on the surface of microporous materials zeolite-Y and ZSM-5. However, only a single redox peak was observed in the modified electrode with phenosafranine encapsulated into the mesoporous material MCM-41 and when adsorbed on the external surface of silica. The observed redox peaks for the modified electrodes with zeolite-Y and ZSM-5 host are suggested to be primarily due to consecutive two electron processes. The peak separation ΔE and peak potential of phenosafranine adsorbed on zeolite-Y and ZSM-5 were found to be influenced by the pH of the electrolyte solution. The variation of the peak current in the cyclic voltammogram and differential pulse voltammetry with scan rate shows that electrodic processes are controlled by the nature of the surface of the host material. The heterogeneous electron transfer rate constants for phenosafranine adsorbed on to micro- and mesoporous materials were calculated using the Laviron model. Higher rate constant observed for the dye encapsulated into the MCM-41 indicates that the one-dimensional channel of the mesoporous material provides a more facile micro-environment for phenosafranine for the electron transfer reaction as compared to the microporous silicate materials. The stability of the modified electrode surface was investigated by multisweep cyclic voltammetry.

  10. Facile and tunable synthesis of hierarchical mesoporous silica materials ranging from flower structure with wrinkled edges to hollow structure with coarse surface

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Nanjing, E-mail: nanjing.hao@dartmouth.edu [Dartmouth College, Thayer School of Engineering (United States); Li, Laifeng; Tang, Fangqiong, E-mail: tangfq@mail.ipc.ac.cn [Chinese Academy of Sciences, Technical Institute of Physics and Chemistry (China)

    2016-11-15

    Mesoporous silica materials have attracted great attention in many fields. However, facile and tunable synthesis of hierarchical mesoporous silica structures is still a big challenge, and thus the development of them still lags behind. Herein, well-defined mesoporous silica flower structure with wrinkled edges and mesoporous silica hollow structure with coarse surface were synthesized simply by using poly(vinylpyrrolidone) and hexadecylamine as cotemplates in different water/ethanol solvent systems. The shape evolution from flower to hollow can be easily realized by tuning the volume ratio of water to ethanol, and the yields of both materials can reach gram scale. The formation mechanisms of mesoporous silica flower and hollow structures were also experimentally investigated and discussed. These novel hierarchical structures having unique physicochemical properties may bring many interesting insights into scientific research and technological application.

  11. The impact of framework organic functional groups on the hydrophobicity and overall stability of mesoporous silica materials

    International Nuclear Information System (INIS)

    Smeulders, Geert; Meynen, Vera; Silvestre-Albero, Ana; Houthoofd, Kristof; Mertens, Myrjam; Silvestre-Albero, Joaquin; Martens, Johan A.; Cool, Pegie

    2012-01-01

    Graphical abstract: The stability (hydrothermal, mechanical and chemical) of PMOs is studied in a systematic way and ranks them between classic and other hybrid mesoporous silica materials. Highlights: ► The stability (hydrothermal, mechanical and chemical) of PMOs is studied. ► Compared stability of PMOs with classic and other hybrid mesoporous silica materials. ► Immersion calorimetry to study the effect of hydrophobicity. ► PMOs show superior stability. - Abstract: The hydrothermal, mechanical and chemical stability of various mesoporous materials have been studied in detail, using X-ray diffraction and nitrogen sorption. Pure siliceous nanoporous powders (MCM-41 and SBA-15) are evaluated against their hybrid counterparts; namely 2 types of periodic mesoporous organosilicas (benzene and ethane bridged PMOs) and an organosilane grafted MCM-41 material. In primary tests, the stability of the hybrid materials is found to be superior compared to that of the pure siliceous ones. The stability of the materials was correlated to their hydrophobicity via immersion calorimetry, applied for the first time in this context. Based on these results, a clear correlation between the hydrophobicity of a material and its stability has been revealed. In addition, with 29 Si-MAS-NMR and vacuum experiments, the mechanism of the structural deterioration in the three different stability treatments could be unambiguously identified as the hydrolyzation of the siloxane bonds. The homogeneity of the hydrophobic groups throughout the entire network was found to be of great importance, irrespective of the hydrophobic nature at the surface as determined by calorimetric measurements. The results reveal that the most stable material can withstand (a) a pressure of 740 MPa during 5 min, (b) a 2 h stirring in a 2 M NaOH solution and (c) a 3 day steaming treatment at 393 K.

  12. The impact of framework organic functional groups on the hydrophobicity and overall stability of mesoporous silica materials

    Energy Technology Data Exchange (ETDEWEB)

    Smeulders, Geert, E-mail: geert.smeulders@ua.ac.be [University of Antwerpen (Ukraine), Laboratory of Adsorption and Catalysis, Universiteitsplein 1, 2610 Wilrijk (Belgium); Meynen, Vera [University of Antwerpen (Ukraine), Laboratory of Adsorption and Catalysis, Universiteitsplein 1, 2610 Wilrijk (Belgium); Silvestre-Albero, Ana [Universidad de Alicante, Laboratorio de Materiales Avanzados, Apartado 99, 03080 Alicante (Spain); Houthoofd, Kristof [KULeuven, Centre for Surface Chemistry and Catalysis, Kasteelpark Arenberg 23, 3001 Heverlee (Belgium); Mertens, Myrjam [Flemish Institute for Technological Research (VITO N.V.), Boeretang 200, 2400 Mol (Belgium); Silvestre-Albero, Joaquin [Universidad de Alicante, Laboratorio de Materiales Avanzados, Apartado 99, 03080 Alicante (Spain); Martens, Johan A. [KULeuven, Centre for Surface Chemistry and Catalysis, Kasteelpark Arenberg 23, 3001 Heverlee (Belgium); Cool, Pegie [University of Antwerpen (Ukraine), Laboratory of Adsorption and Catalysis, Universiteitsplein 1, 2610 Wilrijk (Belgium)

    2012-02-15

    Graphical abstract: The stability (hydrothermal, mechanical and chemical) of PMOs is studied in a systematic way and ranks them between classic and other hybrid mesoporous silica materials. Highlights: Black-Right-Pointing-Pointer The stability (hydrothermal, mechanical and chemical) of PMOs is studied. Black-Right-Pointing-Pointer Compared stability of PMOs with classic and other hybrid mesoporous silica materials. Black-Right-Pointing-Pointer Immersion calorimetry to study the effect of hydrophobicity. Black-Right-Pointing-Pointer PMOs show superior stability. - Abstract: The hydrothermal, mechanical and chemical stability of various mesoporous materials have been studied in detail, using X-ray diffraction and nitrogen sorption. Pure siliceous nanoporous powders (MCM-41 and SBA-15) are evaluated against their hybrid counterparts; namely 2 types of periodic mesoporous organosilicas (benzene and ethane bridged PMOs) and an organosilane grafted MCM-41 material. In primary tests, the stability of the hybrid materials is found to be superior compared to that of the pure siliceous ones. The stability of the materials was correlated to their hydrophobicity via immersion calorimetry, applied for the first time in this context. Based on these results, a clear correlation between the hydrophobicity of a material and its stability has been revealed. In addition, with {sup 29}Si-MAS-NMR and vacuum experiments, the mechanism of the structural deterioration in the three different stability treatments could be unambiguously identified as the hydrolyzation of the siloxane bonds. The homogeneity of the hydrophobic groups throughout the entire network was found to be of great importance, irrespective of the hydrophobic nature at the surface as determined by calorimetric measurements. The results reveal that the most stable material can withstand (a) a pressure of 740 MPa during 5 min, (b) a 2 h stirring in a 2 M NaOH solution and (c) a 3 day steaming treatment at 393 K.

  13. A novel, efficient and facile method for the template removal from mesoporous materials

    KAUST Repository

    Chen, Lu; Jiang, Shang; Wang, Runwei; Zhang, Zongtao; Qiu, Shilun

    2014-01-01

    © 2014, Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH. A new catalytic-oxidation method was adopted to remove the templates from SBA-15 and MCM-41 mesoporous materials via Fenton

  14. Carboxylic acid-grafted mesoporous material and its high catalytic activity in one-pot three-component coupling reaction

    Directory of Open Access Journals (Sweden)

    Ruth Gomes

    2014-11-01

    Full Text Available A new carboxylic acid functionalized mesoporous organic polymer has been synthesized via in situ radical polymerization of divinylbenzene and acrylic acid using a mesoporous silica as a seed during the polymerization process under solvothermal conditions. The mesoporous material MPDVAA-1 has been thoroughly characterized employing powder XRD, solid state 13C cross polarization magic angle spinning-nuclear magnetic resonance, FT-IR spectroscopy, N2 sorption, HR-TEM, and NH3 temperature programmed desorption-thermal conductivity detector (TPD-TCD analysis to understand its porosity, chemical environment, bonding, and surface properties. The mesoporous polymer was used as a catalyst for a three comp onent Biginelli condensation between various aldehydes, β-keto esters, and urea/thioureas to give 3,4-dihydropyrimidine-2(1H-ones. The reactions were carried out under conventional heating as well as solvent-free microwave irradiation of solid components, and in both the cases, the mesoporous polymer MPDVAA-1 proved to be a powerful, robust, and reusable catalyst with high catalytic efficiency.

  15. Construction of order mesoporous (Eu–La)/ZnO composite material and its luminescent characters

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Na; Liu, Yu; Li, Zi-Wei [School of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun 130022 (China); Yu, Hui, E-mail: yh2001101@163.com [School of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun 130022 (China); Bai, Hao-tian [School of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun 130022 (China); Xia, Long, E-mail: xialong_aron@163.com [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Feng, Da-wei [Changchun University of Science and Technology Science Park, Changchun 130022 (China); Guangdong College of Business and Technology, Zhaoqing 526020 (China); Zhang, Hong-bo; Dong, Xiang-ting; Wang, Tian-yang; Han, Ji; Wu, Rong-yi; Zhang, Qi [School of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun 130022 (China)

    2016-09-15

    For the first time, the order mesoporous zinc oxide was synthesized by a soft template synthesis method. The Eu and La phosphate were introduced into the prepared mesoporous zinc oxide by the high temperature solid phase method, and got the mesoporous rare earth/zinc oxide composite materials. The luminescence characters of the materials were studied. The influences of La to Eu luminescent properties had been studied, and the optimum proportion of Eu and La was discussed. The influences of La and Eu to ZnO luminescence properties were also been studied. La phosphate had the large influence to Eu luminescent. ZnO had a strong emission peak at 469 nm, which overlapped with the {sup 7}F{sub 0}–{sup 5}D{sub 2} transition excitation peak of Eu at 465 nm. It indicated that the effective energy transfer happened between ZnO and Eu, which strongly enhanced the luminescence intensity of Eu. At the same time, the Eu and La phosphates could regulate the defect density of ZnO, which could regulate the luminescent intensity of ZnO, and realized the adjustment of luminescent color between green and red light.

  16. Potential of hybrid functionalized meso-porous materials for the separation and immobilization of radionuclides

    International Nuclear Information System (INIS)

    Luca, V.

    2013-01-01

    Functionalized meso-porous materials are a class of hybrid organic-inorganic material in which a meso-porous metal oxide framework is functionalized with multifunctional organic molecules. These molecules may contain one or more anchor groups that form strong bonds to the pore surfaces of the metal oxide framework and free functional groups that can impart and or modify the functionality of the material such as for binding metal ions in solution. Such materials have been extensively studied over the past decade and are of particular interest in absorption applications because of the tremendous versatility in choosing the composition and architecture of the metal oxide framework and the nature of the functional organic molecule as well as the efficient mass transfer that can occur through a well-designed hierarchically porous network. A sorbent for nuclear applications would have to be highly selective for particular radio nuclides, it would need to be hydrolytically and radiolytically stable, and it would have to possess reasonable capacity and fast kinetics. The sorbent would also have to be available in a form suitable for use in a column. Finally, it would also be desirable if once saturated with radio nuclides, the sorbent could be recycled or converted directly into a ceramic or glass waste form suitable for direct repository disposal or even converted directly into a material that could be used as a transmutation target. Such a cradle-to- grave strategy could have many benefits in so far as process efficiency and the generation of secondary wastes are concerned.This paper will provide an overview of work done on all of the above mentioned aspects of the development of functionalized meso-porous adsorbent materials for the selective separation of lanthanides and actinides and discuss the prospects for future implementation of a cradle-to-grave strategy with such materials. (author)

  17. Nanocomposite of cobalt oxide and ordered mesoporous carbon as the electrode materials for supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.; Liu, P.; Zhao, J.; Feng, J.; Tang, B. [Shanghai Univ. of Engineering Science (China). College of Chemistry and Chemical Engineering

    2010-07-01

    An incipient wetness impregnation method was used to prepare a cobalt oxide ordered mesoporous carbon composite for use as an electrode in supercapacitor applications. The composite was then incorporated inside periodic nanoholes in the ordered mesoporous carbon (OMC). X-ray diffraction (XRD), transmission electron microscopy (TEM) and N{sub 2} adsorption-desorption isotherm analyses were used to characterize the structures of the samples. The specific capacitance of the synthesized materials was estimated using cyclic voltammetric (CV) analyses. The study showed that composites prepared using the new method exhibited a higher reversible specific capacitance of 594.8 F per g at a scan rate of 5 mV per second. The composite also showed good cyclic stability. Results suggested that the composite can be used as an electrode material in supercapacitors.

  18. Selective adsorption and release of cationic organic dye molecules on mesoporous borosilicates

    International Nuclear Information System (INIS)

    Paul, Manidipa; Pal, Nabanita; Bhaumik, Asim

    2012-01-01

    Mesoporous materials can play a pivotal role as a host material for delivery application to a specific part of a system. In this work we explore the selective adsorption and release of cationic organic dye molecules such as safranine T (ST) and malachite green (MG) on mesoporous borosilicate materials. The mesoporous silica SBA-15 and borosilicate materials (MBS) were prepared using non-ionic surfactant Pluronic P123 as template via evaporation induced self-assembly (EISA) method. After template removal the materials show high surface areas and in some cases ordered mesopores of dimensions ca. 6–7 nm. High surface area, mesoporosity and the presence of heteroatom (boron) help this mesoporous borosilicate material to adsorb high amount of cationic dye molecules at its surface from the respective aqueous solutions. Furthermore, the mesoporous borosilicate samples containing higher percentage adsorbed dyes show excellent release of ST or MG dye in simulated body fluid (SBF) solution at physiological pH = 7.4 and temperature 310 K. The adsorption and release efficiency of mesoporous borosilicate samples are compared with reference boron-free mesoporous pure silica material to understand the nature of adsorbate–adsorbent interaction at the surfaces. - Graphical abstract: Highly ordered 2D-hexagonal mesoporous borosilicate materials have been synthesized by using Pluronic P123 as template. The materials show very good adsorption and release of organic cationic dye molecules under physiological conditions. Highlights: ► Highly ordered 2D-hexagonal mesoporous borosilicate. ► Nonionic Pluoronic P123 templated mesoporous material. ► Adsorption of organic dyes at the mesopore surface. ► Controlled release of dyes under physiological pH and temperature. ► Release of safranine T (ST) and malachite green (MG) dyes in simulated body fluids.

  19. Mesoporous Silica: A Suitable Adsorbent for Amines

    Directory of Open Access Journals (Sweden)

    Abdollahzadeh-Ghom Sara

    2009-01-01

    Full Text Available Abstract Mesoporous silica with KIT-6 structure was investigated as a preconcentrating material in chromatographic systems for ammonia and trimethylamine. Its adsorption capacity was compared to that of existing commercial materials, showing its increased adsorption power. In addition, KIT-6 mesoporous silica efficiently adsorbs both gases, while none of the employed commercial adsorbents did. This means that KIT-6 Mesoporous silica may be a good choice for integrated chromatography/gas sensing micro-devices.

  20. Hydrocracking of ethyl laurate on bifunctional micro-/mesoporous composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Adam, M.; Busse, O.; Reschetilowski, W. [Technische Univ. Dresden (Germany). Inst. for Industrial Chemistry

    2011-07-01

    Hydrocracking of ethyl laurate (dodecanoic acid ethyl ester) as a representative model compound of vegetable oil has been investigated in a fixed bed reactor under integral conditions. A synthesized micro-/mesoporous composite support material Al-MCM-41/ZSM-5 modified by different metal loadings (NiMo, NiW, PtNiW) was used as catalyst system. It could be demonstrated that the metal loading and reducibility influence product selectivity as well as deactivation behavior of catalyst samples. (orig.)

  1. Ultrathin coatings of nanoporous materials as property enhancements for advanced functional materials

    International Nuclear Information System (INIS)

    Coker, Eric Nicholas

    2010-01-01

    This report summarizes the findings of a five-month LDRD project funded through Sandia's NTM Investment Area. The project was aimed at providing the foundation for the development of advanced functional materials through the application of ultrathin coatings of microporous or mesoporous materials onto the surface of substrates such as silicon wafers. Prior art teaches that layers of microporous materials such as zeolites may be applied as, e.g., sensor platforms or gas separation membranes. These layers, however, are typically several microns to several hundred microns thick. For many potential applications, vast improvements in the response of a device could be realized if the thickness of the porous layer were reduced to tens of nanometers. However, a basic understanding of how to synthesize or fabricate such ultra-thin layers is lacking. This report describes traditional and novel approaches to the growth of layers of microporous materials on silicon wafers. The novel approaches include reduction of the quantity of nutrients available to grow the zeolite layer through minimization of solution volume, and reaction of organic base (template) with thermally-oxidized silicon wafers under a steam atmosphere to generate ultra-thin layers of zeolite MFI.

  2. Amorphous Mn oxide-ordered mesoporous carbon hybrids as a high performance electrode material for supercapacitors.

    Science.gov (United States)

    Nam, Inho; Kim, Nam Dong; Kim, Gil-Pyo; Park, Junsu; Yi, Jongheop

    2012-07-01

    A supercapacitor has the advantages of both the conventional capacitors and the rechargeable batteries. Mn oxide is generally recognized one of the potential materials that can be used for a supercapacitor, but its low conductivity is a limiting factor for electrode materials. In this study, a hybrid of amorphous Mn oxide (AMO) and ordered mesoporous carbon (OMC) was prepared and characterized using X-ray diffraction, transmission electron microscopy, N2/77 K sorption techniques, and electrochemical analyses. The findings indicate that the electrochemical activities of Mn oxide were facilitated when it was in the hybrid state because OMC acted as a pathway for both the electrolyte ions and the electrons due to the characteristics of the ordered mesoporous structure. The ordered mesoporous structure of OMC was well maintained even after hybridization with amorphous Mn oxide. The electrochemical-activity tests revealed that the AMO/OMC hybrid had a higher specific capacitance and conductivity than pure Mn oxide. In the case where the Mn/C weight ratio was 0.75, the composite showed a high capacitance of 153 F/g, which was much higher than that for pure Mn oxide, due to the structural effects of OMC.

  3. Mesoporous MnO2/carbon aerogel composites as promising electrode materials for high-performance supercapacitors.

    Science.gov (United States)

    Li, Gao-Ren; Feng, Zhan-Ping; Ou, Yan-Nan; Wu, Dingcai; Fu, Ruowen; Tong, Ye-Xiang

    2010-02-16

    MnO(2) as one of the most promising candidates for electrochemical supercapacitors has attracted much attention because of its superior electrochemical performance, low cost, and environmentally benign nature. In this Letter, we explored a novel route to prepare mesoporous MnO(2)/carbon aerogel composites by electrochemical deposition assisted by gas bubbles. The products were characterized by energy-dispersive spectrometry (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The MnO(2) deposits are found to have high purity and have a mesoporous structure that will optimize the electronic and ionic conductivity to minimize the total resistance of the system and thereby maximize the performance characteristics of this material for use in supercapacitor electrodes. The results of nitrogen adsorption-desorption experiments and electrochemical measurements showed that these obtained mesoporous MnO(2)/carbon aerogel composites had a large specific surface area (120 m(2)/g), uniform pore-size distribution (around 5 nm), high specific capacitance (515.5 F/g), and good stability over 1000 cycles, which give these composites potential application as high-performance supercapacitor electrode materials.

  4. Nanocasting of Periodic Mesoporous Materials as an Effective Strategy to Prepare Mixed Phases of Titania

    Directory of Open Access Journals (Sweden)

    Luther Mahoney

    2015-12-01

    Full Text Available Mesoporous titanium dioxide materials were prepared using a nanocasting technique involving silica SBA-15 as the hard-template. At an optimal loading of titanium precursor, the hexagonal periodic array of pores in SBA-15 was retained. The phases of titanium dioxide could be easily varied by the number of impregnation cycles and the nature of titanium alkoxide employed. Low number of impregnation cycles produced mixed phases of anatase and TiO2(B. The mesoporous TiO2 materials were tested for solar hydrogen production, and the material consisting of 98% anatase and 2% TiO2(B exhibited the highest yield of hydrogen from the photocatalytic splitting of water. The periodicity of the pores was an important factor that influenced the photocatalytic activity. This study indicates that mixed phases of titania containing ordered array of pores can be prepared by using the nanocasting strategy.

  5. Mesoporous zeolite and zeotype single crystals synthesized in fluoride media

    DEFF Research Database (Denmark)

    Egeblad, Kresten; Kustova, Marina; Klitgaard, Søren Kegnæs

    2007-01-01

    We report the synthesis and characterization of a series of new mesoporous zeolite and zeotype materials made available by combining new and improved procedures for directly introducing carbon into reaction mixtures with the fluoride route for conventional zeolite synthesis. The mesoporous...... materials were all prepared by hydrothermal crystallization of gels adsorbed on carbon matrices which were subsequently removed by combustion. The procedures presented here resulted in mesoporous zeolite and zeotypes materials with MFI, MEL, BEA, AFI and CHA framework structures. All samples were...... characterized by XRPD, SEM, TEM and N-2 physisorption measurements. For the zeolite materials it A as found that mesoporous MFI and MEL structured single crystals could indeed be crystallized from fluoride media using an improved carbon-templating approach. More importantly, it was found that mesoporous BEA...

  6. Synthesis of mesoporous silica microsphere from dual surfactant

    Directory of Open Access Journals (Sweden)

    Venkatathri Narayanan

    2008-12-01

    Full Text Available A new procedure is reported to synthesis mesoporous silica micro sphere for the first time. In these method two surfactants namely Span 80 and Tween 80 were used. Small angle X ray diffraction and N2 adsorption analysis shows the synthesized material has mesoporous property. The material has spherical morphology with 1-10 µm particle size. Beside the material found to have microcapsule property as observed from the Transmission electron microscopy. The Fourier transform Infrared spectroscopic analysis reveals that the materials are similar to other mesoporous materials. We also encapsulated an UV-absorber Ibuprofen inside the microcapsule, by mixing it before the synthesis. This shows a possibility of the materials in cosmetic applications.

  7. Functionalization of mesoporous materials for lanthanide and actinide extraction.

    Science.gov (United States)

    Florek, Justyna; Giret, Simon; Juère, Estelle; Larivière, Dominic; Kleitz, Freddy

    2016-10-14

    Among the energy sources currently available that could address our insatiable appetite for energy and minimize our CO2 emission, solar, wind, and nuclear energy currently occupy an increasing portion of our energy portfolio. The energy associated with these sources can however only be harnessed after mineral resources containing valuable constituents such as actinides (Ac) and rare earth elements (REEs) are extracted, purified and transformed into components necessary for the conversion of energy into electricity. Unfortunately, the environmental impacts resulting from their manufacture including the generation of undesirable and, sometimes, radioactive wastes and the non-renewable nature of the mineral resources, to name a few, have emerged as challenges that should be addressed by the scientific community. In this perspective, the recent development of functionalized solid materials dedicated to selective elemental separation/pre-concentration could provide answers to several of the above-mentioned challenges. This review focuses on recent advances in the field of mesoporous solid-phase (SP) sorbents designed for REEs and Ac liquid-solid extraction. Particular attention will be devoted to silica and carbon sorbents functionalized with commonly known ligands, such as phosphorus or amide-containing functionalities. The extraction performances of these new systems are discussed in terms of sorption capacity and selectivity. In order to support potential industrial applications of the silica and carbon-based sorbents, their main drawbacks and advantages are highlighted and discussed.

  8. NMR studies of organic liquids confined in mesoporous materials: (1) Pore size distribution and (2) Phase behaviour and dynamic studies in restricted geometry

    International Nuclear Information System (INIS)

    Foerland, Kjersti

    2005-01-01

    In the thesis NMR spectroscopy is used for studying liquids confined in various porous materials. In the first part, pore size distributions of mesoporous silicas and controlled pore glasses were determined by measuring the 1H NMR signal from the non-frozen fraction of the confined liquid as a function of temperature, using benzene, acetonitrile and HMDS as probe molecules. In the second part, the molecular dynamics of acetonitrile, hexamethyldisilane, cyclohexane and cyclopentane confined in mesoporous materials were studied as a function of temperature. 6 papers are included with titles: 1) Pore-size determination of mesoporous materials by 1H NMR spectroscopy. 2) Pore-size distribution in mesoporous materials as studied by 1H NMR. 3) Dynamic 1H and 2H NMR investigations of acetonitrile confined in porous silica. 4) NMR investigations of hexamethyldisilane confined in controlled pore glasses: Pore size distribution and molecular dynamics studies. 5) 1H and 2H NMR studies of cyclohexane nano crystals in controlled pore glasses. 6) 1H NMR relaxation and diffusion studies of cyclohexane and cyclopentane confined in MCM-41

  9. NMR studies of organic liquids confined in mesoporous materials: (1) Pore size distribution and (2) Phase behaviour and dynamic studies in restricted geometry

    Energy Technology Data Exchange (ETDEWEB)

    Foerland, Kjersti

    2005-07-01

    In the thesis NMR spectroscopy is used for studying liquids confined in various porous materials. In the first part, pore size distributions of mesoporous silicas and controlled pore glasses were determined by measuring the 1H NMR signal from the non-frozen fraction of the confined liquid as a function of temperature, using benzene, acetonitrile and HMDS as probe molecules. In the second part, the molecular dynamics of acetonitrile, hexamethyldisilane, cyclohexane and cyclopentane confined in mesoporous materials were studied as a function of temperature. 6 papers are included with titles: 1) Pore-size determination of mesoporous materials by 1H NMR spectroscopy. 2) Pore-size distribution in mesoporous materials as studied by 1H NMR. 3) Dynamic 1H and 2H NMR investigations of acetonitrile confined in porous silica. 4) NMR investigations of hexamethyldisilane confined in controlled pore glasses: Pore size distribution and molecular dynamics studies. 5) 1H and 2H NMR studies of cyclohexane nano crystals in controlled pore glasses. 6) 1H NMR relaxation and diffusion studies of cyclohexane and cyclopentane confined in MCM-41.

  10. Research Update: Mesoporous sensor nanoarchitectonics

    Directory of Open Access Journals (Sweden)

    Katsuhiko Ariga

    2014-03-01

    Full Text Available In this short review, we have selected three main subjects: (i mesoporous materials, (ii sensing applications, and (iii the concept of nanoarchitectonics, as examples of recent hot topics in nanomaterials research. Mesoporous materials satisfy the conditions necessary not only for a wide range of applications but also for ease of production, by a variety of simple processes, which yield bulk quantities of materials without loss of their well-defined nanometric structural features. Sensing applications are of general importance because many events arise from interaction with external stimuli. In addition to these important features, nanoarchitectonics is a concept aimed at production of novel functionality of whole units according to concerted interactions within nanostructures. For the combined subject of mesoporous sensor nanoarchitectonics, we present recent examples of research in the corresponding fields categorized according to mechanism of detection including optical, electrical, and piezoelectric sensing.

  11. General strategy for fabricating thoroughly mesoporous nanofibers

    KAUST Repository

    Hou, Huilin

    2014-12-03

    Recently, preparation of mesoporous fibers has attracted extensive attentions because of their unique and broad applications in photocatalysis, optoelectronics, and biomaterials. However, it remains a great challenge to fabricate thoroughly mesoporous nanofibers with high purity and uniformity. Here, we report a general, simple and cost-effective strategy, namely, foaming-assisted electrospinning, for producing mesoporous nanofibers with high purity and enhanced specific surface areas. As a proof of concept, the as-fabricated mesoporous TiO2 fibers exhibit much higher photocatalytic activity and stability than both the conventional solid counterparts and the commercially available P25. The abundant vapors released from the introduced foaming agents are responsible for the creation of pores with uniform spatial distribution in the spun precursor fibers. The present work represents a critically important step in advancing the electrospinning technique for generating mesoporous fibers in a facile and universal manner.

  12. Synthesis of non-siliceous mesoporous oxides.

    Science.gov (United States)

    Gu, Dong; Schüth, Ferdi

    2014-01-07

    Mesoporous non-siliceous oxides have attracted great interest due to their unique properties and potential applications. Since the discovery of mesoporous silicates in 1990s, organic-inorganic assembly processes by using surfactants or block copolymers as soft templates have been considered as a feasible path for creating mesopores in metal oxides. However, the harsh sol-gel conditions and low thermal stabilities have limited the expansion of this method to various metal oxide species. Nanocasting, using ordered mesoporous silica or carbon as a hard template, has provided possibilities for preparing novel mesoporous materials with new structures, compositions and high thermal stabilities. This review concerns the synthesis, composition, and parameter control of mesoporous non-siliceous oxides. Four synthesis routes, i.e. soft-templating (surfactants or block copolymers as templates), hard-templating (mesoporous silicas or carbons as sacrificial templates), colloidal crystal templating (3-D ordered colloidal particles as a template), and super lattice routes, are summarized in this review. Mesoporous metal oxides with different compositions have different properties. Non-siliceous mesoporous oxides are comprehensively described, including a discussion of constituting elements, synthesis, and structures. General aspects concerning pore size control, atomic scale crystallinity, and phase control are also reviewed.

  13. Outstanding low temperature HC-SCR of NOx over platinum-group catalysts supported on mesoporous materials expecting diesel-auto emission regulation

    International Nuclear Information System (INIS)

    Komatsu, Tamikuni; Tomokuni, Keizou; Yamada, Issaku

    2006-01-01

    Outstanding low temperature HC-SCR of NOx over platinum-group catalysts supported on mesoporous materials, which does not rely on the conventional NOx-absorption-reduction-catalysts, is presented for the purpose of de-NOx of diesel-auto emissions. The established catalysts basically consist of mesoporous silica or metal-substituted mesoporous silicates for supports and platinum for active species, which is operated under lean- and rich-conditions. The new catalysts are very active at 150-200 o C and free from difficult problems of SOx-deactivation and hydrothermal ageing of the NOx-absorption-reduction catalyst. (author)

  14. Recent development, applications, and perspectives of mesoporous silica particles in medicine and biotechnology.

    Science.gov (United States)

    Pasqua, Luigi; Cundari, Sante; Ceresa, Cecilia; Cavaletti, Guido

    2009-01-01

    Mesoporous silica particles (MSP) are a new development in nanotechnology. Covalent modification of the surface of the silica is possible both on the internal pore and on the external particle surface. It allows the design of functional nanostructured materials with properties of organic, biological and inorganic components. Research and development are ongoing on the MSP, which have applications in catalysis, drug delivery and imaging. The most recent and interesting advancements in size, morphology control and surface functionalization of MSP have enhanced the biocompatibility of these materials with high surface areas and pore volumes. In the last 5 years several reports have demonstrated that MSP can be efficiently internalized using in vitro and animal models. The functionalization of MSP with organic moieties or other nanostructures brings controlled release and molecular recognition capabilities to these mesoporous materials for drug/gene delivery and sensing applications, respectively. Herein, we review recent research progress on the design of functional MSP materials with various mechanisms of targeting and controlled release.

  15. Selective Preparation of trans-Carveol over Ceria Supported Mesoporous Materials MCM-41 and SBA-15

    Directory of Open Access Journals (Sweden)

    Nariman F. Salakhutdinov

    2013-05-01

    Full Text Available Ce-modified mesoporous silica materials MCM-41 and SBA-15, namely 32 wt % Ce–Si–MCM-41, 16 wt % Ce–H–MCM-41 and 20 wt % Ce–Si–SBA-15, were prepared, characterized and studied in the selective preparation of trans-carveol by α-pinene oxide isomerization. The characterizations of these catalysts were performed using scanning electron microscopy, X-ray photoelectron spectroscopy, nitrogen adsorption and FTIR pyridine adsorption. Selective preparation of trans-carveol was carried out in the liquid phase in a batch reactor. The activity and the selectivity of catalyst were observed to be influenced by their acidity, basicity and morphology of the mesoporous materials. The formation of trans-carveol is moreover strongly influenced by the basicity of the used solvent and in order to achieve high yields of this desired alcohol it is necessary to use polar basic solvent.

  16. Mesoporous Transition Metal Oxides for Supercapacitors.

    Science.gov (United States)

    Wang, Yan; Guo, Jin; Wang, Tingfeng; Shao, Junfeng; Wang, Dong; Yang, Ying-Wei

    2015-10-14

    Recently, transition metal oxides, such as ruthenium oxide (RuO₂), manganese dioxide (MnO₂), nickel oxides (NiO) and cobalt oxide (Co₃O₄), have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are resulted from the effective contacts between electrode materials and electrolytes as well as fast transportation of ions and electrons in the bulk of electrode and at the interface of electrode and electrolyte. During the past decade, many achievements on mesoporous transition metal oxides have been made. In this mini-review, we select several typical nanomaterials, such as RuO₂, MnO₂, NiO, Co₃O₄ and nickel cobaltite (NiCo₂O₄), and briefly summarize the recent research progress of these mesoporous transition metal oxides-based electrodes in the field of supercapacitors.

  17. Facile synthesis of single-crystal mesoporous CoNiO2 nanosheets assembled flowers as anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Liu, Yanguo; Zhao, Yanyan; Yu, Yanlong; Ahmad, Mashkoor; Sun, Hongyu

    2014-01-01

    Highlights: • Mesoporous CoNiO 2 microflowers have been synthesized. • Li-ion batteries performance of CoNiO 2 has been investigated. • CoNiO 2 structure delivers high capacity, good cycling stability and high rate capability. • The electrochemical performance is attributed to the mesoporous nature and the 3D structure. • CoNiO 2 can be considered to be an attractive candidate as an electrode material for LIBs. - Abstract: Mesoporous CoNiO 2 microflowers assembled with single-crystal nanosheets were successfully synthesized by a hydrothermal method and subsequent annealing process and their lithium storage capacity were investigated. The structural and compositional analysis of the mesoporous CoNiO 2 microflowers has been studied by X-ray diffraction, field emission scanning electron microscopy and high-resolution transmission electron microscopy. The Bruauer–Emmett–Teller specific surface area of CoNiO 2 microflowers has been calculated by the nitrogen isotherm curve and pore size distribution has been determined by the Barret–Joyner–Halenda method. It has been found that the as-prepared CoNiO 2 electrodes delivered satisfied capacity, good cycling stability and rate capability. The improved electrochemical performance is attributed to the mesoporous nature and the 3D assembled structure. Therefore, such a structure can be considered to be an attractive candidate as an electrode material for lithium-ion batteries

  18. Hierarchically mesoporous silica materials prepared from the uniaxially stretched polypropylene membrane and surfactant templates

    International Nuclear Information System (INIS)

    Wang Xiaocong; Ma Jin; Liu Jin; Zhou Chen; Zhao, Yan; Yi Shouzhi; Yang Zhenzhong

    2006-01-01

    Hierarchically mesoporous silica materials with a bimodal distribution were template-prepared from uniaxially stretched polypropylene membrane in the presence of a surfactant via a sol-gel process. Their regularity and morphologies were characterized by transmission electron microscopy (TEM), x-ray diffraction and Brunauer-Emmett-Teller (BET) surface area analysis. The larger channel pores formed by removing the microfibrils of uniaxially stretched polypropylene membrane have a broad pore size distribution, and their size is around 13 nm. In contrast, the smaller mesopores formed by surfactant templates have a narrow distribution; their size is about 3.9 nm. The size of the smaller pores could be tuned from 2 to 6 nm by selecting different surfactants and by changing the concentration of reactants

  19. Optical oxygen sensing materials based on a novel dirhenium(I) complex assembled in mesoporous silica

    International Nuclear Information System (INIS)

    Liu Yanhong; Li Bin; Cong Yan; Zhang Liming; Fan Di; Shi Linfang

    2011-01-01

    A new dirhenium(I) complex fac-[{Re(CO) 3 (4,7-dinonadecyl-1,10-phenanthro -line)} 2 (4,4'-bipyridyl)] (trifluoromethanesulfonate) 2 (denoted as D-Re(I) ) is assembled in MCM-41 and SBA-15 type mesoporous silica support. The emission peaks of D-Re(I) in D-Re(I)/MCM-41 and D-Re(I)/SBA-15 are observed at 522 and 517 nm, respectively. Their long excited lifetimes, which are of the order of microseconds, indicate the presence of phosphorescence emission arising from the metal to ligand charge-transfer (MLCT) transition. The luminescence intensities of D-Re(I)/MCM-41 and D-Re(I)/SBA-15 decrease remarkably with increase in the oxygen concentration, meaning that they can be used as optical oxygen sensing materials based on luminescence quenching. The ratios I 0 /I 100 of D-Re(I)/MCM-41 and D-Re(I)/SBA-15 are estimated to be 5.6 and 20.1, respectively. The obtained Stern-Volmer oxygen quenching plots of the mesoporous sensing materials could be fitted well to the two-site Demas model and Lehrer model. - Research highlights: → Dirhenium(I) complex assembled in mesoporous molecular sieves for oxygen sensor design. → Large α-diimine ligand L used to improve oxygen sensing properties. → High sensitivity (I 0 /I 100 ) up to 20.1.

  20. Mesoporous Zn2SnO4 as effective electron transport materials for high-performance perovskite solar cells

    International Nuclear Information System (INIS)

    Bao, Sha; Wu, Jihuai; He, Xin; Tu, Yongguang; Wang, Shibo; Huang, Miaoliang; Lan, Zhang

    2017-01-01

    Highlights: •Large grain and mesoporous Zn 2 SnO 4 are synthesized by a facile hydrothermal method. •Perovskite device with Zn 2 SnO 4 electron transport layer get efficiency of 17.21%. •While the device with TiO 2 electron transport layer obtain an efficiency of 14.83%. •Superior photovoltaic performance stems from the intrinsic characteristics of Zn 2 SnO 4 . -- Abstract: Electron transport layer with higher carrier mobility and suitable band gap structure plays a significant role in determining the photovoltaic performance of perovskite solar cells (PSCs). Here, we report a synthesis of high crystalline zinc stannate (Zn 2 SnO 4 ) by a facile hydrothermal method. The as-synthesized Zn 2 SnO 4 possesses particle size of 20 nm, large surface area, mesoporous hierarchical structure, and can be used as a promising electron-transport materials to replace the conventional mesoporous TiO 2 material. A perovskite solar cell with structure of FTO/blocking layer/Zn 2 SnO 4 /CH 3 NH 3 PbI 3 /Spiro-OMeOTAD/Au is fabricated, and the preparation condition is optimized. The champion device based on Zn 2 SnO 4 electron transport material achieves a power conversion efficiency of 17.21%, while the device based on TiO 2 electron transport material gets an efficiency of 14.83% under the same experimental conditions. The results render Zn 2 SnO 4 an effective candidate as electron transport material for high performance perovskite solar cells and other devices.

  1. Facile Synthesis of A 3D Flower-Like Mesoporous Ni@C Composite Material for High-Energy Aqueous Asymmetric Supercapacitors.

    Science.gov (United States)

    Liu, Song; An, Cuihua; Zang, Lei; Chang, Xiaoya; Guo, Huinan; Jiao, Lifang; Wang, Yijing

    2018-04-16

    A 3D flower-like mesoporous Ni@C composite material has been synthesized by using a facile and economical one-pot hydrothermal method. This unique 3D flower-like Ni@C composite, which exhibited a high surface area (522.4 m 2  g -1 ), consisted of highly dispersed Ni nanoparticles on mesoporous carbon flakes. The effect of calcination temperature on the electrochemical performance of the Ni@C composite was systematically investigated. The optimized material (Ni@C 700) displayed high specific capacity (1306 F g -1 at 2 A g -1 ) and excellent cycling performance (96.7 % retention after 5000 cycles). Furthermore, an asymmetric supercapacitor (ASC) that contained Ni@C 700 as cathode and mesoporous carbon (MC) as anode demonstrated high energy density (60.4 W h kg -1 at a power density of 750 W kg -1 ). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Fabrication of mesoporous metal oxide coated-nanocarbon hybrid materials via a polyol-mediated self-assembly process

    Science.gov (United States)

    Feng, Bingmei; Wang, Huixin; Wang, Dongniu; Yu, Huilong; Chu, Yi; Fang, Hai-Tao

    2014-11-01

    After clarifying the formation mechanism of a typical metal glycolate precipitate, Ti glycolate, in a polyol-mediated synthesis using acetone as a precipitation medium, we describe a simple template-free approach based on an ethylene glycol-mediated synthesis to fabricate mesoporous metal oxide coated-nanocarbon hybrid materials including TiO2 coated-carbon nanotube (CNT), SnO2 coated-CNT, Cu2O/CuO coated-CNT and TiO2 coated-graphene sheet (GS). In the approach, metal oxide precursors, metal glycolates, were first deposited on CNTs or GSs, and subsequently transformed to the metal oxide coatings by pyrolysis or hydrolysis. By a comparison between the characterization of two TiO2-CNT hybrid materials using carboxylated CNTs and pristine CNTs without carboxyl groups, the driving force for initiating the deposition of metal glycolates on the carboxylated CNTs is confirmed to be the hydrogen bonding between the carboxyl groups and the polymer chains in metal glycolate sols. The electrochemical performances of the mesoporous TiO2 coated-carboxylated CNTs and TiO2-pristine CNT hybrid materials were investigated. The results show that the mesoporous TiO2 coated-carboxylated CNT with a uniform core-shell nanostructure exhibits substantial improvement in the rate performance in comparison with its counterpart from 0.5 C to 100 C because of its higher electronic conductivity and shorter diffusion path for the lithium ion. At the extremely high rate of 100 C, the specific capacity of TiO2 of the former reaches 85 mA h g-1, twice as high as that of the latter.After clarifying the formation mechanism of a typical metal glycolate precipitate, Ti glycolate, in a polyol-mediated synthesis using acetone as a precipitation medium, we describe a simple template-free approach based on an ethylene glycol-mediated synthesis to fabricate mesoporous metal oxide coated-nanocarbon hybrid materials including TiO2 coated-carbon nanotube (CNT), SnO2 coated-CNT, Cu2O/CuO coated-CNT and TiO2

  3. Investigating the Effects of Loading Factors on the In Vitro Pharmaceutical Performance of Mesoporous Materials as Drug Carriers for Ibuprofen

    Directory of Open Access Journals (Sweden)

    Junmin Lai

    2017-02-01

    Full Text Available The aim of the study was to investigate the effects of the loading factors, i.e., the initial drug loading concentration and the ratio of the drug to carriers, on the in vitro pharmaceutical performance of drug-loaded mesoporous systems. Ibuprofen (IBU was used as a model drug, and two non-ordered mesoporous materials of commercial silica Syloid® 244FP (S244FP and Neusilin® US2 (NS2 were selected in the study. The IBU-loaded mesoporous samples were prepared by a solvent immersion method with a rotary evaporation drying technique and characterized by polarized light microscopy (PLM, Fourier transform infrared (FTIR spectroscopy, X-ray powder diffraction (XRPD and differential scanning calorimetry (DSC. Dissolution experiments were performed in simulated gastric media at 37 °C under non-sink conditions. The concentration of IBU in solution was determined by HPLC. The study showed that the dissolution rate of IBU can be improved significantly using the mesoporous S224FP carriers due to the conversion of crystalline IBU into the amorphous form. Both of the loading factors affected the IBU dissolution kinetics. Due to the molecular interaction between the IBU and NS2 carriers, the loading factors had little effects on the drug release kinetics with incomplete drug desorption recovery and insignificant dissolution enhancement. Care and extensive evaluation must therefore be taken when mesoporous materials are chosen as carrier delivery systems.

  4. Multifunctional EuYVO4 nanoparticles coated with mesoporous silica

    International Nuclear Information System (INIS)

    Justino, Larissa G.; Nigoghossian, Karina; Capote, Ticiana S.O.; Scarel-Caminaga, Raquel M.; Ribeiro, Sidney J.L.; Caiut, José Maurício A.

    2016-01-01

    Mesoporous structures are interesting materials for the incorporation of dyes, drugs, and luminescent systems, leading to materials with important multifunctionalities. In a very unique way, these guest/host materials combine the high stability of inorganic systems, new guest-structuring features, and adsorption mechanisms in their well-defined pores. This work evaluates the luminescent properties of rare earth-doped YVO 4 nanoparticles coated with a mesoporous silica shell. The use of two different synthesis methodologies allowed for particle size control. The crystalline phase emerged without further heat treatment. The mesoporous shell decreased undesirable quenching effects on YVO 4 :Eu 3+ nanoparticles and rendered them biocompatible. The materials prepared herein could have interesting applications as luminescent markers or drug release systems.

  5. Influence of metal loading on hydrocracking of rapeseed oil using bifunctional micro-/mesoporous composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Gille, T.; Busse, O.; Reschetilowski, W. [Technische Univ. Dresden (Germany). Inst. of Industrial Chemistry

    2013-11-01

    Hydrocracking of rapeseed oil has been investigated in a fixed bed reactor under integral conditions. A synthesized micro-/mesoporous composite material Al-MCM-41/ZSM-5 modified by different metal loadings (NiMo, PtNiMo, Pt) was used as catalyst system. It could be demonstrated that the support material and their metal loading influence the product selectivity as well as the deactivation tendencies of the catalyst sample. (orig.)

  6. Synthesis and characterization of silica mesoporous material produced by hydrothermal continues pH adjusting path way

    Directory of Open Access Journals (Sweden)

    A. Salemi Golezani

    2016-08-01

    Full Text Available Mesoporous silica molecular sieves MCM-41 were synthesized under hydrothermal conditions. For this purpose, a solution with a molar coefficient of water, cetyltri-methyl ammonium bromide surfactants as template and sodium silicate as the source of SiO2 are used. Phase formation, morphology and gas absorption properties were investigated by XRD and BET analysis, respectively. The results showed that silica mesoporous material has been successfully synthesized. A favorable special surface and porosity volume together with regular arrangement of nano metric-hexagonal porosities were obtained from this synthesis. Thickness of the wall and average diameter of the pores are 0.8 nm and 4 nm, respectively.

  7. Mesoporous ethanesilica materials with bimodal and trimodal pore-size distributions synthesised in the presence of cobalt ions

    Directory of Open Access Journals (Sweden)

    Alufelwi M. Tshavhungwe

    2010-07-01

    Full Text Available Mesoporous organosilica materials containing ethane groups in their framework were formed with two and three pore sizes (i.e. bimodal and trimodal pores when synthesised by the sol-gel method in the presence of cobalt ions. The compounds 1,2-bistrimethoxysilylethane and tetraethylorthosilicate were used as silicon sources and the reactions were done in the presence of a surfactant, which served as a template. Diffuse reflectance infrared Fourier transform spectroscopy revealed that organic functional groups were incorporated into the ethanesilica. Powder X-ray diffraction and nitrogen adsorption data indicated that the mesophase and textural properties (surface area, pore volume, pore diameter of the materials were dependent on the ageing temperature, the amount/ratio of silica precursors and cobalt ion incorporation. Secondary mesopores were drastically reduced by changing the ratio of silicon precursors.

  8. Recent progress in synthesis and surface functionalization of mesoporous acidic heterogeneous catalysts for esterification of free fatty acid feedstocks: A review

    International Nuclear Information System (INIS)

    Soltani, Soroush; Rashid, Umer; Al-Resayes, Saud Ibrahim; Nehdi, Imededdine Arbi

    2017-01-01

    Highlights: • Mesoporous catalysts have potential to esterify the wastes feedstocks. • Surface area of mesoporous catalysts depends on materials synthesis methods. • Hydrophobic surface of sulfonated catalyst causes adsorption on FFA particles. • Mesoporous catalysts have large active sites to trap free fatty acids particles. • Recyclability of mesoporous catalyst is a key feature for biodiesel production. - Abstract: Biodiesel is considered as a sulfur free, non-toxic and biodegradable source of energy and its burning provide less pollution than petroleum based fuels. In case of using fried waste oils, animal’s fats and waste cultivated oil which contain high free fatty acid (FFA), esterification is taking place. Through esterification reaction, catalyst is an integral part which accelerates the FFA conversion to the methyl ester (ME) in shorter reaction time. Although, most of the current catalysts have some defect such as poor recyclability, less surface area and poor porosity. Mesoporous materials have been recently attracted remarkable interests because of its desirable properties, such as large and harmonized surface area, tuneable mesoporous channels with flexible pore size, excellent thermal stability, and post-functionalization surface characteristics. The combination of remarkable physico-chemical and textural properties as well as high activity has proposed them as advanced materials. In this review, it has been attempted to present the details of fundamental properties of mesoporous catalysts, various synthetic methods and formation mechanisms, and surface functionalization methodologies. The effects of various factors (such as surface area, porosity, acidity, post-calcination temperature, and reaction parameters) on esterification of different feedstocks are discussed in detail. Furthermore, the kinetic study of esterification reaction in the presence of mesoporous catalysts is also elaborated. At the end, remarkable challenges and outlooks

  9. Mesoporous Transition Metal Oxides for Supercapacitors

    Science.gov (United States)

    Wang, Yan; Guo, Jin; Wang, Tingfeng; Shao, Junfeng; Wang, Dong; Yang, Ying-Wei

    2015-01-01

    Recently, transition metal oxides, such as ruthenium oxide (RuO2), manganese dioxide (MnO2), nickel oxides (NiO) and cobalt oxide (Co3O4), have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are resulted from the effective contacts between electrode materials and electrolytes as well as fast transportation of ions and electrons in the bulk of electrode and at the interface of electrode and electrolyte. During the past decade, many achievements on mesoporous transition metal oxides have been made. In this mini-review, we select several typical nanomaterials, such as RuO2, MnO2, NiO, Co3O4 and nickel cobaltite (NiCo2O4), and briefly summarize the recent research progress of these mesoporous transition metal oxides-based electrodes in the field of supercapacitors. PMID:28347088

  10. Mesoporous Transition Metal Oxides for Supercapacitors

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2015-10-01

    Full Text Available Recently, transition metal oxides, such as ruthenium oxide (RuO2, manganese dioxide (MnO2, nickel oxides (NiO and cobalt oxide (Co3O4, have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are resulted from the effective contacts between electrode materials and electrolytes as well as fast transportation of ions and electrons in the bulk of electrode and at the interface of electrode and electrolyte. During the past decade, many achievements on mesoporous transition metal oxides have been made. In this mini-review, we select several typical nanomaterials, such as RuO2, MnO2, NiO, Co3O4 and nickel cobaltite (NiCo2O4, and briefly summarize the recent research progress of these mesoporous transition metal oxides-based electrodes in the field of supercapacitors.

  11. "Bricks and mortar" self-assembly approach to graphitic mesoporous carbon nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Fulvio, P. F.; Mayes, R.; Wang, X. Q.; Mahurin, S., M.; Bauer, J. C.; Presser, V.; McDonough, J.; Gogotsi, Y.; Dai, S.

    2011-04-20

    Mesoporous carbon materials do not have sufficient ordering at the atomic scale to exhibit good electronic conductivity. To date, mesoporous carbons having uniform mesopores and high surface areas have been prepared from partially-graphitizable precursors in the presence of templates. High temperature thermal treatments above 2000 °C, which are usually required to increase conductivity, result in a partial or total collapse of the mesoporous structures and reduced surface areas induced by growth of graphitic domains, limiting their applications in electric double layer capacitors and lithium-ion batteries. In this work, we successfully implemented a “brick-and-mortar” approach to obtain ordered graphitic mesoporous carbon nanocomposites with tunable mesopore sizes below 850 °C without using graphitization catalysts or high temperature thermal treatments. Phenolic resin-based mesoporous carbons act as mortar to highly conductive carbon blacks and carbon onions (bricks). The capacitance and resistivity of final materials can be tailored by changing the mortar to brick ratios.

  12. Bone tissue engineering using silica-based mesoporous nanobiomaterials:Recent progress.

    Science.gov (United States)

    Shadjou, Nasrin; Hasanzadeh, Mohammad

    2015-10-01

    Bone disorders are of significant concern due to increase in the median age of our population. It is in this context that tissue engineering has been emerging as a valid approach to the current therapies for bone regeneration/substitution. Tissue-engineered bone constructs have the potential to alleviate the demand arising from the shortage of suitable autograft and allograft materials for augmenting bone healing. Silica based mesostructured nanomaterials possessing pore sizes in the range 2-50 nm and surface reactive functionalities have elicited immense interest due to their exciting prospects in bone tissue engineering. In this review we describe application of silica-based mesoporous nanomaterials for bone tissue engineering. We summarize the preparation methods, the effect of mesopore templates and composition on the mesopore-structure characteristics, and different forms of these materials, including particles, fibers, spheres, scaffolds and composites. Also, the effect of structural and textural properties of mesoporous materials on development of new biomaterials for production of bone implants and bone cements was discussed. Also, application of different mesoporous materials on construction of manufacture 3-dimensional scaffolds for bone tissue engineering was discussed. It begins by giving the reader a brief background on tissue engineering, followed by a comprehensive description of all the relevant components of silica-based mesoporous biomaterials on bone tissue engineering, going from materials to scaffolds and from cells to tissue engineering strategies that will lead to "engineered" bone. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Cu(II) recognition materials: Fluorophores grafted on mesoporous silica supports

    International Nuclear Information System (INIS)

    Kledzik, Krzysztof; Orlowska, Maja; Patralska, Dorota; Gwiazda, Marcin; Jezierska, Julia; Pikus, Stanislaw; Ostaszewski, Ryszard; Klonkowski, Andrzej M.

    2007-01-01

    There were designed and synthesized naphthalene and pyrene derivatives consisting of fluorophore group and of receptor fragment with donor N and O atoms. These fluorosensors were covalently attached by grafting carboxyl group to surfaces of silica xerogel or mesoporous silicas (MCM-41 and MCM-48) functionalized either with 3-aminopropyl or 3-glycidoxypropyl groups. The pyrene derivatives 2 and 3 covalently grafted on MCM-48 silica functionalized with 3-aminopropyl groups are potential recognition elements of a fluorescence chemical sensor. Fluorescence emission of the prepared recognition materials is quenched specifically owing to photoinduced electron transfer (PET) effect after coordination reactions with Cu(II) ions. Moreover, both the materials exhibit selectivity for Cu(II) ions in aqueous solutions in presence of such metal ions as: alkali, alkaline earth and transition. During UV irradiation the studied recognition elements undergo slowly photochemical degradation

  14. Oxidative dehydrogenation of ethane over vanadium supported on mesoporous materials of M41S family

    Czech Academy of Sciences Publication Activity Database

    Čapek, J.; Adam, J.; Grygar, Tomáš; Bulánek, R.; Vradman, L.; Košová-Kučerová, G.; Čičmanec, P.; Knotek, P.

    2008-01-01

    Roč. 342, 1-2 (2008), s. 99-106 ISSN 0926-860X Grant - others:GA ČR(CZ) GP104/07/P038 Program:GP Institutional research plan: CEZ:AV0Z40320502 Keywords : oxidative dehydrogenation * ethane * vanadium * mesoporous materials Subject RIV: CA - Inorganic Chemistry Impact factor: 3.190, year: 2008

  15. Recent applications of the combination of mesoporous silica nanoparticles with nucleic acids: development of bioresponsive devices, carriers and sensors.

    Science.gov (United States)

    Castillo, Rafael R; Baeza, Alejandro; Vallet-Regí, María

    2017-02-28

    The discovery and control of the biological roles mediated by nucleic acids have turned them into a powerful tool for the development of advanced biotechnological materials. Such is the importance of these gene-keeping biomacromolecules that even nanomaterials have succumbed to the claimed benefits of DNA and RNA. Currently, there could be found in the literature a practically intractable number of examples reporting the use of combination of nanoparticles with nucleic acids, so boundaries are demanded. Following this premise, this review will only cover the most recent and powerful strategies developed to exploit the possibilities of nucleic acids as biotechnological materials when in combination with mesoporous silica nanoparticles. The extensive research done on nucleic acids has significantly incremented the technological possibilities for those biomacromolecules, which could be employed in many different applications, where substrate or sequence recognition or modulation of biological pathways due to its coding role in living cells are the most promising. In the present review, the chosen counterpart, mesoporous silica nanoparticles, also with unique properties, became a reference material for drug delivery and biomedical applications due to their high biocompatibility and porous structure suitable for hosting and delivering small molecules. Although most of the reviews dealt with significant advances in the use of nucleic acid and mesoporous silica nanoparticles in biotechnological applications, a rational classification of these new generation hybrid materials is still uncovered. In this review, there will be covered promising strategies for the development of living cell and biological sensors, DNA-based molecular gates with targeting, transfection or silencing properties, which could provide a significant advance in current nanomedicine.

  16. Micelle swelling agent derived cavities for increasing hydrophobic organic compound removal efficiency by mesoporous micelle@silica hybrid materials

    KAUST Repository

    Shi, Yifeng; Li, Bin; Wang, Peng; Dua, Rubal; Zhao, Dongyuan

    2012-01-01

    Mesoporous micelle@silica hybrid materials with 2D hexagonal mesostructures were synthesized as reusable sorbents for hydrophobic organic compounds (HOCs) removal by a facile one-step aqueous solution synthesis using 3-(trimethoxysily)propyl

  17. Ultrasound-driven design of new mesoporous metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Schaeferhans, Jana; Pazos Perez, Nicolas; Andreeva, Daria [Physikalische Chemie II, Univ. Bayreuth (Germany); Skorb, Ekaterina [Max-Planck-Institut fuer Kolloid- und Grenzflaechenforschung, Golm (Germany)

    2011-07-01

    Mesoporous metal nanocomposites were formed by a ''green chemistry'' method with ultrasound irradiation. The sonication technique combines the fabrication of a mesoporous support consisting of metallic particles (Al, Mg) several tens of micrometers in size and the subsequent incorporation of metal (Ag, Au, Pt etc.) nanoparticles into its pores. Next to filling the mesoporous support with particles we are also able to form mesoporous alloys e.g. AlNi or CoAlFe. The resulting material is analyzed by transmission electron microscopy, powder X-ray diffraction, small-angle neutron scattering and the Brunauer-Emmett-Teller and the Barrett-Joyner-Halenda method. Surface areas up to 200 m{sup 2}/g with a narrow pore size distribution around 3 nm can be achieved. The mesoporous structures are analyzed by confocal light microscopy after coloring the particles with dye. We explain the formation of the mesoporous inner structures by the following mechanism: Thermal etching and recrystallization of metals by ultrasound-stimulated high-speed jets of liquid form the porous structure that is stabilized by surface oxidation through free radicals generated during cavitation. We expect this approach to be universal and opening perspectives for a whole new class of catalytic materials that can be prepared in a fairly easy and cost effective way.

  18. Ordered mesoporous carbide-derived carbon as new high performance electrode material in supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Korenblit, Yair; Yushin, Gleb [Georgia Inst. of Technology, Atlanta, GA (United States); Rose, Marcus; Kockrick, Emanuel; Borchardt, Lars; Kaskel, Stefan [Technische Univ. Dresden (Germany); Kvit, Alexander [Wisconsin Univ., Madison, WI (United States)

    2010-07-01

    The preparation and application of templated ordered mesoporous CDC overcome the present limitations of slow intraparticle ion transport and poor control over the biomodal pore size distribution in the carbons currently used, and shows a route for further performance enhancement. The ordered mesoporous channels in SiC CDC serve as ion-highways and allow for very fast ionic transport into the bulk of the CDC particles, thus leading to an excellent frequency response and outstanding capacitance retention at high current densities. The ordered mesopores in SiC allow for a greatly increased specific surface area and specific capacitance of SiC CDC, nearly doubling the previously reported values. The use of CDC produced from other carbides, including mesoporous TiC or VC is expected to further enhance the energy storage characteristics of EDLC electrodes, while optimization of the mesopore size is expected to enhance the power characteristics of EDLC. (orig.)

  19. Liquid Photonic Crystals for Mesopore Detection.

    Science.gov (United States)

    Zhu, Biting; Fu, Qianqian; Chen, Ke; Ge, Jianping

    2018-01-02

    Nitrogen adsorption-desorption for mesopore characterization requires the using of expensive instrumentation, time-consuming processes, and the consumption of liquid nitrogen. Herein, a new method is developed to measure the pore parameters through mixing a mesoporous substance with a supersaturated SiO 2 colloidal solution at different temperatures, and subsequent rapid measurement of reflection changes of the precipitated liquid photonic crystals. The pore volumes and diameters of mesoporous silica were measured according to the positive correlation between unit mass reflection change (Δλ/m) and pore volume (V), and the negative correlation between average absorption temperature (T) and pore diameter (D). This new approach may provide an alternative method for fast, convenient and economical characterization of mesoporous materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Mesoporous yttria-zirconia and metal-yttria-zirconia solid solutions for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mamak, M.; Coombs, N.; Ozin, G. [Toronto Univ., ON (Canada). Dept. of Chemistry

    2000-02-03

    A new class of binary mesoporous yttria-zirconia (YZ) and ternary mesoporous metal-YZ materials (M = electroactive Ni/Pt) is presented here that displays the highest surface area of any known form of yttria-stabilized zirconia. These mesoporous materials form as solid solutions and retain their structural integrity to 800 C, which bodes well for their possible utilization in fuel cells. (orig.)

  1. Synthesis of acid-base bifunctional mesoporous materials by oxidation and thermolysis

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiaofang [College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130023 (China); Zou, Yongcun [State Key Laboratory of Inoranic Synthesis and Preparative Chemistryg, College of Chemistry, Jilin University, Changchun 130012 (China); Wu, Shujie; Liu, Heng [College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130023 (China); Guan, Jingqi, E-mail: guanjq@jlu.edu.cn [College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130023 (China); Kan, Qiubin, E-mail: qkan@jlu.edu.cn [College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130023 (China)

    2011-06-15

    Graphical abstract: A novel and efficient method has been developed for the synthesis of acid-base bifunctional catalyst. The obtained sample of SO{sub 3}H-MCM-41-NH{sub 2} containing amine and sulfonic acids exhibits excellent catalytic activity in aldol condensation reaction. Research highlights: {yields} Synthesize acid-base bifunctional mesoporous materials SO{sub 3}H-MCM-41-NH{sub 2}. {yields} Oxidation and then thermolysis to generate acidic site and basic site. {yields} Exhibit good catalytic performance in aldol condensation reaction between acetone and various aldehydes. -- Abstract: A novel and efficient method has been developed for the synthesis of acid-base bifunctional catalyst SO{sub 3}H-MCM-41-NH{sub 2}. This method was achieved by co-condensation of tetraethylorthosilicate (TEOS), 3-mercaptopropyltrimethoxysilane (MPTMS) and (3-triethoxysilylpropyl) carbamicacid-1-methylcyclohexylester (3TAME) in the presence of cetyltrimethylammonium bromide (CTAB), followed by oxidation and then thermolysis to generate acidic site and basic site. X-ray diffraction (XRD) and transmission electron micrographs (TEM) show that the resultant materials keep mesoporous structure. Thermogravimetric analysis (TGA), X-ray photoelectron spectra (XPS), back titration, solid-state {sup 13}C CP/MAS NMR and solid-state {sup 29}Si MAS NMR confirm that the organosiloxanes were condensed as a part of the silica framework. The bifunctional sample (SO{sub 3}H-MCM-41-NH{sub 2}) containing amine and sulfonic acids exhibits excellent acid-basic properties, which make it possess high activity in aldol condensation reaction between acetone and various aldehydes.

  2. Hierarchical zeolites: progress on synthesis and characterization of mesoporous zeolite single crystal catalysts

    DEFF Research Database (Denmark)

    Kustova, Marina; Egeblad, Kresten; Christensen, Claus H.

    2007-01-01

    Recently, a new family of crystalline zeolitic materials was reported, the so-called mesoporous zeolite single crystals featuring individual zeolite single crystals with an additional noncrystalline mesopore system interconnected with the usual micropore system of the zeolite, resulting...... measurements. Additionally, the results of diffusion of n-hexadecane in conventional and mesoporous zeolites are presented. Isomerization and cracking of n-hexadecane was chosen as model test reaction for these materials. All results support that mesoporous zeolites are superior catalysts due to improved mass...... transport. Importantly, the mesoporous zeolites show significant improved resistance to poisoning by carbon formation....

  3. Mesoporous electrode material from alumina-stabilized anatase TiO.sub.2./sub. for lithium ion batteries

    Czech Academy of Sciences Publication Activity Database

    Attia, Adel; Zukalová, Markéta; Rathouský, Jiří; Zukal, Arnošt; Kavan, Ladislav

    2005-01-01

    Roč. 9, č. 3 (2005), s. 134-145 ISSN 1432-8488 R&D Projects: GA ČR(CZ) GA203/03/0824 Institutional research plan: CEZ:AV0Z40400503 Keywords : titanium dioxide * alumina * lithium battery * mesoporous materials Subject RIV: CG - Electrochemistry Impact factor: 1.158, year: 2005

  4. Crystalline mesoporous zirconia catalysts having stable tetragonal pore wall structure

    Science.gov (United States)

    Sachtler, W.M.H.; Huang, Y.Y.

    1998-07-28

    Methods are disclosed for the preparation of new sulfated mesoporous zirconia materials/catalysts with crystalline pore walls of predominantly tetragonal crystal structure, characterized by nitrogen physical sorption measurement, X-ray diffraction, transmission electron microscopy and catalytic tests using n-butane isomerization to iso-butane and alkylation of 1-naphthol with 4-tert-butylstyrene as probe reactions. Sulfate deposition is preferred for the transformation of a mesoporous precursor with amorphous pore walls into a material with crystalline pore walls maintaining the mesoporous characteristics. 17 figs.

  5. Pore Characteristics and Hydrothermal Stability of Mesoporous Silica: Role of Oleic Acid

    Directory of Open Access Journals (Sweden)

    Junhyun Choi

    2014-01-01

    Full Text Available Silicate mesoporous materials were synthesized with nonionic surfactant and their surfaces were modified by oleic acid adsorption. Infrared spectrometer, nitrogen adsorption-desorption isotherm, scanning electron microscopy, and thermogravimetric analyses were used to investigate the structure of oleic acid modified mesoporous material. The effects of heat treatment at various temperatures on oleic acid modified materials were also studied. Oleic acids on silica surfaces were found to be bonded chemically and/or physically and be capable of enduring up to 180°C. The adsorbed oleic acid improved the hydrothermal stability of mesoporous silica and assisted mesopore structure to grow more in hydrothermal treatment process by preventing the approach of water.

  6. Multifunctional EuYVO{sub 4} nanoparticles coated with mesoporous silica

    Energy Technology Data Exchange (ETDEWEB)

    Justino, Larissa G. [Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP (Brazil); Nigoghossian, Karina [Inst. of Chemistry – São Paulo State University- UNESP, 14801-970 Araraquara, SP (Brazil); Capote, Ticiana S.O.; Scarel-Caminaga, Raquel M. [Department of Morphology, Dental School at Araraquara, Univ. Estadual Paulista – UNESP, Araraquara, SP (Brazil); Ribeiro, Sidney J.L. [Inst. of Chemistry – São Paulo State University- UNESP, 14801-970 Araraquara, SP (Brazil); Caiut, José Maurício A., E-mail: caiut@ffclrp.usp.br [Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP (Brazil)

    2016-11-15

    Mesoporous structures are interesting materials for the incorporation of dyes, drugs, and luminescent systems, leading to materials with important multifunctionalities. In a very unique way, these guest/host materials combine the high stability of inorganic systems, new guest-structuring features, and adsorption mechanisms in their well-defined pores. This work evaluates the luminescent properties of rare earth-doped YVO{sub 4} nanoparticles coated with a mesoporous silica shell. The use of two different synthesis methodologies allowed for particle size control. The crystalline phase emerged without further heat treatment. The mesoporous shell decreased undesirable quenching effects on YVO{sub 4}:Eu{sup 3+} nanoparticles and rendered them biocompatible. The materials prepared herein could have interesting applications as luminescent markers or drug release systems.

  7. Layer-by-layer assembled graphene-coated mesoporous SnO2 spheres as anodes for advanced Li-ion batteries

    KAUST Repository

    Shahid, Muhammad

    2014-10-01

    We report layer-by-layer (LBL) assembly of graphene/carbon-coated mesoporous SnO2 spheres (Gr/C-SnO2 spheres), without binder and conducting additives, as anode materials with excellent Li-ion insertion-extraction properties. Our results indicate that these novel LBL assembled electrodes have high reversible Li storage capacity, improved cycling, and especially good rate performance, even at high specific currents. The superior electrochemical performance offered by these LBL assembled Gr/C-SnO2 spheres is attributed to the enhanced electronic conductivity and effective diffusion of Li ions in the interconnected network of nanoparticles forming the mesoporous SnO2 spheres. © 2014 Elsevier B.V. All rights reserved.

  8. Layer-by-layer assembled graphene-coated mesoporous SnO2 spheres as anodes for advanced Li-ion batteries

    KAUST Repository

    Shahid, Muhammad; Yesibolati, Nulati; Reuter, Mark C.; Ross, Frances M.; Alshareef, Husam N.

    2014-01-01

    We report layer-by-layer (LBL) assembly of graphene/carbon-coated mesoporous SnO2 spheres (Gr/C-SnO2 spheres), without binder and conducting additives, as anode materials with excellent Li-ion insertion-extraction properties. Our results indicate that these novel LBL assembled electrodes have high reversible Li storage capacity, improved cycling, and especially good rate performance, even at high specific currents. The superior electrochemical performance offered by these LBL assembled Gr/C-SnO2 spheres is attributed to the enhanced electronic conductivity and effective diffusion of Li ions in the interconnected network of nanoparticles forming the mesoporous SnO2 spheres. © 2014 Elsevier B.V. All rights reserved.

  9. Catalytic properties of Thallium-containing mesoporous silicas

    Directory of Open Access Journals (Sweden)

    A. Baradji

    2017-02-01

    Full Text Available The benzylation of benzene by benzyl chloride over a series of Thallium-containing mesoporous silicas with different Tl contents has been investigated. These materials (Tl-HMS-n have been characterized by chemical analysis, N2 adsorption/desorption isotherm and X-ray diffraction (XRD. The mesoporous Thallium-containing materials showed both high activity and high selectivity for the benzylation of benzene. More interesting is the observation that these catalysts are always active and selective for large molecules like naphthenic compounds such as methoxynaphthalene.

  10. The micro and meso-porous materials. Characterization; Les materiaux micro et mesoporeux. Caracterisation

    Energy Technology Data Exchange (ETDEWEB)

    Thibault-Starzyk, F.

    2004-10-01

    The micro and meso-porous materials, called zeolites, are very important in the modern chemical industry and in petrochemistry. This book deals in particular with the study and the characterization of zeolites. Its aim is to give to generalist chemists the tools for approaching experimentally these particular materials. The main methods of study and characterization are gathered in eight chapters, and the authors stress on the specificities due to the porous system: -structural analysis by the diffraction methods; -infrared spectroscopy; -NMR; -micro-calorimetry; -adsorption thermodynamics; -methods using the programed temperature; -modeling; -reactivity: kinetics and chemical engineering. This book appeals to students, engineers or searchers, without previous knowledge on these materials, but having a bachelor's degree or a master degree in general chemistry. (O.M.)

  11. Synthesis, characterization, and application of surface-functionalized ordered mesoporous nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Po-Wen [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    The dissertation begins with Chapter 1, which is a general introduction of the fundamental synthesis of mesoporous silica materials, the selective functionlization of mesoporous silica materials, and the synthesis of nanostructured porous materials via nanocasting. In Chapter 2, the thermo-responsive polymer coated mesoporous silica nanoparticles (MSN) was synthesized via surface-initated polymerization and exhibited unique partition activities in a biphasic solution with the thermally induced change. In Chapter 3, the monodispersed spherical MSN with different mesoporous structure (MCM-48) was developed and employed as a template for the synthesis of mesoporous carbon nanoparticles (MCN) via nanocasting. MCN was demonstrated for the delivery of membrane impermeable chemical agents inside the cells. The cellular uptake efficiency and biocompabtibility of MCN with human cervical cancer cells were also investigated. In addition to the biocompabtibility of MCN, MCN was demonstrated to support Rh-Mn nanoparticles for catalytic reaction in Chapter 4. Owing to the unique mesoporosity, Rh-Mn nanoparticles can be well distributed inside the mesoporous structure and exhibited interesting catalytic performance on CO hydrogenation. In Chapter 5, the synthesis route of the aforementioned MCM-48 MSN was discussed and investigated in details and other metal oxide nanoparticles were also developed via nanocasting by using MCM-48 MSN as a template. At last, there is a general conclusion summarized in Chapter 6.

  12. Quasi 2D Mesoporous Carbon Microbelts Derived from Fullerene Crystals as an Electrode Material for Electrochemical Supercapacitors.

    Science.gov (United States)

    Tang, Qin; Bairi, Partha; Shrestha, Rekha Goswami; Hill, Jonathan P; Ariga, Katsuhiko; Zeng, Haibo; Ji, Qingmin; Shrestha, Lok Kumar

    2017-12-27

    Fullerene C 60 microbelts were fabricated using the liquid-liquid interfacial precipitation method and converted into quasi 2D mesoporous carbon microbelts by heat treatment at elevated temperatures of 900 and 2000 °C. The carbon microbelts obtained by heat treatment of fullerene C 60 microbelts at 900 °C showed excellent electrochemical supercapacitive performance, exhibiting high specific capacitances ca. 360 F g -1 (at 5 mV s -1 ) and 290 F g -1 (at 1 A g -1 ) because of the enhanced surface area and the robust mesoporous framework structure. Additionally, the heat-treated carbon microbelt showed good rate performance, retaining 49% of capacitance at a high scan rate of 10 A g -1 . The carbon belts exhibit super cyclic stability. Capacity loss was not observed even after 10 000 charge/discharge cycles. These results demonstrate that the quasi 2D mesoporous carbon microbelts derived from a π-electron-rich carbon source, fullerene C 60 crystals, could be used as a new candidate material for electrochemical supercapacitor applications.

  13. Selective Preparation of Furfural from Xylose over Sulfonic Acid Functionalized Mesoporous Sba-15 Materials

    Directory of Open Access Journals (Sweden)

    Panpan Li

    2011-04-01

    Full Text Available Sulfonic acid functionalized mesoporous SBA-15 materials were prepared using the co-condensation and grafting methods, respectively, and their catalytic performance in the dehydration of xylose to furfural was examined. SBA-15-SO3H(C prepared by the co-condensation method showed 92–95% xylose conversion and 74% furfural selectivity, and 68–70% furfural yield under the given reaction conditions. The deactivation and regeneration of the SBA-15-SO3H(C catalyst for the dehydration of xylose was also investigated. The results indicate that the used and regeneration catalysts retained the SBA-15 mesoporous structure, and the S content of SBA-15-SO3H(C almost did not change. The deactivation of the catalysts is proposed to be associated with the accumulation of byproducts, which is caused by the loss reaction of furfural. After regeneration by H2O2, the catalytic activity of the catalyst almost recovered.

  14. Application of mesoporous carbon and modified mesoporous carbon for treatment of DMF sewage

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fang, E-mail: liufangfw@163.com; Gao, Ya; Zhang, Shuang; Yan, Xi; Fan, Fengtao; Zhao, Chaocheng; Sun, Juan [China University of Petroleum(East China), Department of Chemical Engineering (China)

    2016-02-15

    Mesoporous carbon (MC) was prepared in soft template, and potassium ferricyanide was added into MC to prepare the modified mesoporous carbon (MMC). TEM, SEM, FT-IR, and N{sub 2} adsorption–desorption were used to characterize the textural properties of mesoporous materials. The BET specific surface area, pore volume, and the pore size of MC and MMC were 607.6321 and 304.7475 m{sup 2}/g, 0.313552 and 0.603573 cm{sup 3}/g, and 5.4356 and 7.9227 nm, respectively. The adsorption capabilities of MC and MMC were compared with the silica mesoporous material MCM-41. The influences of different adsorption conditions were optimized. For MC, the optimums of adsorbent dose, DMF initial concentration, rotating speed, and pH were 0.002 mg/50 mL, 200 mg/L, 200 r/min, and 4, respectively. MMC showed the highest DMF adsorption capacity at adsorbent dose 0.002 g/50 mL, DMF initial concentration 1000 mg/L, rotating speed 1000 r/min, pH more than 9, and contact time of less than 20 min. Meanwhile for MC, MMC, Pseudo-second-order equation was used to fit adsorption kinetics data. And adsorption process could be well fitted by Langmuir and Freundlich adsorption isotherms of MC, MMC. The results showed that MMC was a perfect adsorbent for DMF, and it was easy to separation and recycle. The recycling property of MMC was still relatively better than other two adsorbents.

  15. Mesoporous silica formulation strategies for drug dissolution enhancement: a review.

    Science.gov (United States)

    McCarthy, Carol A; Ahern, Robert J; Dontireddy, Rakesh; Ryan, Katie B; Crean, Abina M

    2016-01-01

    Silica materials, in particular mesoporous silicas, have demonstrated excellent properties to enhance the oral bioavailability of poorly water-soluble drugs. Current research in this area is focused on investigating the kinetic profile of drug release from these carriers and manufacturing approaches to scale-up production for commercial manufacture. This review provides an overview of different methods utilized to load drugs onto mesoporous silica carriers. The influence of silica properties and silica pore architecture on drug loading and release are discussed. The kinetics of drug release from mesoporous silica systems is examined and the manufacturability and stability of these formulations are reviewed. Finally, the future prospects of mesoporous silica drug delivery systems are considered. Substantial progress has been made in the characterization and development of mesoporous drug delivery systems for drug dissolution enhancement. However, more research is required to fully understand the drug release kinetic profile from mesoporous silica materials. Incomplete drug release from the carrier and the possibility of drug re-adsorption onto the silica surface need to be investigated. Issues to be addressed include the manufacturability and regulation status of formulation approaches employing mesoporous silica to enhance drug dissolution. While more research is needed to support the move of this technology from the bench to a commercial medicinal product, it is a realistic prospect for the near future.

  16. Mesoporous Prussian blue analogues: template-free synthesis and sodium-ion battery applications.

    Science.gov (United States)

    Yue, Yanfeng; Binder, Andrew J; Guo, Bingkun; Zhang, Zhiyong; Qiao, Zhen-An; Tian, Chengcheng; Dai, Sheng

    2014-03-17

    The synthesis of mesoporous Prussian blue analogues through a template-free methodology and the application of these mesoporous materials as high-performance cathode materials in sodium-ion batteries is presented. Crystalline mesostructures were produced through a synergistically coupled nanocrystal formation and aggregation mechanism. As cathodes for sodium-ion batteries, the Prussian blue analogues all show a reversible capacity of 65 mA h g-1 at low current rate and show excellent cycle stability. The reported method stands as an environmentally friendly and low-cost alternative to hard or soft templating for the fabrication of mesoporous materials.

  17. Mesoporous Transition Metal Oxides for Supercapacitors

    OpenAIRE

    Wang, Yan; Guo, Jin; Wang, Tingfeng; Shao, Junfeng; Wang, Dong; Yang, Ying-Wei

    2015-01-01

    Recently, transition metal oxides, such as ruthenium oxide (RuO2), manganese dioxide (MnO2), nickel oxides (NiO) and cobalt oxide (Co3O4), have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are result...

  18. Biocompatibility of Soft-Templated Mesoporous Carbons

    Energy Technology Data Exchange (ETDEWEB)

    Gencoglu, Maria F. [Michigan Technological Univ., Houghton, MI (United States). Dept. of Chemical Engineering; Spurri, Amanda [Widener Univ., Chester, PA (United States). Dept. of Chemical Engineering; Franko, Mitchell [Widener Univ., Chester, PA (United States). Dept. of Chemical Engineering; Chen, Jihua [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Hensley, Dale K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Heldt, Caryn L. [Michigan Technological Univ., Houghton, MI (United States). Dept. of Chemical Engineering; Saha, Dipendu [Widener Univ., Chester, PA (United States). Dept. of Chemical Engineering

    2014-08-21

    We report that soft-templated mesoporous carbon is morphologically a non-nano type of carbon. It is a relatively newer variety of biomaterial, which has already demonstrated its successful role in drug delivery applications. To investigate the toxicity and biocompatibility, we introduced three types of mesoporous carbons with varying synthesis conditions and pore textural properties. We compared the Brunauer–Emmett–Teller (BET) surface area and pore width and performed cytotoxicity experiments with HeLa cells, cell viability studies with fibroblast cells and hemocomapatibility studies. Cytotoxicity tests reveal that two of the carbons are not cytotoxic, with cell survival over 90%. The mesoporous carbon with the highest surface area showed slight toxicity (~70% cell survival) at the highest carbon concentration of 500 μg/mL. Fibroblast cell viability assays suggested high and constant viability of over 98% after 3 days with no apparent relation with materials property and good visible cell-carbon compatibility. No hemolysis (<1%) was confirmed for all the carbon materials. Protein adsorption experiments with bovine serum albumin (BSA) and fibrinogen revealed a lower protein binding capacity of 0.2–0.6 mg/m2 and 2–4 mg/m2 for BSA and fibrinogen, respectively, with lower binding associated with an increase in surface area. The results of this study confirm the biocompatibility of soft-templated mesoporous carbons.

  19. Nanostructured Carbon Materials as Supports in the Preparation of Direct Methanol Fuel Cell Electrocatalysts

    Directory of Open Access Journals (Sweden)

    María Jesús Lázaro

    2013-08-01

    Full Text Available Different advanced nanostructured carbon materials, such as carbon nanocoils, carbon nanofibers, graphitized ordered mesoporous carbons and carbon xerogels, presenting interesting features such as high electrical conductivity and extensively developed porous structure were synthesized and used as supports in the preparation of electrocatalysts for direct methanol fuel cells (DMFCs. The main advantage of these supports is that their physical properties and surface chemistry can be tailored to adapt the carbonaceous material to the catalytic requirements. Moreover, all of them present a highly mesoporous structure, diminishing diffusion problems, and both graphitic character and surface area can be conveniently modified. In the present work, the influence of the particular features of each material on the catalytic activity and stability was analyzed. Results have been compared with those obtained for commercial catalysts supported on Vulcan XC-72R, Pt/C and PtRu/C (ETEK. Both a highly ordered graphitic and mesopore-enriched structure of these advanced nanostructured materials resulted in an improved electrochemical performance in comparison to the commercial catalysts assayed, both towards CO and alcohol oxidation.

  20. Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hao [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Ma, Jan [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Li, Chunzhong [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2012-08-08

    Supercapacitors have attracted huge attention in recent years as they have the potential to satisfy the demand of both huge energy and power density in many advanced technologies. However, poor conductivity and cycling stability remains to be the major challenge for its widespread application. Various strategies have been developed for meeting the ever-increasing energy and power demands in supercapacitors. This Research News article aims to review recent progress in the development of mesoporous carbon incorporated metal oxide nanomaterials, especially metal oxide nanoparticles confined in ordered mesoporous carbon and 1D metal oxides coated with a layer of mesoporous carbon for high-performance supercapacitor applications. In addition, a recent trend in supercapacitor development - hierarchical porous graphitic carbons (HPGC) combining macroporous cores, mesoporous walls, and micropores as an excellent support for metal oxides - is also discussed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Desorption Kinetics and Mechanisms of CO2 on Amine-Based Mesoporous Silica Materials

    Directory of Open Access Journals (Sweden)

    Yang Teng

    2017-01-01

    Full Text Available Tetraethylenepentamine (TEPA-based mesoporous MCM-41 is used as the adsorbent to determine the CO2 desorption kinetics of amine-modified materials after adsorption. The experimental data of CO2 desorption as a function of time are derived by zero-length column at different temperatures (35, 50, and 70 °C and analyzed by Avrami’s fractional-order kinetic model. A new method is used to distinguish the physical desorption and chemical desorption performance of surface-modified mesoporous MCM-41. The activation energy Ea of CO2 physical desorption and chemical desorption calculated from Arrhenius equation are 15.86 kJ/mol and 57.15 kJ/mol, respectively. Furthermore, intraparticle diffusion and Boyd’s film models are selected to investigate the mechanism of CO2 desorption from MCM-41 and surface-modified MCM-41. For MCM-41, there are three rate-limiting steps during the desorption process. Film diffusion is more prominent for the CO2 desorption rates at low temperatures, and pore diffusion mainly governs the rate-limiting process under higher temperatures. Besides the surface reaction, the desorption process contains four rate-limiting steps on surface-modified MCM-41.

  2. Vapor phase versus liquid phase grafting of meso-porous alumina

    NARCIS (Netherlands)

    Sripathi, V.G.P.; Mojet, Barbara; Nijmeijer, Arian; Benes, Nieck Edwin

    2013-01-01

    Functionalization of meso-porous c-alumina has been performed by grafting of 3-Aminopropyltrimethoxysilane (3APTMS) simultaneously from either the liquid phase or from the vapor phase. In both cases, after grafting nitrogen physisorption indicates that the materials remain meso-porous with

  3. Spectral studies on the interaction of acetylacetone with aluminum-containing MCM-41 mesoporous materials

    International Nuclear Information System (INIS)

    Zanjanchi, M.A.; Vaziri, M.

    2008-01-01

    Diffuse reflectance spectroscopy (DRS) was used to study the interaction of acetylacetone (acac) with the mesoporous aluminum-containing MCM-41 materials. A room temperature synthesis method was used for preparation of purely siliceous MCM-41 and for aluminum-containing MCM-41 materials. Samples with Si/Al ratios of 50, 20, 10 and 5 were synthesized. The synthesized mesoporous materials possess highly ordered structure and high surface area as evidenced from X-ray diffraction and nitrogen physisorption measurements, respectively. The treatment of the as-synthesized aluminum-containing MCM-41 samples with acac shows a distinct band at ∼290 nm. This band is assigned to six coordinated aluminum atoms in the structure which is produced by diffusion of acac molecules through surfactant micelles and their interaction with aluminum atoms. The 290-nm band disappears upon several successive washing of the sample with ethanol. The treatment of the calcined aluminum-containing MCM-41 sample with acac produces the same 290-nm band where its intensity increases with the aluminum content of the sample. The intensity of this band is reduced upon successive ethanol washing, but remains nearly constant after three times washing. This irremovable aluminum species can be assigned to framework aluminum. The measured acidity for our aluminum-containing MCM-41 samples correlates linearly with the intensity of 290-nm band for the ethanol treated samples. This supports the idea that the Bronsted acidity in aluminum-modified MCM-41 samples is a function of the amount of tetrahedral framework aluminum in the structure

  4. Actinide Sequestration Using Self-Assembled Monolayers on Mesoporous Supports

    International Nuclear Information System (INIS)

    Fryxell, Glen E.; Lin, Yuehe; Fiskum, Sandra K.; Birnbaum, Jerome C.; Wu, Hong; Kemner, K. M.; Kelly, Shelley

    2005-01-01

    Surfactant templated synthesis of mesoporous ceramics provides a versatile foundation upon which to create high efficiency environmental sorbents. These nanoporous ceramic oxides condense a huge amount of surface area into a very small volume. The ceramic oxide interface is receptive to surface functionalization through molecular self-assembly. The marriage of mesoporous ceramics with self-assembled monolayer chemistry creates a powerful new class of environmental sorbent materials called self-assembled monolayers on mesoporous supports (SAMMS). These SAMMS materials are highly efficient sorbents, whose interfacial chemistry can be fine-tuned to selectively sequester a specific target species, such as heavy metals, tetrahedral oxometallate anions and radionuclides. Details addressing the design, synthesis and characterization of SAMMS materials specifically designed to sequester actinides, of central importance to the environmental clean-up necessary after 40 years of weapons grade plutonium production, as well as evaluation of their binding affinities and kinetics are presented

  5. Near-field radiative heat transfer in mesoporous alumina

    International Nuclear Information System (INIS)

    Li Jing; Feng Yan-Hui; Zhang Xin-Xin; Huang Cong-Liang; Wang Ge

    2015-01-01

    The thermal conductivity of mesoporous material has aroused the great interest of scholars due to its wide applications such as insulation, catalyst, etc. Mesoporous alumina substrate consists of uniformly distributed, unconnected cylindrical pores. Near-field radiative heat transfer cannot be ignored, when the diameters of the pores are less than the characteristic wavelength of thermal radiation. In this paper, near-field radiation across a cylindrical pore is simulated by employing the fluctuation dissipation theorem and Green function. Such factors as the diameter of the pore, and the temperature of the material are further analyzed. The research results show that the radiative heat transfer on a mesoscale is 2∼4 orders higher than on a macroscale. The heat flux and equivalent thermal conductivity of radiation across a cylindrical pore decrease exponentially with pore diameter increasing, while increase with temperature increasing. The calculated equivalent thermal conductivity of radiation is further developed to modify the thermal conductivity of the mesoporous alumina. The combined thermal conductivity of the mesoporous alumina is obtained by using porosity weighted dilute medium and compared with the measurement. The combined thermal conductivity of mesoporous silica decreases gradually with pore diameter increasing, while increases smoothly with temperature increasing, which is in good agreement with the experimental data. The larger the porosity, the more significant the near-field effect is, which cannot be ignored. (paper)

  6. Mesoporous Zeolite Single Crystals for Catalytic Hydrocarbon Conversion

    DEFF Research Database (Denmark)

    Schmidt, I.; Christensen, Claus H.; Kustova, Marina

    2005-01-01

    Recently, mesoporous zeolite single crystals were discovered. They constitute a novel family of materials that features a combined micropore and mesopore architecture within each individual crystal. Here, we briefly summarize recent catalytic results from cracking and isomerization of alkalies......, alkylation of aromatics and present new results on isomerization of aromatics. Specifically, the shape-selective isomerization of meta-xylenc into para-xylene and ortho-xylene is studied. In all these reactions, rnesoporous zeolite single crystals prove to be unique catalysts since they provide easy...... transport to and from active sites and at the same time maintain the shape-selectivity required. Thus, all these results support the idea that the beneficial effect of the mesopores system in the mesoporous zeolite single crystals call be solely attributed to enhanced mass transport....

  7. Mesoporous MFe{sub 2}O{sub 4} (M = Mn, Co, and Ni) for anode materials of lithium-ion batteries: Synthesis and electrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Lianfeng, E-mail: duanlf@mail.ccut.edu.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Key Laboratory of Advanced Structural Materials, Ministry of Education, and Department of Materials Science and Engineering, Changchun University of Technology, Changchun 130012 (China); Wang, Yuanxin; Wang, Linan [Key Laboratory of Advanced Structural Materials, Ministry of Education, and Department of Materials Science and Engineering, Changchun University of Technology, Changchun 130012 (China); Zhang, Feifei [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Limin [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2015-01-15

    Highlights: • MFe{sub 2}O{sub 4} (M = Mn, Co, and Ni) are synthesized by a template-free hydrothermal method. • The mesoporous morphology is formed by self-assembly of crystal nucleus. • The mesporous MnFe{sub 2}O{sub 4} have the active phase and the synergy for Li-ion storage. - Abstract: The MFe{sub 2}O{sub 4} (M = Mn, Co, and Ni) mesoporous spheres with an average diameter of 250 nm were synthesized through a template-free hydrothermal method. The mesoporous MnFe{sub 2}O{sub 4} with a large surface area of 87.5 m{sup 2}/g and an average pore size of 27.52 nm were obtained. As the anode materials for Li-ion batteries, the mesoporous MnFe{sub 2}O{sub 4} exhibits excellent initial charge and discharge capacities of 1010 and 642.5 mA h/g. After 50 cycles, the discharge capacity could still remain at 379 mA h/g. The results showed that the active phase and the synergy between different metal oxides greatly improved the electrochemical performance, and the mesoporous composite could stabilize the structure of the electrodes.

  8. Functionalized bimodal mesoporous silicas as carriers for controlled aspirin delivery

    Science.gov (United States)

    Gao, Lin; Sun, Jihong; Li, Yuzhen

    2011-08-01

    The bimodal mesoporous silica modified with 3-aminopropyltriethoxysilane was performed as the aspirin carrier. The samples' structure, drug loading and release profiles were characterized with X-ray diffraction, scanning electron microscopy, N 2 adsorption and desorption, Fourier transform infrared spectroscopy, TG analysis, elemental analysis and UV-spectrophotometer. For further exploring the effects of the bimodal mesopores on the drug delivery behavior, the unimodal mesoporous material MCM-41 was also modified as the aspirin carrier. Meantime, Korsmeyer-Peppas equation ft= ktn was employed to analyze the dissolution data in details. It is indicated that the bimodal mesopores are beneficial for unrestricted drug molecules diffusing and therefore lead to a higher loading and faster releasing than that of MCM-41. The results show that the aspirin delivery properties are influenced considerably by the mesoporous matrix, whereas the large pore of bimodal mesoporous silica is the key point for the improved controlled-release properties.

  9. Immobilization of Lactobacillus rhamnosus in mesoporous silica-based material: An efficiency continuous cell-recycle fermentation system for lactic acid production.

    Science.gov (United States)

    Zhao, Zijian; Xie, Xiaona; Wang, Zhi; Tao, Yanchun; Niu, Xuedun; Huang, Xuri; Liu, Li; Li, Zhengqiang

    2016-06-01

    Lactic acid bacteria immobilization methods have been widely used for lactic acid production. Until now, the most common immobilization matrix used is calcium alginate. However, Ca-alginate gel disintegrated during lactic acid fermentation. To overcome this deficiency, we developed an immobilization method in which Lactobacillus rhamnosus cells were successfully encapsulated into an ordered mesoporous silica-based material under mild conditions with a high immobilization efficiency of 78.77% by using elemental analysis. We also optimized the cultivation conditions of the immobilized L. rhamnosus and obtained a high glucose conversion yield of 92.4%. Furthermore, L. rhamnosus encapsulated in mesoporous silica-based material exhibited operational stability during repeated fermentation processes and no decrease in lactic acid production up to 8 repeated batches. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Challenges and Strategies in the Synthesis of Mesoporous Alumina Powders and Hierarchical Alumina Monoliths

    Directory of Open Access Journals (Sweden)

    Anne Galarneau

    2012-02-01

    Full Text Available A new rapid, very simple and one-step sol-gel strategy for the large-scale preparation of highly porous γ-Al2O3 is presented. The resulting mesoporous alumina materials feature high surface areas (400 m2 g−1, large pore volumes (0.8 mL g−1 and the ��-Al2O3 phase is obtained at low temperature (500 °C. The main advantages and drawbacks of different preparations of mesoporous alumina materials exhibiting high specific surface areas and large pore volumes such as surfactant-nanostructured alumina, sol-gel methods and hierarchically macro-/mesoporous alumina monoliths have been analyzed and compared. The most reproducible synthesis of mesoporous alumina are given. Evaporation-Induced Self-Assembly (EISA is the sole method to lead to nanostructured mesoporous alumina by direct templating, but it is a difficult method to scale-up. Alumina featuring macro- and mesoporosity in monolithic shape is a very promising material for in flow applications; an optimized synthesis is described.

  11. Biological Applications and Transmission Electron Microscopy Investigations of Mesoporous Silica Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Trewyn, Brian G. [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    The research presented and discussed within involves the development of novel biological applications of mesoporous silica nanoparticles (MSN) and an investigation of mesoporous material by transmission electron microscopy (TEM). Mesoporous silica nanoparticles organically functionalized shown to undergo endocytosis in cancer cells and drug release from the pores was controlled intracellularly and intercellularly. Transmission electron microscopy investigations demonstrated the variety of morphologies produced in this field of mesoporous silica nanomaterial synthesis. A series of room-temperature ionic liquid (RTIL) containing mesoporous silica nanoparticle (MSN) materials with various particle morphologies, including spheres, ellipsoids, rods, and tubes, were synthesized. By changing the RTIL template, the pore morphology was tuned from the MCM-41 type of hexagonal mesopores to rotational moire type of helical channels, and to wormhole-like porous structures. These materials were used as controlled release delivery nanodevices to deliver antibacterial ionic liquids against Escherichia coli K12. The involvement of a specific organosiloxane function group, covalently attached to the exterior of fluorescein doped mesoporous silica nanoparticles (FITC-MSN), on the degree and kinetics of endocytosis in cancer and plant cells was investigated. The kinetics of endocystosis of TEG coated FITC-MSN is significantly quicker than FITC-MSN as determined by flow cytometry experiments. The fluorescence confocal microscopy investigation showed the endocytosis of TEG coated-FITC MSN triethylene glycol grafted fluorescein doped MSN (TEG coated-FITC MSN) into both KeLa cells and Tobacco root protoplasts. Once the synthesis of a controlled-release delivery system based on MCM-41-type mesoporous silica nanorods capped by disulfide bonds with superparamagnetic iron oxide nanoparticles was completed. The material was characterized by general methods and the dosage and kinetics of the

  12. Mesoporous aluminium organophosphonates: a reusable chemsensor for the detection of explosives

    International Nuclear Information System (INIS)

    Li, Dongdong; Yu, Xiang

    2016-01-01

    Rapid and sensitive detection of explosives is in high demand for homeland security and public safety. In this work, electron-rich of anthracene functionalized mesoporous aluminium organophosphonates (En-AlPs) were synthesized by a one-pot condensation process. The mesoporous structure and strong blue emission of En-AlPs were confirmed by the N 2 adsorption-desorption isotherms, transmission electron microscopy images and fluorescence spectra. The materials En-AlPs can serve as sensitive chemosensors for various electron deficient nitroderivatives, with the quenching constant and the detection limit up to 1.5×10 6 M −1 and 0.3 ppm in water solution. More importantly, the materials can be recycled for many times by simply washed with ethanol, showing potential applications in explosives detection. - Graphical abstract: Electron-rich of anthracene functionalized mesoporous aluminium organophosphonates can serve as sensitive and recycled chemosensors for nitroderivatives with the quenching constant up to 1.5×10 6 M −1 in water solution. Display Omitted - Highlights: • Anthracene functionalized mesoporous aluminium organophosphonates were synthesized. • The materials serve as sensitive chemosensors for nitroderivatives. • The materials can be recycled for many times by simply washed with ethanol. • The materials show potential applications in explosives detection.

  13. Mesoporous carbon prepared from carbohydrate as hard template for hierarchical zeolites

    DEFF Research Database (Denmark)

    Egeblad, Kresten; Christensen, Claus H.

    2007-01-01

    treatment of a mixture of sucrose and ammonia followed by carbonization of the mixture in N-2 at high temperatures. The porous carbon produced by this method was subsequently applied as a hard template in the synthesis of mesoporous silicalite-1 and removed by combustion after synthesis. X-ray diffraction......A mesoporous carbon prepared from sucrose was successfully employed as a hard template to produce hierarchical silicalite-1, thus providing a very simple and inexpensive route to desirable zeolite catalysts from widely available raw materials. The porous carbon was prepared by hydrothermal...... the porous carbon template as well as the mesoporous zeolite single-crystal material....

  14. Hierarchically ordered mesoporous carbon/graphene composites as supercapacitor electrode materials.

    Science.gov (United States)

    Song, Yanjie; Li, Zhu; Guo, Kunkun; Shao, Ting

    2016-08-25

    Hierarchically ordered mesoporous carbon/graphene (OMC/G) composites have been fabricated by means of a solvent-evaporation-induced self-assembly (EISA) method. The structures of these composites are characterized by X-ray diffraction, transmission electron microscopy, Raman spectroscopy and nitrogen adsorption-desorption at 77 K. These results indicate that OMC/G composites possess the hierarchically ordered hexagonal p6mm mesostructure with the lattice unit parameter and pore diameter close to 10 nm and 3 nm, respectively. The specific surface area of OMC/G composites after KOH activation is high up to 2109.2 m(2) g(-1), which is significantly greater than OMC after activation (1474.6 m(2) g(-1)). Subsequently, the resulting OMC/G composites as supercapacitor electrode materials exhibit an outstanding capacitance as high as 329.5 F g(-1) in 6 M KOH electrolyte at a current density of 0.5 A g(-1), which is much higher than both OMC (234.2 F g(-1)) and a sample made by mechanical mixing of OMC with graphene (217.7 F g(-1)). In addition, the obtained OMC/G composites display good cyclic stability, and the final capacitance retention is approximately 96% after 5000 cycles. These ordered mesopores in the OMC/G composites are beneficial to the accessibility and rapid diffusion of the electrolyte, while graphene in OMC/G composites can also facilitate the transport of electrons during the processes of charging and discharging owing to its high conductivity, thereby leading to an excellent energy storage performance. The method demonstrated in this work would open up a new route to design and develop graphene-based architectures for supercapacitor applications.

  15. Aluminum-rich mesoporous MFI - type zeolite single crystals

    DEFF Research Database (Denmark)

    Kustova, Marina; Kustov, Arkadii; Christensen, Christina Hviid

    2005-01-01

    Zeolitcs are crystalline materials, which are widely used as solid acid catalysts and supports in many industrial processes. Recently, mesoporous MFI-type zeolite single crystals were synthesized by use of carbon particles as a mesopore template and sodium aluminate as the aluminum Source....... With this technique, only zeolites with relatively low Al contents were reported (Si/Al ratio about 100). In this work, the preparation of aluminum-rich mesoporous MFI-type zeolite single crystals (Si/Al similar to 16-50) using aluminum isopropoxide as the aluminum Source is reported for the first time. All samples...... are characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), ammonia temperature programmed desorption (NH3-TPD), and N-2 adsorption measurements. The obtained zeolites combine the high crystallinity and the characteristic micropores of zeolites with an intracrystalline mesopore system...

  16. Oriented Decoration in Metal-Functionalized Ordered Mesoporous Silicas and Their Catalytic Applications in the Oxidation of Aromatic Compounds

    Directory of Open Access Journals (Sweden)

    Shijian Zhou

    2018-02-01

    Full Text Available Ordered mesoporous silicas (OMSs attract considerable attention due to their advanced structural properties. However, for the pristine silica materials, the inert property greatly inhibits their catalytic applications. Thus, to contribute to the versatile surface of OMSs, different metal active sites, including acidic/basic sites and redox sites, have been introduced into specific locations (mesoporous channels and framework of OMSs and the metal-functionalized ordered mesoporous silicas (MOMSs show great potential in the catalytic applications. In this review, we first present the categories of metal active sites. Then, the synthesized processes of MOMSs are thoroughly discussed, in which the metal active sites would be introduced with the assistance of organic groups into the specific locations of OMSs. In addition, the structural morphologies of OMSs are elaborated and the catalytic applications of MOMSs in the oxidation of aromatic compounds are illustrated in detail. Finally, the prospects for the future development in this field are proposed.

  17. Handbook of Advanced Magnetic Materials

    CERN Document Server

    Liu, Yi; Shindo, Daisuke

    2006-01-01

    From high-capacity, inexpensive hard drives to mag-lev trains, recent achievements in magnetic materials research have made the dreams of a few decades ago reality. The objective of Handbook of Advanced Magnetic Materials is to provide a timely, comprehensive review of recent progress in magnetic materials research. This broad yet detailed reference consists of four volumes: 1.) Nanostructured advanced magnetic materials, 2.) Characterization and simulation of advanced magnetic materials, 3.) Processing of advanced magnetic materials, and 4.) Properties and applications of advanced magnetic materials The first volume documents and explains recent development of nanostructured magnetic materials, emphasizing size effects. The second volume provides a comprehensive review of both experimental methods and simulation techniques for the characterization of magnetic materials. The third volume comprehensively reviews recent developments in the processing and manufacturing of advanced magnetic materials. With the co...

  18. Natural material-decorated mesoporous silica nanoparticle container for multifunctional membrane-controlled targeted drug delivery

    Directory of Open Access Journals (Sweden)

    Hu Y

    2017-11-01

    Full Text Available Yan Hu,1 Lei Ke,2 Hao Chen,1 Ma Zhuo,1 Xinzhou Yang,1 Dan Zhao,1 Suying Zeng,1 Xincai Xiao1 1Department of Pharmaceutics, School of Pharmaceutical Science, South-Central University for Nationalities, 2Department of Medicinal Chemistry, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China Abstract: To avoid the side effects caused by nonspecific targeting, premature release, weak selectivity, and poor therapeutic efficacy of current nanoparticle-based systems used for drug delivery, we fabricated natural material-decorated nanoparticles as a multifunctional, membrane-controlled targeted drug delivery system. The nanocomposite material coated with a membrane was biocompatible and integrated both specific tumor targeting and responsiveness to stimulation, which improved transmission efficacy and controlled drug release. Mesoporous silica nanoparticles (MSNs, which are known for their biocompatibility and high drug-loading capacity, were selected as a model drug container and carrier. The membrane was established by the polyelectrolyte composite method from chitosan (CS which was sensitive to the acidic tumor microenvironment, folic acid-modified CS which recognizes the folate receptor expressed on the tumor cell surface, and a CD44 receptor-targeted polysaccharide hyaluronic acid. We characterized the structure of the nanocomposite as well as the drug release behavior under the control of the pH-sensitive membrane switch and evaluated the antitumor efficacy of the system in vitro. Our results provide a basis for the design and fabrication of novel membrane-controlled nanoparticles with improved tumor-targeting therapy. Keywords: multifunctional, membrane-controlled, natural materials, mesoporous silica nanoparticles, targeted drug delivery

  19. Bulk Concentration Dependence of Electrolyte Resistance Within Mesopores of Carbon Electrodes in Electric Double-Layer Capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaekwang; Kim, Daeun; Lee, Ilbok; Son, Hyungbin; Lee, Donghyun; Yoon, Songhun [Chung-Ang University, Seoul (Korea, Republic of); Shim, Hyewon [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of); Lee, Jinwoo [POSTECH, Pohang (Korea, Republic of)

    2016-02-15

    Hexagonally ordered mesoporous carbon materials were prepared and used as electrode materials in an electric double-layer capacitor. Using this electrode, the change of electrolyte resistance within the mesopores was investigated according to the bulk electrolyte concentration. Using three different electrochemical transient experiments-imaginary capacitance analysis, chronoamperometry, and hronopotentiometry-the time constant associated with electrolyte transport was determined, which was then used to obtain the electrolyte resistance within the mesopores. With decreasing electrolyte concentration, the increase in electrolyte resistance was smaller than the increase in the resistivity of the bulk electrolyte, which is indicative of a different environment for ionic transport within the mesopores. On using the confinement effect within the mesopores, the predicted higher concentration within mesopore probably results in lower electrolyte resistance, especially under low bulk concentrations.

  20. Mesoporous Silica Molecular Sieve based Nanocarriers: Transpiring Drug Dissolution Research.

    Science.gov (United States)

    Pattnaik, Satyanarayan; Pathak, Kamla

    2017-01-01

    Improvement of oral bioavailability through enhancement of dissolution for poorly soluble drugs has been a very promising approach. Recently, mesoporous silica based molecular sieves have demonstrated excellent properties to enhance the dissolution velocity of poorly water-soluble drugs. Current research in this area is focused on investigating the factors influencing the drug release from these carriers, the kinetics of drug release and manufacturing approaches to scale-up production for commercial manufacture. This comprehensive review provides an overview of different methods adopted for synthesis of mesoporous materials, influence of processing factors on properties of these materials and drug loading methods. The drug release kinetics from mesoporous silica systems, the manufacturability and stability of these formulations are reviewed. Finally, the safety and biocompatibility issues related to these silica based materials are discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Heat storage properties of organic phase-change materials confined in the nanospace of mesoporous SBA-15 and CMK-3.

    Science.gov (United States)

    Kadoono, Tomosuke; Ogura, Masaru

    2014-03-28

    A novel type of material encapsulating phase-change materials (PCMs) is reported concerning their implication for use as thermal energy storage devices. The composites of siliceous SBA-15 or carbonaceous CMK-3 mesoporous assemblies and organic PCMs could be used to make leak-free devices that retain their capabilities over many thermal cycles for heat storage/release. A confinement effect was observed that alters the thermal properties of the encapsulated PCM, especially in CMK-3 without any similar effects in other carbon materials.

  2. Mesoporous silica materials modified with alumina polycations as catalysts for the synthesis of dimethyl ether from methanol

    Energy Technology Data Exchange (ETDEWEB)

    Macina, Daniel; Piwowarska, Zofia; Tarach, Karolina; Góra-Marek, Kinga [Jagiellonian University, Faculty of Chemistry, Ingardena 3, 30-060 Kraków (Poland); Ryczkowski, Janusz [Maria Curie Skłodowska University, Faculty of Chemistry, Maria Curie-Skłodowska 2, 20-031 Lublin (Poland); Chmielarz, Lucjan, E-mail: chmielar@chemia.uj.edu.pl [Jagiellonian University, Faculty of Chemistry, Ingardena 3, 30-060 Kraków (Poland)

    2016-02-15

    Highlights: • Deposition of alumina ologoctaions on mesoporous silicas modified with surface −SO{sub 3}H groups. • Alumina aggregates generated acid properties in the silica supports. • Alumina modified SBA-15 and MCF were active and selective catalysts in DME synthesis. - Abstract: Mesoporous silica materials (SBA-15 and MCF) were used as catalytic supports for the deposition of aggregated alumina species using the method consisting of the following steps: (i) anchoring 3-(mercaptopropyl)trimethoxysilane (MPTMS) on the silica surface followed by (ii) oxidation of −SH to−SO{sub 3}H groups and then (iii) deposition of aluminum Keggin oligocations by ion-exchange method and (iv) calcination. The obtained samples were tested as catalysts for synthesis of dimethyl ether from methanol. The modified silicas were characterized with respect to the ordering of their porous structure (XRD), textural properties (BET), chemical composition (EDS, CHNS), structure ({sup 27}Al NMR, FTIR) and location of alumina species (EDX-TEM), surface acidity (NH{sub 3}-TPD, Py-FTIR) and thermal stability (TGA). The obtained materials were found to be active and selective catalysts for methanol dehydration to dimethyl ether (DME) in the MTD process (methanol-to-dimethyl ether).

  3. Tunable conductivity in mesoporous germanium

    Science.gov (United States)

    Beattie, Meghan N.; Bioud, Youcef A.; Hobson, David G.; Boucherif, Abderraouf; Valdivia, Christopher E.; Drouin, Dominique; Arès, Richard; Hinzer, Karin

    2018-05-01

    Germanium-based nanostructures have attracted increasing attention due to favourable electrical and optical properties, which are tunable on the nanoscale. High densities of germanium nanocrystals are synthesized via electrochemical etching, making porous germanium an appealing nanostructured material for a variety of applications. In this work, we have demonstrated highly tunable electrical conductivity in mesoporous germanium layers by conducting a systematic study varying crystallite size using thermal annealing, with experimental conductivities ranging from 0.6 to 33 (×10‑3) Ω‑1 cm‑1. The conductivity of as-prepared mesoporous germanium with 70% porosity and crystallite size between 4 and 10 nm is shown to be ∼0.9 × 10‑3 Ω‑1 cm‑1, 5 orders of magnitude smaller than that of bulk p-type germanium. Thermal annealing for 10 min at 400 °C further reduced the conductivity; however, annealing at 450 °C caused a morphological transformation from columnar crystallites to interconnecting granular crystallites and an increase in conductivity by two orders of magnitude relative to as-prepared mesoporous germanium caused by reduced influence of surface states. We developed an electrostatic model relating the carrier concentration and mobility of p-type mesoporous germanium to the nanoscale morphology. Correlation within an order of magnitude was found between modelled and experimental conductivities, limited by variation in sample uniformity and uncertainty in void size and fraction after annealing. Furthermore, theoretical results suggest that mesoporous germanium conductivity could be tuned over four orders of magnitude, leading to optimized hybrid devices.

  4. Moderate Temperature Synthesis of Mesoporous Carbon

    KAUST Repository

    Dua, Rubal

    2013-01-03

    Methods and composition for preparation of mesoporous carbon material are provided. For example, in certain aspects methods for carbonization and activation at selected temperature ranges are described. Furthermore, the invention provides products prepared therefrom.

  5. Moderate Temperature Synthesis of Mesoporous Carbon

    KAUST Repository

    Dua, Rubal; Wang, Peng

    2013-01-01

    Methods and composition for preparation of mesoporous carbon material are provided. For example, in certain aspects methods for carbonization and activation at selected temperature ranges are described. Furthermore, the invention provides products prepared therefrom.

  6. Al-doped TiO{sub 2} mesoporous material supported Pd with enhanced catalytic activity for complete oxidation of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jing, E-mail: mlczjsls123@163.com; Mu, Wentao, E-mail: mwt15035687833@163.com; Su, Liqing, E-mail: suliqing0163@163.com; Li, Xingying, E-mail: lixingying0479@link.tyut.edu.cn; Guo, Yuyu, E-mail: guoyuyu0455@link.tyut.edu.cn; Zhang, Shen, E-mail: zhangshen0472@link.tyut.edu.cn; Li, Zhe, E-mail: lizhe@tyut.edu.cn

    2017-04-15

    Pd catalysts supported on Al-doped TiO{sub 2} mesoporous materials were evaluated in complete oxidation of ethanol. The catalysts synthesized by wet impregnation based on evaporation-induced self-assembly were characterized by X-ray diffraction, measurement of pore structure, XPS, FT-IR, temperature programmed reduction and TEM. Characteristic results showed that the aluminium was doped into the lattice of mesoporous anatase TiO{sub 2} to form Al-O-Ti defect structure. Catalytic results revealed that Al-doped catalysts were much more active than the pristine one, especially at low temperature (≤200 °C). This should be ascribed to the introduction of aluminium ions that suppressed the strong metal-support interaction and increased the active sites of Pd oxides, enhanced the stabilized anatase TiO{sub 2}, improved well dispersed high valence palladium species with high reducibility and enriched chemisorption oxygen. - Graphical abstract: Al-doped Pd/TiO{sub 2} exhibited optimal catalytic performance for ethanol oxidation and CO{sub 2} yield by the suppression of SMSI. - Highlights: • Palladium catalysts supported on Al-doped TiO{sub 2} mesoporous materials were studied. • The introduction of Al can enhance anatase stabilization and increase defect TiO{sub 2}. • The Pd/Al-TiO{sub 2} catalysts show higher ethanol conversion and CO{sub 2} yield than Pd/TiO{sub 2}. • The influence of Al on SMSI and catalytic performance were evaluated by TPR and XPS.

  7. Electrochemical Synthesis of Mesoporous CoPt Nanowires for Methanol Oxidation

    Directory of Open Access Journals (Sweden)

    Albert Serrà

    2014-03-01

    Full Text Available A new electrochemical method to synthesize mesoporous nanowires of alloys has been developed. Electrochemical deposition in ionic liquid-in-water (IL/W microemulsion has been successful to grow mesoporous CoPt nanowires in the interior of polycarbonate membranes. The viscosity of the medium was high, but it did not avoid the entrance of the microemulsion in the interior of the membrane’s channels. The structure of the IL/W microemulsions, with droplets of ionic liquid (4 nm average diameter dispersed in CoPt aqueous solution, defined the structure of the nanowires, with pores of a few nanometers, because CoPt alloy deposited only from the aqueous component of the microemulsion. The electrodeposition in IL/W microemulsion allows obtaining mesoporous structures in which the small pores must correspond to the size of the droplets of the electrolytic aqueous component of the microemulsion. The IL main phase is like a template for the confined electrodeposition. The comparison of the electrocatalytic behaviours towards methanol oxidation of mesoporous and compact CoPt nanowires of the same composition, demonstrated the porosity of the material. For the same material mass, the CoPt mesoporous nanowires present a surface area 16 times greater than compact ones, and comparable to that observed for commercial carbon-supported platinum nanoparticles.

  8. Shape-Enhanced Photocatalytic Activities of Thoroughly Mesoporous ZnO Nanofibers

    KAUST Repository

    Ren, Xiaolong

    2016-06-24

    1D mesoporous materials have attracted extensive interest recently, owning to their fascinating properties and versatile applications. However, it remains as a grand challenge to develop a simple and efficient technique to produce oxide nanofibers with mesoporous architectures, controlled morphologies, large surface areas, and optimal performances. In this work, a facile foaming-assisted electrospinning strategy with foaming agent of tea saponin is used to produce thoroughly mesoporous ZnO nanofibers with high purity and controlled morphology. Interestingly, mesoporous fibers with elliptical cross-section exhibit the significantly enhanced photocatalytic activity for hydrogen production, as compared to the counterparts with circular and rectangular cross-sections, and they also perform better than the commercial ZnO nanopowders. The unexpected shape dependence of photocatalytic activities is attributed to the different stacking modes of the mesoporous fibers, and a geometrical model is developed to account for the shape dependence. This work represents an important step toward producing thoroughly mesoporous ZnO nanofibers with tailored morphologies, and the discovery that fibers with elliptical cross-section render the best performance provides a valuable guideline for improving the photocatalytic performance of such mesoporous nanomaterials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Ultrathin mesoporous Co_3O_4 nanosheets-constructed hierarchical clusters as high rate capability and long life anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wu, Shengming; Xia, Tian; Wang, Jingping; Lu, Feifei; Xu, Chunbo; Zhang, Xianfa; Huo, Lihua; Zhao, Hui

    2017-01-01

    Graphical abstract: Ultrathin mesoporous Co_3O_4 nanosheets-constructed hierarchical clusters (UMCN-HCs) have been successfully synthesized via a facile hydrothermal method followed by a subsequent thermolysis treatment. When tested as anode materials for LIBs, UMCN-HCs achieve high reversible capacity, good long cycling life, and rate capability. - Highlights: • UMCN-HCs show high capacity, excellent stability, and good rate capability. • UMCN-HCs retain a capacity of 1067 mAh g"−"1 after 100 cycles at 100 mA g"−"1. • UMCN-HCs deliver a capacity of 507 mAh g"−"1 after 500 cycles at 2 A g"−"1. - Abstract: Herein, Ultrathin mesoporous Co_3O_4 nanosheets-constructed hierarchical clusters (UMCN-HCs) have been successfully synthesized via a facile hydrothermal method followed by a subsequent thermolysis treatment at 600 °C in air. The products consist of cluster-like Co_3O_4 microarchitectures, which are assembled by numerous ultrathin mesoporous Co_3O_4 nanosheets. When tested as anode materials for lithium-ion batteries, UMCN-HCs deliver a high reversible capacity of 1067 mAh g"−"1 at a current density of 100 mA g"−"1 after 100 cycles. Even at 2 A g"−"1, a stable capacity as high as 507 mAh g"−"1 can be achieved after 500 cycles. The high reversible capacity, excellent cycling stability, and good rate capability of UMCN-HCs may be attributed to their mesoporous sheet-like nanostructure. The sheet-layered structure of UMCN-HCs may buffer the volume change during the lithiation-delithiation process, and the mesoporous characteristic make lithium-ion transfer more easily at the interface between the active electrode and the electrolyte.

  10. Aspirin degradation in surface-charged TEMPO-oxidized mesoporous crystalline nanocellulose.

    Science.gov (United States)

    Carlsson, Daniel O; Hua, Kai; Forsgren, Johan; Mihranyan, Albert

    2014-01-30

    TEMPO-mediated surface oxidation of mesoporous highly crystalline Cladophora cellulose was used to introduce negative surface charges onto cellulose nanofibrils without significantly altering other structural characteristics. This enabled the investigation of the influence of mesoporous nanocellulose surface charges on aspirin chemical stability to be conducted. The negative surface charges (carboxylate content 0.44±0.01 mmol/g) introduced on the mesoporous crystalline nanocellulose significantly accelerated aspirin degradation, compared to the starting material which had significantly less surface charge (0.06±0.01 mmol/g). This effect followed from an increased aspirin amorphisation ability in mesopores of the oxidized nanocellulose. These results highlight the importance of surface charges in formulating nanocellulose for drug delivery. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Mesoporous nitrogen-rich carbon materials as cathode catalysts in microbial fuel cells

    KAUST Repository

    Ahn, Yongtae

    2014-12-01

    The high cost of the catalyst material used for the oxygen reduction reaction in microbial fuel cell (MFC) cathodes is one of the factors limiting practical applications of this technology. Mesoporous nitrogen-rich carbon (MNC), prepared at different temperatures, was examined as an oxygen reduction catalyst, and compared in performance to Pt in MFCs and electrochemical cells. MNC calcined at 800 °C produced a maximum power density of 979 ± 131 mW m-2 in MFCs, which was 37% higher than that produced using MNC calined at 600 °C (715 ± 152 mW m-2), and only 14% lower than that obtained with Pt (1143 ± 54 mW m-2). The extent of COD removal and coulombic efficiencies were the same for all cathode materials. These results show that MNC could be used as an alternative to Pt in MFCs. © 2014 Elsevier B.V. All rights reserved.

  12. Ordered mesoporous crystalline gamma-Al2O3 with variable architecture and porosity from a single hard template.

    Science.gov (United States)

    Wu, Zhangxiong; Li, Qiang; Feng, Dan; Webley, Paul A; Zhao, Dongyuan

    2010-09-01

    In this paper, an efficient route is developed for controllable synthesis of ordered mesoporous alumina (OMA) materials with variable pore architectures and high mesoporosity, as well as crystalline framework. The route is based on the nanocasting pathway with bimodal mesoporous carbon as the hard template. In contrast to conventional reports, we first realize the possibility of creating two ordered mesopore architectures by using a single carbon hard template obtained from organic-organic self-assembly, which is also the first time such carbon materials are adopted to replicate ordered mesoporous materials. The mesopore architecture and surface property of the carbon template are rationally designed in order to obtain ordered alumina mesostructures. We found that the key factors rely on the unique bimodal mesopore architecture and surface functionalization of the carbon hard template. Namely, the bimodal mesopores (2.3 and 5.9 nm) and the surface functionalities make it possible to selectively load alumina into the small mesopores dominantly and/or with a layer of alumina coated on the inner surface of the large primary mesopores with different thicknesses until full loading is achieved. Thus, OMA materials with variable pore architectures (similar and reverse mesostructures relative to the carbon template) and controllable mesoporosity in a wide range are achieved. Meanwhile, in situ ammonia hydrolysis for conversion of the metal precursor to its hydroxide is helpful for easy crystallization (as low as approximately 500 degrees C). Well-crystallized alumina frameworks composed of gamma-Al(2)O(3) nanocrystals with sizes of 6-7 nm are obtained after burning out the carbon template at 600 degrees C, which is advantageous over soft-templated aluminas. The effects of synthesis factors are demonstrated and discussed relative to control experiments. Furthermore, our method is versatile enough to be used for general synthesis of other important but difficult

  13. Bioactive SrO-SiO2 glass with well-ordered mesopores: characterization, physiochemistry and biological properties.

    Science.gov (United States)

    Wu, Chengtie; Fan, Wei; Gelinsky, Michael; Xiao, Yin; Simon, Paul; Schulze, Renate; Doert, Thomas; Luo, Yongxiang; Cuniberti, Gianaurelio

    2011-04-01

    For a biomaterial to be considered suitable for bone repair it should ideally be both bioactive and have a capacity for controllable drug delivery; as such, mesoporous SiO(2) glass has been proposed as a new class of bone regeneration material by virtue of its high drug-loading ability and generally good biocompatibility. It does, however, have less than optimum bioactivity and controllable drug delivery properties. In this study, we incorporated strontium (Sr) into mesoporous SiO(2) in an effort to develop a bioactive mesoporous SrO-SiO(2) (Sr-Si) glass with the capacity to deliver Sr(2+) ions, as well as a drug, at a controlled rate, thereby producing a material better suited for bone repair. The effects of Sr(2+) on the structure, physiochemistry, drug delivery and biological properties of mesoporous Sr-Si glass were investigated. The prepared mesoporous Sr-Si glass was found to have an excellent release profile of bioactive Sr(2+) ions and dexamethasone, and the incorporation of Sr(2+) improved structural properties, such as mesopore size, pore volume and specific surface area, as well as rate of dissolution and protein adsorption. The mesoporous Sr-Si glass had no cytotoxic effects and its release of Sr(2+) and SiO(4)(4-) ions enhanced alkaline phosphatase activity - a marker of osteogenic cell differentiation - in human bone mesenchymal stem cells. Mesoporous Sr-Si glasses can be prepared to porous scaffolds which show a more sustained drug release. This study suggests that incorporating Sr(2+) into mesoporous SiO(2) glass produces a material with a more optimal drug delivery profile coupled with improved bioactivity, making it an excellent material for bone repair applications. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Mesoporous molecular sieves as advanced supports for olefin metathesis catalysts

    Czech Academy of Sciences Publication Activity Database

    Balcar, Hynek; Čejka, Jiří

    2013-01-01

    Roč. 257, 21-22 (2013), s. 3107-3124 ISSN 0010-8545 R&D Projects: GA AV ČR IAA400400805; GA ČR GBP106/12/G015 Institutional support: RVO:61388955 Keywords : Olefin metathesis * mesoporous molecular sieves * Heterogeneous catalysts Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 12.098, year: 2013

  15. Structurally stabilized organosilane-templated thermostable mesoporous titania.

    Science.gov (United States)

    Amoli, Vipin; Tiwari, Rashmi; Dutta, Arghya; Bhaumik, Asim; Sinha, Anil Kumar

    2014-01-13

    Structurally thermostable mesoporous anatase TiO2 (m-TiO2) nanoparticles, uniquely decorated with atomically dispersed SiO2, is reported for the first time. The inorganic Si portion of the novel organosilane template, used as a mesopores-directing agent, is found to be incorporated in the pore walls of the titania aggregates, mainly as isolated sites. This is evident by transmission electron microscopy and high-angle annular dark field scanning transmission electron microscopy, combined with electron dispersive X-ray spectroscopy. This type of unique structure provides exceptional stability to this new material against thermal collapse of the mesoporous structure, which is reflected in its high surface area (the highest known for anatase titania), even after high-temperature (550 °C) calcination. Control of crystallite size, pore diameter, and surface area is achieved by varying the molar ratios of the titanium precursor and the template during synthesis. These mesoporous materials retain their porosity and high surface area after template removal and further NaOH/HCl treatment to remove silica. We investigate their performance for dye-sensitized solar cells (DSSCs) with bilayer TiO2 electrodes, which are prepared by applying a coating of m-TiO2 onto a commercial titania (P25) film. The high surface area of the upper mesoporous layer in the P25-m-TiO2 DSSC significantly increases the dye loading ability of the photoanode. The photocurrent and fill factor for the DSSC with the bilayer TiO2 electrode are greatly improved. The large increase in photocurrent current (ca. 56%) in the P25-m-TiO2 DSSC is believed to play a significant role in achieving a remarkable increase in the photovoltaic efficiency (60%) of the device, compared to DSSCs with a monolayer of P25 as the electrode. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Micelle-Template Synthesis of Nitrogen-Doped Mesoporous Graphene as an Efficient Metal-Free Electrocatalyst for Hydrogen Production

    Science.gov (United States)

    Huang, Xiaodan; Zhao, Yufei; Ao, Zhimin; Wang, Guoxiu

    2014-12-01

    Synthesis of mesoporous graphene materials by soft-template methods remains a great challenge, owing to the poor self-assembly capability of precursors and the severe agglomeration of graphene nanosheets. Herein, a micelle-template strategy to prepare porous graphene materials with controllable mesopores, high specific surface areas and large pore volumes is reported. By fine-tuning the synthesis parameters, the pore sizes of mesoporous graphene can be rationally controlled. Nitrogen heteroatom doping is found to remarkably render electrocatalytic properties towards hydrogen evolution reactions as a highly efficient metal-free catalyst. The synthesis strategy and the demonstration of highly efficient catalytic effect provide benchmarks for preparing well-defined mesoporous graphene materials for energy production applications.

  17. High Temperature Materials Characterization and Advanced Materials Development

    International Nuclear Information System (INIS)

    Ryu, Woo Seog; Kim, D. H.; Kim, S. H.

    2007-06-01

    The project has been carried out for 2 years in stage III in order to achieve the final goals of performance verification of the developed materials, after successful development of the advanced high temperature material technologies for 3 years in Stage II. The mechanical and thermal properties of the advanced materials, which were developed during Stage II, were evaluated at high temperatures, and the modification of the advanced materials were performed. Moreover, a database management system was established using user-friendly knowledge-base scheme to complete the integrated-information material database in KAERI material division

  18. Pore Structure Control of Ordered Mesoporous Silica Film Using Mixed Surfactants

    Directory of Open Access Journals (Sweden)

    Tae-Jung Ha

    2011-01-01

    Full Text Available Materials with nanosized and well-arranged pores have been researched actively in order to be applied to new technology fields. Especially, mesoporous material containing various pore structures is expected to have different pore structure. To form a mixed pore structure, ordered mesoporous silica films were prepared with a mixture of surfactant; Brij-76 and P-123 block copolymer. In mixed surfactant system, mixed pore structure was observed in the region of P-123/(Brij-76 + P-123 with about 50.0 wt.% while a single pore structure was observed in regions which have large difference in ratio between Brij-76 and P-123 through the X-ray diffraction analysis. Regardless of surfactant ratio, porosity was retained almost the same. It is expected that ordered mesoporous silica film with mixed pore structure can be one of the new materials which has distinctive properties.

  19. Mesoporous silica nanoparticles for biomedical and catalytical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaoxing [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Mesoporous silica materials, discovered in 1992 by the Mobile Oil Corporation, have received considerable attention in the chemical industry due to their superior textual properties such as high surface area, large pore volume, tunable pore diameter, and narrow pore size distribution. Among those materials, MCM-41, referred to Mobile Composition of Matter NO. 41, contains honeycomb liked porous structure that is the most common mesoporous molecular sieve studied. Applications of MCM-41 type mesoporous silica material in biomedical field as well as catalytical field have been developed and discussed in this thesis. The unique features of mesoporous silica nanoparticles were utilized for the design of delivery system for multiple biomolecules as described in chapter 2. We loaded luciferin into the hexagonal channels of MSN and capped the pore ends with gold nanoparticles to prevent premature release. Luciferase was adsorbed onto the outer surface of the MSN. Both the MSN and the gold nanoparticles were protected by poly-ethylene glycol to minimize nonspecific interaction of luciferase and keep it from denaturating. Controlled release of luciferin was triggered within the cells and the enzymatic reaction was detected by a luminometer. Further developments by varying enzyme/substrate pairs may provide opportunities to control cell behavior and manipulate intracellular reactions. MSN was also served as a noble metal catalyst support due to its large surface area and its stability with active metals. We prepared MSN with pore diameter of 10 nm (LP10-MSN) which can facilitate mass transfer. And we successfully synthesized an organo silane, 2,2'-Bipyridine-amide-triethoxylsilane (Bpy-amide-TES). Then we were able to functionalize LP10-MSN with bipyridinyl group by both post-grafting method and co-condensation method. Future research of this material would be platinum complexation. This Pt (II) complex catalyst has been reported for a C-H bond activation reaction as an

  20. Direct large-scale synthesis of 3D hierarchical mesoporous NiO microspheres as high-performance anode materials for lithium ion batteries.

    Science.gov (United States)

    bai, Zhongchao; Ju, Zhicheng; Guo, Chunli; Qian, Yitai; Tang, Bin; Xiong, Shenglin

    2014-03-21

    Hierarchically porous materials are an ideal material platform for constructing high performance Li-ion batteries (LIBs), offering great advantages such as large contact area between the electrode and the electrolyte, fast and flexible transport pathways for the electrolyte ions and the space for buffering the strain caused by repeated Li insertion/extraction. In this work, NiO microspheres with hierarchically porous structures have been synthesized via a facile thermal decomposition method by only using a simple precursor. The superstructures are composed of nanocrystals with high specific surface area, large pore volume, and broad pore size distribution. The electrochemical properties of 3D hierarchical mesoporous NiO microspheres were examined by cyclic voltammetry and galvanostatic charge-discharge studies. The results demonstrate that the as-prepared NiO nanospheres are excellent electrode materials in LIBs with high specific capacity, good retention and rate performance. The 3D hierarchical mesoporous NiO microspheres can retain a reversible capacity of 800.2 mA h g(-1) after 100 cycles at a high current density of 500 mA g(-1).

  1. Phenol-formaldehyde carbon with ordered/disordered bimodal mesoporous structure as high-performance electrode materials for supercapacitors

    Science.gov (United States)

    Cai, Tingwei; Zhou, Min; Han, Guangshuai; Guan, Shiyou

    2013-11-01

    A novel phenol-formaldehyde carbon with ordered/disordered bimodal mesoporous structure is synthesized by the facile evaporation induced self-assembly strategy under a basic aqueous condition with SiO2 particles as template. The prepared bimodal mesoporous carbons (BMCs) are composed of ordered mesoporous and disordered mesoporous with diameter of about 3.5 nm and 7.0 nm, respectively. They can be employed as supercapacitor electrodes in H2SO4 aqueous electrolyte after the simple acid-treatment. BMC exhibits an exceptional specific capacitance of 344 F g-1 at the current density of 0.1 A g-1, although it has a relatively low surface area of 722 m2 g-1. And the BMC electrode displays an excellent cycling stability over 10,000 cycles.

  2. Block copolymer self-assembly–directed synthesis of mesoporous gyroidal superconductors

    Science.gov (United States)

    Robbins, Spencer W.; Beaucage, Peter A.; Sai, Hiroaki; Tan, Kwan Wee; Werner, Jörg G.; Sethna, James P.; DiSalvo, Francis J.; Gruner, Sol M.; Van Dover, Robert B.; Wiesner, Ulrich

    2016-01-01

    Superconductors with periodically ordered mesoporous structures are expected to have properties very different from those of their bulk counterparts. Systematic studies of such phenomena to date are sparse, however, because of a lack of versatile synthetic approaches to such materials. We demonstrate the formation of three-dimensionally continuous gyroidal mesoporous niobium nitride (NbN) superconductors from chiral ABC triblock terpolymer self-assembly–directed sol-gel–derived niobium oxide with subsequent thermal processing in air and ammonia gas. Superconducting materials exhibit a critical temperature (Tc) of about 7 to 8 K, a flux exclusion of about 5% compared to a dense NbN solid, and an estimated critical current density (Jc) of 440 A cm−2 at 100 Oe and 2.5 K. We expect block copolymer self-assembly–directed mesoporous superconductors to provide interesting subjects for mesostructure-superconductivity correlation studies. PMID:27152327

  3. Block copolymer self-assembly-directed synthesis of mesoporous gyroidal superconductors.

    Science.gov (United States)

    Robbins, Spencer W; Beaucage, Peter A; Sai, Hiroaki; Tan, Kwan Wee; Werner, Jörg G; Sethna, James P; DiSalvo, Francis J; Gruner, Sol M; Van Dover, Robert B; Wiesner, Ulrich

    2016-01-01

    Superconductors with periodically ordered mesoporous structures are expected to have properties very different from those of their bulk counterparts. Systematic studies of such phenomena to date are sparse, however, because of a lack of versatile synthetic approaches to such materials. We demonstrate the formation of three-dimensionally continuous gyroidal mesoporous niobium nitride (NbN) superconductors from chiral ABC triblock terpolymer self-assembly-directed sol-gel-derived niobium oxide with subsequent thermal processing in air and ammonia gas. Superconducting materials exhibit a critical temperature (T c) of about 7 to 8 K, a flux exclusion of about 5% compared to a dense NbN solid, and an estimated critical current density (J c) of 440 A cm(-2) at 100 Oe and 2.5 K. We expect block copolymer self-assembly-directed mesoporous superconductors to provide interesting subjects for mesostructure-superconductivity correlation studies.

  4. Synthesis and Physicochemical Characterization of Mesoporous SiO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Dharani Das

    2014-01-01

    Full Text Available There exists a knowledge gap in understanding potential toxicity of mesoporous silica nanoparticles. A critical step in assessing toxicity of these particles is to have a wide size range with different chemistries and physicochemical properties. There are several challenges when synthesizing mesoporous silica nanoparticles over a wide range of sizes including (1 nonuniform synthesis protocols using the same starting materials, (2 the low material yield in a single batch synthesis (especially for particles below 60–70 nm, and (3 morphological instability during surfactant removal process and surface modifications. In this study, we synthesized a library of mesoporous silica nanoparticles with approximate particle sizes of 25, 70, 100, 170, and 600 nm. Surfaces of the silica nanoparticles were modified with hydrophilic-CH2–(CH22–COOH and relatively hydrophobic-CH2–(CH210–COOH functional groups. All silica nanoparticles were analysed for morphology, surface functionality, surface area/pore volume, surface organic content, and dispersion characteristics in liquid media. Our analysis revealed the synthesis of a spectrum of monodisperse bare and surface modified mesoporous silica nanoparticles with a narrow particle size distribution and devoid of cocontaminants critical for toxicity studies. Complete physicochemical characterization of these synthetic mesoporous silica nanoparticles will permit systematic toxicology studies for investigation of structure-activity relationships.

  5. Novel strategy for the preparation of graphene-encapsulated mesoporous metal oxides with enhanced lithium storage

    International Nuclear Information System (INIS)

    Lin, Rong; Yue, Wenbo; Niu, Fangzhou; Ma, Jie

    2016-01-01

    As potential anode materials for lithium-ion batteries, mesoporous metal oxides show high reversible capacities but relatively poor cycle stability due to the structural collapse during cycles. Graphene-encapsulated mesoporous metal oxides may increase the electronic conductivity of the composite as well as stabilize the mesostructure of metal oxides, thereby enhancing the electrochemical performance of mesoporous metal oxides. Herein we describe a novel strategy for the preparation of graphene-encapsulated mesoporous metal oxides (SnO_2, Mn_3O_4), which exhibit superior electrochemical performance compared to pure mesoporous metal oxides. Moreover, some mesoporous metal oxides may be further reduced to low-valence metal oxides when calcined in presence of graphene. Mesoporous metal oxides with high isoelectric points are not essential for this synthesis method since metal oxides are connected with graphene through mesoporous silica template, thus expanding the types of graphene-encapsulated mesoporous metal oxides.

  6. Large pore mesoporous silica nanomaterials for application in delivery of biomolecules

    Science.gov (United States)

    Knežević, Nikola Ž.; Durand, Jean-Olivier

    2015-01-01

    Various approaches for the synthesis of mesoporous silicate nanoparticles (MSN) with large pore (LP) diameters (in the range of 3-50 nm) are reviewed in this article. The work also covers the construction of magnetic analogues of large pore-mesoporous silica nanoparticles (LPMMSN) and their biomedical applications. The constructed materials exhibit vast potential for application in the loading and delivery of large drug molecules and biomolecules. Literature reports on the application of LPMSN and LPMMSN materials for the adsorption and delivery of proteins, enzymes, antibodies, and nucleic acids are covered in depth, which exemplify their highly potent characteristics for use in drug and biomolecule delivery to diseased tissues.Various approaches for the synthesis of mesoporous silicate nanoparticles (MSN) with large pore (LP) diameters (in the range of 3-50 nm) are reviewed in this article. The work also covers the construction of magnetic analogues of large pore-mesoporous silica nanoparticles (LPMMSN) and their biomedical applications. The constructed materials exhibit vast potential for application in the loading and delivery of large drug molecules and biomolecules. Literature reports on the application of LPMSN and LPMMSN materials for the adsorption and delivery of proteins, enzymes, antibodies, and nucleic acids are covered in depth, which exemplify their highly potent characteristics for use in drug and biomolecule delivery to diseased tissues. Dedicated to Professor Jeffrey I. Zink on the occasion of his 70th birthday.

  7. Polyaniline nanofiber/large mesoporous carbon composites as electrode materials for supercapacitors

    Science.gov (United States)

    Liu, Huan; Xu, Bin; Jia, Mengqiu; Zhang, Mei; Cao, Bin; Zhao, Xiaonan; Wang, Yu

    2015-03-01

    A composite of polyaniline nanofiber/large mesoporous carbon (PANI-F/LMC) hybrid was prepared by an in situ chemical oxidative polymerization of aniline monomer with nano-CaCO3 templated LMC as host matrix for supercapacitors. The morphology, composition and electronic structure of the composites (PANI-F/LMC) together with pure PANI nanofibers and the LMC were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), FT-IR, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It is found that the PANI nanofibers were incorporated into the large mesochannels of LMC with interpenetrating framework formed. Such unique structure endows the PANI-F/LMC composite with a high capacitance of 473 F g-1 at a current load of 0.1 A g-1 with good rate performance and cycling stability, suggesting its potential application in the electrode material for supercapacitors.

  8. Advances in dental materials.

    Science.gov (United States)

    Fleming, Garry J P

    2014-05-01

    The dental market is replete with new resorative materials marketed on the basis of novel technological advances in materials chemistry, bonding capability or reduced operator time and/or technique sensitivity. This paper aims to consider advances in current materials, with an emphasis on their role in supporting contemporary clinical practice.

  9. Mesoporous titanium phosphate molecular sieves with ion-exchange capacity.

    Science.gov (United States)

    Bhaumik, A; Inagaki, S

    2001-01-31

    Novel open framework molecular sieves, titanium(IV) phosphates named, i.e., TCM-7 and -8 (Toyota Composite Materials, numbers 7 and 8), with new mesoporous cationic framework topologies obtained by using both cationic and anionic surfactants are reported. The (31)P MAS NMR, UV-visible absorption, and XANES data suggest the tetrahedral state of P and Ti, and stabilization of the tetrahedral state of Ti in TCM-7/8 is due to the incorporation of phosphorus (at Ti/P = 1:1) vis-à-vis the most stable octahedral state of Ti in the pure mesoporous TiO(2). Mesoporous TCM-7 and -8 show anion exchange capacity due to the framework phosphonium cation and cation exchange capacity due to defective P-OH groups. The high catalytic activity in the liquid-phase partial oxidation of cyclohexene with a dilute H(2)O(2) oxidant supports the tetrahedral coordination of Ti in these materials.

  10. In situ synthesis of N and Cu functionalized mesoporous FDU-14 resins and carbons for electrochemical hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Kong, AiGuo; Wang, WenJuan; Yang, Fan; Ding, HanMing; Shan, YongKui [Department of Chemistry, East China Normal University, ShangHai 200062 (China)

    2010-07-15

    N and Cu cooperatively functionalized mesoporous resin and carbon materials with bicontinuous cubic structure (FDU-14) were obtained by a novel synthesis method. In this method, block copolymers were used as the templates as well as the precursors for the preparation of these modifying mesoporous materials. The CuC{sub 2}O{sub 4} in the channels of mesoporous FDU-14 resins was gotten by in situ oxidation of the templates in a catalytic redox system containing Cu{sup 2+}, Al{sup 3+}, NO{sub 3}{sup -}, PO{sub 4}{sup 3-}, SO{sub 4}{sup 2-} ions. Simultaneously, the phenol-formaldehyde resin frameworks were in situ functionalized by the amine group resulting from the reduction of NO{sub 3}{sup -}, leading to the formation of N and CuC{sub 2}O{sub 4} modified mesoporous FDU-14 resin materials. Its pyrolysis at the different temperatures resulted in the production of N and Cu cooperatively functionalized mesoporous FDU-14 resin and carbon materials. The structure and composition of these materials were characterized by the X-ray power diffraction, transmission electron microscopy, N{sub 2} adsorption-desorption analysis, X-ray photoelectron spectroscopy, infrared spectroscopy, thermogravimetry analysis, and inductive coupled plasma emission spectroscopy. The electrochemical measurement indicated that N and Cu cooperatively functionalized mesoporous FDU-14 carbon materials possessed the enhanced electrochemical hydrogen storage performance. (author)

  11. MoO2-ordered mesoporous carbon nanocomposite as an anode material for lithium-ion batteries.

    Science.gov (United States)

    Zeng, Lingxing; Zheng, Cheng; Deng, Cuilin; Ding, Xiaokun; Wei, Mingdeng

    2013-03-01

    In the present work, the nanocomposite of MoO2-ordered mesoporous carbon (MoO2-OMC) was synthesized for the first time using a carbon thermal reduction route and the mesoporous carbon as the nanoreactor. The synthesized nanocomposite was characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), N2 adsorption-desorption, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) measurements. Furthermore, this nanocomposite was used as an anode material for Li-ion intercalation and exhibited large reversible capacity, high rate performance, and good cycling stability. For instance, a high reversible capacity of 689 mAh g(-1) can remain after 50 cycles at a current density of 50 mA g(-1). It is worth mentioning that the MoO2-OMC nanocomposite electrode can attain a high reversible capacity of 401 mAh g(-1) at a current density as high as 2 A g(-1). These results might be due to the intrinsic characteristics of nanocomposite, which offered a better accommodation of the strain and volume changes and a shorter path for Li-ion and electron transport, leading to the improved capacity and enhanced rate capability.

  12. Ordered mesoporous carbon for electrochemical sensing: A review

    Energy Technology Data Exchange (ETDEWEB)

    Ndamanisha, Jean Chrysostome [Faculty of Chemistry, Northeast Normal University, Changchun 130024 (China); Universite du Burundi, Institut de pedagogie appliquee, B.P. 5223, Bujumbura (Burundi); Guo Liping, E-mail: guolp078@nenu.edu.cn [Faculty of Chemistry, Northeast Normal University, Changchun 130024 (China)

    2012-10-17

    Highlights: Black-Right-Pointing-Pointer The preparation and functionalization of ordered mesoporous carbon. Black-Right-Pointing-Pointer Their applications as electrochemical sensors with high electrocatalytic activity. Black-Right-Pointing-Pointer A promising electrode material based on its interesting properties. - Abstract: With its well-ordered pore structure, high specific surface area and tunable pore diameters in the mesopore range, ordered mesoporous carbon (OMC) is suitable for applications in catalysis and sensing. We report recent applications of OMC in electrochemical sensors and biosensors. After a brief description of the electrochemical properties, the functionalization of the OMC for improvement of the electrocatalytic properties is then presented. We show how the ordered mesostructure of OMC is very important in those applications. The high density of edge plane-like defective sites (EDSs), oxygen-containing groups and a large surface area on OMC may provide many favorable sites for electron transfer to compounds, which makes OMC a potential novel material for an investigation of the electrochemical behavior of substances. Moreover, the structural capabilities of OMC at the scale of a few nanometers agree with immobilization of other electrocataytic substances. Interesting properties of this material may open up a new approach to study the electrochemical determination of other biomolecules.

  13. Mesoporous Co3O4 nanosheets-3D graphene networks hybrid materials for high-performance lithium ion batteries

    International Nuclear Information System (INIS)

    Sun, Hongyu; Liu, Yanguo; Yu, Yanlong; Ahmad, Mashkoor; Nan, Ding; Zhu, Jing

    2014-01-01

    Graphical abstract: - Highlights: • The mesoporous Co 3 O 4 nanosheets-3D graphene networks have been found to display better LIB performance as compare with Co 3 O 4 /CNT and Co 3 O 4 structures. • Electrochemical impedance spectroscopy shows that the addition of 3DGN largely enhanced the electrochemical activity of Co 3 O 4 during the cycling processes. • The large specific surface area and porous nature of the Co 3 O 4 nanosheets are very convenient and accessible for electrolyte diffusion and intercalation of Li + ions into the active phases. - Abstract: Mesoporous Co 3 O 4 nanosheets-3D graphene networks (3DGN) hybrid materials have been synthesized by combining chemical vapor deposition (CVD) and hydrothermal method and investigated as anode materials for Li-ion batteries (LIBs). Microscopic characterizations have been performed to confirm the 3DGN and mesoporous Co 3 O 4 nanostructures. The specific surface area and pore size of the hybrid structures have been found ∼ 34.5 m 2 g −1 and ∼ 3.8 nm respectively. It has been found that the Co 3 O 4 /3DGNs composite displays better LIB performance with enhanced reversible capacity, good cyclic performance and rate capability as compare with Co 3 O 4 /CNT and Co 3 O 4 structures. Electrochemical impedance spectroscopy (EIS) results show that the addition of 3DGN not only preserves high conductivity of the composite electrode, but also largely enhanced the electrochemical activity of Co 3 O 4 during the cycling processes. The improved electrochemical performance is considered due to the addition of 3DGNs which prevent the cracking of electrode. In addition, the large specific surface area and porous nature of the Co 3 O 4 nanosheets are also very convenient and accessible for electrolyte diffusion and intercalation of Li + ions into the active phases. Therefore, this combination can be considered to be an attractive candidate as an anode material for LIBs

  14. Improvement of the Derjaguin-Broekhoff-de Boer theory for capillary condensation/evaporation of nitrogen in mesoporous systems and its implications for pore size analysis of MCM-41 silicas and related materials.

    Science.gov (United States)

    Kowalczyk, Piotr; Jaroniec, Mietek; Terzyk, Artur P; Kaneko, Katsumi; Do, Duong D

    2005-03-01

    In this work, we propose an improvement of the classical Derjaguin-Broekhoff-de Boer (DBdB) theory for capillary condensation/evaporation in mesoporous systems. The primary idea of this improvement is to employ the Gibbs-Tolman-Koenig-Buff equation to predict the surface tension changes in mesopores. In addition, the statistical film thickness (so-called t-curve) evaluated accurately on the basis of the adsorption isotherms measured for the MCM-41 materials is used instead of the originally proposed t-curve (to take into account the excess of the chemical potential due to the surface forces). It is shown that the aforementioned modifications of the original DBdB theory have significant implications for the pore size analysis of mesoporous solids. To verify our improvement of the DBdB pore size analysis method (IDBdB), a series of the calcined MCM-41 samples, which are well-defined materials with hexagonally ordered cylindrical mesopores, were used for the evaluation of the pore size distributions. The correlation of the IDBdB method with the empirically calibrated Kruk-Jaroniec-Sayari (KJS) relationship is very good in the range of small mesopores. So, a major advantage of the IDBdB method is its applicability for small mesopores as well as for the mesopore range beyond that established by the KJS calibration, i.e., for mesopore radii greater than approximately 4.5 nm. The comparison of the IDBdB results with experimental data reported by Kruk and Jaroniec for capillary condensation/evaporation as well as with the results from nonlocal density functional theory developed by Neimark et al. clearly justifies our approach. Note that the proposed improvement of the classical DBdB method preserves its original simplicity and simultaneously ensures a significant improvement of the pore size analysis, which is confirmed by the independent estimation of the mean pore size by the powder X-ray diffraction method.

  15. Adsorption of vitamin E on mesoporous titania nanocrystals

    International Nuclear Information System (INIS)

    Shih, C.J.; Lin, C.T.; Wu, S.M.

    2010-01-01

    Tri-block nonionic surfactant and titanium chloride were used as starting materials for the synthesis of mesoporous titania nanocrystallite powders. The main objective of the present study was to examine the synthesis of mesoporous titania nanocrystals and the adsorption of vitamin E on those nanocrystals using X-ray diffraction (XRD), transmission electron microscopy, and nitrogen adsorption and desorption isotherms. When the calcination temperature was increased to 300 o C, the reflection peaks in the XRD pattern indicated the presence of an anatase phase. The crystallinity of the nanocrystallites increased from 80% to 98.6% with increasing calcination temperature from 465 o C to 500 o C. The N 2 adsorption data and XRD data taken after vitamin E adsorption revealed that the vitamin E molecules were adsorbed in the mesopores of the titania nanocrystals.

  16. Synthesis of Mesoporous Single Crystal Co(OH)2 Nanoplate and Its Topotactic Conversion to Dual-Pore Mesoporous Single Crystal Co3O4.

    Science.gov (United States)

    Jia, Bao-Rui; Qin, Ming-Li; Li, Shu-Mei; Zhang, Zi-Li; Lu, Hui-Feng; Chen, Peng-Qi; Wu, Hao-Yang; Lu, Xin; Zhang, Lin; Qu, Xuan-Hui

    2016-06-22

    A new class of mesoporous single crystalline (MSC) material, Co(OH)2 nanoplates, is synthesized by a soft template method, and it is topotactically converted to dual-pore MSC Co3O4. Most mesoporous materials derived from the soft template method are reported to be amorphous or polycrystallined; however, in our synthesis, Co(OH)2 seeds grow to form single crystals, with amphiphilic block copolymer F127 colloids as the pore producer. The single-crystalline nature of material can be kept during the conversion from Co(OH)2 to Co3O4, and special dual-pore MSC Co3O4 nanoplates can be obtained. As the anode of lithium-ion batteries, such dual-pore MSC Co3O4 nanoplates possess exceedingly high capacity as well as long cyclic performance (730 mAh g(-1) at 1 A g(-1) after the 350th cycle). The superior performance is because of the unique hierarchical mesoporous structure, which could significantly improve Li(+) diffusion kinetics, and the exposed highly active (111) crystal planes are in favor of the conversion reaction in the charge/discharge cycles.

  17. Core/shell magnetic mesoporous silica nanoparticles with radially oriented wide mesopores

    Directory of Open Access Journals (Sweden)

    Nikola Ž. Knežević

    2014-06-01

    Full Text Available Core/shell nanoparticles, containing magnetic iron-oxide (maghemite core and mesoporous shell with radial porous structure, were prepared by dispersing magnetite nanoparticles and adding tetraethylorthosilicate to a basic aqueous solution containing structure-templating cetyltrimethylammonium bromide and a pore-swelling mesithylene. The material is characterized by SEM and TEM imaging, nitrogen sorption and powder X-ray diffraction. Distinctive features of the prepared material are its high surface area (959 m2/g, wide average pore diameter (12.4 nm and large pore volume (2.3 cm3/g. The material exhibits radial pore structure and the high angle XRD pattern characteristic for maghemite nanoparticles, which are obtained upon calcination of the magnetite-containing material. The observed properties of the prepared material may render the material applicable in separation, drug delivery, sensing and heterogeneous catalysis.

  18. Nanoscale materials in chemistry

    National Research Council Canada - National Science Library

    Klabunde, Kenneth J; Richards, Ryan

    2009-01-01

    ...: Disordered, Porous Nanostructures Stephanie L. Brock 209 9 Ordered Microporous and Mesoporous Materials Freddy Kleitz 243 10 Applications of Microporous and Mesoporous Materials Anirban Ghosh,...

  19. Mesoporous CuO–ZnO binary metal oxide nanocomposite for decontamination of sulfur mustard

    International Nuclear Information System (INIS)

    Praveen Kumar, J.; Prasad, G.K.; Ramacharyulu, P.V.R.K.; Garg, P.; Ganesan, K.

    2013-01-01

    Mesoporous CuO–ZnO binary metal oxide nanocomposites were studied as sorbent decontaminants against sulfur mustard, a well known chemical warfare agent. They were prepared by precipitation pyrolysis method and characterized by means of X-ray diffraction, transmission electron microscopy, nitrogen adsorption, Fourier transform infrared spectroscopy techniques. Obtained data indicated the presence of mesopores with diameter ranging from 2 to 80 nm and the materials exhibited relatively high surface area 86 m 2 g −1 when compared to the individual metal oxide nanoparticles. Reactive sites of mesoporous CuO–ZnO binary metal oxide nanocomposites were studied by infrared spectroscopy technique using pyridine as a probe molecule. These materials demonstrated superior decontamination properties against sulfur mustard when compared to single component metal oxides and decontaminated it to divinyl sulfide, chloroethyl vinyl sulfide, hemisulfur mustard, etc. - Graphical abstract: Mesoporous CuO–ZnO binary metal oxide nanocomposites were studied as sorbent decontaminants against sulfur mustard, a well known chemical warfare agent. These materials demonstrated superior decontamination properties against sulfur mustard and decontaminated it to divinyl sulfide, chloroethyl vinyl sulfide, hemisulfur mustard, etc. - Highlights: • Preparation of mesoporous CuO–ZnO binary metal oxide nanocomposite. • CuO–ZnO with better surface area was synthesized by precipitation pyrolysis. • Decontamination of HD using mesoporous CuO–ZnO binary metal oxide nanocomposite. • HD decontaminated by elimination and hydrolysis reactions

  20. Mesoporous CuO–ZnO binary metal oxide nanocomposite for decontamination of sulfur mustard

    Energy Technology Data Exchange (ETDEWEB)

    Praveen Kumar, J.; Prasad, G.K., E-mail: gkprasad2001@yahoo.com; Ramacharyulu, P.V.R.K.; Garg, P.; Ganesan, K.

    2013-11-01

    Mesoporous CuO–ZnO binary metal oxide nanocomposites were studied as sorbent decontaminants against sulfur mustard, a well known chemical warfare agent. They were prepared by precipitation pyrolysis method and characterized by means of X-ray diffraction, transmission electron microscopy, nitrogen adsorption, Fourier transform infrared spectroscopy techniques. Obtained data indicated the presence of mesopores with diameter ranging from 2 to 80 nm and the materials exhibited relatively high surface area 86 m{sup 2} g{sup −1} when compared to the individual metal oxide nanoparticles. Reactive sites of mesoporous CuO–ZnO binary metal oxide nanocomposites were studied by infrared spectroscopy technique using pyridine as a probe molecule. These materials demonstrated superior decontamination properties against sulfur mustard when compared to single component metal oxides and decontaminated it to divinyl sulfide, chloroethyl vinyl sulfide, hemisulfur mustard, etc. - Graphical abstract: Mesoporous CuO–ZnO binary metal oxide nanocomposites were studied as sorbent decontaminants against sulfur mustard, a well known chemical warfare agent. These materials demonstrated superior decontamination properties against sulfur mustard and decontaminated it to divinyl sulfide, chloroethyl vinyl sulfide, hemisulfur mustard, etc. - Highlights: • Preparation of mesoporous CuO–ZnO binary metal oxide nanocomposite. • CuO–ZnO with better surface area was synthesized by precipitation pyrolysis. • Decontamination of HD using mesoporous CuO–ZnO binary metal oxide nanocomposite. • HD decontaminated by elimination and hydrolysis reactions.

  1. Facile synthesis of mesoporous NiFe2O4/CNTs nanocomposite cathode material for high performance asymmetric pseudocapacitors

    Science.gov (United States)

    Kumar, Nagesh; Kumar, Amit; Huang, Guan-Min; Wu, Wen-Wei; Tseng, Tseung Yuen

    2018-03-01

    Morphology and synergistic effect of constituents are the two very important factors that greatly influence the physical, chemical and electrochemical properties of a composite material. In the present work, we report the enhanced electrochemical performance of mesoporous NiFe2O4 and multiwall carbon nanotubes (MWCNTs) nanocomposites synthesized via hexamethylene tetramine (HMT) assisted one-pot hydrothermal approach. The synthesized cubic phase spinel NiFe2O4 nanomaterial possesses high specific surface area (148 m2g-1) with narrow mesopore size distribution. The effect of MWCNTs addition on the electrochemical performance of nanocomposite has been probed thoroughly in a normal three electrode configuration using 2 M KOH electrolyte at room temperature. Experimental results show that the addition of mere 5 mg MWCNTs into fixed NiFe2O4 precursors amount enhances the specific capacitance up to 1291 F g-1 at 1 A g-1, which is the highest reported value for NiFe2O4 nanocomposites so far. NiFe2O4/CNT nanocomposite exhibits small relaxation time constant (1.5 ms), good rate capability and capacitance retention of 81% over 500 charge-discharge cycles. This excellent performance can be assigned to high surface area, mesoporous structure of NiFe2O4 and conducting network formed by MWCNTs in the composite. Further, to evaluate the device performance of the composite, an asymmetric pseudocapacitor has been designed using NiFe2O4/CNT nanocomposite as a positive and N-doped graphene as a negative electrode material, respectively. Our designed asymmetric pseudocapacitor gives maximum energy density of 23 W h kg-1 at power density of 872 W kg-1. These promising results assert the potential of synthesized nanocomposite in the development of efficient practical high-capacitive energy storage devices.

  2. Mesoporous MnO_2 Nanosphere/Graphene Sheets as Electrodes for Supercapacitor Synthesized by a Simple and Inexpensive Reflux Reaction

    International Nuclear Information System (INIS)

    Yao, Jun; Pan, Qingjiang; Yao, Shanshan; Duan, Limei; Liu, Jinghai

    2017-01-01

    The new electrode materials with large specific capacitance, cycling stability and high rate capability are important to advance the development of supercapacitors. A nanocomposite of mesoporous MnO_2 nanospheres anchered reduced graphene oxide (MG) was synthesized by a simple and inexpensive reflux reaction. KMnO_4 refluxed with oxalic acid as reducing agent was used to the growth of mesoporous MnO_2 nanospheres on graphene oxide (GO). The MG as an electrode exhibits a specific capacitance of 466.7 F g"−"1 at a current density of 1 A g"−"1, which is 3.33 times larger than that of pure MnO_2 (140 F g"−"1) and 3.19 times of graphene (146 F g"−"1). The rate capability arrives at 10 A g"−"1 with specific capacitance of 454.8 F g"−"1. The capacitance retention is 92% over 2000 cycles at 1 A g"−"1. The electrochemical impedance spectroscopy (EIS) demonstrates roles of mesopores and RGO in facilitating electronic transport and ionic diffusion across the pores and interfaces.

  3. Alendronate functionalized mesoporous hydroxyapatite nanoparticles for drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dongdong, E-mail: lidongchem@sina.cn [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China); Zhu, Yuntao; Liang, Zhiqiang [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China)

    2013-06-01

    Highlights: ► The synthesized mesoporous hydroxyapatite has nanostructure and bioactivity. ► The materials have high surface area and amino group. ► The materials show higher drug loading and slower release rate than pure HAP. - Abstract: Mesoporous nanosized hydroxyapatite (HAP) functionalized by alendronate (ALN) was synthesized using cationic surfactant CTAB as template. The structural, morphological and textural properties were fully characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and N{sub 2} adsorption/desorption. Then the obtained materials were performed as drug delivery carriers using ibuprofen (IBU) as a model drug to investigate their drug storage/release properties in simulated body fluid (SBF). The materials showed relatively slower release rate compared with HAP due to the ionic interaction between -NH{sub 3}{sup +} on the matrix and -COO{sup −}belongs to IBU. The system provides a new concept for improving the drug loading or slowing down the release rate.

  4. Alendronate functionalized mesoporous hydroxyapatite nanoparticles for drug delivery

    International Nuclear Information System (INIS)

    Li, Dongdong; Zhu, Yuntao; Liang, Zhiqiang

    2013-01-01

    Highlights: ► The synthesized mesoporous hydroxyapatite has nanostructure and bioactivity. ► The materials have high surface area and amino group. ► The materials show higher drug loading and slower release rate than pure HAP. - Abstract: Mesoporous nanosized hydroxyapatite (HAP) functionalized by alendronate (ALN) was synthesized using cationic surfactant CTAB as template. The structural, morphological and textural properties were fully characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and N 2 adsorption/desorption. Then the obtained materials were performed as drug delivery carriers using ibuprofen (IBU) as a model drug to investigate their drug storage/release properties in simulated body fluid (SBF). The materials showed relatively slower release rate compared with HAP due to the ionic interaction between -NH 3 + on the matrix and -COO − belongs to IBU. The system provides a new concept for improving the drug loading or slowing down the release rate

  5. Stochastic analysis of capillary condensation in disordered mesopores.

    Science.gov (United States)

    Gommes, Cedric J; Roberts, Anthony P

    2018-05-08

    Most mesoporous materials of practical interest are inherently disordered, which has a significant impact on the condensation and evaporation of vapours in their pores. Traditionally, the effect of disorder is theoretically analyzed in a perturbative approach whereby slight elements of disorder (constriction, corrugation) are added to geometrically ideal pores. We propose an alternative approach, which consists of using a stochastic geometrical model to describe both the porous material and the condensate within the pores. This is done through a multiphase generalisation of the standard Gaussian random field model of disordered materials. The model parameters characterising the condensate provide a low-dimensional approximation of its configuration space, and we use a Derjaguin-Broekhoff-de Boer approximation to calculate the free-energy landscape. Our analysis notably questions the existence of vapour-like metastable states in realistically disordered mesoporous materials. Beyond capillary condensation, our general methodology is applicable to a broad array of confined phenomena.

  6. Ultrathin mesoporous Co{sub 3}O{sub 4} nanosheets-constructed hierarchical clusters as high rate capability and long life anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Shengming [Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education, School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, Heilongjiang, Harbin 150080 (China); Xia, Tian, E-mail: xiatian@hlju.edu.cn [Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education, School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, Heilongjiang, Harbin 150080 (China); Wang, Jingping [Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Heilongjiang, Harbin 150001 (China); Lu, Feifei [Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education, School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, Heilongjiang, Harbin 150080 (China); Xu, Chunbo [Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Heilongjiang, Harbin 150001 (China); Zhang, Xianfa; Huo, Lihua [Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education, School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, Heilongjiang, Harbin 150080 (China); Zhao, Hui, E-mail: zhaohui98@yahoo.com [Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education, School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, Heilongjiang, Harbin 150080 (China)

    2017-06-01

    Graphical abstract: Ultrathin mesoporous Co{sub 3}O{sub 4} nanosheets-constructed hierarchical clusters (UMCN-HCs) have been successfully synthesized via a facile hydrothermal method followed by a subsequent thermolysis treatment. When tested as anode materials for LIBs, UMCN-HCs achieve high reversible capacity, good long cycling life, and rate capability. - Highlights: • UMCN-HCs show high capacity, excellent stability, and good rate capability. • UMCN-HCs retain a capacity of 1067 mAh g{sup −1} after 100 cycles at 100 mA g{sup −1}. • UMCN-HCs deliver a capacity of 507 mAh g{sup −1} after 500 cycles at 2 A g{sup −1}. - Abstract: Herein, Ultrathin mesoporous Co{sub 3}O{sub 4} nanosheets-constructed hierarchical clusters (UMCN-HCs) have been successfully synthesized via a facile hydrothermal method followed by a subsequent thermolysis treatment at 600 °C in air. The products consist of cluster-like Co{sub 3}O{sub 4} microarchitectures, which are assembled by numerous ultrathin mesoporous Co{sub 3}O{sub 4} nanosheets. When tested as anode materials for lithium-ion batteries, UMCN-HCs deliver a high reversible capacity of 1067 mAh g{sup −1} at a current density of 100 mA g{sup −1} after 100 cycles. Even at 2 A g{sup −1}, a stable capacity as high as 507 mAh g{sup −1} can be achieved after 500 cycles. The high reversible capacity, excellent cycling stability, and good rate capability of UMCN-HCs may be attributed to their mesoporous sheet-like nanostructure. The sheet-layered structure of UMCN-HCs may buffer the volume change during the lithiation-delithiation process, and the mesoporous characteristic make lithium-ion transfer more easily at the interface between the active electrode and the electrolyte.

  7. Systematically controlled pore system of ordered mesoporous carbons using phosphoric acid as the in situ generated catalysts for carbonization and activation

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xing; Lee, Chang Hyun; Kim, Jin Hoe; You, Dae Jong; Shon, Jeong Kuk; Kim, Ji Man [Dept. of Chemistry, Sungkyunkwan University, Suwon (Korea, Republic of); Pak, Chan Ho [Fuel Cell Group, Corporate R and D Center, Samsung SDI Co. Ltd., Yongin (Korea, Republic of)

    2015-08-15

    We report on a facile synthesis of the ordered mesoporous carbon (OMC) materials with systematically controlled microporosity and mesoporosity simultaneously through the nano-replication route using phosphoric acid as the acid catalyst and activation agent. The use of phosphoric acid affects the pore structures of OMC materials, such as the formation of numerous micropores by activation of the carbon framework and the enlargement of mesopores by spontaneous phase separation during the carbonization. The mesopore sizes, surface areas, total pore volumes, and micropore volumes of the OMC materials are highly dependent on the phosphoric acid content and can be systematically controlled in the range 3.7–7.5 nm, 1027–2782 m{sup 2} g{sup -1}, 1.12–3.53 cm{sup 3} g{sup -1} and 0.34–0.95 cm{sup 3} g{sup -1}, respectively. OMC materials with systematically controlled pore structures were successfully synthesized using phosphoric acid as the carbonization catalyst and mesoporous silica materials with cubic Ia3d and 2-D hexagonal mesostructures as the templates. The phosphoric acid in the synthesis of ordered mesoporous carbon materials acts as the chemical activating agent for micropore generation of the carbon framework and pore-expanding agent for controlling of mesopore size, in addition to functioning as the acid catalyst. The present synthesis pathway is very useful for preparing OMC materials with tunable mesopore sizes and well-developed microporosities at the same time.

  8. Mesoporous silica nanoparticles as vectors for gene therapy

    Energy Technology Data Exchange (ETDEWEB)

    Crapina, Laura Cipriano; Bizeto, Marcos, E-mail: lauracrapina@hotmail.com [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil)

    2016-07-01

    Full text: Mesoporous silica nanoparticles present unique physical-chemical properties, such as high surface area, tunable pore size, easy surface chemical modification, good biocompatibility and low toxicology. Those properties make this class of inorganic materials promising for several potential applications in the biomedical field. This work seeks to develop mesoporous silica nanoparticles with characteristics suitable to the transport of nucleic acids, such as plasmid DNA and microRNA, with the aim of substituting viral vectors in gene therapy. A successful nanocarrier must have positive charge at physiological conditions and pore diameter larger than 30 Å. The mesoporous silica was synthesized according to the method described by Bein and collaborators [1]. Based on a cocondensation synthetic route, positively charged nanoparticles were obtained through the insertion of N-3-(trimethoxysilyl)propyldiethylenetriamine in the silica walls. Pore expansion was achieved through the incorporation of 1,2,4- trimethylbenzene into the hexadecyltrimethylammonium micellar aggregates, which are a structure-directing agent for the mesopores. The resulting nanoparticles were characterized by DLS, ζ potential, XRD, FTIR, SEM, TEM, TGA and elemental analysis. In addition, the capability of nucleic acid adsorption was tested and confirmed by gel electrophoresis. Discovery of a non-viral therapeutic agent would aid the viability of gene therapy, which is a treatment for chronic ischemia, metabolic and genetic disorders. Reference: [1] K. Moeller, J. Kobler, T. Bein, Journal of Materials Chemistry, 17, 624-631, (2007). (author)

  9. Probing properties, stability, and performances of hierarchical meso-porous materials with nano-scale interfaces

    International Nuclear Information System (INIS)

    Baldinozzi, Gianguido; Gosset, Dominique; Simeone, David; Muller, Guillaume; Laberty-Robert, Christel; Sanchez, Clement

    2012-01-01

    Nano-crystals growth mechanism embedded into meso-porous thin films has been determined directly from grazing incidence X-ray diffraction data. We have shown, for the first time, that surface capillary forces control the growth mechanism of nano-crystals into these nano-architectures. Moreover, these data allow an estimation of the surface tension of the nano-crystals organized into a 3-D nano-architecture. The analysis of the variations in the strain field of these nano-crystals gives information on the evolution of the microstructure of these meso-porous films, that is, the contacts among nano-crystals. This work represents the first application of grazing incidence X-ray for understanding stability and performances of meso-porous thin films. This approach can be used to understand the structural stability of these nano-architectures at high temperature. (authors)

  10. Mesoporous Nb and Ta Oxides: Synthesis, Characterization and Applications in Heterogeneous Acid Catalysis

    Science.gov (United States)

    Rao, Yuxiang Tony

    In this work, a series of mesoporous Niobium and Tantalum oxides with different pore sizes (C6, C12, C18 , ranging from 12A to 30 A) were synthesized using the ligand-assisted templating approach and investigated for their activities in a wide range of catalytic applications including benzylation, alkylation and isomerization. The as-synthesized mesoporous materials were characterized by nitrogen adsorption, powder X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), and solid-state Nuclear magnetic resonance (NMR) techniques. In order to probe into the structural and coordination geometry of mesoporous Nb oxide and in efforts to make meaningful comparisons of mesoporous niobia prepared by the amine-templating method with the corresponding bulk sol-gel prepared Nb2O5 phase, 17O magic-angle-spinning solid-state NMR studies were conducted. The results showed a very high local order in the mesoporous sample. The oxygen atoms are coordinated only as ONb 2 in contrast with bulk phases in which the oxygen atoms are always present in a mixture of ONb2 and ONb3 coordination environments. To enhance their surface acidities and thus improve their performance as solid acid catalysts in the acid-catalyzed reactions mentioned above, pure mesoporous Nb and Ta oxides were further treated with 1M sulfuric acid or phosphoric acid. Their surface acidities before and after acid treatment were measured by Fourier transform infraRed (FT IR), amine titration and temperature programmed desorption of ammonia (NH3-TPD). Results obtained in this study showed that sulfated mesoporous Nb and Ta oxides materials possess relative high surface areas (up to 612 m 2/g) and amorphous wormhole structure. These mesoporous structures are thus quite stable to acid treatment. It was also found that Bronsted (1540 cm-1) and Lewis (1450 cm-1) acid sites coexist in a roughly 50:50 mixture

  11. Efficient luminescent materials based on the incorporation of a Eu(III)tris-(bipyridine-carboxylate) complex in mesoporous hybrid silicate hosts

    International Nuclear Information System (INIS)

    Botelho, M.B.S.; Queiroz, T.B. de; Eckert, H.; Camargo, A.S.S. de

    2016-01-01

    The study of the photoluminescent characteristics of host–guest systems based on highly emissive trivalent rare earth complexes such as Eu 3+ – tris-bipyridine-carboxylate, immobilized in solid state host matrices, is motivated by their potential applications in optoelectronic devices and bioanalytical systems. Besides offering the possibility of designing a favorable environment to improve the photophysical properties of the guest molecules, encapsulation in porous solids also serves to protect such molecules, prevents leakage (especially critical for bio-applications) and ultimately leads to more robust and versatile materials. Among the most interesting possible host matrices are mesoporous silica and hybrids (organo-silicates) in the form of powders (MCM-41 like) and transparent bulk or film xerogels. In this work we report the synthesis of highly efficient red emitting materials based on the wet impregnation of such host matrices with the new complex Eu[4-(4′-tert-butyl-biphenyl-4-yl)-2,2′-bipyridine-6-carboxyl] 3 (“[ t Bu–COO] 3 Eu”) whose synthesis and photophysical characterization was recently reported. Prior to the incorporation, the host matrices were thoroughly characterized by solid state 29 Si and 1 H NMR, N 2 adsorption/desorption isotherms, and scanning electron microscopy (SEM). Incorporation and retention of the complex molecules are found to be significantly higher in the phenyl-modified hybrid samples than in the regular mesoporous silica, suggesting efficient immobilization of the complex by π–π interactions. Long excited state lifetimes (up to 1.7 ms comparable to 1.8 ms for the complex in solution), and high quantum yields (up to 65%, versus 85% for the complex in solution) were measured for the bulk xerogel materials, suggesting the potential use of thin films for lighting and bioanalytical applications. - Highlights: • New Eu(III) complex in mesoporous hybrid matrices leads to highly emissive material • Matrix

  12. Efficient luminescent materials based on the incorporation of a Eu(III)tris-(bipyridine-carboxylate) complex in mesoporous hybrid silicate hosts

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, M.B.S. [Instituto de Física de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP (Brazil); Universidade de Brasilia, 70910-900 Brasilia, DF (Brazil); Queiroz, T.B. de [Instituto de Física de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP (Brazil); Eckert, H. [Instituto de Física de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP (Brazil); Institut für Physikalische Chemie, Westfälische Wilhelms Universität Münster, D-48149 Münster (Germany); Camargo, A.S.S. de, E-mail: andreasc@ifsc.usp.br [Instituto de Física de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP (Brazil)

    2016-02-15

    The study of the photoluminescent characteristics of host–guest systems based on highly emissive trivalent rare earth complexes such as Eu{sup 3+} – tris-bipyridine-carboxylate, immobilized in solid state host matrices, is motivated by their potential applications in optoelectronic devices and bioanalytical systems. Besides offering the possibility of designing a favorable environment to improve the photophysical properties of the guest molecules, encapsulation in porous solids also serves to protect such molecules, prevents leakage (especially critical for bio-applications) and ultimately leads to more robust and versatile materials. Among the most interesting possible host matrices are mesoporous silica and hybrids (organo-silicates) in the form of powders (MCM-41 like) and transparent bulk or film xerogels. In this work we report the synthesis of highly efficient red emitting materials based on the wet impregnation of such host matrices with the new complex Eu[4-(4′-tert-butyl-biphenyl-4-yl)-2,2′-bipyridine-6-carboxyl]{sub 3} (“[{sup t}Bu–COO]{sub 3}Eu”) whose synthesis and photophysical characterization was recently reported. Prior to the incorporation, the host matrices were thoroughly characterized by solid state {sup 29}Si and {sup 1}H NMR, N{sub 2} adsorption/desorption isotherms, and scanning electron microscopy (SEM). Incorporation and retention of the complex molecules are found to be significantly higher in the phenyl-modified hybrid samples than in the regular mesoporous silica, suggesting efficient immobilization of the complex by π–π interactions. Long excited state lifetimes (up to 1.7 ms comparable to 1.8 ms for the complex in solution), and high quantum yields (up to 65%, versus 85% for the complex in solution) were measured for the bulk xerogel materials, suggesting the potential use of thin films for lighting and bioanalytical applications. - Highlights: • New Eu(III) complex in mesoporous hybrid matrices leads to highly

  13. Ordered molecular arrays as templates: A new approach to synthesis of mesoporous materials

    Science.gov (United States)

    Behrens, P.; Stucky, G.

    There has been a growing interest in the extension of the microporous molecular sieve synthesis and applications to mesoscopic dimensions. Typical areas for the application of mesoscopic zeolite-type structures are in separation (e.g., protein separation and selective adsorption of large organic molecules from waste waters) and catalysis (e.g., processing of tar sand and of the high distillates of crude oils to valuable low-boiling products). Another is in the supramolecular assembly of molecular array and polymers for electronic and optical applications. In a new concept in the synthesis of porous material the templating agent is no longer a single, solvated, organic molecule or metal ion, but rather a self-assembled molecular array. This template leads to mesoporous materials with adjustable pore sizes between 16 and greater than 100 Angstrom, covering well the mesophorous range of greatest interest. The periodic arrangement of pores is very regular, and the pore size distribution measured by absorption is nearly as sharp as that of conventional zeolites.

  14. Electrochemical Hydrogen Storage in a Highly Ordered Mesoporous Carbon

    Directory of Open Access Journals (Sweden)

    Dan eLiu

    2014-10-01

    Full Text Available A highly order mesoporous carbon has been synthesized through a strongly acidic, aqueous cooperative assembly route. The structure and morphology of the carbon material were investigated using TEM, SEM and nitrogen adsorption-desorption isotherms. The carbon was proven to be meso-structural and consisted of graphitic micro-domain with larger interlayer space. AC impedance and electrochemical measurements reveal that the synthesized highly ordered mesoporous carbon exhibits a promoted electrochemical hydrogen insertion process and improved capacitance and hydrogen storage stability. The meso-structure and enlarged interlayer distance within the highly ordered mesoporous carbon are suggested as possible causes for the enhancement in hydrogen storage. Both hydrogen capacity in the carbon and mass diffusion within the matrix were improved.

  15. Adsorption of vitamin E on mesoporous titania nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Shih, C.J., E-mail: cjshih@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Lin, C.T.; Wu, S.M. [School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China)

    2010-07-15

    Tri-block nonionic surfactant and titanium chloride were used as starting materials for the synthesis of mesoporous titania nanocrystallite powders. The main objective of the present study was to examine the synthesis of mesoporous titania nanocrystals and the adsorption of vitamin E on those nanocrystals using X-ray diffraction (XRD), transmission electron microscopy, and nitrogen adsorption and desorption isotherms. When the calcination temperature was increased to 300 {sup o}C, the reflection peaks in the XRD pattern indicated the presence of an anatase phase. The crystallinity of the nanocrystallites increased from 80% to 98.6% with increasing calcination temperature from 465 {sup o}C to 500 {sup o}C. The N{sub 2} adsorption data and XRD data taken after vitamin E adsorption revealed that the vitamin E molecules were adsorbed in the mesopores of the titania nanocrystals.

  16. Syntheses and applications of periodic mesoporous organosilica nanoparticles

    KAUST Repository

    Croissant, Jonas G.

    2015-11-06

    Periodic Mesoporous Organosilica (PMO) nanomaterials are envisioned to be one of the most prolific subjects of research in the next decade. Similar to mesoporous silica nanoparticles (MSN), PMO nanoparticles (NPs) prepared from organo-bridged alkoxysilanes have tunable mesopores that could be utilized for many applications such as gas and molecule adsorption, catalysis, drug and gene delivery, electronics, and sensing; but unlike MSN, the diversity in chemical nature of the pore walls of such nanomaterials is theoretically unlimited. Thus, we expect that PMO NPs will attract considerable interest over the next decade. In this review, we will present a comprehensive overview of the synthetic strategies for the preparation of nanoscaled PMO materials, and then describe their applications in catalysis and nanomedicine. The remarkable assets of the PMO structure are also detailed, and insights are provided for the preparation of more complex PMO nanoplatforms.

  17. Functionalized bimodal mesoporous silicas as carriers for controlled aspirin delivery

    International Nuclear Information System (INIS)

    Gao Lin; Sun Jihong; Li Yuzhen

    2011-01-01

    The bimodal mesoporous silica modified with 3-aminopropyltriethoxysilane was performed as the aspirin carrier. The samples' structure, drug loading and release profiles were characterized with X-ray diffraction, scanning electron microscopy, N 2 adsorption and desorption, Fourier transform infrared spectroscopy, TG analysis, elemental analysis and UV-spectrophotometer. For further exploring the effects of the bimodal mesopores on the drug delivery behavior, the unimodal mesoporous material MCM-41 was also modified as the aspirin carrier. Meantime, Korsmeyer-Peppas equation f t =kt n was employed to analyze the dissolution data in details. It is indicated that the bimodal mesopores are beneficial for unrestricted drug molecules diffusing and therefore lead to a higher loading and faster releasing than that of MCM-41. The results show that the aspirin delivery properties are influenced considerably by the mesoporous matrix, whereas the large pore of bimodal mesoporous silica is the key point for the improved controlled-release properties. - Graphical abstract: Loading (A) and release profiles (B) of aspirin in N-BMMs and N-MCM-41 indicated that BMMs have more drug loading capacity and faster release rate than that MCM-41. Highlights: → Bimodal mesoporous silicas (BMMs) and MCM-41 modified with amino group via post-treatment procedure. → Loading and release profiles of aspirin in modified BMMs and MCM-41. → Modified BMMs have more drug loading capacity and faster release rate than that modified MCM-41.

  18. Imprint-coating synthesis of selective functionalized ordered mesoporous sorbents for separation and sensors

    Science.gov (United States)

    Dai, Sheng; Burleigh, Mark C.; Shin, Yongsoon

    2001-01-01

    The present invention relates generally to mesoporous sorbent materials having high capacity, high selectivity, fast kinetics, and molecular recognition capability. The invention also relates to a process for preparing these mesoporous substrates through molecular imprinting techniques which differ from convention techniques in that a template molecule is bound to one end of bifunctional ligands to form a complex prior to binding of the bifunctional ligands to the substrate. The present invention also relates to methods of using the mesoporous sorbent materials, for example, in the separation of toxic metals from process effluents, paints, and other samples; detection of target molecules, such as amino acids, drugs, herbicides, fertilizers, and TNT, in samples; separation and/or detection of substances using chromatography; imaging agents; sensors; coatings; and composites.

  19. Soft templated mesoporous carbons: Tuning the porosity for the adsorption of large organic pollutants

    OpenAIRE

    Libbrecht, Wannes; Verberckmoes, An; Thybaut, Joris; Van Der Voort, Pascal; De Clercq, Jeriffa

    2017-01-01

    Mesoporous carbons have been the subject of various studies, both fundamental and applied. Fundamental studies revealed numerous synthesis routes which can adjust material characteristics as specific surface area, pore volume, pore size or morphology and elemental composition. The indirect synthesis or hard template method was developed first. An extensive collection of template materials exist, which can be impregnated with carbon precursors to provide various hard templated mesoporous carbo...

  20. Introduction to the first International Workshop on the Application of Microporous and Mesoporous Materials as Catalytic Hosts for Fe, Cu an Co

    NARCIS (Netherlands)

    Donk, van S.; Weckhuysen, B.M.; Kapteijn, F.; Kooyman, P.J.; Hensen, E.J.M.

    2005-01-01

    This Special Issue of Catalysis Today includes a selection of research presented at the first International Workshop on the ‘Application of Microporous and Mesoporous Materials as Catalytic Hosts for Fe, Cu and Co’, held in Scheveningen, The Netherlands, 1–4 March 2005. This 3-day event welcomed

  1. Structural control in the synthesis of inorganic porous materials

    Science.gov (United States)

    Holland, Brian Thomas

    Mesoporous (2.0--50.0 nm pore diameter) and macroporous (50.0 nm on up) materials have been the basis of my studies. These materials, for many years, possessed large pore size distributions. Recently, however, it has been possible to synthesize both mesoporous and macroporous materials that possess highly ordered uniform pores throughout the material. Workers at Mobil Corporation in 1992 discovered a hexagonally arrayed mesoporous material, designated MCM-41, which exhibited uniform pores ranging from 2.0--10.0 nm in diameter. In my work MCM-41 was used as a host for the incorporation of meso-tetrakis(5-trimethylammoniumpentyl)porphyrin (TMAP-Cl) and as a model for the synthesis of mesoporous alumino- and galloaluminophosphates which were created using cluster precursors of the type MO4Al 12(OH)24(H2O)12 7+, M = Al or Ga. Macroporous materials with uniform pore sizes have been synthesized by our group with frameworks consisting of a variety of metal oxides, metals, organosilanes, aluminophosphates and bimodal pores. These materials are synthesized from the addition of metal precursors to preordered polystyrene spheres. Removal of the spheres results in the formation of macropores with highly uniform pores extending microns in length. Porous materials with uniform and adjustable pore sizes in the mesoporous and macroporous size regimes offer distinct advantages over non-ordered materials for numerous reasons. First, catalysis reactions that are based on the ability of the porous materials to impose size and shape restrictions on the substrate are of considerable interest in the petroleum and petrochemical industries. As pore diameters increase larger molecules can be incorporated into the pores, i.e., biological molecules, dyes, etc. For the macroporous materials synthesized by our group it has been envisioned that these structures may not only be used for catalysis because of increased efficiencies of flow but for more advanced applications, e.g., photonic crystals

  2. Mesoporous TiO2 : an alternative material for PEM fuel cells catalyst support

    Energy Technology Data Exchange (ETDEWEB)

    Do, T.B. [Michigan Univ., Ann Arbor, MI (United States). Dept. of Materials Science; Ruthkosky, M.; Cai, M. [General Motors, Warren, MI (United States). Research and Development Center

    2008-07-01

    This paper discussed the feasibility of using an alternative catalyst support material to replace carbon in proton exchange membrane (PEM) fuel cells. The alternative catalyst support material requires a high surface area with a large porosity but must have comparable conductivity with carbon. A mesoporous titanium oxide (TiO2) material produced by coprecipitation was introduced. The conductivity of the material is about one order of that of carbon. The 8 mole per cent Nb-doped TiO2 was formed and deposited on the surface of a nano polystyrene (PS) template via the hydrolysis of a co-solution of Ti(OC4H9)4 and Nb(OC2H5)5. The removal of PS by heat treatment produced porous structure of TiO2 with the appearance of 3 different pore types, notably open pore, ink-pot pores and closed pores. TiO2 formed from the rutile phase, allowing a lower activation temperature at 850 degrees C in a hydrogen atmosphere. The pore structures were retained after this heat treatment. The BET surface area was 116 m{sup 2}/g, porosity was 22 per cent and the average pore size was 159 angstrom. The conductivity improved considerably from almost non-conductive to one order of that of carbon.

  3. Recent progress in electrocatalysts with mesoporous structures for application in polymer electrolyte membrane fuel cells

    OpenAIRE

    Xing, Wei; Wu, Zucheng; Tao, Shanwen

    2016-01-01

    Recently mesoporous materials have drawn great attention in fuel cell related applications, such as preparation of polymer electrolyte membranes and catalysts, hydrogen storage and purification. In this mini-review, we focus on recent developments in mesoporous electrocatalysts for polymer electrolyte membrane fuel cells, including metallic and metal-free catalysts for use as either anode or cathode catalysts. Mesoporous Pt-based metals have been synthesized as anode catalysts with improved a...

  4. Rational design of mesoporous metals and related nanomaterials by a soft-template approach.

    Science.gov (United States)

    Yamauchi, Yusuke; Kuroda, Kazuyuki

    2008-04-07

    We review recent developments in the preparation of mesoporous metals and related metal-based nanomaterials. Among the many types of mesoporous materials, mesoporous metals hold promise for a wide range of potential applications, such as in electronic devices, magnetic recording media, and metal catalysts, owing to their metallic frameworks. Mesoporous metals with highly ordered networks and narrow pore-size distributions have traditionally been produced by using mesoporous silica as a hard template. This method involves the formation of an original template followed by deposition of metals within the mesopores and subsequent removal of the template. Another synthetic method is the direct-template approach from lyotropic liquid crystals (LLCs) made of nonionic surfactants at high concentrations. Direct-template synthesis creates a novel avenue for the production of mesoporous metals as well as related metal-based nanomaterials. Many mesoporous metals have been prepared by the chemical or electrochemical reduction of metal salts dissolved in aqueous LLC domains. As a soft template, LLCs are more versatile and therefore more advantageous than hard templates. It is possible to produce various nanostructures (e.g., lamellar, 2D hexagonal (p6mm), and 3D cubic (Ia\\3d)), nanoparticles, and nanotubes simply by controlling the composition of the reaction bath.

  5. Exploring Mass Transfer in Mesoporous Zeolites by NMR Diffusometry

    Directory of Open Access Journals (Sweden)

    Ryong Ryoo

    2012-04-01

    Full Text Available With the advent of mesoporous zeolites, the exploration of their transport properties has become a task of primary importance for the auspicious application of such materials in separation technology and heterogeneous catalysis. After reviewing the potential of the pulsed field gradient method of NMR (PFG NMR for this purpose in general, in a case study using a specially prepared mesoporous zeolite NaCaA as a host system and propane as a guest molecule, examples of the attainable information are provided.

  6. Green Template-Free Synthesis of Hierarchical Shuttle-Shaped Mesoporous ZnFe2 O4 Microrods with Enhanced Lithium Storage for Advanced Li-Ion Batteries.

    Science.gov (United States)

    Hou, Linrui; Hua, Hui; Lian, Lin; Cao, Hui; Zhu, Siqi; Yuan, Changzhou

    2015-09-07

    Invited for the cover of this issue is Changzhou Yuan and co-workers at the Anhui University of Technology. The image depicts hierarchical shuttle-shaped mesoporous ZnFe2 O4 micro-rods, as a low-cost yet high-performance anode, for advanced next-generation Li-ion batteries. Read the full text of the article at 10.1002/chem.201501876. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. High electrochemical performance of RuO_2–Fe_2O_3 nanoparticles embedded ordered mesoporous carbon as a supercapacitor electrode material

    International Nuclear Information System (INIS)

    Xiang, Dong; Yin, Longwei; Wang, Chenxiang; Zhang, Luyuan

    2016-01-01

    The electrode materials RuO_2 or RuO_2–Fe_2O_3 nanoparticle embedded OMC (ordered mesoporous carbon) are prepared by the method of impregnation and heating in situ. The mesoporous structure optimized the electron and proton conducting pathways, leading to the enhanced capacitive performances of the composite materials. The average nanoparticle size of RuO_2 and RuO_2–Fe_2O_3 is 2.54 and 1.96 nm, respectively. The fine RuO_2–Fe_2O_3 nanoparticles are dispersed evenly in the pore channel wall of the two-dimensional mesoporous carbon without blocking the mesoporous channel, and they have a higher specific surface area, a larger pore volume, a proper pore size and a small charge transfer impedance value. The special electrochemical capacitance of RuO_2–Fe_2O_3/OMC tested in acid electrolyte (H_2SO_4) is measured to be as high as 1668 F g"−"1, which is higher than that of RuO_2/OMC. Meanwhile, the supercapacitor properties of the RuO_2–Fe_2O_3/OMC composites show a good cycling performance of 93% capacitance retention (3000 cycles), a better reversibility, a higher energy density (134 Wh kg"−"1) and power density (4000 W kg"−"1). The composite electrode of RuO_2–Fe_2O_3/OMC, which combines a double layer capacitance with pseudo-capacitance, is proved to be suitable for ideal high performance electrode material of a hybrid supercapacitor application. - Highlights: • The nanocomposites of RuO_2–Fe_2O_3/OMC are prepared by impregnation and heating in situ. • The fine RuO_2–Fe_2O_3 nanoparticles distribute in the pore channel wall of OMC. • We discuss a reversible redox reaction mechanism of RuO_2–Fe_2O_3/OMC in acid solutions. • RuO_2–Fe_2O_3 nanoparticles embedded OMC shows a higher supercapacitive performance.

  8. Joining of advanced materials

    CERN Document Server

    Messler, Robert W

    1993-01-01

    Provides an unusually complete and readable compilation of the primary and secondary options for joining conventional materials in non-conventional ways. Provides unique coverage of adhesive bonding using both organic and inorganic adhesives, cements and mortars. Focuses on materials issues without ignoring issues related to joint design, production processing, quality assurance, process economics, and joining performance in service.Joining of advanced materials is a unique treatment of joining of both conventional and advanced metals andalloys, intermetallics, ceramics, glasses, polymers, a

  9. Cubic mesoporous Ag@CN: a high performance humidity sensor.

    Science.gov (United States)

    Tomer, Vijay K; Thangaraj, Nishanthi; Gahlot, Sweta; Kailasam, Kamalakannan

    2016-12-01

    The fabrication of highly responsive, rapid response/recovery and durable relative humidity (%RH) sensors that can precisely monitor humidity levels still remains a considerable challenge for realizing the next generation humidity sensing applications. Herein, we report a remarkably sensitive and rapid %RH sensor having a reversible response using a nanocasting route for synthesizing mesoporous g-CN (commonly known as g-C 3 N 4 ). The 3D replicated cubic mesostructure provides a high surface area thereby increasing the adsorption, transmission of charge carriers and desorption of water molecules across the sensor surfaces. Owing to its unique structure, the mesoporous g-CN functionalized with well dispersed catalytic Ag nanoparticles exhibits excellent sensitivity in the 11-98% RH range while retaining high stability, negligible hysteresis and superior real time %RH detection performances. Compared to conventional resistive sensors based on metal oxides, a rapid response time (3 s) and recovery time (1.4 s) were observed in the 11-98% RH range. Such impressive features originate from the planar morphology of g-CN as well as unique physical affinity and favourable electronic band positions of this material that facilitate water adsorption and charge transportation. Mesoporous g-CN with Ag nanoparticles is demonstrated to provide an effective strategy in designing high performance %RH sensors and show great promise for utilization of mesoporous 2D layered materials in the Internet of Things and next generation humidity sensing applications.

  10. Mesoporous templated silicas: stability, pore size engineering and catalytic activation

    International Nuclear Information System (INIS)

    Vansant, Etienne

    2003-01-01

    The Laboratory of Adsorption and Catalysis has focused its research activities on the synthesis and activation of new porous materials. In the past few years, we have succeeded in developing easy and reproducible pathways to synthesize a huge variety of mesoporous crystalline materials. Points of interest in the synthesis of Mesoporous Templated Silicas are (i) stabilization of the structure, to withstand hydrothermal, thermal and mechanical pressure, (ii) pore size engineering to systematically control the pore size, pore volume and the ratio micro/mesopores and (iii) ease and reproducibility of the synthesis procedure, applying green principles, such as template recuperation. By carefully adapting the synthesis conditions and composition of the synthesis gel, using surfactants (long chain quaternary ammonium ions) and co-templates (long chain amines, alcohols or alkanes), the pore size of the obtained materials can be controlled from 1.5 to 7.0 nm, retaining the very narrow pore size distribution. Alternatively, materials with combined micro- and mesoporosity can be synthesized, using neutral surfactants (triblock copolymers). Hereby, the optimization of the SBA-15 and SBA-16 synthesis is being done in order to create mesoporous materials with microporous walls. The second research line is the controlled activation of MTS materials, by grafting or incorporation of catalytic active centers. We have developed for this purpose the Molecular Designed Dispersion method, which uses metal diketonate complexes as precursors. It is shown that in all cases the dispersion of the metal oxides on the surface is much better compared to the conventional grafting techniques. We have studied and published activation with V, Ti, Mo, Fe, Al and Cr species on different MTS materials. The structure and location of the active metal ion is the subject of an extensive spectroscopic investigation, using FT-IR, FT-Raman, UV-Vis DR coupled with selective chemisorption experiments and

  11. Contribution of mesopores in MgO-templated mesoporous carbons to capacitance in non-aqueous electrolytes

    Science.gov (United States)

    Kado, Yuya; Soneda, Yasushi; Yoshizawa, Noriko

    2015-02-01

    MgO-templated mesoporous carbons were fabricated by annealing trimagnesium dicitrate nonahydrate at various temperatures from 700 to 1000 °C with subsequent acid leaching of MgO. The obtained carbons contained a large amount of mesopores. Performances of electric double-layer capacitors using these carbons were examined for propylene carbonate electrolyte containing 1 M tetraethylammonium tetrafluoroborate. The mesoporous carbons synthesized at higher temperatures showed better rate capabilities. AC impedance measurements indicated that high-temperature annealing of the carbon precursors and the presence of mesopores were important for high rate performance. In addition, the contribution of mesopores to capacitance was more significant at higher current densities of 30 A g-1.

  12. Molecular simulation of adsorption and transport in hierarchical porous materials.

    Science.gov (United States)

    Coasne, Benoit; Galarneau, Anne; Gerardin, Corine; Fajula, François; Villemot, François

    2013-06-25

    Adsorption and transport in hierarchical porous solids with micro- (~1 nm) and mesoporosities (>2 nm) are investigated by molecular simulation. Two models of hierarchical solids are considered: microporous materials in which mesopores are carved out (model A) and mesoporous materials in which microporous nanoparticles are inserted (model B). Adsorption isotherms for model A can be described as a linear combination of the adsorption isotherms for pure mesoporous and microporous solids. In contrast, adsorption in model B departs from adsorption in pure microporous and mesoporous solids; the inserted microporous particles act as defects, which help nucleate the liquid phase within the mesopore and shift capillary condensation toward lower pressures. As far as transport under a pressure gradient is concerned, the flux in hierarchical materials consisting of microporous solids in which mesopores are carved out obeys the Navier-Stokes equation so that Darcy's law is verified within the mesopore. Moreover, the flow in such materials is larger than in a single mesopore, due to the transfer between micropores and mesopores. This nonzero velocity at the mesopore surface implies that transport in such hierarchical materials involves slippage at the mesopore surface, although the adsorbate has a strong affinity for the surface. In contrast to model A, flux in model B is smaller than in a single mesopore, as the nanoparticles act as constrictions that hinder transport. By a subtle effect arising from fast transport in the mesopores, the presence of mesopores increases the number of molecules in the microporosity in hierarchical materials and, hence, decreases the flow in the micropores (due to mass conservation). As a result, we do not observe faster diffusion in the micropores of hierarchical materials upon flow but slower diffusion, which increases the contact time between the adsorbate and the surface of the microporosity.

  13. Plutonium sorption to nanocast mesoporous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Parsons-Moss, Tashi; Wang, Deborah; Jones, Stephen; Olive, Daniel; Nitsche, Heino [California Univ., Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Nuclear Science Div.; Tueysuez, Harun [Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Nuclear Science Div.; Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany)

    2014-09-01

    Nanocast ordered mesoporous carbons are attractive as sorbents because of their extremely high surface areas and large pore volumes. This paper compares Pu uptake, added as Pu(VI), to both untreated and chemically oxidized CMK-(carbon molecular sieves from KAIST) type mesoporous carbon with that to a commercial amorphous activated carbon. The CMK was synthesized via nanocasting by using cubic ordered mesoporous silica KIT-6 as a hard template, and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and nitrogen adsorption. A portion of the CMK was oxidized by treatment with nitric acid, and will be called OX CMK. The three carbon powders have similar particle morphology, and high BET surface areas. The activated carbon is disordered, while the CMK materials show large domains of ordered cubic mesostructure. The CMK material seems to have more oxygen-containing functional groups than the activated carbon, and the oxidation of the CMK increased the density of these groups, especially - COOH, thus lowering the point of zero charge (PZC) of the material. Batch studies of all 3 materials with plutonium solutions, in a 0.1 M NaClO{sub 4} matrix were performed to investigate pH dependence, sorption kinetics, Pu uptake capacities, competition with ethylenediaminetetraacetic acid (EDTA) in solution, and Pu desorption. Both CMK materials demonstrated high Pu sorption from solutions of pH 3 or greater, and the oxidized CMK also showed high sorption from pH 2 solutions. The activated carbon bound less Pu, and at a much slower rate than CMK. All other batch experiments were carried out in pH 4 solutions. The Pu uptake from low-concentration solutions was faster for the oxidized CMK than for untreated CMK, but in more concentrated samples (∝ 250 μM Pu), the Pu uptake kinetics and apparent capacity were the same for oxidized and untreated CMK. The 23-h Pu uptake capacity of the CMK

  14. Large third-order optical nonlinearity in vertically oriented mesoporous silica thin films embedded with Ag nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Min; Liu, Qiming, E-mail: qmliu@whu.edu.cn [Wuhan University, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology (China)

    2016-12-15

    Taking advantage of the channel confinement of mesoporous films to prevent the agglomeration of Ag nanoparticles to achieve large third-order optical nonlinearity in amorphous materials, Ag-loaded composite mesoporous silica film was prepared by the electrochemical deposition method on ITO substrate. Ag ions were firstly transported into the channels of mesoporous film by the diffusion and binding force of channels, which were reduced to nanoparticles by applying suitable voltage. The existence and uniform distribution of Ag nanoparticles ranging in 1–10 nm in the mesoporous silica thin films were exhibited by UV spectrophotometer, X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) measurements. The third-order optical nonlinearity induced by Ag nanoparticles was studied by the Z-scan technique. Due to the local field surface plasmon resonance, the maximum third-order nonlinear optical susceptibility of Ag-loaded composite mesoporous silica film is 1.53×10{sup −10} esu, which is 1000 times larger than that of the Ag-contained chalcogenide glasses which showed large nonlinearity in amorphous materials.

  15. Preparation of hierarchical micro-mesoporous aluminosilicate composites by simple Y zeolite/MCM-48 silica assembly

    Energy Technology Data Exchange (ETDEWEB)

    Enterría, Marina, E-mail: marina@incar.csic.es; Suárez-García, Fabián; Martínez-Alonso, Amelia; Tascón, Juan M.D.

    2014-01-15

    Highlights: • Hierarchical micro-mesoporous aluminosilicates were synthesized. • Y zeolite core/MCM-48 silica shell structures were obtained. • Y zeolite favors the formation of the mesostructure. • Porosity and structure can be varied by modifying the preparation variables. • Duration of the hydrothermal step has a great effect on the materials properties. -- Abstract: A simple procedure to obtain hierarchical micro-mesoporous aluminosilicate composites was developed by growing MCM-48 silica over commercial Y zeolite. The obtained hierarchical composites have a microporous core and a mesoporous shell. The process consists in assembling dispersed Y zeolite with a mesoporous silica phase that is formed “in situ” by “soft-templating” with cetryltrimethylammonium bromide (CTAB) as surfactant. The Y zeolite/MCM-48 silica ratio and aging time were varied to study their effects on the final porosity and structure of the hierarchical composites. The pore textural and structural characteristics of the composites did not match those of the corresponding Y zeolite/MCM-48 silica physical mixtures. This implies that the synthesized composites integrate micropores and mesopores in the same bulk. The obtained composites exhibited micropore and mesopore volumes ranging between 0.15–0.31 and 0.30–0.51 cm{sup 3}/g, respectively. X-ray diffraction and N{sub 2} adsorption results revealed that the presence of zeolite in the reaction medium favors the formation of mesopores in the obtained materials, especially for short hydrothermal treatments. TEM results showed that the obtained adsorbents are constituted by an integrated micro-mesoporous bimodal system in which Y zeolite is surrounded by a thin cover of MCM-48 silica.

  16. Preparation of hierarchical micro-mesoporous aluminosilicate composites by simple Y zeolite/MCM-48 silica assembly

    International Nuclear Information System (INIS)

    Enterría, Marina; Suárez-García, Fabián; Martínez-Alonso, Amelia; Tascón, Juan M.D.

    2014-01-01

    Highlights: • Hierarchical micro-mesoporous aluminosilicates were synthesized. • Y zeolite core/MCM-48 silica shell structures were obtained. • Y zeolite favors the formation of the mesostructure. • Porosity and structure can be varied by modifying the preparation variables. • Duration of the hydrothermal step has a great effect on the materials properties. -- Abstract: A simple procedure to obtain hierarchical micro-mesoporous aluminosilicate composites was developed by growing MCM-48 silica over commercial Y zeolite. The obtained hierarchical composites have a microporous core and a mesoporous shell. The process consists in assembling dispersed Y zeolite with a mesoporous silica phase that is formed “in situ” by “soft-templating” with cetryltrimethylammonium bromide (CTAB) as surfactant. The Y zeolite/MCM-48 silica ratio and aging time were varied to study their effects on the final porosity and structure of the hierarchical composites. The pore textural and structural characteristics of the composites did not match those of the corresponding Y zeolite/MCM-48 silica physical mixtures. This implies that the synthesized composites integrate micropores and mesopores in the same bulk. The obtained composites exhibited micropore and mesopore volumes ranging between 0.15–0.31 and 0.30–0.51 cm 3 /g, respectively. X-ray diffraction and N 2 adsorption results revealed that the presence of zeolite in the reaction medium favors the formation of mesopores in the obtained materials, especially for short hydrothermal treatments. TEM results showed that the obtained adsorbents are constituted by an integrated micro-mesoporous bimodal system in which Y zeolite is surrounded by a thin cover of MCM-48 silica

  17. Advanced energy materials

    CERN Document Server

    Tiwari, Ashutosh

    2014-01-01

    An essential resource for scientists designing new energy materials for the vast landscape of solar energy conversion as well as materials processing and characterization Based on the new and fundamental research on novel energy materials with tailor-made photonic properties, the role of materials engineering has been to provide much needed support in the development of photovoltaic devices. Advanced Energy Materials offers a unique, state-of-the-art look at the new world of novel energy materials science, shedding light on the subject's vast multi-disciplinary approach The book focuses p

  18. Advancing materials research

    International Nuclear Information System (INIS)

    Langford, H.D.; Psaras, P.A.

    1987-01-01

    The topics discussed in this volume include historical perspectives in the fields of materials research and development, the status of selected scientific and technical areas, and current topics in materials research. Papers are presentd on progress and prospects in metallurgical research, microstructure and mechanical properties of metals, condensed-matter physics and materials research, quasi-periodic crystals, and new and artifically structured electronic and magnetic materials. Consideration is also given to materials research in catalysis, advanced ceramics, organic polymers, new ways of looking at surfaces, and materials synthesis and processing

  19. Controlled Synthesis of Pt Nanowires with Ordered Large Mesopores for Methanol Oxidation Reaction

    Science.gov (United States)

    Zhang, Chengwei; Xu, Lianbin; Yan, Yushan; Chen, Jianfeng

    2016-08-01

    Catalysts for methanol oxidation reaction (MOR) are at the heart of key green-energy fuel cell technology. Nanostructured Pt materials are the most popular and effective catalysts for MOR. Controlling the morphology and structure of Pt nanomaterials can provide opportunities to greatly increase their activity and stability. Ordered nanoporous Pt nanowires with controlled large mesopores (15, 30 and 45 nm) are facilely fabricated by chemical reduction deposition from dual templates using porous anodic aluminum oxide (AAO) membranes with silica nanospheres self-assembled in the channels. The prepared mesoporous Pt nanowires are highly active and stable electrocatalysts for MOR. The mesoporous Pt nanowires with 15 nm mesopores exhibit a large electrochemically active surface area (ECSA, 40.5 m2 g-1), a high mass activity (398 mA mg-1) and specific activity (0.98 mA cm-2), and a good If/Ib ratio (1.15), better than the other mesoporous Pt nanowires and the commercial Pt black catalyst.

  20. Novel sponge-like molecularly imprinted mesoporous silica material for selective isolation of bisphenol A and its analogues from sediment extracts

    International Nuclear Information System (INIS)

    Yang, Jiajia; Li, Yun; Wang, Jincheng; Sun, Xiaoli; Shah, Syed Mazhar; Cao, Rong; Chen, Jiping

    2015-01-01

    Highlights: • Novel sponge-like molecularly imprinted mesoporous silica was synthesized. • Extraordinarily large specific surface area and highly interconnected 3-D porous network. • High specific adsorption capacity and fast adsorption kinetics for BPA. • Good class-selectivity and clean-up effect for bisphenols in sediment under SPE mode. • Good recoveries and sensitivity for bisphenols using the MISMS–SPE coupled with HPLC–DAD method. - Abstract: Bisphenol A (BPA) imprinted sponge mesoporous silica was synthesized using a combination of semi-covalent molecular imprinting and simple self-assembly process. The molecularly imprinted sponge mesoporous silica (MISMS) material obtained was characterized by FT-IR, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption–desorption measurements. The results show that the MISMS possessed a large specific surface area (850.55 m 2 g −1 ) and a highly interconnected 3-D porous network. As a result, the MISMS demonstrated a superior specific adsorption capacity of 169.22 μmol g −1 and fast adsorption kinetics (reaching equilibrium within 3 min) for BPA. Good class selectivity for BPA and its analogues (bisphenol F, bisphenol B, bisphenol E and bisphenol AF) was also demonstrated by the sorption experiment. The MISMS as solid-phase extraction (SPE) material was then evaluated for isolation and clean-up of these bisphenols (BPs) from sediment samples. An accurate and sensitive analytical method based on the MISMS–SPE coupled with HPLC–DAD has been successfully established for simultaneous determination of five BPs in river sediments with detection limits of 0.43–0.71 ng g −1 dry weight (dw). The recoveries of BPs for lyophilizated sediment samples at two spiking levels (50 and 500 ng g −1 dw for each BP) were in the range of 75.5–105.5% with RSD values below 7.5%

  1. Novel sponge-like molecularly imprinted mesoporous silica material for selective isolation of bisphenol A and its analogues from sediment extracts

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jiajia [Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Yun; Wang, Jincheng [Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Sun, Xiaoli [Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Shah, Syed Mazhar [Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Cao, Rong [Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Chen, Jiping, E-mail: chenjp@dicp.ac.cn [Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China)

    2015-01-01

    Highlights: • Novel sponge-like molecularly imprinted mesoporous silica was synthesized. • Extraordinarily large specific surface area and highly interconnected 3-D porous network. • High specific adsorption capacity and fast adsorption kinetics for BPA. • Good class-selectivity and clean-up effect for bisphenols in sediment under SPE mode. • Good recoveries and sensitivity for bisphenols using the MISMS–SPE coupled with HPLC–DAD method. - Abstract: Bisphenol A (BPA) imprinted sponge mesoporous silica was synthesized using a combination of semi-covalent molecular imprinting and simple self-assembly process. The molecularly imprinted sponge mesoporous silica (MISMS) material obtained was characterized by FT-IR, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption–desorption measurements. The results show that the MISMS possessed a large specific surface area (850.55 m{sup 2} g{sup −1}) and a highly interconnected 3-D porous network. As a result, the MISMS demonstrated a superior specific adsorption capacity of 169.22 μmol g{sup −1} and fast adsorption kinetics (reaching equilibrium within 3 min) for BPA. Good class selectivity for BPA and its analogues (bisphenol F, bisphenol B, bisphenol E and bisphenol AF) was also demonstrated by the sorption experiment. The MISMS as solid-phase extraction (SPE) material was then evaluated for isolation and clean-up of these bisphenols (BPs) from sediment samples. An accurate and sensitive analytical method based on the MISMS–SPE coupled with HPLC–DAD has been successfully established for simultaneous determination of five BPs in river sediments with detection limits of 0.43–0.71 ng g{sup −1} dry weight (dw). The recoveries of BPs for lyophilizated sediment samples at two spiking levels (50 and 500 ng g{sup −1} dw for each BP) were in the range of 75.5–105.5% with RSD values below 7.5%.

  2. Preparation of hollow mesoporous carbon spheres and their performances for electrochemical applications

    Science.gov (United States)

    Ariyanto, T.; Zhang, G. R.; Kern, A.; Etzold, B. J. M.

    2018-03-01

    Hollow carbon materials have received intensive attention for energy storage/conversion applications due to their attractive properties of high conductivity, high surface area, large void and short diffusion pathway. In this work, a novel hollow mesoporous material based on carbide-derived carbon (CDC) is presented. CDC is a new class of carbon material synthesized by the selective extraction of metals from metal carbides. With a two-stage extraction procedure of carbides with chlorine, firstly hybrid core-shell carbon particles were synthesized, i.e. mesoporous/graphitic carbon shells covering microporous/amorphous carbon cores. The amorphous cores were then selectively removed from particles by a careful oxidative treatment utilizing its low thermal characters while the more stable carbon shells remained, thus resulting hollow particles. The characterization methods (e.g. N2 sorption, Raman spectroscopy, temperature-programmed oxidation and SEM) proved the successful synthesis of the aspired material. In electric double-layer capacitor (EDLC) testing, this novel hollow core material showed a remarkable enhancement of EDLC’s rate handling ability (75% at a high scan rate) with respect to an entirely solid-mesoporous material. Furthermore, as a fuel cell catalyst support the material showed higher Pt mass activity (a factor of 1.8) compared to a conventional carbon support for methanol oxidation without noticeably decreasing activity in a long-term testing. Therefore, this carbon nanostructure shows great promises as efficient electrode materials for energy storage and conversion systems.

  3. A green strategy for lithium isotopes separation by using mesoporous silica materials doped with ionic liquids and benzo-15-crown-5

    International Nuclear Information System (INIS)

    Wen Zhou; Xiao-Li Sun; Lin Gu; Fei-Fei Bao; Xin-Xin Xu; Chun-Yan Pang; Zaijun Li; Zhi-Guo Gu; Jiangnan University, Wuxi

    2014-01-01

    Three new mesoporous silica materials IL15SGs (HF15SG, TF15SG and DF15SG) doped with benzo-15-crown-5 and imidazolium based ionic liquids (C 8 mim + PF 6 - , C 8 mim + BF 4 - or C 8 mim + NTf 2 - ) have been prepared by a simple approach to separating lithium isotopes. The formed mesoporous structures of silica gels have been confirmed by transmission electron microscopy image and N 2 gas adsorption-desorption isotherm. Imidazolium ionic liquids acted as templates to prepare mesoporous materials, additives to stabilize extractant within silica gel, and synergetic agents to separate the lithium isotopes. Factors such as lithium salt concentration, initial pH, counter anion of lithium salt, extraction time, and temperature on the lithium isotopes separation were examined. Under optimized conditions, the extraction efficiency of HF15SG, TF15SG and DF15SG were found to be 11.43, 10.59 and 13.07 %, respectively. The heavier isotope 7 Li was concentrated in the solution phase while the lighter isotope 6 Li was enriched in the gel phase. The solid-liquid extraction maximum single-stage isotopes separation factor of 6 Li- 7 Li in the solid-liquid extraction was up to 1.046 ± 0.002. X-ray crystal structure analysis indicated that the lithium salt was extracted into the solid phase with crown ether forming [(Li 0.5 ) 2 (B 15 ) 2 (H 2 O)] + complexes. IL15SGs were also easily regenerated by stripping with 20 mmol L -1 HCl and reused in the consecutive removal of lithium ion in five cycles. (author)

  4. Hierarchical activated mesoporous phenolic-resin-based carbons for supercapacitors.

    Science.gov (United States)

    Wang, Zhao; Zhou, Min; Chen, Hao; Jiang, Jingui; Guan, Shiyou

    2014-10-01

    A series of hierarchical activated mesoporous carbons (AMCs) were prepared by the activation of highly ordered, body-centered cubic mesoporous phenolic-resin-based carbon with KOH. The effect of the KOH/carbon-weight ratio on the textural properties and capacitive performance of the AMCs was investigated in detail. An AMC prepared with a KOH/carbon-weight ratio of 6:1 possessed the largest specific surface area (1118 m(2) g(-1)), with retention of the ordered mesoporous structure, and exhibited the highest specific capacitance of 260 F g(-1) at a current density of 0.1 A g(-1) in 1 M H2 SO4 aqueous electrolyte. This material also showed excellent rate capability (163 F g(-1) retained at 20 A g(-1)) and good long-term electrochemical stability. This superior capacitive performance could be attributed to a large specific surface area and an optimized micro-mesopore structure, which not only increased the effective specific surface area for charge storage but also provided a favorable pathway for efficient ion transport. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Micro-mesoporous carbon spheres derived from carrageenan as electrode material for supercapacitors

    Science.gov (United States)

    Fan, Yang; Yang, Xin; Zhu, Bing; Liu, Pei-Fang; Lu, Hai-Ting

    2014-12-01

    The polysaccharide carrageenan is used as a natural precursor to prepare micro-mesoporous carbon spheres. The carbon spheres were synthesized by hydrothermal carbonization of carrageenan, and subsequent chemical activation by KOH at different temperatures. The obtained micro-mesoporous carbon spheres have high surface area (up to 2502 m2 g-1) and large pore volume (up to 1.43 cm3 g-1). Moreover, the micro- and mesoporosity can be finely tuned be modifying the activation temperatures in the range of 700-900 °C. The carbon spheres activated at 900 °C present high specific capacitance of 230 F g-1 at a current density of 1 A g-1 and good ion transport kinetics. The good capacitive performance can be ascribed to the high specific surface area, well-controlled micro- and mesoporosity and narrow pore size distribution.

  6. Nitrogen enriched mesoporous organic polymer anchored copper(II) material: an efficient and reusable catalyst for the synthesis of esters and amides from aromatic systems.

    Science.gov (United States)

    Molla, Rostam Ali; Iqubal, Md Asif; Ghosh, Kajari; Kamaluddin; Islam, Sk Manirul

    2015-04-14

    A new copper-grafted mesoporous poly-melamine-formaldehyde (Cu-mPMF) has been synthesized from melamine and paraformaldehyde in DMSO medium, followed by grafting of Cu(ii) at its surface. Cu-mPMF has been characterized by elemental analysis, powder XRD, HR TEM, FE-SEM, N2 adsorption study, FT-IR, UV-vis DRS, TGA-DTA, EPR spectroscopy, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The Cu-grafted mesoporous material showed very good catalytic activity in methyl esterification of benzylic alcohols and amidation of nitriles. Moreover, the catalyst is easily recoverable and can be reused seven times without appreciable loss of catalytic activity in the above reactions. The highly dispersed and strongly bound Cu(ii) sites in the Cu-grafted mesoporous polymer could be responsible for the observed high activities of the Cu-mPMF catalyst. Due to strong binding with the functional groups of the polymer, no evidence of leached copper from the catalyst during the course of reaction emerged, suggesting true heterogeneity in the catalytic process.

  7. Mesoporous CdS via Network of Self-Assembled Nanocrystals: Synthesis, Characterization and Enhanced Photoconducting Property.

    Science.gov (United States)

    Patra, Astam K; Banerjee, Biplab; Bhaumik, Asim

    2018-01-01

    Semiconduction nanoparticles are intensively studied due to their huge potential in optoelctronic applications. Here we report an efficient chemical route for hydrothermal synthesis of aggregated mesoporous cadmium sulfide (CdS) nanoparticles using supramolecular-assembly of ionic and water soluble sodium salicylate as the capping agent. The nanostructure, mesophase, optical property and photoconductivity of these mesoporous CdS materials have been characterized by using small and wide angle powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), N2-sorption, Raman analysis, Fourier transformed infrared (FT-IR), UV-Visible DSR spectroscopy, and photoconductivity measurement. Wide angle XRD pattern and high resolution TEM image analysis suggested that the particle size of the materials is within 10 nm and the nanoparticles are in well-crystallized cubic phase. Mesoporous CdS nanoparticles showed drastically enhanced photoelectrochemical response under visible light irradiation on entrapping a photosensitizer (dye) molecule in the interparticle spaces. Efficient synthesis strategy and the enhanced photo response in the mesoporous CdS material could facilitate the designing of other porous semiconductor oxide/sulfide and their applications in photon-to-electron conversion processes.

  8. Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: A review on heterogeneous catalysts and applications.

    Science.gov (United States)

    Zhao, Qingxia; Mao, Qiming; Zhou, Yaoyu; Wei, Jianhong; Liu, Xiaocheng; Yang, Junying; Luo, Lin; Zhang, Jiachao; Chen, Hong; Chen, Hongbo; Tang, Lin

    2017-12-01

    In recent years, advanced oxidation processes (AOPs), especially sulfate radical based AOPs have been widely used in various fields of wastewater treatment due to their capability and adaptability in decontamination. Recently, metal-free carbon materials catalysts in sulfate radical production has been more and more concerned because these materials have been demonstrated to be promising alternatives to conventional metal-based catalysts, but the review of metal-free catalysts is rare. The present review outlines the current state of knowledge on the generation of sulfate radical using metal-free catalysts including carbon nanotubes, graphene, mesoporous carbon, activated carbon, activated carbon fiber, nanodiamond. The mechanism such as the radical pathway and non-radical pathway, and factors influencing of the activation of sulfate radical was also be revealed. Knowledge gaps and research needs have been identified, which include the perspectives on challenges related to metal-free catalyst, heterogeneous metal-free catalyst/persulfate systems and their potential in practical environmental remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. One-pot hydrothermal synthesis of mesoporous Zn(x)Cd(1-x)S/reduced graphene oxide hybrid material and its enhanced photocatalytic activity.

    Science.gov (United States)

    Wang, Xinwei; Tian, Hongwei; Cui, Xiaoqiang; Zheng, Weitao; Liu, Yichun

    2014-09-14

    We successfully synthesized mesoporous Zn(x)Cd(1-x)S/reduced graphene oxide (Z(x)CSG) hybrid materials as photocatalysts using a facile one-pot hydrothermal reaction, in which graphene oxide (GO) was easily reduced (RGO), and simultaneously Zn(x)Cd(1-x)S (Z(x)CS) nanoparticles (NPs) with a mesoporous structure were uniformly dispersed on the RGO sheets. By well tuning the band gap from 3.42 to 2.21 eV by changing the molar ratio of Zn/Cd (or Zn content), Z(x)CSG with an optimal zinc content has been found to have a significant absorption in the visible light (VL) region. In addition, under VL irradiation (λ > 420 nm), Z(x)CSG also showed zinc content-dependent photocatalytic efficiencies for the degradation of methylene blue (MB). Our findings are that, among Z(x)CSG, Z(0.4)CSG displayed not only a superior photodegradation efficiency of MB (98%), but also good removal efficiency of total organic carbon (TOC) (67%). Furthermore, Z(0.4)CSG had a high photocatalytic stability, and could be used repeatedly. The enhanced photocatalytic activity for Z(0.4)CSG could be attributed to a synergistic effect between mesoporous Z(x)CS NPs and RGO, including the optimal band gap and the moderate conduction band position for ZxCS (compared to CdS), efficient separation and transfer ability of photogenerated electron/hole pairs in the presence of RGO sheets, and relatively high surface area for both mesoporous Z(x)CS NPs and RGO.

  10. Advanced materials for energy storage.

    Science.gov (United States)

    Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming

    2010-02-23

    Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted.

  11. Synthesis, Characterization and Application of the novel, regular mesoporous materials MCM-41 and MCM-48

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R

    1995-07-01

    In the application of zeolites to catalytic cracking of heavy oil fractions the need of regular solids with large pore sizes has become very obvious. The scope of this thesis was to synthesize and characterize the novel mesoporous materials MCM-41 and MCM-48 with the major emphasis laid on MCM-41. MCM-41 materials with bulk Si/Al ratios of 4, 9, 18 and {infinity} were synthesized and characterized by XRD and HREM. The catalytic cracking behaviour of Al-containing MCM-41 materials was investigated by pulse reactor studies using decalin as model feed and by Micro Activity Tests using atmospheric residue or n-hexadecane as feed. Aluminium containing MCM-41 was found to be active for the cracking of heavy oil fractions. Purely siliceous MCM-41 materials with pore sizes ranging from 18 Aa to 40 Aa were synthesized and their properties studied by means of NMR spectroscopy. The MCM-48, which is a cubic member of the M41S family with a three dimensional pore system, was studied by means of a combination of X-ray powder diffraction and HREM technique. 210 refs., 76 figs., 9 tabs.

  12. Electroactive mesoporous yttria stabilized zirconia containing platinum or nickel oxide nanoclusters: a new class of solid oxide fuel cell electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Mamak, M.; Coombs, N.; Ozin, G.A. [Toronto Univ., ON (Canada). Dept. of Chemistry

    2001-02-01

    The electroactivity of surfactant-templated mesoporous yttria stabilized zirconia, containing nanoclusters of platinum or nickel oxide, is explored by alternating current (AC) complex impedance spectroscopy. The observed oxygen ion and mixed oxygen ion-electron charge-transport behavior for these materials, compared to the sintered-densified non-porous crystalline versions, is ascribed to the unique integration of mesoporosity and nanocrystallinity within the binary and ternary solid solution microstructure. These attributes inspire interest in this new class of materials as candidates for the development of improved performance solid oxide fuel cell electrodes. (orig.)

  13. Preparation of Mesoporous Carbons from Acrylonitrile-methyl Methacrylate Copolymer/Silica Nanocomposites Synthesized by in-situ Emulsion Polymerization

    Institute of Scientific and Technical Information of China (English)

    BAO Yongzhong; ZHAO Wenting; HUANG Zhiming

    2013-01-01

    Acrylonitrile-methyl methacrylate (AN-MMA) copolymer/silica nanocomposites were synthesized by in-situ emulsion polymerization initiated by 2,2′-azobis(2-amidinopropane) dihydrochloride absorbed onto colloidal silica particles,and the mesoporous carbon materials were prepared through carbonization of the obtained AN-MMA copolymer/silica nanocomposites,followed by HF etching.Thermogravimetric analysis of AN-MMA copolymer/silica nanocomposites showed that the carbon yield of copolymer was slightly decreased as silica particle incorporated.N2 adsorption-desorption,scan electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the structure and morphology of the mesoporous carbon materials.Both SEM and TEM results showed that disordered mesopores were formed in the obtained carbon material mainly through templating effect of silica nanoparticles.The diameter of mesopores was mainly distributed in the range from 5 nm to 15 nm.The mean pore diameter and total pore volume of the material increased as the mass fraction of silica in the nanocomposites increased from 0 to 24.93%.The significant increase of the mean pore diameter and the decrease of surface area for the carbon material prepared from the nanocomposite with 24.93% silica were caused by partial aggregation of silica nanoparticles in the polymer matrix.

  14. Materials for advanced packaging

    CERN Document Server

    Wong, CP

    2017-01-01

    This second edition continues to be the most comprehensive review on the developments in advanced electronic packaging technologies, with a focus on materials and processing. Recognized experts in the field contribute to 22 updated and new chapters that provide comprehensive coverage on various 3D package architectures, novel bonding and joining techniques, wire bonding, wafer thinning techniques, organic substrates, and novel approaches to make electrical interconnects between integrated circuit and substrates. Various chapters also address advances in several key packaging materials, including: Lead-free solders Flip chip underfills Epoxy molding compounds Conductive adhesives Die attach adhesives/films Thermal interface materials (TIMS) Materials for fabricating embedded passives including capacitors, inductors, and resistors Materials and processing aspects on wafer-level chip scale package (CSP) and MicroElectroMechanical system (MEMS) Contributors also review new and emerging technologies such as Light ...

  15. Mesoporous wormholelike carbon with controllable nanostructure for lithium ion batteries application

    International Nuclear Information System (INIS)

    Yang, Xiaoqing; Li, Xinxi; Li, Zhenghui; Zhang, Guoqing; Wu, Dingcai

    2015-01-01

    Highlights: • Wormholelike carbon (WMC) with controllable nanostructure is prepared by sol–gel method. • The reversible capacity of WMC is much higher than that of many other reported nanocarbons. • The effect of pore diameter on Li storage capacity is investigated. - Abstract: A class of mesoporous wormholelike carbon (WMC) with controllable nanostructure was prepared by sol–gel method and then used as the anode material of lithium-ion batteries. Based on the experimental results, it is found that the nanostructure of the as-prepared WMC plays an important role in the electrochemical performances. A suitable mesopore size is necessary for a high performance carbon-based anode material since it can not only guarantee effective mass transport channels but also provide large surface area. As a result, F30 with a mesopore size of 4.4 nm coupled with high surface area of 1077 m 2 g −1 shows a reversible capacity of 630 mAh g −1 , much higher than commercial graphite and many other reported nanocarbons

  16. Mesoporous Silica from Rice Husk Ash

    Directory of Open Access Journals (Sweden)

    S.A. Mandavgane

    2010-12-01

    Full Text Available Mesoporous silica is used as a raw material in several areas: in preparation of catalysts, in inks, as aconcrete hardening accelerator, as a component of detergents and soaps, as a refractory constituent etc.Sodium silicate is produced by reacting rice hull ash (RHA with aqueous NaOH and silica is precipitatedfrom the sodium silicate by acidification. In the present work, conversion of about 90% of silica containedin RHA into sodium silicate was achieved in an open system at temperatures of about 100 °C. The resultsshowed that silica obtained from RHA is mesoporous, has a large surface area and small particle size.Rice Husk is usually mixed with coal and this mixture is used for firing boilers. The RHA therefore, usuallycontains carbon particles. Activated carbon embedded on silica has been prepared using the carbon alreadypresent in RHA. This carbon shows good adsorption capacity. ©2010 BCREC UNDIP. All rights reserved(Received: 25th April 2010, Revised: 17th June 2010, Accepted: 24th June 2010[How to Cite: V.R. Shelke, S.S. Bhagade, S.A. Mandavgane. (2010. Mesoporous Silica from Rice Husk Ash. Bulletin of Chemical Reaction Engineering and Catalysis, 5 (2: 63-67. doi:10.9767/bcrec.5.2.793.63-67

  17. Mesoporous metal catalysts formed by ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Schaeferhans, Jana; Pazos Perez, Nicolas; Andreeva, Daria [Physikalische Chemie II, Universitaet Bayreuth (Germany)

    2010-07-01

    We study the ultrasound-driven formation of mesoporous metal sponges. The collapse of acoustic cavitations leads to very high temperatures and pressures on very short scales. Therefore, structures may be formed and quenched far from equilibrium. Mechanism of metal modification by ultrasound is complex and involves a variety of aspects. We propose that modification of metal particles and formation of mesoporous inner structures can be achieved due to thermal etching of metals by ultrasound stimulated high speed jets of liquid. Simultaneously, oxidation of metal surfaces by free radicals produced in water during cavitation stabilizes developed metal structures. Duration and intensity of the ultrasonication treatment is able to control the structure and morphology of metal sponges. We expect that this approach to the formation of nanoscale composite sponges is universal and opens perspective for a whole new class of catalytic materials that can be prepared in a one-step process. The developed method makes it possible to control the sponge morphology and can be used for formation of modern types of catalysts. For example, the sonication technique allows to combine the fabrication of mesoporous support and distribution of metal (Cu, Pd, Au, Pt etc.) nanoparticles in its pores into a single step.

  18. Hydrothermal synthesis of mesoporous metal oxide arrays with enhanced properties for electrochemical energy storage

    International Nuclear Information System (INIS)

    Xiao, Anguo; Zhou, Shibiao; Zuo, Chenggang; Zhuan, Yongbing; Ding, Xiang

    2015-01-01

    Highlights: • NiO mesoporous nanowall arrays are prepared via hydrothermal method. • Mesoporous nanowall arrays are favorable for fast ion/electron transfer. • NiO mesoporous nanowall arrays show good supercapacitor performance. - Abstract: Mesoporous nanowall NiO arrays are prepared by a facile hydrothermal synthesis method with a following annealing process. The NiO nanowall shows continuous mesopores ranging from 5 to 10 nm and grows vertically on the substrate forming a porous net-like structure with macropores of 20–300 nm. A plausible mechanism is proposed for the growth of mesoporous nanowall NiO arrays. As cathode material of pseudocapacitors, the as-prepared mesoporous nanowall NiO arrays show good pseudocapacitive performances with a high capacitance of 600 F g −1 at 2 A g −1 and impressive high-rate capability with a specific capacitance of 338 F g −1 at 40 A g −1 . In addition, the mesoporous nanowall NiO arrays possess good cycling stability. After 6000 cycles at 2 A g −1 , a high capacitance of 660 F g −1 is attained, and no obvious degradation is observed. The good electrochemical performance is attributed to its highly porous morphology, which provides large reaction surface and short ion diffusion paths, leading to enhanced electrochemical properties

  19. Synthesis and characterization of V, Mo and Nb incorporated micro-mesoporous MCM-41 materials

    Energy Technology Data Exchange (ETDEWEB)

    Solmaz, Arzu, E-mail: arzu.solmaz@rshm.gov.tr [Gazi University, Faculty of Engineering, Chemical Engineering Department, 06570 Ankara (Turkey); Balci, Suna, E-mail: sunabalci@gazi.edu.tr [Gazi University, Faculty of Engineering, Chemical Engineering Department, 06570 Ankara (Turkey); Dogu, Timur, E-mail: tdogu@metu.edu.tr [Middle East Technical University, Faculty of Engineering, Chemical Engineering Department, 06531 Ankara (Turkey)

    2011-01-01

    Highly microporous metal-MCM-41 ordered mesoporous structure catalysts having different metal/Si (V, Mo, Nb) atomic ratios and combinations of metal sources were hydrothermally synthesized. The structural properties estimated using different techniques were found to be in agreement with each other. Metals were successfully incorporated into MCM-41 without deteriorating the ordered hexagonal structure. The metal ions in the synthesis solutions probably settled on the hydrophilic end of the template hence the metal incorporation resulted improvements in the micropore structure. Low loading of metals caused an increase in the surface area and pore volume values of the catalysts. The highest total (1310 m{sup 2} g{sup -1}) and micropore surface area values (1083 m{sup 2} g{sup -1}) were obtained by Nb incorporation. The micro- and mesopore dimensions of MCM-41 increased from 0.5 to 1.1 nm and from 2.5 to 2.8 nm, respectively, with metal incorporation. Low V/Si ratios and presence of Nb in the starting solution enhanced narrow mesopore size distribution. The pore dimension and wall thickness values estimated from nitrogen adsorption and X-ray diffraction methods were consistent with the corresponding values obtained using transmission electron microscopy.

  20. Beam processing of advanced materials

    International Nuclear Information System (INIS)

    Singh, J.; Copley, S.M.

    1993-01-01

    International Conference on Beam Processing of Advanced Materials was held at the Fall TMS/ASM Materials Week at Chicago, Illinois, November 2--5, 1992. The symposium was devoted to the recent advances in processing of materials by an energy source such as laser, electron, ion beams, etc. The symposium served as a forum on the science of beam-induced materials processing and implications of this science to practical implementation. An increased emphasis on obtaining an understanding of the fundamental mechanisms of beam-induced surface processes was a major trend observed at this years symposium. This has resulted in the increased use of advanced diagnostic techniques and modeling studies to determine the rate controlling steps in these processes. Individual papers have been processed separately for inclusion in the appropriate data bases

  1. Mesoporous titanium phosphates and related molecular sieves ...

    Indian Academy of Sciences (India)

    Unknown

    phosphate using a dilute H2O2 oxidant supports the tetrahedral coordination of Ti in ... production of H2 by photo-reduction of water under UV light irradiation. ... have been extensively studied and used as acid catalysts, adsorbents and ion ... mesoporous silica materials is also of outstanding interest because of their ...

  2. Ordered mesoporous polymer-silica hybrid nanoparticles as vehicles for the intracellular controlled release of macromolecules.

    Science.gov (United States)

    Kim, Tae-Wan; Slowing, Igor I; Chung, Po-Wen; Lin, Victor Shang-Yi

    2011-01-25

    A two-dimensional hexagonal ordered mesoporous polymer-silica hybrid nanoparticle (PSN) material was synthesized by polymerization of acrylate monomers on the surface of SBA-15 mesoporous silica nanoparticles. The structure of the PSN material was analyzed using a series of different techniques, including transmission electron microscopy, powder X-ray diffraction, and N(2) sorption analysis. These structurally ordered mesoporous polymer-silica hybrid nanoparticles were used for the controlled release of membrane-impermeable macromolecules inside eukaryotic cells. The cellular uptake efficiency and biocompatibility of PSN with human cervical cancer cells (HeLa) were investigated. Our results show that the inhibitory concentration (IC(50)) of PSN is very high (>100 μg/mL per million cells), while the median effective concentration for the uptake (EC(50)) of PSN is low (EC(50) = 4.4 μg/mL), indicating that PSNs are fairly biocompatible and easily up-taken in vitro. A membrane-impermeable macromolecule, 40 kDa FITC-Dextran, was loaded into the mesopores of PSNs at low pH. We demonstrated that the PSN material could indeed serve as a transmembrane carrier for the controlled release of FITC-Dextran at the pH level inside live HeLa cells. We believe that further developments of this PSN material will lead to a new generation of nanodevices for intracellular controlled delivery applications.

  3. Advanced materials for energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming [Shenyang National Laboratory for Materials Science Institute of Metal Research, Chinese Academy of Sciences 72 Wenhua Road, Shenyang 110016 (China)

    2010-02-23

    Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  4. Cyclic voltammetry modeling of proton transport effects on redox charge storage in conductive materials: application to a TiO2 mesoporous film.

    Science.gov (United States)

    Kim, Y S; Balland, V; Limoges, B; Costentin, C

    2017-07-21

    Cyclic voltammetry is a particularly useful tool for characterizing charge accumulation in conductive materials. A simple model is presented to evaluate proton transport effects on charge storage in conductive materials associated with a redox process coupled with proton insertion in the bulk material from an aqueous buffered solution, a situation frequently encountered in metal oxide materials. The interplay between proton transport inside and outside the materials is described using a formulation of the problem through introduction of dimensionless variables that allows defining the minimum number of parameters governing the cyclic voltammetry response with consideration of a simple description of the system geometry. This approach is illustrated by analysis of proton insertion in a mesoporous TiO 2 film.

  5. TiO2-coated mesoporous carbon: conventional vs. microwave-annealing process.

    Science.gov (United States)

    Coromelci-Pastravanu, Cristina; Ignat, Maria; Popovici, Evelini; Harabagiu, Valeria

    2014-08-15

    The study of coating mesoporous carbon materials with titanium oxide nanoparticles is now becoming a promising and challenging area of research. To optimize the use of carbon materials in various applications, it is necessary to attach functional groups or other nanostructures to their surface. The combination of the distinctive properties of mesoporous carbon materials and titanium oxide is expected to be applied in field emission displays, nanoelectronic devices, novel catalysts, and polymer or ceramic reinforcement. But, their synthesis is still largely based on conventional techniques, such as wet impregnation followed by chemical reduction of the metal nanoparticle precursors, which takes time and money. The thermal heating based techniques are time consuming and often lack control of particle size and morphology. Hence, since there is a growing interest in microwave technology, an alternative way of power input into chemical reactions through dielectric heating is the use of microwaves. This work is focused on the advantages of microwave-assisted synthesis of TiO2-coated mesoporous carbon over conventional thermal heating method. The reviewed studies showed that the microwave-assisted synthesis of such composites allows processes to be completed within a shorter reaction time allowing the nanoparticles formation with superior properties than that obtained by conventional method. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Supercapacitors based on ordered mesoporous carbon derived from furfuryl alcohol: effect of the carbonized temperature.

    Science.gov (United States)

    Li, Na; Xu, Jianxiong; Chen, Han; Wang, Xianyou

    2014-07-01

    Supercapacitors are successfully prepared from ordered mesoporous carbon (OMC) synthesized by employing the mesoporous silica, SBA-15 as template and furfuryl alcohol as carbon source. It is found that the carbonized temperature greatly influences the physical properties of the synthesized mesoporous carbon materials. The optimal carbonized temperature is measured to be 600 degrees C under which OMC with the specific surface area of 1219 m2/g and pore volume of 1.31 cm3/g and average pore diameter of - 3 nm are synthesized. The OMC materials synthesized under different carbonized temperature are used as electrode material of supercapacitors and the electrochemical properties of the OMC materials are compared by using cyclic voltammetry, electrochemical impedance spectroscopy, galvanostatic charge-discharge and self-discharge tests. The results show that the electrochemical properties of the OMC materials are directly related to the specific surface area and pore volume of the mesoporous carbon and the electrode prepared from the OMC synthesized under the carbonized temperature of 600 degrees C (OMC-600) exhibits the most excellent electrochemical performance with the specific capacitance of 207.08 F/g obtained from cyclic voltammetry at the scan rate of 1 mV/s, small resistance and low self-discharge rate. Moreover, the supercapacitor based on the OMC-600 material exhibits good capacitance properties and stable cycle behavior with the specific capacitance of 105 F/g at the current density of 700 mA/g, and keeps a specific capacitance of 98 F/g after 20000 consecutive charge/discharge cycles.

  7. Ti2Nb10O29-x mesoporous microspheres as promising anode materials for high-performance lithium-ion batteries

    Science.gov (United States)

    Deng, Shengjue; Luo, Zhibin; Liu, Yating; Lou, Xiaoming; Lin, Chunfu; Yang, Chao; Zhao, Hua; Zheng, Peng; Sun, Zhongliang; Li, Jianbao; Wang, Ning; Wu, Hui

    2017-09-01

    Ti2Nb10O29 has recently been reported as a promising anode material for lithium-ion batteries. However, its poor electronic conductivity and insufficient Li+-ion diffusion coefficient significantly limit its rate capability. To tackle this issue, a strategy combining nanosizing and crystal-structure modification is employed. Ti2Nb10O29-x mesoporous microspheres with a sphere-size range of 0.5-4 μm are prepared by a one-step solvothermal method followed by thermal treatment in N2. These Ti2Nb10O29-x mesoporous microspheres exhibit primary nanoparticles, a large specific surface area (22.9 m2 g-1) and suitable pore sizes, leading to easy electron/Li+-ion transport and good interfacial reactivity. Ti2Nb10O29-x shows a defective shear ReO3 crystal structure with O2- vacancies and an increased unit cell volume, resulting in its increased Li+-ion diffusion coefficient. Besides Ti4+ and Nb5+ ions, Ti2Nb10O29-x comprises Nb4+ ions with unpaired 4d electrons, which significantly increase its electronic conductivity. As a result of these improvements, the Ti2Nb10O29-x mesoporous microspheres reveal superior electrochemical performances in term of large reversible specific capacity (309 mAh g-1 at 0.1 C), outstanding rate capability (235 mAh g-1 at 40 C) and durable cyclic stability (capacity retention of 92.1% over 100 cycles at 10 C).

  8. Versatility of Evaporation-Induced Self-Assembly (EISA Method for Preparation of Mesoporous TiO2 for Energy and Environmental Applications

    Directory of Open Access Journals (Sweden)

    Luther Mahoney

    2014-03-01

    Full Text Available Evaporation-Induced Self-Assembly (EISA method for the preparation of mesoporous titanium dioxide materials is reviewed. The versatility of EISA method for the rapid and facile synthesis of TiO2 thin films and powders is highlighted. Non-ionic surfactants such as Pluronic P123, F127 and cationic surfactants such as cetyltrimethylammonium bromide have been extensively employed for the preparation of mesoporous TiO2. In particular, EISA method allows for fabrication of highly uniform, robust, crack-free films with controllable thickness. Eleven characterization techniques for elucidating the structure of the EISA prepared mesoporous TiO2 are discussed in this paper. These many characterization methods provide a holistic picture of the structure of mesoporous TiO2. Mesoporous titanium dioxide materials have been employed in several applications that include Dye Sensitized Solar Cells (DSSCs, photocatalytic degradation of organics and splitting of water, and batteries.

  9. Nanofabrication strategies for advanced electrode materials

    Directory of Open Access Journals (Sweden)

    Chen Kunfeng

    2017-09-01

    Full Text Available The development of advanced electrode materials for high-performance energy storage devices becomes more and more important for growing demand of portable electronics and electrical vehicles. To speed up this process, rapid screening of exceptional materials among various morphologies, structures and sizes of materials is urgently needed. Benefitting from the advance of nanotechnology, tremendous efforts have been devoted to the development of various nanofabrication strategies for advanced electrode materials. This review focuses on the analysis of novel nanofabrication strategies and progress in the field of fast screening advanced electrode materials. The basic design principles for chemical reaction, crystallization, electrochemical reaction to control the composition and nanostructure of final electrodes are reviewed. Novel fast nanofabrication strategies, such as burning, electrochemical exfoliation, and their basic principles are also summarized. More importantly, colloid system served as one up-front design can skip over the materials synthesis, accelerating the screening rate of highperformance electrode. This work encourages us to create innovative design ideas for rapid screening high-active electrode materials for applications in energy-related fields and beyond.

  10. Synthesis of Hierarchically Structured Hybrid Materials by Controlled Self-Assembly of Metal-Organic Framework with Mesoporous Silica for CO2 Adsorption.

    Science.gov (United States)

    Chen, Chong; Li, Bingxue; Zhou, Lijin; Xia, Zefeng; Feng, Nengjie; Ding, Jing; Wang, Lei; Wan, Hui; Guan, Guofeng

    2017-07-12

    The HKUST-1@SBA-15 composites with hierarchical pore structure were constructed by in situ self-assembly of metal-organic framework (MOF) with mesoporous silica. The structure directing role of SBA-15 had an obvious impact on the growth of MOF crystals, which in turn affected the morphologies and structural properties of the composites. The pristine HKUST-1 and the composites with different content of SBA-15 were characterized by XRD, N 2 adsorption-desorption, SEM, TEM, FT-IR, TG, XPS, and CO 2 -TPD techniques. It was found that the composites were assembled by oriented growth of MOF nanocrystals on the surfaces of SBA-15 matrix. The interactions between surface silanol groups and metal centers induced structural changes and resulted in the increases in surface areas as well as micropore volumes of hybrid materials. Besides, the additional constraints from SBA-15 also restrained the expansion of HKUST-1, contributing to their smaller crystal sizes in the composites. The adsorption isotherms of CO 2 on the materials were measured and applied to calculate the isosteric heats of adsorption. The HS-1 composite exhibited an increase of 15.9% in CO 2 uptake capacity compared with that of HKUST-1. Moreover, its higher isosteric heats of CO 2 adsorption indicated the stronger interactions between the surfaces and CO 2 molecules. The adsorption rate of the composite was also improved due to the introduction of mesopores. Ten cycles of CO 2 adsorption-desorption experiments implied that the HS-1 had excellent reversibility of CO 2 adsorption. This study was intended to provide the possibility of assembling new composites with tailored properties based on MOF and mesoporous silica to satisfy the requirements of various applications.

  11. Chemistry of alkali cation exchanged faujasite and mesoporous NaX using alkyl halides and phosphates

    Science.gov (United States)

    Lee, Min-Hong

    The purpose of this work was to increase the reactivity of Faujasite X (NaX) zeolite toward the reactive decontamination of materials subject to nucleophilic attack by means of zeolite cation optimization and by means of the synthesis of mesoporous Faujasite X. Primary alkyl halides and trialkyl phosphates have been the test materials on which the cation-optimized and mesoporous zeolites have been tested. In the alkali cation optimization work, reactions of methyl iodide and 1-chloropropane with alkali metal cation exchanged Faujasite zeolite X were investigated at room temperature. The reactivity of the framework and the product formation were shown to depend on zeolite framework counter-cation. A quantitative study of zeolite product formation has been carried out, primarily using solid-state NMR spectroscopy. Large alkali cations showed preference toward substitution chemistry. In contrast, alkyl halide exposed LiX and NaX zeolites underwent both substitution and elimination. Subsequently introduced water molecules led to hydrolysis of framework species that was sensitive to framework counter-cation. The mesoporous NaX zeolites work undertakes to test whether an improvement in surface chemical reactivity can be achieved by introducing mesopores into the already reactive nucleophilic microporous NaX zeolite. Incorporation of the polydiallyl dimethyl ammonium chloride (PDADMAC) template and the formation of mesopores in Faujasite X zeolite (NaX) were successful and well-characterized. The mesopores are proposed to have occurred from incorporation of the cationic PDADMAC polymer into the zeolite by compensating zeolite framework charge. Subsequent sodium cation exchange of calcined mesoporous NaX was shown to restore the chemical reactivity characteristic of as-synthesized NaX. Trialkyl organophosphorous compounds underwent substitution reactions. The reactivity of both microporous and mesoporous Faujasite zeolite X and the product formation was shown to depend on

  12. Effects of nanosilver and nanozinc incorporated mesoporous calcium-silicate nanoparticles on the mechanical properties of dentin.

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    Full Text Available Mesoporous calcium-silicate nanoparticles (MCSNs are advanced biomaterials for drug delivery and mineralization induction. They can load silver and exhibit significantly antibacterial effects. However, the effects of MCSNs and silver-loaded MCSNs on dentin are unknown. The silver (Ag and/or zinc (Zn incorporated MCSNs (Ag-Zn-MCSNs were prepared by a template method, and their characterizations were tested. Then the nanoparticles were filled into root canals and their effects on the dentin were investigated. Ag-Zn-MCSNs showed characteristics of mesoporous materials and sustained release of ions over time. Ag-Zn-MCSNs adhered well to the root canal walls and infiltrated into the dentinal tubules after ultrasound activation. Ag-Zn-MCSNs showed no significantly negative effects on either the flexural strength or the modulus of elasticity of dentin, while CH decreased the flexural strength of dentin significantly (P<0.05. These findings suggested that Ag and Zn can be incorporated into MCSNs using a template method, and the Ag-Zn-MCSNs may be developed into a new disinfectant for the root canal and dentinal tubules.

  13. Template synthesis and characterization of nanostructured hierarchical mesoporous ribbon-like NiO as high performance electrode material for supercapacitor

    International Nuclear Information System (INIS)

    Yao, Mingming; Hu, Zhonghua; Xu, Zijie; Liu, Yafei; Liu, Peipei; Zhang, Qiang

    2015-01-01

    The ribbon-like NiO was synthesized by a hard-template method combining the calcination, using mesoporous carbon as a hard templat and guanidine hydrochloride as precipitant of weak base, respectively. The nanostructured hierarchical mesoporous ribbon-like NiO exhibits the high specific capacitance of 1260 F g −1 at the current density of 1 A g −1 , and 95% capacity retention at a current density of 10 A g −1 in a testing range of 5000 cycles. - Highlights: • Ribbon-like NiO was prepared by using mesoporous carbon as a hard template. • Typical ribbon-like NiO possesses the hierarchical mesoporous nanostructure. • High specific capacitance of 1260 F g −1 is obtained at a current density of 1 A g −1 . • Excellent electrochemical stability of 95% after 5000 charge–discharge cycles. - Abstract: In this paper, nanostructured hierarchical mesoporous ribbon-like NiO was synthesized by a hard-template method combining the calcination process. Nickel sulfate hexahydrate, guanidine hydrochloride and mesoporous carbon were used as nickel precursors, precipitant of weak base and template, respectively. The resultant NiO samples were characterized by Raman spectroscopy, energy dispersive spectrometer, X-ray diffraction, N 2 adsorption and desorption, scanning electron microscopy and transmission electron microscopy. The electrochemical performances were evaluated by cyclic voltammetry (CV), cyclic chronopotentiometry (CP) and electrochemical impedance spectroscopy (EIS) in 6 M KOH solution. The typical hierarchical mesoporous ribbon-like NiO shows a good electrochemical performance: a high specific capacitance of 1260 F g −1 at 1 A g −1 , 748 F g −1 at high current density of 20 A g −1 and 95% capacity retention at a current density of 10 A g −1 in a testing range of 5000 cycles

  14. Electrochemical characteristics of discrete, uniform, and monodispersed hollow mesoporous carbon spheres in double-layered supercapacitors.

    Science.gov (United States)

    Chen, Xuecheng; Kierzek, Krzysztof; Wenelska, Karolina; Cendrowski, Krzystof; Gong, Jiang; Wen, Xin; Tang, Tao; Chu, Paul K; Mijowska, Ewa

    2013-11-01

    Core-shell-structured mesoporous silica spheres were prepared by using n-octadecyltrimethoxysilane (C18TMS) as the surfactant. Hollow mesoporous carbon spheres with controllable diameters were fabricated from core-shell-structured mesoporous silica sphere templates by chemical vapor deposition (CVD). By controlling the thickness of the silica shell, hollow carbon spheres (HCSs) with different diameters can be obtained. The use of ethylene as the carbon precursor in the CVD process produces the materials in a single step without the need to remove the surfactant. The mechanism of formation and the role played by the surfactant, C18TMS, are investigated. The materials have large potential in double-layer supercapacitors, and their electrochemical properties were determined. HCSs with thicker mesoporous shells possess a larger surface area, which in turn increases their electrochemical capacitance. The samples prepared at a lower temperature also exhibit increased capacitance as a result of the Brunauer-Emmett-Teller (BET) area and larger pore size. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Mesoporous activated carbon from corn stalk core for lithium ion batteries

    Science.gov (United States)

    Li, Yi; Li, Chun; Qi, Hui; Yu, Kaifeng; Liang, Ce

    2018-04-01

    A novel mesoporous activated carbon (AC) derived from corn stalk core is prepared via a facile and effective method which including the decomposition and carbonization of corn stalk core under an inert gas atmosphere and further activation process with KOH solution. The mesoporous activated carbon (AC) is characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) measurements. These biomass waste derived from activated carbon is proved to be promising anode materials for high specific capacity lithium ion batteries. The activated carbon anode possesses excellent reversible capacity of 504 mAh g-1 after 100 cycles at 0.2C. Compared with the unactivated carbon (UAC), the electrochemical performance of activated carbon is significantly improved due to its mesoporous structure.

  16. Co{sub 3}O{sub 4} nanoparticles embedded in ordered mesoporous carbon with enhanced performance as an anode material for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Park, Junsu; Kim, Gil-Pyo [Seoul National University (SNU), World Class University (WCU) Program of Chemical Convergence for Energy and Environment C2E2, School of Chemical and Biological Engineering, College of Engineering, Institute of Chemical Processes (Korea, Republic of); Umh, Ha Nee [Kwangwoon University, Department of Chemical Engineering (Korea, Republic of); Nam, Inho; Park, Soomin [Seoul National University (SNU), World Class University (WCU) Program of Chemical Convergence for Energy and Environment C2E2, School of Chemical and Biological Engineering, College of Engineering, Institute of Chemical Processes (Korea, Republic of); Kim, Younghun [Kwangwoon University, Department of Chemical Engineering (Korea, Republic of); Yi, Jongheop, E-mail: jyi@snu.ac.kr [Seoul National University (SNU), World Class University (WCU) Program of Chemical Convergence for Energy and Environment C2E2, School of Chemical and Biological Engineering, College of Engineering, Institute of Chemical Processes (Korea, Republic of)

    2013-09-15

    A Co{sub 3}O{sub 4}/ordered mesoporous carbon (OMC) nanocomposite, in which Co{sub 3}O{sub 4} nanoparticles (NPs), with an average size of about 10 nm homogeneously embedded in the OMC framework, are prepared for use as an anode material in Li-ion batteries. The composite is prepared by a one-pot synthesis based on the solvent evaporation-induced co-self-assembly of a phenolic resol, a triblock copolymer F127, and Co(NO{sub 3}){sub 2}{center_dot}6H{sub 2}O, followed by carbonization and oxidation. The resulting material has a high reversible capacity of {approx}1,025 mA h g{sup -1} after 100 cycles at a current density of 0.1 A g{sup -1}. The enhanced cycling stability and rate capability of the composite can be attributed to the combined mesoporous nanostructure which provides efficient pathways for Li-ion transport and the homogeneous distribution of the Co{sub 3}O{sub 4} NPs in the pore wall of the OMC, which prevents aggregation. These findings suggest that the OMC has promise for use as a carbon metric for metals and metal oxides as an anode material in high performance Li-ion batteries.

  17. Shape-Enhanced Photocatalytic Activities of Thoroughly Mesoporous ZnO Nanofibers

    KAUST Repository

    Ren, Xiaolong; Hou, Huilin; Liu, Zhixiong; Gao, Fengmei; Zheng, Jinju; Wang, Lin; Li, Wenge; Ying, Pengzhan; Yang, Weiyou; Wu, Tao

    2016-01-01

    1D mesoporous materials have attracted extensive interest recently, owning to their fascinating properties and versatile applications. However, it remains as a grand challenge to develop a simple and efficient technique to produce oxide nanofibers

  18. Spectral Inverse Quantum (Spectral-IQ Method for Modeling Mesoporous Systems: Application on Silica Films by FTIR

    Directory of Open Access Journals (Sweden)

    Mihai V. Putz

    2012-11-01

    Full Text Available The present work advances the inverse quantum (IQ structural criterion for ordering and characterizing the porosity of the mesosystems based on the recently advanced ratio of the particle-to-wave nature of quantum objects within the extended Heisenberg uncertainty relationship through employing the quantum fluctuation, both for free and observed quantum scattering information, as computed upon spectral identification of the wave-numbers specific to the maximum of absorption intensity record, and to left-, right- and full-width at the half maximum (FWHM of the concerned bands of a given compound. It furnishes the hierarchy for classifying the mesoporous systems from more particle-related (porous, tight or ionic bindings to more wave behavior (free or covalent bindings. This so-called spectral inverse quantum (Spectral-IQ particle-to-wave assignment was illustrated on spectral measurement of FT-IR (bonding bands’ assignment for samples synthesized within different basic environment and different thermal treatment on mesoporous materials obtained by sol-gel technique with n-dodecyl trimethyl ammonium bromide (DTAB and cetyltrimethylammonium bromide (CTAB and of their combination as cosolvents. The results were analyzed in the light of the so-called residual inverse quantum information, accounting for the free binding potency of analyzed samples at drying temperature, and were checked by cross-validation with thermal decomposition techniques by endo-exo thermo correlations at a higher temperature.

  19. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Liby, Alan L [ORNL; Rogers, Hiram [ORNL

    2013-10-01

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

  20. Fast and efficient mesoporous adsorbents for the separation of toxic compounds from aqueous media.

    Science.gov (United States)

    Anbia, Mansoor; Mohammadi, Nourali; Mohammadi, Kaveh

    2010-04-15

    The effect of cationic template on the adsorption of chromium (VI), furfural and copperphthalocyanine-3,4',4'',4'''-tetrasulfonic acid tetrasodium salt (CuPc) in MCM-41 and MCM-48 mesoporous materials was investigated in this work. We used cetyltrimethylammonium bromide (CTAB) as the cationic template and sodiummetasilicate (for MCM-41) and tetraethyl-orthosilicon (for MCM-48) as the silica source for the synthesis of mesoporous materials. The properties of synthesized samples were characterized with XRD-low angle, SEM, N(2) adsorption-desorption and TG-DT analysis. The extent of adsorption was investigated as a function of solution pH, shaking speed, contact time, analyte concentration, reaction temperature and supporting electrolyte (sodium chloride) concentration. Langmuir and Freundlich isotherms were used to model the adsorption equilibrium data. The as-synthesized mesoporous samples showed very high adsorption capacity for the analytes and adsorption uptakes were rapid on the adsorbents reaching equilibrium in less than 2 h. The materials without surfactant did not show significant affinity for the analytes. 2009 Elsevier B.V. All rights reserved.

  1. Synthesis of an Ionic Liquid and Its Application as Template for the Preparation of Mesoporous Material MCM-41: A Comprehensive Experiment for Undergraduate Students

    Science.gov (United States)

    Hu, Jun; Yin, Jinxiang; Lin, Tianshu; Li, Guangtao

    2012-01-01

    A new solvent-free microwave experiment to synthesize the ionic liquid 1-hexadecyl-3-methylimidazolium bromide (HDMIm-Br) in high yield is presented. The structure is confirmed by IR and [superscript 1]H NMR spectra. HDMIm-Br is then used to prepare an organic-inorganic mesoporous material MCM-41. The microscopic arrangements of mesoporous…

  2. Structure and Optical Properties of Doped SiO2 Mesoporous Glasses

    Directory of Open Access Journals (Sweden)

    G. Hernández-Padrón

    2011-01-01

    Full Text Available Monolithic mesoporous silica glasses were synthesized. The presence of Cu2+ and Fe3+ cations during the synthesis of sol-gel precursors leads to different morphologies and pore sizes. The materials are characterized via IR and Raman scattering spectra to detect surface groups and -Si-O-Si- rings (i.e., 3–6 Si atoms and morphology is examined through electron microscopy. N2 sorption isotherms reveal details of the mesoporous structure of the materials, which are endowed with significantly large surface areas and pore volumes. Vapor percolation occurs in these samples because of a void arrangement consisting of pore bulges delimited by narrower necks. The optical characterization shows the luminescence spectrum and thermoluminescent behavior subjected to successive exposures of beta particles.

  3. Highly mesoporous single-crystalline zeolite beta synthesized using a nonsurfactant cationic polymer as a dual-function template

    KAUST Repository

    Zhu, Jie

    2014-02-12

    Mesoporous zeolites are useful solid catalysts for conversion of bulky molecules because they offer fast mass transfer along with size and shape selectivity. We report here the successful synthesis of mesoporous aluminosilicate zeolite Beta from a commercial cationic polymer that acts as a dual-function template to generate zeolitic micropores and mesopores simultaneously. This is the first demonstration of a single nonsurfactant polymer acting as such a template. Using high-resolution electron microscopy and tomography, we discovered that the resulting material (Beta-MS) has abundant and highly interconnected mesopores. More importantly, we demonstrated using a three-dimensional electron diffraction technique that each Beta-MS particle is a single crystal, whereas most previously reported mesoporous zeolites are comprised of nanosized zeolitic grains with random orientations. The use of nonsurfactant templates is essential to gaining single-crystalline mesoporous zeolites. The single-crystalline nature endows Beta-MS with better hydrothermal stability compared with surfactant-derived mesoporous zeolite Beta. Beta-MS also exhibited remarkably higher catalytic activity than did conventional zeolite Beta in acid-catalyzed reactions involving large molecules. © 2014 American Chemical Society.

  4. Layer-by-Layer Motif Architectures: Programmed Electrochemical Syntheses of Multilayer Mesoporous Metallic Films with Uniformly Sized Pores.

    Science.gov (United States)

    Jiang, Bo; Li, Cuiling; Qian, Huayu; Hossain, Md Shahriar A; Malgras, Victor; Yamauchi, Yusuke

    2017-06-26

    Although multilayer films have been extensively reported, most compositions have been limited to non-catalytically active materials (e.g. polymers, proteins, lipids, or nucleic acids). Herein, we report the preparation of binder-free multilayer metallic mesoporous films with sufficient accessibility for high electrocatalytic activity by using a programmed electrochemical strategy. By precisely tuning the deposition potential and duration, multilayer mesoporous architectures consisting of alternating mesoporous Pd layers and mesoporous PdPt layers with controlled layer thicknesses can be synthesized within a single electrolyte, containing polymeric micelles as soft templates. This novel architecture, combining the advantages of bimetallic alloys, multilayer architectures, and mesoporous structures, exhibits high electrocatalytic activity for both the methanol oxidation reaction (MOR) and the ethanol oxidation reaction (EOR). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Active Iron Sites of Disordered Mesoporous Silica Catalyst FeKIL-2 in the Oxidation of Volatile Organic Compounds (VOC

    Directory of Open Access Journals (Sweden)

    Mojca Rangus

    2014-05-01

    Full Text Available Iron-functionalized disordered mesoporous silica (FeKIL-2 is a promising, environmentally friendly, cost-effective and highly efficient catalyst for the elimination of volatile organic compounds (VOCs from polluted air via catalytic oxidation. In this study, we investigated the type of catalytically active iron sites for different iron concentrations in FeKIL-2 catalysts using advanced characterization of the local environment of iron atoms by a combination of X-ray Absorption Spectroscopy Techniques (XANES, EXAFS and Atomic-Resolution Scanning Transmission Electron Microscopy (AR STEM. We found that the molar ratio Fe/Si ≤ 0.01 leads to the formation of stable, mostly isolated Fe3+ sites in the silica matrix, while higher iron content Fe/Si > 0.01 leads to the formation of oligonuclear iron clusters. STEM imaging and EELS techniques confirmed the existence of these clusters. Their size ranges from one to a few nanometers, and they are unevenly distributed throughout the material. The size of the clusters was also found to be similar, regardless of the nominal concentration of iron (Fe/Si = 0.02 and Fe/Si = 0.05. From the results obtained from sample characterization and model catalytic tests, we established that the enhanced activity of FeKIL-2 with the optimal Fe/Si = 0.01 ratio can be attributed to: (1 the optimal concentration of stable isolated Fe3+ in the silica support; and (2 accelerated diffusion of the reactants in disordered mesoporous silica (FeKIL-2 when compared to ordered mesoporous silica materials (FeSBA-15, FeMCM-41.

  6. Machinability of advanced materials

    CERN Document Server

    Davim, J Paulo

    2014-01-01

    Machinability of Advanced Materials addresses the level of difficulty involved in machining a material, or multiple materials, with the appropriate tooling and cutting parameters.  A variety of factors determine a material's machinability, including tool life rate, cutting forces and power consumption, surface integrity, limiting rate of metal removal, and chip shape. These topics, among others, and multiple examples comprise this research resource for engineering students, academics, and practitioners.

  7. Mesoporous Silica from Rice Husk Ash

    Directory of Open Access Journals (Sweden)

    V.R. Shelke

    2011-01-01

    Full Text Available Mesoporous silica is used as a raw material in several areas: in preparation of catalysts, in inks, as a concrete hardening accelerator, as a component of detergents and soaps, as a refractory constituent etc. Sodium silicate is produced by reacting rice hull ash (RHA with aqueous NaOH and silica is precipitated from the sodium silicate by acidification. In the present work, conversion of about 90% of silica contained in RHA into sodium silicate was achieved in an open system at temperatures of about 100 °C. The results showed that silica obtained from RHA is mesoporous, has a large surface area and small particle size. Rice Husk is usually mixed with coal and this mixture is used for firing boilers. The RHA therefore, usually contains carbon particles. Activated carbon embedded on silica has been prepared using the carbon already present in RHA. This carbon shows good adsorption capacity. ©2010 BCREC UNDIP. All rights reserved(Received: 25th April 2010, Revised: 17th June 2010, Accepted: 24th June 2010[How to Cite: V.R. Shelke, S.S. Bhagade, S.A. Mandavgane. (2010. Mesoporous Silica from Rice Husk Ash. Bulletin of Chemical Reaction Engineering and Catalysis, 5 (2: 63-67. doi:10.9767/bcrec.5.2.793.63-67][DOI: http://dx.doi.org/10.9767/bcrec.5.2.793.63-67

  8. Structured mesoporous Mn, Fe, and Co oxides: Synthesis, physicochemical, and catalytic properties

    Science.gov (United States)

    Maerle, A. A.; Karakulina, A. A.; Rodionova, L. I.; Moskovskaya, I. F.; Dobryakova, I. V.; Egorov, A. V.; Romanovskii, B. V.

    2014-02-01

    Structured mesoporous Mn, Fe, and Co oxides are synthesized using "soft" and "hard" templates; the resulting materials are characterized by XRD, SEM, TEM, BET, and TG. It is shown that in the first case, the oxides have high surface areas of up to 450 m2/g that are preserved after calcination of the material up to 300°C. Even though, the surface area of the oxides prepared by the "hard-template" method does not exceed 100 m2/g; it is, however, thermally stable up to 500°C. Catalytic activity of mesoporous oxides in methanol conversion was found to depend on both the nature of the transition metal and the type of template used in synthesis.

  9. Magnetic ordered mesoporous Fe3O4/CeO2 composites with synergy of adsorption and Fenton catalysis

    Science.gov (United States)

    Li, Keyan; Zhao, Yongqin; Song, Chunshan; Guo, Xinwen

    2017-12-01

    Magnetic Fe3O4/CeO2 composites with highly ordered mesoporous structure and large surface area were synthesized by impregnation-calcination method, and the mesoporous CeO2 as support was synthesized via the hard template approach. The composition, morphology and physicochemical properties of the materials were characterized by XRD, SEM, TEM, XPS, Raman spectra and N2 adsorption/desorption analysis. The mesoporous Fe3O4/CeO2 composite played a dual-function role as both adsorbent and Fenton-like catalyst for removal of organic dye. The methylene blue (MB) removal efficiency of mesoporous Fe3O4/CeO2 was much higher than that of irregular porous Fe3O4/CeO2. The superior adsorption ability of mesoporous materials was attributed to the abundant oxygen vacancies on the surface of CeO2, high surface area and ordered mesoporous channels. The good oxidative degradation resulted from high Ce3+ content and the synergistic effect between Fe and Ce. The mesoporous Fe3O4/CeO2 composite presented low metal leaching (iron 0.22 mg L-1 and cerium 0.63 mg L-1), which could be ascribed to the strong metal-support interactions for dispersion and stabilization of Fe species. In addition, the composite can be easily separated from reaction solution with an external magnetic field due to its magnetic property, which is important to its practical applications.

  10. Advanced infrared optically black baffle materials

    International Nuclear Information System (INIS)

    Seals, R.D.; Egert, C.M.; Allred, D.D.

    1990-01-01

    Infrared optically black baffle surfaces are an essential component of many advanced optical systems. All internal surfaces in advanced infrared optical sensors that require stray light management to achieve resolution are of primary concern in baffle design. Current industrial materials need improvements to meet advanced optical sensor systems requirements for optical, survivability, and endurability. Baffles are required to survive and operate in potentially severe environments. Robust diffuse-absorptive black surfaces, which are thermally and mechanically stable to threats of x-ray, launch, and in-flight maneuver conditions, with specific densities to allow an acceptable weight load, handleable during assembly, cleanable, and adaptive to affordable manufacturing, are required as optical baffle materials. In this paper an overview of recently developed advanced infrared optical baffle materials, requirements, manufacturing strategies, and the Optics MODIL (Manufacturing Operations Development and Integration Laboratory) Advanced Baffle Program are discussed

  11. Synthesis and characterization of mesoporous ceria/alumina nanocomposite materials via mixing of the corresponding ceria and alumina gel precursors.

    Science.gov (United States)

    Khalil, Kamal M S

    2007-03-01

    Mesoporous ceria/alumina, CeO(2)/Al(2)O(3), composites containing 10, 20 and 30% (w/w) ceria were prepared by a novel gel mixing method. In the method, ceria gel (formed via hydrolysis of ammonium cerium(IV) nitrate by aqueous ammonium carbonate solution) and alumina gel (formed via controlled hydrolysis of aluminum tri-isopropoxide) were mixed together. The mixed gel was subjected to subsequent drying and calcination for 3 h at 400, 600, 800 and 1000 degrees C. The uncalcined (dried at 110 degrees C) and the calcined composites were investigated by different techniques including TGA, DSC, FTIR, XRD, SEM and nitrogen adsorption/desorption isotherms. Results indicated that composites calcined for 3 h at 800 degrees C mainly kept amorphous alumina structure and gamma-alumina formed only upon calcinations at 1000 degrees C. On the other hand, CeO(2) was found to crystallize in the common ceria, cerinite, phase and it kept this structure over the entire calcination range (400-1000 degrees C). Therefore, high surface areas, stable surface textures, and non-aggregated nano-sized ceria dispersions were obtained. A systematic texture change based on ceria ratio was observed, however in all cases mesoporous composite materials exposing thermally stable texture and structure were obtained. The presented method produces composite ceria/alumina materials that suit different applications in the field of catalysis and membranes technology, and throw some light on physicochemical factors that determine textural morphology and thermal stability of such important composite.

  12. Smart multifunctional drug delivery towards anticancer therapy harmonized in mesoporous nanoparticles

    Science.gov (United States)

    Baek, Seonmi; Singh, Rajendra K.; Khanal, Dipesh; Patel, Kapil D.; Lee, Eun-Jung; Leong, Kam W.; Chrzanowski, Wojciech; Kim, Hae-Won

    2015-08-01

    Nanomedicine seeks to apply nanoscale materials for the therapy and diagnosis of diseased and damaged tissues. Recent advances in nanotechnology have made a major contribution to the development of multifunctional nanomaterials, which represents a paradigm shift from single purpose to multipurpose materials. Multifunctional nanomaterials have been proposed to enable simultaneous target imaging and on-demand delivery of therapeutic agents only to the specific site. Most advanced systems are also responsive to internal or external stimuli. This approach is particularly important for highly potent drugs (e.g. chemotherapeutics), which should be delivered in a discreet manner and interact with cells/tissues only locally. Both advances in imaging and precisely controlled and localized delivery are critically important in cancer treatment, and the use of such systems - theranostics - holds great promise to minimise side effects and boost therapeutic effectiveness of the treatment. Among others, mesoporous silica nanoparticles (MSNPs) are considered one of the most promising nanomaterials for drug delivery. Due to their unique intrinsic features, including tunable porosity and size, large surface area, structural diversity, easily modifiable chemistry and suitability for functionalization, and biocompatibility, MSNPs have been extensively utilized as multifunctional nanocarrier systems. The combination or hybridization with biomolecules, drugs, and other nanoparticles potentiated the ability of MSNPs towards multifunctionality, and even smart actions stimulated by specified signals, including pH, optical signal, redox reaction, electricity and magnetism. This paper provides a comprehensive review of the state-of-the-art of multifunctional, smart drug delivery systems centered on advanced MSNPs, with special emphasis on cancer related applications.

  13. Eco-Friendly Synthesis of Nitrogen-Doped Mesoporous Carbon for Supercapacitor Application

    Directory of Open Access Journals (Sweden)

    Georges Moussa

    2018-03-01

    Full Text Available A sustainable and simple synthesis procedure involving the co-assembly of green phenolic resin and amphiphilic polymer template in water/ethanol mixture at room temperature to synthesize nitrogen doped mesoporous carbon is reported herein. Guanine is proposed as a novel nitrogen-based precursor which is able to create H-bondings both with the phenolic resin and the template allowing the formation of mesoporous carbons with nitrogen atoms uniformly distributed in their framework. The influence of the synthesis procedure, template amount and annealing temperature on the carbon textural properties, structure and surface chemistry were investigated. For several conditions, carbon materials with ordered pore size and high nitrogen content (up to 10.6 at % could be achieved. The phase separation procedure combined with optimal amount of template favor the formation of ordered mesoporous carbons with higher specific surface area while the increase in the temperature induces a decrease in the surface area and amount of heteroatoms (N and O. The electrochemical performances as electrode in supercapacitors were evaluated in acidic medium and the capacitance was closely related to the material conductivity and surface chemistry.

  14. Exoelectrogenic biofilm as a template for sustainable formation of a catalytic mesoporous structure

    KAUST Repository

    Yates, Matthew D.

    2014-06-04

    © 2014 Wiley Periodicals, Inc. Actively respiring biofilms of Geobacter sulfurreducens were used as a biotemplate to form a palladium mesoporous layer directly on an electrode surface. Cells and proteins within the biofilm acted as the reductant and stabilizer to facilitate the reduction, dispersion, and attachment of palladium nanoparticles to the electrode surface without using synthetic chemicals. © 2014 Wiley Periodicals, Inc. Mesoporous structures can increase catalytic activity by maximizing the ratio of surface area to volume, but current synthesis techniques utilize expensive polymers and toxic chemicals. A Geobacter sulfurreducens biofilm was used as a sustainable template to form mesoporous Pd structures while eliminating the need for synthetic chemicals. The bulk of the biofilm material was removed by thermal treatments after nanoparticle formation, producing a catalytic Pd mesoporous (pore size 9.7±0.1nm) structure attached to the graphite electrode with a 1.5-2μm thick backbone composed of nanoparticles (~200nm). A control electrode electrochemically plated with Pd in the absence of a biofilm exhibited a variable planar Pd base (~0.5-3μm thick) with sporadic Pd extrusions (~2μm across, 1-5μm tall) from the surface. The biotemplated mesoporous structure produced 15-20% higher stable current densities during H2 oxidation tests than the electrochemically plated control electrode, even though 30% less Pd was present in the biotemplated catalyst. These results indicate that electroactive biofilms can be used as a sustainable base material to produce nanoporous structures without the need for synthetic polymers. Biotechnol. Bioeng. 2014;111: 2349-2354.

  15. Exoelectrogenic biofilm as a template for sustainable formation of a catalytic mesoporous structure

    KAUST Repository

    Yates, Matthew D.; Cusick, Roland D.; Ivanov, Ivan; Logan, Bruce E.

    2014-01-01

    © 2014 Wiley Periodicals, Inc. Actively respiring biofilms of Geobacter sulfurreducens were used as a biotemplate to form a palladium mesoporous layer directly on an electrode surface. Cells and proteins within the biofilm acted as the reductant and stabilizer to facilitate the reduction, dispersion, and attachment of palladium nanoparticles to the electrode surface without using synthetic chemicals. © 2014 Wiley Periodicals, Inc. Mesoporous structures can increase catalytic activity by maximizing the ratio of surface area to volume, but current synthesis techniques utilize expensive polymers and toxic chemicals. A Geobacter sulfurreducens biofilm was used as a sustainable template to form mesoporous Pd structures while eliminating the need for synthetic chemicals. The bulk of the biofilm material was removed by thermal treatments after nanoparticle formation, producing a catalytic Pd mesoporous (pore size 9.7±0.1nm) structure attached to the graphite electrode with a 1.5-2μm thick backbone composed of nanoparticles (~200nm). A control electrode electrochemically plated with Pd in the absence of a biofilm exhibited a variable planar Pd base (~0.5-3μm thick) with sporadic Pd extrusions (~2μm across, 1-5μm tall) from the surface. The biotemplated mesoporous structure produced 15-20% higher stable current densities during H2 oxidation tests than the electrochemically plated control electrode, even though 30% less Pd was present in the biotemplated catalyst. These results indicate that electroactive biofilms can be used as a sustainable base material to produce nanoporous structures without the need for synthetic polymers. Biotechnol. Bioeng. 2014;111: 2349-2354.

  16. Inorganic Nanocrystals Functionalized Mesoporous Silica Nanoparticles: Fabrication and Enhanced Bio-applications

    Directory of Open Access Journals (Sweden)

    Tiancong Zhao

    2017-12-01

    Full Text Available Mesoporous SiO2 nanoparticles (MSNs are one of the most promising materials for bio-related applications due to advantages such as good biocompatibility, tunable mesopores, and large pore volume. However, unlike the inorganic nanocrystals with abundant physical properties, MSNs alone lack functional features. Thus, they are not sufficiently suitable for bio-applications that require special functions. Consequently, MSNs are often functionalized by incorporating inorganic nanocrystals, which provide a wide range of intriguing properties. This review focuses on inorganic nanocrystals functionalized MSNs, both their fabrication and bio-applications. Some of the most utilized methods for coating mesoporous silica (mSiO2 on nanoparticles were summarized. Magnetic, fluorescence and photothermal inorganic nanocrystals functionalized MSNs were taken as examples to demonstrate the bio-applications. Furthermore, asymmetry of MSNs and their effects on functions were also highlighted.

  17. Influence of Micropore and Mesoporous in Activated Carbon Air-cathode Catalysts on Oxygen Reduction Reaction in Microbial Fuel Cells

    International Nuclear Information System (INIS)

    Liu, Yi; Li, Kexun; Ge, Baochao; Pu, Liangtao; Liu, Ziqi

    2016-01-01

    In this study, carbon samples with different micropore and mesoporous structures are prepared as air-cathode catalyst layer to explore the role of pore structure on oxygen reduction reaction. The results of linear sweep voltammetry and power density show that the commercially-produced activated carbon (CAC) has the best electrochemical performance, and carbon samples with only micropore or mesoporous show lower performance than CAC. Nitrogen adsorption-desorption isotherms analysis confirm that CAC has highest surface area (1616 m 2 g −1 ) and a certain amount of micropore and mesoporous. According to Tafel plot and rotating disk electrode, CAC behaves the highest kinetic activity and electron transfer number, leading to the improvement of oxygen reduction reaction. The air permeability test proves that mesoporous structure enhance oxygen permeation. Carbon materials are also analyzed by In situ Fourier Transform Infrared Spectroscopy and H 2 temperature programmed reduction, which indicate that micropore provide active sites for catalysis. In a word, micropore and mesoporous together would improve the electrochemical performance of carbon materials.

  18. Mesoporous block-copolymer nanospheres prepared by selective swelling.

    Science.gov (United States)

    Mei, Shilin; Jin, Zhaoxia

    2013-01-28

    Block-copolymer (BCP) nanospheres with hierarchical inner structure are of great interest and importance due to their possible applications in nanotechnology and biomedical engineering. Mesoporous BCP nanospheres with multilayered inner channels are considered as potential drug-delivery systems and templates for multifunctional nanomaterials. Selective swelling is a facile pore-making strategy for BCP materials. Herein, the selective swelling-induced reconstruction of BCP nanospheres is reported. Two poly(styrene-block-2-vinylpyridine) (PS-b-P2VP) samples with different compositions (PS(23600)-b-P2VP(10400) and PS(27700)-b-P2VP(4300)) are used as model systems. The swelling reconstruction of PS-b-P2VP in ethanol, 1-pyrenebutyric acid (PBA)/ethanol, or HCl/ethanol (pH = 2.61) is characterized by scanning electron microscopy and transmission electron microscopy. It is observed that the length of the swellable block in BCP is a critical factor in determining the behavior and nanostructures of mesoporous BCP nanospheres in selective swelling. Moreover, it is demonstrated that the addition of PBA modifies the swelling structure of PS(23600)-b-P2VP(10400) through the interaction between PBA and P2VP blocks, which results in BCP nanospheres with patterned pores of controllable size. The patterned pores can be reversibly closed by annealing the mesoporous BCP nanospheres in different selective solvents. The controllable and reversible open/closed reconstruction of BCP nanospheres can be used to enclose functional nanoparticles or drugs inside the nanospheres. These mesoporous BCP nanospheres are further decorated with gold nanoparticles by UV photoreduction. The enlarged decoration area in mesoporous BCP nanospheres will enhance their activity and sensitivity as a catalyst and electrochemical sensor. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A mesoporous WO3−X/graphene composite as a high-performance Li-ion battery anode

    International Nuclear Information System (INIS)

    Liu, Fei; Kim, Jong Gu; Lee, Chul Wee; Im, Ji Sun

    2014-01-01

    Graphical abstract: The highly flexible and conductive graphene layer can enhance electron transfer, protect metal oxides against disintegration and aggregation and buffer the strain induced by volume expansion during cycles. The mesoporous surface layer provides an open network for Li+ diffusion. - Highlights: • Novel cocktail effects of 2D mesoporous WO 3−X /graphene for lithium ion battery. • New approach for lithium ion battery by easy and unique synthesis method. • Mechanism study with proper data for understanding a reaction on anode surface. - Abstract: A novel mesoporous WO 3−X /graphene composite was developed. This material allowed rapid electron and Li + ion diffusion when used as a Li-ion battery (LIB) anode material. Remarkably, the graphene support protected WO 3−X from changing volume during the electrochemical cycling process; this process generally induces capacity loss. The current work describes a high-performance anode material for LIB that has highly dense WO 3−X , as well as high capacity, rate capability and stability

  20. Advances in laser ablation of materials

    International Nuclear Information System (INIS)

    Singh, R.K.; Lowndes, D.H.; Chrisey, D.B.; Fogarassy, E.; Narayan, J.

    1998-01-01

    The symposium, Advances in Laser Ablation of Materials, was held at the 1998 MRS Spring Meeting in San Francisco, California. The papers in this symposium illustrate the advances in pulsed laser ablation for a wide variety of applications involving semiconductors, superconductors, metals, ceramics, and polymers. In particular, advances in the deposition of oxides and related materials are featured. Papers dealing with both fundamentals and the applications of laser ablation are presented. Topical areas include: fundamentals of ablation and growth; in situ diagnostics and nanoscale synthesis advances in laser ablation techniques; laser surface processing; pulsed laser deposition of ferroelectric, magnetic, superconducting and optoelectronic thin films; and pulsed laser deposition of carbon-based and polymeric materials. Sixty papers have been processed separately for inclusion on the data base

  1. Type I Collagen and Strontium-Containing Mesoporous Glass Particles as Hybrid Material for 3D Printing of Bone-Like Materials.

    Science.gov (United States)

    Montalbano, Giorgia; Fiorilli, Sonia; Caneschi, Andrea; Vitale-Brovarone, Chiara

    2018-04-28

    Bone tissue engineering offers an alternative promising solution to treat a large number of bone injuries with special focus on pathological conditions, such as osteoporosis. In this scenario, the bone tissue regeneration may be promoted using bioactive and biomimetic materials able to direct cell response, while the desired scaffold architecture can be tailored by means of 3D printing technologies. In this context, our study aimed to develop a hybrid bioactive material suitable for 3D printing of scaffolds mimicking the natural composition and structure of healthy bone. Type I collagen and strontium-containing mesoporous bioactive glasses were combined to obtain suspensions able to perform a sol-gel transition under physiological conditions. Field emission scanning electron microscopy (FESEM) analyses confirmed the formation of fibrous nanostructures homogeneously embedding inorganic particles, whereas bioactivity studies demonstrated the large calcium phosphate deposition. The high-water content promoted the strontium ion release from the embedded glass particles, potentially enhancing the osteogenic behaviour of the composite. Furthermore, the suspension printability was assessed by means of rheological studies and preliminary extrusion tests, showing shear thinning and fast material recovery upon deposition. In conclusion, the reported results suggest that promising hybrid systems suitable for 3D printing of bioactive scaffolds for bone tissue engineering have been developed.

  2. Ultrathin mesoporous NiCo{sub 2}O{sub 4} nanosheets supported on Ni foam as advanced electrodes for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Changzhou [Anhui Key Laboratory of Metal Materials and Processing, School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243002 (China); School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive (Singapore); Li, Jiaoyang; Hou, Linrui [Anhui Key Laboratory of Metal Materials and Processing, School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243002 (China); Zhang, Xiaogang; Shen, Laifa [College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 (China); Lou, Xiong Wen [School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive (Singapore)

    2012-11-07

    A facile two-step method is developed for large-scale growth of ultrathin mesoporous nickel cobaltite (NiCo{sub 2}O{sub 4}) nanosheets on conductive nickel foam with robust adhesion as a high-performance electrode for electrochemical capacitors. The synthesis involves the co-electrodeposition of a bimetallic (Ni, Co) hydroxide precursor on a Ni foam support and subsequent thermal transformation to spinel mesoporous NiCo{sub 2}O{sub 4}. The as-prepared ultrathin NiCo{sub 2}O{sub 4} nanosheets with the thickness of a few nanometers possess many interparticle mesopores with a size range from 2 to 5 nm. The nickel foam supported ultrathin mesoporous NiCo{sub 2}O{sub 4} nanosheets promise fast electron and ion transport, large electroactive surface area, and excellent structural stability. As a result, superior pseudocapacitive performance is achieved with an ultrahigh specific capacitance of 1450 F g{sup -1}, even at a very high current density of 20 A g{sup -1}, and excellent cycling performance at high rates, suggesting its promising application as an efficient electrode for electrochemical capacitors. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Ordered hierarchical mesoporous/microporous carbon derived from mesoporous titanium-carbide/carbon composites and its electrochemical performance in supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hai-Jing; Wang, Jie; Wang, Cong-Xiao; Xia, Yong-Yao [Department of Chemistry and Shanghai Key Laboratory of Molecular, Catalysis and Innovative Materials, Institute of New Energy, Fudan University, Shanghai (China)

    2011-11-15

    Novel ordered hierarchical mesoporous/microporous carbon (OHMMC) derived from mesoporous titanium-carbide/carbon composites was prepared for the first time by synthesizing ordered mesoporous nanocrystalline titanium-carbide/carbon composites, followed by chlorination of titanium carbides. The mesostructure and microstructure can be conveniently tuned by controlling the TiC contents of mesoporous TiC/C composite precursor, and chlorination temperature. By optimal condition, the OHMMC has a high surface area (1917 m{sup 2}g{sup -1}), large pore volumes (1.24 cm{sup 3}g{sup -1}), narrow mesopore-size distributions (centered at about 3 nm), and micropore size of 0.69 and 1.25 nm, and shows a great potential as electrode for supercapacitor applications: it exhibits a high capacitance of 146 Fg{sup -1} in noaqueous electrolyte and excellent rate capability. The ordered mesoporous channel pores are favorable for retention and immersion of the electrolyte, providing a more favorable path for electrolyte penetration and transportation to achieve promising rate capability performance. Meanwhile, the micropores drilled on the mesopore-walls can increase the specific surface area to provide more sites for charge storage. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Preparation of mesoporous silica films SBA-15 over different substrates

    International Nuclear Information System (INIS)

    Campos, V.O.; Sousa, E.M.B. de; Macedo, W.A.A.

    2010-01-01

    Mesoporous materials have been target of frequent interest due to its wide application possibilities, for example development of gas sensors, catalysis, molecules transportation, pharmaceuticals release, synthesis of auto-organized nanostructures, among others. The possibilities of application are enhanced when such materials are disposed in the form of thin and ultrathin films. In this work the preparation of mesoporous SBA-15 silica films is explored by means of the dipcoating technique of a sol-gel on different substrates (glass slides, stainless steel, copper), using the surfactant poly(ethylene glycol)-block-poly(propylene glycol)- block-poly(ethylene glycol), known as P123, a block copolymer. Synthesis parameters surfactant concentration, aging time and temperature were investigated. In this work we present the morphological and structural characterization of the prepared films, which were obtained using atomic force microscopy and x-ray fluorescence and diffraction. (author)

  5. Advanced energy materials (Preface)

    Science.gov (United States)

    Titus, Elby; Ventura, João; Araújo, João Pedro; Campos Gil, João

    2017-12-01

    Advances in material science make it possible to fabricate the building blocks of an entirely new generation of hierarchical energy materials. Recent developments were focused on functionality and areas connecting macroscopic to atomic and nanoscale properties, where surfaces, defects, interfaces and metastable state of the materials played crucial roles. The idea is to combine both, the top-down and bottom-up approach as well as shape future materials with a blend of both the paradigms.

  6. Soft-Template Synthesis of Mesoporous Anatase TiO₂ Nanospheres and Its Enhanced Photoactivity.

    Science.gov (United States)

    Li, Xiaojia; Zou, Mingming; Wang, Yang

    2017-11-10

    Highly crystalline mesoporous anatase TiO₂ nanospheres with high surface area (higher than P25 and anatase TiO₂) are prepared by a soft-template method. Despite the high specific surface area, these samples have three times lower equilibrium adsorption (<2%) than Degussa P25. The rate constant of the mesoporous anatase TiO₂ (0.024 min -1 ) reported here is 364% higher than that of P25 (0.0066 min -1 ), for the same catalytic loading. The results of oxidation-extraction photometry using several reactive oxygen species (ROS) scavengers indicated that mesoporous anatase TiO₂ generates more ROS than P25 under UV-light irradiation. This significant improvement in the photocatalytic performance of mesoporous spherical TiO₂ arises from the following synergistic effects in the reported sample: (i) high surface area; (ii) improved crystallinity; (iii) narrow pore wall thicknesses (ensuring the rapid migration of photogenerated carriers to the surface of the material); and (iv) greater ROS generation under UV-light.

  7. Mesoporous silica particles modified with graphitic carbon: interaction with human red blood cells and plasma proteins

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Diego Stefani Teodoro; Franqui, Lidiane Silva; Bettini, Jefferson; Strauss, Mathias, E-mail: diego.martinez@lnnano.cnpem.br [Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP (Brazil); Damasceno, Joao Paulo Vita; Mazali, Italo Odone [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2016-07-01

    Full text: In this work the interaction of the mesoporous silica particles (SBA-15, ∼700 nm) modified with graphitic carbon (SBA-15/C) on human red blood cells (hemolysis) and plasma proteins (protein corona formation) is studied. XPS and CHN analysis showed that the carbon content on the SBA-15/C samples varied from 2 to 10% and was tuned by the functionalization step. The formed carbon structures where associated to graphitic nanodomains coating the pores surface as verified by Raman spectroscopy and {sup 13}C NMR. Advanced TEM/EELS analysis showed that the carbon structures are distributed along the SBA-15 mesopores. SAXS and textural analyses were used to confirm that the porous structure of the silica support is kept after the modification procedure and to calculate the number of graphitic carbon stacked layers coating the mesopores. After incubation of SBA-15 with human red blood cells (RBCs), it was observed a dose-dependent hemolytic effect, probably, due to binding of the material silanol-rich surface to the phosphatidylcholine molecules from the RBC membrane. The graphitic carbon modifications have mitigated this effect, indicating that the graphitic carbon coating protected the silanol groups of the particle surface hindering the hemolysis. Considering the protein corona formation, selective biomolecular interaction of proteins was observed for the different materials using gel electrophoresis (SDS-PAGE) analysis. Besides, graphitic carbon modification decreased the amount of proteins on the corona. Together, the in vitro hemolysis and protein corona assays are promising biological models to understand the influence of silica surface functionalization on their bionano-interactions. Finally, our work contributes to the development of fundamental research on such nanomaterials chemistry in the emerging field of nanobioscience and nanotoxicology. (author)

  8. Nitrogen-enriched carbon with extremely high mesoporosity and tunable mesopore size for high-performance supercapacitors

    Science.gov (United States)

    Yang, Xiaoqing; Li, Chengfei; Fu, Ruowen

    2016-07-01

    As one of the most potential electrode materials for supercapacitors, nitrogen-enriched nanocarbons are still facing challenge of constructing developed mesoporosity for rapid mass transportation and tailoring their pore size for performance optimization and expanding their application scopes. Herein we develop a series of nitrogen-enriched mesoporous carbon (NMC) with extremely high mesoporosity and tunable mesopore size by a two-step method using silica gel as template. In our approach, mesopore size can be easily tailored from 4.7 to 35 nm by increasing the HF/TEOS volume ratio from 1/100 to 1/4. The NMC with mesopores of 6.2 nm presents the largest mesopore volume, surface area and mesopore ratio of 2.56 cm3 g-1, 1003 m2 g-1 and 97.7%, respectively. As a result, the highest specific capacitance of 325 F g-1 can be obtained at the current density of 0.1 A g-1, which can stay over 88% (286 F g-1) as the current density increases by 100 times (10 A g-1). This approach may open the doors for preparation of nitrogen-enriched nanocarbons with desired nanostructure for numerous applications.

  9. Aminopropyl-functionalized ethane-bridged periodic mesoporous organosilica spheres: preparation and application in liquid chromatography.

    Science.gov (United States)

    Li, Chun; Di, Bin; Hao, Weiqiang; Yan, Fang; Su, Mengxiang

    2011-01-21

    A synthetic approach for synthesizing spherical aminopropyl-functionalized ethane-bridged periodic mesoporous organosilicas (APEPMOs) is reported. The mesoporous material was prepared by a one-step co-condensation of 1,2-bis(triethoxysilyl)ethane (BTSE) and 3-aminopropyltriethoxysilane (APTES) using cetyltrimethylammonium chlorine (C(18)TACl) as a template with the aid of a co-solvent (methanol) in basic medium. The APEPMOs were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), powder X-ray diffraction (XRD), nitrogen sorption measurement, Fourier transform infrared spectroscopy (FT-IR) and elemental analysis. It was shown that this material exhibited spherical morphology, ordered cubic mesostructure and good mechanical strength. The APEPMOs were tested as a potential stationary phase for liquid chromatography (LC) because the column exhibited reduced back pressure. Moreover, they exhibited good chemical stability in basic mobile phase, which can be ascribed to the ethane groups in the mesoporous framework. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Advances in electronic materials

    CERN Document Server

    Kasper, Erich; Grimmeiss, Hermann G

    2008-01-01

    This special-topic volume, Advances in Electronic Materials, covers various fields of materials research such as silicon, silicon-germanium hetero-structures, high-k materials, III-V semiconductor alloys and organic materials, as well as nano-structures for spintronics and photovoltaics. It begins with a brief summary of the formative years of microelectronics; now the keystone of information technology. The latter remains one of the most important global technologies, and is an extremely complex subject-area. Although electronic materials are primarily associated with computers, the internet

  11. Synthesis of mesoporous TiO2 in aqueous alcoholic medium and evaluation of its photocatalytic activity

    International Nuclear Information System (INIS)

    Kumaresan, L.; Prabhu, A.; Palanichamy, M.; Murugesan, V.

    2011-01-01

    Research highlights: → Mesoporous TiO 2 synthesized using P123 as soft template in sol-gel method. → Nanoparticle aggregates are better for photocatalytic activity than free nanoparticles. → Particle to particle transport of electrons in the conduction band of aggregates are important factor. - Abstract: Mesoporous TiO 2 was synthesized using triblock copolymer as the structure directing template in ethanol/water, isopropanol/water or 1-butanol/water medium by sol-gel method. The presence of intense peak at low angle in the XRD patterns confirmed the orderly arrangement of mesopores in the material. Among the three different alcohols, ethanol had influenced better in controlling the particle size than others. The enhanced specific surface area also revealed the formation of mesopores. Aggregates of particles were clearly seen in the TEM images and the size of the particles was approximately 10 nm. The photocatalytic activity of mesoporous TiO 2 was evaluated using aqueous alachlor as a model pollutant. The activity of mesoporous TiO 2 synthesized in ethanol/water mole ratio of 50 was higher than other mesoporous TiO 2 and commercial TiO 2 (Degussa P-25). The transport of excited electrons from one particle to its neighboring nanoparticles of mesoporous TiO 2 is suggested to be the cause for enhanced photocatalytic activity.

  12. Enhanced thermal properties of novel shape-stabilized PEG composite phase change materials with radial mesoporous silica sphere for thermal energy storage

    OpenAIRE

    Min, Xin; Fang, Minghao; Huang, Zhaohui; Liu, Yan?gai; Huang, Yaoting; Wen, Ruilong; Qian, Tingting; Wu, Xiaowen

    2015-01-01

    Radial mesoporous silica (RMS) sphere was tailor-made for further applications in producing shape-stabilized composite phase change materials (ss-CPCMs) through a facile self-assembly process using CTAB as the main template and TEOS as SiO2 precursor. Novel ss-CPCMs composed of polyethylene glycol (PEG) and RMS were prepared through vacuum impregnating method. Various techniques were employed to characterize the structural and thermal properties of the ss-CPCMs. The DSC results indicated that...

  13. Hierarchical zeolites: Enhanced utilisation of microporous crystals in catalysis by advances in materials design

    DEFF Research Database (Denmark)

    Perez-Ramirez, Javier; Christensen, Claus H.; Egeblad, Kresten

    2008-01-01

    The introduction of synthetic zeolites has led to a paradigm shift in catalysis, separations, and adsorption processes, due to their unique properties such as crystallinity, high-surface area, acidity, ion-exchange capacity, and shape-selective character. However, the sole presence of micropores...... the properties of the resulting materials and the catalytic function. We particularly dwell on the exciting field of hierarchical zeolites, which couple in a single material the catalytic power of micropores and the facilitated access and improved transport consequence of a complementary mesopore network...

  14. Novel lanthanide doped micro- and mesoporous solids. Characterization of ion-host-interactions, species distribution and luminescence properties using time-resolved luminescence spectroscopy

    International Nuclear Information System (INIS)

    Gessner, Andre

    2010-12-01

    In this work lanthanide-doped microporous zeolites, microporous-mesoporous hybrid materials and mesoporous silicates were investigated regarding their luminescence properties and the ion-host-interactions using time-resolved luminescence spectroscopy. Thereby, time-resolved emission spectra (TRES) provide information in the wavelength and time domain. For the analysis of the TRES a broad set of analytic methods was applied and thus a corresponding ''toolbox'' developed. Fitting of the luminescence decays was performed with a discrete number of exponentials and supported by luminescence decay times distributions. Time-resolved area normalized emission spectra (TRANES), an advancement of TRES, could be used for the determination of the number of emissive lanthanide species in porous materials for the first time. Calculation of the decay-associated spectra (DAS) allowed the correlation of spectral information with luminescence decay times and thus delivered the luminescence spectra of the different europium species. For europium(III) we could use in addition the time-dependent asymmetry ratio and spectral evolution of the 5 D 0 - 7 F 0 -transition with time to obtain further information about the distribution of the lanthanide ions in the host material. Luminescence decay times and spectra allowed conclusions on the number of OH-oscillators in and the symmetry of the first coordination sphere. For the microporous and microporous-mesoporous materials were found different lanthanide species, which were characterized by the above mentioned methods. These lanthanide species can be found on different positions in the host material. One position is located deep in the pore system. Here, lanthanide ions are hardly accessible for water and mainly coordinated by framework oxygens. This results in long luminescence decay times and distorted coordination spheres. The second position can be found near or on the outer surface or in the mesopores. Lanthanide ions located here, are

  15. Lanthanide Selective Sorbents: Self-Assembled Monolayers on Mesoporous Supports (SAMMS)

    Energy Technology Data Exchange (ETDEWEB)

    Fryxell, Glen E.; Wu, Hong; Lin, Yuehe; Shaw, Wendy J.; Birnbaum, Jerome C.; Linehan, John C.; Nie, Zimin; Kemner, K. M.; Kelly, Shelley

    2004-11-01

    Through the marriage of mesoporous ceramics with self-assembled monolayer chemistry, the genesis of a powerful new class of environmental sorbent materials has been realized. By coating the mesoporous ceramic backbone with a monolayer terminated with a lanthanide-specific ligand, it is possible to couple high lanthanide binding affinity with the high loading capacity (resulting from the extremely high surface area of the support). This lanthanide-specific ligand field is created by pairing a ''hard'' anionic Lewis base with a suitable synergistic ligand, in a favorable chelating geometry. Details of the synthesis, characterization, lanthanide binding studies, binding kinetics, competition experiments and sorbent regeneration studies are summarized

  16. Lanthanide Selective Sorbents: Self-Assembled Monolayers on Mesoporous Supports (SAMMS)

    Energy Technology Data Exchange (ETDEWEB)

    Fryxell, Glen E.; Wu, Hong; Lin, Yuehe; Shaw, Wendy J.; Birnbaum, Jerome C.; Linehan, John C.; Nie, Zimin; Kemner, Kenneth M.; Kelly, Shelley

    2004-11-01

    Through the marriage of mesoporous ceramics with self-assembled monolayer chemistry, the genesis of a powerful new class of environmental sorbent materials has been realized. By coating the mesoporous ceramic backbone with a monolayer terminated with a lanthanide-specific ligand, it is possible to couple high lanthanide binding affinity with the high loading capacity (resulting from the extremely high surface area of the support). This lanthanide-specific ligand field is created by pairing a “hard” anionic Lewis base with a suitable synergistic ligand, in a favorable chelating geometry. Details of the synthesis, characterization, lanthanide binding studies, binding kinetics, competition experiments and sorbent regeneration studies are summarized.

  17. Mesoporous carbon anchored with SnS2 nanosheets as an advanced anode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Li, Jianping; Wu, Ping; Lou, Feijian; Zhang, Peng; Tang, Yawen; Zhou, Yiming; Lu, Tianhong

    2013-01-01

    Highlights: •SnS 2 nanosheets densely and uniformly anchored on 3D mesoporous carbon matrix. •Unique structural characteristics of both 2D nanosheet and 3D porous carbon matrix. •Markedly enhanced lithium storage capability by virtue of its structure superiority. -- Abstract: This paper reports a novel type of nanohybrid, mesoporous carbon anchored with SnS 2 nanosheets (MC-SnS 2 NSs), which integrates the structural characteristics of both two-dimensional (2D) nanosheet and 3D porous carbon matrix. When evaluated as an anode for lithium-ion batteries, the MC-SnS 2 NSs exhibits significantly enhanced cycling stability and rate capability by virtue of its unique structural superiority

  18. A flexible, bolaamphiphilic template for mesoporous silicas.

    Science.gov (United States)

    Yuen, Alexander K L; Heinroth, Falk; Ward, Antony J; Masters, Anthony F; Maschmeyer, Thomas

    2013-08-28

    A novel symmetrical bolaamphiphile, containing two N-methylimidazolium head-groups bridged by a 32-methylene linker, was synthesized and characterized. A variety of mesoporous silicas was prepared using the bolaamphiphile as a "soft template". The effects of absolute surfactant concentration and synthesis conditions upon the morphologies of these silicas were investigated. For a given surfactant concentration, particle morphology; pore size; and pore ordering were modified through control of the template to silica-precursor ratio and synthesis conditions. Observed morphologies included: lenticular core-shell nanoparticles and decorticated globules, truncated hexagonal plates, and sheets. In all cases the mesopores are aligned along the shortest axis of the nanomaterial. Decorticated materials displayed surface areas of up to 1200 m(2) g(-1) and pore diameters (D(BJH)) of 24-28 Å. Small-angle X-ray diffraction and transmission electron microscopy measurements revealed that the majority of the materials has elliptical pores arranged in rectangular lattices (c2mm). Adoption of this symmetry group is a result of the template aggregate deformation from a regular hexagonal phase of cylindrical rods to a ribbon phase under the synthetic conditions.

  19. Mesoporous Spinel Li4Ti5O12 Nanoparticles for High Rate Lithium-ion Battery Anodes

    International Nuclear Information System (INIS)

    Liu, Weijian; Shao, Dan; Luo, Guoen; Gao, Qiongzhi; Yan, Guangjie; He, Jiarong; Chen, Dongyang; Yu, Xiaoyuan; Fang, Yueping

    2014-01-01

    Graphical abstract: - Highlights: • Mesoporous Li 4 Ti 5 O 12 nanoparticles were prepared by a simple hydrothermal method. • The mesoporous Li 4 Ti 5 O 12 nanoparticles exhibited a diameter of 40 ± 5 nm and a pore-size distribution of 6 - 8 nm. • Cells with the mesoporous Li 4 Ti 5 O 12 anode showed excellent high rate electrochemical properties. - Abstract: Mesoporous spinel lithium titanate (Li 4 Ti 5 O 12 ) nanoparticles with the diameter of 40 ± 5 nm and the pore-size distribution of 6 - 8 nm were prepared by a simple hydrothermal method. As an anode material for lithium-ion batteries, these spinel Li 4 Ti 5 O 12 mesoporous nanoparticles exhibited desirable lithium storage properties with an initial discharge capacity of 176 mAh g −1 at 1 C rate and a capacity of approximately 145 mAh g −1 after 200 cycles at a high rate of 20 C. These excellent electrochemical properties at high charge/discharge rates are due to the mesoporous nano-scale structures with small size particles, uniform mesopores and larger electrode/electrolyte contact area, which shortens the diffusion path for both electrons and Li + ions, and offers more active sites for Li + insertion-extraction process

  20. Aminopropyl-modified mesoporous molecular sieves as efficient adsorbents for removal of auxins

    Energy Technology Data Exchange (ETDEWEB)

    Moritz, Michał, E-mail: michal.moritz@put.poznan.pl [Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemistry and Technical Electrochemistry, Berdychowo 4, 60-965 Poznań (Poland); Geszke-Moritz, Małgorzata, E-mail: Malgorzata.Geszke-Moritz@amu.edu.pl [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)

    2015-03-15

    Graphical abstract: Adsorption of indole-3-acetic acid (IAA) on aminopropyl-modified mesoporous sieves. - Highlights: • Four types of mesoporous molecular sieves were used as sorbents for removal of auxins. • SBA-15, MCF, PHTS and SBA-16 were grafted with (3-aminopropyl)triethoxysilane. • The adsorption capacity of modified materials was higher as compared to pure silicas. • Surface modification and pore volume play important role in adsorption process. - Abstract: In the present study, mesoporous siliceous materials grafted with 3-aminopropyltriethoxysilane (APTES) were examined as sorbents for removal of chosen plant growth factors (auxins) such as 1-naphthaleneacetic acid (NAA), indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA). Four different types of mesoporous molecular sieves including SBA-15, PHTS, SBA-16 and MCF have been prepared via non-ionic surfactant-assisted soft templating method. Silica molecular sieves were thoroughly characterized by nitrogen adsorption–desorption analysis, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FT-IR). The maximum adsorption capacity (Q{sub max}) for NAA, IAA and IBA was in the range from 51.0 to 140.8 mg/g and from 4.3 to 7.3 mg/g for aminopropyl-modified adsorbents and pure silicas, respectively. The best adsorption performance was observed for IAA entrapment using both APTES-functionalized SBA-15 and MCF matrices (Q{sub max} of 140.8 and 137.0 mg/g, respectively) which can be ascribed to their larger pore volumes and pore diameters. Moreover, these silicas were characterized by the highest adsorption efficiency exceeding 90% at low pollutant concentration. The experimental points for adsorption of plant growth factors onto aminopropyl-modified mesoporous molecular sieves fitted well to the Langmuir equation.

  1. Aminopropyl-modified mesoporous molecular sieves as efficient adsorbents for removal of auxins

    International Nuclear Information System (INIS)

    Moritz, Michał; Geszke-Moritz, Małgorzata

    2015-01-01

    Graphical abstract: Adsorption of indole-3-acetic acid (IAA) on aminopropyl-modified mesoporous sieves. - Highlights: • Four types of mesoporous molecular sieves were used as sorbents for removal of auxins. • SBA-15, MCF, PHTS and SBA-16 were grafted with (3-aminopropyl)triethoxysilane. • The adsorption capacity of modified materials was higher as compared to pure silicas. • Surface modification and pore volume play important role in adsorption process. - Abstract: In the present study, mesoporous siliceous materials grafted with 3-aminopropyltriethoxysilane (APTES) were examined as sorbents for removal of chosen plant growth factors (auxins) such as 1-naphthaleneacetic acid (NAA), indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA). Four different types of mesoporous molecular sieves including SBA-15, PHTS, SBA-16 and MCF have been prepared via non-ionic surfactant-assisted soft templating method. Silica molecular sieves were thoroughly characterized by nitrogen adsorption–desorption analysis, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FT-IR). The maximum adsorption capacity (Q max ) for NAA, IAA and IBA was in the range from 51.0 to 140.8 mg/g and from 4.3 to 7.3 mg/g for aminopropyl-modified adsorbents and pure silicas, respectively. The best adsorption performance was observed for IAA entrapment using both APTES-functionalized SBA-15 and MCF matrices (Q max of 140.8 and 137.0 mg/g, respectively) which can be ascribed to their larger pore volumes and pore diameters. Moreover, these silicas were characterized by the highest adsorption efficiency exceeding 90% at low pollutant concentration. The experimental points for adsorption of plant growth factors onto aminopropyl-modified mesoporous molecular sieves fitted well to the Langmuir equation

  2. A multi-controlled drug delivery system based on magnetic mesoporous Fe3O4 nanopaticles and a phase change material for cancer thermo-chemotherapy

    Science.gov (United States)

    Zhang, Qi; Liu, Jian; Yuan, Kunjie; Zhang, Zhengguo; Zhang, Xiaowen; Fang, Xiaoming

    2017-10-01

    Herein a novel multi-controlled drug release system for doxorubicin (DOX) was developed, in which monodisperse mesoporous Fe3O4 nanoparticles were combined with a phase change material (PCM) and polyethylene glycol 2000 (PEG2000). It is found that the PCM/PEG/DOX mixture containing 20% PEG could be dissolved into water at 42 °C. The mesoporous Fe3O4 nanoparticles prepared by the solvothermal method had sizes of around 25 nm and exhibited a mesoporous microstructure. A simple solvent evaporation process was employed to load the PCM/PEG/DOX mixture on the mesoporous Fe3O4 nanoparticles completely. In the Fe3O4@PCM/PEG/DOX system, the pores of the Fe3O4 nanoparticles were observed to be filled with the mixture of PCM/PEG/DOX. The Fe3O4@PCM/PEG/DOX system showed a saturation magnetization value of 50.0 emu g-1, lower than 71.1 emu g-1 of the mesoporous Fe3O4 nanoparticles, but it was still high enough for magnetic targeting and hyperthermia application. The evaluation on drug release performance indicated that the Fe3O4@PCM/PEG/DOX system achieved nearly zero release of DOX in vitro in body temperature, while around 80% of DOX could be released within 1.5 h at the therapeutic threshold of 42 °C or under the NIR laser irradiation for about 4 h. And a very rapid release of DOX was achieved by this system when applying an alternating magnetic field. By comparing the systems with and without PEG2000, it is revealed that the presence of PEG2000 makes DOX easy to be released from 1-tetradecanol to water, owing to its functions of increasing the solubility of DOX in 1-tetradecanol as well as decreasing the surface tension between water and 1-tetradecanol. The novel drug release system shows great potential for the development of thermo-chemotherapy of cancer treatment.

  3. Self-assembly of supramolecular triarylamine nanowires in mesoporous silica and biocompatible electrodes thereof

    Science.gov (United States)

    Licsandru, Erol-Dan; Schneider, Susanne; Tingry, Sophie; Ellis, Thomas; Moulin, Emilie; Maaloum, Mounir; Lehn, Jean-Marie; Barboiu, Mihail; Giuseppone, Nicolas

    2016-03-01

    Biocompatible silica-based mesoporous materials, which present high surface areas combined with uniform distribution of nanopores, can be organized in functional nanopatterns for a number of applications. However, silica is by essence an electrically insulating material which precludes applications for electro-chemical devices. The formation of hybrid electroactive silica nanostructures is thus expected to be of great interest for the design of biocompatible conducting materials such as bioelectrodes. Here we show that we can grow supramolecular stacks of triarylamine molecules in the confined space of oriented mesopores of a silica nanolayer covering a gold electrode. This addressable bottom-up construction is triggered from solution simply by light irradiation. The resulting self-assembled nanowires act as highly conducting electronic pathways crossing the silica layer. They allow very efficient charge transfer from the redox species in solution to the gold surface. We demonstrate the potential of these hybrid constitutional materials by implementing them as biocathodes and by measuring laccase activity that reduces dioxygen to produce water.Biocompatible silica-based mesoporous materials, which present high surface areas combined with uniform distribution of nanopores, can be organized in functional nanopatterns for a number of applications. However, silica is by essence an electrically insulating material which precludes applications for electro-chemical devices. The formation of hybrid electroactive silica nanostructures is thus expected to be of great interest for the design of biocompatible conducting materials such as bioelectrodes. Here we show that we can grow supramolecular stacks of triarylamine molecules in the confined space of oriented mesopores of a silica nanolayer covering a gold electrode. This addressable bottom-up construction is triggered from solution simply by light irradiation. The resulting self-assembled nanowires act as highly conducting

  4. Peptide-laden mesoporous silica nanoparticles with promoted bioactivity and osteo-differentiation ability for bone tissue engineering.

    Science.gov (United States)

    Luo, Zuyuan; Deng, Yi; Zhang, Ranran; Wang, Mengke; Bai, Yanjie; Zhao, Qiang; Lyu, Yalin; Wei, Jie; Wei, Shicheng

    2015-07-01

    Combination of mesoporous silica materials and bioactive factors is a promising niche-mimetic solution as a hybrid bone substitution for bone tissue engineering. In this work, we have synthesized biocompatible silica-based nanoparticles with abundant mesoporous structure, and incorporated bone-forming peptide (BFP) derived from bone morphogenetic protein-7 (BMP-7) into the mesoporous silica nanoparticles (MSNs) to obtain a slow-release system for osteogenic factor delivery. The chemical characterization demonstrates that the small osteogenic peptide is encapsulated in the mesoporous successfully, and the nitrogen adsorption-desorption isotherms suggest that the peptide encapsulation has no influence on mesoporous structure of MSNs. In the cell experiment, the peptide-laden MSNs (p-MSNs) show higher MG-63 cell proliferation, spreading and alkaline phosphatase (ALP) activity than the bare MSNs, indicating good in vitro cytocompatibility. Simultaneously, the osteogenesis-related proteins expression and calcium mineral deposition disclose enhanced osteo-differentiation of human mesenchymal stem cells (hMSCs) under the stimulation of the p-MSNs, confirming that BFP released from MSNs could significantly promote the osteogenic differentiation of hMSCs, especially at 500μg/mL of p-MSNs concentration. The peptide-modified MSNs with better bioactivity and osteogenic differentiation make it a potential candidate as bioactive material for bone repairing, bone regeneration, and bio-implant coating applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Synthesis Mechanism and Thermal Optimization of an Economical Mesoporous Material Using Silica: Implications for the Effective Removal or Delivery of Ibuprofen.

    Directory of Open Access Journals (Sweden)

    Shanmuga Kittappa

    Full Text Available Mesoporous silica materials (MSMs were synthesized economically using silica (SiO2 as a precursor via a modified alkaline fusion method. The MSM prepared at 500°C (MSM-500 had the highest surface area, pore size, and volume, and the results of isotherms and the kinetics of ibuprofen (IBP removal indicated that MSM-500 had the highest sorption capacity and fastest removal speed vs. SBA-15 and zeolite. Compared with commercial granular activated carbon (GAC, MSM-500 had a ~100 times higher sorption rate at neutral pH. IBP uptake by MSM-500 was thermodynamically favorable at room temperature, which was interpreted as indicating relatively weak bonding because the entropy (∆adsS, -0.07 J mol(-1 K(-1 was much smaller. Five times recycling tests revealed that MSM-500 had 83-87% recovery efficiencies and slower uptake speeds due to slight deformation of the outer pore structure. In the IBP delivery test, MSM-500 drug loading was 41%, higher than the reported value of SBA-15 (31%. The in vitro release of IBP was faster, almost 100%, reaching equilibrium within a few hours, indicating its effective loading and unloading characteristics. A cost analysis study revealed that the MSM was ~10-70 times cheaper than any other mesoporous silica material for the removal or delivery of IBP.

  6. Acylation Reactions over Zeolites and Mesoporous Catalysts

    Czech Academy of Sciences Publication Activity Database

    Voláková, Martina; Vitvarová, Dana; Čejka, Jiří

    2009-01-01

    Roč. 2, č. 6 (2009), s. 486-499 ISSN 1864-5631 R&D Projects: GA ČR GA104/07/0383; GA ČR GD203/08/H032; GA MPO FT-TA5/005 Institutional research plan: CEZ:AV0Z40400503 Keywords : acylation * ketones * mesoporous materials * shape-selectivity * zeolites Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.767, year: 2009

  7. Research Progress on Synthesis of Lignin-derived Mesoporous Carbon Materials via Template Strategy%模板法制备木质素基中孔炭材料研究进展

    Institute of Scientific and Technical Information of China (English)

    宋曜光; 刘军利; 许伟; 孙康

    2018-01-01

    Lignin is one of the three recalcitrant components of lignocellulosic renewable biomass and the most abundant heterogeneous aromatic structural biopolymer on the earth. Lignin has a high carbon content over 50 %,and is one of the potential ideal precursors for carbon materials.Mesoporous carbon with high specific surface area and big pore size has wide applications on biomedical devices, catalysis, supercapacitors and so on. Therefore, the synthesis of mesoporous carbon materials has successfully concentrated attention and efforts by scientists worldwide. Nano-casting techniques are available method to prepare mesoporous carbons. Herein, some common strategies for pore dimension adjusting such as hard template route, soft template route and dual template route were reviewed.Finally,the recent research progress on the preparation of lignin-derived mesoporous carbon materials by using template strategy was emphatically introduced.%木质素是3种木质纤维类可再生生物质资源之一,同时是自然界中含量最丰富的芳香类天然高分子聚合物,其含碳量超过50 %,是制备炭材料的理想前驱体.中孔炭材料具有比表面积高、孔径大等特点,在医学器件、催化、超级电容器等方面有着广泛的应用,模板法是制备中孔炭材料的常用方法.主要介绍以木质素为碳前驱体通过硬模板法、软模板法以及双模板法制备中孔炭材料并调控孔结构,重点介绍了制备最新进展.

  8. Enhanced thermal properties of novel shape-stabilized PEG composite phase change materials with radial mesoporous silica sphere for thermal energy storage.

    Science.gov (United States)

    Min, Xin; Fang, Minghao; Huang, Zhaohui; Liu, Yan'gai; Huang, Yaoting; Wen, Ruilong; Qian, Tingting; Wu, Xiaowen

    2015-08-11

    Radial mesoporous silica (RMS) sphere was tailor-made for further applications in producing shape-stabilized composite phase change materials (ss-CPCMs) through a facile self-assembly process using CTAB as the main template and TEOS as SiO2 precursor. Novel ss-CPCMs composed of polyethylene glycol (PEG) and RMS were prepared through vacuum impregnating method. Various techniques were employed to characterize the structural and thermal properties of the ss-CPCMs. The DSC results indicated that the PEG/RMS ss-CPCM was a promising candidate for building thermal energy storage applications due to its large latent heat, suitable phase change temperature, good thermal reliability, as well as the excellent chemical compatibility and thermal stability. Importantly, the possible formation mechanisms of both RMS sphere and PEG/RMS composite have also been proposed. The results also indicated that the properties of the PEG/RMS ss-CPCMs are influenced by the adsorption limitation of the PEG molecule from RMS sphere with mesoporous structure and the effect of RMS, as the impurities, on the perfect crystallization of PEG.

  9. Synthesis and characterization of mesoporous materials for CO_2 capture: influence of nickel oxide

    International Nuclear Information System (INIS)

    Nascimento, Alexsandra Rodrigues do

    2014-01-01

    Several materials are currently under study for the CO_2 capture process, like the metal oxides and mixed metal oxides, zeolites, carbonaceous materials, metal-organic frameworks (MOF's) organosilica and modified silica surfaces. In this work, evaluated the adsorption capacity of CO_2 in mesoporous materials of different structures, such as MCM-48 and SBA-15 without impregnating and impregnated with nickel in the proportions 5 %, 10 % and 20 % (m/m), known as 5Ni-MCM-48, 10Ni-MCM-48, 20Ni-MCM-48 and 5Ni-SBA-15, 10Ni-SBA-15, 20Ni-SBA-15. The materials were characterized by means of X-ray diffraction (XRD), thermal analysis (TG and DTG), Fourier transform infrared spectroscopy (FT-IR), N_2 adsorption and desorption (BET) and scanning electron microscopy (SEM) with EDS. The adsorption process was performed varying the pressure of 100 - 4000 kPa and keeping the temperature constant and equal to 298 K. At a pressure of 100 kPa, higher concentrations of adsorption occurred for the materials 5Ni-MCM-48 (0.795 mmol g"-"1) and SBA-15 (0.914 mmol g"-"1) is not impregnated, and at a pressure of 4000 kPa for MCM-48 materials (14.89 mmol g"-"1) and SBA-15 (9.97 mmol g"-"1) not impregnated. The results showed that the adsorption capacity varies positively with the specific area, however, has a direct dependency on the type and geometry of the porous structure of channels. The data were fitted using the Langmuir and Freundlich models and were evaluated thermodynamic parameters Gibbs free energy and entropy of the adsorption system. (author)

  10. Fabrication of large-pore mesoporous Ca-Si-based bioceramics for bone regeneration

    Directory of Open Access Journals (Sweden)

    Zeng D

    2017-11-01

    Full Text Available Deliang Zeng,1,2 Xingdi Zhang,3 Xiao Wang,1,2 Lingyan Cao,1 Ao Zheng,1,2 Jiahui Du,1,2 Yongsheng Li,3 Qingfeng Huang,1 Xinquan Jiang1,2 1Department of Prosthodontics, School of Medicine, Ninth People’s Hospital affiliated to Shanghai Jiao Tong University, Shanghai, People’s Republic of China; 2Oral Bioengineering Laboratory, Shanghai Research Institute of Stomatology, School of Medicine, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, People’s Republic of China; 3Laboratory of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China Abstract: Our previous study revealed that mesoporous Ca-Si-based materials exhibited excellent osteoconduction because dissolved ions could form a layer of hydroxycarbonate apatite on the surface of the materials. However, the biological mechanisms underlying bone regeneration were largely unknown. The main aim of this study was to evaluate the osteogenic ability of large-pore mesoporous Ca-Si-based bioceramics (LPMSCs by alkaline phosphatase assay, real-time PCR analysis, von Kossa, and alizarin red assay. Compared with large-pore mesoporous silica (LPMS, LPMSCs had a better effect on the osteogenic differentiation of dental pulp cells. LPMSC-2 and LPMSC-3 with higher calcium possessed better osteogenic abilities than LPMSC-1, which may be related to the calcium-sensing receptor pathway. Furthermore, the loading capacity for recombinant human platelet-derived growth factor-BB was satisfactory in LPMSCs. In vivo, the areas of new bone formation in the calvarial defect repair were increased in the LPMSC-2 and LPMSC-3 groups compared with the LPMSC-1 and LPMS groups. We concluded that LPMSC-2 and LPMSC-3 possessed both excellent osteogenic abilities and satisfactory loading capacities, which may be

  11. Mesoporous metal oxides and processes for preparation thereof

    Energy Technology Data Exchange (ETDEWEB)

    Suib, Steven L.; Poyraz, Altug Suleyman

    2018-03-06

    A process for preparing a mesoporous metal oxide, i.e., transition metal oxide. Lanthanide metal oxide, a post-transition metal oxide and metalloid oxide. The process comprises providing an acidic mixture comprising a metal precursor, an interface modifier, a hydrotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to form the mesoporous metal oxide. A mesoporous metal oxide prepared by the above process. A method of controlling nano-sized wall crystallinity and mesoporosity in mesoporous metal oxides. The method comprises providing an acidic mixture comprising a metal precursor, an interface modifier, a hydrotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to control nano-sized wall crystallinity and mesoporosity in the mesoporous metal oxides. Mesoporous metal oxides and a method of tuning structural properties of mesoporous metal oxides.

  12. Advanced thermal management materials

    CERN Document Server

    Jiang, Guosheng; Kuang, Ken

    2012-01-01

    ""Advanced Thermal Management Materials"" provides a comprehensive and hands-on treatise on the importance of thermal packaging in high performance systems. These systems, ranging from active electronically-scanned radar arrays to web servers, require components that can dissipate heat efficiently. This requires materials capable of dissipating heat and maintaining compatibility with the packaging and dye. Its coverage includes all aspects of thermal management materials, both traditional and non-traditional, with an emphasis on metal based materials. An in-depth discussion of properties and m

  13. Functionalized SBA-15 materials for bilirubin adsorption

    Science.gov (United States)

    Tang, Tao; Zhao, Yanling; Xu, Yao; Wu, Dong; Xu, Jun; Deng, Feng

    2011-05-01

    To investigate the driving force for bilirubin adsorption on mesoporous materials, a comparative study was carried out between pure siliceous SBA-15 and three functionalized SBA-15 mesoporous materials: CH 3-SBA-15 (MS), NH 2-SBA-15 (AS), and CH 3/NH 2-SBA-15 (AMS) that were synthesized by one-pot method. The obtained materials exhibited large surface areas (553-810 m 2/g) and pore size (6.6-7.1 nm) demonstrated by XRD and N 2-ad/desorption analysis. The SEM images showed that the materials had similar fiberlike morphology. The functionalization extent was calculated according to 29Si MAS NMR spectra and it was close to the designed value (10%). The synthesized mesoporous materials were used as bilirubin adsorbents and showed higher bilirubin adsorption capacities than the commercial active carbon. The adsorption capacities of amine functionalized samples AMS and AS were larger than those of pure siliceous SBA-15 and MS, indicating that electrostatic interaction was the dominant driving force for bilirubin adsorption on mesoporous materials. Increasing the ionic strength of bilirubin solution by adding NaCl would decrease the bilirubin adsorption capacity of mesoporous material, which further demonstrated that the electrostatic interaction was the dominant driving force for bilirubin adsorption. In addition, the hydrophobic interaction provided by methyl groups could promote the bilirubin adsorption.

  14. Synthesis of Ordered Mesoporous CuO/CeO2 Composite Frameworks as Anode Catalysts for Water Oxidation

    Directory of Open Access Journals (Sweden)

    Vassiliki Markoulaki Ι

    2015-11-01

    Full Text Available Cerium-rich metal oxide materials have recently emerged as promising candidates for the photocatalytic oxygen evolution reaction (OER. In this article, we report the synthesis of ordered mesoporous CuO/CeO2 composite frameworks with different contents of copper(II oxide and demonstrate their activity for photocatalytic O2 production via UV-Vis light-driven oxidation of water. Mesoporous CuO/CeO2 materials have been successfully prepared by a nanocasting route, using mesoporous silica as a rigid template. X-ray diffraction, electron transmission microscopy and N2 porosimetry characterization of the as-prepared products reveal a mesoporous structure composed of parallel arranged nanorods, with a large surface area and a narrow pore size distribution. The molecular structure and optical properties of the composite materials were investigated with Raman and UV-Vis/NIR diffuse reflectance spectroscopy. Catalytic results indicated that incorporation of CuO clusters in the CeO2 lattice improved the photochemical properties. As a result, the CuO/CeO2 composite catalyst containing ~38 wt % CuO reaches a high O2 evolution rate of ~19.6 µmol·h−1 (or 392 µmol·h−1·g−1 with an apparent quantum efficiency of 17.6% at λ = 365 ± 10 nm. This OER activity compares favorably with that obtained from the non-porous CuO/CeO2 counterpart (~1.3 µmol·h−1 and pure mesoporous CeO2 (~1 µmol·h−1.

  15. Mesoporous tin-doped indium oxide thin films: effect of mesostructure on electrical conductivity

    Directory of Open Access Journals (Sweden)

    Till von Graberg, Pascal Hartmann, Alexander Rein, Silvia Gross, Britta Seelandt, Cornelia Röger, Roman Zieba, Alexander Traut, Michael Wark, Jürgen Janek and Bernd M Smarsly

    2011-01-01

    Full Text Available We present a versatile method for the preparation of mesoporous tin-doped indium oxide (ITO thin films via dip-coating. Two poly(isobutylene-b-poly(ethyleneoxide (PIB-PEO copolymers of significantly different molecular weight (denoted as PIB-PEO 3000 and PIB-PEO 20000 are used as templates and are compared with non-templated films to clarify the effect of the template size on the crystallization and, thus, on the electrochemical properties of mesoporous ITO films. Transparent, mesoporous, conductive coatings are obtained after annealing at 500 °C; these coatings have a specific resistance of 0.5 Ω cm at a thickness of about 100 nm. Electrical conductivity is improved by one order of magnitude by annealing under a reducing atmosphere. The two types of PIB-PEO block copolymers create mesopores with in-plane diameters of 20–25 and 35–45 nm, the latter also possessing correspondingly thicker pore walls. Impedance measurements reveal that the conductivity is significantly higher for films prepared with the template generating larger mesopores. Because of the same size of the primary nanoparticles, the enhanced conductivity is attributed to a higher conduction path cross section. Prussian blue was deposited electrochemically within the films, thus confirming the accessibility of their pores and their functionality as electrode material.

  16. Synthesis and characterization of nanoparticulate MnS within the pores of mesoporous silica

    International Nuclear Information System (INIS)

    Barry, Louse; Copley, Mark; Holmes, Justin D.; Otway, David J.; Kazakova, Olga; Morris, Michael A.

    2007-01-01

    Mesoporous silica was loaded with nanoparticulate MnS via a simple post-synthesis treatment. The mesoporous material that still contained surfactant was passivated to prevent MnS formation at the surface. The surfactant was extracted and a novel manganese ethylxanthate was used to impregnate the pore network. This precursor thermally decomposes to yield MnS particles that are smaller or equal to the pore size. The particles exhibit all three common polymorphs. The passivation treatment is most effective at lower loadings because at the highest loadings (SiO 2 :MnS molar ratio of 6:1) large particles (>50 nm) form at the exterior of the mesoporous particles. The integrity of the mesoporous network is maintained through the preparation and high order is maintained. The MnS particles exhibit unexpected ferromagnetism at low temperatures. Strong luminescence of these samples is observed and this suggests that they may have a range of important application areas. - Graphical abstract: A novel manganese ethylxanthate precursor was used to impregnate the pore network of mesoporous silica and was decomposed to yield MnS particles smaller or equal to the pore size. The particles exhibit all three common polymorphs, demonstrate unexpected ferromagnetism at low temperatures and display a strong luminescence

  17. Microwave synthesis and electrochemical characterization of mesoporous carbon@Bi{sub 2}O{sub 3} composites

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Nannan [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); Yuan, Dingsheng, E-mail: tydsh@jnu.edu.cn [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); Zhou, Tianxiang; Chen, Jingxing; Mo, Shanshan; Liu, Yingliang [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China)

    2011-05-15

    Graphical abstract: An efficient and quick microwave method has been employed to prepare worm-like mesoporous carbon@Bi{sub 2}O{sub 3} composites for the first time. The electrochemical measurement shows the worm-like mesoporous carbon@Bi{sub 2}O{sub 3} composites exhibits excellent capacitance performance and the maximum specific capacitance is up to 386 F g{sup -1}. Research highlights: {yields} An efficient and quick microwave method has been employed. {yields} A worm-like mesoporous carbon@Bi{sub 2}O{sub 3} composites have been successfully prepared. {yields} This composite exhibits excellent capacitance performance. {yields} This composite could be a potential electrode material for the supercapacitors. -- Abstract: An efficient and quick microwave method has been employed to prepare worm-like mesoporous carbon@Bi{sub 2}O{sub 3} composites for the first time. As-prepared products have been characterized by X-ray diffraction, N{sub 2} adsorption-desorption, scanning electron microscopy, transmission electron microscopy and inductive coupled plasma atomic emission spectroscopy. The electrochemical measurement shows the worm-like mesoporous carbon@Bi{sub 2}O{sub 3} composites exhibits excellent capacitance performance and the maximum specific capacitance reaches 386 F g{sup -1}, three times more than the pure worm-like mesoporous carbon.

  18. Cationic polymers and porous materials

    KAUST Repository

    Han, Yu

    2017-04-27

    According to one or more embodiments, cationic polymers may be produced which include one or more monomers containing cations. Such cationic polymers may be utilized as structure directing agents to form mesoporous zeolites. The mesoporous zeolites may include micropores as well as mesopores, and may have a surface area of greater than 350 m2/g and a pore volume of greater than 0.3 cm3/g. Also described are core/shell zeolites, where at least the shell portion includes a mesoporous zeolite material.

  19. Cationic polymers and porous materials

    KAUST Repository

    Han, Yu; Tian, Qiwei; Dong, Xinglong; Liu, Zhaohui; Basset, Jean-Marie; Saih, Youssef; Sun, Miao; Xu, Wei; Shaikh, Sohel

    2017-01-01

    According to one or more embodiments, cationic polymers may be produced which include one or more monomers containing cations. Such cationic polymers may be utilized as structure directing agents to form mesoporous zeolites. The mesoporous zeolites may include micropores as well as mesopores, and may have a surface area of greater than 350 m2/g and a pore volume of greater than 0.3 cm3/g. Also described are core/shell zeolites, where at least the shell portion includes a mesoporous zeolite material.

  20. Surface engineering on mesoporous silica chips for enriching low molecular weight phosphorylated proteins

    Science.gov (United States)

    Hu, Ye; Peng, Yang; Lin, Kevin; Shen, Haifa; Brousseau, Louis C., III; Sakamoto, Jason; Sun, Tong; Ferrari, Mauro

    2011-02-01

    Phosphorylated peptides and proteins play an important role in normal cellular activities, e.g., gene expression, mitosis, differentiation, proliferation, and apoptosis, as well as tumor initiation, progression and metastasis. However, technical hurdles hinder the use of common fractionation methods to capture phosphopeptides from complex biological fluids such as human sera. Herein, we present the development of a dual strategy material that offers enhanced capture of low molecular weight phosphoproteins: mesoporous silica thin films with precisely engineered pore sizes that sterically select for molecular size combined with chemically selective surface modifications (i.e. Ga3+, Ti4+ and Zr4+) that target phosphoroproteins. These materials provide high reproducibility (CV = 18%) and increase the stability of the captured proteins by excluding degrading enzymes, such as trypsin. The chemical and physical properties of the composite mesoporous thin films were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy and ellipsometry. Using mass spectroscopy and biostatistics analysis, the enrichment efficiency of different metal ions immobilized on mesoporous silica chips was investigated. The novel technology reported provides a platform capable of efficiently profiling the serum proteome for biomarker discovery, forensic sampling, and routine diagnostic applications.Phosphorylated peptides and proteins play an important role in normal cellular activities, e.g., gene expression, mitosis, differentiation, proliferation, and apoptosis, as well as tumor initiation, progression and metastasis. However, technical hurdles hinder the use of common fractionation methods to capture phosphopeptides from complex biological fluids such as human sera. Herein, we present the development of a dual strategy material that offers enhanced capture of low molecular weight phosphoproteins: mesoporous

  1. Effects of bioactive glass with and without mesoporous structures on desensitization in dentinal tubule occlusion

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wen-Cheng [Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, College of Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Kung, Jung-Chang [Department of Family Dentistry, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Chen, Cheng-Hwei [School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Hsiao, Yu-Cheng [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Shih, Chi-Jen, E-mail: cjshih@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chien, Chi-Sheng, E-mail: jannie.gissing@msa.hinet.net [Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan (China); Department of Orthopaedics, Chi Mei Foundation Hospital, Tainan, Taiwan (China); Department of Electrical Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan (China)

    2013-10-15

    Bioactive glass (BG) is a potential material for treating dentin hypersensitivity due to its high ability of dissolution. In this study, conventional BG and BG with well-ordered mesopore structures (MBG) were applied for dentinal tubule occlusion. We used X-ray diffractometer (XRD), scanning electronic microscope (SEM), and Fourier transform infrared (FTIR) to investigate the physiochemical properties and the dentinal tubule occlusion ability of BG and MBG groups. The results showed that the major crystallite phase of MBG and BG agents was monocalcium phosphate monohydrate. MBG pastes, mixed with 30 and 40 wt% phosphoric acid hardening solutions, had the ability to create a penetration depth greater than 50 μm. These results showed that BG with mesoporous structures turned the pastes mixed with suitable phosphoric acid solution into a material with great ability for occluding dentinal tubules; it has a short reaction time and good operability, and these agents have better potential for the treatment of dentin hypersensitivity than BG without mesoporous structures.

  2. Effects of bioactive glass with and without mesoporous structures on desensitization in dentinal tubule occlusion

    International Nuclear Information System (INIS)

    Chen, Wen-Cheng; Kung, Jung-Chang; Chen, Cheng-Hwei; Hsiao, Yu-Cheng; Shih, Chi-Jen; Chien, Chi-Sheng

    2013-01-01

    Bioactive glass (BG) is a potential material for treating dentin hypersensitivity due to its high ability of dissolution. In this study, conventional BG and BG with well-ordered mesopore structures (MBG) were applied for dentinal tubule occlusion. We used X-ray diffractometer (XRD), scanning electronic microscope (SEM), and Fourier transform infrared (FTIR) to investigate the physiochemical properties and the dentinal tubule occlusion ability of BG and MBG groups. The results showed that the major crystallite phase of MBG and BG agents was monocalcium phosphate monohydrate. MBG pastes, mixed with 30 and 40 wt% phosphoric acid hardening solutions, had the ability to create a penetration depth greater than 50 μm. These results showed that BG with mesoporous structures turned the pastes mixed with suitable phosphoric acid solution into a material with great ability for occluding dentinal tubules; it has a short reaction time and good operability, and these agents have better potential for the treatment of dentin hypersensitivity than BG without mesoporous structures.

  3. Plasma-wall interaction of advanced materials

    Directory of Open Access Journals (Sweden)

    J.W. Coenen

    2017-08-01

    Full Text Available DEMO is the name for the first stage prototype fusion reactor considered to be the next step after ITER. For the realization of fusion energy especially materials questions pose a significant challenge already today. Advanced materials solution are under discussion in order to allow operation under reactor conditions [1] and are already under development used in the next step devices. Apart from issues related to material properties such as strength, ductility, resistance against melting and cracking one of the major issues to be tackled is the interaction with the fusion plasma. Advanced tungsten (W materials as discussed below do not necessarily add additional lifetime issues, they will, however, add concerns related to erosion or surface morphology changes due to preferential sputtering. Retention of fuel and exhaust species are one of the main concerns. Retention of hydrogen will be one of the major issues to be solved in advanced materials as especially composites and alloys will introduce new hydrogen interactions mechanisms. Initial calculations show these mechanisms. Especially for Helium as the main impurity species material issues arise related to surfaces modification and embrittlement. Solutions are proposed to mitigate effects on material properties and introduce new release mechanisms.

  4. Low-temperature direct synthesis of mesoporous vanadium nitrides for electrochemical capacitors

    Science.gov (United States)

    Lee, Hae-Min; Jeong, Gyoung Hwa; Kim, Sang-Wook; Kim, Chang-Koo

    2017-04-01

    Mesoporous vanadium nitrides are directly synthesized by a one-step chemical precipitation method at a low temperature (70 °C). Structural and morphological analyses reveal that vanadium nitride consist of long and slender nanowhiskers, and mesopores with diameters of 2-5 nm. Compositional analysis confirms the presence of vanadium in the VN structure, along with oxidized vanadium. The cyclic voltammetry and charge-discharge tests indicate that the obtained material stores charges via a combination of electric double-layer capacitance and pseudocapacitance mechanisms. The vanadium nitride electrode exhibits a specific capacitance of 598 F/g at a current density of 4 A/g. After 5000 charge-discharge cycles, the electrode has an equivalent series resistance of 1.42 Ω and retains 83% of its initial specific capacitance. This direct low-temperature synthesis of mesoporous vanadium nitrides is a simple and promising method to achieve high specific capacitance and low equivalent series resistance for electrochemical capacitor applications.

  5. Composite Biomaterials Based on Sol-Gel Mesoporous Silicate Glasses: A Review

    Science.gov (United States)

    Baino, Francesco; Fiorilli, Sonia; Vitale-Brovarone, Chiara

    2017-01-01

    Bioactive glasses are able to bond to bone and stimulate the growth of new tissue while dissolving over time, which makes them ideal materials for regenerative medicine. The advent of mesoporous glasses, which are typically synthesized via sol-gel routes, allowed researchers to develop a broad and versatile class of novel biomaterials that combine superior bone regenerative potential (compared to traditional melt-derived glasses) with the ability of incorporating drugs and various biomolecules for targeted therapy in situ. Mesoporous glass particles can be directly embedded as a bioactive phase within a non-porous (e.g., microspheres), porous (3D scaffolds) or injectable matrix, or be processed to manufacture a surface coating on inorganic or organic (macro)porous substrates, thereby obtaining hierarchical structures with multiscale porosity. This review provides a picture of composite systems and coatings based on mesoporous glasses and highlights the challenges for the future, including the great potential of inorganic–organic hybrid sol-gel biomaterials. PMID:28952496

  6. Synthesis, characterization, and catalytic properties of stable mesoporous molecular sieve MCM-41 prepared from zeolite mordenite

    International Nuclear Information System (INIS)

    Wang Shan; Dou Tao; Li Yuping; Zhang Ying; Li Xiaofeng; Yan Zichun

    2004-01-01

    Mesoporous molecular sieves (denoted as M-MCM-41) with ordered hexagonal structure have been successfully synthesized from the assembly of precursors from preformed zeolite Mordenite with CTAB surfactant micelle in alkaline media. The samples were characterized by XRD, N 2 adsorption, IR and DTG. The materials exhibit highly hydrothermal stability, as compared with conventional MCM-41. Characterization results indicate that the mesoporous walls of M-MCM-41 contain the secondary building units similar to those in microporous crystal of zeolite Mordenite. In catalytic dealkylation of C10 + aromatic hydrocarbon, M-MCM-41 shows higher activities in comparison with Mordenite and MCM-41, which would be ascribed to the combination of advantages of both MCM-41 (large pores) and Mordenite (strong acidity). Furthermore, this synthesis strategy could be used as a new general method for the preparation of hydrothermally stable mesoporous aluminosilicate materials under alkaline conditions

  7. Preparation of mesoporous zirconia microspheres as inert matrix

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Ting [State Key Laboratory of New Ceramics and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 (China); Wang, Chen; Lv, Jinlong [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 (China); Liang, Tongxiang, E-mail: txliang@tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 (China)

    2016-12-01

    Mesoporous zirconia microspheres, with a diameter of 900 μm, were prepared as an inert accelerator driven system (ADS) transmutation element matrix by the sol-gel method. The purpose of mesopores is to improve the adsorption capacity of inert matrix fuel (IMF) for minor actinides. The study indicated that the mesoporous zirconia performance was improved after the microspheres were hydrothermally treated at 150 °C, the specific surface area increased from 28.29 m{sup 2}/g to 61.28 m{sup 2}/g, and hydrothermal treatment avoided the cracking of the microspheres. Pre-decomposition of the organics during the hydrothermal process stabilized the mesoporous structure. The average pore diameter of mesoporous microsphere was 14.3 nm. - Highlights: • Mesoporous zirconia microspheres with a diameter of 900 μm were prepared as ADS transmutation element inert matrix. • The mesoporous performance was improved after the microspheres were hydrothermally treated at 150 °C. • The specific surface area increased from 28.29 m{sup 2}/g to 61.28 m{sup 2}/g. • The hydrothermal treatment could avoid the cracking of the microspheres. • The specific surface area of mesoporous microsphere was 61.28 m{sup 2}/g and the average pore diameter was 14.3 nm.

  8. Materials for advanced water cooled reactors

    International Nuclear Information System (INIS)

    1992-09-01

    The current IAEA programme in advanced nuclear power technology promotes technical information exchange between Member States with major development programmes. The International Working Group on Advanced Technologies for Water Cooled Reactors recommended to organize a Technical Committee Meeting for the purpose of providing an international forum for technical specialists to review and discuss aspects regarding development trends in material application for advanced water cooled reactors. The experience gained from the operation of current water cooled reactors, and results from related research and development programmes, should be the basis for future improvements of material properties and applications. This meeting enabled specialists to exchange knowledge about structural materials application in the nuclear island for the next generation of nuclear power plants. Refs, figs, tabs

  9. Highly active Pd-In/mesoporous alumina catalyst for nitrate reduction.

    Science.gov (United States)

    Gao, Zhenwei; Zhang, Yonggang; Li, Deyi; Werth, Charles J; Zhang, Yalei; Zhou, Xuefei

    2015-04-09

    The catalytic reduction of nitrate is a promising technology for groundwater purification because it transforms nitrate into nitrogen and water. Recent studies have mainly focused on new catalysts with higher activities for the reduction of nitrate. Consequently, metal nanoparticles supported on mesoporous metal oxides have become a major research direction. However, the complex surface chemistry and porous structures of mesoporous metal oxides lead to a non-uniform distribution of metal nanoparticles, thereby resulting in a low catalytic efficiency. In this paper, a method for synthesizing the sustainable nitrate reduction catalyst Pd-In/Al2O3 with a dimensional structure is introduced. The TEM results indicated that Pd and In nanoparticles could efficiently disperse into the mesopores of the alumina. At room temperature in CO2-buffered water and under continuous H2 as the electron donor, the synthesized material (4.9 wt% Pd) was the most active at a Pd-In ratio of 4, with a first-order rate constant (k(obs) = 0.241 L min(-1) g(cata)(-1)) that was 1.3× higher than that of conventional Pd-In/Al2O3 (5 wt% Pd; 0.19 L min(-1) g(cata)(-1)). The Pd-In/mesoporous alumina is a promising catalyst for improving the catalytic reduction of nitrate. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Performance of a Novel Hydrophobic Mesoporous Material for High Temperature Catalytic Oxidation of Naphthalene

    Directory of Open Access Journals (Sweden)

    Guotao Zhao

    2014-01-01

    Full Text Available A high surface area, hydrophobic mesoporous material, MFS, has been successfully synthesized by a hydrothermal synthesis method using a perfluorinated surfactant, SURFLON S-386, as the single template. N2 adsorption and TEM were employed to characterize the pore structure and morphology of MFS. Static water adsorption test indicates that the hydrophobicity of MFS is significantly higher than that of MCM-41. XPS and Py-GC/MS analysis confirmed the existence of perfluoroalkyl groups in MFS which led to its high hydrophobicity. MFS was used as a support for CuO in experiments of catalytic combustion of naphthalene, where it showed a significant advantage over MCM-41 and ZSM-5. SEM was helpful in understanding why CuO-MFS performed so well in the catalytic combustion of naphthalene. Experimental results indicated that MFS was a suitable support for catalytic combustion of large molecular organic compounds, especially for some high temperature catalytic reactions when water vapor was present.

  11. Investigation of mesoporous structures for thermoelectric applications

    International Nuclear Information System (INIS)

    Cojocaru, A.; Carstensen, J.; Foell, H.; Boor, J.; Schmidt, V.

    2011-01-01

    Mesoporous silicon is an attractive material for thermoelectric application. For pore wall thicknesses around <100 nm, phonons can not penetrate the porous layer while electrons still can, due to there smaller mean free path length. The resulting good electrical and bad thermal conductivity is a premise for efficient thermoelectric devices. This paper presents results regarding homogeneity, high porosity, and optimal pore wall thicknesses for porous silicon based thermoelectric devices.

  12. Mesoporous g-C₃N₄ Nanosheets: Synthesis, Superior Adsorption Capacity and Photocatalytic Activity.

    Science.gov (United States)

    Li, Dong-Feng; Huang, Wei-Qing; Zou, Lan-Rong; Pan, Anlian; Huang, Gui-Fang

    2018-08-01

    Elimination of pollutants from water is one of the greatest challenges in resolving global environmental issues. Herein, we report a high-surface-area mesoporous g-C3N4 nanosheet with remarkable high adsorption capacity and photocatalytic performance, which is prepared through directly polycondensation of urea followed by a consecutive one-step thermal exfoliation strategy. This one-pot method to prepare mesoporous g-C3N4 nanosheet is facile and rapid in comparison with others. The superior adsorption capacity of the fabricated mesoporous g-C3N4 nanostructures is demonstrated by a model organic pollutant-methylene blue (MB), which is up to 72.2 mg/g, about 6 times as that of the largest value of various g-C3N4 adsorbents reported so far. Moreover, this kind of porous g-C3N4 nanosheet exhibits high photocatalytic activity to MB and phenol degradation. Particularly, the regenerated samples show excellent performance of pollutant removal after consecutive adsorption/degradation cycles. Therefore, this mesoporous g-C3N4 nanosheet may be an attractive robust metal-free material with great promise for organic pollutant elimination.

  13. Template-free synthesis of mesoporous nanoring-like Zn-Co mixed oxides with high lithium storage performance

    Science.gov (United States)

    Lu, Lun; Gao, Yan-Li; Yang, Zhi-Zheng; Wang, Cheng; Wang, Jin-Guo; Wang, Hui-Yuan; Jiang, Qi-Chuan

    2018-04-01

    Mesoporous nanoring-like Zn-Co mixed oxides are synthesized via a simple template-free solvothermal method with a subsequent annealing process. The ring-like nanostructures with hollow interiors are formed under the complexing effects of potassium sodium tartrate. Numerous mesopores are generated after the precursor is annealed at 500 °C. When applied as anode materials, the mesoporous nanoring-like Zn-Co mixed oxides can deliver a high discharge capacity of 1102 mAh g-1 after 200 cycles at 500 mA g-1. Even when the current density is increased to 2 A g-1, the mixed oxides can still retain a reversible capacity of 761 mAh g-1. Such high cycling stability and rate capability are mainly derived from the unique mesoporous ring-like nanostructures and the synergistic effects between Zn and Co based oxides.

  14. Metalloporphyrins immobilized in Fe3O4@SiO2 mesoporous submicrospheres: Reusable biomimetic catalysts for hydrocarbon oxidation.

    Science.gov (United States)

    Barbosa, Isaltino A; de Sousa Filho, Paulo C; da Silva, Douglas L; Zanardi, Fabrício B; Zanatta, Lucas D; de Oliveira, Adilson J A; Serra, Osvaldo A; Iamamoto, Yassuko

    2016-05-01

    We successfully immobilized metalloporphyrins (MeP) in mesoporous silica coating magnetite spheres. In this sense, we prepared two different classes of core@shell supports, which comprise aligned (Fe3O4-AM-MeP, MeP=FeP or MnP) and non-aligned (Fe3O4-NM-MeP, MeP=FeP or MnP) mesoporous magnetic structures. X-ray diffractometry and energy dispersive X-ray spectroscopy confirmed the mesoporous nature of the silica shell of the materials. Magnetization measurements, scanning and transmission electron microscopies (SEM/TEM), electrophoretic mobility (ζ-potential), and infrared spectroscopy (FTIR) also confirm the composition and structure of the materials. The catalysts maintained their catalytic activity during nine reaction cycles toward hydrocarbon oxidation processes without detectable catalyst leaching. The catalysis results revealed a biomimetic pattern of cytochrome P450-type enzymes, thus confirming that the prepared materials are can effectively mimic the activity of such groups. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. High-performance carbon nanotube-implanted mesoporous carbon spheres for supercapacitors with low series resistance

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Bin [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Chen, Xiaohua, E-mail: hudacxh62@yahoo.com.cn [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Guo, Kaimin [College of Physics and Electronic Science, Changsha University of Science and Technology (China); Xu, Longshan [Department of Mechanical Engineering, Xiamen University of Technology, Xiamen 361024 (China); Chen, Chuansheng [College of Physics and Electronic Science, Changsha University of Science and Technology (China); Yan, Haimei; Chen, Jianghua [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China)

    2011-11-15

    Research highlights: {yields} CNTs-implanted porous carbon spheres are prepared by using gelatin as soft template. {yields} Homogeneously distributed CNTs form a well-develop network in carbon spheres. {yields} CNTs act as a reinforcing backbone assisting the formation of pore structure. {yields} CNTs improve electrical conductivity and specific capacitance of supercapacitor. -- Abstract: Carbon nanotube-implanted mesoporous carbon spheres were prepared by an easy polymerization-induced colloid aggregation method using gelatin as a soft template. Scanning electron microscopy, transmission electron microscopy and nitrogen adsorption-desorption measurements reveal that the materials are mesoporous carbon spheres, with a diameter of {approx}0.5-1.0 {mu}m, a specific surface area of 284 m{sup 2}/g and average pore size of 3.9 nm. Using the carbon nanotube-implanted mesoporous carbon spheres as electrode material for supercapacitors in an aqueous electrolyte solution, a low equivalent series resistance of 0.83 {Omega} cm{sup 2} and a maximum specific capacitance of 189 F/g with a measured power density of 8.7 kW/kg at energy density of 6.6 Wh/kg are obtained.

  16. Advanced Industrial Materials Program

    Science.gov (United States)

    Stooksbury, F.

    1994-06-01

    The mission of the Advanced Industrial Materials (AIM) program is to commercialize new/improved materials and materials processing methods that will improve energy efficiency, productivity, and competitiveness. Program investigators in the DOE national laboratories are working with about 100 companies, including 15 partners in CRDA's. Work is being done on intermetallic alloys, ceramic composites, metal composites, polymers, engineered porous materials, and surface modification. The program supports other efforts in the Office of Industrial Technologies to assist the energy-consuming process industries. The aim of the AIM program is to bring materials from basic research to industrial application to strengthen the competitive position of US industry and save energy.

  17. Improved Stabilities of Immobilized Glucoamylase on Functionalized Mesoporous Silica Synthesised using Decane as Swelling Agent

    Directory of Open Access Journals (Sweden)

    Reni George

    2013-06-01

    Full Text Available Ordered mesoporous silica, with high porosity was used to immobilize glucoamylase via adsorption and covalent binding. Immobilization of glucoamylase within mesoporous silica was successfully achieved, resulting in catalytically high efficiency during starch hydrolysis. In this study, mesoporous silica was functionalized by co-condensation of tetraethoxysilane (TEOS with organosilane (3-aminopropyl triethoxysilane (APTES in a wide range of molar ratios of APTES: TEOS in the presence of triblock copolymer P123 under acidic hydrothermal conditions. The prepared materials were characterized by Small angle XRD, Nitrogen adsorption – desorption and 29Si MAS solid state NMR. N2 desorption studies showed that pore size distribution decreases due to pore blockage after functionalization and enzyme immobilization. Small angle XRD and 29Si MAS NMR study reveals mesophase formation and Si environment of the materials. The main aim of our work was to study the catalytical activity, effect of pH, temperature storage stability and reusability of covalently bound glucoamylase on mesoporous silica support. The result shows that the stability of enzyme can be enhanced by immobilization.  © 2013 BCREC UNDIP. All rights reservedReceived: 3rd December 2012; Revised: 4th April 2013; Accepted: 20th April 2013[How to Cite: George, R., Gopinath, S., Sugunan, S. (2013. Improved Stabilities of Immobilized Glucoamyl-ase on Functionalized Mesoporous Silica Synthesized using Decane as Swelling Agent. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 70-76. (doi:10.9767/bcrec.8.1.4208.70-76][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4208.70-76] | View in  |

  18. Degradation of the ammonia wastewater in aqueous medium with ozone in combination with mesoporous TiO2 catalytic

    Science.gov (United States)

    Liu, Zhiwu; Qiu, Jianping; Zheng, Chaocan; Li, Liqing

    2017-03-01

    TiO2 mesoporous nanomaterials are now widely used in catalytic ozone technology. In this paper, the market P25 as precursor hydrothermal method to prepare TiO2 mesoporous materials, ozone catalyst material characterization by transmission electron microscopy, surface area analyzers, and X-ray diffraction technique and found that nanotubes, nanosheets, nanorods through characterization results, nano-particles of different morphology and anatase and rutile proportion of the ozone catalytic material can be controlled by the calcination temperature and the temperature of hot water to give, and with the hot water temperature and calcination temperature, the catalyst becomes small aperture size larger catalyst crystalline phase from anatase to rutile gradually shift. Catalytic materials have been prepared by the Joint ozone degradation of ammonia wastewater to evaluate mesoporous TiO2 nanomaterials ozone catalytic performance, the results showed that: ammonia wastewater removal efficiency of various catalytic materials relatively separate ozone and markets P25 effects are significantly improved, and TiO2 nanotubes cooperate with ozone degradation ammonia wastewater highest efficiency, in addition, rutile TiO2 catalysts, the more the better the performance of their ozone catalysis.

  19. Smart Mesoporous Nanomaterials for Antitumor Therapy

    Directory of Open Access Journals (Sweden)

    Marina Martínez-Carmona

    2015-11-01

    Full Text Available The use of nanomaterials for the treatment of solid tumours is receiving increasing attention by the scientific community. Among them, mesoporous silica nanoparticles (MSNs exhibit unique features that make them suitable nanocarriers to host, transport and protect drug molecules until the target is reached. It is possible to incorporate different targeting ligands to the outermost surface of MSNs to selectively drive the drugs to the tumour tissues. To prevent the premature release of the cargo entrapped in the mesopores, it is feasible to cap the pore entrances using stimuli-responsive nanogates. Therefore, upon exposure to internal (pH, enzymes, glutathione, etc. or external (temperature, light, magnetic field, etc. stimuli, the pore opening takes place and the release of the entrapped cargo occurs. These smart MSNs are capable of selectively reaching and accumulating at the target tissue and releasing the entrapped drug in a specific and controlled fashion, constituting a promising alternative to conventional chemotherapy, which is typically associated with undesired side effects. In this review, we overview the recent advances reported by the scientific community in developing MSNs for antitumor therapy. We highlight the possibility to design multifunctional nanosystems using different therapeutic approaches aimed at increasing the efficacy of the antitumor treatment.

  20. Enhanced electrochemical performance of mesoporous NiCo{sub 2}O{sub 4} as an excellent supercapacitive alternative energy storage material

    Energy Technology Data Exchange (ETDEWEB)

    Bhojane, Prateek [Center for Materials Science and Engineering, Indian Institute of Technology Indore, Simrol Campus, Khandwa Road, Indore 452020 (India); Sen, Somaditya [Center for Materials Science and Engineering, Indian Institute of Technology Indore, Simrol Campus, Khandwa Road, Indore 452020 (India); Department of Physics, Indian Institute of Technology Indore, Simrol Campus, Khandwa Road, Indore 452020 (India); Shirage, Parasharam M., E-mail: paras.shirage@gmail.com [Center for Materials Science and Engineering, Indian Institute of Technology Indore, Simrol Campus, Khandwa Road, Indore 452020 (India); Department of Physics, Indian Institute of Technology Indore, Simrol Campus, Khandwa Road, Indore 452020 (India)

    2016-07-30

    Highlights: • A facile technique to grow mesopores NiCo{sub 2}O{sub 4} flakes. • High specific capacitance. • High capacitance retention at higher cycles. • A promising candidate for energy storage device. - Abstract: Here we report the supercapacitive properties of mesoporous nickel cobalt oxide (NiCo{sub 2}O{sub 4}) synthesized by fast, inexpensive and facile chemical bath method, by avoiding high pressure, high temperature and chemical complexity. Physico-chemical characterization techniques such as X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), Raman Spectra, and nitrogen adsorption–desorption isotherm analysis is performed to characterize the electrode material. Brunauer-Emmett-Teller (BET) measurements reveal the surface area 52.86 m{sup 2} g{sup −1} and from Barrett-Joyner-Halenda (BJH), typical pores size ranges between 10 and 50 nm, also confirms the mesoporosity. The electrochemical properties are measured by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charging/discharging. The synthesized material exhibits remarkably enhanced electrochemical performance with specific capacitance of 1130 F g{sup −1} at 1 mV s{sup −1} sweep rate and 1125 F g{sup −1} at current density of 0.05 A g{sup −1}, highest without supporting base like carbon cloth, Ni-foam, Ti- foil used for direct growth (deposition) of electrode material. It is superior to those of its individual and hybrid components prepared by similar technique. Ragone plot shows high specific energy density (49.25 Wh kg{sup −1}) and corresponding specific power density (1851.31 W kg{sup −1}) even at high current density of 0.5 A g{sup −1}.

  1. Mesoporous carbon-coated LiFePO4 nanocrystals co-modified with graphene and Mg2+ doping as superior cathode materials for lithium ion batteries.

    Science.gov (United States)

    Wang, Bo; Xu, Binghui; Liu, Tiefeng; Liu, Peng; Guo, Chenfeng; Wang, Shuo; Wang, Qiuming; Xiong, Zhigang; Wang, Dianlong; Zhao, X S

    2014-01-21

    In this work, mesoporous carbon-coated LiFePO4 nanocrystals further co-modified with graphene and Mg(2+) doping (G/LFMP) were synthesized by a modified rheological phase method to improve the speed of lithium storage as well as cycling stability. The mesoporous structure of LiFePO4 nanocrystals was designed and realized by introducing the bead milling technique, which assisted in forming sucrose-pyrolytic carbon nanoparticles as the template for generating mesopores. For comparison purposes, samples modified only with graphene (G/LFP) or Mg(2+) doping (LFMP) as well as pure LiFePO4 (LFP) were also prepared and investigated. Microscopic observation and nitrogen sorption analysis have revealed the mesoporous morphologies of the as-prepared composites. X-ray diffraction (XRD) and Rietveld refinement data demonstrated that the Mg-doped LiFePO4 is a single olivine-type phase and well crystallized with shortened Fe-O and P-O bonds and a lengthened Li-O bond, resulting in an enhanced Li(+) diffusion velocity. Electrochemical properties have also been investigated after assembling coin cells with the as-prepared composites as the cathode active materials. Remarkably, the G/LFMP composite has exhibited the best electrochemical properties, including fast lithium storage performance and excellent cycle stability. That is because the modification of graphene provided active sites for nuclei, restricted the in situ crystallite growth, increased the electronic conductivity and reduced the interface reaction current density, while, Mg(2+) doping improved the intrinsically electronic and ionic transfer properties of LFP crystals. Moreover, in the G/LFMP composite, the graphene component plays the role of "cushion" as it could quickly realize capacity response, buffering the impact to LFMP under the conditions of high-rate charging or discharging, which results in a pre-eminent rate capability and cycling stability.

  2. Hindered disulfide bonds to regulate release rate of model drug from mesoporous silica.

    Science.gov (United States)

    Nadrah, Peter; Maver, Uroš; Jemec, Anita; Tišler, Tatjana; Bele, Marjan; Dražić, Goran; Benčina, Mojca; Pintar, Albin; Planinšek, Odon; Gaberšček, Miran

    2013-05-01

    With the advancement of drug delivery systems based on mesoporous silica nanoparticles (MSNs), a simple and efficient method regulating the drug release kinetics is needed. We developed redox-responsive release systems with three levels of hindrance around the disulfide bond. A model drug (rhodamine B dye) was loaded into MSNs' mesoporous voids. The pore opening was capped with β-cyclodextrin in order to prevent leakage of drug. Indeed, in absence of a reducing agent the systems exhibited little leakage, while the addition of dithiothreitol cleaved the disulfide bonds and enabled the release of cargo. The release rate and the amount of released dye were tuned by the level of hindrance around disulfide bonds, with the increased hindrance causing a decrease in the release rate as well as in the amount of released drug. Thus, we demonstrated the ability of the present mesoporous systems to intrinsically control the release rate and the amount of the released cargo by only minor structural variations. Furthermore, an in vivo experiment on zebrafish confirmed that the present model delivery system is nonteratogenic.

  3. Translational and rotational dynamics of water in mesoporous silica materials: MCM-41-S and MCM-48-S

    International Nuclear Information System (INIS)

    Faraone, Antonio; Liu Li; Mou, C.-Y.; Shih, P.-C.; Copley, John R.D.; Chen, S.-H.

    2003-01-01

    We investigated the translational and rotational dynamics of water molecules in mesoporous silica materials MCM-41-S and MCM-48-S using the incoherent quasielastic neutron scattering technique. The range of wave vector transfers Q covered in the measurements was from 0.27 to 1.93 Aa -1 broad enough to detect both the translational and rotational contributions to the scattering. We used the relaxing-cage models for both translational and rotational motions which we developed earlier, to analyze the QENS spectra and investigated water dynamics in a supercooled range from 250 to 280 K. The results show a marked slowing down of both the translational and rotational relaxation times, and an increasing effect of confinement on the translational motion, as the temperature is lowered

  4. Amine-modified ordered mesoporous silica: Effect of pore size on carbon dioxide capture

    Energy Technology Data Exchange (ETDEWEB)

    V. Zelenak; M. Badanicova; D. Halamova; J. Cejka; A. Zukal; N. Murafa; G. Goerigk [P.J. Safarik University, Kosice (Slovak Republic)

    2008-10-15

    Three mesoporous silica materials with different pore sizes and pore connectivity were prepared and functionalized with aminopropyl (AP) ligands by post-synthesis treatment. The materials were characterized by small angle X-ray scattering (SAXS), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and nitrogen adsorption/desorption experiments. The carbon dioxide sorption on modified mesoporous molecular sieves was investigated by using of microbalances at 25{sup o}C, and the influence of pore size and pore architecture on CO{sub 2} sorption was discussed. The large pore silica, SBA-15, showed the largest carbon dioxide sorption capacity (1.5 mmol/g), relating to highest amine surface density in this material. On the other hand, three-dimensional accessibility of amine sites inside the pores of SBA-12 silica resulted in a faster response to CO{sub 2} uptake in comparison with MCM-41 and SBA-15 molecular sieves

  5. A mesoporous WO{sub 3−X}/graphene composite as a high-performance Li-ion battery anode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fei [C-Industry Incubation Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 305-600 (Korea, Republic of); Kim, Jong Gu [C-Industry Incubation Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 305-600 (Korea, Republic of); Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Lee, Chul Wee [C-Industry Incubation Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 305-600 (Korea, Republic of); University of Science and Technology (UST), Gajeong-ro, Yuseong-gu, Daejeon 305-333 (Korea, Republic of); Im, Ji Sun, E-mail: jsim@krict.re.kr [C-Industry Incubation Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 305-600 (Korea, Republic of); University of Science and Technology (UST), Gajeong-ro, Yuseong-gu, Daejeon 305-333 (Korea, Republic of)

    2014-10-15

    Graphical abstract: The highly flexible and conductive graphene layer can enhance electron transfer, protect metal oxides against disintegration and aggregation and buffer the strain induced by volume expansion during cycles. The mesoporous surface layer provides an open network for Li+ diffusion. - Highlights: • Novel cocktail effects of 2D mesoporous WO{sub 3−X}/graphene for lithium ion battery. • New approach for lithium ion battery by easy and unique synthesis method. • Mechanism study with proper data for understanding a reaction on anode surface. - Abstract: A novel mesoporous WO{sub 3−X}/graphene composite was developed. This material allowed rapid electron and Li{sup +} ion diffusion when used as a Li-ion battery (LIB) anode material. Remarkably, the graphene support protected WO{sub 3−X} from changing volume during the electrochemical cycling process; this process generally induces capacity loss. The current work describes a high-performance anode material for LIB that has highly dense WO{sub 3−X}, as well as high capacity, rate capability and stability.

  6. Mesoporous silica obtained with methyltriethoxysilane as co-precursor in alkaline medium

    Science.gov (United States)

    Putz, Ana-Maria; Wang, Kunzhou; Len, Adél; Plocek, Jiri; Bezdicka, Petr; Kopitsa, Gennady P.; Khamova, Tamara V.; Ianăşi, Cătălin; Săcărescu, Liviu; Mitróová, Zuzana; Savii, Cecilia; Yan, Minhao; Almásy, László

    2017-12-01

    Mesoporous silica particles have been synthesized by sol-gel method from tetraethoxysilane (tetraethylorthosilicate, TEOS) and methyltriethoxysilane (MTES), in ethanol and water mixture, at different ratios of the of the silica precursors. Ammonia was used as catalyst at room temperature and hexadecyltrimethylammonium bromide (cetyltrimethylammonium bromide, CTAB) as the structure directing agent. Nitrogen sorption, X-ray diffraction and small-angle neutron scattering gave information on the evolution of the gel structure and pore morphologies in the function of MTES/TEOS molar ratio. Thermogravimetric and differential thermal analysis showed that with addition of MTES the exothermic peak indicating the oxidation of the low molecular weight organic fragments shift to higher temperature. A room-temperature, one-pot synthesis of MCM-41 type materials is presented, in which the variation of the MTES concentration allows to change the hydrophobicity, preserving the specific properties materials, like the ordered pore structure, large specific surface area and high porosity. Specifically, the obtained materials had cylindrical pores, specific surface areas up to 1101 m2/g and total pore volumes up to 0.473 cm3/g. The obtained mesoporous materials are susceptible for further functionalization to improve their selective uptake of guest species in drug delivery applications.

  7. Ordered Mesoporous Carbons as Novel and Efficient Adsorbent for Dye Removal from Aqueous Solution

    OpenAIRE

    Phuong T. Dang; Hoa T. H. Nguyen; Canh D. Dao; Giang H. Le; Quang K. Nguyen; Kien T. Nguyen; Hoa T. K. Tran; Tuyen V. Nguyen; Tuan A. Vu

    2016-01-01

    Ordered mesoporous carbons (OMCs) were successfully synthesized by using hard template and soft template methods. These materials were characterized by XRD, TEM, and N2 adsorption-desorption Brunauer-Emmett-Teller (BET). From the obtained results, it is revealed that the obtained OMCs samples showed high surface area (>1000 m2/g) with high pore volume, mainly mesopore volume (1.2–2.4 cm3/g). Moreover, OMCs samples had similar structure of the SBA-15 silica and exhibited high MB adsorption cap...

  8. [Study on absorbing volatile oil with mesoporous carbon].

    Science.gov (United States)

    Yan, Hong-mei; Jia, Xiao-bin; Zhang, Zhen-hai; Sun, E; Yang Nan

    2014-11-01

    Clove oil and turmeric oil were absorbed by mesoporous carbon. The absorption ratio of mesoporous carbon to volatile oil was optimized with the eugenol yield and curcumol yield as criteria Curing powder was characterized by scanning electron microscopy (SEM) and differential scanning calorietry (DSC). The effects of mesoporous carbon on dissolution in vitro and thermal stability of active components were studied. They reached high adsorption rate when the absorption ratio of mesoporous carbon to volatile oil was 1:1. When volatile oil was absorbed, dissolution rate of active components had a little improvement and their thermal stability improved after volatile oil was absorbed by the loss rate decreasing more than 50%. Absorbing herbal volatile oil with mesoporous carbon deserves further studying.

  9. Soft-Template Synthesis of Mesoporous Anatase TiO2 Nanospheres and Its Enhanced Photoactivity

    Directory of Open Access Journals (Sweden)

    Xiaojia Li

    2017-11-01

    Full Text Available Highly crystalline mesoporous anatase TiO2 nanospheres with high surface area (higher than P25 and anatase TiO2 are prepared by a soft-template method. Despite the high specific surface area, these samples have three times lower equilibrium adsorption (<2% than Degussa P25. The rate constant of the mesoporous anatase TiO2 (0.024 min−1 reported here is 364% higher than that of P25 (0.0066 min−1, for the same catalytic loading. The results of oxidation-extraction photometry using several reactive oxygen species (ROS scavengers indicated that mesoporous anatase TiO2 generates more ROS than P25 under UV-light irradiation. This significant improvement in the photocatalytic performance of mesoporous spherical TiO2 arises from the following synergistic effects in the reported sample: (i high surface area; (ii improved crystallinity; (iii narrow pore wall thicknesses (ensuring the rapid migration of photogenerated carriers to the surface of the material; and (iv greater ROS generation under UV-light.

  10. Evaluation of La-Doped Mesoporous Bioactive Glass as Adsorbent and Photocatalyst for Removal of Methylene Blue from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Liying Li

    2015-01-01

    Full Text Available A series of La-doped mesoporous bioactive glass (BG-La materials with excellent biosafety and hypotoxicity have been prepared and tested as adsorbent. The study was aimed to evaluate the possibility of utilizing BG-La for the adsorptive removal of methylene blue (MB from aqueous solution and test the adsorption and desorption behavior of this new material. The process parameters affecting adsorption behaviors such as pH, contact time, and initial concentration and the photocatalytic degradation of MB were systematically investigated. The result showed that BG-La had excellent removal rate (R of MB, and BG-La showed better photocatalytic effect than undoped mesoporous bioactive glass (BG. Furthermore, the MB loaded BG-La was easily desorbed with acid solution due to its electronegativity and mesoporous structure. The result indicated that these materials can be employed as candidates for removal of dye pollutant owing to their high removal rate, excellent photocatalytic effect, desorption performance, and their reusability.

  11. Frontiers of advanced engineering materials (faem-06)

    International Nuclear Information System (INIS)

    Alam, S.; Mirza, J.A.

    2006-01-01

    The second international conference on Frontiers of Advanced Engineering Materials was held on 04-06 December 2006 in Lahore, Pakistan. At a time of the rapid expending enormous potential for the wide spread development and usage of Advanced Engineering Materials. About 121 papers were presented by engineers and scientists from 30 organizations, academic institutions and foreign experts from six countries. on the recommendation of a panel after review, only 72 papers were included in this conference proceedings. The main areas of interest which remained under focus during the conference were structure property relationship, surface Modifications, Nano Technology, Super and semi conductors, Magnetic Materials, Materials Proceeding, Glass and Ceramics, Composite Materials. This Conference open a way to help in strengthening the bounds between our foreign guests local and delegates. The participants showed their keen interest in the poster sessions. Fruitful conclusions of these presentations will be helpful to give rise to new topics of research in the fields of advanced engineering Materials. (A.B.)

  12. Tailored Design of Bicontinuous Gyroid Mesoporous Carbon and Nitrogen-Doped Carbon from Poly(ethylene oxide-b-caprolactone) Diblock Copolymers.

    Science.gov (United States)

    Chu, Wei-Cheng; Bastakoti, Bishnu Prasad; Kaneti, Yusuf Valentino; Li, Jheng-Guang; Alamri, Hatem R; Alothman, Zeid A; Yamauchi, Yusuke; Kuo, Shiao-Wei

    2017-10-04

    Highly ordered mesoporous resol-type phenolic resin and the corresponding mesoporous carbon materials were synthesized by using poly(ethylene oxide-b-caprolactone) (PEO-b-PCL) diblock copolymer as a soft template. The self-assembled mesoporous phenolic resin was found to form only in a specific resol concentration range of 40-70 wt % due to an intriguing balance of hydrogen-bonding interactions in the resol/PEO-b-PCL mixtures. Furthermore, morphological transitions of the mesostructures from disordered to gyroid to cylindrical and finally to disordered micelle structure were observed with increasing resol concentration. By calcination under nitrogen atmosphere at 800 °C, the bicontinuous mesostructured gyroid phenolic resin could be converted to mesoporous carbon with large pore size without collapse of the original mesostructure. Furthermore, post-treatment of the mesoporous gyroid phenolic resin with melamine gave rise to N-doped mesoporous carbon with unique electronic properties for realizing high CO 2 adsorption capacity (6.72 mmol g -1 at 0 °C). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Research on the Ordered Mesoporous Silica for Tobacco Harm Reduction

    Science.gov (United States)

    Wang, Y.; Y Li, Z.; Ding, J. X.; Hu, Z. J.; Liu, Z.; Zhou, G.; Huang, T. H.

    2017-12-01

    For reducting tobacco harm, this paper prepared an ordered mesoporous silica by using triblock copolymer Pluronic P123 as template. The property of this material was characterized by the X-ray scattering spectrum(XRD), Transmission electron microscopy(TEM), Scanning electron microscopy (SEM) and Nitrogen adsorption/desorption. Then this ordered mesoporous silica was added into the cigarette filter in order to researching its effect of cigarette harm index. The result shows that the feature of SBA-15 was grain morphology, ordered arrangement, tubular porous 2-D hexagonal structure. The application of SBA-15 in cigarette filter can selectively reduce harmful components in cigarette smoke such as crotonaldehyde, hydrogen cyanide, benzo pyrene and tar. The synthesized SBA-15 could properly reduce cigarette harm index.

  14. Highly ordered mesoporous cobalt oxide nanostructures: synthesis, characterisation, magnetic properties, and applications for electrochemical energy devices.

    Science.gov (United States)

    Wang, Guoxiu; Liu, Hao; Horvat, Josip; Wang, Bei; Qiao, Shizhang; Park, Jinsoo; Ahn, Hyojun

    2010-09-24

    Highly ordered mesoporous Co(3)O(4) nanostructures were prepared using KIT-6 and SBA-15 silica as hard templates. The structures were confirmed by small angle X-ray diffraction, high resolution transmission electron microscopy, and N(2) adsorption-desorption isotherm analysis. Both KIT-6 cubic and SBA-15 hexagonal mesoporous Co(3)O(4) samples exhibited a low Néel temperature and bulk antiferromagnetic coupling due to geometric confinement of antiferromagnetic order within the nanoparticles. Mesoporous Co(3)O(4) electrode materials have demonstrated the high lithium storage capacity of more than 1200 mAh g(-1) with an excellent cycle life. They also exhibited a high specific capacitance of 370 F g(-1) as electrodes in supercapacitors.

  15. Materials for advanced power engineering 2010. Proceedings

    International Nuclear Information System (INIS)

    Lecomte-Beckers, Jacqueline; Contrepois, Quentin; Beck, Tilmann; Kuhn, Bernd

    2010-01-01

    The 9th Liege Conference on ''Materials for Advanced Power Engineering'' presents the results of the materials related COST Actions 536 ''Alloy Development for Critical Components of Environmentally Friendly Power Plants'' and 538 ''High Temperature Plant Lifetime Extension''. In addition, the broad field of current materials research perspectives for high efficiency, low- and zero- emission power plants and new energy technologies for the next decades are reported. The Conference proceedings are structured as follows: 1. Materials for advanced steam power plants; 2. Gas turbine materials; 3. Materials for nuclear fission and fusion; 4. Solid oxide fuel cells; 5. Corrosion, thermomechanical fatigue and modelling; 6. Zero emission power plants.

  16. Materials for advanced power engineering 2010. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte-Beckers, Jacqueline; Contrepois, Quentin; Beck, Tilmann; Kuhn, Bernd [eds.

    2010-07-01

    The 9th Liege Conference on ''Materials for Advanced Power Engineering'' presents the results of the materials related COST Actions 536 ''Alloy Development for Critical Components of Environmentally Friendly Power Plants'' and 538 ''High Temperature Plant Lifetime Extension''. In addition, the broad field of current materials research perspectives for high efficiency, low- and zero- emission power plants and new energy technologies for the next decades are reported. The Conference proceedings are structured as follows: 1. Materials for advanced steam power plants; 2. Gas turbine materials; 3. Materials for nuclear fission and fusion; 4. Solid oxide fuel cells; 5. Corrosion, thermomechanical fatigue and modelling; 6. Zero emission power plants.

  17. Highly active Pd–In/mesoporous alumina catalyst for nitrate reduction

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhenwei; Zhang, Yonggang; Li, Deyi [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Werth, Charles J. [Civil, Architectural and Environmental Engineering, University of Texas at Austin, 301 East Dean Keeton St., Stop C1786, Austin, TX 78712 (United States); Zhang, Yalei, E-mail: zhangyalei2003@163.com [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Zhou, Xuefei, E-mail: zhouxuefei@tongji.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China)

    2015-04-09

    Highlights: • Pd–In nanoparticles (6–7 nm) uniformly form in the mesopores of alumina (4 nm). • Pd–In nanoparticles aggregation is prevented during the synthesis process. • The reduction rate of nitrate is efficient by using the obtained catalyst. • The selectivity toward N{sub 2} is ideal by using the obtained catalyst. - Abstract: The catalytic reduction of nitrate is a promising technology for groundwater purification because it transforms nitrate into nitrogen and water. Recent studies have mainly focused on new catalysts with higher activities for the reduction of nitrate. Consequently, metal nanoparticles supported on mesoporous metal oxides have become a major research direction. However, the complex surface chemistry and porous structures of mesoporous metal oxides lead to a non-uniform distribution of metal nanoparticles, thereby resulting in a low catalytic efficiency. In this paper, a method for synthesizing the sustainable nitrate reduction catalyst Pd–In/Al{sub 2}O{sub 3} with a dimensional structure is introduced. The TEM results indicated that Pd and In nanoparticles could efficiently disperse into the mesopores of the alumina. At room temperature in CO{sub 2}-buffered water and under continuous H{sub 2} as the electron donor, the synthesized material (4.9 wt% Pd) was the most active at a Pd–In ratio of 4, with a first-order rate constant (k{sub obs} = 0.241 L min{sup −1} g{sub cata}{sup −1}) that was 1.3× higher than that of conventional Pd–In/Al{sub 2}O{sub 3} (5 wt% Pd; 0.19 L min{sup −1} g{sub cata}{sup −1}). The Pd–In/mesoporous alumina is a promising catalyst for improving the catalytic reduction of nitrate.

  18. Synthesis of high-quality mesoporous silicon particles for enhanced lithium storage performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chundong, E-mail: apcdwang@hust.edu.cn [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong SAR (China); Ren, Jianguo [Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong SAR (China); Chen, Hao [Department of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou (China); Zhang, Yi [School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430073 (China); Ostrikov, Kostya [School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane 4000, QLD (Australia); Manufacturing Flagship, CSIRO, P. O. Box 218, Lindfield, NSW 2070 (Australia); Zhang, Wenjun [Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong SAR (China); Li, Yi, E-mail: liyi@suda.edu.cn [Department of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou (China); Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong SAR (China)

    2016-04-15

    Silicon has been considered as one of the most promising anode materials for high-capacity lithium-ion batteries (LIBs) due to its ultrahigh theoretical capacity, abundance, and environmentally benign nature. Nonetheless, the severe break during the prolonged cycling results in poor electrochemical performance, which hinders its practical application. Herein, we report the synthesis of novel mesoporous silicon particles with a facile template method by using a magnesiothermic reduction for LIBs. The obtained silicon nanoparticles are highly porous with densely porous cavities (20–40 nm) on the wall, of which it presents good crystallization. Electrochemical measurements showed that the mesoporous silicon nanoparticles delivered a high reversible specific capacity of 910 mA h g{sup −1} at a high current density of 1200 mA g{sup −1} over 50 cycles. The specific capacity at such high current density is still over twofold than that of commercial graphite anode, suggesting that the nanoporous Si architectures is suitable for high-performance Si-based anodes for lithium ion batteries in terms of capacity, cycle life, and rate capacity. - Highlights: • Silica nanotubes were prepared with a facile template method. • Novel mesoporous silicon particles were obtained by magnesiothermic reduction. • High-Performance LIBs were achieved by using mesoporous Si particle Electrodes.

  19. Direct synthesis of graphitic mesoporous carbon from green phenolic resins exposed to subsequent UV and IR laser irradiations

    Science.gov (United States)

    Sopronyi, Mihai; Sima, Felix; Vaulot, Cyril; Delmotte, Luc; Bahouka, Armel; Matei Ghimbeu, Camelia

    2016-01-01

    The design of mesoporous carbon materials with controlled textural and structural features by rapid, cost-effective and eco-friendly means is highly demanded for many fields of applications. We report herein on the fast and tailored synthesis of mesoporous carbon by UV and IR laser assisted irradiations of a solution consisting of green phenolic resins and surfactant agent. By tailoring the UV laser parameters such as energy, pulse repetition rate or exposure time carbon materials with different pore size, architecture and wall thickness were obtained. By increasing irradiation dose, the mesopore size diminishes in the favor of wall thickness while the morphology shifts from worm-like to an ordered hexagonal one. This was related to the intensification of phenolic resin cross-linking which induces the reduction of H-bonding with the template as highlighted by 13C and 1H NMR. In addition, mesoporous carbon with graphitic structure was obtained by IR laser irradiation at room temperature and in very short time periods compared to the classical long thermal treatment at very high temperatures. Therefore, the carbon texture and structure can be tuned only by playing with laser parameters, without extra chemicals, as usually required. PMID:28000781

  20. Fabrication of Nitrogen-Doped Hollow Mesoporous Spherical Carbon Capsules for Supercapacitors.

    Science.gov (United States)

    Chen, Aibing; Xia, Kechan; Zhang, Linsong; Yu, Yifeng; Li, Yuetong; Sun, Hexu; Wang, Yuying; Li, Yunqian; Li, Shuhui

    2016-09-06

    A novel "dissolution-capture" method for the fabrication of nitrogen-doped hollow mesoporous spherical carbon capsules (N-HMSCCs) with high capability for supercapacitor is developed. The fabrication process is performed by depositing mesoporous silica on the surface of the polyacrylonitrile nanospheres, followed by a dissolution-capture process occurring in the polyacrylonitrile core and silica shell. The polyacrylonitrile core is dissolved by dimethylformamide treatment to form a hollow cavity. Then, the polyacrylonitrile is captured into the mesochannel of silica. After carbonization and etching of silica, N-HMSCCs with uniform mesopore size are produced. The N-HMSCCs show a high specific capacitance of 206.0 F g(-1) at a current density of 1 A g(-1) in 6.0 M KOH due to its unique hollow nanostructure, high surface area, and nitrogen content. In addition, 92.3% of the capacitance of N-HMSCCs still remains after 3000 cycles at 5 A g(-1). The "dissolution-capture" method should give a useful enlightenment for the design of electrode materials for supercapacitor.

  1. Highly crystalline mesoporous C{sub 60} with ordered pores. A class of nanomaterials for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Benzigar, Mercy R.; Joseph, Stalin; Ilbeygi, Hamid [Future Industries Institute (FII), Division of Information Technology Energy and Environment (DivITEE), University of South Australia, Adelaide, SA (Australia); Park, Dae-Hwan; Talapaneni, Siddulu Naidu [Global Innovative Center for Advanced Nanomaterials (GICAN), Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW (Australia); Sarkar, Sujoy; Chandra, Goutam; Umapathy, Siva; Srinivasan, Sampath [Department of Inorganic and Physical Chemistry and Department of Instrumentation and Applied Physics, Indian Institute of Science (IISc), Bangalore (India); Vinu, Ajayan [Future Industries Institute (FII), Division of Information Technology Energy and Environment (DivITEE), University of South Australia, Adelaide, SA (Australia); Global Innovative Center for Advanced Nanomaterials (GICAN), Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW (Australia)

    2018-01-08

    Highly ordered mesoporous C{sub 60} with a well-ordered porous structure and a high crystallinity is prepared through the nanohard templating method using a saturated solution of C{sub 60} in 1-chloronaphthalene (51 mg mL{sup -1}) as a C{sub 60} precursor and SBA-15 as a hard template. The high solubility of C{sub 60} in 1-chloronaphthalene helps not only to encapsulate a huge amount of the C{sub 60} into the mesopores of the template but also supports the oligomerization of C{sub 60} and the formation of crystalline walls made of C{sub 60}. The obtained mesoporous C{sub 60} exhibits a rod-shaped morphology, a high specific surface area (680 m{sup 2} g{sup -1}), tuneable pores, and a highly crystalline wall structure. This exciting ordered mesoporous C{sub 60} offers high supercapacitive performance and a high selectivity to H{sub 2}O{sub 2} production and methanol tolerance for ORR. This simple strategy could be adopted to make a series of mesoporous fullerenes with different structures and carbon atoms as a new class of energy materials. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Dual soft-template system based on colloidal chemistry for the synthesis of hollow mesoporous silica nanoparticles.

    Science.gov (United States)

    Li, Yunqi; Bastakoti, Bishnu Prasad; Imura, Masataka; Tang, Jing; Aldalbahi, Ali; Torad, Nagy L; Yamauchi, Yusuke

    2015-04-20

    A new dual soft-template system comprising the asymmetric triblock copolymer poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-b-P2VP-b-PEO) and the cationic surfactant cetyltrimethylammonium bromide (CTAB) is used to synthesize hollow mesoporous silica (HMS) nanoparticles with a center void of around 17 nm. The stable PS-b-P2VP-b-PEO polymeric micelle serves as a template to form the hollow interior, while the CTAB surfactant serves as a template to form mesopores in the shells. The P2VP blocks on the polymeric micelles can interact with positively charged CTA(+) ions via negatively charged hydrolyzed silica species. Thus, dual soft-templates clearly have different roles for the preparation of the HMS nanoparticles. Interestingly, the thicknesses of the mesoporous shell are tunable by varying the amounts of TEOS and CTAB. This study provides new insight on the preparation of mesoporous materials based on colloidal chemistry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Preparation of mesoporous NiO with a bimodal pore size distribution and application in electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Wang Dengchao; Ni Wenbin; Pang Huan; Lu Qingyi; Huang Zhongjie [Key Laboratory of Analytical Chemistry for Life Science (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210008 (China); Zhao Jianwei, E-mail: zhaojw@nju.edu.c [Key Laboratory of Analytical Chemistry for Life Science (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210008 (China)

    2010-09-01

    Mesoporous nickel oxide with a porous structure exhibiting a bimodal pore size distribution (2.6 and 30.3 nm diameter pores) has been synthesized in this paper. Firstly, a mesoporous precursor of coordination complex Ni{sub 3}(btc){sub 2}.12H{sub 2}O (btc = 1,3,5-benzenrtricarboxylic acid) is synthesized based on the metal-organic coordination mechanism by a hydrothermal method. Then mesoporous NiO with a bimodal size distribution is obtained by calcining the precursor in the air, and characterized by transmission electron microscopy and N{sub 2} adsorption measurements. Such unique multiple porous structure indicates a promising application of the obtained NiO as electrode materials for supercapacitors. The electrochemical behavior has been investigated by cyclic voltammogram, electrochemical impedance spectra and chronopotentiometry in 3 wt.% KOH aqueous electrolyte. The results reveal that the prepared NiO has high-capacitance retention at high scan rate and exhibits excellent cycle-life stability due to its special mesoporous character with bimodal size distribution.

  4. Electrochemistry and determination of epinephrine using a mesoporous Al-incorporated SiO{sub 2} modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yanhong; Yang, Jinquan; Wu, Kangbing [Department of Chemistry, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2008-05-30

    The potential application of Al-incorporated mesoporous SiO{sub 2} (denoted as Al-MCM-41) in electrochemistry as a novel electrode material was investigated. The peak currents of K{sub 3}[Fe(CN){sub 6}] remarkably increase and the peak potential separation obviously decreases at the mesoporous Al-MCM-41 modified carbon paste electrode (CPE). These phenomena suggest that the mesoporous Al-MCM-41 modified CPE possesses larger electrode area and electron transfer rate constant. Furthermore, the electrochemical behavior of epinephrine (EP) was investigated in different supporting electrolytes such as 0.01 mol L{sup -1} HClO{sub 4} and pH 7.0 phosphate buffer. It is found that the mesoporous Al-MCM-41 modified CPE exhibits catalytic ability to the oxidation of EP due to remarkable peak current enhancement and negative shift of peak potential. The electrochemical oxidation mechanism was also discussed. Finally, a novel electrochemical method was proposed for the determination of EP, which used to determine EP in urine samples. (author)

  5. Electrochemistry and determination of epinephrine using a mesoporous Al-incorporated SiO{sub 2} modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Yanhong; Yang Jinquan [Department of Chemistry, Huazhong University of Science and Technology, Wuhan 430074 (China); Wu Kangbing [Department of Chemistry, Huazhong University of Science and Technology, Wuhan 430074 (China)], E-mail: kbwu@mail.hust.edu.cn

    2008-05-30

    The potential application of Al-incorporated mesoporous SiO{sub 2} (denoted as Al-MCM-41) in electrochemistry as a novel electrode material was investigated. The peak currents of K{sub 3}[Fe(CN){sub 6}] remarkably increase and the peak potential separation obviously decreases at the mesoporous Al-MCM-41 modified carbon paste electrode (CPE). These phenomena suggest that the mesoporous Al-MCM-41 modified CPE possesses larger electrode area and electron transfer rate constant. Furthermore, the electrochemical behavior of epinephrine (EP) was investigated in different supporting electrolytes such as 0.01 mol L{sup -1} HClO{sub 4} and pH 7.0 phosphate buffer. It is found that the mesoporous Al-MCM-41 modified CPE exhibits catalytic ability to the oxidation of EP due to remarkable peak current enhancement and negative shift of peak potential. The electrochemical oxidation mechanism was also discussed. Finally, a novel electrochemical method was proposed for the determination of EP, which used to determine EP in urine samples.

  6. The Correlation of Pore Size and Bioactivity of Spray-Pyrolyzed Mesoporous Bioactive Glasses

    Directory of Open Access Journals (Sweden)

    Yu-Jen Chou

    2017-05-01

    Full Text Available SiO2–CaO–P2O5-based mesoporous bioactive glasses (MBGs were synthesized by spray pyrolysis in this study. Three commonly used non-ionic tri-block copolymers (L121, P123, and F127 with various lengths of hydrophilic chains were applied as structural templates to achieve different pore sizes. A mesoporous structure was observed in each as-prepared specimen, and the results showed that the L121-treated MBG had the largest pore size. The results of bioactivity tests indicated that the growth of hydroxyapatite is related to the pore size of the materials.

  7. Advanced materials for clean energy

    CERN Document Server

    Xu (Kyo Jo), Qiang

    2015-01-01

    Arylamine-Based Photosensitizing Metal Complexes for Dye-Sensitized Solar CellsCheuk-Lam Ho and Wai-Yeung Wongp-Type Small Electron-Donating Molecules for Organic Heterojunction Solar CellsZhijun Ning and He TianInorganic Materials for Solar Cell ApplicationsYasutake ToyoshimaDevelopment of Thermoelectric Technology from Materials to GeneratorsRyoji Funahashi, Chunlei Wan, Feng Dang, Hiroaki Anno, Ryosuke O. Suzuki, Takeyuki Fujisaka, and Kunihito KoumotoPiezoelectric Materials for Energy HarvestingDeepam Maurya, Yongke Yan, and Shashank PriyaAdvanced Electrode Materials for Electrochemical Ca

  8. Diffusion Study by IR Micro-Imaging of Molecular Uptake and Release on Mesoporous Zeolites of Structure Type CHA and LTA

    Directory of Open Access Journals (Sweden)

    Jörg Kärger

    2013-07-01

    Full Text Available The presence of mesopores in the interior of microporous particles may significantly improve their transport properties. Complementing previous macroscopic transient sorption experiments and pulsed field gradient NMR self-diffusion studies with such materials, the present study is dedicated to an in-depth study of molecular uptake and release on the individual particles of mesoporous zeolitic specimens, notably with samples of the narrow-pore structure types, CHA and LTA. The investigations are focused on determining the time constants and functional dependences of uptake and release. They include a systematic variation of the architecture of the mesopores and of the guest molecules under study as well as a comparison of transient uptake with blocked and un-blocked mesopores. In addition to accelerating intracrystalline mass transfer, transport enhancement by mesopores is found to be, possibly, also caused by a reduction of transport resistances on the particle surfaces.

  9. Carbon aerogel with 3-D continuous skeleton and mesopore structure for lithium-ion batteries application

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoqing, E-mail: yxq-886@163.com [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Huang, Hong [Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275 (China); Zhang, Guoqing; Li, Xinxi [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Wu, Dingcai [Materials Science Institute, PCFM Laboratory, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Fu, Ruowen, E-mail: cesfrw@mail.sysu.edu.cn [Materials Science Institute, PCFM Laboratory, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2015-01-15

    Carbon aerogel (CA) with 3-D continuous skeleton and mesopore structure was prepared via a microemulsion-templated sol–gel polymerization method and then used as the anode materials of lithium-ion batteries. It was found that the reversible specific capacity of the as-prepared CAs could stay at about 470 mA h g{sup −1} for 80 cycles, much higher than the theoretical capacity of commercial graphite (372 mAh g{sup −1}). In addition, CA also showed a better rate capacity compared to commercial graphite. The good electrochemical properties could be ascribed to the following three factors: (1) the large BET surface area of 620 m{sup 2} g{sup −1}, which can provide more lithium ion insertion sites, (2) 3-D continuous skeleton of CAs, which favors the transport of the electrons, (3) 3-D continuous mesopore structure with narrow mesopore size distribution and high mesopore ratio of 87.3%, which facilitates the diffusion and transport of the electrolyte and lithium ions. - Highlights: • Carbon aerogel (CA) was prepared via a microemulsion-templated sol–gel method. • The CA presents high surface area, 3D continuous skeleton and mesopore structure. • The reversible capacity of CA is much higher than that of graphite.

  10. Carbon aerogel with 3-D continuous skeleton and mesopore structure for lithium-ion batteries application

    International Nuclear Information System (INIS)

    Yang, Xiaoqing; Huang, Hong; Zhang, Guoqing; Li, Xinxi; Wu, Dingcai; Fu, Ruowen

    2015-01-01

    Carbon aerogel (CA) with 3-D continuous skeleton and mesopore structure was prepared via a microemulsion-templated sol–gel polymerization method and then used as the anode materials of lithium-ion batteries. It was found that the reversible specific capacity of the as-prepared CAs could stay at about 470 mA h g −1 for 80 cycles, much higher than the theoretical capacity of commercial graphite (372 mAh g −1 ). In addition, CA also showed a better rate capacity compared to commercial graphite. The good electrochemical properties could be ascribed to the following three factors: (1) the large BET surface area of 620 m 2  g −1 , which can provide more lithium ion insertion sites, (2) 3-D continuous skeleton of CAs, which favors the transport of the electrons, (3) 3-D continuous mesopore structure with narrow mesopore size distribution and high mesopore ratio of 87.3%, which facilitates the diffusion and transport of the electrolyte and lithium ions. - Highlights: • Carbon aerogel (CA) was prepared via a microemulsion-templated sol–gel method. • The CA presents high surface area, 3D continuous skeleton and mesopore structure. • The reversible capacity of CA is much higher than that of graphite

  11. Synthesis, characterization, and catalytic application of ordered mesoporous carbon–niobium oxide composites

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Juan-Li; Gao, Shuang; Liu, Chun-Ling; Liu, Zhao-Tie; Dong, Wen-Sheng, E-mail: wsdong@snnu.edu.cn

    2014-11-15

    Graphical abstract: The ordered mesoporous carbon–niobium oxide composites have been synthesized by a multi-component co-assembly method associated with a carbonization process. - Highlights: • Ordered mesoporous carbon–niobium oxide composites were synthesized. • The content of Nb{sub 2}O{sub 5} in the composites could be tuned from 38 to 75%. • Niobium species were highly dispersed in amorphous carbon framework walls. • The composites exhibited good catalytic performance in the dehydration of fructose. - Abstract: Ordered mesoporous carbon–niobium oxide composites have been synthesized by a multi-component co-assembly method associated with a carbonization process using phenolic resol as carbon source, niobium chloride as precursor and amphiphilic triblock copolymer Pluronic F127 as template. The resulting materials were characterized using a combination of techniques including differential scanning calorimetry–thermogravimetric analysis, N{sub 2} physical adsorption, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. The results show that with increasing the content of Nb{sub 2}O{sub 5} from 38 to 75% the specific surface area decreases from 306.4 to 124.5 m{sup 2} g{sup −1}, while the ordered mesoporous structure is remained. Niobium species is well dispersed in the amorphous carbon framework. The mesoporous carbon–niobium oxide composites exhibit high catalytic activity in the dehydration of fructose to 5-hydroxymethylfurfural. A 100% conversion of fructose and a 76.5% selectivity of 5-hydroxymethylfurfural were obtained over the carbon–niobium oxide composite containing 75% Nb{sub 2}O{sub 5} under the investigated reaction conditions.

  12. Tunable Mesoporous Bragg Reflectors Based on Block-Copolymer Self-Assembly

    KAUST Repository

    Guldin, Stefan; Kolle, Mathias; Stefik, Morgan; Langford, Richard; Eder, Dominik; Wiesner, Ulrich; Steiner, Ullrich

    2011-01-01

    Mesoporous Bragg reflectors are a promising materials platform for photovoltaics, light emission, and sensing. A fast and versatile fabrication route that relies on the self-assembly of the block copolymer poly(isoprene-b-ethylene oxide) in combination with simple sol-gel chemistry is reported. The method allows extended control over porosity and pore size in the resulting inorganic material and results in high-quality optical elements. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Tunable Mesoporous Bragg Reflectors Based on Block-Copolymer Self-Assembly

    KAUST Repository

    Guldin, Stefan

    2011-07-06

    Mesoporous Bragg reflectors are a promising materials platform for photovoltaics, light emission, and sensing. A fast and versatile fabrication route that relies on the self-assembly of the block copolymer poly(isoprene-b-ethylene oxide) in combination with simple sol-gel chemistry is reported. The method allows extended control over porosity and pore size in the resulting inorganic material and results in high-quality optical elements. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Nitrogen-doped mesoporous carbons for high performance supercapacitors

    Science.gov (United States)

    Wu, Kai; Liu, Qiming

    2016-08-01

    The mesoporous carbons have been synthesized by using α-D(+)-Glucose, D-Glucosamine hydrochloride or their mixture as carbon precursors and mesoporous silicas (SBA-15 or MCF) as hard templates. The as-prepared products show a large pore volume (0.59-0.97 cm3 g-1), high surface areas (352.72-1152.67 m2 g-1) and rational nitrogen content (ca. 2.5-3.9 wt.%). The results of electrochemical tests demonstrate that both heteroatom doping and suitable pore structure play a decisive role in the performance of supercapacitors. The representative sample of SBA-15 replica obtained using D-Glucosamine hydrochloride only exhibits high specific capacitance (212.8 F g-1 at 0.5 A g-1) and good cycle durability (86.1% of the initial capacitance after 2000 cycles) in 6 M KOH aqueous electrolyte, which is attributed to the contribution of double layer capacitance and pseudo-capacitance. The excellent electrochemical performance makes it a promising electrode material for supercapacitors.

  15. The Effect of Mesoporous Carbon Nitride Modification by Titanium Oxide Nanoparticles on Photocatalytic Degradation of 1,3-Dinitrobenzene

    Directory of Open Access Journals (Sweden)

    Seyyed Ershad Moradi

    2015-11-01

    Full Text Available In the present work, well ordered, mesoporous carbon nitride (MCN sorbent with uniform mesoporous wall, high surface area and pore volume has been fabricated using the simple polymerization reaction between ethylene diamine and carbon tetrachloride in mesoporous silica media, and then modified by TiO2 nanoparticles (Ti-MCN. The structural order and textural properties of the nanoporous materials were studied by XRD, elemental analysis, and nitrogen adsorption–desorption experiments. Photodegradation experiments for 1,3-dinitrobenzene were conducted in batch mode, the Ti-MCN catalysts were found to be more active compared to the free TiO2 nanoparticles for 1,3-dinitrobenzene degradation.

  16. A Mesopore-Dependent Catalytic Cracking of n-Hexane Over Mesoporous Nanostructured ZSM-5.

    Science.gov (United States)

    Qamar, M; Ahmed, M I; Qamaruddin, M; Asif, M; Sanhoob, M; Muraza, O; Khan, M Y

    2018-08-01

    Herein, pore size, crystalinity, and Si/Al ratio of mesoporous ZSM-5 (MFI) nanocrystals was controlled by synthesis parameters, such as surfactant concentration ([3-(trimethoxysilyl)propyl] hexa-decyl dimethyl ammonium chloride), sodium hydroxide concentrations, synthesis temperature and time. The morphology, surface structure and composition of the MFI particles was systematically investigated. More notably, the mesopore-dependent catalytic activity of ZSM-5 was evaluated by studying the cracking of n-hexane. The findings suggest the porosity has pronounced impact on the catalytic activity, selectivity and stability of ZSM-5 nanocrystals. Critical surface attributes such as nature of acid sites (Brønsted and Lewis), concentration, and strength are obtained by the infrared study of adsorbed probe molecules (pyridine) and the temperature programmed desorption. In spite of being weaker in Si/Al ratio or acidic strength, mesoporous catalysts showed more stable and efficient cracking of n-hexane suggesting that acidity seems not the predominant factor operative in the activity, selectivity and stability.

  17. Modified mesoporous silica materials for on-line separation and preconcentration of hexavalent chromium using a microcolumn coupled with flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zheng, E-mail: wangzheng@mail.sic.ac.cn [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Fang Dongmei; Li Qing [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); East China University of Science and Technology, Shanghai 200237 (China); Zhang Lingxia; Qian Rong; Zhu Yan; Qu Haiyun [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Du Yiping [East China University of Science and Technology, Shanghai 200237 (China)

    2012-05-06

    Highlights: Black-Right-Pointing-Pointer A modified SBA-15 mesoporous silica material (NH{sub 2}-SBA-15) was synthesized as sorbent. Black-Right-Pointing-Pointer The material was used for the first time in a flow injection on-line solid phase extraction (SPE) coupled with flame atomic absorption spectrometry (FAAS) to detect trace Cr (VI). Black-Right-Pointing-Pointer The NH{sub 2}-SBA-15 enables retain Cr (VI) with an enrichment factor of 44. Black-Right-Pointing-Pointer The micro-column of NH{sub 2}-SBA-15 underwent more than 100 adsorption/desorption cycles. - Abstract: A modified SBA-15 mesoporous silica material NH{sub 2}-SBA-15 was synthesized successfully by grafting {gamma}-aminopropyl-triethoxysilane. The material was characterized using transmission electron microscopy (TEM) and Fourier transform infrared/Raman (FT-IR/Raman) spectroscopy, and used for the first time in a flow injection on-line solid phase extraction (SPE) coupled with flame atomic absorption spectrometry (FAAS) to detect trace Cr (VI). Effective sorption of Cr (VI) was achieved at pH 2.0 with no interference from Cr (III) and other ions and 0.5 mol L{sup -1} NH{sub 3}{center_dot}H{sub 2}O solution was found optimal for the complete elution of Cr (VI). An enrichment factor of 44 and was achieved under optimized experimental conditions at a sample loading of 2.0 mL min{sup -1} sample loading (300 s) and an elution flow rate of 2.0 mL min{sup -1} (24 s). The precision of the 11 replicate Cr (VI) measurements was 2.1% at the 100 {mu}g L{sup -1} level with a detection limit of 0.2 {mu}g L{sup -1} (3 s, n = 10) using the FAAS. The developed method was successfully applied to trace chromium determination in waste water. The accuracy was validated using a certified reference material of riverine water (GBW08607).

  18. Interconnected mesopores and high accessibility in UVM-7-like silicas

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Cabero, Monica [Universitat de Valencia, Institut de Ciencia dels Materials (Spain); Hungria, Ana B. [Universidad de Cadiz, Departamento de Ciencia de Materiales, Ingenieria Metalurgica y Quimica Inorganica (Spain); Morales, Jose Manuel [Universitat de Valencia, Institut de Ciencia dels Materials (Spain); Tortajada, Marta; Ramon, Daniel [Biopolis S. L. (Spain); Moragues, Alaina; El Haskouri, Jamal; Beltran, Aurelio; Beltran, Daniel; Amoros, Pedro, E-mail: pedro.amoros@uv.es [Universitat de Valencia, Institut de Ciencia dels Materials (Spain)

    2012-08-15

    Nanoparticulated bimodal mesoporous silicas (NBS) have proved to constitute adequate supports in a variety of applications requiring enhanced accessibility to the active sites. Mass-transfer kinetics seems to be highly favoured in UVM-7-derived NBS materials. To understand the mass-diffusion phenomena throughout UVM-7-like supports requires well-grounded knowledge about their pore architecture. 3-D reconstructions of the UVM-7 mesostructure carried out by electron tomography reveal the existence of a true hierarchic connectivity involving both inter- and intra-nanoparticle pores. This connectivity makes self-supported nanoparticulated mesoporous bimodal carbon replicas of the supports feasible to obtaining by nanocasting. Both the temperature-induced mobility of gold nanodomains and the fast and efficient enzyme adsorption in UVM-7-like silicas are examples of non-constrained diffusion processes happening inside such an open network.

  19. Interconnected mesopores and high accessibility in UVM-7-like silicas

    International Nuclear Information System (INIS)

    Pérez-Cabero, Mónica; Hungría, Ana B.; Morales, José Manuel; Tortajada, Marta; Ramón, Daniel; Moragues, Alaina; El Haskouri, Jamal; Beltrán, Aurelio; Beltrán, Daniel; Amorós, Pedro

    2012-01-01

    Nanoparticulated bimodal mesoporous silicas (NBS) have proved to constitute adequate supports in a variety of applications requiring enhanced accessibility to the active sites. Mass-transfer kinetics seems to be highly favoured in UVM-7-derived NBS materials. To understand the mass-diffusion phenomena throughout UVM-7-like supports requires well-grounded knowledge about their pore architecture. 3-D reconstructions of the UVM-7 mesostructure carried out by electron tomography reveal the existence of a true hierarchic connectivity involving both inter- and intra-nanoparticle pores. This connectivity makes self-supported nanoparticulated mesoporous bimodal carbon replicas of the supports feasible to obtaining by nanocasting. Both the temperature-induced mobility of gold nanodomains and the fast and efficient enzyme adsorption in UVM-7-like silicas are examples of non-constrained diffusion processes happening inside such an open network.

  20. Controlled release and intracellular protein delivery from mesoporous silica nanoparticles.

    Science.gov (United States)

    Deodhar, Gauri V; Adams, Marisa L; Trewyn, Brian G

    2017-01-01

    Protein therapeutics are promising candidates for disease treatment due to their high specificity and minimal adverse side effects; however, targeted protein delivery to specific sites has proven challenging. Mesoporous silica nanoparticles (MSN) have demonstrated to be ideal candidates for this application, given their high loading capacity, biocompatibility, and ability to protect host molecules from degradation. These materials exhibit tunable pore sizes, shapes and volumes, and surfaces which can be easily functionalized. This serves to control the movement of molecules in and out of the pores, thus entrapping guest molecules until a specific stimulus triggers release. In this review, we will cover the benefits of using MSN as protein therapeutic carriers, demonstrating that there is great diversity in the ways MSN can be used to service proteins. Methods for controlling the physical dimensions of pores via synthetic conditions, applications of therapeutic protein loaded MSN materials in cancer therapies, delivering protein loaded MSN materials to plant cells using biolistic methods, and common stimuli-responsive functionalities will be discussed. New and exciting strategies for controlled release and manipulation of proteins are also covered in this review. While research in this area has advanced substantially, we conclude this review with future challenges to be tackled by the scientific community. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Magnetic solid-phase extraction based on mesoporous silica-coated magnetic nanoparticles for analysis of oral antidiabetic drugs in human plasma

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Karynne Cristina de; Andrade, Gracielle Ferreira [Centro de Desenvolvimento da Tecnologia Nuclear, CDTN/CNEN, Rua Professor Mário Werneck, s/n. Campus Universitário, Belo Horizonte, MG CEP 30.123-970 (Brazil); Vasconcelos, Ingrid; Oliveira Viana, Iara Maíra de; Fernandes, Christian [Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Martins Barros de Sousa, Edésia, E-mail: sousaem@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear, CDTN/CNEN, Rua Professor Mário Werneck, s/n. Campus Universitário, Belo Horizonte, MG CEP 30.123-970 (Brazil)

    2014-07-01

    In the present work, magnetic nanoparticles embedded into mesoporous silica were prepared in two steps: first, magnetite was synthesized by oxidation–precipitation method, and next, the magnetic nanoparticles were coated with mesoporous silica by using nonionic block copolymer surfactants as structure-directing agents. The mesoporous SiO{sub 2}-coated Fe{sub 3}O{sub 4} samples were functionalized using octadecyltrimethoxysilane as silanizing agent. The pure and functionalized silica nanoparticles were physicochemically and morphologically characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), N{sub 2} adsorption, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The resultant magnetic silica nanoparticles were applied as sorbents for magnetic solid-phase extraction (MSPE) of oral antidiabetic drugs in human plasma. Our results revealed that the magnetite nanoparticles were completely coated by well-ordered mesoporous silica with free pores and stable pore walls, and that the structural and magnetic properties of the Fe{sub 3}O{sub 4} nanoparticles were preserved in the applied synthesis route. Indeed, the sorbent material was capable of extracting the antidiabetic drugs from human plasma, being useful for the sample preparation in biological matrices. - Highlights: • SBA-15/Fe{sub 3}O{sub 4} was synthesized and functionalized with octadecyltrimethoxysilane. • Magnetite nanoparticles were completely coated by well-ordered mesoporous silica. • The samples were used as sorbent for magnetic solid-phase extraction (MSPE). • The sorbent material was capable of extracting drugs from human plasma. • The extraction ability makes the material a candidate to be employed as MSPE.

  2. Facile and green synthesis of mesoporous Co3O4 nanocubes and their applications for supercapacitors

    Science.gov (United States)

    Liu, Xiangmei; Long, Qing; Jiang, Chunhui; Zhan, Beibei; Li, Chen; Liu, Shujuan; Zhao, Qiang; Huang, Wei; Dong, Xiaochen

    2013-06-01

    Nanostructured Co3O4 materials attracted significant attention due to their exceptional electrochemical (pseudo-capacitive) properties. However, rigorous preparation conditions are needed to control the size (especially nanosize), morphology and size distribution of the products obtained by conventional methods. Herein, we describe a novel one step shape-controlled synthesis of uniform Co3O4 nanocubes with a size of 50 nm with the existence of mesoporous carbon nanorods (meso-CNRs). In this synthesis process, meso-CNRs not only act as a heat receiver to directly obtain Co3O4 eliminating the high-temperature post-calcination, but also control the morphology of the resulting Co3O4 to form nanocubes with uniform distribution. More strikingly, mesoporous Co3O4 nanocubes are obtained by further thermal treatment. The structure and morphology of the samples were characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. A possible formation mechanism of mesoporous Co3O4 nanocubes is proposed here. Electrochemical tests have revealed that the prepared mesoporous Co3O4 nanocubes demonstrate a remarkable performance in supercapacitor applications due to the porous structure, which endows fast ion and electron transfer.Nanostructured Co3O4 materials attracted significant attention due to their exceptional electrochemical (pseudo-capacitive) properties. However, rigorous preparation conditions are needed to control the size (especially nanosize), morphology and size distribution of the products obtained by conventional methods. Herein, we describe a novel one step shape-controlled synthesis of uniform Co3O4 nanocubes with a size of 50 nm with the existence of mesoporous carbon nanorods (meso-CNRs). In this synthesis process, meso-CNRs not only act as a heat receiver to directly obtain Co3O4 eliminating the high-temperature post-calcination, but also control the morphology of the resulting Co3O4 to form nanocubes with uniform

  3. Materials for advanced power engineering 2010. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte-Beckers, Jacqueline; Contrepois, Quentin; Beck, Tilmann; Kuhn, Bernd (eds.)

    2010-07-01

    The 9th Liege Conference on ''Materials for Advanced Power Engineering'' presents the results of the materials related COST Actions 536 ''Alloy Development for Critical Components of Environmentally Friendly Power Plants'' and 538 ''High Temperature Plant Lifetime Extension''. In addition, the broad field of current materials research perspectives for high efficiency, low- and zero- emission power plants and new energy technologies for the next decades are reported. The Conference proceedings are structured as follows: 1. Materials for advanced steam power plants; 2. Gas turbine materials; 3. Materials for nuclear fission and fusion; 4. Solid oxide fuel cells; 5. Corrosion, thermomechanical fatigue and modelling; 6. Zero emission power plants.

  4. General strategy for fabricating thoroughly mesoporous nanofibers

    KAUST Repository

    Hou, Huilin; Wang, Lin; Gao, Fengmei; Wei, Guodong; Tang, Bin; Yang, Weiyou; Wu, Tao

    2014-01-01

    mesoporous nanofibers with high purity and uniformity. Here, we report a general, simple and cost-effective strategy, namely, foaming-assisted electrospinning, for producing mesoporous nanofibers with high purity and enhanced specific surface areas. As a

  5. One-step synthesis of mesoporous silica–graphene composites by ...

    Indian Academy of Sciences (India)

    Silica–graphene oxide composites were synthesized by hydrothermal method with simultaneous functionalization and reduction of graphene oxide (GO) in the presence of mesoporous silica. Two types of silica were used in the study, mesoporous synthetic silica (MSU-F) synthesized by sol-gel method and mesoporous ...

  6. Modification of mesoporous silica SBA-15 with different organic molecules to gain chemical sensors: a review

    Directory of Open Access Journals (Sweden)

    Negar Lashgari

    2016-01-01

    Full Text Available The recognition of the biologically and environmentally important ions is of great interest in the field of chemical sensors in recent years. The fluorescent sensors as a powerful optical analytical technique for the detection of low level of various analytes such as anions and metal cations have been progressively developed due to the simplicity, cost effective, and selectivity for monitoring specific analytes in various systems. Organic-inorganic hybrid nanomaterials have important advantages as solid chemosensors and various innovative hybrid materials modified by fluorescence molecules were recently prepared. On the other hand, the homogeneous porosity and large surface area of mesoporous silica make it a promising inorganic support. SBA-15 as a two-dimensional hexagonal mesoporous silica material with stable structure, thick walls, tunable pore size, and high specific surface area is a valuable substrate for modification with different organic chelating groups. This review highlights the fluorescent chemosensors for ionic species based on modification of the mesoporous silica SBA-15 with different organic molecules, which have been recently developed from our laboratory.

  7. Activated Porous Carbon Spheres with Customized Mesopores through Assembly of Diblock Copolymers for Electrochemical Capacitor.

    Science.gov (United States)

    Tang, Jing; Wang, Jie; Shrestha, Lok Kumar; Hossain, Md Shahriar A; Alothman, Zeid Abdullah; Yamauchi, Yusuke; Ariga, Katsuhiko

    2017-06-07

    A series of porous carbon spheres with precisely adjustable mesopores (4-16 nm), high specific surface area (SSA, ∼2000 m 2 g -1 ), and submicrometer particle size (∼300 nm) was synthesized through a facile coassembly of diblock polymer micelles with a nontoxic dopamine source and a common postactivation process. The mesopore size can be controlled by the diblock polymer, polystyrene-block-poly(ethylene oxide) (PS-b-PEO) templates, and has an almost linear dependence on the square root of the degree of polymerization of the PS blocks. These advantageous structural properties make the product a promising electrode material for electrochemical capacitors. The electrochemical capacitive performance was studied carefully by using symmetrical cells in a typical organic electrolyte of 1 M tetraethylammonium tetrafluoroborate/acetonitrile (TEA BF 4 /AN) or in an ionic liquid electrolyte of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF 4 ), displaying a high specific capacitance of 111 and 170 F g -1 at 1 A g -1 , respectively. The impacts of pore size distribution on the capacitance performance were thoroughly investigated. It was revealed that large mesopores and a relatively low ratio of micropores are ideal for realizing high SSA-normalized capacitance. These results provide us with a simple and reliable way to screen future porous carbon materials for electrochemical capacitors and encourage researchers to design porous carbon with high specific surface area, large mesopores, and a moderate proportion of micropores.

  8. Morphology control of ordered mesoporous carbons for high capacity lithium sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Joerg David

    2011-06-07

    The focus of this thesis concerns the morphology control of ordered mesoporous carbon (OMC) materials. Ordered mesoporous carbons with diverse morphologies, that are thin films, fibers - embedded in anodic alumina membranes and free-standing - or spherical nanoparticles, have been successfully prepared by soft-templating procedures. The mechanisms of structure formation and processing were investigated with in-situ SAXS measurements and their application in high capacity lithium-sulfur batteries was successfully tested in cooperation with Guang He and Linda Nazar from the University of Waterloo in Canada. The Li-S batteries receive increasing attention due to their high theoretical energy density which is 3 to 5 times higher than from lithium-ion batteries. For this type of battery the specific pore volume is crucial for the content of the active component (sulfur) in the cathode and therefore correlates with the capacity and gravimetric energy density of the battery. At first, mesoporous thin films with 2D-hexagonal structure were obtained through organic-organic self-assembly of a preformed oligomeric resol precursor and the triblock copolymer template Pluronic P123. The formation of a condensed-wall material through thermopolymerization of the precursor oligomers resulted in mesostructured phenolic resin films. Subsequent decomposition of the surfactant and partial carbonization were achieved through thermal treatment in inert atmosphere. The films were crack-free with tunable homogenous thicknesses, and showed either 2D-hexagonal or lamellar mesostructure. An additional, yet unknown 3D-mesostructure was also found. In the second part, cubic and circular hexagonal mesoporous carbon phases in the confined environment of tubular anodic alumina membrane (AAM) pores were obtained by self-assembly of the mentioned resol precursor and the triblock copolymer templates Pluronic F127 or P123, respectively. Casting and solvent-evaporation were also followed by

  9. Low-temperature fabrication of mesoporous solid strong bases by using multifunction of a carbon interlayer.

    Science.gov (United States)

    Liu, Xiao-Yan; Sun, Lin-Bing; Liu, Xiao-Dan; Li, Ai-Guo; Lu, Feng; Liu, Xiao-Qin

    2013-10-09

    Mesoporous solid strong bases are highly promising for applications as environmentally benign catalysts in various reactions. Their preparation attracts increasing attention for the demand of sustainable chemistry. In the present study, a new strategy was designed to fabricate strong basicity on mesoporous silica by using multifunction of a carbon interlayer. A typical mesoporous silica, SBA-15, was precoated with a layer of carbon prior to the introduction of base precursor LiNO3. The carbon interlayer performs two functions by promoting the conversion of LiNO3 at low temperatures and by improving the alkali-resistant ability of siliceous host. Only a tiny amount of LiNO3 was decomposed on pristine SBA-15 at 400 °C; for the samples containing >8 wt % of carbon, however, LiNO3 can be entirely converted to strongly basic sites Li2O under the same conditions. The guest-host redox reaction was proven to be the answer for the conversion of LiNO3, which breaks the tradition of thermally induced decomposition. More importantly, the residual carbon layer can prevent the siliceous frameworks from corroding by the newly formed strongly basic species, which is different from the complete destruction of mesostructure in the absence of carbon. Therefore, materials possessing both ordered mesostructure and strong basicity were successfully fabricated, which is extremely desirable for catalysis and impossible to realize by conventional methods. We also demonstrated that the resultant mesoporous basic materials are active in heterogeneous synthesis of dimethyl carbonate (DMC) and the yield of DMC can reach 32.4%, which is apparently higher than that over the catalysts without a carbon interlayer (<12.9%) despite the same lithium content. The strong basicity, in combination with the uniform mesopores, is believed to be responsible for such a high activity.

  10. High-performance mesoporous LiFePO₄ from Baker's yeast.

    Science.gov (United States)

    Zhang, Xudong; Zhang, Xueguang; He, Wen; Sun, Caiyun; Ma, Jingyun; Yuan, Junling; Du, Xiaoyong

    2013-03-01

    Based on the biomineralization assembly concept, a simple and inexpensive biomimetic sol-gel method is found to synthesize high-performance mesoporous LiFePO(4) (HPM-LFP). The key step of this approach is to apply Baker's yeast cells as both a structural template and a biocarbon source. The formation mechanism of ordered hierarchical mesoporous network structure is revealed by characterizing its morphology and microstructure. The HPM-LFP exhibits outstanding electrochemical performances. The HPM-LFP has a high discharge capacity (about 153 mAh g(-1) at a 0.1 C rate), only 2% capacity loss from the initial value after 100 cycles at a current density of 0.1 C. This simple and potentially universal design strategy is currently being pursued in the synthesis of an ideal cathode-active material for high power applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Failure and damage analysis of advanced materials

    CERN Document Server

    Sadowski, Tomasz

    2015-01-01

    The papers in this volume present basic concepts and new developments in failure and damage analysis with focus on advanced materials such as composites, laminates, sandwiches and foams, and also new metallic materials. Starting from some mathematical foundations (limit surfaces, symmetry considerations, invariants) new experimental results and their analysis are shown. Finally, new concepts for failure prediction and analysis will be introduced and discussed as well as new methods of failure and damage prediction for advanced metallic and non-metallic materials. Based on experimental results the traditional methods will be revised.

  12. Catalytic hydrodeoxygenation of 2-methoxy phenol and dibenzofuran over Pt/mesoporous zeolites

    International Nuclear Information System (INIS)

    Lee, Hyung Won; Jun, Bo Ram; Kim, Hannah; Kim, Do Heui; Jeon, Jong-Ki; Park, Sung Hoon; Ko, Chang Hyun; Kim, Tae-Wan; Park, Young-Kwon

    2015-01-01

    The hydrodeoxygenation of 2-methoxy phenol and dibenzofuran, which are representative model compounds of bio-oil, was performed using two different Pt/mesoporous zeolite catalysts, Pt/mesoporous Y and Pt/mesoporous MFI. The reforming of 2-methoxy phenol and dibenzofuran via catalytic hydrodeoxygenation was investigated using a batch reactor at 40 bar and 250 °C. The characteristics of the catalysts were analyzed by N 2 adsorption-desorption, X-ray diffraction, and NH 3 temperature programmed desorption. Pt/mesoporous zeolite catalysts containing both strong acid sites and mesopores showed the higher conversion of 2-methoxy phenol than Pt/SiO 2 and Pt/Si-MCM-48 with no acid sites, Pt/γ-Al 2 O 3 , and a mixture of mesoporous Y and Pt/SiO 2 , indicating the importance of both Pt and strong acid sites for high catalytic activity. Among the two Pt/mesoporous zeolite catalysts tested, the conversion of 2-methoxy phenol to cyclohexane over Pt/mesoporous Y was much higher than that over the Pt/mesoporous MFI. This was attributed to the better textural properties, such as surface area, pore volume and micropore size, compared to those of Pt/mesoporous MFI. The catalytic conversions of dibenzofuran obtained using two Pt/mesoporous zeolite catalysts were similar and the main products were 1,1′-bicyclohexyl, cyclopentylmethyl-cyclohexane and cyclohexane. In addition, the reaction mechanisms of 2-methoxy phenol and dibenzofuran over Pt/mesoporous zeolite were suggested. - Highlights: • HDO of 2-methoxy phenol and dibenzofuran was performed over Pt/mesoporous zeolites. • Pt/mesoporous zeolites have mesopores and strong acid sites. • Main product of HDO of 2-methoxy phenol was cyclohexane. • Main products of HDO of dibenzofuran were bicyclohexyl (BCH), i-BCH, and cyclohexane

  13. Thermal and mechanical properties of novel nanocomposites from modified ordered mesoporous carbon FDU-15 and poly(methyl methacrylate)

    Science.gov (United States)

    Mohammadnezhad, Gholamhossein; Dinari, Mohammad; Soltani, Roozbeh; Bozorgmehr, Zahra

    2015-08-01

    With its well-ordered pore structure, high specific surface area and tunable pore diameters, ordered mesoporous carbons are suitable for applications in many areas of modern science and technology. In the present investigation, an ultrasonic irradiation was used for the modification of the mesoporous carbon FDU-15. Three nanocomposite films of the poly(methyl methacrylate) (PMMA) and modified FDU-15 were prepared by solution polymerization technique. The surface morphology and thermal and mechanical properties of the hybrid materials were evaluated by different methods. X-ray diffraction patterns showed that modified mesoporous FDU-15 had an ordered hexagonal mesostructure. Transmission electron microscopy (TEM) and field emission-scanning electron microscopy images confirmed the presence of large pores and a relatively ordered mesostructure for the functionalized materials. Thermogravimetric analysis data also revealed that the onset of decomposition temperature of the nanocomposites was higher than that of pristine PMMA, shifting toward higher temperatures as the amount of modified-FDU was increased. TEM images showed the well-ordered hexagonal arrays of mesopores FDU-15. Mechanical data indicated the improvement in the tensile strength and modulus with the modified FDU-15 loading. The film containing 1 wt.% of modified FDU-15 had a tensile strength of the order of 42 MPa, relative to the 28 MPa of the pristine PMMA.

  14. Synthesis of hierarchical mesoporous lithium nickel cobalt manganese oxide spheres with high rate capability for lithium-ion batteries

    Science.gov (United States)

    Tong, Wei; Huang, Yudai; Cai, Yanjun; Guo, Yong; Wang, Xingchao; Jia, Dianzeng; Sun, Zhipeng; Pang, Weikong; Guo, Zaiping; Zong, Jun

    2018-01-01

    Hierarchical mesoporous LiNi1/3Co1/3Mn1/3O2 spheres have been synthesized by urea-assisted solvothermal method with adding Triton X-100. The structure and morphology of the as-prepared materials were analyzed by X-ray diffraction and electron microscope. The results show that the as-prepared samples can be indexed as hexagonal layered structure with hierarchical architecture, and the possible formation mechanism is speculated. When evaluated as cathode material, the hierarchical mesoporous LiNi1/3Co1/3Mn1/3O2 spheres show good electrochemical properties with high initial discharge capacity of 129.9 mAh g-1, and remain the discharge capacity of 95.5 mAh g-1 after 160 cycles at 10C. The excellent electrochemical performance of the as-prepared sample can be attributed to its stable hierarchical mesoporous framework in conjunction with large specific surface, low cation mixing and small particle size. They not only provide a large number of reaction sites for surface or interface reaction, but also shorten the diffusion length of Li+ ions. Meanwhile, the mesoporous spheres composed of nanoparticles can contribute to high rate ability and buffer volume changes during charge/discharge process.

  15. Investigation of emulsified, acid and acid-alkali catalyzed mesoporous bioactive glass microspheres for bone regeneration and drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Guohou [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 China (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 China (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 China (China); Chen, Xiaofeng, E-mail: chenxf@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 China (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 China (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 China (China); Dong, Hua [National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 China (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 China (China); School of Biological Science and Engineering, South China University of Technology, Guangzhou 510006 (China); Fang, Liming; Mao, Cong; Li, Yuli; Li, Zhengmao; Hu, Qing [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 China (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 China (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 China (China)

    2013-10-15

    Acid-catalyzed mesoporous bioactive glass microspheres (MBGMs-A) and acid-alkali co-catalyzed mesoporous bioactive glass microspheres (MBGMs-B) were successfully synthesized via combination of sol-gel and water-in-oil (W/O) micro-emulsion methods. The structural, morphological and textural properties of mesoporous bioactive glass microspheres (MBGMs) were characterized by various techniques. Results show that both MBGMs-A and MBGMs-B exhibit regularly spherical shape but with different internal porous structures, i.e., a dense microstructure for MBGMs-A and internally porous structure for MBGMs-B. {sup 29}Si NMR data reveal that MGBMs have low polymerization degree of silica network. The in vitro bioactivity tests indicate that the apatite formation rate of MBGMs-B was faster than that of MBGMs-A after soaking in simulated body fluid (SBF) solution. Furthermore, the two kinds of MBGMs have similar storage capacity of alendronate (AL), and the release behaviors of AL could be controlled due to their unique porous structure. In conclusion, the microspheres are shown to be promising candidates as bone-related drug carriers and filling materials of composite scaffold for bone repair. - Graphical abstract: The morphologies and microstructures of acid-catalyzed mesoporous bioactive glass microspheres (MBGMs-A) and acid-alkali co-catalyzed mesoporous bioactive glass microspheres (MBGMs-B) were observed by scanning electron microscope and transmission electron microscope. MBGMs-A exhibits a dense structure and a porous can be observed in MBGMs-B. The microspheres have a quick inducing-apatite formation ability and show a sustained release of alendronate (AL). Highlights: • A rapid method was reported to prepare mesoporous bioactive glass microspheres. • The addition of ammonia significantly shortens the preparation time. • Acid and acid-alkali co-catalyzed microspheres were studied for the first time. • The materials exhibited excellent in vitro bioactivity and

  16. Thermal and mechanical properties of novel nanocomposites from modified ordered mesoporous carbon FDU-15 and poly(methyl methacrylate)

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadnezhad, Gholamhossein, E-mail: mohammadnezhad@cc.iut.ac.ir; Dinari, Mohammad, E-mail: dinari@cc.iut.ac.ir; Soltani, Roozbeh; Bozorgmehr, Zahra

    2015-08-15

    Graphical abstract: - Highlights: • The surface of mesoporous carbon, FDU-15, was modified by 3-mercaptopropyl-trimethoxysilane. • Nanocomposites of PMMA and modified FDU-15 were prepared by solution polymerization. • XRD shows that modified mesoporous FDU-15 has an ordered hexagonal mesostructure. • TEM and SEM images confirm the presence of large pores and ordered mesostructure. • Mechanical data indicated improvement in the tensile strength and modulus. - Abstract: With its well-ordered pore structure, high specific surface area and tunable pore diameters, ordered mesoporous carbons are suitable for applications in many areas of modern science and technology. In the present investigation, an ultrasonic irradiation was used for the modification of the mesoporous carbon FDU-15. Three nanocomposite films of the poly(methyl methacrylate) (PMMA) and modified FDU-15 were prepared by solution polymerization technique. The surface morphology and thermal and mechanical properties of the hybrid materials were evaluated by different methods. X-ray diffraction patterns showed that modified mesoporous FDU-15 had an ordered hexagonal mesostructure. Transmission electron microscopy (TEM) and field emission-scanning electron microscopy images confirmed the presence of large pores and a relatively ordered mesostructure for the functionalized materials. Thermogravimetric analysis data also revealed that the onset of decomposition temperature of the nanocomposites was higher than that of pristine PMMA, shifting toward higher temperatures as the amount of modified-FDU was increased. TEM images showed the well-ordered hexagonal arrays of mesopores FDU-15. Mechanical data indicated the improvement in the tensile strength and modulus with the modified FDU-15 loading. The film containing 1 wt.% of modified FDU-15 had a tensile strength of the order of 42 MPa, relative to the 28 MPa of the pristine PMMA.

  17. Thermal and mechanical properties of novel nanocomposites from modified ordered mesoporous carbon FDU-15 and poly(methyl methacrylate)

    International Nuclear Information System (INIS)

    Mohammadnezhad, Gholamhossein; Dinari, Mohammad; Soltani, Roozbeh; Bozorgmehr, Zahra

    2015-01-01

    Graphical abstract: - Highlights: • The surface of mesoporous carbon, FDU-15, was modified by 3-mercaptopropyl-trimethoxysilane. • Nanocomposites of PMMA and modified FDU-15 were prepared by solution polymerization. • XRD shows that modified mesoporous FDU-15 has an ordered hexagonal mesostructure. • TEM and SEM images confirm the presence of large pores and ordered mesostructure. • Mechanical data indicated improvement in the tensile strength and modulus. - Abstract: With its well-ordered pore structure, high specific surface area and tunable pore diameters, ordered mesoporous carbons are suitable for applications in many areas of modern science and technology. In the present investigation, an ultrasonic irradiation was used for the modification of the mesoporous carbon FDU-15. Three nanocomposite films of the poly(methyl methacrylate) (PMMA) and modified FDU-15 were prepared by solution polymerization technique. The surface morphology and thermal and mechanical properties of the hybrid materials were evaluated by different methods. X-ray diffraction patterns showed that modified mesoporous FDU-15 had an ordered hexagonal mesostructure. Transmission electron microscopy (TEM) and field emission-scanning electron microscopy images confirmed the presence of large pores and a relatively ordered mesostructure for the functionalized materials. Thermogravimetric analysis data also revealed that the onset of decomposition temperature of the nanocomposites was higher than that of pristine PMMA, shifting toward higher temperatures as the amount of modified-FDU was increased. TEM images showed the well-ordered hexagonal arrays of mesopores FDU-15. Mechanical data indicated the improvement in the tensile strength and modulus with the modified FDU-15 loading. The film containing 1 wt.% of modified FDU-15 had a tensile strength of the order of 42 MPa, relative to the 28 MPa of the pristine PMMA

  18. Extraction of Alumina from Red Mud for Synthesis of Mesoporous Alumina by Adding CTABr as Mesoporous Directing Agent

    Directory of Open Access Journals (Sweden)

    Eka Putra Ramdhani

    2018-05-01

    Full Text Available Mines in Bintan were producing bauxite for many years. The production process of bauxite to alumina produced much red mud. From X-ray Fluorescence (XRF, alumina content on Bintan’s red mud was 28.87 wt.%. This research was studying on the extraction alumina from red mud with reduction of hematite (Fe2O3 and desilication processes. After extraction process alumina was collected about 52.89 wt.%. Synthesis of mesoporous alumina from red mud using sol-gel method at the room temperature for 72 h with cetyltrimethylammonium bromide (CTABr as mesoporous directing agent. The CTABr/Al-salt ratio, i.e. 1.57; 4.71 and 7.85 with the sample code of AMC-1, AMC-3, AMC-5, respectively. The product was calcined at 550 °C for 6 h. The synthesized materials were characterized by X-ray Diffraction (XRD, scanning electron microscopy-energy dispersive X-ray (SEM-EDX, transmission electron microscopy (TEM, and N2 adsorption-desorption techniques. XRD pattern of AMC-1, AMC-3, and AMC-5 showed that all synthesized materials have amorphous phase. The morphology were wormhole aggregate that were showed by SEM and TEM characterization. N2 adsorption-desorption characterization showed the distribution of pore size of about 3.2 nm. The highest surface area and pore volume were obtained in solid-solid ratio CTABr/GM-AL by 1.57 (AMC-1 i.e. 241 m2/g and 0.107 cm3/g, respectively.

  19. Advances in the material science of concrete

    National Research Council Canada - National Science Library

    Ideker, Jason H; Radlinska, Aleksandra

    2010-01-01

    ... Committee 236, Material Science of Concrete. The session focused on material science aspects of concrete with an emphasis placed on advances in understanding the fundamental scientific topics of cement-based materials, as well as the crucial...

  20. Effect of polyvinylpyrrolidone on mesoporous silica morphology and esterification of lauric acid with 1-butanol catalyzed by immobilized enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinyu; Zhou, Guowei, E-mail: guoweizhou@hotmail.com; Jiang, Bin; Zhao, Minnan; Zhang, Yan

    2014-05-01

    Mesoporous silica materials with a range of morphology evolution, i.e., from curved rod-shaped mesoporous silica to straight rod-shaped mesoporous silica, were successfully prepared using polyvinylpyrrolidone (PVP) and triblock copolymer as dual template. The effects of PVP molecular weight and concentration on mesoporous silica structure parameters were studied. Results showed that surface area and pore volume continuously decreased with increased PVP molecular weight. Mesoporous silica prepared with PVP K30 also possessed larger pore diameter, interplanar spacing (d{sub 100}), and cell parameter (a{sub 0}) than that prepared with PVP K15 and PVP K90. In addition, with increased PVP concentration, d{sub 100} and a{sub 0} continuously decreased. The mechanism of morphology evolution caused by the change in PVP concentration was investigated. The conversion rate of lauric acid with 1-butanol catalyzed by immobilized Porcine pancreatic lipase (PPL) was also evaluated. Results showed that PPL immobilized on amino-functionalized straight rod-shaped mesoporous silica maintained 50% of its esterification conversion rate even after five cycles of use with a maximum conversion rate was about 90.15%. - Graphical abstract: Curved rod-shaped mesoporous silica can be obtained at low and the highest PVP concentration, while straight rod-shaped mesoporous silica can be obtained at higher PVP concentration. - Highlights: • Mesoporous silica with morphology evolution from CRMS to SRMS were prepared. • Effects of PVP molecular weight and concentration on silica morphology were studied. • A possible mechanism for the formation of morphology evolution SiO{sub 2} was proposed. • Esterification of lauric acid with 1-butanol catalyzed by immobilized PPL.

  1. Hierarchical Mesoporous Zinc-Nickel-Cobalt Ternary Oxide Nanowire Arrays on Nickel Foam as High-Performance Electrodes for Supercapacitors.

    Science.gov (United States)

    Wu, Chun; Cai, Junjie; Zhang, Qiaobao; Zhou, Xiang; Zhu, Ying; Shen, Pei Kang; Zhang, Kaili

    2015-12-09

    Nickel foam supported hierarchical mesoporous Zn-Ni-Co ternary oxide (ZNCO) nanowire arrays are synthesized by a simple two-step approach including a hydrothermal method and subsequent calcination process and directly utilized for supercapacitive investigation for the first time. The nickel foam supported hierarchical mesoporous ZNCO nanowire arrays possess an ultrahigh specific capacitance value of 2481.8 F g(-1) at 1 A g(-1) and excellent rate capability of about 91.9% capacitance retention at 5 A g(-1). More importantly, an asymmetric supercapacitor with a high energy density (35.6 Wh kg(-1)) and remarkable cycle stability performance (94% capacitance retention over 3000 cycles) is assembled successfully by employing the ZNCO electrode as positive electrode and activated carbon as negative electrode. The remarkable electrochemical behaviors demonstrate that the nickel foam supported hierarchical mesoporous ZNCO nanowire array electrodes are highly desirable for application as advanced supercapacitor electrodes.

  2. Mesoporous carbonates and method of making

    Science.gov (United States)

    Fryxell, Glen; Liu, Jun; Zemanian, Thomas S.

    2004-06-15

    Mesoporous metal carbonate structures are formed by providing a solution containing a non-ionic surfactant and a calcium acetate salt, adding sufficient base to react with the acidic byproducts to be formed by the addition of carbon dioxide, and adding carbon dioxide, thereby forming a mesoporous metal carbonate structure containing the metal from said metal salt.

  3. Monodisperse metal nanoparticle catalysts on silica mesoporous supports: synthesis, characterizations, and catalytic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.

    2009-09-14

    addition, Pt-mesoporous silica core-shell structured NPs (Pt{at}mSiO{sub 2}) were prepared, where the individual Pt NP is encapsulated by the mesoporous silica layer. The Pt{at}mSiO{sub 2} catalysts showed promising catalytic activity in high temperature CO oxidation. The design of catalytic structures with tunable parameters by rational synthetic methods presents a major advance in the field of catalyst synthesis, which would lead to uncover the structure-function relationships in heterogeneous catalytic reactions.

  4. Drug Loading of Mesoporous Silicon

    Science.gov (United States)

    Moffitt, Anne; Coffer, Jeff; Wang, Mengjia

    2011-03-01

    The nanostructuring of crystalline solids with low aqueous solubilities by their incorporation into mesoporous host materials is one route to improve the bioavailability of such solids. Earlier studies suggest that mesoporous Si (PSi), with pore widths in the range of 5-50 nm, is a candidate for such an approach. In this presentation, we describe efforts to load curcumin into free-standing microparticles of PSi. Curcumin is a compound extracted from turmeric root, which is an ingredient of curry. Curucmin has shown activity against selected cancer cell lines, bacteria, and other medical conditions. However, curcumin has a very low bioavailability due to its extremely low water solubility (0.6 μ g/mL). Incorporation of curcumin was achieved by straightforward loading of the molten solid at 185circ; C. Loading experiments were performed using PSi particles of two different size ranges, 45-75 μ m and 150-250 μ m. Longer loading times and ratio of curcumin to PSi leads to a higher percentage of loaded curcumin in both PSi particle sizes (as determined by weight difference). The extent of curcumin crystallinity was assessed by x-ray diffraction (XRD). The solubility and release kinetics of loaded curcumin from the PSi was determined by extraction into water at 37circ; C, with analysis using UV-VIS spectrometry. NSF-REU and TCU.

  5. Novel Shape-Stabilized Phase Change Materials Composed of Polyethylene Glycol/Nonsurfactant-Templated Mesoporous Silica: Preparation and Thermal Properties

    Science.gov (United States)

    Chen, Yan; Zhu, Yingying; Wang, Jinbao; Lv, Mengjiao; Zhang, Xiongjie; Gao, Junkai; Zhang, Zijun; Lei, Hao

    2017-12-01

    A novel shape-stabilized phase change material (PEG/TAMS), fabricated using tannic acid-templated mesoporous silica (TAMS) as a support for polyethylene glycol, was developed for thermal energy storage. The method used to synthesize TAMS was simple, cost effective, environmentally friendly, and free of surfactant. The characterization results indicated that PEG was physically absorbed to TAMS and that TAMS had no influence on the crystal structure of PEG. According to the TGA thermograms, PEG/TAMS has excellent thermal stability and can be applied over a wide temperature range. Additionally, the differential scanning calorimetry results suggested that PEG/TAMS has good thermal properties and that its fusion and solidification enthalpies reached 114.7 J/g and 102.4 J/g, respectively. The results indicated that PEG/TAMS has great potential for practical applications.

  6. Mesoporous thin films of ``molecular squares'' as sensors for volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Keefe, M.H.; Slone, R.V.; Hupp, J.T.; Czaplewski, K.F.; Snurr, R.Q.; Stern, C.L.

    2000-04-18

    Mesoporous thin films of rhenium-based molecular squares, [Re(CO){sub 3}Cl(L)]{sub 4} (L = pyrazine, 4,4{prime}-bipyridine), have been utilized as sensors for volatile organic compounds (VOCs). The sensing was conducted using a quartz crystal microbalance with the target compounds present in the gas phase at concentrations ranging from 0.05 to 1 mM. Quartz crystal microbalance studies with these materials allowed for distinction between the following VOCs: (1) small aromatic versus aliphatic molecules of almost identical size and volatility and (2) an array of benzene molecules derivatized with electron donating/withdrawing substituents. The experiments suggest that the mesoporous host materials interact with VOC guest molecules through both van der Waals and weak charge-transfer interactions. In addition, size selectivity is shown by exposure of the molecular squares to cyclic ethers of differing size.

  7. Advanced superconducting materials

    International Nuclear Information System (INIS)

    Fluekiger, R.

    1983-11-01

    The superconducting properties of various materials are reviewed in view of their use in high field magnets. The critical current densities above 12 T of conductors based on NbN or PbMo 6 S 8 are compared to those of the most advanced practical conductors based on alloyed by Nb 3 Sn. Different aspects of the mechanical reinforcement of high field conductors, rendered necessary by the strong Lorentz forces (e.g. in fusion magnets), are discussed. (orig.) [de

  8. Advanced quantum mechanics materials and photons

    CERN Document Server

    Dick, Rainer

    2012-01-01

    Advanced Quantum Mechanics: Materials and Photons is a textbook which emphasizes the importance of advanced quantum mechanics for materials science and all experimental techniques which employ photon absorption, emission, or scattering. Important aspects of introductory quantum mechanics are covered in the first seven chapters to make the subject self-contained and accessible for a wide audience. The textbook can therefore be used for advanced undergraduate courses and introductory graduate courses which are targeted towards students with diverse academic backgrounds from the Natural Sciences or Engineering. To enhance this inclusive aspect of making the subject as accessible as possible, Appendices A and B also provide introductions to Lagrangian mechanics and the covariant formulation of electrodynamics. Other special features include an introduction to Lagrangian field theory and an integrated discussion of transition amplitudes with discrete or continuous initial or final states. Once students have acquir...

  9. Advanced materials processing

    International Nuclear Information System (INIS)

    Giamei, A.F.

    1993-01-01

    Advanced materials will require improved processing methods due to high melting points, low toughness or ductility values, high reactivity with air or ceramics and typically complex crystal structures with significant anisotropy in flow and/or fracture stress. Materials for structural applications at elevated temperature in critical systems will require processing with a high degree of control. This requires an improved understanding of the relationship between process variables and microstructure to enable control systems to achieve consistently high quality. One avenue to the required level of understanding is computer simulation. Past attempts to do process modeling have been hampered by incomplete data regarding thermophysical or mechanical material behavior. Some of the required data can be calculated. Due to the advances in software and hardware, accuracy and costs are in the realm of acquiring experimental data. Such calculations can, for example, be done at an atomic level to compute lattice energy, fault energies, density of states and charge densities. These can lead to fundamental information about the competition between slip and fracture, anisotropy of bond strength (and therefore cleavage strength), cohesive strength, adhesive strength, elastic modulus, thermal expansion and possibly other quantities which are difficult (and therefore expensive to measure). Some of these quantities can be fed into a process model. It is probable that temperature dependencies can be derived numerically as well. Examples are given of the beginnings of such an approach for Ni 3 Al and MoSi 2 . Solidification problems are examples of the state-of-the-art process modeling and adequately demonstrate the need for extensive input data. Such processes can be monitored in terms of interfacial position vs. time, cooling rate and thermal gradient

  10. Cladding and Duct Materials for Advanced Nuclear Recycle Reactors

    International Nuclear Information System (INIS)

    Allen, Todd R.; Busby, J. T.; Klueh, R. L.; Maloy, Stuart A.; Toloczko, Mychailo B.

    2008-01-01

    This is a review article that provides an overview of the reactor core structural materials and clad and duct needs for the GNEP advanced burner reactor design. A short history of previous research on structural materials for irradiation environments is provided. There is also a section describing some advanced materials that may be candidate materials for various reactor core structures

  11. Preparation, characterization and photocatalytic applications of amine-functionalized mesoporous silica impregnated with transition-metal-monosubstituted polyoxometalates

    International Nuclear Information System (INIS)

    Li Li; Liu, Chunming; Geng Aifang; Jiang Chunjie; Guo Yihang; Hu Changwen

    2006-01-01

    Amine-functionalized mesoporous silica materials impregnated with transition-metal-monosubstituted polyoxometalates, K 5 [M(H 2 O)PW 11 O 39 ]-(EtO) 3 SiCH 2 CH 2 CH 2 NH 2 -MCM-48 (M = Co/Ni), were prepared by coordination of nickel/cobalt centers in the clusters with the amine surface groups in amine-functionalized mesoporous silica supports. The materials obtained were characterized by powder X-ray diffraction (XRD), UV-vis diffuse reflectance spectra (UV-vis-DR), infrared (IR) spectra, magic-angle spinning 31 P MAS NMR, transmission electron microscopy (TEM) and nitrogen adsorption measurements, indicating that the primary Keggin structures remained intact in as-prepared composites, and the composites possessed mesoporous structures. The composites exhibited UV-photocatalytic activity to degrade dye rhodamine B (RB), and the pesticides including hexachlorobenzene (HCB) and methylparathion (MPT). Leakage of K 5 [M(H 2 O)PW 11 O 39 ] from the support was hardly observed during the photocatalytic tests, attributed to strong coordination interactions between the Keggin units and the amine-functionalized silica surface. -- Graphical abstract: The K 5 [M(H 2 O)PW 11 O 39 ]-(EtO) 3 SiCH 2 CH 2 CH 2 NH 2 -SiO 2 composites were prepared by coordination of M centers in the Keggin units with the amine surface groups in amine-functionalized mesoporous silica supports, and the composites exhibited photocatalytic activity to degrade aqueous rhodamine B, hexachlorobenzene and methyl parathion

  12. Controlling drug delivery kinetics from mesoporous titania thin films by pore size and surface energy

    Directory of Open Access Journals (Sweden)

    Karlsson J

    2015-07-01

    Full Text Available Johan Karlsson, Saba Atefyekta, Martin Andersson Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden Abstract: The osseointegration capacity of bone-anchoring implants can be improved by the use of drugs that are administrated by an inbuilt drug delivery system. However, to attain superior control of drug delivery and to have the ability to administer drugs of varying size, including proteins, further material development of drug carriers is needed. Mesoporous materials have shown great potential in drug delivery applications to provide and maintain a drug concentration within the therapeutic window for the desired period of time. Moreover, drug delivery from coatings consisting of mesoporous titania has shown to be promising to improve healing of bone-anchoring implants. Here we report on how the delivery of an osteoporosis drug, alendronate, can be controlled by altering pore size and surface energy of mesoporous titania thin films. The pore size was varied from 3.4 nm to 7.2 nm by the use of different structure-directing templates and addition of a swelling agent. The surface energy was also altered by grafting dimethylsilane to the pore walls. The drug uptake and release profiles were monitored in situ using quartz crystal microbalance with dissipation (QCM-D and it was shown that both pore size and surface energy had a profound effect on both the adsorption and release kinetics of alendronate. The QCM-D data provided evidence that the drug delivery from mesoporous titania films is controlled by a binding–diffusion mechanism. The yielded knowledge of release kinetics is crucial in order to improve the in vivo tissue response associated to therapeutic treatments. Keywords: mesoporous titania, controlled drug delivery, release kinetics, alendronate, QCM-D

  13. Synthesis and characterization of 1-Methyl-3-Methoxysilyl Propyl Imidazolium Chloride - mesoporous silica composite as adsorbent for dehydration in industrial processes

    Energy Technology Data Exchange (ETDEWEB)

    Lievano, Javier F. Plata; Diaz, Luz A. Carreno, E-mail: lcarreno@uis.edu.co [Universidad Industrial de Santander (Colombia)

    2016-07-15

    Ionic liquid - mesoporous silica composite was synthesized as a new adsorbent for dehydration in industrial processes. An ionic liquid (IL) with proved dehydration properties has been covalently anchored to mesoporous silica. The parameters of the synthesis were studied to produce a solid and stable composite. The material was then characterized by SEM, BET, FTIR, NMR, Raman, XRD, XRF, MALDI and LDI confirming the presence of a covalent bond between the ionic liquid and the solid matrix. Evaluations have shown that the material kept the IL dehydration property. (author)

  14. Synthesis and characterization of 1-Methyl-3-Methoxysilyl Propyl Imidazolium Chloride - mesoporous silica composite as adsorbent for dehydration in industrial processes

    International Nuclear Information System (INIS)

    Lievano, Javier F. Plata; Diaz, Luz A. Carreno

    2016-01-01

    Ionic liquid - mesoporous silica composite was synthesized as a new adsorbent for dehydration in industrial processes. An ionic liquid (IL) with proved dehydration properties has been covalently anchored to mesoporous silica. The parameters of the synthesis were studied to produce a solid and stable composite. The material was then characterized by SEM, BET, FTIR, NMR, Raman, XRD, XRF, MALDI and LDI confirming the presence of a covalent bond between the ionic liquid and the solid matrix. Evaluations have shown that the material kept the IL dehydration property. (author)

  15. Structural diversity, physicochemical properties and application of imidazolium surfactants: Recent advances.

    Science.gov (United States)

    Bhadani, Avinash; Misono, Takeshi; Singh, Sukhprit; Sakai, Kenichi; Sakai, Hideki; Abe, Masahiko

    2016-05-01

    The current review covers recent advances on development and investigation of cationic surfactants containing imidazolium headgroup, which are being extensively investigated for their self-aggregation properties and are currently being utilized in various conventional and non-conventional application areas. These surfactants are being used as: soft template for synthesis of mesoporous/microporous materials, drug and gene delivery agent, stabilizing agent for nanoparticles, dispersants for single/multi walled carbon nanotubes, antimicrobial and antifungal agent, viscosity modifiers, preparing nanocomposite materials, stabilizing microemulsions, corrosion inhibitors and catalyst for organic reactions. Recently several structural derivatives of these surfactants have been developed having many interesting physicochemical properties and they have demonstrated enormous potential in the area of nanotechnology, material science and biomedical science. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Proceedings of the second national seminar on new materials research and nanotechnology

    International Nuclear Information System (INIS)

    Joseph John, N.

    2013-01-01

    The contents of the presentations cover new materials, advanced materials, biomaterials, carbon nanomaterials, computational material science, diamond and diamond related materials, electronic materials, ferroelectric materials, fiber optics, fluorescent materials, functional materials, inorganic materials, lasers materials processing, laser and plasma technology, luminescence materials, magnetic and superconducting materials, materials for defence applications, mesoporous materials, materials for solar energy and energy storing devices, NLO materials, organic materials/electronics, photonic materials, piezoelectric materials, semiconductor materials, smart materials, nanomaterials and composites, nanoelectronics and spintronics, environment and nanotechnology, nano environmental devices, nano fluids, nanobiotechnology, nanomedicine, nanomagnetism, nanopharmacy, sensors, nano sensors/actuatoes, nanotechnology for hill area development, simulation and modeling of nanodevices, crystals, crystal growth, crystal growth methods, characterization techniques, crystal defects, liquid crystals, optoelectronic crystals, polymers, polymer composites, nano polymers, spectroscopy, thin films, deposition, characterization, applications and ultrasonics. Papers relevant to INIS are indexed separately. (author)

  17. Acid-base equilibria inside amine-functionalized mesoporous silica.

    Science.gov (United States)

    Yamaguchi, Akira; Namekawa, Manato; Kamijo, Toshio; Itoh, Tetsuji; Teramae, Norio

    2011-04-15

    Acid-base equilibria and effective proton concentration inside a silica mesopore modified with a trimethyl ammonium (TMAP) layer were studied by steady-state fluorescence experiments. The mesoporous silica with a dense TMAP layer (1.4 molecules/nm(2)) was prepared by a post grafting of N-trimethoxysilylpropyl-N,N,N-trimethylammonium at surfactant-templated mesoporous silica (diameter of silica framework =3.1 nm). The resulting TMAP-modified mesoporous silica strongly adsorbed of anionic fluorescence indicator dyes (8-hydroxypyrene-1,3,6-trisulfonate (pyranine), 8-aminopyrene-1,3,6-trisulfonate (APTS), 5,10,15,20-tetraphenyl-21H,23H-porphinetetrasulfonic acid disulfuric acid (TPPS), 2-naphthol-3,6-disulfonate (2NT)) and fluorescence excitation spectra of these dyes within TMAP-modified mesoporous silica were measured by varying the solution pH. The fluorescence experiments revealed that the acid-base equilibrium reactions of all pH indicator dyes within the TMAP-modified silica mesopore were quite different from those in bulk water. From the analysis of the acid-base equilibrium of pyranine, the following relationships between solution pH (pH(bulk)) and the effective proton concentration inside the pore (pH(pore)) were obtained: (1) shift of pH(pore) was 1.8 (ΔpH(pore)=1.8) for the pH(bulk) change from 2.1 to 9.1 (ΔpH(bulk)=7.0); (2) pH(pore) was not simply proportional to pH(bulk); (3) the inside of the TMAP-modified silica mesopore was suggested to be in a weak acidic or neutral condition when pH(bulk) was changed from 2.0 to 9.1. Since these relationships between pH(bulk) and pH(pore) could explain the acid-base equilibria of other pH indicator dyes (APTS, TPPS, 2NT), these relationships were inferred to describe the effective proton concentration inside the TMAP-modified silica mesopore. © 2011 American Chemical Society

  18. Scalable 2D Mesoporous Silicon Nanosheets for High-Performance Lithium-Ion Battery Anode.

    Science.gov (United States)

    Chen, Song; Chen, Zhuo; Xu, Xingyan; Cao, Chuanbao; Xia, Min; Luo, Yunjun

    2018-03-01

    Constructing unique mesoporous 2D Si nanostructures to shorten the lithium-ion diffusion pathway, facilitate interfacial charge transfer, and enlarge the electrode-electrolyte interface offers exciting opportunities in future high-performance lithium-ion batteries. However, simultaneous realization of 2D and mesoporous structures for Si material is quite difficult due to its non-van der Waals structure. Here, the coexistence of both mesoporous and 2D ultrathin nanosheets in the Si anodes and considerably high surface area (381.6 m 2 g -1 ) are successfully achieved by a scalable and cost-efficient method. After being encapsulated with the homogeneous carbon layer, the Si/C nanocomposite anodes achieve outstanding reversible capacity, high cycle stability, and excellent rate capability. In particular, the reversible capacity reaches 1072.2 mA h g -1 at 4 A g -1 even after 500 cycles. The obvious enhancements can be attributed to the synergistic effect between the unique 2D mesoporous nanostructure and carbon capsulation. Furthermore, full-cell evaluations indicate that the unique Si/C nanostructures have a great potential in the next-generation lithium-ion battery. These findings not only greatly improve the electrochemical performances of Si anode, but also shine some light on designing the unique nanomaterials for various energy devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Individual hollow and mesoporous aero-graphitic microtube based devices for gas sensing applications

    Science.gov (United States)

    Lupan, Oleg; Postica, Vasile; Marx, Janik; Mecklenburg, Matthias; Mishra, Yogendra K.; Schulte, Karl; Fiedler, Bodo; Adelung, Rainer

    2017-06-01

    In this work, individual hollow and mesoporous graphitic microtubes were integrated into electronic devices using a FIB/SEM system and were investigated as gas and vapor sensors by applying different bias voltages (in the range of 10 mV-1 V). By increasing the bias voltage, a slight current enhancement is observed, which is mainly attributed to the self-heating effect. A different behavior of ammonia NH3 vapor sensing by increasing the applied bias voltage for hollow and mesoporous microtubes with diameters down to 300 nm is reported. In the case of the hollow microtube, an increase in the response was observed, while a reverse effect has been noticed for the mesoporous microtube. It might be explained on the basis of the higher specific surface area (SSA) of the mesoporous microtube compared to the hollow one. Thus, at room temperature when the surface chemical reaction rate (k) prevails on the gas diffusion rate (DK) the structures with a larger SSA possess a higher response. By increasing the bias voltage, i.e., the overall temperature of the structure, DK becomes a limiting step in the gas response. Therefore, at higher bias voltages the larger pores will facilitate an enhanced gas diffusion, i.e., a higher gas response. The present study demonstrates the importance of the material porosity towards gas sensing applications.

  20. Advanced quantum mechanics materials and photons

    CERN Document Server

    Dick, Rainer

    2016-01-01

    In this updated and expanded second edition of a well-received and invaluable textbook, Prof. Dick emphasizes the importance of advanced quantum mechanics for materials science and all experimental techniques which employ photon absorption, emission, or scattering. Important aspects of introductory quantum mechanics are covered in the first seven chapters to make the subject self-contained and accessible for a wide audience. Advanced Quantum Mechanics, Materials and Photons can therefore be used for advanced undergraduate courses and introductory graduate courses which are targeted towards students with diverse academic backgrounds from the Natural Sciences or Engineering. To enhance this inclusive aspect of making the subject as accessible as possible Appendices A and B also provide introductions to Lagrangian mechanics and the covariant formulation of electrodynamics. This second edition includes an additional 62 new problems as well as expanded sections on relativistic quantum fields and applications of�...

  1. Functional mesoporous silica nanoparticles for bio-imaging applications.

    Science.gov (United States)

    Cha, Bong Geun; Kim, Jaeyun

    2018-03-22

    Biomedical investigations using mesoporous silica nanoparticles (MSNs) have received significant attention because of their unique properties including controllable mesoporous structure, high specific surface area, large pore volume, and tunable particle size. These unique features make MSNs suitable for simultaneous diagnosis and therapy with unique advantages to encapsulate and load a variety of therapeutic agents, deliver these agents to the desired location, and release the drugs in a controlled manner. Among various clinical areas, nanomaterials-based bio-imaging techniques have advanced rapidly with the development of diverse functional nanoparticles. Due to the unique features of MSNs, an imaging agent supported by MSNs can be a promising system for developing targeted bio-imaging contrast agents with high structural stability and enhanced functionality that enable imaging of various modalities. Here, we review the recent achievements on the development of functional MSNs for bio-imaging applications, including optical imaging, magnetic resonance imaging (MRI), positron emission tomography (PET), computed tomography (CT), ultrasound imaging, and multimodal imaging for early diagnosis. With further improvement in noninvasive bio-imaging techniques, the MSN-supported imaging agent systems are expected to contribute to clinical applications in the future. This article is categorized under: Diagnostic Tools > In vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology. © 2018 Wiley Periodicals, Inc.

  2. Structure study of the tri-continuous mesoporous silica IBN-9 by electron crystallography

    KAUST Repository

    Zhang, Daliang

    2011-12-01

    High resolution electron microscopy (HRTEM) has unique advantages for structural determination of nano-sized porous materials compared to X-ray diffraction, because it provides the important structure factor phase information which is lost in diffraction. Here we demonstrate the structure determination of the first tri-continuous mesoporous silica IBN-9 by electron crystallography. IBN-9 has a hexagonal unit cell with the space group P6 3/mcm and a = 88.4 , c = 84.3 . HRTEM images taken along three main directions, [0 0 1], [11̄0] and [1 0 0] were combined to reconstruct the 3D electrostatic potential map, from which the tri-continuous pore structure of IBN-9 was discovered. The different steps of structure determination of unknown mesoporous structures by electron crystallography are described in details. Similar procedures can also be applied for structure determination of other porous and nonporous crystalline materials. © 2011 Elsevier Inc. All rights reserved.

  3. Advanced Material Rendering in Blender

    Czech Academy of Sciences Publication Activity Database

    Hatka, Martin; Haindl, Michal

    2012-01-01

    Roč. 11, č. 2 (2012), s. 15-23 ISSN 1081-1451 R&D Projects: GA ČR GAP103/11/0335; GA ČR GA102/08/0593 Grant - others:CESNET(CZ) 387/2010; CESNET(CZ) 409/2011 Institutional support: RVO:67985556 Keywords : realistic material rendering * bidirectional texture function * Blender Subject RIV: BD - Theory of Information http://library.utia.cas.cz/separaty/2013/RO/haindl-advanced material rendering in blender.pdf

  4. Materials performance in advanced fossil technologies

    International Nuclear Information System (INIS)

    Natesan, K.

    1991-01-01

    A number of advanced technologies are being developed to convert coal into clean fuels for use as a feedstock in chemical plants and for power generation. From the standpoint of component materials, the environments created by coal conversion and combustion in these technologies and their interactions with materials are of interest. This article identifies several modes of materials degradation and possible mechanisms for metal wastage. Available data on the performance of materials in several of the environments are highlighted, and examples of promising research activities to improve the corrosion resistance of materials are presented

  5. Generalized synthesis of mesoporous shells on zeolite crystals

    KAUST Repository

    Han, Yu; Pitukmanorom, Pemakorn; Zhao, L. J.; Ying, Jackie

    2010-01-01

    A simple and generalized synthetic approach is developed for creating mesoporous shells on zeolite crystals. This method allows for the tailoring of thickness, pore size, and composition of the mesoporous shell, and can be applied to zeolites

  6. One-pot pseudomorphic crystallization of mesoporous porous silica to hierarchical porous zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Jun-Ling; Jiang, Shu-Hua; Pang, Jun-Ling; Yuan, En-Hui; Ma, Xiao-Jing [Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhongshan North Road, 200062 Shanghai (China); Lam, Koon-Fung [Department of Chemical Engineering, University College London, Torrington Place, London (United Kingdom); Xue, Qing-Song, E-mail: qsxue@chem.ecnu.edu.cn [Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhongshan North Road, 200062 Shanghai (China); Zhang, Kun, E-mail: kzhang@chem.ecnu.edu.cn [Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhongshan North Road, 200062 Shanghai (China)

    2015-09-15

    Hierarchically porous silica with mesopore and zeolitic micropore was synthesized via pseudomorphic crystallization under high-temperature hydrothermal treatment in the presence of cetyltrimethylammonium tosylate and tetrapropylammonium ions. A combined characterization using small-angle X-ray diffraction (XRD), nitrogen adsorption, high-resolution transmission electron microscopy (TEM), thermogravimetric analysis (TG), and elemental analysis showed that dual templates, CTA{sup +} and TPA{sup +} molecules, can work in a cooperative manner to synthesize mesoporous zeolite in a one-pot system by precisely tuning the reaction conditions, such as reaction time and temperature, and type and amount of heterometal atoms. It is found that the presence of Ti precursor is critical to the successful synthesis of such nanostructure. It not only retards the nucleation and growth of crystalline MFI domains, but also acts as nano-binder or nano-glue to favor the assembly of zeolite nanoblocks. - Graphical abstract: Display Omitted - Highlights: • A facile method to synthesize mesoporous zeolites with hierarchical porosity was presented. • It gives a new insight into keeping the balance between mesoscopic and molecular ordering in hierarchical porous materials. • A new understanding on the solid–solid transformation mechanism for the synthesis of titanosilicate zeolites was proposed.

  7. Mesoporous silicon oxide films and their uses as templates in obtaining nanostructured conductive polymers

    Science.gov (United States)

    Salgado, R.; Arteaga, G. C.; Arias, J. M.

    2018-04-01

    Obtaining conductive polymers (CPs) for the manufacture of OLEDs, solar cells, electrochromic devices, sensors, etc., has been possible through the use of electrochemical techniques that allow obtaining films of controlled thickness with positive results in different applications. Current trends point towards the manufacture of nanomaterials, and therefore it is necessary to develop methods that allow obtaining CPs with nanostructured morphology. This is possible by using a porous template to allow the growth of the polymeric materials. However, prior and subsequent treatments are required to separate the material from the template so that it can be evaluated in the applications mentioned above. This is why mesoporous silicon oxide films (template) are essential for the synthesis of nanostructured polymers since both the template and the polymer are obtained on the electrode surface, and therefore it is not necessary to separate the material from the template. Thus, the material can be evaluated directly in the applications mentioned above. The dimensions of the resulting nanostructures will depend on the power, time and technique used for electropolymerization as well as the monomer and the surfactant of the mesoporous film.

  8. Ultralight mesoporous magnetic frameworks by interfacial assembly of Prussian blue nanocubes.

    Science.gov (United States)

    Kong, Biao; Tang, Jing; Wu, Zhangxiong; Wei, Jing; Wu, Hao; Wang, Yongcheng; Zheng, Gengfeng; Zhao, Dongyuan

    2014-03-10

    A facile approach for the synthesis of ultralight iron oxide hierarchical structures with tailorable macro- and mesoporosity is reported. This method entails the growth of porous Prussian blue (PB) single crystals on the surface of a polyurethane sponge, followed by in situ thermal conversion of PB crystals into three-dimensional mesoporous iron oxide (3DMI) architectures. Compared to previously reported ultralight materials, the 3DMI architectures possess hierarchical macro- and mesoporous frameworks with multiple advantageous features, including high surface area (ca. 117 m(2) g(-1)) and ultralow density (6-11 mg cm(-3)). Furthermore, they can be synthesized on a kilogram scale. More importantly, these 3DMI structures exhibit superparamagnetism and tunable hydrophilicity/hydrophobicity, thus allowing for efficient multiphase interfacial adsorption and fast multiphase catalysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Thiol-Functionalized Mesoporous Silica for Effective Trap of Mercury in Rats

    Directory of Open Access Journals (Sweden)

    Wei Zhao

    2016-01-01

    Full Text Available The chance of exposure to heavy metal for human being rises severely today due to the increasing water contamination and air pollution. Here, we prepared a series of thiol-functionalized mesoporous silica as oral formulation for the prevention and treatment of heavy metal poisoning. The successful incorporation of thiol was verified by the FTIR spectra. SBA15-SH-10 was used for the study as it is of uniform mesopores and fine water dispersibility. In simulated gastrointestinal fluid, the thiol-functionalized mesoporous silica can selectively capture heavy metal, showing a very high affinity for inorganic mercury (II. The blood and urine mercury levels of rats fed with a diet containing Hg (II and material were significantly lower than those of rats fed with the metal-rich diet only. On the contrary, the mercury content in fecal excretion of the treatment group increased more than twice as much as that of the control group. This result indicated that SBA15-SH-10 could effectively remove mercury (II in vivo and the mercury loaded on SBA15-SH-10 would be excreted out. Hence, SBA15-SH-10 has potential application in preventing and treating heavy metal poisoning via digestive system.

  10. Low-temperature direct synthesis of mesoporous vanadium nitrides for electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae-Min [Institute of NT-IT Fusion Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499 (Korea, Republic of); Jeong, Gyoung Hwa [Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Banyeon 100, Ulsan 44919 (Korea, Republic of); Kim, Sang-Wook [Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499 (Korea, Republic of); Kim, Chang-Koo, E-mail: changkoo@ajou.ac.kr [Department of Chemical Engineering and Department of Energy Systems Research, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499 (Korea, Republic of)

    2017-04-01

    Highlights: • Vanadium nitrides were directly synthesized by a one-step chemical precipitation method. • This method was carried out at a low temperature of 70 °C. • Vanadium nitrides had a specific capacitance of 598 F/g. • The equivalent series resistance of the vanadium nitride electrode was 1.42 Ω after 5000 cycles. - Abstract: Mesoporous vanadium nitrides are directly synthesized by a one-step chemical precipitation method at a low temperature (70 °C). Structural and morphological analyses reveal that vanadium nitride consist of long and slender nanowhiskers, and mesopores with diameters of 2–5 nm. Compositional analysis confirms the presence of vanadium in the VN structure, along with oxidized vanadium. The cyclic voltammetry and charge-discharge tests indicate that the obtained material stores charges via a combination of electric double-layer capacitance and pseudocapacitance mechanisms. The vanadium nitride electrode exhibits a specific capacitance of 598 F/g at a current density of 4 A/g. After 5000 charge-discharge cycles, the electrode has an equivalent series resistance of 1.42 Ω and retains 83% of its initial specific capacitance. This direct low-temperature synthesis of mesoporous vanadium nitrides is a simple and promising method to achieve high specific capacitance and low equivalent series resistance for electrochemical capacitor applications.

  11. Mechanics of advanced functional materials

    CERN Document Server

    Wang, Biao

    2013-01-01

    Mechanics of Advanced Functional Materials emphasizes the coupling effect between the electric and mechanical field in the piezoelectric, ferroelectric and other functional materials. It also discusses the size effect on the ferroelectric domain instability and phase transition behaviors using the continuum micro-structural evolution models. Functional materials usually have a very wide application in engineering due to their unique thermal, electric, magnetic, optoelectronic, etc., functions. Almost all the applications demand that the material should have reasonable stiffness, strength, fracture toughness and the other mechanical properties. Furthermore, usually the stress and strain fields on the functional materials and devices have some important coupling effect on the functionality of the materials. Much progress has been made concerning the coupling electric and mechanical behaviors such as the coupled electric and stress field distribution in piezoelectric solids, ferroelectric domain patterns in ferr...

  12. Mesoporous silica nanoparticles supported copper(II) and nickel(II) Schiff base complexes: Synthesis, characterization, antibacterial activity and enzyme immobilization

    Science.gov (United States)

    Tahmasbi, Leila; Sedaghat, Tahereh; Motamedi, Hossein; Kooti, Mohammad

    2018-02-01

    Mesoporous silica nanoparticles (MSNs) were prepared by sol-gel method and functionalized with 3-aminopropyltriethoxysilane. Schiff base grafted mesoporous silica nanoparticle was synthesized by the condensation of 2-hydroxy-3-methoxybenzaldehyde and amine-functionalized MSNs. The latter material was then treated with Cu(II) and Ni(II) salts separately to obtain copper and nickel complexes anchored mesoporous composites. The newly prepared hybrid organic-inorganic nanocomposites have been characterized by several techniques such as FT-IR, LA-XRD, FE-SEM, TEM, EDS, BET and TGA. The results showed all samples have MCM-41 type ordered mesoporous structure and functionalization occurs mainly inside the mesopore channel. The presence of all elements in synthesized nanocomposites and the coordination of Schiff base via imine nitrogen and phenolate oxygen were confirmed. MSNs and all functionalized MSNs have uniform spherical nanoparticles with a mean diameter less than 100 nm. The as-synthesized mesoporous nanocomposites were investigated for antibacterial activity against Gram-positive (B. subtilis and S. aureus) and Gram-negative (E. coli and P. aeruginosa) bacteria, as carrier for gentamicin and also for immobilization of DNase, coagulase and amylase enzymes. MSN-SB-Ni indicated bacteriocidal effect against S.aureus and all compounds were found to be good carrier for gentamicin. Results of enzyme immobilization for DNase and coagulase and α-amylase revealed that supported metal complexes efficiently immobilized enzymes.

  13. Mesoporous silicas with covalently immobilized β-cyclodextrin moieties: synthesis, structure, and sorption properties

    Science.gov (United States)

    Roik, Nadiia V.; Belyakova, Lyudmila A.; Trofymchuk, Iryna M.; Dziazko, Marina O.; Oranska, Olena I.

    2017-09-01

    Mesoporous silicas with chemically attached macrocyclic moieties were successfully prepared by sol-gel condensation of tetraethyl orthosilicate and β-cyclodextrin-silane in the presence of a structure-directing agent. Introduction of β-cyclodextrin groups into the silica framework was confirmed by the results of IR spectral, thermogravimetric, and quantitative chemical analysis of surface compounds. The porous structure of the obtained materials was characterized by nitrogen adsorption-desorption measurements, powder X-ray diffraction, transmission electron microscopy, and dynamic light scattering. It was found that the composition of the reaction mixture used in β-cyclodextrin-silane synthesis significantly affects the structural parameters of the resulting silicas. The increase in (3-aminopropyl)triethoxysilane as well as the coupling agent content in relation to β-cyclodextrin leads ultimately to the lowering or complete loss of hexagonal arrangement of pore channels in the synthesized materials. Formation of hexagonally ordered mesoporous structure was observed at molar composition of the mixture 0.049 TEOS:0.001 β-CD-silane:0.007 CTMAB:0.27 NH4OH:7.2 H2O and equimolar ratio of components in β-CD-silane synthesis. The sorption of alizarin yellow on starting silica and synthesized materials with chemically attached β-cyclodextrin moieties was studied in phosphate buffer solutions with pH 7.0. Experimental results of the dye equilibrium sorption were analyzed using Langmuir, Freundlich, and Redlich-Peterson isotherm models. It was proved that the Redlich-Peterson isotherm model is the most appropriate for fitting the equilibrium sorption of alizarin yellow on parent silica with hexagonally arranged mesoporous structure as well as on modified one with chemically immobilized β-cyclodextrin groups. [Figure not available: see fulltext.

  14. Ion beam processing of advanced electronic materials

    International Nuclear Information System (INIS)

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B.

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases

  15. Advancing Material Models for Automotive Forming Simulations

    International Nuclear Information System (INIS)

    Vegter, H.; An, Y.; Horn, C.H.L.J. ten; Atzema, E.H.; Roelofsen, M.E.

    2005-01-01

    Simulations in automotive industry need more advanced material models to achieve highly reliable forming and springback predictions. Conventional material models implemented in the FEM-simulation models are not capable to describe the plastic material behaviour during monotonic strain paths with sufficient accuracy. Recently, ESI and Corus co-operate on the implementation of an advanced material model in the FEM-code PAMSTAMP 2G. This applies to the strain hardening model, the influence of strain rate, and the description of the yield locus in these models. A subsequent challenge is the description of the material after a change of strain path.The use of advanced high strength steels in the automotive industry requires a description of plastic material behaviour of multiphase steels. The simplest variant is dual phase steel consisting of a ferritic and a martensitic phase. Multiphase materials also contain a bainitic phase in addition to the ferritic and martensitic phase. More physical descriptions of strain hardening than simple fitted Ludwik/Nadai curves are necessary.Methods to predict plastic behaviour of single-phase materials use a simple dislocation interaction model based on the formed cells structures only. At Corus, a new method is proposed to predict plastic behaviour of multiphase materials have to take hard phases into account, which deform less easily. The resulting deformation gradients create geometrically necessary dislocations. Additional micro-structural information such as morphology and size of hard phase particles or grains is necessary to derive the strain hardening models for this type of materials.Measurements available from the Numisheet benchmarks allow these models to be validated. At Corus, additional measured values are available from cross-die tests. This laboratory test can attain critical deformations by large variations in blank size and processing conditions. The tests are a powerful tool in optimising forming simulations prior

  16. Innovative Route to Prepare of Au/C Catalysts by Replication of Gold-containing Mesoporous Silicas

    KAUST Repository

    Kerdi, Fatmé ; Caps, Valerie; Tuel, Alain

    2011-01-01

    precursor and the composite material is heated at 900 °C under vacuum or nitrogen. Silica is then removed by acid leaching, leading to partially encapsulated gold particles in mesoporous carbon. Carbon prevents aggregation of gold particles at high

  17. Capillary condensation of adsorbates in porous materials.

    Science.gov (United States)

    Horikawa, Toshihide; Do, D D; Nicholson, D

    2011-11-14

    Hysteresis in capillary condensation is important for the fundamental study and application of porous materials, and yet experiments on porous materials are sometimes difficult to interpret because of the many interactions and complex solid structures involved in the condensation and evaporation processes. Here we make an overview of the significant progress in understanding capillary condensation and hysteresis phenomena in mesopores that have followed from experiment and simulation applied to highly ordered mesoporous materials such as MCM-41 and SBA-15 over the last few decades. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Mesoporous 1D TiO_2 nanostructures obtained by the hydrothermal method

    International Nuclear Information System (INIS)

    Cabrera, Julieta; Vilchez, Ricardo; Alarcon, Hugo; Rodriguez, Juan; Lopez, Alcides

    2014-01-01

    Mesoporous one dimensional nanostructures (1D) such as nanotubes/nanorods of TiO_2 were synthesized by alkaline hydrothermal treatment of TiO_2 nanoparticles obtained by Sol Gel process (SG-TiO_2). The electronic microscopy images revealed the nanotubes formation of approximately 8 nm in diameter and more than around 400 nm long after hydrothermal treatment of 18 h and 24 h. These tube-like structures were maintained after acid treatment but after annealing at 400 °C during 2 hours these turn into rod-like structures of crystalline TiO_2 corresponding to anatase phase as revealed the diffraction patterns obtained by X-Ray Diffraction (XRD). The conversion of nanoparticles into nanotubes and afterward into rodlike shape was also confirmed by the variations in the BET surface area from 201, 269 and 97 m"2/g around, respectively. The adsorption-desorption isotherms also revealed hysteresis loop typical of mesoporous materials. These qualities are attractive to use these materials for the treatment of pollutants in water, for example. (author)

  19. Ordered mesoporous silica-based inorganic nanocomposites

    International Nuclear Information System (INIS)

    Wang Qingqing; Shantz, Daniel F.

    2008-01-01

    This article reviews the synthesis and characterization of nanoparticles and nanowires grown in ordered mesoporous silicas (OMS). Summarizing work performed over the last 4 years, this article highlights the material properties of the final nanocomposite in the context of the synthesis methodology employed. While certain metal-OMS systems (e.g. gold in MCM-41) have been extensively studied this article highlights that there is a rich set of chemistries that have yet to be explored. The article concludes with some thoughts on future developments and challenges in this area. - Graphical abstract: HAADF TEM image of gold nanoparticles in amine-functionalized MCM-41 (from Ref. [22])

  20. Preparation of mesoporous nanofibers by vapor phase synthesis: control of mesopore structures with the aid of co-surfactants

    International Nuclear Information System (INIS)

    Min, Sa Hoon; Jang, Jyongsik; Lee, Kyung Jin; Bae, Joonwon

    2013-01-01

    Mesoporous nanofibers (MSNFs) can be fabricated in the pores of anodic aluminum oxide (AAO) membrane using diverse methods. Among them vapor phase synthesis (VPS) provides several advantages over sol–gel or evaporation-induced self-assembly (EISA) based methods. One powerful advantage is that we can employ multiple surfactants as structural directing agents (SDAs) simultaneously. By adopting diverse pairs of SDAs, we can control the mesopore structures, i.e. pore size, surface area, and even the morphology of mesostructures. Here, we used F127 as a main SDA, which is relatively robust (thus, difficult to change the mesopore structures), and added a series of cationic co-surfactants to observe the systematical changes in their mesostructure with respect to the chain length of the co-surfactant. (paper)

  1. Preparation of mesoporous nanofibers by vapor phase synthesis: control of mesopore structures with the aid of co-surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Min, Sa Hoon; Jang, Jyongsik; Lee, Kyung Jin [School of Chemical and Biological Engineering, College of Engineering, Seoul National University, Shinlimdong 56-1, Seoul, 151-742 (Korea, Republic of); Bae, Joonwon [Department of Applied Chemistry, Dongduk Women' s University, Seoul 136-714 (Korea, Republic of)

    2013-06-28

    Mesoporous nanofibers (MSNFs) can be fabricated in the pores of anodic aluminum oxide (AAO) membrane using diverse methods. Among them vapor phase synthesis (VPS) provides several advantages over sol-gel or evaporation-induced self-assembly (EISA) based methods. One powerful advantage is that we can employ multiple surfactants as structural directing agents (SDAs) simultaneously. By adopting diverse pairs of SDAs, we can control the mesopore structures, i.e. pore size, surface area, and even the morphology of mesostructures. Here, we used F127 as a main SDA, which is relatively robust (thus, difficult to change the mesopore structures), and added a series of cationic co-surfactants to observe the systematical changes in their mesostructure with respect to the chain length of the co-surfactant. (paper)

  2. Preparation of mesoporous nanofibers by vapor phase synthesis: control of mesopore structures with the aid of co-surfactants

    Science.gov (United States)

    Min, Sa Hoon; Bae, Joonwon; Jang, Jyongsik; Lee, Kyung Jin

    2013-06-01

    Mesoporous nanofibers (MSNFs) can be fabricated in the pores of anodic aluminum oxide (AAO) membrane using diverse methods. Among them vapor phase synthesis (VPS) provides several advantages over sol-gel or evaporation-induced self-assembly (EISA) based methods. One powerful advantage is that we can employ multiple surfactants as structural directing agents (SDAs) simultaneously. By adopting diverse pairs of SDAs, we can control the mesopore structures, i.e. pore size, surface area, and even the morphology of mesostructures. Here, we used F127 as a main SDA, which is relatively robust (thus, difficult to change the mesopore structures), and added a series of cationic co-surfactants to observe the systematical changes in their mesostructure with respect to the chain length of the co-surfactant.

  3. Advanced ceramic materials and their potential impact on the future

    International Nuclear Information System (INIS)

    Laren, M.G.M.

    1989-01-01

    This article reviews the types of advanced ceramic materials that are being used today and their potential for even greater utilization in the future. Market analysis and projections have been developed from a number of sources both foreign and domestic are referenced and given in the text. Projection on the future use of advanced ceramics to the year 2000 indicate a potential growth of the total world market approaching 187 billion dollars. This paper describes advanced ceramic materials by their functionality, i.e. structural, electronic, chemical, thermal, biological, nuclear, etc. It also refers to specific engineering uses of advanced ceramics and include automotive ceramic materials with physical data for the most likely ceramic materials to be used for engine parts. This family of materials includes silicon carbides, silicon nitride, partially stabilized zirconia and alumina. Fiber reinforced ceramic composites are discussed with recognition of the research on fiber coating chemistry and the compatibility of the coating with the fiber and the matrix. Another class of advanced ceramics is toughened ceramics. The transformation toughened alumina is recognized as an example of this technology. The data indicate that electronic ceramic materials will always have the largest portion of the advanced ceramic market and the critical concepts of a wide range of uses is reviewed. (Auth.)

  4. Advanced ceramic materials for next-generation nuclear applications

    Science.gov (United States)

    Marra, John

    2011-10-01

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high

  5. Advanced ceramic materials for next-generation nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Marra, John [Savannah River National Laboratory Aiken, SC 29802 (United States)

    2011-10-29

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme

  6. Advanced Electron Microscopy in Materials Physics

    International Nuclear Information System (INIS)

    Zhu, Y.; Jarausch, K.

    2009-01-01

    Aberration correction has opened a new frontier in electron microscopy by overcoming the limitations of conventional round lenses, providing sub-angstrom-sized probes and extending information limits. The imaging and analytical performance of these corrector-equipped microscopes affords an unprecedented opportunity to study structure-property relationships of matter at the atomic scale. This new generation of microscopes is able to retrieve high-quality structural information comparable to neutron and synchrotron x-ray experiments, but with local atomic resolution. These advances in instrumentation are accelerating the research and development of various functional materials ranging from those for energy generation, conversion, transportation and storage to those for catalysis and nano-device applications. The dramatic improvements in electron-beam illumination and detection also present a host of new challenges for the interpretation and optimization of experiments. During 7-9 November 2007, a workshop, entitled 'Aberration Corrected Electron Microscopy in Material Physics', was convened at the Center for Functional Nanomaterials, Brookhaven National Laboratories (BNL) to address these opportunities and challenges. The workshop was co-sponsored by Hitachi High Technologies, a leader in electron microscopy instrumentation, and BNL's Institute of Advanced Electron Microscopy, a leader in materials physics research using electron microscopy. The workshop featured presentations by internationally prominent scientists working at the frontiers of electron microscopy, both on developing instrumentation and applying it in materials physics. The meeting, structured to stimulate scientific exchanges and explore new capabilities, brought together ∼100 people from over 10 countries. This special issue complies many of the advances in instrument performance and materials physics reported by the invited speakers and attendees at the workshop.

  7. Mesoporous metal oxide microsphere electrode compositions and their methods of making

    Science.gov (United States)

    Parans Paranthaman, Mariappan; Bi, Zhonghe; Bridges, Craig A.; Brown, Gilbert M.

    2017-04-11

    Compositions and methods of making are provided for treated mesoporous metal oxide microspheres electrodes. The compositions include microspheres with an average diameter between about 200 nanometers and about 10 micrometers and mesopores on the surface and interior of the microspheres. The methods of making include forming a mesoporous metal oxide microsphere composition and treating the mesoporous metal oxide microspheres by at least annealing in a reducing atmosphere, doping with an aliovalent element, and coating with a coating composition.

  8. The Laboratory for Advanced Materials Processing

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory for Advanced Materials Processing - LAMP - is a clean-room research facility run and operated by Pr. Gary Rubloff's group. Research activities focus...

  9. Annual report 90. Institute for advanced materials

    International Nuclear Information System (INIS)

    1991-01-01

    The Annual Report 1990 of the Institute for Advanced Materials of the JRC highlights the Scientific Technical Achievements and presents in the Annex the Institute's Competence and Facilities available to industry for services and research under contract. The Institute executed in 1990 the R and D programme on advanced materials of the JRC and contributed to the programmes: reactor safety, radio-active waste management, fusion technology and safety, nuclear fuel and actinide research. The supplementary programme: Operation of the High Flux Reactor is presented in condensed form. A full report is published separately

  10. Surface-Casting Synthesis of Mesoporous Zirconia with a CMK-5-Like Structure and High Surface Area.

    Science.gov (United States)

    Gu, Dong; Schmidt, Wolfgang; Pichler, Christian M; Bongard, Hans-Josef; Spliethoff, Bernd; Asahina, Shunsuke; Cao, Zhengwen; Terasaki, Osamu; Schüth, Ferdi

    2017-09-04

    About 15 years ago, the Ryoo group described the synthesis of CMK-5, a material consisting of a hexagonal arrangement of carbon nanotubes. Extension of the surface casting synthesis to oxide compositions, however, was not possible so far, in spite of many attempts. Here it is demonstrated, that crystalline mesoporous hollow zirconia materials with very high surface areas up to 400 m 2  g -1 , and in selected cases in the form of CMK-5-like, are indeed accessible via such a surface casting process. The key for the successful synthesis is an increased interaction between the silica hard template surface and the zirconia precursor species by using silanol group-rich mesoporous silica as a hard template. The surface areas of the obtained zirconias exceed those of conventionally hard-templated ones by a factor of two to three. The surface casting process seems to be applicable also to other oxide materials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Bimetallic Nanocatalysts in Mesoporous Silica for Hydrogen Production from Coal-Derived Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kuila, Debasish [North Carolina Agricultural & Technical State Univ., Greensboro, NC (United States); Ilias, Shamsuddin [North Carolina Agricultural & Technical State Univ., Greensboro, NC (United States)

    2013-02-13

    In steam reforming reactions (SRRs) of alkanes and alcohols to produce H2, noble metals such as platinum (Pt) and palladium (Pd) are extensively used as catalyst. These metals are expensive; so, to reduce noble-metal loading, bi-metallic nanocatalysts containing non-noble metals in MCM-41 (Mobil Composition of Material No. 41, a mesoporous material) as a support material with high-surface area were synthesized using one-pot hydrothermal procedure with a surfactant such as cetyltrimethylammonium bromide (CTAB) as a template. Bi-metallic nanocatalysts of Pd-Ni and Pd-Co with varying metal loadings in MCM-41 were characterized by x-ray diffraction (XRD), N2 adsorption, and Transmission electron microscopy (TEM) techniques. The BET surface area of MCM-41 (~1000 m2/g) containing metal nanoparticles decreases with the increase in metal loading. The FTIR studies confirm strong interaction between Si-O-M (M = Pd, Ni, Co) units and successful inclusion of metal into the mesoporous silica matrix. The catalyst activities were examined in steam reforming of methanol (SRM) reactions to produce hydrogen. Reference tests using catalysts containing individual metals (Pd, Ni and Co) were also performed to investigate the effect of the bimetallic system on the catalytic behavior in the SRM reactions. The bimetallic system remarkably improves the hydrogen selectivity, methanol conversion and stability of the catalyst. The results are consistent with a synergistic behavior for the Pd-Ni-bimetallic system. The performance, durability and thermal stability of the Pd-Ni/MCM-41 and Pd-Co/MCM-41 suggest that these materials may be promising catalysts for hydrogen production from biofuels. A part of this work for synthesis and characterization of Pd-Ni-MCM-41 and its activity for SRM reactions has been published (“Development of Mesoporous Silica Encapsulated Pd-Ni Nanocatalyst for Hydrogen Production” in “Production and Purification of Ultraclean

  12. Advanced materials and coatings for energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    St Pierre, George R. [Ohio State Univ., Materials Science and Engineering Dept., Columbus, OH (United States)

    1997-12-31

    Following an historical review of the development of high-temperature alloys for energy conversion systems including turbine engines, some of the current advances in single crystal materials, intermetallics, metal-matrix composites, and ceramic-matrix composites are discussed. Particular attention is directed at creep phenomena, fatigue properties and oxidation resistance. Included within the discussions is the current status of carbon/carbon composites as potential high-temperature engineering materials and the development of coating systems for thermal barrier and oxidation protection. The specific influences of combustion gas compositions, i.e., oxidation potential, sulfur, halides, etc. are discussed. A current list of eligible advanced materials and coatings systems is presented and assessed. Finally, the critical failure mechanism and life-prediction parameters for some of the new classes of advanced structural materials are elaborated with the view to achieving affordability and extended life with a high degree of reliability. Examples are drawn from a variety of energy conversion systems. (Author)

  13. Size Effect of Ordered Mesoporous Carbon Nanospheres for Anodes in Li-Ion Battery

    Directory of Open Access Journals (Sweden)

    Pei-Yi Chang

    2015-12-01

    Full Text Available The present work demonstrates the application of various sizes of ordered mesoporous carbon nanospheres (OMCS with diameters of 46–130 nm as an active anode material for Li-ion batteries (LIB. The physical and chemical properties of OMCS have been evaluated by performing scanning electron microscopy (SEM, transmission electron microscopy (TEM, N2 adsorption-desorption analysis; small-angle scattering system (SAXS and X-ray diffraction (XRD. The electrochemical analysis of using various sizes of OMCS as anode materials showed high capacity and rate capability with the specific capacity up to 560 mA·h·g−1 at 0.1 C after 85 cycles. In terms of performance at high current rate compared to other amorphous carbonaceous materials; a stable and extremely high specific capacity of 240 mA·h·g−1 at 5 C after 15 cycles was achieved. Such excellent performance is mainly attributed to the suitable particle size distribution of OMCS and intimate contact between OMCS and conductive additives; which can be supported from the TEM images. Results obtained from this study clearly indicate the excellence of size distribution of highly integrated mesoporous structure of carbon nanospheres for LIB application.

  14. Mesoporous cerium oxide nanospheres for the visible-light driven photocatalytic degradation of dyes

    Directory of Open Access Journals (Sweden)

    Subas K. Muduli

    2014-04-01

    Full Text Available A facile, solvothermal synthesis of mesoporous cerium oxide nanospheres is reported for the purpose of the photocatalytic degradation of organic dyes and future applications in sustainable energy research. The earth-abundant, relatively affordable, mixed valence cerium oxide sample, which consists of predominantly Ce7O12, has been characterized by powder X-ray diffraction, X-ray photoelectron and UV–vis spectroscopy, and transmission electron microscopy. Together with N2 sorption experiments, the data confirms that the new cerium oxide material is mesoporous and absorbs visible light. The photocatalytic degradation of rhodamin B is investigated with a series of radical scavengers, suggesting that the mechanism of photocatalytic activity under visible-light irradiation involves predominantly hydroxyl radicals as the active species.

  15. Mesoporous Silicon with Modified Surface for Plant Viruses and Their Protein Particle Sensing

    Directory of Open Access Journals (Sweden)

    Kae Dal Kwack

    2008-10-01

    Full Text Available Changes in electric parameters of a mesoporous silicon treated by a plasma chemical etching with fluorine and hydrogen ions, under the adsorption of NEPO (Nematodetransmitted Polyhedral plant viruses such as TORSV (Tomato Ringspot Virus, GFLV (Grapevine Fan Leaf Virus and protein macromolecule from TORSV particles are described. The current response to the applied voltage is measured for each virus particle to investigate the material parameters which are sensitive to the adsorbed particles. The peculiar behaviors of the response are modeled by the current-voltage relationship in a MOSFET. This model explains the behavior well and the double gate model of the MOSFET informs that the mesoporous silicon is a highly sensitive means of detecting the viruses in the size range less than 50 nm.

  16. Advanced organic composite materials for aircraft structures: Future program

    Science.gov (United States)

    1987-01-01

    Revolutionary advances in structural materials have been responsible for revolutionary changes in all fields of engineering. These advances have had and are still having a significant impact on aircraft design and performance. Composites are engineered materials. Their properties are tailored through the use of a mix or blend of different constituents to maximize selected properties of strength and/or stiffness at reduced weights. More than 20 years have passed since the potentials of filamentary composite materials were identified. During the 1970s much lower cost carbon filaments became a reality and gradually designers turned from boron to carbon composites. Despite progress in this field, filamentary composites still have significant unfulfilled potential for increasing aircraft productivity; the rendering of advanced organic composite materials into production aircraft structures was disappointingly slow. Why this is and research and technology development actions that will assist in accelerating the application of advanced organic composites to production aircraft is discussed.

  17. High temperature material characterization and advanced materials development

    International Nuclear Information System (INIS)

    Ryu, Woo Seog; Kim, D. H.; Kim, S. H. and others

    2005-03-01

    The study is to characterize the structural materials under the high temperature, one of the most significant environmental factors in nuclear systems. And advanced materials are developed for high temperature and/or low activation in neutron irradiation. Tensile, fatigue and creep properties have been carried out at high temperature to evaluate the mechanical degradation. Irradiation tests were performed using the HANARO. The optimum chemical composition and heat treatment condition were determined for nuclear grade 316NG stainless steel. Nitrogen, aluminum, and tungsten were added for increasing the creep rupture strength of FMS steel. The new heat treatment method was developed to form more stable precipitates. By applying the novel whiskering process, high density SiC/SiC composites with relative density above 90% could be obtained even in a shorter processing time than the conventional CVI process. Material integrated databases are established using data sheets. The databases of 6 kinds of material properties are accessible through the home page of KAERI material division

  18. Silica sacrificial layer-assisted in-plane incorporation of Au nanoparticles into mesoporous titania thin films through different reduction methods.

    Science.gov (United States)

    Liang, Chih-Peng; Yamauchi, Yusuke; Liu, Chia-Hung; Wu, Kevin C-W

    2013-06-28

    This study focuses on the incorporation of gold nanoparticles (Au NPs) into our previously synthesized mesoporous titania thin films consisting of titania nanopillars and inverse mesospace (C. W. Wu, T. Ohsuna, M. Kuwabara and K. Kuroda, J. Am. Chem. Soc., 2006, 128, 4544-4545, denoted as MTTFs). Recently, mesoporous titania materials doped with noble metals such as gold have attracted considerable attention because noble metals can enhance the efficiency of mesoporous titania-based devices. In this research, we attempted to use four different reduction methods (i.e., thermal treatment, photo irradiation, liquid immersion, and vapor contacting) to introduce gold nanoparticles (Au NPs) into MTTFs. The synthesized Au@MTTFs were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). We further systematically investigated the formation mechanism of gold nanoparticles on the external and internal surfaces of the MTTFs. With the assistance of a silica sacrificial layer, well-dispersed Au NPs with sizes of 4.1 nm were obtained inside the MTTF by photo irradiation. The synthesized Au@MTTF materials show great potential in various photo-electronic and photo-catalytic applications.

  19. Economic benefits of advanced materials in nuclear power systems

    International Nuclear Information System (INIS)

    Busby, J.T.

    2009-01-01

    A key obstacle to the commercial deployment of advanced fast reactors is the capital cost. There is a perception of higher capital cost for fast reactor systems than advanced light water reactors. However, cost estimates come with a large uncertainty since far fewer fast reactors have been built than light water reactor facilities. Furthermore, the large variability of industrial cost estimates complicates accurate comparisons. Reductions in capital cost can result from design simplifications, new technologies that allow reduced capital costs, and simulation techniques that help optimize system design. It is plausible that improved materials will provide opportunities for both simplified design and reduced capital cost. Advanced materials may also allow improved safety and longer component lifetimes. This work examines the potential impact of advanced materials on the capital investment cost of fast nuclear reactors.

  20. Synthesis of Hydrophobic Mesoporous Material MFS and Its Adsorption Properties of Water Vapor

    Directory of Open Access Journals (Sweden)

    Guotao Zhao

    2014-01-01

    Full Text Available Fluorine-containing hydrophobic mesoporous material (MFS with high surface area is successfully synthesized with hydrothermal synthesis method by using a perfluorinated surfactant SURFLON S-386 template. The adsorption properties of water vapor on the synthesized MFS are also investigated by using gravimetric method. Results show that SEM image of the MFS depicted roundish morphology with the average crystal size of 1-2 μm. The BET surface area and total pore volume of the MFS are 865.4 m2 g−1 and 0.74 cm3 g−1 with a narrow pore size distribution at 4.9 nm. The amount of water vapor on the MFS is about 0.41 mmol g−1 at 303 K, which is only 52.6% and 55.4% of MCM-41 and SBA-15 under the similar conditions, separately. The isosteric adsorption heat of water on the MFS is gradually about 27.0–19.8 kJ mol−1, which decreases as the absorbed water vapor amount increases. The value is much smaller than that on MCM-41 and SBA-15. Therefore, the MFS shows more hydrophobic surface properties than the MCM-41 and SBA-15. It may be a kind of good candidate for adsorption of large molecule and catalyst carrier with high moisture resistance.

  1. Facile fabrication of ordered mesoporous graphitic carbon nitride for RhB photocatalytic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Lei; Zhang, Anfeng [State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Janik, Michael J. [EMS Energy Institute, PSU-DUT Joint Center for Energy Research and Department of Energy & Mineral Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Li, Keyan [State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Song, Chunshan [State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); EMS Energy Institute, PSU-DUT Joint Center for Energy Research and Department of Energy & Mineral Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Guo, Xinwen, E-mail: guoxw@dlut.edu.cn [State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China)

    2017-02-28

    Highlights: • Ordered mesoporous graph