WorldWideScience

Sample records for advanced mathematical models

  1. Advanced mathematics

    CERN Document Server

    Gupta, CB; Kumar, V

    2009-01-01

    About the Book: This book `Advanced Mathematics` is primarily designed for B.Tech., IV Semester (EE and EC branch) students of Rajasthan Technical University. The subject matter is discussed in a lucid manner. The discussion is covered in five units: Unit I: deals with Numerical Analysis, Unit-II: gives different aspects of Numerical Analysis, Unit-III: Special Function, Unit-IV:Statistics and Probability, Calculus of Variation and Transforms are discussed in Unit V. All the theoretical concepts are explained through solved examples. Besides, a large number of unsolved problems on each top

  2. Copper Oxide Nanoparticles for Advanced Refrigerant Thermophysical Properties: Mathematical Modeling

    Directory of Open Access Journals (Sweden)

    S. A. Fadhilah

    2014-01-01

    Full Text Available In modern days, refrigeration systems are important for industrial and domestic applications. The systems consume more electricity as compared to other appliances. The refrigeration systems have been investigated thoroughly in many ways to reduce the energy consumption. Hence, nanorefrigerant which is one kind of nanofluids has been introduced as a superior properties refrigerant that increased the heat transfer rate in the refrigeration system. Many types of materials could be used as the nanoparticles to be suspended into the conventional refrigerants. In this study, the effect of the suspended copper oxide (CuO nanoparticles into the 1,1,1,2-tetrafluoroethane, R-134a is investigated by using mathematical modeling. The investigation includes the thermal conductivity, dynamic viscosity, and heat transfer rate of the nanorefrigerant in a tube of evaporator. The results show enhanced thermophysical properties of nanorefrigerant compared to the conventional refrigerant. These advanced thermophysical properties increased the heat transfer rate in the tube. The nanorefrigerant could be a potential working fluid to be used in the refrigeration system to increase the heat transfer characteristics and save the energy usage.

  3. Advanced engineering mathematics

    CERN Document Server

    Jeffrey, Alan

    2001-01-01

    Advanced Engineering Mathematics provides comprehensive and contemporary coverage of key mathematical ideas, techniques, and their widespread applications, for students majoring in engineering, computer science, mathematics and physics. Using a wide range of examples throughout the book, Jeffrey illustrates how to construct simple mathematical models, how to apply mathematical reasoning to select a particular solution from a range of possible alternatives, and how to determine which solution has physical significance. Jeffrey includes material that is not found in works of a similar nature, such as the use of the matrix exponential when solving systems of ordinary differential equations. The text provides many detailed, worked examples following the introduction of each new idea, and large problem sets provide both routine practice, and, in many cases, greater challenge and insight for students. Most chapters end with a set of computer projects that require the use of any CAS (such as Maple or Mathematica) th...

  4. Building an advanced climate model: Program plan for the CHAMMP (Computer Hardware, Advanced Mathematics, and Model Physics) Climate Modeling Program

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    The issue of global warming and related climatic changes from increasing concentrations of greenhouse gases in the atmosphere has received prominent attention during the past few years. The Computer Hardware, Advanced Mathematics, and Model Physics (CHAMMP) Climate Modeling Program is designed to contribute directly to this rapid improvement. The goal of the CHAMMP Climate Modeling Program is to develop, verify, and apply a new generation of climate models within a coordinated framework that incorporates the best available scientific and numerical approaches to represent physical, biogeochemical, and ecological processes, that fully utilizes the hardware and software capabilities of new computer architectures, that probes the limits of climate predictability, and finally that can be used to address the challenging problem of understanding the greenhouse climate issue through the ability of the models to simulate time-dependent climatic changes over extended times and with regional resolution.

  5. Nonstandard Analysis Applied to Advanced Undergraduate Mathematics - Infinitesimal Modeling

    OpenAIRE

    Herrmann, Robert A.

    2003-01-01

    This is a Research and Instructional Development Project from the U. S. Naval Academy. In this monograph, the basic methods of nonstandard analysis for n-dimensional Euclidean spaces are presented. Specific rules are deveoped and these methods and rules are applied to rigorous integral and differential modeling. The topics include Robinson infinitesimals, limited and infinite numbers; convergence theory, continuity, *-transfer, internal definition, hyprefinite summation, Riemann-Stieltjes int...

  6. Mathematical modelling

    DEFF Research Database (Denmark)

    Blomhøj, Morten

    2004-01-01

    Developing competences for setting up, analysing and criticising mathematical models are normally seen as relevant only from and above upper secondary level. The general belief among teachers is that modelling activities presuppose conceptual understanding of the mathematics involved. Mathematical...... modelling, however, can be seen as a practice of teaching that place the relation between real life and mathematics into the centre of teaching and learning mathematics, and this is relevant at all levels. Modelling activities may motivate the learning process and help the learner to establish cognitive...... framework, which has been used for designing modelling courses, analysing students’ modelling activities, identifying learning obstacles in the modelling process and to guide the teachers interaction with the students during their work. This will be illustrated with an example from a developmental project...

  7. Multiple Perspective Approach for the Development of Information Systems Based on Advanced Mathematical Models

    DEFF Research Database (Denmark)

    Carugati, Andrea

    This dissertation presents the results of a three-year long case study of an information systems development project where a scheduling and control system was developed for a manufacturing company. The project goal was to test the feasibility of a new technology called advanced mathematical model....... Keywords: Information systems development, information systems development methodology, advanced mathematical models, loosely coupled systems, distributed systems, knowledge exchange, boundary objects, systems theory, multiple perspectives, weltanschauung....... low percentage of successes. The review of the literature on information systems development (ISD) methodologies shows that most methodologies are proposed for general validity and the boundary conditions of their use are either not clear or not specified. In this dissertation I have investigated...... the boundary conditions of the most commonly used methodologies to understand whether they could be used for the development of systems based on (1) AMM and where the development organization is both (2) loosely coupled and (3) distributed. The boundary conditions identified for existing methodologies show...

  8. Mathematical modelling

    CERN Document Server

    2016-01-01

    This book provides a thorough introduction to the challenge of applying mathematics in real-world scenarios. Modelling tasks rarely involve well-defined categories, and they often require multidisciplinary input from mathematics, physics, computer sciences, or engineering. In keeping with this spirit of modelling, the book includes a wealth of cross-references between the chapters and frequently points to the real-world context. The book combines classical approaches to modelling with novel areas such as soft computing methods, inverse problems, and model uncertainty. Attention is also paid to the interaction between models, data and the use of mathematical software. The reader will find a broad selection of theoretical tools for practicing industrial mathematics, including the analysis of continuum models, probabilistic and discrete phenomena, and asymptotic and sensitivity analysis.

  9. Multi-band effective mass approximations advanced mathematical models and numerical techniques

    CERN Document Server

    Koprucki, Thomas

    2014-01-01

    This book addresses several mathematical models from the most relevant class of kp-Schrödinger systems. Both mathematical models and state-of-the-art numerical methods for adequately solving the arising systems of differential equations are presented. The operational principle of modern semiconductor nano structures, such as quantum wells, quantum wires or quantum dots, relies on quantum mechanical effects. The goal of numerical simulations using quantum mechanical models in the development of semiconductor nano structures is threefold: First they are needed for a deeper understanding of experimental data and of the operational principle. Secondly, they allow us to predict and optimize in advance the qualitative and quantitative properties of new devices in order to minimize the number of prototypes needed. Semiconductor nano structures are embedded as an active region in semiconductor devices. Thirdly and finally, the results of quantum mechanical simulations of semiconductor nano structures can be used wit...

  10. Advances in biomolecular surface meshing and its applications to mathematical modeling

    Institute of Scientific and Technical Information of China (English)

    CHEN MinXin; LU BenZhuo

    2013-01-01

    In the field of molecular modeling and simulation,molecular surface meshes are necessary for many problems,such as molecular structure visualization and analysis,docking problem and implicit solvent modeling and simulation.Recently,with the developments of advanced mathematical modeling in the field of implicit solvent modeling and simulation,providing surface meshes with good qualities efficiently for large real biomolecular systems becomes an urgent issue beyond its traditional purposes for visualization and geometry analyses for molecular structure.In this review,we summarize recent works on this issue.First,various definitions of molecular surfaces and corresponding meshing methods are introduced.Second,our recent meshing tool,TMSmesh,and its performances are presented.Finally,we show the applications of the molecular surface mesh in implicit solvent modeling and simulations using boundary element method (BEM) and finite element method (FEM).

  11. NATO Advanced Research Workshop on The Design of Mathematical Modelling Courses for Engineering Education

    CERN Document Server

    Moscardini, Alfredo

    1994-01-01

    As the role of the modern engineer is markedly different from that of even a decade ago, the theme of engineering mathematics educa­ tion (EME) is an important one. The need for mathematical model­ ling (MM) courses and consideration of the educational impact of computer-based technology environments merit special attention. This book contains the proceeding of the NATO Advanced Research Workshop held on this theme in July 1993. We have left the industrial age behind and have entered the in­ formation age. Computers and other emerging technologies are penetrating society in depth and gaining a strong influence in de­ termining how in future society will be organised, while the rapid change of information requires a more qualified work force. This work force is vital to high technology and economic competitive­ ness in many industrialised countries throughout the world. Within this framework, the quality of EME has become an issue. It is expected that the content of mathematics courses taught in schools o...

  12. Advances in mathematical economics

    CERN Document Server

    Yamazaki, Akira

    2006-01-01

    A lot of economic problems can formulated as constrained optimizations and equilibration of their solutions. Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories. The series is designed to bring together those mathematicians who were seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking for effective mathematical tools for their researchers.

  13. Advances in mathematical economics

    CERN Document Server

    Maruyama, Toru

    2015-01-01

    The series is designed to bring together those mathematicians who are seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking effective mathematical tools for their research. A lot of economic problems can be formulated as constrained optimizations and equilibration of their solutions. Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories.

  14. Advances in mathematical economics

    CERN Document Server

    Yamazaki, Akira

    2006-01-01

    A lot of economic problems can formulated as constrained optimizations and equilibration of their solutions.Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories. The series is designed to bring together those mathematicians who were seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking for effective mathematical tools for their researchers.

  15. Advances in mathematical economics

    CERN Document Server

    Maruyama, Toru

    2014-01-01

    A lot of economic problems can be formulated as constrained optimizations and equilibration of their solutions. Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories. The series is designed to bring together those mathematicians who are seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking effective mathematical tools for their research.

  16. Advances in mathematical economics

    CERN Document Server

    Maruyama, Toru

    2016-01-01

    The series is designed to bring together those mathematicians who are seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking effective mathematical tools for their research. A lot of economic problems can be formulated as constrained optimizations and equilibration of their solutions. Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories.

  17. A bridge to advanced mathematics

    CERN Document Server

    Sentilles, Dennis

    2011-01-01

    This helpful workbook-style ""bridge"" book introduces students to the foundations of advanced mathematics, spanning the gap between a practically oriented calculus sequence and subsequent courses in algebra and analysis with a more theoretical slant. Part 1 focuses on logic and number systems, providing the most basic tools, examples, and motivation for the manner, method, and concerns of higher mathematics. Part 2 covers sets, relations, functions, infinite sets, and mathematical proofs and reasoning. Author Dennis Sentilles also discusses the history and development of mathematics as well a

  18. Advances in mathematical economics

    CERN Document Server

    Yamazaki, Akira

    2005-01-01

    A lot of economic problems can be formulated as constrained optimizations and equilibration of their solutions. Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories. The series is designed to bring together those mathematicians who are seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking effective mathematical tools for their research. The editorial board of this series comprises the following prominent economists and mathematicians: Managing Editors: S. Kusuoka (Univ. Tokyo), T. Maruyama (Keio Univ.). Editors: R. Anderson (U.C. Berkeley), C. Castaing (Univ. Montpellier), F.H. Clarke (Univ. Lyon I), G. Debreu (U.C. Berkeley), E. Dierker (Univ. Vienna), D. Duffie (Stanford Univ.), L.C. Evans (U.C. Berkeley), T. Fujimoto (Okayama Univ.), J.-M. Grandmont...

  19. Computer Hardware, Advanced Mathematics and Model Physics pilot project final report

    International Nuclear Information System (INIS)

    The Computer Hardware, Advanced Mathematics and Model Physics (CHAMMP) Program was launched in January, 1990. A principal objective of the program has been to utilize the emerging capabilities of massively parallel scientific computers in the challenge of regional scale predictions of decade-to-century climate change. CHAMMP has already demonstrated the feasibility of achieving a 10,000 fold increase in computational throughput for climate modeling in this decade. What we have also recognized, however, is the need for new algorithms and computer software to capitalize on the radically new computing architectures. This report describes the pilot CHAMMP projects at the DOE National Laboratories and the National Center for Atmospheric Research (NCAR). The pilot projects were selected to identify the principal challenges to CHAMMP and to entrain new scientific computing expertise. The success of some of these projects has aided in the definition of the CHAMMP scientific plan. Many of the papers in this report have been or will be submitted for publication in the open literature. Readers are urged to consult with the authors directly for questions or comments about their papers

  20. Advances and challenges in predicting the impact of lymphatic filariasis elimination programmes by mathematical modelling.

    NARCIS (Netherlands)

    W.A. Stolk (Wilma); S.J. de Vlas (Sake); J.D.F. Habbema (Dik)

    2006-01-01

    textabstractMathematical simulation models for transmission and control of lymphatic filariasis are useful tools for studying the prospects of lymphatic filariasis elimination. Two simulation models are currently being used. The first, EPIFIL, is a population-based, deterministic model that simulate

  1. How can mathematical models advance tuberculosis control in high HIV prevalence settings?

    OpenAIRE

    Houben, RM; Dowdy, DW; Vassall, A.; Cohen, T; Nicol, MP; Granich, RM; Shea, JE; Eckhoff, P.; Dye, C.; Kimerling, ME; White, RG; TB MAC TB-HIV meeting participants

    2014-01-01

    Existing approaches to tuberculosis (TB) control have been no more than partially successful in areas with high human immunodeficiency virus (HIV) prevalence. In the context of increasingly constrained resources, mathematical modelling can augment understanding and support policy for implementing those strategies that are most likely to bring public health and economic benefits. In this paper, we present an overview of past and recent contributions of TB modelling in this key area, and sugges...

  2. Current advances in mathematical modeling of anti-cancer drug penetration into tumor tissues

    Directory of Open Access Journals (Sweden)

    MunJu eKim

    2013-11-01

    Full Text Available Delivery of anti-cancer drugs to tumor tissues, including their interstitial transport and cellular uptake, is a complex process involving various biochemical, mechanical, and biophysical factors. Mathematical modeling provides a means through which to understand this complexity better, as well as to examine interactions between contributing components in a systematic way via computational simulations and quantitative analyses. In this review, we present the current state of mathematical modeling approaches that address phenomena related to drug delivery. We describe how various types of models were used to predict spatio-temporal distributions of drugs within the tumor tissue, to simulate different ways to overcome barriers to drug transport, or to optimize treatment schedules. Finally, we discuss how integration of mathematical modeling with experimental or clinical data can provide better tools to understand the drug delivery process, in particular to examine the specific tissue- or compound-related factors that limit drug penetration through tumors. Such tools will be important in designing new chemotherapy targets and optimal treatment strategies, as well as in developing non-invasive diagnosis to monitor treatment response and detect tumor recurrence.

  3. Simulation of Electric Faults in Doubly-Fed Induction Generators Employing Advanced Mathematical Modelling

    DEFF Research Database (Denmark)

    Martens, Sebastian; Mijatovic, Nenad; Holbøll, Joachim;

    2015-01-01

    in many areas of electrical machine analysis. However, for fault investigations, the phase-coordinate representation has been found more suitable. This paper presents a mathematical model in phase coordinates of the DFIG with two parallel windings per rotor phase. The model has been implemented in Matlab...... and its properties in context of fault simulations and investigations has been investigated. Some of the most common faults have been simulated, namely broken rotor bars or windings, dynamic eccentricities and stator phase winding short circuits. These fault conditions propagate to the stator current...

  4. Annual Perspectives in Mathematics Education 2016: Mathematical Modeling and Modeling Mathematics

    Science.gov (United States)

    Hirsch, Christian R., Ed.; McDuffie, Amy Roth, Ed.

    2016-01-01

    Mathematical modeling plays an increasingly important role both in real-life applications--in engineering, business, the social sciences, climate study, advanced design, and more--and within mathematics education itself. This 2016 volume of "Annual Perspectives in Mathematics Education" ("APME") focuses on this key topic from a…

  5. Advances in mechanics and mathematics

    CERN Document Server

    Ogden, Ray

    2002-01-01

    Advances in Mechanics and Mathematics (AMMA) is intended to bridge the gap by providing multi-disciplinary publications. This volume, AMMA 2002, includes two parts with three articles by four subject experts. Part 1 deals with nonsmooth static and dynamic systems. A systematic mathematical theory for multibody dynamics with unilateral and frictional constraints and a brief introduction to hemivariational inequalities together with some new developments in nonsmooth semi-linear elliptic boundary value problems are presented. Part 2 provides a comprehensive introduction and the latest research on dendritic growth in fluid mechanics, one of the most profound and fundamental subjects in the area of interfacial pattern formation, a commonly observed phenomenon in crystal growth and solidification processes.

  6. Mathematical Modelling for EOQ Inventory System with Advance Payment and Fuzzy Parameters

    Directory of Open Access Journals (Sweden)

    S Priyan

    2014-11-01

    Full Text Available This study considers an EOQ inventory model with advance payment policy in a fuzzy situation by employing two types of fuzzy numbers that are trapezoidal and triangular. Two fuzzy models are developed here. In the first model the cost parameters are fuzzified, but the demand rate is treated as crisp constant. In the second model, the demand rate is fuzzified but the cost parameters are treated as crisp constants. For each fuzzy model, we use signed distance method to defuzzify the fuzzy total cost and obtain an estimate of the total cost in the fuzzy sense. Numerical example is provided to ascertain the sensitiveness in the decision variables about fuzziness in the components. In practical situations, costs may be dependent on some foreign monetary unit. In such a case, due to a change in the exchange rates, the costs are often not known precisely. The first model can be used in this situation. In actual applications, demand is uncertain and must be predicted. Accordingly, the decision maker faces a fuzzy environment rather than a stochastic one in these cases. The second model can be used in this situation. Moreover, the proposed models can be expended for imperfect production process.

  7. Teaching Mathematical Modeling in Mathematics Education

    Science.gov (United States)

    Saxena, Ritu; Shrivastava, Keerty; Bhardwaj, Ramakant

    2016-01-01

    Mathematics is not only a subject but it is also a language consisting of many different symbols and relations. Taught as a compulsory subject up the 10th class, students are then able to choose whether or not to study mathematics as a main subject. The present paper discusses mathematical modeling in mathematics education. The article provides…

  8. Continuum mechanics the birthplace of mathematical models

    CERN Document Server

    Allen, Myron B

    2015-01-01

    Continuum mechanics is a standard course in many graduate programs in engineering and applied mathematics as it provides the foundations for the various differential equations and mathematical models that are encountered in fluid mechanics, solid mechanics, and heat transfer.  This book successfully makes the topic more accessible to advanced undergraduate mathematics majors by aligning the mathematical notation and language with related courses in multivariable calculus, linear algebra, and differential equations; making connections with other areas of applied mathematics where parial differe

  9. Macroscopic models for vehicular flows and crowd dynamics theory and applications classical and non–classical advanced mathematics for real life applications

    CERN Document Server

    Rosini, Massimiliano Daniele

    2013-01-01

    This monograph  presents a systematic treatment of the theory for hyperbolic conservation laws and their applications to vehicular traffics and crowd dynamics. In the first part of the book, the author presents very basic considerations and gradually introduces the mathematical tools necessary to describe and understand the mathematical models developed in the following parts focusing on vehicular and pedestrian traffic. The book is a self-contained valuable resource for advanced courses in mathematical modeling, physics and civil engineering. A number of examples and figures facilitate a better understanding of the underlying concepts and motivations for the students. Important new techniques are presented, in particular the wave front tracking algorithm, the operator splitting approach, the non-classical theory of conservation laws and the constrained problems. This book is the first to present a comprehensive account of these fundamental new mathematical advances.  

  10. Developing mathematical modelling competence

    DEFF Research Database (Denmark)

    Blomhøj, Morten; Jensen, Tomas Højgaard

    2003-01-01

    In this paper we introduce the concept of mathematical modelling competence, by which we mean being able to carry through a whole mathematical modelling process in a certain context. Analysing the structure of this process, six sub-competences are identified. Mathematical modelling competence...... cannot be reduced to these six sub-competences, but they are necessary elements in the development of mathematical modelling competence. Experience from the development of a modelling course is used to illustrate how the different nature of the sub-competences can be used as a tool for finding...... the balance between different kinds of activities in a particular educational setting. Obstacles of social, cognitive and affective nature for the students' development of mathematical modelling competence are reported and discussed in relation to the sub-competences....

  11. Mathematical modelling techniques

    CERN Document Server

    Aris, Rutherford

    1995-01-01

    ""Engaging, elegantly written."" - Applied Mathematical ModellingMathematical modelling is a highly useful methodology designed to enable mathematicians, physicists and other scientists to formulate equations from a given nonmathematical situation. In this elegantly written volume, a distinguished theoretical chemist and engineer sets down helpful rules not only for setting up models but also for solving the mathematical problems they pose and for evaluating models.The author begins with a discussion of the term ""model,"" followed by clearly presented examples of the different types of mode

  12. Computational experiment approach to advanced secondary mathematics curriculum

    CERN Document Server

    Abramovich, Sergei

    2014-01-01

    This book promotes the experimental mathematics approach in the context of secondary mathematics curriculum by exploring mathematical models depending on parameters that were typically considered advanced in the pre-digital education era. This approach, by drawing on the power of computers to perform numerical computations and graphical constructions, stimulates formal learning of mathematics through making sense of a computational experiment. It allows one (in the spirit of Freudenthal) to bridge serious mathematical content and contemporary teaching practice. In other words, the notion of teaching experiment can be extended to include a true mathematical experiment. When used appropriately, the approach creates conditions for collateral learning (in the spirit of Dewey) to occur including the development of skills important for engineering applications of mathematics. In the context of a mathematics teacher education program, this book addresses a call for the preparation of teachers capable of utilizing mo...

  13. Reassessing the Economic Value of Advanced Level Mathematics

    Science.gov (United States)

    Adkins, Michael; Noyes, Andrew

    2016-01-01

    In the late 1990s, the economic return to Advanced level (A-level) mathematics was examined. The analysis was based upon a series of log-linear models of earnings in the 1958 National Child Development Survey (NCDS) and the National Survey of 1980 Graduates and Diplomates. The core finding was that A-level mathematics had a unique earnings premium…

  14. Applied impulsive mathematical models

    CERN Document Server

    Stamova, Ivanka

    2016-01-01

    Using the theory of impulsive differential equations, this book focuses on mathematical models which reflect current research in biology, population dynamics, neural networks and economics. The authors provide the basic background from the fundamental theory and give a systematic exposition of recent results related to the qualitative analysis of impulsive mathematical models. Consisting of six chapters, the book presents many applicable techniques, making them available in a single source easily accessible to researchers interested in mathematical models and their applications. Serving as a valuable reference, this text is addressed to a wide audience of professionals, including mathematicians, applied researchers and practitioners.

  15. Gestures and Insight in Advanced Mathematical Thinking

    Science.gov (United States)

    Yoon, Caroline; Thomas, Michael O. J.; Dreyfus, Tommy

    2011-01-01

    What role do gestures play in advanced mathematical thinking? We argue that the role of gestures goes beyond merely communicating thought and supporting understanding--in some cases, gestures can help generate new mathematical insights. Gestures feature prominently in a case study of two participants working on a sequence of calculus activities.…

  16. Mathematical modeling of Echinococcus multilocularis transmission

    OpenAIRE

    Ishikawa, Hirofumi

    2008-01-01

    A mathematical model for the transmission cycle of Echinococcus multilocularis would be useful for estimating its prevalence, and the model simulation can be instrumental in designing various control strategies. This review focuses on the epidemiological factors in the E. multilocularis transmission cycle and the recent advances of mathematical models for E. multilocularis transmission.

  17. Mathematics for natural scientists II advanced methods

    CERN Document Server

    Kantorovich, Lev

    2016-01-01

    This book covers the advanced mathematical techniques useful for physics and engineering students, presented in a form accessible to physics students, avoiding precise mathematical jargon and laborious proofs. Instead, all proofs are given in a simplified form that is clear and convincing for a physicist. Examples, where appropriate, are given from physics contexts. Both solved and unsolved problems are provided in each chapter. Mathematics for Natural Scientists II: Advanced Methods is the second of two volumes. It follows the first volume on Fundamentals and Basics.

  18. International Conference on Advances in Applied Mathematics

    CERN Document Server

    Hammami, Mohamed; Masmoudi, Afif

    2015-01-01

    This contributed volume presents some recent theoretical advances in mathematics and its applications in various areas of science and technology.   Written by internationally recognized scientists and researchers, the chapters in this book are based on talks given at the International Conference on Advances in Applied Mathematics (ICAAM), which took place December 16-19, 2013, in Hammamet, Tunisia.  Topics discussed at the conference included spectral theory, operator theory, optimization, numerical analysis, ordinary and partial differential equations, dynamical systems, control theory, probability, and statistics.  These proceedings aim to foster and develop further growth in all areas of applied mathematics.

  19. Mathematical models of morphogenesis

    Directory of Open Access Journals (Sweden)

    Dilão Rui

    2015-01-01

    Full Text Available Morphogenesis is the ensemble of phenomena that generates the form and shape of organisms. Organisms are classified according to some of its structural characteristics, to its metabolism and to its form. In particular, the empirical classification associated with the phylum concept is related with the form and shape of organisms. In the first part of this talk, we introduce the class of mathematical models associated the Turing approach to pattern formation. In the Turing approach, morphogenesis models are described by reaction-diffusion parabolic partial differential equations. Based on this formalism, we present a mathematical model describing the first two hours of development of the fruit fly Drosophila. In the second part of this talk, we present results on Pareto optimality to calibrate and validate mathematical models.

  20. Mathematical modelling of metabolism

    DEFF Research Database (Denmark)

    Gombert, Andreas Karoly; Nielsen, Jens

    2000-01-01

    Mathematical models of the cellular metabolism have a special interest within biotechnology. Many different kinds of commercially important products are derived from the cell factory, and metabolic engineering can be applied to improve existing production processes, as well as to make new processes...... available. Both stoichiometric and kinetic models have been used to investigate the metabolism, which has resulted in defining the optimal fermentation conditions, as well as in directing the genetic changes to be introduced in order to obtain a good producer strain or cell line. With the increasing...... availability of genomic information and powerful analytical techniques, mathematical models also serve as a tool for understanding the cellular metabolism and physiology....

  1. Principles of mathematical modeling

    CERN Document Server

    Dym, Clive

    2004-01-01

    Science and engineering students depend heavily on concepts of mathematical modeling. In an age where almost everything is done on a computer, author Clive Dym believes that students need to understand and "own" the underlying mathematics that computers are doing on their behalf. His goal for Principles of Mathematical Modeling, Second Edition, is to engage the student reader in developing a foundational understanding of the subject that will serve them well into their careers. The first half of the book begins with a clearly defined set of modeling principles, and then introduces a set of foundational tools including dimensional analysis, scaling techniques, and approximation and validation techniques. The second half demonstrates the latest applications for these tools to a broad variety of subjects, including exponential growth and decay in fields ranging from biology to economics, traffic flow, free and forced vibration of mechanical and other systems, and optimization problems in biology, structures, an...

  2. Mathematical modeling of biological processes

    CERN Document Server

    Friedman, Avner

    2014-01-01

    This book on mathematical modeling of biological processes includes a wide selection of biological topics that demonstrate the power of mathematics and computational codes in setting up biological processes with a rigorous and predictive framework. Topics include: enzyme dynamics, spread of disease, harvesting bacteria, competition among live species, neuronal oscillations, transport of neurofilaments in axon, cancer and cancer therapy, and granulomas. Complete with a description of the biological background and biological question that requires the use of mathematics, this book is developed for graduate students and advanced undergraduate students with only basic knowledge of ordinary differential equations and partial differential equations; background in biology is not required. Students will gain knowledge on how to program with MATLAB without previous programming experience and how to use codes in order to test biological hypothesis.

  3. Concepts of mathematical modeling

    CERN Document Server

    Meyer, Walter J

    2004-01-01

    Appropriate for undergraduate and graduate students, this text features independent sections that illustrate the most important principles of mathematical modeling, a variety of applications, and classic models. Students with a solid background in calculus and some knowledge of probability and matrix theory will find the material entirely accessible. The range of subjects includes topics from the physical, biological, and social sciences, as well as those of operations research. Discussions cover related mathematical tools and the historical eras from which the applications are drawn. Each sec

  4. Mathematical modeling in biomedical imaging

    CERN Document Server

    2012-01-01

    This volume reports on recent mathematical and computational advances in optical, ultrasound, and opto-acoustic tomographies. It outlines the state-of-the-art and future directions in these fields and provides readers with the most recently developed mathematical and computational tools.  It is particularly suitable for researchers and graduate students in applied mathematics and biomedical engineering.

  5. Mathematical models of hysteresis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    The ongoing research has largely been focused on the development of mathematical models of hysteretic nonlinearities with nonlocal memories. The distinct feature of these nonlinearities is that their current states depend on past histories of input variations. It turns out that memories of hysteretic nonlinearities are quite selective. Indeed, experiments show that only some past input extrema (not the entire input variations) leave their marks upon future states of hysteretic nonlinearities. Thus special mathematical tools are needed in order to describe nonlocal selective memories of hysteretic nonlinearities. The origin of such tools can be traced back to the landmark paper of Preisach. Their research has been primarily concerned with Preisach-type models of hysteresis. All these models have a common generic feature; they are constructed as superpositions of simplest hysteretic nonlinearities-rectangular loops. During the past four years, the study has been by and large centered around the following topics: (1) further development of Scalar and vector Preisach-type models of hysteresis; (2) experimental testing of Preisach-type models of hysteresis; (3) development of new models for viscosity (aftereffect) in hysteretic systems; (4) development of mathematical models for superconducting hysteresis in the case of gradual resistive transitions; (5) software implementation of Preisach-type models of hysteresis; and (6) development of new ideas which have emerged in the course of the research work. The author briefly describes the main scientific results obtained in the areas outlined above.

  6. Mathematical modeling in psychological researches

    Directory of Open Access Journals (Sweden)

    Aleksandra Zyolko

    2013-04-01

    Full Text Available The author considers the nature of mathematical modeling and its significance in psychological researches. The author distinguishes the types of mathematical models: deterministic, stochastic models and synergetic models. The system approach is proposed as an instrument of implementation of mathematical modelling in psychological research.

  7. Finite mathematics models and applications

    CERN Document Server

    Morris, Carla C

    2015-01-01

    Features step-by-step examples based on actual data and connects fundamental mathematical modeling skills and decision making concepts to everyday applicability Featuring key linear programming, matrix, and probability concepts, Finite Mathematics: Models and Applications emphasizes cross-disciplinary applications that relate mathematics to everyday life. The book provides a unique combination of practical mathematical applications to illustrate the wide use of mathematics in fields ranging from business, economics, finance, management, operations research, and the life and social sciences.

  8. Authenticity of Mathematical Modeling

    Science.gov (United States)

    Tran, Dung; Dougherty, Barbara J.

    2014-01-01

    Some students leave high school never quite sure of the relevancy of the mathematics they have learned. They fail to see links between school mathematics and the mathematics of everyday life that requires thoughtful decision making and often complex problem solving. Is it possible to bridge the gap between school mathematics and the mathematics in…

  9. Reassessing the economic value of advanced level mathematics

    OpenAIRE

    Adkins, Michael; Noyes, Andrew

    2016-01-01

    In the late 1990s, the economic return to Advanced level (A-level) mathematics was examined. The analysis was based upon a series of log-linear models of earnings in the 1958 National Child Development Survey (NCDS) and the National Survey of 1980 Graduates and Diplomates. The core finding was that A-level mathematics had a unique earnings premium of 7-10% at age 33. In recent years, this finding has contributed to the government’s agenda of increasing participation in post-16 study of advanc...

  10. Mathematical Modelling in European Education

    Science.gov (United States)

    Ferri, Rita Borromeo

    2013-01-01

    Teaching and learning of mathematical modelling has become a key competence within school curricula and educational standards in many countries of the world. The term mathematical modelling, its meaning, and how it can be implemented in mathematics lessons have been intensively discussed during several Conferences of the European Society for…

  11. Mathematic model of three-phase induction machine connected to advanced inverter for traction system for electric trolley

    Directory of Open Access Journals (Sweden)

    LIVIU S. BOCÎI

    2013-06-01

    Full Text Available This paper establishes a mathematical model of induction machine connected to a frequency inverter necessary to adjust the electric motor drive. The mathematical model based on the Park's theory allows the analysis of the whole spectrum (electric car – frequency inverter to drive the electric trolley bus made on ASTRA Bus Arad (Romania. To remove higher order harmonics, the PWM waveform of supply voltage is used, set in the general case. Operating characteristics of electric motor drive are set to sub-nominal frequency (f Bele 2007.Este documento estabelece um modelo matemático de máquina de indução conectado a um inversor de frequência necessário para ajustar o motor de acionamento elétrico. O modelo matemático baseado na Teoria de Park permite a análise de todo o espectro (carro elétrico com inversor de frequência para dirigir o ônibus elétrico feito em ASTRA Bus Arad (Romênia. Para remover harmônicas de ordem mais alta, a forma de onda da tensão de alimentação PWM é utilizado, definido no caso geral. Características de funcionamento do motor de acionamento elétrico são definidas para frequência sub-nominal (f

  12. Research on Lesson Planing Model of Advanced Mathematics%高等数学备课模式的研究

    Institute of Scientific and Technical Information of China (English)

    邱云兰

    2014-01-01

    Lesson planning is an endless re-creation proj ect,it needs the grasp of the knowledge and skills,processes and methods,attitudes and values.New curriculum not only challenges the traditional or-ganizational model,but also the lesson planning.Prepareing the lesson planning and grasp the main idea are tne key.In teaching process,there should be included interesting mathematical problems,mathematical col-orful anecdotes and outstanding mathematical conj ecture,which can serve the students a strong desire for knowledge and creativity to explore the unknown mysteries of motivation.%备课是一项无止境的再“创作”工程。备课要把握知识与技能、过程与方法、情感态度与价值观的要求。备教材、备教法、备学生、备学法,对学生学习高等数学(如下简称高数)有较大的影响,影响学生思维、兴趣和素质的提高。将生动有趣的数学名题、多姿多彩的数学轶事、悬而末决的数学猜想、似是而非的数学饽论,巧妙地贯穿在相应的备课环节之中,从而使学生产生对高数学习的浓厚兴趣和创造探索的动力。

  13. Mathematical modeling with multidisciplinary applications

    CERN Document Server

    Yang, Xin-She

    2013-01-01

    Features mathematical modeling techniques and real-world processes with applications in diverse fields Mathematical Modeling with Multidisciplinary Applications details the interdisciplinary nature of mathematical modeling and numerical algorithms. The book combines a variety of applications from diverse fields to illustrate how the methods can be used to model physical processes, design new products, find solutions to challenging problems, and increase competitiveness in international markets. Written by leading scholars and international experts in the field, the

  14. Mathematical Modeling in Mathematics Education: Basic Concepts and Approaches

    Science.gov (United States)

    Erbas, Ayhan Kürsat; Kertil, Mahmut; Çetinkaya, Bülent; Çakiroglu, Erdinç; Alacaci, Cengiz; Bas, Sinem

    2014-01-01

    Mathematical modeling and its role in mathematics education have been receiving increasing attention in Turkey, as in many other countries. The growing body of literature on this topic reveals a variety of approaches to mathematical modeling and related concepts, along with differing perspectives on the use of mathematical modeling in teaching and…

  15. Mathematical models in biological discovery

    CERN Document Server

    Walter, Charles

    1977-01-01

    When I was asked to help organize an American Association for the Advancement of Science symposium about how mathematical models have con­ tributed to biology, I agreed immediately. The subject is of immense importance and wide-spread interest. However, too often it is discussed in biologically sterile environments by "mutual admiration society" groups of "theoreticians", many of whom have never seen, and most of whom have never done, an original scientific experiment with the biolog­ ical materials they attempt to describe in abstract (and often prejudiced) terms. The opportunity to address the topic during an annual meeting of the AAAS was irresistable. In order to try to maintain the integrity ;,f the original intent of the symposium, it was entitled, "Contributions of Mathematical Models to Biological Discovery". This symposium was organized by Daniel Solomon and myself, held during the 141st annual meeting of the AAAS in New York during January, 1975, sponsored by sections G and N (Biological and Medic...

  16. Mathematical Models for Elastic Structures

    Science.gov (United States)

    Villaggio, Piero

    1997-10-01

    During the seventeenth century, several useful theories of elastic structures emerged, with applications to civil and mechanical engineering problems. Recent and improved mathematical tools have extended applications into new areas such as mathematical physics, geomechanics, and biomechanics. This book offers a critically filtered collection of the most significant theories dealing with elastic slender bodies. It includes mathematical models involving elastic structures that are used to solve practical problems with particular emphasis on nonlinear problems.

  17. Mathematical Model for Hit Phenomena

    CERN Document Server

    Ishii, Akira; Hayashi, Takefumi; Matsuda, Naoya; Nakagawa, Takeshi; Arakaki, Hisashi; Yoshida, Narihiko

    2010-01-01

    The mathematical model for hit phenomena in entertainments is presented as a nonlinear, dynamical and non-equilibrium phenomena. The purchase intention for each person is introduced and direct and indirect communications are expressed as two-body and three-body interaction in our model. The mathematical model is expressed as coupled nonlinear differential equations. The important factor in the model is the decay time of rumor for the hit. The calculated results agree very well with revenues of recent 25 movies.

  18. An introduction to mathematical modeling

    CERN Document Server

    Bender, Edward A

    2000-01-01

    Employing a practical, ""learn by doing"" approach, this first-rate text fosters the development of the skills beyond the pure mathematics needed to set up and manipulate mathematical models. The author draws on a diversity of fields - including science, engineering, and operations research - to provide over 100 reality-based examples. Students learn from the examples by applying mathematical methods to formulate, analyze, and criticize models. Extensive documentation, consisting of over 150 references, supplements the models, encouraging further research on models of particular interest. The

  19. Advanced mathematics for engineers and scientists

    CERN Document Server

    DuChateau, Paul

    2012-01-01

    This book can be used as either a primary text or a supplemental reference for courses in applied mathematics. Its core chapters are devoted to linear algebra, calculus, and ordinary differential equations. Additional topics include partial differential equations and approximation methods. Each chapter features an ample selection of solved problems. These problems were chosen to illustrate not only how to solve various algebraic and differential equations but also how to interpret the solutions in order to gain insight into the behavior of the system modeled by the equation. In addition to th

  20. Mathematical competencies and the role of mathematics in physics education: A trend analysis of TIMSS Advanced 1995 and 2008

    Directory of Open Access Journals (Sweden)

    Trude Nilsen

    2013-10-01

    Full Text Available As students advance in their learning of physics over the course of their education, the requirement of mathematical applications in physics-related tasks increases, especially so in upper secondary school and in higher education. Yet there is little empirical work (particularly large-scale or longitudinal on the application of mathematics in physics education compared with the research related to the conceptual knowledge of physics. In order to clarify the nature of mathematics in physics education, we developed a theoretical framework for mathematical competencies pertinent to various physics tasks based on theoretical frameworks from mathematics and physics education. We used this synthesis of frameworks as a basis to create a model for physics competence. The framework also served as a tool for analyzing and categorizing trend items from the international large-scale survey, TIMSS Advanced 1995 and 2008. TIMSS Advanced assessed students in upper secondary school with special preparation in advanced physics and mathematics. We then investigated the changes in achievements on these categorized items across time for nations who participated in both surveys. The results from our analysis indicate that students whose overall physics achievement declined struggled the most with items requiring mathematics, especially items requiring them to handle symbols, such as manipulating equations. This finding suggests the importance of collaboration between mathematics and physics education as well as the importance of traditional algebra for physics education.

  1. Teacher education for Mathematical Literacy: A modelling approach

    Directory of Open Access Journals (Sweden)

    Bruce Brown

    2006-10-01

    Full Text Available The introduction of Mathematical Literacy into the Further Education and Training (FET curriculum in South Africa has brought with it formidable challenges to teacher education in this field.  This paper attempts to unravel some pertinent issues arising in the training of Mathematical Literacy teachers, using an approach based on mathematical modelling. It does this by discussing the design and implementation of an ACE(ML, an Advanced Certificate in Education, specialising in Mathematical Literacy teaching.

  2. Mathematical Models of Waiting Time.

    Science.gov (United States)

    Gordon, Sheldon P.; Gordon, Florence S.

    1990-01-01

    Considered are several mathematical models that can be used to study different waiting situations. Problems involving waiting at a red light, bank, restaurant, and supermarket are discussed. A computer program which may be used with these problems is provided. (CW)

  3. On the Relationships between (Relatively) Advanced Mathematical Knowledge and (Relatively) Advanced Problem-Solving Behaviours

    Science.gov (United States)

    Koichu, Boris

    2010-01-01

    This article discusses an issue of inserting mathematical knowledge within the problem-solving processes. Relatively advanced mathematical knowledge is defined in terms of "three mathematical worlds"; relatively advanced problem-solving behaviours are defined in terms of taxonomies of "proof schemes" and "heuristic behaviours". The relationships…

  4. Mathematics Teachers' Ideas about Mathematical Models: A Diverse Landscape

    Science.gov (United States)

    Bautista, Alfredo; Wilkerson-Jerde, Michelle H.; Tobin, Roger G.; Brizuela, Bárbara M.

    2014-01-01

    This paper describes the ideas that mathematics teachers (grades 5-9) have regarding mathematical models of real-world phenomena, and explores how teachers' ideas differ depending on their educational background. Participants were 56 United States in-service mathematics teachers. We analyzed teachers' written responses to three open-ended…

  5. Mathematical Models of Gene Regulation

    Science.gov (United States)

    Mackey, Michael C.

    2004-03-01

    This talk will focus on examples of mathematical models for the regulation of repressible operons (e.g. the tryptophan operon), inducible operons (e.g. the lactose operon), and the lysis/lysogeny switch in phage λ. These ``simple" gene regulatory elements can display characteristics experimentally of rapid response to perturbations and bistability, and biologically accurate mathematical models capture these aspects of the dynamics. The models, if realistic, are always nonlinear and contain significant time delays due to transcriptional and translational delays that pose substantial problems for the analysis of the possible ranges of dynamics.

  6. Mathematical modelling of membrane separation

    DEFF Research Database (Denmark)

    Vinther, Frank

    This thesis concerns mathematical modelling of membrane separation. The thesis consists of introductory theory on membrane separation, equations of motion, and properties of dextran, which will be the solute species throughout the thesis. Furthermore, the thesis consist of three separate mathemat......This thesis concerns mathematical modelling of membrane separation. The thesis consists of introductory theory on membrane separation, equations of motion, and properties of dextran, which will be the solute species throughout the thesis. Furthermore, the thesis consist of three separate...... mathematical models, each with a different approach to membrane separation. The first model is a statistical model investigating the interplay between solute shape and the probability of entering the membrane. More specific the transition of solute particles from being spherical to becoming more elongated...... and the rejection coefficient. The second model is a stationary model for the flux of solvent and solute in a hollow fibre membrane. In the model we solve the time independent equations for transport of solvent and solute within the hollow fibre. Furthermore, the flux of solute and solvent through the membrane...

  7. Mathematical Modeling: A Bridge to STEM Education

    Science.gov (United States)

    Kertil, Mahmut; Gurel, Cem

    2016-01-01

    The purpose of this study is making a theoretical discussion on the relationship between mathematical modeling and integrated STEM education. First of all, STEM education perspective and the construct of mathematical modeling in mathematics education is introduced. A review of literature is provided on how mathematical modeling literature may…

  8. Conditional Inference and Advanced Mathematical Study: Further Evidence

    Science.gov (United States)

    Inglis, Matthew; Simpson, Adrian

    2009-01-01

    In this paper, we examine the support given for the "theory of formal discipline" by Inglis and Simpson (Educational Studies Mathematics 67:187-204, "2008"). This theory, which is widely accepted by mathematicians and curriculum bodies, suggests that the study of advanced mathematics develops general thinking skills and, in particular, conditional…

  9. All Students Need Advanced Mathematics. Math Works

    Science.gov (United States)

    Achieve, Inc., 2013

    2013-01-01

    This fact sheet explains that to thrive in today's world, all students will need to graduate with very strong math skills. That can only mean one thing: advanced math courses are now essential math courses. Highlights of this paper include: (1) Advanced math equals college success; (2) Advanced math equals career opportunity; and (3) Advanced math…

  10. Mathematics teachers’ ideas about mathematical models: a diverse landscape

    OpenAIRE

    Alfredo Bautista; Wilkerson-Jerde, Michelle H.; Tobin, Roger G.; Brizuela, Bárbara M.

    2014-01-01

    This paper describes the ideas that mathematics teachers (grades 5-9) have regarding mathematical models of real-world phenomena, and explores how teachers??? ideas differ depending on their educational background. Participants were 56 United States in-service mathematics teachers. We analyzed teachers??? written responses to three open-ended questions through content analysis. A varied landscape of ideas was identified. Teachers referred to different entities as constituting models, expresse...

  11. An Assessment Model for Proof Comprehension in Undergraduate Mathematics

    Science.gov (United States)

    Mejia-Ramos, Juan Pablo; Fuller, Evan; Weber, Keith; Rhoads, Kathryn; Samkoff, Aron

    2012-01-01

    Although proof comprehension is fundamental in advanced undergraduate mathematics courses, there has been limited research on what it means to understand a mathematical proof at this level and how such understanding can be assessed. In this paper, we address these issues by presenting a multidimensional model for assessing proof comprehension in…

  12. Effects of Early Acceleration of Students in Mathematics on Taking Advanced Mathematics Coursework in High School

    Science.gov (United States)

    Ma, Xin

    2010-01-01

    Based on data from the Longitudinal Study of American Youth (LSAY), students were classified into high-, middle-, and low-ability students. The effects of early acceleration in mathematics on the most advanced mathematics coursework (precalculus and calculus) in high school were examined in each category. Results showed that although early…

  13. 10th European Conference on Numerical Mathematics and Advanced Applications

    CERN Document Server

    Deparis, Simone; Kressner, Daniel; Nobile, Fabio; Picasso, Marco

    2015-01-01

    This book gathers a selection of invited and contributed lectures from the European Conference on Numerical Mathematics and Advanced Applications (ENUMATH) held in Lausanne, Switzerland, August 26-30, 2013. It provides an overview of recent developments in numerical analysis, computational mathematics and applications from leading experts in the field. New results on finite element methods, multiscale methods, numerical linear algebra and discretization techniques for fluid mechanics and optics are presented. As such, the book offers a valuable resource for a wide range of readers looking for a state-of-the-art overview of advanced techniques, algorithms and results in numerical mathematics and scientific computing.

  14. Electrorheological fluids modeling and mathematical theory

    CERN Document Server

    Růžička, Michael

    2000-01-01

    This is the first book to present a model, based on rational mechanics of electrorheological fluids, that takes into account the complex interactions between the electromagnetic fields and the moving liquid. Several constitutive relations for the Cauchy stress tensor are discussed. The main part of the book is devoted to a mathematical investigation of a model possessing shear-dependent viscosities, proving the existence and uniqueness of weak and strong solutions for the steady and the unsteady case. The PDS systems investigated possess so-called non-standard growth conditions. Existence results for elliptic systems with non-standard growth conditions and with a nontrivial nonlinear r.h.s. and the first ever results for parabolic systems with a non-standard growth conditions are given for the first time. Written for advanced graduate students, as well as for researchers in the field, the discussion of both the modeling and the mathematics is self-contained.

  15. Mathematization Competencies of Pre-Service Elementary Mathematics Teachers in the Mathematical Modelling Process

    Science.gov (United States)

    Yilmaz, Suha; Tekin-Dede, Ayse

    2016-01-01

    Mathematization competency is considered in the field as the focus of modelling process. Considering the various definitions, the components of the mathematization competency are determined as identifying assumptions, identifying variables based on the assumptions and constructing mathematical model/s based on the relations among identified…

  16. Mathematical Model for Photovoltaic Cells

    OpenAIRE

    Wafaa ABD EL-BASIT; Ashraf Mosleh ABD El–MAKSOOD; Fouad Abd El-Moniem Saad SOLIMAN

    2013-01-01

    The study of photovoltaic systems in an efficient manner requires a precise knowledge of the (I-V) and (P-V) characteristic curves of photovoltaic modules. So, the aim of the present paper is to estimate such characteristics based on different operating conditions. In this concern, a simple one diode mathematical model was implemented using MATLAB script. The output characteristics of PV cell depend on the environmental conditions. For any solar cell, the model parameters are function of the ...

  17. Mathematical models of bipolar disorder

    OpenAIRE

    Daugherty, D; Roque-Urrea, T; Urrea-Roque, J; DE TROYER, J; Wirkus, S; Porter, M. A.

    2009-01-01

    We use limit cycle oscillators to model bipolar II disorder, which is characterized by alternating hypomanic and depressive episodes and afflicts about 1% of the United States adult population. We consider two non-linear oscillator models of a single bipolar patient. In both frameworks, we begin with an untreated individual and examine the mathematical effects and resulting biological consequences of treatment. We also briefly consider the dynamics of interacting bipolar II individuals using ...

  18. Mathematical Models of Bipolar Disorder

    OpenAIRE

    Daugherty, Darryl; Roque-Urrea, Tairi; Urrea-Roque, John; Snyder, Jessica; Wirkus, Stephen; Mason A. Porter

    2003-01-01

    We use limit cycle oscillators to model Bipolar II disorder, which is characterized by alternating hypomanic and depressive episodes and afflicts about one percent of the United States adult population. We consider two nonlinear oscillator models of a single bipolar patient. In both frameworks, we begin with an untreated individual and examine the mathematical effects and resulting biological consequences of treatment. We also briefly consider the dynamics of interacting bipolar II individual...

  19. Using cell replication data in mathematical modeling in carcinogenesis.

    OpenAIRE

    Portier, C.J.; Kopp-Schneider, A; Sherman, C D

    1993-01-01

    Risk estimation involves the application of quantitative models of dose versus response to carcinogenicity data. Recent advances in biology, computing, and mathematics have led to the application of mathematically complicated, mechanistically based models of carcinogenesis to the estimation of risks. This paper focuses on two aspects of this application, distinguishing between models using available data and the development of new models to keep pace with research developments.

  20. Logical Tree of Mathematical Modeling

    Directory of Open Access Journals (Sweden)

    László Pokorádi

    2015-04-01

    Full Text Available During setting up a mathematical model, it can be very important and dicult task to choose input parametersthat should be known for solution of this problem. A similar problem might come up when someone wants to carryout an engineering calculation task. A very essential aim technical education is developing of good logical engineeringthinking. One main part of this thinking is to determine the potential sets of required input parameters of anengineering calculation. This paper proposes a logical tree based method to determine the required parameters of amathematical model. The method gives a lively description about needed data base, and computational sequence forus to get to determine the set of required output parameter. The shown method is named LogTreeMM - Logical Treeof Mathematical Modeling.

  1. Opinions of Secondary School Mathematics Teachers on Mathematical Modelling

    Science.gov (United States)

    Tutak, Tayfun; Güder, Yunus

    2013-01-01

    The aim of this study is to identify the opinions of secondary school mathematics teachers about mathematical modelling. Qualitative research was used. The participants of the study were 40 secondary school teachers working in the Bingöl Province in Turkey during 2012-2013 education year. Semi-structured interview form prepared by the researcher…

  2. Mathematical Model of Age Aggression

    OpenAIRE

    Golovinski, P. A.

    2013-01-01

    We formulate a mathematical model of competition for resources between representatives of different age groups. A nonlinear kinetic integral-differential equation of the age aggression describes the process of redistribution of resources. It is shown that the equation of the age aggression has a stationary solution, in the absence of age-dependency in the interaction of different age groups. A numerical simulation of the evolution of resources for different initial distributions has done. It ...

  3. Mathematical models of granular matter

    CERN Document Server

    Mariano, Paolo; Giovine, Pasquale

    2008-01-01

    Granular matter displays a variety of peculiarities that distinguish it from other appearances studied in condensed matter physics and renders its overall mathematical modelling somewhat arduous. Prominent directions in the modelling granular flows are analyzed from various points of view. Foundational issues, numerical schemes and experimental results are discussed. The volume furnishes a rather complete overview of the current research trends in the mechanics of granular matter. Various chapters introduce the reader to different points of view and related techniques. New models describing granular bodies as complex bodies are presented. Results on the analysis of the inelastic Boltzmann equations are collected in different chapters. Gallavotti-Cohen symmetry is also discussed.

  4. 7th European Conference on Numerical Mathematics and Advanced Applications

    CERN Document Server

    Of, Günther; Steinbach, Olaf

    2008-01-01

    The European Conference on Numerical Mathematics and Advanced Applications (ENUMATH) is a series of meetings held every two years to provide a forum for discussion on recent aspects of numerical mathematics and their applications. These proceedings contain a selection of invited plenary lectures, papers presented in minisymposia and contributed papers. Topics include theoretical aspects of new numerical techniques and algorithms as well as of applications in engineering and science. The book will be useful for a wide range of readers, giving them an excellent overview of the most modern methods, techniques, algorithms and results in numerical mathematics, scientific computing and their applications.

  5. Mathematical modeling of laser lipolysis

    Directory of Open Access Journals (Sweden)

    Reynaud Jean

    2008-02-01

    Full Text Available Abstract Background and Objectives Liposuction continues to be one of the most popular procedures performed in cosmetic surgery. As the public's demand for body contouring continues, laser lipolysis has been proposed to improve results, minimize risk, optimize patient comfort, and reduce the recovery period. Mathematical modeling of laser lipolysis could provide a better understanding of the laser lipolysis process and could determine the optimal dosage as a function of fat volume to be removed. Study design/Materials and Methods An Optical-Thermal-Damage Model was formulated using finite-element modeling software (Femlab 3.1, Comsol Inc. The general model simulated light distribution using the diffusion approximation of the transport theory, temperature rise using the bioheat equation and laser-induced injury using the Arrhenius damage model. Biological tissue was represented by two homogenous regions (dermis and fat layer with a nonlinear air-tissue boundary condition including free convection. Video recordings were used to gain a better understanding of the back and forth movement of the cannula during laser lipolysis in order to consider them in our mathematical model. Infrared video recordings were also performed in order to compare the actual surface temperatures to our calculations. The reduction in fat volume was determined as a function of the total applied energy and subsequently compared to clinical data reported in the literature. Results In patients, when using cooled tumescent anesthesia, 1064 nm Nd:YAG laser or 980 nm diode laser: (6 W, back and forth motion: 100 mm/s give similar skin surface temperature (max: 41°C. These measurements are in accordance with those obtained by mathematical modeling performed with a 1 mm cannula inserted inside the hypodermis layer at 0.8 cm below the surface. Similarly, the fat volume reduction observed in patients at 6-month follow up can be determined by mathematical modeling. This fat reduction

  6. Mathematical Modeling: A Bridge to STEM Education

    OpenAIRE

    Kertil, Mahmut; Gurel, Cem

    2016-01-01

    The purpose of this study is making a theoretical discussion on the relationship between mathematical modeling and integrated STEM education. First of all, STEM education perspective and the construct of mathematical modeling in mathematics education is introduced. A review of literature is provided on how mathematical modeling literature may contribute to theoretical conceptualization of STEM education by specifically addressing the professional competencies that teachers need. The discussio...

  7. Mathematical modeling of kidney transport.

    Science.gov (United States)

    Layton, Anita T

    2013-01-01

    In addition to metabolic waste and toxin excretion, the kidney also plays an indispensable role in regulating the balance of water, electrolytes, nitrogen, and acid-base. In this review, we describe representative mathematical models that have been developed to better understand kidney physiology and pathophysiology, including the regulation of glomerular filtration, the regulation of renal blood flow by means of the tubuloglomerular feedback mechanisms and of the myogenic mechanism, the urine concentrating mechanism, epithelial transport, and regulation of renal oxygen transport. We discuss the extent to which these modeling efforts have expanded our understanding of renal function in both health and disease.

  8. Mathematical Modeling in Combustion Science

    CERN Document Server

    Takeno, Tadao

    1988-01-01

    An important new area of current research in combustion science is reviewed in the contributions to this volume. The complicated phenomena of combustion, such as chemical reactions, heat and mass transfer, and gaseous flows, have so far been studied predominantly by experiment and by phenomenological approaches. But asymptotic analysis and other recent developments are rapidly changing this situation. The contributions in this volume are devoted to mathematical modeling in three areas: high Mach number combustion, complex chemistry and physics, and flame modeling in small scale turbulent flow combustion.

  9. Mathematical models of bipolar disorder

    Science.gov (United States)

    Daugherty, Darryl; Roque-Urrea, Tairi; Urrea-Roque, John; Troyer, Jessica; Wirkus, Stephen; Porter, Mason A.

    2009-07-01

    We use limit cycle oscillators to model bipolar II disorder, which is characterized by alternating hypomanic and depressive episodes and afflicts about 1% of the United States adult population. We consider two non-linear oscillator models of a single bipolar patient. In both frameworks, we begin with an untreated individual and examine the mathematical effects and resulting biological consequences of treatment. We also briefly consider the dynamics of interacting bipolar II individuals using weakly-coupled, weakly-damped harmonic oscillators. We discuss how the proposed models can be used as a framework for refined models that incorporate additional biological data. We conclude with a discussion of possible generalizations of our work, as there are several biologically-motivated extensions that can be readily incorporated into the series of models presented here.

  10. Mathematics Underground

    Science.gov (United States)

    Luther, Kenneth H.

    2012-01-01

    Mathematical modeling of groundwater flow is a topic at the intersection of mathematics and geohydrology and is rarely encountered in undergraduate mathematics. However, this subject is full of interesting and meaningful examples of truly "applied" mathematics accessible to undergraduates, from the pre-calculus to advanced mathematics levels. This…

  11. Explorations in Elementary Mathematical Modeling

    Directory of Open Access Journals (Sweden)

    Mazen Shahin

    2010-06-01

    Full Text Available In this paper we will present the methodology and pedagogy of Elementary Mathematical Modeling as a one-semester course in the liberal arts core. We will focus on the elementary models in finance and business. The main mathematical tools in this course are the difference equations and matrix algebra. We also integrate computer technology and cooperative learning into this inquiry-based learning course where students work in small groups on carefully designed activities and utilize available software to support problem solving and understanding of real life situations. We emphasize the use of graphical and numerical techniques, rather than theoretical techniques, to investigate and analyze the behavior of the solutions of the difference equations.As an illustration of our approach, we will show a nontraditional and efficient way of introducing models from finance and economics. We will also present an interesting model of supply and demand with a lag time, which is called the cobweb theorem in economics. We introduce a sample of a research project on a technique of removing chaotic behavior from a chaotic system.

  12. Mathematical Modelling Plant Signalling Networks

    KAUST Repository

    Muraro, D.

    2013-01-01

    During the last two decades, molecular genetic studies and the completion of the sequencing of the Arabidopsis thaliana genome have increased knowledge of hormonal regulation in plants. These signal transduction pathways act in concert through gene regulatory and signalling networks whose main components have begun to be elucidated. Our understanding of the resulting cellular processes is hindered by the complex, and sometimes counter-intuitive, dynamics of the networks, which may be interconnected through feedback controls and cross-regulation. Mathematical modelling provides a valuable tool to investigate such dynamics and to perform in silico experiments that may not be easily carried out in a laboratory. In this article, we firstly review general methods for modelling gene and signalling networks and their application in plants. We then describe specific models of hormonal perception and cross-talk in plants. This mathematical analysis of sub-cellular molecular mechanisms paves the way for more comprehensive modelling studies of hormonal transport and signalling in a multi-scale setting. © EDP Sciences, 2013.

  13. Advanced Production Planning Models

    Energy Technology Data Exchange (ETDEWEB)

    JONES,DEAN A.; LAWTON,CRAIG R.; KJELDGAARD,EDWIN A.; WRIGHT,STEPHEN TROY; TURNQUIST,MARK A.; NOZICK,LINDA K.; LIST,GEORGE F.

    2000-12-01

    >This report describes the innovative modeling approach developed as a result of a 3-year Laboratory Directed Research and Development project. The overall goal of this project was to provide an effective suite of solvers for advanced production planning at facilities in the nuclear weapons complex (NWC). We focused our development activities on problems related to operations at the DOE's Pantex Plant. These types of scheduling problems appear in many contexts other than Pantex--both within the NWC (e.g., Neutron Generators) and in other commercial manufacturing settings. We successfully developed an innovative and effective solution strategy for these types of problems. We have tested this approach on actual data from Pantex, and from Org. 14000 (Neutron Generator production). This report focuses on the mathematical representation of the modeling approach and presents three representative studies using Pantex data. Results associated with the Neutron Generator facility will be published in a subsequent SAND report. The approach to task-based scheduling described here represents a significant addition to the literature for large-scale, realistic scheduling problems in a variety of production settings.

  14. Who succeeds in advanced mathematics and science courses?

    NARCIS (Netherlands)

    Korpershoek, Hanke; Kuyper, Hans; van der Werf, Greetje; Bosker, Roel; Van der Werf, M.P.C.

    2011-01-01

    Few students (particularly few girls) currently choose to take their Final School Examination (FSE) in advanced mathematics, chemistry and physics, a combination of subjects that is the best preparation for a science-oriented study in higher education. Are these subjects attainable by more students

  15. Mathematical models of viscous friction

    CERN Document Server

    Buttà, Paolo; Marchioro, Carlo

    2015-01-01

    In this monograph we present a review of a number of recent results on the motion of a classical body immersed in an infinitely extended medium and subjected to the action of an external force. We investigate this topic in the framework of mathematical physics by focusing mainly on the class of purely Hamiltonian systems, for which very few results are available. We discuss two cases: when the medium is a gas and when it is a fluid. In the first case, the aim is to obtain microscopic models of viscous friction. In the second, we seek to underline some non-trivial features of the motion. Far from giving a general survey on the subject, which is very rich and complex from both a phenomenological and theoretical point of view, we focus on some fairly simple models that can be studied rigorously, thus providing a first step towards a mathematical description of viscous friction. In some cases, we restrict ourselves to studying the problem at a heuristic level, or we present the main ideas, discussing only some as...

  16. Mathematical model for classification of EEG signals

    Science.gov (United States)

    Ortiz, Victor H.; Tapia, Juan J.

    2015-09-01

    A mathematical model to filter and classify brain signals from a brain machine interface is developed. The mathematical model classifies the signals from the different lobes of the brain to differentiate the signals: alpha, beta, gamma and theta, besides the signals from vision, speech, and orientation. The model to develop further eliminates noise signals that occur in the process of signal acquisition. This mathematical model can be used on different platforms interfaces for rehabilitation of physically handicapped persons.

  17. Building fire zone model with symbolic mathematics

    Institute of Scientific and Technical Information of China (English)

    武红梅; 郜冶; 周允基

    2009-01-01

    To apply the fire modelling for the fire engineer with symbolic mathematics,the key equations of a zone model were demonstrated. There were thirteen variables with nine constraints,so only four ordinary differential equations (ODEs) were required to solve. A typical fire modelling with two-room structure was studied. Accordingly,the source terms included in the ODEs were simplified and modelled,and the fourth Runge-Kutta method was used to solve the ordinary differential equations (ODEs) with symbolic mathematics. Then a zone model could be used with symbolic mathematics. It is proposed that symbolic mathematics is possible for use by fire engineer.

  18. Tools of the trade introduction to advanced mathematics

    CERN Document Server

    Sally, Jr, Paul J

    2008-01-01

    This book provides a transition from the formula-full aspects of the beginning study of college level mathematics to the rich and creative world of more advanced topics. It is designed to assist the student in mastering the techniques of analysis and proof that are required to do mathematics. Along with the standard material such as linear algebra, construction of the real numbers via Cauchy sequences, metric spaces and complete metric spaces, there are three projects at the end of each chapter that form an integral part of the text. These projects include a detailed discussion of topics such

  19. Mathematical Foundations of Quantum Mechanics: An Advanced Short Course

    CERN Document Server

    Moretti, Valter

    2015-01-01

    This paper collects and extends the lectures given by the author at the "XXIV International Fall Workshop on Geometry and Physics" held in Zaragoza (Spain) during September 2015. Within these lectures I review the formulation of Quantum Mechanics, and quantum theories in general, from a mathematically advanced viewpoint, essentially based on the orthomodular lattice of elementary propositions, discussing some fundamental ideas, mathematical tools and theorems also related to the representation of physical symmetries. The final step consists of an elementary introduction the so-called (C*-) algebraic formulation of quantum theories.

  20. Mathematical and numerical foundations of turbulence models and applications

    CERN Document Server

    Chacón Rebollo, Tomás

    2014-01-01

    With applications to climate, technology, and industry, the modeling and numerical simulation of turbulent flows are rich with history and modern relevance. The complexity of the problems that arise in the study of turbulence requires tools from various scientific disciplines, including mathematics, physics, engineering, and computer science. Authored by two experts in the area with a long history of collaboration, this monograph provides a current, detailed look at several turbulence models from both the theoretical and numerical perspectives. The k-epsilon, large-eddy simulation, and other models are rigorously derived and their performance is analyzed using benchmark simulations for real-world turbulent flows. Mathematical and Numerical Foundations of Turbulence Models and Applications is an ideal reference for students in applied mathematics and engineering, as well as researchers in mathematical and numerical fluid dynamics. It is also a valuable resource for advanced graduate students in fluid dynamics,...

  1. Methods of mathematical modelling continuous systems and differential equations

    CERN Document Server

    Witelski, Thomas

    2015-01-01

    This book presents mathematical modelling and the integrated process of formulating sets of equations to describe real-world problems. It describes methods for obtaining solutions of challenging differential equations stemming from problems in areas such as chemical reactions, population dynamics, mechanical systems, and fluid mechanics. Chapters 1 to 4 cover essential topics in ordinary differential equations, transport equations and the calculus of variations that are important for formulating models. Chapters 5 to 11 then develop more advanced techniques including similarity solutions, matched asymptotic expansions, multiple scale analysis, long-wave models, and fast/slow dynamical systems. Methods of Mathematical Modelling will be useful for advanced undergraduate or beginning graduate students in applied mathematics, engineering and other applied sciences.

  2. Computacional-representantional model of mathematics (crmmath)

    OpenAIRE

    Toro Carvajal, Luis Alberto

    2016-01-01

    This paper presents the so-called computational representational model of mathematics (MCRMATH), its theoretical importance for mathematics education and its relation with the use of technology tools in mathematics teaching. To do this, from a cognitive point of view, we conduct a research study of representations and we explain the computational-representational model of mind (CRMM).

  3. Mathematical Model for Photovoltaic Cells

    Directory of Open Access Journals (Sweden)

    Wafaa ABD EL-BASIT

    2013-11-01

    Full Text Available The study of photovoltaic systems in an efficient manner requires a precise knowledge of the (I-V and (P-V characteristic curves of photovoltaic modules. So, the aim of the present paper is to estimate such characteristics based on different operating conditions. In this concern, a simple one diode mathematical model was implemented using MATLAB script. The output characteristics of PV cell depend on the environmental conditions. For any solar cell, the model parameters are function of the irradiance and the temperature values of the site where the panel is placed. In this paper, the numerical values of the equivalent circuit parameters are generated by the program. As well, the dependence of the cells electrical parameters are analyzed under the influence of different irradiance and temperature levels. The variation of slopes of the (I–V curves of a cell at short-circuit and open-circuit conditions with intensity of illumination in small span of intensity and different temperature levels have been applied to determine the cell parameters, shunt resistance, series resistance. The results show that the efficiency of solar cells has an inverse relationship with temperature, irradiance levels are affected by the change of the photo-generation current and the series resistance in the single diode model.

  4. AISI/DOE Advanced Process Control Program Vol. 3 of 6 Microstructure Engineering in Hot Strip Mills, Part 1 of 2: Integrated Mathematical Model

    Energy Technology Data Exchange (ETDEWEB)

    J.K. Brimacombe; I.V. Samarasekera; E.B. Hawbolt; T.R. Meadowcroft; M. Militzer; W.J. Pool; D.Q. Jin

    1999-07-31

    This report describes the work of developing an integrated model used to predict the thermal history, deformation, roll forces, microstructural evolution and mechanical properties of steel strip in a hot-strip mill. This achievement results from a joint research effort that is part of the American Iron and Steel Institute's (AIS) Advanced Process Control Program, a collaboration between the U.S. DOE and fifteen North American Steelmakers.

  5. Advanced mathematical study and the development of conditional reasoning skills.

    Science.gov (United States)

    Attridge, Nina; Inglis, Matthew

    2013-01-01

    Since the time of Plato, philosophers and educational policy-makers have assumed that the study of mathematics improves one's general 'thinking skills'. Today, this argument, known as the 'Theory of Formal Discipline' is used in policy debates to prioritize mathematics in school curricula. But there is no strong research evidence which justifies it. We tested the Theory of Formal Discipline by tracking the development of conditional reasoning behavior in students studying post-compulsory mathematics compared to post-compulsory English literature. In line with the Theory of Formal Discipline, the mathematics students did develop their conditional reasoning to a greater extent than the literature students, despite them having received no explicit tuition in conditional logic. However, this development appeared to be towards the so-called defective conditional understanding, rather than the logically normative material conditional understanding. We conclude by arguing that Plato may have been correct to claim that studying advanced mathematics is associated with the development of logical reasoning skills, but that the nature of this development may be more complex than previously thought.

  6. Advanced mathematical study and the development of conditional reasoning skills.

    Directory of Open Access Journals (Sweden)

    Nina Attridge

    Full Text Available Since the time of Plato, philosophers and educational policy-makers have assumed that the study of mathematics improves one's general 'thinking skills'. Today, this argument, known as the 'Theory of Formal Discipline' is used in policy debates to prioritize mathematics in school curricula. But there is no strong research evidence which justifies it. We tested the Theory of Formal Discipline by tracking the development of conditional reasoning behavior in students studying post-compulsory mathematics compared to post-compulsory English literature. In line with the Theory of Formal Discipline, the mathematics students did develop their conditional reasoning to a greater extent than the literature students, despite them having received no explicit tuition in conditional logic. However, this development appeared to be towards the so-called defective conditional understanding, rather than the logically normative material conditional understanding. We conclude by arguing that Plato may have been correct to claim that studying advanced mathematics is associated with the development of logical reasoning skills, but that the nature of this development may be more complex than previously thought.

  7. Optical Coherence Tomography: Advanced Modeling

    DEFF Research Database (Denmark)

    Andersen, Peter E.; Thrane, Lars; Yura, Harold T.;

    2013-01-01

    Analytical and numerical models for describing and understanding the light propagation in samples imaged by optical coherence tomography (OCT) systems are presented. An analytical model for calculating the OCT signal based on the extended Huygens-Fresnel principle valid both for the single......- and multiple-scattering regimes is derived. An advanced Monte Carlo model for calculating the OCT signal is also derived, and the validity of this model is shown through a mathematical proof based on the extended Huygens-Fresnel principle. From the analytical model, an algorithm for enhancing OCT images...... is developed, the so-called true-reflection algorithm in which the OCT signal may be corrected for the attenuation caused by scattering. The algorithm is verified experimentally and by using the Monte Carlo model as a numerical tissue phantom. Applications of extraction of optical properties from tissue...

  8. Mathematical Modeling of Cellular Metabolism.

    Science.gov (United States)

    Berndt, Nikolaus; Holzhütter, Hermann-Georg

    2016-01-01

    Cellular metabolism basically consists of the conversion of chemical compounds taken up from the extracellular environment into energy (conserved in energy-rich bonds of organic phosphates) and a wide array of organic molecules serving as catalysts (enzymes), information carriers (nucleic acids), and building blocks for cellular structures such as membranes or ribosomes. Metabolic modeling aims at the construction of mathematical representations of the cellular metabolism that can be used to calculate the concentration of cellular molecules and the rates of their mutual chemical interconversion in response to varying external conditions as, for example, hormonal stimuli or supply of essential nutrients. Based on such calculations, it is possible to quantify complex cellular functions as cellular growth, detoxification of drugs and xenobiotic compounds or synthesis of exported molecules. Depending on the specific questions to metabolism addressed, the methodological expertise of the researcher, and available experimental information, different conceptual frameworks have been established, allowing the usage of computational methods to condense experimental information from various layers of organization into (self-) consistent models. Here, we briefly outline the main conceptual frameworks that are currently exploited in metabolism research.

  9. Towards the mathematical modelling of human behavior

    OpenAIRE

    Jódar Sánchez, Lucas Antonio; Cortés López, Juan Carlos; Acedo Rodríguez, Luis

    2011-01-01

    Jódar Sánchez, LA.; Cortés López, JC.; Acedo Rodríguez, L. (2011). Towards the mathematical modelling of human behavior. Mathematical and Computer Modelling. 54(7):1625-1625. doi:10.1016/j.mcm.2010.10.009. Senia 1625 1625 54 7

  10. Scaffolding Mathematical Modelling with a Solution Plan

    Science.gov (United States)

    Schukajlow, Stanislaw; Kolter, Jana; Blum, Werner

    2015-01-01

    In the study presented in this paper, we examined the possibility to scaffold mathematical modelling with strategies. The strategies were prompted using an instrument called "solution plan" as a scaffold. The effects of this step by step instrument on mathematical modelling competency and on self-reported strategies were tested using…

  11. Mathematical Modelling as a Professional Task

    Science.gov (United States)

    Frejd, Peter; Bergsten, Christer

    2016-01-01

    Educational research literature on mathematical modelling is extensive. However, not much attention has been paid to empirical investigations of its scholarly knowledge from the perspective of didactic transposition processes. This paper reports from an interview study of mathematical modelling activities involving nine professional model…

  12. Mathematical modelling of scour: A review

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu

    2007-01-01

    A review is presented of mathematical modelling of scour around hydraulic and marine structures. Principal ideas, general features and procedures are given. The paper is organized in three sections: the first two sections deal with the mathematical modelling of scour around piers/piles and pipeli...

  13. Mathematical Model of Gravitational and Electrostatic Forces

    CERN Document Server

    Krouglov, A

    2006-01-01

    Author presents mathematical model for acting-on-a-distance attractive and repulsive forces based on propagation of energy waves that produces Newton expression for gravitational and Coulomb expression for electrostatic forces. Model uses mathematical observation that difference between two inverse exponential functions of the distance asymptotically converges to function proportional to reciprocal of distance squared.

  14. Mineral potential mapping with mathematical geological models

    NARCIS (Netherlands)

    Porwal, A.K.

    2006-01-01

    Mathematical geological models are being increasingly used by natural resources delineation and planning agencies for mapping areas of mineral potential in order to optimize land use in accordance with socio-economic needs of the society. However, a key problem in spatial-mathematical-model-based mi

  15. 高等数学实施探究性教学模式教学效果评价模型分析%Analysis of the Teaching Effect Evaluation Model for Advanced Mathematics by Inquiry-based Teaching Mode

    Institute of Scientific and Technical Information of China (English)

    徐永梅

    2016-01-01

    在高等数学的教学过程中,实施探究性教学模式之后,可以在构建教学效果评价模型中运用多种数学方法,例如属性测度函数、时间效益分析法、层次分析法等等,探究性教学模式教学效果应该从多角度进行,这样才能够充分体现其先进性和丰富的理论内涵。%In the teaching process of advanced mathematics, after the implementation of inquiry-based teaching model, a variety of mathematical methods can be used in building the evaluation model of the teaching effect, such as attribute measure function, time efficiency analysis, analytic hierarchy process, etc. The teaching effect evaluation of inquiry-based teaching mode should be from different perspectives, so as to fully embody its advanced nature and rich theoretical connotation.

  16. Mathematical modeling in soil science

    Science.gov (United States)

    Tarquis, Ana M.; Gasco, Gabriel; Saa-Requejo, Antonio; Méndez, Ana; Andina, Diego; Sánchez, M. Elena; Moratiel, Rubén; Antón, Jose Manuel

    2015-04-01

    Teaching in context can be defined as teaching a mathematical idea or process by using a problem, situation, or data to enhance the teaching and learning process. The same problem or situation may be used many times, at different mathematical levels to teach different objectives. A common misconception exists that assigning/teaching applications is teaching in context. While both use problems, the difference is in timing, in purpose, and in student outcome. In this work, one problem situation is explored thoroughly at different levels of understanding and other ideas are suggested for classroom explorations. Some teachers, aware of the difficulties some students have with mathematical concepts, try to teach quantitative sciences without using mathematical tools. Such attempts are not usually successful. The answer is not in discarding the mathematics, but in finding ways to teach mathematically-based concepts to students who need them but who find them difficult. The computer is an ideal tool for this purpose. To this end, teachers of the Soil Science and Mathematics Departments of the UPM designed a common practice to teach to the students the role of soil on the carbon sequestration. The objective of this work is to explain the followed steps to the design of the practice. Acknowledgement Universidad Politécnica de Madrid (UPM) for the Projects in Education Innovation IE12_13-02009 and IE12_13-02012 is gratefully acknowledge.

  17. Rival approaches to mathematical modelling in immunology

    Science.gov (United States)

    Andrew, Sarah M.; Baker, Christopher T. H.; Bocharov, Gennady A.

    2007-08-01

    In order to formulate quantitatively correct mathematical models of the immune system, one requires an understanding of immune processes and familiarity with a range of mathematical techniques. Selection of an appropriate model requires a number of decisions to be made, including a choice of the modelling objectives, strategies and techniques and the types of model considered as candidate models. The authors adopt a multidisciplinary perspective.

  18. Mathematical models for interpretation of tracer data in groundwater hydrology

    International Nuclear Information System (INIS)

    The Advisory Group Meeting had the overall objective of discussing in detail the methodologies and approaches in the development of mathematical models for quantitative evaluations of tracer data in groundwater hydrology and reviewing the recent advances in this field. A separate abstract was prepared for each of the eight papers

  19. A mathematical model for iodine kinetics

    International Nuclear Information System (INIS)

    A mathematical model for the iodine kinetics in thyroid is presented followed by its analytical solution. An eletroanalogical model is also developed for a simplified stage and another is proposed for the main case

  20. ECONOMIC-MATHEMATICAL CLUSTER’S MODELS

    Directory of Open Access Journals (Sweden)

    Nikolay Dmitriyevich Naydenov

    2015-11-01

    Full Text Available The article describes the economic and mathematical models of cluster formations: a model city on the line, the model of network competition consumers one-agent cluster model, the multi-agent playing model of cluster growth, the model comprehensive income cluster members, the artificial neural networks, the balance cluster model, the stability of the cluster model. The article shows that the economic-mathematical modeling processes, clustering as the method allows to improve forecasting, planning and evaluation of the level of clustering in the region.Purpose. Show the level of development of economic and mathematical models as a tool for the analysis of clusters of integration associations in the regions.Methodology. Economic-mathematical modeling, analysis, synthesis, comparison, statistical surveys.Results. The high activity of research in the field of economic and mathematical modeling of cluster formations revealed. The essential characteristics of cluster formations using economic and mathematical models investigated.Practical implications. The economic policy of the regions, countries and municipalities.

  1. The mathematics of cancer: integrating quantitative models.

    Science.gov (United States)

    Altrock, Philipp M; Liu, Lin L; Michor, Franziska

    2015-12-01

    Mathematical modelling approaches have become increasingly abundant in cancer research. The complexity of cancer is well suited to quantitative approaches as it provides challenges and opportunities for new developments. In turn, mathematical modelling contributes to cancer research by helping to elucidate mechanisms and by providing quantitative predictions that can be validated. The recent expansion of quantitative models addresses many questions regarding tumour initiation, progression and metastases as well as intra-tumour heterogeneity, treatment responses and resistance. Mathematical models can complement experimental and clinical studies, but also challenge current paradigms, redefine our understanding of mechanisms driving tumorigenesis and shape future research in cancer biology.

  2. Mathematical Models in Danube Water Quality

    Directory of Open Access Journals (Sweden)

    Valerian Antohe

    2009-01-01

    Full Text Available The mathematical shaping in the study of water quality has become a branch of environmental engineering. The comprehension and effective application of mathematical models in studying environmental phenomena keep up with the results in the domain of mathematics and the development of specialized software as well. Integrated software programs simulate and predict extreme events, propose solutions, analyzing and processing data in due time. This paper presents a browsing through some mathematical categories of processing the statistical data, examples and their analysis concerning the degree of water pollution downstream the river Danube.

  3. A mathematical model of symmetry based on mathematical definition

    Institute of Scientific and Technical Information of China (English)

    刘玉生; 杨将新; 吴昭同; 高曙明

    2002-01-01

    Tolerance is imperative for seamless integration of CAD/CAM(Computer Aided Disignd/Computer Aided Manufacture) which is just a text attribute and has no semantics in present CAD systems. There are many tolerance types, the relations between which are very complicated. In addition, the different principles of tolerance make study of tolerance difficult; and there may be various meanings or interpretation for the same type of tolerance beeanse of the literal definition. In this work, latest unambiguous mathematical definition was applied to study, explain and clarify: ( 1 ) the formation and representation of tolerance zone, and (2) the formation and representation of variational elements ; after which, the mathematical models of syrmmetry of different tolerance principles and different interpretations were derived. An example is given to illustrate the application of these models in tolerance analysis.

  4. A mathematical model of symmetry based on mathematical definition

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Tolerance is imperative for seamless integration of CAD/CAM(Computer Aided Disign/Computer Aided Manufacture) which is just a text attribute and has no semantics in present CAD systems. There are many tolerance types, the relations between which are very complicated. In addition, the different principles of tolerance make study of tolerance difficult; and there may be various meanings or interpretation for the same type of tolerance because of the literal definition. In this work, latest unambiguous mathematical definition was applied to study, explain and clarify: (1) the formation and representation of tolerance zone, and (2) the formation and representation of variational elements; after which, the mathematical models of symmetry of different tolerance principles and different interpretations were derived. An example is given to illustrate the application of these models in tolerance analysis.

  5. Mathematical models in biology bringing mathematics to life

    CERN Document Server

    Ferraro, Maria; Guarracino, Mario

    2015-01-01

    This book presents an exciting collection of contributions based on the workshop “Bringing Maths to Life” held October 27-29, 2014 in Naples, Italy.  The state-of-the art research in biology and the statistical and analytical challenges facing huge masses of data collection are treated in this Work. Specific topics explored in depth surround the sessions and special invited sessions of the workshop and include genetic variability via differential expression, molecular dynamics and modeling, complex biological systems viewed from quantitative models, and microscopy images processing, to name several. In depth discussions of the mathematical analysis required to extract insights from complex bodies of biological datasets, to aid development in the field novel algorithms, methods and software tools for genetic variability, molecular dynamics, and complex biological systems are presented in this book. Researchers and graduate students in biology, life science, and mathematics/statistics will find the content...

  6. Advance Payment ACO Model

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Advance Payment Model is designed for physician-based and rural providers who have come together voluntarily to give coordinated high quality care to the...

  7. Teaching mathematical modelling through project work

    DEFF Research Database (Denmark)

    Blomhøj, Morten; Kjeldsen, Tinne Hoff

    2006-01-01

    The paper presents and analyses experiences from developing and running an in-service course in project work and mathematical modelling for mathematics teachers in the Danish gymnasium, e.g. upper secondary level, grade 10-12. The course objective is to support the teachers to develop, try out...

  8. Quantum Gravity Mathematical Models and Experimental Bounds

    CERN Document Server

    Fauser, Bertfried; Zeidler, Eberhard

    2007-01-01

    The construction of a quantum theory of gravity is the most fundamental challenge confronting contemporary theoretical physics. The different physical ideas which evolved while developing a theory of quantum gravity require highly advanced mathematical methods. This book presents different mathematical approaches to formulate a theory of quantum gravity. It represents a carefully selected cross-section of lively discussions about the issue of quantum gravity which took place at the second workshop "Mathematical and Physical Aspects of Quantum Gravity" in Blaubeuren, Germany. This collection covers in a unique way aspects of various competing approaches. A unique feature of the book is the presentation of different approaches to quantum gravity making comparison feasible. This feature is supported by an extensive index. The book is mainly addressed to mathematicians and physicists who are interested in questions related to mathematical physics. It allows the reader to obtain a broad and up-to-date overview on ...

  9. Mathematical modeling a chemical engineer's perspective

    CERN Document Server

    Rutherford, Aris

    1999-01-01

    Mathematical modeling is the art and craft of building a system of equations that is both sufficiently complex to do justice to physical reality and sufficiently simple to give real insight into the situation. Mathematical Modeling: A Chemical Engineer's Perspective provides an elementary introduction to the craft by one of the century's most distinguished practitioners.Though the book is written from a chemical engineering viewpoint, the principles and pitfalls are common to all mathematical modeling of physical systems. Seventeen of the author's frequently cited papers are reprinted to illus

  10. Advanced structural equation modeling issues and techniques

    CERN Document Server

    Marcoulides, George A

    2013-01-01

    By focusing primarily on the application of structural equation modeling (SEM) techniques in example cases and situations, this book provides an understanding and working knowledge of advanced SEM techniques with a minimum of mathematical derivations. The book was written for a broad audience crossing many disciplines, assumes an understanding of graduate level multivariate statistics, including an introduction to SEM.

  11. Mathematical modeling in biomedical imaging

    CERN Document Server

    2009-01-01

    This volume gives an introduction to a fascinating research area to applied mathematicians. It is devoted to providing the exposition of promising analytical and numerical techniques for solving challenging biomedical imaging problems, which trigger the investigation of interesting issues in various branches of mathematics.

  12. Mathematical Modeling of Chemical Stoichiometry

    Science.gov (United States)

    Croteau, Joshua; Fox, William P.; Varazo, Kristofoland

    2007-01-01

    In beginning chemistry classes, students are taught a variety of techniques for balancing chemical equations. The most common method is inspection. This paper addresses using a system of linear mathematical equations to solve for the stoichiometric coefficients. Many linear algebra books carry the standard balancing of chemical equations as an…

  13. Applied mathematics: Models, Discretizations, and Solvers

    Institute of Scientific and Technical Information of China (English)

    D.E. Keyes

    2007-01-01

    @@ Computational plasma physicists inherit decades of developments in mathematical models, numerical algorithms, computer architecture, and software engineering, whose recent coming together marks the beginning of a new era of large-scale simulation.

  14. NATO Advanced Study Institute on Advanced Physical Oceanographic Numerical Modelling

    CERN Document Server

    1986-01-01

    This book is a direct result of the NATO Advanced Study Institute held in Banyuls-sur-mer, France, June 1985. The Institute had the same title as this book. It was held at Laboratoire Arago. Eighty lecturers and students from almost all NATO countries attended. The purpose was to review the state of the art of physical oceanographic numerical modelling including the parameterization of physical processes. This book represents a cross-section of the lectures presented at the ASI. It covers elementary mathematical aspects through large scale practical aspects of ocean circulation calculations. It does not encompass every facet of the science of oceanographic modelling. We have, however, captured most of the essence of mesoscale and large-scale ocean modelling for blue water and shallow seas. There have been considerable advances in modelling coastal circulation which are not included. The methods section does not include important material on phase and group velocity errors, selection of grid structures, advanc...

  15. Students’ mathematical learning in modelling activities

    DEFF Research Database (Denmark)

    Kjeldsen, Tinne Hoff; Blomhøj, Morten

    2013-01-01

    involved. We argue that progress in students’ conceptual learning needs to be conceptualised separately from that of progress in their modelling competency. Findings are that modelling activities open a window to the students’ images of the mathematical concepts involved; that modelling activities can......Ten years of experience with analyses of students’ learning in a modelling course for first year university students, led us to see modelling as a didactical activity with the dual goal of developing students’ modelling competency and enhancing their conceptual learning of mathematical concepts...... create and help overcome hidden cognitive conflicts in students’ understanding; that reflections within modelling can play an important role for the students’ learning of mathematics. These findings are illustrated with a modelling project concerning the world population....

  16. A mathematical approach to research problems of science and technology theoretical basis and developments in mathematical modeling

    CERN Document Server

    Ei, Shin-ichiro; Koiso, Miyuki; Ochiai, Hiroyuki; Okada, Kanzo; Saito, Shingo; Shirai, Tomoyuki

    2014-01-01

    This book deals with one of the most novel advances in mathematical modeling for applied scientific technology, including computer graphics, public-key encryption, data visualization, statistical data analysis, symbolic calculation, encryption, error correcting codes, and risk management. It also shows that mathematics can be used to solve problems from nature, e.g., slime mold algorithms. One of the unique features of this book is that it shows readers how to use pure and applied mathematics, especially those mathematical theory/techniques developed in the twentieth century, and developing now, to solve applied problems in several fields of industry. Each chapter includes clues on how to use "mathematics" to solve concrete problems faced in industry as well as practical applications. The target audience is not limited to researchers working in applied mathematics and includes those in engineering, material sciences, economics, and life sciences.

  17. Mathematical model of cylindrical form tolerance

    Institute of Scientific and Technical Information of China (English)

    蔡敏; 杨将新; 吴昭同

    2004-01-01

    Tolerance is essential for integration of CAD and CAM.Unfortunately,the meaning of tolerances in the national standard is expressed in graphical and language forms and is not adaptable for expression,processing and data transferring with computers.How to interpret its semantics is becoming a focus of relevant studies.This work based on the mathematical definition of form tolerance in ANSI Y 14.5.1 M-1994,established the mathematical model of form tolerance for cylindrical feature.First,each tolerance in the national standard was established by vector equation.Then on the foundation of tolerance's mathematical definition theory,each tolerance zone's mathematical model was established by inequality based on degrees of feature.At last the variance area of each tolerance zone is derived.This model can interpret the semantics of form tolerance exactly and completely.

  18. Mathematical model of cylindrical form tolerance

    Institute of Scientific and Technical Information of China (English)

    蔡敏; 杨将新; 吴昭同

    2004-01-01

    Tolerance is essential for integration of CAD and CAM. Unfortunately, the meaning of tolerances in the national standard is expressed in graphical and language forms and is not adaptable for expression, processing and data transferring with computers. How to interpret its semantics is becoming a focus of relevant studies. This work based on the mathematical definition of form tolerance in ANSI Y 14.5.1 M-1994, established the mathematical model of form tolerance for cylindrical feature. First, each tolerance in the national standard was established by vector equation. Then on the foundation of toler-ance's mathematical definition theory, each tolerance zone's mathematical model was established by inequality based on degrees of feature. At last the variance area of each tolerance zone is derived. This model can interpret the semantics of form tolerance exactly and completely.

  19. Model answers in pure mathematics for a-level students

    CERN Document Server

    Pratt, GA; Schofield, C W

    1967-01-01

    Model Answers in Pure Mathematics for A-Level Students provides a set of solutions that indicate what is required and expected in an Advanced Level examination in Pure Mathematics. This book serves as a guide to the length of answer required, layout of the solution, and methods of selecting the best approach to any particular type of math problem. This compilation intends to supplement, not replace, the normal textbook and provides a varied selection of questions for practice in addition to the worked solutions. The subjects covered in this text include algebra, trigonometry, coordinate geomet

  20. The Relationship between Students' Performance on Conventional Standardized Mathematics Assessments and Complex Mathematical Modeling Problems

    Science.gov (United States)

    Kartal, Ozgul; Dunya, Beyza Aksu; Diefes-Dux, Heidi A.; Zawojewski, Judith S.

    2016-01-01

    Critical to many science, technology, engineering, and mathematics (STEM) career paths is mathematical modeling--specifically, the creation and adaptation of mathematical models to solve problems in complex settings. Conventional standardized measures of mathematics achievement are not structured to directly assess this type of mathematical…

  1. Introducing Modeling Transition Diagrams as a Tool to Connect Mathematical Modeling to Mathematical Thinking

    Science.gov (United States)

    Czocher, Jennifer A.

    2016-01-01

    This study contributes a methodological tool to reconstruct the cognitive processes and mathematical activities carried out by mathematical modelers. Represented as Modeling Transition Diagrams (MTDs), individual modeling routes were constructed for four engineering undergraduate students. Findings stress the importance and limitations of using…

  2. International Workshop on Mathematical Modeling of Tumor-Immune Dynamics

    CERN Document Server

    Kim, Peter; Mallet, Dann

    2014-01-01

    This collection of papers offers a broad synopsis of state-of-the-art mathematical methods used in modeling the interaction between tumors and the immune system. These papers were presented at the four-day workshop on Mathematical Models of Tumor-Immune System Dynamics held in Sydney, Australia from January 7th to January 10th, 2013. The workshop brought together applied mathematicians, biologists, and clinicians actively working in the field of cancer immunology to share their current research and to increase awareness of the innovative mathematical tools that are applicable to the growing field of cancer immunology. Recent progress in cancer immunology and advances in immunotherapy suggest that the immune system plays a fundamental role in host defense against tumors and could be utilized to prevent or cure cancer. Although theoretical and experimental studies of tumor-immune system dynamics have a long history, there are still many unanswered questions about the mechanisms that govern the interaction betwe...

  3. On the mathematical modeling of aeolian saltation

    DEFF Research Database (Denmark)

    Jensen, Jens Ledet; Sørensen, Michael

    1983-01-01

    The development of a mathematical model for aeolian saltation is a promising way of obtaining further progress in the field of wind-blown sand. Interesting quantities can be calculated from a model defined in general terms, and a specific model is defined and compared to previously published data...

  4. Mathematical Models of Tuberculosis Reactivation and Relapse

    Directory of Open Access Journals (Sweden)

    Robert Steven Wallis

    2016-05-01

    Full Text Available The natural history of human infection with Mycobacterium tuberculosis (Mtb is highly variable, as is the response to treatment of active tuberculosis. There is presently no direct means to identify individuals in whom Mtb infection has been eradicated, whether by a bactericidal immune response or sterilizing antimicrobial chemotherapy. Mathematical models can assist in such circumstances by measuring or predicting events that cannot be directly observed. The 3 models discussed in this review illustrate instances in which mathematical models were used to identify individuals with innate resistance to Mtb infection, determine the etiology of tuberculosis in patients treated with tumor necrosis factor antagonists, and predict the risk of relapse in persons undergoing tuberculosis treatment. These examples illustrate the power of various types of mathematic models to increase knowledge and thereby inform interventions in the present global tuberculosis epidemic.

  5. Mathematical modeling and optimization of complex structures

    CERN Document Server

    Repin, Sergey; Tuovinen, Tero

    2016-01-01

    This volume contains selected papers in three closely related areas: mathematical modeling in mechanics, numerical analysis, and optimization methods. The papers are based upon talks presented  on the International Conference for Mathematical Modeling and Optimization in Mechanics, held in Jyväskylä, Finland, March 6-7, 2014 dedicated to Prof. N. Banichuk on the occasion of his 70th birthday. The articles are written by well-known scientists working in computational mechanics and in optimization of complicated technical models. Also, the volume contains papers discussing the historical development, the state of the art, new ideas, and open problems arising in  modern continuum mechanics and applied optimization problems. Several papers are concerned with mathematical problems in numerical analysis, which are also closely related to important mechanical models. The main topics treated include:  * Computer simulation methods in mechanics, physics, and biology;  * Variational problems and methods; minimiz...

  6. Mathematical modeling and applications in nonlinear dynamics

    CERN Document Server

    Merdan, Hüseyin

    2016-01-01

    The book covers nonlinear physical problems and mathematical modeling, including molecular biology, genetics, neurosciences, artificial intelligence with classical problems in mechanics and astronomy and physics. The chapters present nonlinear mathematical modeling in life science and physics through nonlinear differential equations, nonlinear discrete equations and hybrid equations. Such modeling can be effectively applied to the wide spectrum of nonlinear physical problems, including the KAM (Kolmogorov-Arnold-Moser (KAM)) theory, singular differential equations, impulsive dichotomous linear systems, analytical bifurcation trees of periodic motions, and almost or pseudo- almost periodic solutions in nonlinear dynamical systems. Provides methods for mathematical models with switching, thresholds, and impulses, each of particular importance for discontinuous processes Includes qualitative analysis of behaviors on Tumor-Immune Systems and methods of analysis for DNA, neural networks and epidemiology Introduces...

  7. Mathematical models and methods for planet Earth

    CERN Document Server

    Locatelli, Ugo; Ruggeri, Tommaso; Strickland, Elisabetta

    2014-01-01

    In 2013 several scientific activities have been devoted to mathematical researches for the study of planet Earth. The current volume presents a selection of the highly topical issues presented at the workshop “Mathematical Models and Methods for Planet Earth”, held in Roma (Italy), in May 2013. The fields of interest span from impacts of dangerous asteroids to the safeguard from space debris, from climatic changes to monitoring geological events, from the study of tumor growth to sociological problems. In all these fields the mathematical studies play a relevant role as a tool for the analysis of specific topics and as an ingredient of multidisciplinary problems. To investigate these problems we will see many different mathematical tools at work: just to mention some, stochastic processes, PDE, normal forms, chaos theory.

  8. The Effect of Instruction through Mathematical Modelling on Modelling Skills of Prospective Elementary Mathematics Teachers

    Science.gov (United States)

    Ciltas, Alper; Isik, Ahmet

    2013-01-01

    The aim of this study was to examine the modelling skills of prospective elementary mathematics teachers who were studying the mathematical modelling method. The research study group was composed of 35 prospective teachers. The exploratory case analysis method was used in the study. The data were obtained via semi-structured interviews and a…

  9. Mathematical model in economic environmental problems

    Energy Technology Data Exchange (ETDEWEB)

    Nahorski, Z. [Polish Academy of Sciences, Systems Research Inst. (Poland); Ravn, H.F. [Risoe National Lab. (Denmark)

    1996-12-31

    The report contains a review of basic models and mathematical tools used in economic regulation problems. It starts with presentation of basic models of capital accumulation, resource depletion, pollution accumulation, and population growth, as well as construction of utility functions. Then the one-state variable model is discussed in details. The basic mathematical methods used consist of application of the maximum principle and phase plane analysis of the differential equations obtained as the necessary conditions of optimality. A summary of basic results connected with these methods is given in appendices. (au) 13 ills.; 17 refs.

  10. Mathematical Model of the Jet Engine Fuel System

    OpenAIRE

    Klimko Marek

    2015-01-01

    The paper discusses the design of a simplified mathematical model of the jet (turbo-compressor) engine fuel system. The solution will be based on the regulation law, where the control parameter is a fuel mass flow rate and the regulated parameter is the rotational speed. A differential equation of the jet engine and also differential equations of other fuel system components (fuel pump, throttle valve, pressure regulator) will be described, with respect to advanced predetermined simplifications.

  11. Mathematical Model of the Jet Engine Fuel System

    Directory of Open Access Journals (Sweden)

    Klimko Marek

    2015-01-01

    Full Text Available The paper discusses the design of a simplified mathematical model of the jet (turbo-compressor engine fuel system. The solution will be based on the regulation law, where the control parameter is a fuel mass flow rate and the regulated parameter is the rotational speed. A differential equation of the jet engine and also differential equations of other fuel system components (fuel pump, throttle valve, pressure regulator will be described, with respect to advanced predetermined simplifications.

  12. International Conference on Applied Mathematics, Modeling and Computational Science & Annual meeting of the Canadian Applied and Industrial Mathematics

    CERN Document Server

    Bélair, Jacques; Kunze, Herb; Makarov, Roman; Melnik, Roderick; Spiteri, Raymond J

    2016-01-01

    Focusing on five main groups of interdisciplinary problems, this book covers a wide range of topics in mathematical modeling, computational science and applied mathematics. It presents a wealth of new results in the development of modeling theories and methods, advancing diverse areas of applications and promoting interdisciplinary interactions between mathematicians, scientists, engineers and representatives from other disciplines. The book offers a valuable source of methods, ideas, and tools developed for a variety of disciplines, including the natural and social sciences, medicine, engineering, and technology. Original results are presented on both the fundamental and applied level, accompanied by an ample number of real-world problems and examples emphasizing the interdisciplinary nature and universality of mathematical modeling, and providing an excellent outline of today’s challenges. Mathematical modeling, with applied and computational methods and tools, plays a fundamental role in modern science a...

  13. Mathematical model of electrotaxis in osteoblastic cells

    NARCIS (Netherlands)

    Vanegas-Acosta, J.C.; Garzón-Alvarado, D.A.; Zwamborn, A.P.M.

    2012-01-01

    Electrotaxis is the cell migration in the presence of an electric field (EF). This migration is parallel to the EF vector and overrides chemical migration cues. In this paper we introduce a mathematical model for the electrotaxis in osteoblastic cells. The model is evaluated using different EF stren

  14. Mathematical modelling of magnetically targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Grief, Andrew D. [Theoretical Mechanics, School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)]. E-mail: andrew.grief@nottingham.ac.uk; Richardson, Giles [Theoretical Mechanics, School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)]. E-mail: giles.richardson@nottingham.ac.uk

    2005-05-15

    A mathematical model for targeted drug delivery using magnetic particles is developed. This includes a diffusive flux of particles arising from interactions between erythrocytes in the microcirculation. The model is used to track particles in a vessel network. Magnetic field design is discussed and we show that it is impossible to specifically target internal regions using an externally applied field.

  15. Mathematical human modelling for impact loading

    NARCIS (Netherlands)

    Happee, R.; Hoof, J.F.A.M. van; Lange, R. de

    2001-01-01

    Mathematical modeling of the human body is widely used for automotive crash-safety research and design. Simulations have contributed to a reduction of injury numbers by optimization of vehicle structures and restraint systems. Currently, such simulations are largely performed using occupant models b

  16. Mathematical human body modelling for impact loading

    NARCIS (Netherlands)

    Happee, R.; Morsink, P.L.J.; Wismans, J.S.H.M.

    1999-01-01

    Mathematical modelling of the human body is widely used for automotive crash safety research and design. Simulations have contributed to a reduction of injury numbers by optimisation of vehicle structures and restraint systems. Currently such simulations are largely performed using occupant models b

  17. THE INSTRUCTIONAL DESIGN MODEL FOR MATHEMATICS EDUCATION

    OpenAIRE

    Özdemir, Emine; UYANGÖR, Sevinç MERT

    2011-01-01

    In this study, to present an instructional model by considering the existing models of instructional design (Addie, ARCS Motivation, Dick and Carey, ASSURE, Seels and Glasgow, Smith and Ragan, Universal, with the elaboration theory of Gerlach and Ely design models) with the nature of mathematics education and to reveal analysis, design, development, implementation, evaluation, and to revise levels with lower levels of the instructional design model were aimed. In this study, the qualitative c...

  18. Mathematical modelling of fracture hydrology

    International Nuclear Information System (INIS)

    This progress report contains notes on four aspects of hydrological modelling. The first three describe the development of transport models for solute moving with groundwater in fractured rock and the application of the models to field experiments in Cornwall, UK and Chalk River, Canada. The fourth section describes network models which have been used to estimate hydrodynamic dispersion and are in process of being extended to three dimensional systems. (author)

  19. Mathematical modelling of membrane separation

    OpenAIRE

    Vinther, Frank; Brøns, Morten; Meyer, Anne S.

    2015-01-01

    Denne afhandling omhandler matematisk modellering af membranseparation. Afhandlingen består af indledende teori omhandlende membranseparation, ligninger fra fluiddynamik og egenskaber for dextran, som er det stof der ønskes separeret. Ydermere består den af tre separate matematiske modeller, med hver deres tilgang til membranseparation.Den første model er en statistisk model, som undersøger sammenhængen mellem molekyleform og sandsynligheden for at det givne molekyle penetrerer ind i membrane...

  20. On the mathematical modeling of memristors

    KAUST Repository

    Radwan, Ahmed Gomaa

    2012-10-06

    Since the fourth fundamental element (Memristor) became a reality by HP labs, and due to its huge potential, its mathematical models became a necessity. In this paper, we provide a simple mathematical model of Memristors characterized by linear dopant drift for sinusoidal input voltage, showing a high matching with the nonlinear SPICE simulations. The frequency response of the Memristor\\'s resistance and its bounding conditions are derived. The fundamentals of the pinched i-v hysteresis, such as the critical resistances, the hysteresis power and the maximum operating current, are derived for the first time.

  1. A mathematical model for Neanderthal extinction

    CERN Document Server

    Flores, J C

    1997-01-01

    A simple mathematical homogeneous model of competition is used to describe Neanderthal extinction in Europe. It considers two interacting species, Neanderthals and Early Modern Men, in the same ecological niche. Using paleontological data we claim that the parameter of similarity, between both species, fluctuates between 0.992 and 0.997. An extension of the model including migration (diffusion) is also discussed nevertheless, extinction of Neanderthal seems unavoidable. Numerical analysis of travelling wave solution (fronts) comfirms the extinction. The wave-front-velocity is estimated from linear analysis and numerical simulations confirm this estimation. We conjecture a mathematical formulation for the principle of exclusion between competitive interacting species (Gause).

  2. Mathematical Modelling of Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Saeed Sarwar

    2013-04-01

    Full Text Available UAVs (Unmanned Arial Vehicleis UAVs are emerging as requirement of time and it is expected that in next five to ten years, complete air space will be flooded with UAVs, committed in varied assignments ranging from military, scientific and commercial usage. Non availability of human pilot inside UAV necessitates the requirement of an onboard autopilot in order to maintain desired flight profile against any unexpected disturbance and/or parameter variations. Design of such an autopilot requires an accurate mathematical model of UAV. The aim of this paper is to present a consolidated picture of UAV model. This paper first consolidates complete 6 DOF Degree of Freedom equations of motion into a nonlinear mathematical model and its simulation using model parameters of a real UAV. Model is then linearized into longitudinal and lateral modes. State space models of linearized modes are simulated and analyzed for stability parameters. The developed model can be used to design autopilot for UAV

  3. Mathematical modelling of unmanned aerial vehicles

    International Nuclear Information System (INIS)

    UAVs (Unmanned Aerial Vehicles) UAVs are emerging as requirement of time and it is expected that in next five to ten years, complete air space will be flooded with UAVs, committed in varied assignments ranging from military, scientific and commercial usage. Non availability of human pilot inside UAV necessitates the requirement of an onboard auto pilot in order to maintain desired flight profile against any unexpected disturbance and/or parameter variations. Design of such an auto pilot requires an accurate mathematical model of UAV. The aim of this paper is to present a consolidated picture of UAV model. This paper first consolidates complete 6 DOF Degree of Freedom) equations of motion into a nonlinear mathematical model and its simulation using model parameters of a real UAV. Model is then linearized into longitudinal and lateral modes. State space models of linearized modes are simulated and analyzed for stability parameters. The developed model can be used to design auto pilot for UAV. (author)

  4. Physical and mathematical modeling of antimicrobial photodynamic therapy

    Science.gov (United States)

    Bürgermeister, Lisa; López, Fernando Romero; Schulz, Wolfgang

    2014-07-01

    Antimicrobial photodynamic therapy (aPDT) is a promising method to treat local bacterial infections. The therapy is painless and does not cause bacterial resistances. However, there are gaps in understanding the dynamics of the processes, especially in periodontal treatment. This work describes the advances in fundamental physical and mathematical modeling of aPDT used for interpretation of experimental evidence. The result is a two-dimensional model of aPDT in a dental pocket phantom model. In this model, the propagation of laser light and the kinetics of the chemical reactions are described as coupled processes. The laser light induces the chemical processes depending on its intensity. As a consequence of the chemical processes, the local optical properties and distribution of laser light change as well as the reaction rates. The mathematical description of these coupled processes will help to develop treatment protocols and is the first step toward an inline feedback system for aPDT users.

  5. Molecular modeling: An open invitation for applied mathematics

    Science.gov (United States)

    Mezey, Paul G.

    2013-10-01

    Molecular modeling methods provide a very wide range of challenges for innovative mathematical and computational techniques, where often high dimensionality, large sets of data, and complicated interrelations imply a multitude of iterative approximations. The physical and chemical basis of these methodologies involves quantum mechanics with several non-intuitive aspects, where classical interpretation and classical analogies are often misleading or outright wrong. Hence, instead of the everyday, common sense approaches which work so well in engineering, in molecular modeling one often needs to rely on rather abstract mathematical constraints and conditions, again emphasizing the high level of reliance on applied mathematics. Yet, the interdisciplinary aspects of the field of molecular modeling also generates some inertia and perhaps too conservative reliance on tried and tested methodologies, that is at least partially caused by the less than up-to-date involvement in the newest developments in applied mathematics. It is expected that as more applied mathematicians take up the challenge of employing the latest advances of their field in molecular modeling, important breakthroughs may follow. In this presentation some of the current challenges of molecular modeling are discussed.

  6. Applied Mathematics, Modelling and Computational Science

    CERN Document Server

    Kotsireas, Ilias; Makarov, Roman; Melnik, Roderick; Shodiev, Hasan

    2015-01-01

    The Applied Mathematics, Modelling, and Computational Science (AMMCS) conference aims to promote interdisciplinary research and collaboration. The contributions in this volume cover the latest research in mathematical and computational sciences, modeling, and simulation as well as their applications in natural and social sciences, engineering and technology, industry, and finance. The 2013 conference, the second in a series of AMMCS meetings, was held August 26–30 and organized in cooperation with AIMS and SIAM, with support from the Fields Institute in Toronto, and Wilfrid Laurier University. There were many young scientists at AMMCS-2013, both as presenters and as organizers. This proceedings contains refereed papers contributed by the participants of the AMMCS-2013 after the conference. This volume is suitable for researchers and graduate students, mathematicians and engineers, industrialists, and anyone who would like to delve into the interdisciplinary research of applied and computational mathematics ...

  7. Mathematical efficiency modeling of static power converters

    OpenAIRE

    Hoff Dupont, Fabrício; Zaragoza Bertomeu, Jordi; Rech, Cassiano; Pinheiro, José Renes

    2015-01-01

    This paper presents a review and a comparative analysis between mathematical models for the efficiency of power converters. Two different types of models are considered, being one for converters subject solely for output power variations, and a second one also considering input voltage variations. Both cases are particularly important for systems fed by renewable sources as photovoltaic panels or wind turbines. Knowledge of the appropriate models is of interest in the dev...

  8. Mathematical Properties Relevant to Geomagnetic Field Modeling

    DEFF Research Database (Denmark)

    Sabaka, Terence J.; Hulot, Gauthier; Olsen, Nils

    2014-01-01

    Geomagnetic field modeling consists in converting large numbers of magnetic observations into a linear combination of elementary mathematical functions that best describes those observations. The set of numerical coefficients defining this linear combination is then what one refers to as a geomag...

  9. Identification of the noise using mathematical modelling

    Science.gov (United States)

    Dobeš, Josef; Kozubková, Milada; Mahdal, Miroslav

    2016-03-01

    In engineering applications the noisiness of a component or the whole device is a common problem. Currently, a lot of effort is put to eliminate noise of the already produced devices, to prevent generation of acoustic waves during the design of new components, or to specify the operating problems based on noisiness change. The experimental method and the mathematical modelling method belong to these identification methods. With the power of today's computers the ability to identify the sources of the noise on the mathematical modelling level is a very appreciated tool for engineers. For example, the noise itself may be generated by the vibration of the solid object, combustion, shock, fluid flow around an object or cavitation at the fluid flow in an object. For the given task generating the noise using fluid flow on the selected geometry and propagation of the acoustic waves and their subsequent identification are solved and evaluated. In this paper the principle of measurement of variables describing the fluid flow field and acoustic field are described. For the solution of fluid flow a mathematical model implemented into the CFD code is used. The mathematical modelling evaluation of the flow field is compared to the experimental data.

  10. Optimization and mathematical modeling in computer architecture

    CERN Document Server

    Sankaralingam, Karu; Nowatzki, Tony

    2013-01-01

    In this book we give an overview of modeling techniques used to describe computer systems to mathematical optimization tools. We give a brief introduction to various classes of mathematical optimization frameworks with special focus on mixed integer linear programming which provides a good balance between solver time and expressiveness. We present four detailed case studies -- instruction set customization, data center resource management, spatial architecture scheduling, and resource allocation in tiled architectures -- showing how MILP can be used and quantifying by how much it outperforms t

  11. Mathematical modeling of the flash converting process

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, H.Y.; Perez-Tello, M.; Riihilahti, K.M. [Utah Univ., Salt Lake City, UT (United States)

    1996-12-31

    An axisymmetric mathematical model for the Kennecott-Outokumpu flash converting process for converting solid copper matte to copper is presented. The model is an adaptation of the comprehensive mathematical model formerly developed at the University of Utah for the flash smelting of copper concentrates. The model incorporates the transport of momentum, heat, mass, and reaction kinetics between gas and particles in a particle-laden turbulent gas jet. The standard k-{epsilon} model is used to describe gas-phase turbulence in an Eulerian framework. The particle-phase is treated from a Lagrangian viewpoint which is coupled to the gas-phase via the source terms in the Eulerian gas-phase governing equations. Matte particles were represented as Cu{sub 2}S yFeS, and assumed to undergo homogeneous oxidation to Cu{sub 2}O, Fe{sub 3}O{sub 4}, and SO{sub 2}. A reaction kinetics mechanism involving both external mass transfer of oxygen gas to the particle surface and diffusion of oxygen through the porous oxide layer is proposed to estimate the particle oxidation rate Predictions of the mathematical model were compared with the experimental data collected in a bench-scale flash converting facility. Good agreement between the model predictions and the measurements was obtained. The model was used to study the effect of different gas-injection configurations on the overall fluid dynamics in a commercial size flash converting shaft. (author)

  12. Mathematical modelling of fracture hydrology

    International Nuclear Information System (INIS)

    This progress report contains notes on three aspects of hydrological modelling. Work on hydrodynamic dispersion in fractured media has been extended to transverse dispersion. Further work has been done on diffusion into the rock matrix and its effect on solute transport. The program NAMSOL has been used for the MIRAGE code comparison exercise being organised by Atkins R and D. (author)

  13. An Examination of Pre-Service Mathematics Teachers' Approaches to Construct and Solve Mathematical Modelling Problems

    Science.gov (United States)

    Bukova-Guzel, Esra

    2011-01-01

    This study examines the approaches displayed by pre-service mathematics teachers in their experiences of constructing mathematical modelling problems and the extent to which they perform the modelling process when solving the problems they construct. This case study was carried out with 35 pre-service teachers taking the Mathematical Modelling…

  14. BUILDING MATHEMATICAL MODELS IN DYNAMIC PROGRAMMING

    Directory of Open Access Journals (Sweden)

    LIANA RODICA PATER

    2012-05-01

    Full Text Available In short, we can say that dynamic programming is a method of optimization of systems, using their mathematical representation in phases or sequences or as we say, periods. Such systems are common in economic studies at the implementation of programs on the most advanced techniques, such as for example that involving cosmic navigation. Another concept that is involved in the study of dynamic programs is the economic horizon (number of periods or phases that a dynamic program needs. This concept often leads to the examination of the convergence of certain variables on infinite horizon. In many cases from the real economy by introducing updating, dynamic programs can be made convergent.

  15. Mathematical Modeling of Multienzyme Biosensor System

    OpenAIRE

    SP. Ganesan; K Saravanakumar; Rajendran, L.

    2014-01-01

    A mathematical model of hybrid inhibitor biosensor system is discussed. This model consists of five nonlinear partial differential equations for bisubstrate sensitive amperometric system. Simple and closed form of analytical expressions for concentration of glucose-6-phosphate (substrate), potassium dihydrogen phosphate (inhibitor), oxygen (co-substrate), glucose (product 1), and hydrogen peroxide (product 3) is obtained in terms of rate constant using modified Adomian decomposition method (M...

  16. Mathematical Modeling of Magnetic Regenerator Refrigeration Systems

    OpenAIRE

    Salarvand, Navid

    2009-01-01

    ABSTRACT: Active magnetic regenerative refrigeration (AMRR) systems are designed based on magnetocaloric effect of some special solid materials, such as Gadolinium-Silicon-Germanium, Ferrum-Rhodium, etc. During the last three decades, a variety of cooling systems have been proposed using magnetic materials at room temperature. In this thesis, an AMRR system using FeRh as refrigerant is studied. For the simulation, a one-dimensional, time-varying mathematical model is developed. This model co...

  17. A mathematical model of leptin resistance

    OpenAIRE

    Jacquier, Marine; Soula, Hédi A; Crauste, Fabien

    2015-01-01

    International audience Obesity is often associated with leptin resistance, which leads to a physiological system with high leptin concentration but unable to respond to leptin signals and to regulate food intake. We propose a mathematical model of the leptin-leptin receptors system, based on the assumption that leptin is a regulator of its own receptor activity, and investigate its qualitative behavior. Based on current knowledge and previous models developed for body weight dynamics in ro...

  18. Models and structures: mathematical physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This document gathers research activities along 5 main directions. 1) Quantum chaos and dynamical systems. Recent results concern the extension of the exact WKB method that has led to a host of new results on the spectrum and wave functions. Progress have also been made in the description of the wave functions of chaotic quantum systems. Renormalization has been applied to the analysis of dynamical systems. 2) Combinatorial statistical physics. We see the emergence of new techniques applied to various such combinatorial problems, from random walks to random lattices. 3) Integrability: from structures to applications. Techniques of conformal field theory and integrable model systems have been developed. Progress is still made in particular for open systems with boundary conditions, in connection to strings and branes physics. Noticeable links between integrability and exact WKB quantization to 2-dimensional disordered systems have been highlighted. New correlations of eigenvalues and better connections to integrability have been formulated for random matrices. 4) Gravities and string theories. We have developed aspects of 2-dimensional string theory with a particular emphasis on its connection to matrix models as well as non-perturbative properties of M-theory. We have also followed an alternative path known as loop quantum gravity. 5) Quantum field theory. The results obtained lately concern its foundations, in flat or curved spaces, but also applications to second-order phase transitions in statistical systems.

  19. Optimization of mathematical models for thematic maps

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The thematic map is a major class of maps designed to demonstrate particular features or concepts,functioning as an indispensable tool in geographical research.The process of thematic mapping is one into which geographical research goes deeply and broadly.The key activity and course of thematic map production is the use of mathematical models to create thematic data layers.Therefore,the selection and optimization of mathematical models is in the forefront of thematic map research.The theoretical foundations,mechanisms and methods of mathematical model optimization are expounded in this paper,including two approaches,the phase by phase mode and the multi-aim scheme balance mode.Case studies in eco-environment mapping and emergency mapping are described and analyzed,with a hierarchical analysis method being used in the model optimization for eco-environment fragility and sensitivity assessment mapping in Beibuwan (Guangxi) District,the dynamic system (DS) method being used in the model optimization for ecological security adjustment mapping in Xishuang Banna,Yunnan province,and the multi-phase mode being used in the models for forest fire and infectious diseases mapping.

  20. Mathematical Modelling of Turbidity Currents

    Science.gov (United States)

    Fay, G. L.; Fowler, A.; Howell, P.

    2011-12-01

    A turbidity current is a submarine sediment flow which propagates downslope through the ocean into the deep sea. Turbidity currents can occur randomly and without much warning and consequently are hard to observe and measure. The driving force in a turbidity current is the presence of sediment in the current - gravity acts on the sediment in suspension, causing it to move downstream through the ocean water. A phenomenon known as ignition or autosuspension has been observed in turbidity currents in submarine canyons, and it occurs when a current travelling downslope gathers speed as it erodes sediment from the sea floor in a self-reinforcing cycle. Using the turbidity current model of Parker et al. (Journal of Fluid Mechanics, 1986) we investigate the evolution of a 1-D turbidity current as it moves downstream. To seek a better understanding of the dynamics of flow as the current evolves in space and time, we present analytical results alongside computed numerical solutions, incorporating entrainment of water and erosion and deposition of sediment. We consider varying slope functions and inlet conditions and attempt to predict when the current will become extinct. We examine currents which are in both supercritical and subcritical flow regimes and consider the dynamics of the flow as the current switches regime.

  1. Models of Non-Life Insurance Mathematics

    Directory of Open Access Journals (Sweden)

    Constanta Nicoleta BODEA

    2008-01-01

    Full Text Available In this communication we will discuss two regression credibility models from Non – Life Insurance Mathematics that can be solved by means of matrix theory. In the first regression credibility model, starting from a well-known representation formula of the inverse for a special class of matrices a risk premium will be calculated for a contract with risk parameter q. In the next regression credibility model, we will obtain a credibility solution in the form of a linear combination of the individual estimate (based on the data of a particular state and the collective estimate (based on aggregate USA data. Mathematics Subject Classification: 62P05.

  2. Mathematical modeling of microbial growth in milk

    Directory of Open Access Journals (Sweden)

    Jhony Tiago Teleken

    2011-12-01

    Full Text Available A mathematical model to predict microbial growth in milk was developed and analyzed. The model consists of a system of two differential equations of first order. The equations are based on physical hypotheses of population growth. The model was applied to five different sets of data of microbial growth in dairy products selected from Combase, which is the most important database in the area with thousands of datasets from around the world, and the results showed a good fit. In addition, the model provides equations for the evaluation of the maximum specific growth rate and the duration of the lag phase which may provide useful information about microbial growth.

  3. Building Mathematical Models of Simple Harmonic and Damped Motion.

    Science.gov (United States)

    Edwards, Thomas

    1995-01-01

    By developing a sequence of mathematical models of harmonic motion, shows that mathematical models are not right or wrong, but instead are better or poorer representations of the problem situation. (MKR)

  4. "Model Your Genes the Mathematical Way"--A Mathematical Biology Workshop for Secondary School Teachers

    Science.gov (United States)

    Martins, Ana Margarida; Vera-Licona, Paola; Laubenbacher, Reinhard

    2008-01-01

    This article describes a mathematical biology workshop given to secondary school teachers of the Danville area in Virginia, USA. The goal of the workshop was to enable teams of teachers with biology and mathematics expertise to incorporate lesson plans in mathematical modelling into the curriculum. The biological focus of the activities is the…

  5. Assessing Science Students' Attitudes to Mathematics: A Case Study on a Modelling Project with Mathematical Software

    Science.gov (United States)

    Lim, L. L.; Tso, T. -Y.; Lin, F. L.

    2009-01-01

    This article reports the attitudes of students towards mathematics after they had participated in an applied mathematical modelling project that was part of an Applied Mathematics course. The students were majoring in Earth Science at the National Taiwan Normal University. Twenty-six students took part in the project. It was the first time a…

  6. Mathematical Modeling of an Automobile Damper

    Directory of Open Access Journals (Sweden)

    N. B. Kate, T. A. Jadhav

    2013-10-01

    Full Text Available - In an automotive industry, to reduce product development time and increase quality of product, it is essential to reduce the number of physical prototypes and rely more on precise & reliable design for the final design of vehicles. This paper presents a mathematical model for the damping force of the hydraulic shock absorber which is implemented to analyse the shock absorbers mounting brackets attached to the vehicle structure. Physical testing results indicate that the considered shock absorber’s mathematical model is reliable and can be used to calculate the durability target life of mounting brackets. Thus this presented methodology can be utilized as an effective way to reduce time and cost in design and development of automotive components.

  7. Some observations on the interdigitation of advances in medical science and mathematics.

    Science.gov (United States)

    Glamore, Michael James; West, James L; O'leary, James Patrick

    2013-12-01

    The immense advancement of our understanding of disease processes has not been a uniform progression related to the passage of time. Advances have been made in "lurches" and "catches" since the advent of the written word. There has been a remarkable interdependency between such advances in medicine and advances in mathematics that has proved beneficial to both. This work explores some of these critical relationships and documents how the individuals involved contributed to advances in each.

  8. Mathematical modelling of leprosy and its control.

    Science.gov (United States)

    Blok, David J; de Vlas, Sake J; Fischer, Egil A J; Richardus, Jan Hendrik

    2015-03-01

    Leprosy or Hansen's disease is an infectious disease caused by the bacterium Mycobacterium leprae. The annual number of new leprosy cases registered worldwide has remained stable over the past years at over 200,000. Early case finding and multidrug therapy have not been able interrupt transmission completely. Elimination requires innovation in control and sustained commitment. Mathematical models can be used to predict the course of leprosy incidence and the effect of intervention strategies. Two compartmental models and one individual-based model have been described in the literature. Both compartmental models investigate the course of leprosy in populations and the long-term impact of control strategies. The individual-based model focusses on transmission within households and the impact of case finding among contacts of new leprosy patients. Major improvement of these models should result from a better understanding of individual differences in exposure to infection and developing leprosy after exposure. Most relevant are contact heterogeneity, heterogeneity in susceptibility and spatial heterogeneity. Furthermore, the existing models have only been applied to a limited number of countries. Parameterization of the models for other areas, in particular those with high incidence, is essential to support current initiatives for the global elimination of leprosy. Many challenges remain in understanding and dealing with leprosy. The support of mathematical models for understanding leprosy epidemiology and supporting policy decision making remains vital. PMID:25765193

  9. Topics in the mathematical modelling of nanotoxicology

    OpenAIRE

    Jones, Zofia

    2012-01-01

    Over the last ten years questions related to the safety of nanoparticles and their possible toxic effects have become well-established. The government's Health and Safety Laboratories (HSL) at Buxton are currently attempting to determine their possible toxicity in the workplace. It is their responsibility to establish what levels are exposure can be considered safe in the workplace. This project is a CASE studentship with HSL and aims to start developing mathematical models relating to nan...

  10. A mathematical model of the Mafia game

    OpenAIRE

    Migdał, Piotr

    2010-01-01

    Mafia (also called Werewolf) is a party game. The participants are divided into two competing groups: citizens and a mafia. The objective is to eliminate the opponent group. The game consists of two consecutive phases (day and night) and a certain set of actions (e.g. lynching during day). The mafia members have additional powers (knowing each other, killing during night) whereas the citizens are more numerous. We propose a simple mathematical model of the game, which is essentially a pure de...

  11. Examining epistemological beliefs in explaining mathematics teachers’ approaches in mathematical modelling

    OpenAIRE

    Özkan Hıdıroğlu, Yeliz; Hıdıroğlu, Çağlar Naci

    2016-01-01

    The aim of the study is to examine epistemological beliefs in explaining the mathematical modelling approaches of mathematics teachers. In the study, basically dominated by a qualitative approach, quantitative and qualitative data were gathered concurrently from 35 mathematics teachers who work in Ġzmir and after analysis process while interpreting the findings they were combined and compared. Qualitative data were gathered from written answer sheets of mathematics teachers on mat...

  12. Mathematical modelling of wood and briquettes torrefaction

    Energy Technology Data Exchange (ETDEWEB)

    Felfli, Felix Fonseca; Luengo, Carlos Alberto [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Fisica Gleb Wataghin. Grupo Combustiveis Alternativos; Soler, Pedro Beaton [Universidad de Oriente, Santiago de Cuba (Cuba). Fac. de Ingenieria Mecanica. Centro de Estudios de Eficiencia Energetica; Rocha, Jose Dilcio [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico (NIPE)

    2004-07-01

    A mathematical model valid for the torrefaction of wood logs and biomass briquettes is presented. The model described both chemical and physical processes, which take place in a moist piece of wood heated at temperatures between 503 and 573 K. Calibration measurements of the temperature profile and mass loss, were performed on dry cylinders of wood samples during torrefaction in an inert atmosphere at 503, 533, and 553 K. The calculated data shows a good agreement with experiments. The model can be a useful tool to estimate projecting and operating parameters for torrefaction furnaces such as minimum time of torrefaction, energy consumption and the mass yield. (author)

  13. Basic Perforator Flap Hemodynamic Mathematical Model

    Science.gov (United States)

    Tao, Youlun; Ding, Maochao; Wang, Aiguo; Zhuang, Yuehong; Chang, Shi-Min; Mei, Jin; Hallock, Geoffrey G.

    2016-01-01

    Background: A mathematical model to help explain the hemodynamic characteristics of perforator flaps based on blood flow resistance systems within the flap will serve as a theoretical guide for the future study and clinical applications of these flaps. Methods: There are 3 major blood flow resistance network systems of a perforator flap. These were defined as the blood flow resistance of an anastomosis between artery and artery of adjacent perforasomes, between artery and vein within a perforasome, and then between vein and vein corresponding to the outflow of that perforasome. From this, a calculation could be made of the number of such blood flow resistance network systems that must be crossed for all perforasomes within a perforator flap to predict whether that arrangement would be viable. Results: The summation of blood flow resistance networks from each perforasome in a given perforator flap could predict which portions would likely survive. This mathematical model shows how this is directly dependent on the location of the vascular pedicle to the flap and whether supercharging or superdrainage maneuvers have been added. These configurations will give an estimate of the hemodynamic characteristics for the given flap design. Conclusions: This basic mathematical model can (1) conveniently determine the degree of difficulty for each perforasome within a perforator flap to survive; (2) semiquantitatively allow the calculation of basic hemodynamic parameters; and (3) allow the assessment of the pros and cons expected for each pattern of perforasomes encountered clinically based on predictable hemodynamic observations.

  14. Advanced Skills for Chapter 1 Mathematics: Estimation. Workshop Leader's Guide.

    Science.gov (United States)

    Advanced Technology, Inc., Indianapolis, IN.

    This Workshop Leader's Guide contains step-by-step procedures for preparing, organizing, and presenting 1-hour and 3-hour workshops on estimation in mathematics. It was designed to assist Technical Assistance Center staff members and other inservice providers in conducting successful workshops on estimation in mathematics for administrators,…

  15. Lectures in Advanced Mathematics: Why Students Might Not Understand What the Mathematics Professor Is Trying to Convey

    Science.gov (United States)

    Lew, Kristen; Fukawa-Connelly, Timothy Patrick; Mejía-Ramos , Juan Pablo; Weber, Keith

    2016-01-01

    We describe a case study in which we investigate the effectiveness of a lecture in advanced mathematics. We first videorecorded a lecture delivered by an experienced professor who had a reputation for being an outstanding instructor. Using video recall, we then interviewed the professor to determine the ideas that he intended to convey and how he…

  16. Mathematical models of breast and ovarian cancers.

    Science.gov (United States)

    Botesteanu, Dana-Adriana; Lipkowitz, Stanley; Lee, Jung-Min; Levy, Doron

    2016-07-01

    Women constitute the majority of the aging United States (US) population, and this has substantial implications on cancer population patterns and management practices. Breast cancer is the most common women's malignancy, while ovarian cancer is the most fatal gynecological malignancy in the US. In this review, we focus on these subsets of women's cancers, seen more commonly in postmenopausal and elderly women. In order to systematically investigate the complexity of cancer progression and response to treatment in breast and ovarian malignancies, we assert that integrated mathematical modeling frameworks viewed from a systems biology perspective are needed. Such integrated frameworks could offer innovative contributions to the clinical women's cancers community, as answers to clinical questions cannot always be reached with contemporary clinical and experimental tools. Here, we recapitulate clinically known data regarding the progression and treatment of the breast and ovarian cancers. We compare and contrast the two malignancies whenever possible in order to emphasize areas where substantial contributions could be made by clinically inspired and validated mathematical modeling. We show how current paradigms in the mathematical oncology community focusing on the two malignancies do not make comprehensive use of, nor substantially reflect existing clinical data, and we highlight the modeling areas in most critical need of clinical data integration. We emphasize that the primary goal of any mathematical study of women's cancers should be to address clinically relevant questions. WIREs Syst Biol Med 2016, 8:337-362. doi: 10.1002/wsbm.1343 For further resources related to this article, please visit the WIREs website. PMID:27259061

  17. Mathematical modeling and signal processing in speech and hearing sciences

    CERN Document Server

    Xin, Jack

    2014-01-01

    The aim of the book is to give an accessible introduction of mathematical models and signal processing methods in speech and hearing sciences for senior undergraduate and beginning graduate students with basic knowledge of linear algebra, differential equations, numerical analysis, and probability. Speech and hearing sciences are fundamental to numerous technological advances of the digital world in the past decade, from music compression in MP3 to digital hearing aids, from network based voice enabled services to speech interaction with mobile phones. Mathematics and computation are intimately related to these leaps and bounds. On the other hand, speech and hearing are strongly interdisciplinary areas where dissimilar scientific and engineering publications and approaches often coexist and make it difficult for newcomers to enter.

  18. Mathematical analysis of a muscle architecture model.

    Science.gov (United States)

    Navallas, Javier; Malanda, Armando; Gila, Luis; Rodríguez, Javier; Rodríguez, Ignacio

    2009-01-01

    Modeling of muscle architecture, which aims to recreate mathematically the physiological structure of the muscle fibers and motor units, is a powerful tool for understanding and modeling the mechanical and electrical behavior of the muscle. Most of the published models are presented in the form of algorithms, without mathematical analysis of mechanisms or outcomes of the model. Through the study of the muscle architecture model proposed by Stashuk, we present the analytical tools needed to better understand these models. We provide a statistical description for the spatial relations between motor units and muscle fibers. We are particularly concerned with two physiological quantities: the motor unit fiber number, which we expect to be proportional to the motor unit territory area; and the motor unit fiber density, which we expect to be constant for all motor units. Our results indicate that the Stashuk model is in good agreement with the physiological evidence in terms of the expectations outlined above. However, the resulting variance is very high. In addition, a considerable 'edge effect' is present in the outer zone of the muscle cross-section, making the properties of the motor units dependent on their location. This effect is relevant when motor unit territories and muscle cross-section are of similar size.

  19. Study on mathematical model of steam coal blending

    Institute of Scientific and Technical Information of China (English)

    高洪阁; 李白英; 刘泽常; 尹增德

    2002-01-01

    It is necessary to set up a new mathematical model of steam coal blending instead of the old model. Indexes such as moisture content, ash content, volatile matter, sulfur content and heating value in the new mathematical model have linear relation. The new mathematical model can also predict ash-fusion temperature precisely by considering coal ash ratio in steam coal blending, therefore it is possible to obtain linear relation of ash-fusion temperature between single coal and steam coal blending. The new mathematical model can improve precision of steam coal blending and perfect the old mathematical model of steam coal blending.

  20. Mathematical and Numerical Analyses of Peridynamics for Multiscale Materials Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Du, Qiang [Pennsylvania State Univ., State College, PA (United States)

    2014-11-12

    generation atomistic-to-continuum multiscale simulations. In addition, a rigorous studyof nite element discretizations of peridynamics will be considered. Using the fact that peridynamics is spatially derivative free, we will also characterize the space of admissible peridynamic solutions and carry out systematic analyses of the models, in particular rigorously showing how peridynamics encompasses fracture and other failure phenomena. Additional aspects of the project include the mathematical and numerical analysis of peridynamics applied to stochastic peridynamics models. In summary, the project will make feasible mathematically consistent multiscale models for the analysis and design of advanced materials.

  1. Laser filamentation mathematical methods and models

    CERN Document Server

    Lorin, Emmanuel; Moloney, Jerome

    2016-01-01

    This book is focused on the nonlinear theoretical and mathematical problems associated with ultrafast intense laser pulse propagation in gases and in particular, in air. With the aim of understanding the physics of filamentation in gases, solids, the atmosphere, and even biological tissue, specialists in nonlinear optics and filamentation from both physics and mathematics attempt to rigorously derive and analyze relevant non-perturbative models. Modern laser technology allows the generation of ultrafast (few cycle) laser pulses, with intensities exceeding the internal electric field in atoms and molecules (E=5x109 V/cm or intensity I = 3.5 x 1016 Watts/cm2 ). The interaction of such pulses with atoms and molecules leads to new, highly nonlinear nonperturbative regimes, where new physical phenomena, such as High Harmonic Generation (HHG), occur, and from which the shortest (attosecond - the natural time scale of the electron) pulses have been created. One of the major experimental discoveries in this nonlinear...

  2. Mathematical Model of Suspension Filtration and Its Analytical Solution

    Directory of Open Access Journals (Sweden)

    Normahmad Ravshanov

    2013-01-01

    Full Text Available The work develops advanced mathematical model and computing algorithm to analyze, predict and identify the basic parameters of filter units and their variation ranges. Numerical analytic solution of liquid ionized mixtures filtration was got on their basis. Computing experiments results are presented in graphics form. Calculation results analysis enables to determine the optimum performance of filter units, used for liquid ionized mixtures filtration, food preparation, drug production and water purification. Selection of the most suitable parameters contributes to the improvement of economic and technological efficiency of production and filter units working efficiency.

  3. Mathematical modeling and visualization of functional neuroimages

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup

    This dissertation presents research results regarding mathematical modeling in the context of the analysis of functional neuroimages. Specifically, the research focuses on pattern-based analysis methods that recently have become popular analysis tools within the neuroimaging community. Such methods...... be carefully selected, so that the model and its visualization enhance our ability to interpret brain function. The second part concerns interpretation of nonlinear models and procedures for extraction of ‘brain maps’ from nonlinear kernel models. We assess the performance of the sensitivity map as...... means for extracting a global summary map from a trained model. Such summary maps provides the investigator with an overview of brain locations of importance to the model’s predictions. The sensitivity map proves as a versatile technique for model visualization. Furthermore, we perform a preliminary...

  4. Mathematical modeling and visualization of functional neuroimages

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup

    This dissertation presents research results regarding mathematical modeling in the context of the analysis of functional neuroimages. Specifically, the research focuses on pattern-based analysis methods that recently have become popular within the neuroimaging community. Such methods attempt to...... parameters must be carefully selected, so that the model and its visualization enhance our ability to interpret the brain. The second part concerns interpretation of nonlinear models and procedures for extraction of ‘brain maps’ from nonlinear kernel models. We assess the performance of the sensitivity map...... as means for extracting a global summary map from a trained model. Such summary maps provides the investigator with an overview of brain locations of importance to the model’s predictions. The sensitivity map proves as a versatile technique for model visualization. Furthermore, we perform a...

  5. Proceedings: Workshop on Advanced Mathematics and Computer Science for Power Systems Analysis

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-08-01

    EPRI's Office of Exploratory Research sponsors a series of workshops that explore how to apply recent advances in mathematics and computer science to the problems of the electric utility industry. In this workshop, participants identified research objectives that may significantly improve the mathematical methods and computer architecture currently used for power system analysis.

  6. An Empirical Grounded Theory Approach to Characterizing Advanced Mathematical Thinking in College Calculus

    Science.gov (United States)

    Nabb, Keith A.

    2013-01-01

    The research literature has made calls for greater coherence and consistency with regard to the meaning and use of the term advanced mathematical thinking (AMT) in mathematics education (Artigue, Batanero, & Kent, 2007; Selden & Selden, 2005). Educators and researchers agree that students should be engaged in AMT but it is unclear…

  7. Mathematical Modeling of Multienzyme Biosensor System

    Directory of Open Access Journals (Sweden)

    SP. Ganesan

    2014-01-01

    Full Text Available A mathematical model of hybrid inhibitor biosensor system is discussed. This model consists of five nonlinear partial differential equations for bisubstrate sensitive amperometric system. Simple and closed form of analytical expressions for concentration of glucose-6-phosphate (substrate, potassium dihydrogen phosphate (inhibitor, oxygen (co-substrate, glucose (product 1, and hydrogen peroxide (product 3 is obtained in terms of rate constant using modified Adomian decomposition method (MADM. In this study, behavior of biokinetic parameters is analyzed using this theoretical result. The obtained analytical results (concentrations are compared with the numerical results and are found to be in satisfactory agreement.

  8. Mathematical methods and models in composites

    CERN Document Server

    Mantic, Vladislav

    2014-01-01

    This book provides a representative selection of the most relevant, innovative, and useful mathematical methods and models applied to the analysis and characterization of composites and their behaviour on micro-, meso-, and macroscale. It establishes the fundamentals for meaningful and accurate theoretical and computer modelling of these materials in the future. Although the book is primarily concerned with fibre-reinforced composites, which have ever-increasing applications in fields such as aerospace, many of the results presented can be applied to other kinds of composites. The topics cover

  9. A mathematical model of 'Pride and Prejudice'.

    Science.gov (United States)

    Rinaldi, Sergio; Rossa, Fabio Della; Landi, Pietro

    2014-04-01

    A mathematical model is proposed for interpreting the love story between Elizabeth and Darcy portrayed by Jane Austen in the popular novel Pride and Prejudice. The analysis shows that the story is characterized by a sudden explosion of sentimental involvements, revealed by the existence of a saddle-node bifurcation in the model. The paper is interesting not only because it deals for the first time with catastrophic bifurcations in romantic relation-ships, but also because it enriches the list of examples in which love stories are described through ordinary differential equations.

  10. Mathematical Model of the Processoof Pearlite Austenitization

    Directory of Open Access Journals (Sweden)

    Olejarczyk-Wożeńska I.

    2014-10-01

    Full Text Available The paper presents a mathematical model of the pearlite - austenite transformation. The description of this process uses the diffusion mechanism which takes place between the plates of ferrite and cementite (pearlite as well as austenite. The process of austenite growth was described by means of a system of differential equations solved with the use of the finite difference method. The developed model was implemented in the environment of Delphi 4. The proprietary program allows for the calculation of the rate and time of the transformation at an assumed temperature as well as to determine the TTT diagram for the assigned temperature range.

  11. MATHEMATICAL MODEL OF THE MICROBIAL FLOODING

    Institute of Scientific and Technical Information of China (English)

    Lei Guang-lun; Zhang Zhong-zhi; Chen Yue-ming

    2003-01-01

    On the basis of growth kinetics of microorganism and the principle of material balance, equations were derived to describe microbial growth, nutrient consumption, metabolites production and their transport in formation. The changes in porosity, permeability, oil viscosity and capillary force were also described as the main facturs of microbial flooding. For reservoirs with black oil properties, three-dimensional three-phase mathematical models with the cosidaration of multi-microbial components were established to depict microbial flooding oil. With this model, calculated results are in good agreement with experimental data.

  12. Origins of the brain networks for advanced mathematics in expert mathematicians.

    Science.gov (United States)

    Amalric, Marie; Dehaene, Stanislas

    2016-05-01

    The origins of human abilities for mathematics are debated: Some theories suggest that they are founded upon evolutionarily ancient brain circuits for number and space and others that they are grounded in language competence. To evaluate what brain systems underlie higher mathematics, we scanned professional mathematicians and mathematically naive subjects of equal academic standing as they evaluated the truth of advanced mathematical and nonmathematical statements. In professional mathematicians only, mathematical statements, whether in algebra, analysis, topology or geometry, activated a reproducible set of bilateral frontal, Intraparietal, and ventrolateral temporal regions. Crucially, these activations spared areas related to language and to general-knowledge semantics. Rather, mathematical judgments were related to an amplification of brain activity at sites that are activated by numbers and formulas in nonmathematicians, with a corresponding reduction in nearby face responses. The evidence suggests that high-level mathematical expertise and basic number sense share common roots in a nonlinguistic brain circuit.

  13. Origins of the brain networks for advanced mathematics in expert mathematicians.

    Science.gov (United States)

    Amalric, Marie; Dehaene, Stanislas

    2016-05-01

    The origins of human abilities for mathematics are debated: Some theories suggest that they are founded upon evolutionarily ancient brain circuits for number and space and others that they are grounded in language competence. To evaluate what brain systems underlie higher mathematics, we scanned professional mathematicians and mathematically naive subjects of equal academic standing as they evaluated the truth of advanced mathematical and nonmathematical statements. In professional mathematicians only, mathematical statements, whether in algebra, analysis, topology or geometry, activated a reproducible set of bilateral frontal, Intraparietal, and ventrolateral temporal regions. Crucially, these activations spared areas related to language and to general-knowledge semantics. Rather, mathematical judgments were related to an amplification of brain activity at sites that are activated by numbers and formulas in nonmathematicians, with a corresponding reduction in nearby face responses. The evidence suggests that high-level mathematical expertise and basic number sense share common roots in a nonlinguistic brain circuit. PMID:27071124

  14. PREFACE: International Conference on Advancement in Science and Technology 2012 (iCAST): Contemporary Mathematics, Mathematical Physics and their Applications

    Science.gov (United States)

    Ganikhodjaev, Nasir; Mukhamedov, Farrukh; Hee, Pah Chin

    2013-04-01

    The 4th International Conference on the Advancement of Science and Technology 2012 (iCAST 2012), with theme 'Contemporary Mathematics, Mathematical Physics and their Applications', took place in Kuantan, Malaysia, from Wednesday 7 to Friday 9 November 2012. The conference was attended by more than 100 participants, and hosted about 160 oral and poster papers by more than 140 pre-registered authors. The key topics of the 4th iCAST 2012 include Pure Mathematics, Applied Mathematics, Theoretical/Mathematical Physics, Dynamical Systems, Statistics and Financial Mathematics. The scientific program was rather full since after the Keynote and Invited Talks in the morning, four parallel sessions ran every day. However, according to all attendees, the program was excellent with a high level of talks and the scientific environment was fruitful; thus all attendees had a creative time. The conference aimed to promote the knowledge and development of high-quality research in mathematical fields concerned with the application of other scientific fields as well as modern technological trends in physics, chemistry, biology, medicine, economics, sociology and environmental sciences. We would like to thank the Keynote and the Invited Speakers for their significant contributions to 4th iCAST 2012. We would also like to thank the members of the International Scientific Committee and the members of the Organizing Committee. We cannot end without expressing our many thanks to International Islamic University Malaysia and our sponsors for their financial support . This volume presents selected papers which have been peer-reviewed. The editors hope that it may be useful and fruitful for scholars, researchers, and advanced technical members of the industrial laboratory facilities for developing new tools and products. Guest Editors Nasir Ganikhodjaev, Farrukh Mukhamedov and Pah Chin Hee The PDF contains the committee lists, board list and biographies of the plenary speakers.

  15. Exploring the Relationship between Mathematical Modelling and Classroom Discourse

    Science.gov (United States)

    Redmond, Trevor; Sheehy, Joanne; Brown, Raymond

    2010-01-01

    This paper explores the notion that the discourse of the mathematics classroom impacts on the practices that students engage when modelling mathematics. Using excerpts of a Year 12 student's report on modelling Newton's law of cooling, this paper argues that when students engage with the discourse of their mathematics classroom in a manner that…

  16. Assessment of Primary 5 Students' Mathematical Modelling Competencies

    Science.gov (United States)

    Chan, Chun Ming Eric; Ng, Kit Ee Dawn; Widjaja, Wanty; Seto, Cynthia

    2012-01-01

    Mathematical modelling is increasingly becoming part of an instructional approach deemed to develop students with competencies to function as 21st century learners and problem solvers. As mathematical modelling is a relatively new domain in the Singapore primary school mathematics curriculum, many teachers may not be aware of the learning outcomes…

  17. Mathematical Modeling of Extinction of Inhomogeneous Populations.

    Science.gov (United States)

    Karev, G P; Kareva, I

    2016-04-01

    Mathematical models of population extinction have a variety of applications in such areas as ecology, paleontology and conservation biology. Here we propose and investigate two types of sub-exponential models of population extinction. Unlike the more traditional exponential models, the life duration of sub-exponential models is finite. In the first model, the population is assumed to be composed of clones that are independent from each other. In the second model, we assume that the size of the population as a whole decreases according to the sub-exponential equation. We then investigate the "unobserved heterogeneity," i.e., the underlying inhomogeneous population model, and calculate the distribution of frequencies of clones for both models. We show that the dynamics of frequencies in the first model is governed by the principle of minimum of Tsallis information loss. In the second model, the notion of "internal population time" is proposed; with respect to the internal time, the dynamics of frequencies is governed by the principle of minimum of Shannon information loss. The results of this analysis show that the principle of minimum of information loss is the underlying law for the evolution of a broad class of models of population extinction. Finally, we propose a possible application of this modeling framework to mechanisms underlying time perception. PMID:27090117

  18. Mathematical model of the Amazon Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Vidal Medina, Juan Ricardo [Universidad Autonoma de Occidente (Colombia)], e-mail: jrvidal@uao.edu.co; Cobasa, Vladimir Melian; Silva, Electo [Universidade Federal de Itajuba, MG (Brazil)], e-mail: vlad@unifei.edu.br

    2010-07-01

    The Excellency Group in Thermoelectric and Distributed Generation (NEST, for its acronym in Portuguese) at the Federal University of Itajuba, has designed a Stirling engine prototype to provide electricity to isolated regions of Brazil. The engine was designed to operate with residual biomass from timber process. This paper presents mathematical models of heat exchangers (hot, cold and regenerator) integrated into second order adiabatic models. The general model takes into account the pressure drop losses, hysteresis and internal losses. The results of power output, engine efficiency, optimal velocity of the exhaust gases and the influence of dead volume in engine efficiency are presented in this paper. The objective of this modeling is to propose improvements to the manufactured engine design. (author)

  19. Solar Panel Mathematical Modeling Using Simulink

    Directory of Open Access Journals (Sweden)

    Chandani Sharma

    2014-05-01

    Full Text Available For decades, electricity is a key driver of socio-economy development. Nowadays, in the context of competition there is a direct relationship between electricity generation and sustainable development of the country. This paper presents distinct use of a Photovoltaic array offering great potential as source of electricity. The simulation uses One-diode equivalent circuit in order to investigate I-V and P-V characteristics. The GUI model is designed with Simulink block libraries. The goals of proposed model are to perform a systematic analysis, modeling and evaluation of the key subsystems for obtaining Maximum Power Point of a solar cell. Effect of increasing number of cells is described at Standard Test Conditions by mathematical modeling of equations. It is desirable to achieve maximum power output at a minimum cost under various operating conditions. Index Terms—

  20. 5th Conference on Advanced Mathematical and Computational Tools in Metrology

    CERN Document Server

    Cox, M G; Filipe, E; Pavese, F; Richter, D

    2001-01-01

    Advances in metrology depend on improvements in scientific and technical knowledge and in instrumentation quality, as well as on better use of advanced mathematical tools and development of new ones. In this volume, scientists from both the mathematical and the metrological fields exchange their experiences. Industrial sectors, such as instrumentation and software, will benefit from this exchange, since metrology has a high impact on the overall quality of industrial products, and applied mathematics is becoming more and more important in industrial processes.This book is of interest to people

  1. Advanced modelling of optical coherence tomography systems

    DEFF Research Database (Denmark)

    Andersen, Peter E.; Thrane, L.; Yura, H.T.;

    2004-01-01

    Analytical and numerical models for describing and understanding the light propagation in samples imaged by optical coherence tomography (OCT) systems are presented. An analytical model for calculating the OCT signal based on the extended Huygens–Fresnel principle valid both for the single...... and multiple scattering regimes is reviewed. An advanced Monte Carlo model for calculating the OCT signal is also reviewed, and the validity of this model is shown through a mathematical proof based on the extended Huygens–Fresnel principle. Moreover, for the first time the model is verified experimentally....... From the analytical model, an algorithm for enhancing OCT images is developed; the so-called true-reflection algorithm in which the OCT signal may be corrected for the attenuation caused by scattering. For the first time, the algorithm is demonstrated by using the Monte Carlo model as a numerical...

  2. Mathematical Modeling of Diaphragm Pneumatic Motors

    Directory of Open Access Journals (Sweden)

    Fojtášek Kamil

    2014-03-01

    Full Text Available Pneumatic diaphragm motors belong to the group of motors with elastic working parts. This part is usually made of rubber with a textile insert and it is deformed under the pressure of a compressed air or from the external mass load. This is resulting in a final working effect. In this type of motors are in contact two different elastic environments – the compressed air and the esaltic part. These motors are mainly the low-stroke and working with relatively large forces. This paper presents mathematical modeling static properties of diaphragm motors.

  3. Line—Art and Its Mathematical Models

    Institute of Scientific and Technical Information of China (English)

    徐迎庆; 汉斯·德灵格; 等

    1998-01-01

    In this paper,the authors describe the principles of Straight Line Strokes illustration,present the mathematical model of the principles,and show how a great number of lines can be implemented as main part of an automated drawing system named Line-Art.Different from traditional drawing art.Line-Art enerates pictures without curves,colors,ink marks,brushes,and oil paint,but only with Straight Line Strokes.Generated pictures are composed,clipped,and plotted.The paper also introduces how to use the initial value problem of the ordinary differential equation to describe a drawing art,e.g.Line-Art.

  4. Mathematical and computational modeling and simulation fundamentals and case studies

    CERN Document Server

    Moeller, Dietmar P F

    2004-01-01

    Mathematical and Computational Modeling and Simulation - a highly multi-disciplinary field with ubiquitous applications in science and engineering - is one of the key enabling technologies of the 21st century. This book introduces to the use of Mathematical and Computational Modeling and Simulation in order to develop an understanding of the solution characteristics of a broad class of real-world problems. The relevant basic and advanced methodologies are explained in detail, with special emphasis on ill-defined problems. Some 15 simulation systems are presented on the language and the logical level. Moreover, the reader can accumulate experience by studying a wide variety of case studies. The latter are briefly described within the book but their full versions as well as some simulation software demos are available on the Web. The book can be used for University courses of different level as well as for self-study. Advanced sections are marked and can be skipped in a first reading or in undergraduate courses...

  5. A MATHEMATICAL MODEL OF RESERVOIR SEDIMENTATION

    Institute of Scientific and Technical Information of China (English)

    HUANG Jinchi

    2001-01-01

    Reliable quantitative estimation of bed aggradation or degradation is important for river-training and water management projects. With the development of water resources, sediment problems associated with a dam are becoming more severe. This paper describes some special problems in mathematical model for calculation of degradation and aggradation in a reservoir. The main efforts of this study are on the treatment of some physical processes of fine sediment transport (<0.05 mm). Problems in a reservoir are obviously different from a natural stream, such as the turbid current flow, orifice sediment flushing;and the initiation and consolidation of cohesive sediment deposition. The case of Liujiaxia Reservoir,which is located in the upper reaches of the Yellow River, is employed to verify the model. The results show that the model is applicable in the evaluation of an engineering planing with plenty of fine sediment movement.

  6. Mathematical modeling of the Phoenix Rising pathway.

    Directory of Open Access Journals (Sweden)

    Chad Liu

    2014-02-01

    Full Text Available Apoptosis is a tightly controlled process in mammalian cells. It is important for embryogenesis, tissue homoeostasis, and cancer treatment. Apoptosis not only induces cell death, but also leads to the release of signals that promote rapid proliferation of surrounding cells through the Phoenix Rising (PR pathway. To quantitatively understand the kinetics of interactions of different molecules in this pathway, we developed a mathematical model to simulate the effects of various changes in the PR pathway on the secretion of prostaglandin E2 (PGE2, a key factor for promoting cell proliferation. These changes include activation of caspase 3 (C3, caspase 7 (C7, and nuclear factor κB (NFκB. In addition, we simulated the effects of cyclooxygenase-2 (COX2 inhibition and C3 knockout on the level of secreted PGE2. The model predictions on PGE2 in MEF and 4T1 cells at 48 hours after 10-Gray radiation were quantitatively consistent with the experimental data in the literature. Compared to C7, the model predicted that C3 activation was more critical for PGE2 production. The model also predicted that PGE2 production could be significantly reduced when COX2 expression was blocked via either NFκB inactivation or treatment of cells with exogenous COX2 inhibitors, which led to a decrease in the rate of conversion from arachidonic acid to prostaglandin H2 in the PR pathway. In conclusion, the mathematical model developed in this study yielded new insights into the process of tissue regrowth stimulated by signals from apoptotic cells. In future studies, the model can be used for experimental data analysis and assisting development of novel strategies/drugs for improving cancer treatment or normal tissue regeneration.

  7. Mathematical Modeling of Hybrid Electrical Engineering Systems

    Directory of Open Access Journals (Sweden)

    A. A. Lobaty

    2016-01-01

    Full Text Available A large class of systems that have found application in various industries and households, electrified transportation facilities and energy sector has been classified as electrical engineering systems. Their characteristic feature is a combination of continuous and discontinuous modes of operation, which is reflected in the appearance of a relatively new term “hybrid systems”. A wide class of hybrid systems is pulsed DC converters operating in a pulse width modulation, which are non-linear systems with variable structure. Using various methods for linearization it is possible to obtain linear mathematical models that rather accurately simulate behavior of such systems. However, the presence in the mathematical models of exponential nonlinearities creates considerable difficulties in the implementation of digital hardware. The solution can be found while using an approximation of exponential functions by polynomials of the first order, that, however, violates the rigor accordance of the analytical model with characteristics of a real object. There are two practical approaches to synthesize algorithms for control of hybrid systems. The first approach is based on the representation of the whole system by a discrete model which is described by difference equations that makes it possible to synthesize discrete algorithms. The second approach is based on description of the system by differential equations. The equations describe synthesis of continuous algorithms and their further implementation in a digital computer included in the control loop system. The paper considers modeling of a hybrid electrical engineering system using differential equations. Neglecting the pulse duration, it has been proposed to describe behavior of vector components in phase coordinates of the hybrid system by stochastic differential equations containing generally non-linear differentiable random functions. A stochastic vector-matrix equation describing dynamics of the

  8. Preparing Secondary Mathematics Teachers: A Focus on Modeling in Algebra

    Science.gov (United States)

    Jung, Hyunyi; Mintos, Alexia; Newton, Jill

    2015-01-01

    This study addressed the opportunities to learn (OTL) modeling in algebra provided to secondary mathematics pre-service teachers (PSTs). To investigate these OTL, we interviewed five instructors of required mathematics and mathematics education courses that had the potential to include opportunities for PSTs to learn algebra at three universities.…

  9. Building Mathematics Achievement Models in Four Countries Using TIMSS 2003

    Science.gov (United States)

    Wang, Ze; Osterlind, Steven J.; Bergin, David A.

    2012-01-01

    Using the Trends in International Mathematics and Science Study 2003 data, this study built mathematics achievement models of 8th graders in four countries: the USA, Russia, Singapore and South Africa. These 4 countries represent the full spectrum of mathematics achievement. In addition, they represent 4 continents, and they include 2 countries…

  10. Mathematical Simulating Model of Phased-Array Antenna in Multifunction Array Radar

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    A mathematical simulating model of phased-array antenna in multifunction array radar has been approached in this paper, including the mathematical simulating model of plane phased-array pattern, the mathematical simulating model of directionality factor, the mathematical simulating model of array factor, the mathematical simulating model of array element factor and the mathematical simulating model of beam steering.

  11. Recent advances in modeling nutrient utilization in ruminants1

    NARCIS (Netherlands)

    Kebreab, E.; Dijkstra, J.; Bannink, A.; France, J.

    2009-01-01

    Mathematical modeling techniques have been applied to study various aspects of the ruminant, such as rumen function, post-absorptive metabolism and product composition. This review focuses on advances made in modeling rumen fermentation and its associated rumen disorders, and energy and nutrient uti

  12. Models for harnessing the Internet in mathematics education

    OpenAIRE

    Kissane, Barry

    2012-01-01

    In recent years, the Internet has increasingly been used to provide significant resources for student to learn mathematics and to learn about mathematics, as well as significant resources for teachers to support these. Effective access to and use of these has been hampered in practice by limited facilities in schools and the limited experience of many mathematics teachers with the Internet for mathematical purposes. This paper offers models for understanding the effective use of Internet reso...

  13. Qualitative mathematics for the social sciences mathematical models for research on cultural dynamics

    CERN Document Server

    Rudolph, Lee

    2012-01-01

    In this book Lee Rudolph brings together international contributors who combine psychological and mathematical perspectives to analyse how qualitative mathematics can be used to create models of social and psychological processes. Bridging the gap between the fields with an imaginative and stimulating collection of contributed chapters, the volume updates the current research on the subject, which until now has been rather limited, focussing largely on the use of statistics. Qualitative Mathematics for the Social Sciences contains a variety of useful illustrative figures, in

  14. Mathematical models for therapeutic approaches to control HIV disease transmission

    CERN Document Server

    Roy, Priti Kumar

    2015-01-01

    The book discusses different therapeutic approaches based on different mathematical models to control the HIV/AIDS disease transmission. It uses clinical data, collected from different cited sources, to formulate the deterministic as well as stochastic mathematical models of HIV/AIDS. It provides complementary approaches, from deterministic and stochastic points of view, to optimal control strategy with perfect drug adherence and also tries to seek viewpoints of the same issue from different angles with various mathematical models to computer simulations. The book presents essential methods and techniques for students who are interested in designing epidemiological models on HIV/AIDS. It also guides research scientists, working in the periphery of mathematical modeling, and helps them to explore a hypothetical method by examining its consequences in the form of a mathematical modelling and making some scientific predictions. The model equations, mathematical analysis and several numerical simulations that are...

  15. Laser interaction with biological material mathematical modeling

    CERN Document Server

    Kulikov, Kirill

    2014-01-01

    This book covers the principles of laser interaction with biological cells and tissues of varying degrees of organization. The problems of biomedical diagnostics are considered. Scattering of laser irradiation of blood cells is modeled for biological structures (dermis, epidermis, vascular plexus). An analytic theory is provided which is based on solving the wave equation for the electromagnetic field. It allows the accurate analysis of interference effects arising from the partial superposition of scattered waves. Treated topics of mathematical modeling are: optical characterization of biological tissue with large-scale and small-scale inhomogeneities in the layers, heating blood vessel under laser irradiation incident on the outer surface of the skin and thermo-chemical denaturation of biological structures at the example of human skin.

  16. Knowledge Map: Mathematical Model and Dynamic Behaviors

    Institute of Scientific and Technical Information of China (English)

    Hai Zhuge; Xiang-Feng Luo

    2005-01-01

    Knowledge representation and reasoning is a key issue of the Knowledge Grid. This paper proposes a Knowledge Map (KM) model for representing and reasoning causal knowledge as an overlay in the Knowledge Grid. It extends Fuzzy Cognitive Maps (FCMs) to represent and reason not only simple cause-effect relations, but also time-delay causal relations, conditional probabilistic causal relations and sequential relations. The mathematical model and dynamic behaviors of KM are presented. Experiments show that, under certain conditions, the dynamic behaviors of KM can translate between different states. Knowing this condition, experts can control or modify the constructed KM while its dynamic behaviors do not accord with their expectation. Simulations and applications show that KM is more powerful and natural than FCM in emulating real world.

  17. A mathematical model of aerosol holding chambers

    DEFF Research Database (Denmark)

    Zak, M; Madsen, J; Berg, E;

    1999-01-01

    A mathematical model of aerosol delivery from holding chambers (spacers) was developed incorporating tidal volume (VT), chamber volume (Vch), apparatus dead space (VD), effect of valve insufficiency and other leaks, loss of aerosol by immediate impact on the chamber wall, and fallout of aerosol...... in the chamber with time. Four different spacers were connected via filters to a mechanical lung model, and aerosol delivery during "breathing" was determined from drug recovery from the filters. The formula correctly predicted the delivery of budesonide aerosol from the AeroChamber (Trudell Medical, London......, Ontario, Canada), NebuChamber (Astra, Södirtälje, Sweden) and Nebuhaler (Astra) adapted for babies. The dose of fluticasone proportionate delivered by the Babyhaler (Glaxco Wellcome, Oxbridge, Middlesex, UK) was 80% of that predicted, probably because of incomplete priming of this spacer. Of the above...

  18. A Mathematical Model for Cisplatin Cellular Pharmacodynamics

    Directory of Open Access Journals (Sweden)

    Ardith W. El-Kareh

    2003-03-01

    Full Text Available A simple theoretical model for the cellular pharmacodynamics of cisplatin is presented. The model, which takes into account the kinetics of cisplatin uptake by cells and the intracellular binding of the drug, can be used to predict the dependence of survival (relative to controls on the time course of extracellular exposure. Cellular pharmacokinetic parameters are derived from uptake data for human ovarian and head and neck cancer cell lines. Survival relative to controls is assumed to depend on the peak concentration of DNA-bound intracellular platinum. Model predictions agree well with published data on cisplatin cytotoxicity for three different cancer cell lines, over a wide range of exposure times. In comparison with previously published mathematical models for anticancer drug pharmacodynamics, the present model provides a better fit to experimental data sets including long exposure times (∼100 hours. The model provides a possible explanation for the fact that cell kill correlates well with area under the extracellular concentration-time curve in some data sets, but not in others. The model may be useful for optimizing delivery schedules and for the dosing of cisplatin for cancer therapy.

  19. Common Mathematical Model of Fatigue Characteristics

    Directory of Open Access Journals (Sweden)

    Z. Maléř

    2004-01-01

    Full Text Available This paper presents a new common mathematical model which is able to describe fatigue characteristics in the whole necessary range by one equation only:log N = A(R + B(R ∙ log Sawhere A(R = AR2 + BR + C and B(R = DR2 + AR + F.This model was verified by five sets of fatigue data taken from the literature and by our own three additional original fatigue sets. The fatigue data usually described the region of N 104 to 3 x 106 and stress ratio of R = -2 to 0.5. In all these cases the proposed model described fatigue results with small scatter. Studying this model, following knowledge was obtained:– the parameter ”stress ratio R” was a good physical characteristic– the proposed model provided a good description of the eight collections of fatigue test results by one equation only– the scatter of the results through the whole scope is only a little greater than that round the individual S/N curve– using this model while testing may reduce the number of test samples and shorten the test time– as the proposed model represents a common form of the S/N curve, it may be used for processing uniform objective fatigue life results, which may enable mutual comparison of fatigue characteristics.

  20. Teaching Mathematical Modelling for Earth Sciences via Case Studies

    Science.gov (United States)

    Yang, Xin-She

    2010-05-01

    Mathematical modelling is becoming crucially important for earth sciences because the modelling of complex systems such as geological, geophysical and environmental processes requires mathematical analysis, numerical methods and computer programming. However, a substantial fraction of earth science undergraduates and graduates may not have sufficient skills in mathematical modelling, which is due to either limited mathematical training or lack of appropriate mathematical textbooks for self-study. In this paper, we described a detailed case-study-based approach for teaching mathematical modelling. We illustrate how essential mathematical skills can be developed for students with limited training in secondary mathematics so that they are confident in dealing with real-world mathematical modelling at university level. We have chosen various topics such as Airy isostasy, greenhouse effect, sedimentation and Stokes' flow,free-air and Bouguer gravity, Brownian motion, rain-drop dynamics, impact cratering, heat conduction and cooling of the lithosphere as case studies; and we use these step-by-step case studies to teach exponentials, logarithms, spherical geometry, basic calculus, complex numbers, Fourier transforms, ordinary differential equations, vectors and matrix algebra, partial differential equations, geostatistics and basic numeric methods. Implications for teaching university mathematics for earth scientists for tomorrow's classroom will also be discussed. Refereces 1) D. L. Turcotte and G. Schubert, Geodynamics, 2nd Edition, Cambridge University Press, (2002). 2) X. S. Yang, Introductory Mathematics for Earth Scientists, Dunedin Academic Press, (2009).

  1. Basic and advanced numerical performances relate to mathematical expertise but are fully mediated by visuospatial skills.

    Science.gov (United States)

    Sella, Francesco; Sader, Elie; Lolliot, Simon; Cohen Kadosh, Roi

    2016-09-01

    Recent studies have highlighted the potential role of basic numerical processing in the acquisition of numerical and mathematical competences. However, it is debated whether high-level numerical skills and mathematics depends specifically on basic numerical representations. In this study mathematicians and nonmathematicians performed a basic number line task, which required mapping positive and negative numbers on a physical horizontal line, and has been shown to correlate with more advanced numerical abilities and mathematical achievement. We found that mathematicians were more accurate compared with nonmathematicians when mapping positive, but not negative numbers, which are considered numerical primitives and cultural artifacts, respectively. Moreover, performance on positive number mapping could predict whether one is a mathematician or not, and was mediated by more advanced mathematical skills. This finding might suggest a link between basic and advanced mathematical skills. However, when we included visuospatial skills, as measured by block design subtest, the mediation analysis revealed that the relation between the performance in the number line task and the group membership was explained by non-numerical visuospatial skills. These results demonstrate that relation between basic, even specific, numerical skills and advanced mathematical achievement can be artifactual and explained by visuospatial processing. (PsycINFO Database Record PMID:26913930

  2. Linear models in the mathematics of uncertainty

    CERN Document Server

    Mordeson, John N; Clark, Terry D; Pham, Alex; Redmond, Michael A

    2013-01-01

    The purpose of this book is to present new mathematical techniques for modeling global issues. These mathematical techniques are used to determine linear equations between a dependent variable and one or more independent variables in cases where standard techniques such as linear regression are not suitable. In this book, we examine cases where the number of data points is small (effects of nuclear warfare), where the experiment is not repeatable (the breakup of the former Soviet Union), and where the data is derived from expert opinion (how conservative is a political party). In all these cases the data  is difficult to measure and an assumption of randomness and/or statistical validity is questionable.  We apply our methods to real world issues in international relations such as  nuclear deterrence, smart power, and cooperative threat reduction. We next apply our methods to issues in comparative politics such as successful democratization, quality of life, economic freedom, political stability, and fail...

  3. Mathematical model of tumor-immune surveillance.

    Science.gov (United States)

    Mahasa, Khaphetsi Joseph; Ouifki, Rachid; Eladdadi, Amina; Pillis, Lisette de

    2016-09-01

    We present a novel mathematical model involving various immune cell populations and tumor cell populations. The model describes how tumor cells evolve and survive the brief encounter with the immune system mediated by natural killer (NK) cells and the activated CD8(+) cytotoxic T lymphocytes (CTLs). The model is composed of ordinary differential equations describing the interactions between these important immune lymphocytes and various tumor cell populations. Based on up-to-date knowledge of immune evasion and rational considerations, the model is designed to illustrate how tumors evade both arms of host immunity (i.e. innate and adaptive immunity). The model predicts that (a) an influx of an external source of NK cells might play a crucial role in enhancing NK-cell immune surveillance; (b) the host immune system alone is not fully effective against progression of tumor cells; (c) the development of immunoresistance by tumor cells is inevitable in tumor immune surveillance. Our model also supports the importance of infiltrating NK cells in tumor immune surveillance, which can be enhanced by NK cell-based immunotherapeutic approaches. PMID:27317864

  4. Mathematical problems in modeling artificial heart

    Directory of Open Access Journals (Sweden)

    Ahmed N. U.

    1995-01-01

    Full Text Available In this paper we discuss some problems arising in mathematical modeling of artificial hearts. The hydrodynamics of blood flow in an artificial heart chamber is governed by the Navier-Stokes equation, coupled with an equation of hyperbolic type subject to moving boundary conditions. The flow is induced by the motion of a diaphragm (membrane inside the heart chamber attached to a part of the boundary and driven by a compressor (pusher plate. On one side of the diaphragm is the blood and on the other side is the compressor fluid. For a complete mathematical model it is necessary to write the equation of motion of the diaphragm and all the dynamic couplings that exist between its position, velocity and the blood flow in the heart chamber. This gives rise to a system of coupled nonlinear partial differential equations; the Navier-Stokes equation being of parabolic type and the equation for the membrane being of hyperbolic type. The system is completed by introducing all the necessary static and dynamic boundary conditions. The ultimate objective is to control the flow pattern so as to minimize hemolysis (damage to red blood cells by optimal choice of geometry, and by optimal control of the membrane for a given geometry. The other clinical problems, such as compatibility of the material used in the construction of the heart chamber, and the membrane, are not considered in this paper. Also the dynamics of the valve is not considered here, though it is also an important element in the overall design of an artificial heart. We hope to model the valve dynamics in later paper.

  5. The use of mathematical models in teaching wastewater treatment engineering

    DEFF Research Database (Denmark)

    Morgenroth, Eberhard Friedrich; Arvin, Erik; Vanrolleghem, P.

    2002-01-01

    Mathematical modeling of wastewater treatment processes has become increasingly popular in recent years. To prepare students for their future careers, environmental engineering education should provide students with sufficient background and experiences to understand and apply mathematical models...... efficiently and responsibly. Approaches for introducing mathematical modeling into courses on wastewater treatment engineering are discussed depending on the learning objectives, level of the course and the time available....

  6. Mathematics Models in Chemistry--An Innovation for Non-Mathematics and Non-Science Majors

    Science.gov (United States)

    Rash, Agnes M.; Zurbach, E. Peter

    2004-01-01

    The intention of this article is to present a year-long interdisciplinary course, Mathematical Models in Chemistry. The course is comprised of eleven units, each of which has both a mathematical and a chemical component. A syllabus of the course is given and the format of the class is explained. The interaction of the professors and the content is…

  7. Mathematical Modeling of the Origins of Life

    Science.gov (United States)

    Pohorille, Andrew

    2006-01-01

    The emergence of early metabolism - a network of catalyzed chemical reactions that supported self-maintenance, growth, reproduction and evolution of the ancestors of contemporary cells (protocells) was a critical, but still very poorly understood step on the path from inanimate to animate matter. Here, it is proposed and tested through mathematical modeling of biochemically plausible systems that the emergence of metabolism and its initial evolution towards higher complexity preceded the emergence of a genome. Even though the formation of protocellular metabolism was driven by non-genomic, highly stochastic processes the outcome was largely deterministic, strongly constrained by laws of chemistry. It is shown that such concepts as speciation and fitness to the environment, developed in the context of genomic evolution, also held in the absence of a genome.

  8. Mathematical Model for the Continuous Vacuum Drying

    Institute of Scientific and Technical Information of China (English)

    DAI Hui-liang

    2002-01-01

    An improved mathematical model for the continuous vacuum drying of highly viscous and heatsensitive foodstuffs was proposed, The process of continuous vacuum drying was presented as a moving boundary problem of moisture evaporation in cylindrical coordinates. Boundary condition of the first kind for the known functional dependence of the drying body surface temperature on time was considered. Finally, the appropriate system of differential equations was solved numerically and the values of drying rate, integral moisture content of the material, moving boundary position as well as temperature in any point of the material and at any moment time were obtained. This procedure was applied to continuous vacuum drying of foods such as natural cheese and fresh meat paste.

  9. Mathematical analysis of epidemiological models with heterogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Van Ark, J.W.

    1992-01-01

    For many diseases in human populations the disease shows dissimilar characteristics in separate subgroups of the population; for example, the probability of disease transmission for gonorrhea or AIDS is much higher from male to female than from female to male. There is reason to construct and analyze epidemiological models which allow this heterogeneity of population, and to use these models to run computer simulations of the disease to predict the incidence and prevalence of the disease. In the models considered here the heterogeneous population is separated into subpopulations whose internal and external interactions are homogeneous in the sense that each person in the population can be assumed to have all average actions for the people of that subpopulation. The first model considered is an SIRS models; i.e., the Susceptible can become Infected, and if so he eventually Recovers with temporary immunity, and after a period of time becomes Susceptible again. Special cases allow for permanent immunity or other variations. This model is analyzed and threshold conditions are given which determine whether the disease dies out or persists. A deterministic model is presented; this model is constructed using difference equations, and it has been used in computer simulations for the AIDS epidemic in the homosexual population in San Francisco. The homogeneous version and the heterogeneous version of the differential-equations and difference-equations versions of the deterministic model are analyzed mathematically. In the analysis, equilibria are identified and threshold conditions are set forth for the disease to die out if the disease is below the threshold so that the disease-free equilibrium is globally asymptotically stable. Above the threshold the disease persists so that the disease-free equilibrium is unstable and there is a unique endemic equilibrium.

  10. On the mathematical modeling of wound healing angiogenesis in skin as a reaction-transport process

    Directory of Open Access Journals (Sweden)

    Jennifer A Flegg

    2015-09-01

    Full Text Available Over the last thirty years, numerous research groups have attempted to provide mathematical descriptions of the skin wound healing process. The development of theoretical models of the interlinked processes that underlie the healing mechanism has yielded considerable insight into aspects of this critical phenomenon that remain difficult to investigate empirically. In particular, the mathematical modeling of angiogenesis, i.e. capillary sprout growth has offered new paradigms for the understanding of this highly complex and crucial step in the healing pathway. With the recent advances in imaging and cell tracking, the time is now ripe for an appraisal of the utility and importance of mathematical modeling in wound healing angiogenesis research. The purpose of this review is to pedagogically elucidate the conceptual principles that have underpinned the development of mathematical descriptions of wound healing angiogenesis, specifically those that have utilized a continuum reaction-transport framework, and highlight the contribution that such models have made towards the advancement of research in this field. We aim to draw attention to the common assumptions made when developing models of this nature, thereby bringing into focus the advantages and limitations of this approach. A deeper integration of mathematical modeling techniques into the practice of wound healing angiogenesis research promises new perspectives for advancing our knowledge in this area. To this end we detail several open problems related to the understanding of wound healing angiogenesis, and outline how these issues could be addressed through closer cross-disciplinary collaboration.

  11. Mathematical modeling of endovenous laser treatment (ELT

    Directory of Open Access Journals (Sweden)

    Wassmer Benjamin

    2006-04-01

    Full Text Available Abstract Background and objectives Endovenous laser treatment (ELT has been recently proposed as an alternative in the treatment of reflux of the Great Saphenous Vein (GSV and Small Saphenous Vein (SSV. Successful ELT depends on the selection of optimal parameters required to achieve an optimal vein damage while avoiding side effects. Mathematical modeling of ELT could provide a better understanding of the ELT process and could determine the optimal dosage as a function of vein diameter. Study design/materials and methods The model is based on calculations describing the light distribution using the diffusion approximation of the transport theory, the temperature rise using the bioheat equation and the laser-induced injury using the Arrhenius damage model. The geometry to simulate ELT was based on a 2D model consisting of a cylindrically symmetric blood vessel including a vessel wall and surrounded by an infinite homogenous tissue. The mathematical model was implemented using the Macsyma-Pdease2D software (Macsyma Inc., Arlington, MA, USA. Damage to the vein wall for CW and single shot energy was calculated for 3 and 5 mm vein diameters. In pulsed mode, the pullback distance (3, 5 and 7 mm was considered. For CW mode simulation, the pullback speed (1, 2, 3 mm/s was the variable. The total dose was expressed as joules per centimeter in order to perform comparison to results already reported in clinical studies. Results In pulsed mode, for a 3 mm vein diameter, irrespective of the pullback distance (2, 5 or 7 mm, a minimum fluence of 15 J/cm is required to obtain a permanent damage of the intima. For a 5 mm vein diameter, 50 J/cm (15W-2s is required. In continuous mode, for a 3 mm and 5 mm vein diameter, respectively 65 J/cm and 100 J/cm are required to obtain a permanent damage of the vessel wall. Finally, the use of different wavelengths (810 nm or 980 nm played only a minor influence on these results. Discussion and conclusion The parameters

  12. Mathematical models of physics problems (physics research and technology)

    CERN Document Server

    Anchordoqui, Luis Alfredo

    2013-01-01

    This textbook is intended to provide a foundation for a one-semester introductory course on the advanced mathematical methods that form the cornerstones of the hard sciences and engineering. The work is suitable for first year graduate or advanced undergraduate students in the fields of Physics, Astronomy and Engineering. This text therefore employs a condensed narrative sufficient to prepare graduate and advanced undergraduate students for the level of mathematics expected in more advanced graduate physics courses, without too much exposition on related but non-essential material. In contrast to the two semesters traditionally devoted to mathematical methods for physicists, the material in this book has been quite distilled, making it a suitable guide for a one-semester course. The assumption is that the student, once versed in the fundamentals, can master more esoteric aspects of these topics on his or her own if and when the need arises during the course of conducting research. The book focuses on two cor...

  13. Mathematical Modeling Social Responsibility for Dynamic Organizations

    Directory of Open Access Journals (Sweden)

    Farzaneh Chavoshbashi

    2012-03-01

    Full Text Available Dynamic organizations as accountable organizations, for transparency and accountability to its stakeholders to stakeholders for their toward performance there should express their commitment to social responsibility are through their values and ensure that this commitment throughout the organization are now and thus will have a social responsibility for their mutual benefit, so there is more and more coherent in their ethical approach takes advantage and the community and stakeholders and the organization will have better performance and strengths. Because of interest in social responsibility, in this paper dynamic model is presented for Corporate Social Responsibility of Bionic organization. Model presented a new model is inspired by chaos theory and natural systems theory based on bifurcation in creation to be all natural systems, realizing the value of responsibility as one of the fundamental values of social and institutional development that the relationship between business and work environment in the global market economy and range will be specified. First Social Responsibility factors identified, then experts and scholars determine the weight of the components and technical coefficient for modeling and paired comparison has been done using MATLAB mathematical Software.

  14. Mathematical Model for the Mineralization of Bone

    Science.gov (United States)

    Martin, Bruce

    1994-01-01

    A mathematical model is presented for the transport and precipitation of mineral in refilling osteons. One goal of this model was to explain calcification 'halos,' in which the bone near the haversian canal is more highly mineralized than the more peripheral lamellae, which have been mineralizing longer. It was assumed that the precipitation rate of mineral is proportional to the difference between the local concentration of calcium ions and an equilibrium concentration and that the transport of ions is by either diffusion or some other concentration gradient-dependent process. Transport of ions was assumed to be slowed by the accumulation of mineral in the matrix along the transport path. ne model also mimics bone apposition, slowing of apposition during refilling, and mineralization lag time. It was found that simple diffusion cannot account for the transport of calcium ions into mineralizing bone, because the diffusion coefficient is two orders of magnitude too low. If a more rapid concentration gradient-driven means of transport exists, the model demonstrates that osteonal geometry and variable rate of refilling work together to produce calcification halos, as well as the primary and secondary calcification effect reported in the literature.

  15. Mathematics in Nature Modeling Patterns in the Natural World

    CERN Document Server

    Adam, John A

    2011-01-01

    From rainbows, river meanders, and shadows to spider webs, honeycombs, and the markings on animal coats, the visible world is full of patterns that can be described mathematically. Examining such readily observable phenomena, this book introduces readers to the beauty of nature as revealed by mathematics and the beauty of mathematics as revealed in nature.Generously illustrated, written in an informal style, and replete with examples from everyday life, Mathematics in Nature is an excellent and undaunting introduction to the ideas and methods of mathematical modeling. It illustrates how mathem

  16. An introduction to mathematical modeling a course in mechanics

    CERN Document Server

    Oden, Tinsley J

    2011-01-01

    A modern approach to mathematical modeling, featuring unique applications from the field of mechanics An Introduction to Mathematical Modeling: A Course in Mechanics is designed to survey the mathematical models that form the foundations of modern science and incorporates examples that illustrate how the most successful models arise from basic principles in modern and classical mathematical physics. Written by a world authority on mathematical theory and computational mechanics, the book presents an account of continuum mechanics, electromagnetic field theory, quantum mechanics, and statistical mechanics for readers with varied backgrounds in engineering, computer science, mathematics, and physics. The author streamlines a comprehensive understanding of the topic in three clearly organized sections: Nonlinear Continuum Mechanics introduces kinematics as well as force and stress in deformable bodies; mass and momentum; balance of linear and angular momentum; conservation of energy; and constitutive equation...

  17. A mathematical model of glutathione metabolism

    Directory of Open Access Journals (Sweden)

    James S Jill

    2008-04-01

    Full Text Available Abstract Background Glutathione (GSH plays an important role in anti-oxidant defense and detoxification reactions. It is primarily synthesized in the liver by the transsulfuration pathway and exported to provide precursors for in situ GSH synthesis by other tissues. Deficits in glutathione have been implicated in aging and a host of diseases including Alzheimer's disease, Parkinson's disease, cardiovascular disease, cancer, Down syndrome and autism. Approach We explore the properties of glutathione metabolism in the liver by experimenting with a mathematical model of one-carbon metabolism, the transsulfuration pathway, and glutathione synthesis, transport, and breakdown. The model is based on known properties of the enzymes and the regulation of those enzymes by oxidative stress. We explore the half-life of glutathione, the regulation of glutathione synthesis, and its sensitivity to fluctuations in amino acid input. We use the model to simulate the metabolic profiles previously observed in Down syndrome and autism and compare the model results to clinical data. Conclusion We show that the glutathione pools in hepatic cells and in the blood are quite insensitive to fluctuations in amino acid input and offer an explanation based on model predictions. In contrast, we show that hepatic glutathione pools are highly sensitive to the level of oxidative stress. The model shows that overexpression of genes on chromosome 21 and an increase in oxidative stress can explain the metabolic profile of Down syndrome. The model also correctly simulates the metabolic profile of autism when oxidative stress is substantially increased and the adenosine concentration is raised. Finally, we discuss how individual variation arises and its consequences for one-carbon and glutathione metabolism.

  18. Mathematical model insights into arsenic detoxification

    Directory of Open Access Journals (Sweden)

    Nijhout H Frederik

    2011-08-01

    Full Text Available Abstract Background Arsenic in drinking water, a major health hazard to millions of people in South and East Asia and in other parts of the world, is ingested primarily as trivalent inorganic arsenic (iAs, which then undergoes hepatic methylation to methylarsonic acid (MMAs and a second methylation to dimethylarsinic acid (DMAs. Although MMAs and DMAs are also known to be toxic, DMAs is more easily excreted in the urine and therefore methylation has generally been considered a detoxification pathway. A collaborative modeling project between epidemiologists, biologists, and mathematicians has the purpose of explaining existing data on methylation in human studies in Bangladesh and also testing, by mathematical modeling, effects of nutritional supplements that could increase As methylation. Methods We develop a whole body mathematical model of arsenic metabolism including arsenic absorption, storage, methylation, and excretion. The parameters for arsenic methylation in the liver were taken from the biochemical literature. The transport parameters between compartments are largely unknown, so we adjust them so that the model accurately predicts the urine excretion rates of time for the iAs, MMAs, and DMAs in single dose experiments on human subjects. Results We test the model by showing that, with no changes in parameters, it predicts accurately the time courses of urinary excretion in mutiple dose experiments conducted on human subjects. Our main purpose is to use the model to study and interpret the data on the effects of folate supplementation on arsenic methylation and excretion in clinical trials in Bangladesh. Folate supplementation of folate-deficient individuals resulted in a 14% decrease in arsenicals in the blood. This is confirmed by the model and the model predicts that arsenicals in the liver will decrease by 19% and arsenicals in other body stores by 26% in these same individuals. In addition, the model predicts that arsenic

  19. System and mathematical modeling of quadrotor dynamics

    Science.gov (United States)

    Goodman, Jacob M.; Kim, Jinho; Gadsden, S. Andrew; Wilkerson, Stephen A.

    2015-05-01

    Unmanned aerial systems (UAS) are becoming increasingly visible in our daily lives; and range in operation from search and rescue, monitoring hazardous environments, and to the delivery of goods. One of the most popular UAS are based on a quad-rotor design. These are typically small devices that rely on four propellers for lift and movement. Quad-rotors are inherently unstable, and rely on advanced control methodologies to keep them operating safely and behaving in a predictable and desirable manner. The control of these devices can be enhanced and improved by making use of an accurate dynamic model. In this paper, we examine a simple quadrotor model, and note some of the additional dynamic considerations that were left out. We then compare simulation results of the simple model with that of another comprehensive model.

  20. Mathematical Manipulative Models: In Defense of “Beanbag Biology”

    OpenAIRE

    Jungck, John R.; Gaff, Holly; Weisstein, Anton E

    2010-01-01

    Mathematical manipulative models have had a long history of influence in biological research and in secondary school education, but they are frequently neglected in undergraduate biology education. By linking mathematical manipulative models in a four-step process—1) use of physical manipulatives, 2) interactive exploration of computer simulations, 3) derivation of mathematical relationships from core principles, and 4) analysis of real data sets—we demonstrate a process that we have shared i...

  1. Mathematical model “The electric line - wind farm”

    OpenAIRE

    Merenco V.

    2008-01-01

    It is considered the problem of finding of the mathematical model of a circuit “electric line – wind farm” with the purpose of analysis of operating modes by a method of mathematical simulation. The mathematical model is based on a method of characteristics, takes into account heterogeneity of a circuit and allows realizing various modes and changes in structure of a circuit simple change of values of sizes set as the concentrated parameters.

  2. Manual on mathematical models in isotope hydrogeology

    International Nuclear Information System (INIS)

    Methodologies based on the use of naturally occurring isotopes are, at present, an integral part of studies being undertaken for water resources assessment and management. Quantitative evaluations based on the temporal and/or spatial distribution of different isotopic species in hydrological systems require conceptual mathematical formulations. Different types of model can be employed depending on the nature of the hydrological system under investigation, the amount and type of data available, and the required accuracy of the parameter to be estimated. This manual provides an overview of the basic concepts of existing modelling approaches, procedures for their application to different hydrological systems, their limitations and data requirements. Guidance in their practical applications, illustrative case studies and information on existing PC software are also included. While the subject matter of isotope transport modelling and improved quantitative evaluations through natural isotopes in water sciences is still at the development stage, this manual summarizes the methodologies available at present, to assist the practitioner in the proper use within the framework of ongoing isotope hydrological field studies. In view of the widespread use of isotope methods in groundwater hydrology, the methodologies covered in the manual are directed towards hydrogeological applications, although most of the conceptual formulations presented would generally be valid. Refs, figs, tabs

  3. Advanced Placement Mathematics Calculus, Grade 12 Curriculum Guide.

    Science.gov (United States)

    Scharf, John; And Others

    This document is a guide to the advanced placement program in calculus for grade 12 in the city schools in Warren, Ohio. The program covers analytic geometry, differential and integral calculus of algebraic functions, elementary transcendental functions, and applications of differentiation and integration. The philosophy and aims of the program…

  4. Mathematical modelling: From school to university

    Directory of Open Access Journals (Sweden)

    Ansie Harding

    2009-09-01

    Full Text Available The outcomes based education (OBE system is characterised by controversy and the 2008 matric results that rendered admission to an unusually large number of students did nothing to silence critics. The first students who completed their full cycle of school education in the OBE system entered universities in 2009 and their preparedness for university mathematics as well as their performance at university level are important as indicaters for estimating the success or otherwise of the OBE system. In a previous study student performance in mathematics admission tests for 2005-2007 was investigated and it was found that students who had had partial exposure to OBE performed worse than had been the case with their predecessors in the categories of modelling and ratio problems. As a result, this study was conducted to investigate how the 2009 intake of students performed in a modelling course at university level. A report is presented which deals with student performance in the course, problems experienced, the effect of remedial intervention on performance and whether students of the OBE system are adequately prepared for mathematical modelling at university level. This study focuses on performance in a first year course in mathematical modelling at the University of Pretoria. The course is problem based and is technology intensive, requiring use of the software package Matlab. For investigative purposes the papers of semester tests 1 and 2 of 2005 were used unchanged for tests in 2009. Students of 2009 did not have access to the 2005 papers and the same lecturer taught students of both groups. The lecturer also noted personal experiences in respect of students and was able to draw reasonable comparisons between the 2009 students and previous groups because of her years of involvement with the course. The entrance requirement of 60% for matric mathematics in 2005 was increased to 70% in 2009. Results indicate that the pass percentage decreased in

  5. Mathematical Modelling for Micropiles Embedded in Salt Rock

    OpenAIRE

    Rădan (Toader) Georgiana; Rădulescu Nicoleta; Oancea Gheorghe

    2016-01-01

    This study presents the results of the mathematical modelling for the micropiles foundation of an investement objective located in Slanic, Prahova county. Three computing models were created and analyzed with software, based on Finite Element Method. With Plaxis 2D model was analyzed the isolated micropile and the three-dimensional analysis was made with Plaxis 3D model, for group of micropiles. For the micropiles foundation was used Midas GTS-NX model. The mathematical models were calibrated...

  6. Mathematics Teacher TPACK Standards and Development Model

    Science.gov (United States)

    Niess, Margaret L.; Ronau, Robert N.; Shafer, Kathryn G.; Driskell, Shannon O.; Harper, Suzanne R.; Johnston, Christopher; Browning, Christine; Ozgun-Koca, S. Asli; Kersaint, Gladis

    2009-01-01

    What knowledge is needed to teach mathematics with digital technologies? The overarching construct, called technology, pedagogy, and content knowledge (TPACK), has been proposed as the interconnection and intersection of technology, pedagogy, and content knowledge. Mathematics Teacher TPACK Standards offer guidelines for thinking about this…

  7. Modeling anaphora in informal mathematical dialogue

    OpenAIRE

    Wolska, Magdalena; Ivana Kruijff-Korbayová

    2006-01-01

    We analyze anaphoric phenomena in the context of building an input understanding component for a conversational system for tutoring mathematics. In this paper, we report the results of data analysis of two sets of corpora of dialogs on mathematical theorem proving. We exemplify anaphoric phenomena, identify factors relevant to anaphora resolution in our domain and extensions to the input interpretation component to support it.

  8. Modelling Mathematical Reasoning in Physics Education

    Science.gov (United States)

    Uhden, Olaf; Karam, Ricardo; Pietrocola, Mauricio; Pospiech, Gesche

    2012-01-01

    Many findings from research as well as reports from teachers describe students' problem solving strategies as manipulation of formulas by rote. The resulting dissatisfaction with quantitative physical textbook problems seems to influence the attitude towards the role of mathematics in physics education in general. Mathematics is often seen as a…

  9. Advanced Chemistry Basins Model

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Mario; Cathles, Lawrence; Manhardt, Paul; Meulbroek, Peter; Tang, Yongchun

    2003-02-13

    The objective of this project is to: (1) Develop a database of additional and better maturity indicators for paleo-heat flow calibration; (2) Develop maturation models capable of predicting the chemical composition of hydrocarbons produced by a specific kerogen as a function of maturity, heating rate, etc.; assemble a compositional kinetic database of representative kerogens; (3) Develop a 4 phase equation of state-flash model that can define the physical properties (viscosity, density, etc.) of the products of kerogen maturation, and phase transitions that occur along secondary migration pathways; (4) Build a conventional basin model and incorporate new maturity indicators and data bases in a user-friendly way; (5) Develop an algorithm which combines the volume change and viscosities of the compositional maturation model to predict the chemistry of the hydrocarbons that will be expelled from the kerogen to the secondary migration pathways; (6) Develop an algorithm that predicts the flow of hydrocarbons along secondary migration pathways, accounts for mixing of miscible hydrocarbon components along the pathway, and calculates the phase fractionation that will occur as the hydrocarbons move upward down the geothermal and fluid pressure gradients in the basin; and (7) Integrate the above components into a functional model implemented on a PC or low cost workstation.

  10. Mathematical Models and Economic Forecasting: Some Uses and Mis-Uses of Mathematics in Economics

    OpenAIRE

    David Hendry

    2011-01-01

    We consider three 'cases studies' of the uses and mis-uses of mathematics in economics and econometrics. The first concerns economic forecasting, where a mathematical analysis is essential, and is independent of the specific forecasting model and how the process being forecast behaves. The second concerns model selection with more candidate variables than the number of observations. Again, an understanding of the properties of extended general-to-specific procedures is impossible without adva...

  11. Mathematical modeling of Chikungunya fever control

    Science.gov (United States)

    Hincapié-Palacio, Doracelly; Ospina, Juan

    2015-05-01

    Chikungunya fever is a global concern due to the occurrence of large outbreaks, the presence of persistent arthropathy and its rapid expansion throughout various continents. Globalization and climate change have contributed to the expansion of the geographical areas where mosquitoes Aedes aegypti and Aedes albopictus (Stegomyia) remain. It is necessary to improve the techniques of vector control in the presence of large outbreaks in The American Region. We derive measures of disease control, using a mathematical model of mosquito-human interaction, by means of three scenarios: a) a single vector b) two vectors, c) two vectors and human and non-human reservoirs. The basic reproductive number and critical control measures were deduced by using computer algebra with Maple (Maplesoft Inc, Ontario Canada). Control measures were simulated with parameter values obtained from published data. According to the number of households in high risk areas, the goals of effective vector control to reduce the likelihood of mosquito-human transmission would be established. Besides the two vectors, if presence of other non-human reservoirs were reported, the monthly target of effective elimination of the vector would be approximately double compared to the presence of a single vector. The model shows the need to periodically evaluate the effectiveness of vector control measures.

  12. Mathematical modeling of moving boundary problems in thermal energy storage

    Science.gov (United States)

    Solomon, A. D.

    1980-01-01

    The capability for predicting the performance of thermal energy storage (RES) subsystems and components using PCM's based on mathematical and physical models is developed. Mathematical models of the dynamic thermal behavior of (TES) subsystems using PCM's based on solutions of the moving boundary thermal conduction problem and on heat and mass transfer engineering correlations are also discussed.

  13. Mathematical Manipulative Models: In Defense of "Beanbag Biology"

    Science.gov (United States)

    Jungck, John R.; Gaff, Holly; Weisstein, Anton E.

    2010-01-01

    Mathematical manipulative models have had a long history of influence in biological research and in secondary school education, but they are frequently neglected in undergraduate biology education. By linking mathematical manipulative models in a four-step process--1) use of physical manipulatives, 2) interactive exploration of computer…

  14. Numerical Treatment of the Mathematical Models for Water Pollution

    Directory of Open Access Journals (Sweden)

    F. B. Agusto

    2007-01-01

    Full Text Available To evaluate the environmental impact of pollution, mathematical models play a major role in predicting the pollution level in the regions under consideration. This paper examines the various mathematical models involving water pollutant. We also give the implicit central difference scheme in space, and a forward difference method in time for the evaluation of the generalized transport equation.

  15. Numerical Treatment of the Mathematical Models for Water Pollution

    OpenAIRE

    Agusto, F. B.; O. M. Bamigbola

    2007-01-01

    To evaluate the environmental impact of pollution, mathematical models play a major role in predicting the pollution level in the regions under consideration. This paper examines the various mathematical models involving water pollutant. We also give the implicit central difference scheme in space, and a forward difference method in time for the evaluation of the generalized transport equation.

  16. Students' Approaches to Learning a New Mathematical Model

    Science.gov (United States)

    Flegg, Jennifer A.; Mallet, Daniel G.; Lupton, Mandy

    2013-01-01

    In this article, we report on the findings of an exploratory study into the experience of undergraduate students as they learn new mathematical models. Qualitative and quantitative data based around the students' approaches to learning new mathematical models were collected. The data revealed that students actively adopt three approaches to…

  17. Models for Decision Making: From Applications to Mathematics... and Back

    OpenAIRE

    Crama, Yves

    2010-01-01

    In this inaugural lecture, I describe some facets of the interplay between mathematics and management science, economics, or engineering, as they come together in operations research models. I intend to illustrate, in particular, the complex and fruitful process through which fundamental combinatorial models find applications in management science, which in turn foster the development of new and challenging mathematical questions.

  18. In-Situ Assays Using a New Advanced Mathematical Algorithm - 12400

    International Nuclear Information System (INIS)

    Current mathematical efficiency modeling software for in-situ counting, such as the commercially available In-Situ Object Calibration Software (ISOCS), typically allows the description of measurement geometries via a list of well-defined templates which describe regular objects, such as boxes, cylinder, or spheres. While for many situations, these regular objects are sufficient to describe the measurement conditions, there are occasions in which a more detailed model is desired. We have developed a new all-purpose geometry template that can extend the flexibility of current ISOCS templates. This new template still utilizes the same advanced mathematical algorithms as current templates, but allows the extension to a multitude of shapes and objects that can be placed at any location and even combined. In addition, detectors can be placed anywhere and aimed at any location within the measurement scene. Several applications of this algorithm to in-situ waste assay measurements, as well as, validations of this template using Monte Carlo calculations and experimental measurements are studied. Presented in this paper is a new template of the mathematical algorithms for evaluating efficiencies. This new template combines all the advantages of the ISOCS and it allows the use of very complex geometries, it also allows stacking of geometries on one another in the same measurement scene and it allows the detector to be placed anywhere in the measurement scene and pointing in any direction. We have shown that the template compares well with the previous ISOCS software within the limit of convergence of the code, and also compare well with the MCNPX and measured data within the joint uncertainties for the code and the data. The new template agrees with ISOCS to within 1.5% at all energies. It agrees with the MCNPX to within 10% at all energies and it agrees with most geometries within 5%. It finally agrees with measured data to within 10%. This mathematical algorithm can now be

  19. Mathematical Formulation Requirements and Specifications for the Process Models

    International Nuclear Information System (INIS)

    The Advanced Simulation Capability for Environmental Management (ASCEM) is intended to be a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The ASCEM program is aimed at addressing critical EM program needs to better understand and quantify flow and contaminant transport behavior in complex geological systems. It will also address the long-term performance of engineered components including cementitious materials in nuclear waste disposal facilities, in order to reduce uncertainties and risks associated with DOE EM's environmental cleanup and closure activities. Building upon national capabilities developed from decades of Research and Development in subsurface geosciences, computational and computer science, modeling and applied mathematics, and environmental remediation, the ASCEM initiative will develop an integrated, open-source, high-performance computer modeling system for multiphase, multicomponent, multiscale subsurface flow and contaminant transport. This integrated modeling system will incorporate capabilities for predicting releases from various waste forms, identifying exposure pathways and performing dose calculations, and conducting systematic uncertainty quantification. The ASCEM approach will be demonstrated on selected sites, and then applied to support the next generation of performance assessments of nuclear waste disposal and facility decommissioning across the EM complex. The Multi-Process High Performance Computing (HPC) Simulator is one of three thrust areas in ASCEM. The other two are the Platform and Integrated Toolsets (dubbed the Platform) and Site Applications. The primary objective of the HPC Simulator is to provide a flexible and extensible computational engine to simulate the coupled processes and flow scenarios described by the conceptual models developed using the ASCEM Platform. The graded and iterative approach to assessments naturally

  20. Mathematical modeling of biomass fuels formation process.

    Science.gov (United States)

    Gaska, Krzysztof; Wandrasz, Andrzej J

    2008-01-01

    The increasing demand for thermal and electric energy in many branches of industry and municipal management accounts for a drastic diminishing of natural resources (fossil fuels). Meanwhile, in numerous technical processes, a huge mass of wastes is produced. A segregated and converted combustible fraction of the wastes, with relatively high calorific value, may be used as a component of formed fuels. The utilization of the formed fuel components from segregated groups of waste in associated processes of co-combustion with conventional fuels causes significant savings resulting from partial replacement of fossil fuels, and reduction of environmental pollution resulting directly from the limitation of waste migration to the environment (soil, atmospheric air, surface and underground water). The realization of technological processes with the utilization of formed fuel in associated thermal systems should be qualified by technical criteria, which means that elementary processes as well as factors of sustainable development, from a global viewpoint, must not be disturbed. The utilization of post-process waste should be preceded by detailed technical, ecological and economic analyses. In order to optimize the mixing process of fuel components, a mathematical model of the forming process was created. The model is defined as a group of data structures which uniquely identify a real process and conversion of this data in algorithms based on a problem of linear programming. The paper also presents the optimization of parameters in the process of forming fuels using a modified simplex algorithm with a polynomial worktime. This model is a datum-point in the numerical modeling of real processes, allowing a precise determination of the optimal elementary composition of formed fuels components, with assumed constraints and decision variables of the task.

  1. MATHEMATICAL MODELING OF AC ELECTRIC POINT MOTOR

    Directory of Open Access Journals (Sweden)

    S. YU. Buryak

    2014-03-01

    Full Text Available Purpose. In order to ensure reliability, security, and the most important the continuity of the transportation process, it is necessary to develop, implement, and then improve the automated methods of diagnostic mechanisms, devices and rail transport systems. Only systems that operate in real time mode and transmit data on the instantaneous state of the control objects can timely detect any faults and thus provide additional time for their correction by railway employees. Turnouts are one of the most important and responsible components, and therefore require the development and implementation of such diagnostics system.Methodology. Achieving the goal of monitoring and control of railway automation objects in real time is possible only with the use of an automated process of the objects state diagnosing. For this we need to know the diagnostic features of a control object, which determine its state at any given time. The most rational way of remote diagnostics is the shape and current spectrum analysis that flows in the power circuits of railway automatics. Turnouts include electric motors, which are powered by electric circuits, and the shape of the current curve depends on both the condition of the electric motor, and the conditions of the turnout maintenance. Findings. For the research and analysis of AC electric point motor it was developed its mathematical model. The calculation of parameters and interdependencies between the main factors affecting the operation of the asynchronous machine was conducted. The results of the model operation in the form of time dependences of the waveform curves of current on the load on engine shaft were obtained. Originality. During simulation the model of AC electric point motor, which satisfies the conditions of adequacy was built. Practical value. On the basis of the constructed model we can study the AC motor in various mode of operation, record and analyze current curve, as a response to various changes

  2. Mathematical Modelling in Engineering: An Alternative Way to Teach Linear Algebra

    Science.gov (United States)

    Domínguez-García, S.; García-Planas, M. I.; Taberna, J.

    2016-01-01

    Technological advances require that basic science courses for engineering, including Linear Algebra, emphasize the development of mathematical strengths associated with modelling and interpretation of results, which are not limited only to calculus abilities. Based on this consideration, we have proposed a project-based learning, giving a dynamic…

  3. Which Advanced Mathematics Courses Influence ACT Score? A State Level Analysis of the Iowa Class of 2012

    Science.gov (United States)

    Grinstead, Mary L.

    2013-01-01

    This study explores the relationship between specific advanced mathematics courses and college readiness (as determined by ACT score). The ACT organization has found a consistent relationship between taking a minimum core number of mathematics courses and higher ACT scores (mathematics and composite) (ACT, Inc., 2012c). However, the extent to…

  4. Mathematical models in marketing a collection of abstracts

    CERN Document Server

    Funke, Ursula H

    1976-01-01

    Mathematical models can be classified in a number of ways, e.g., static and dynamic; deterministic and stochastic; linear and nonlinear; individual and aggregate; descriptive, predictive, and normative; according to the mathematical technique applied or according to the problem area in which they are used. In marketing, the level of sophistication of the mathe­ matical models varies considerably, so that a nurnber of models will be meaningful to a marketing specialist without an extensive mathematical background. To make it easier for the nontechnical user we have chosen to classify the models included in this collection according to the major marketing problem areas in which they are applied. Since the emphasis lies on mathematical models, we shall not as a rule present statistical models, flow chart models, computer models, or the empirical testing aspects of these theories. We have also excluded competitive bidding, inventory and transportation models since these areas do not form the core of ·the market...

  5. Mathematical model of radon activity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Paschuk, Sergei A.; Correa, Janine N.; Kappke, Jaqueline; Zambianchi, Pedro, E-mail: sergei@utfpr.edu.br, E-mail: janine_nicolosi@hotmail.com [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Denyak, Valeriy, E-mail: denyak@gmail.com [Instituto de Pesquisa Pele Pequeno Principe, Curitiba, PR (Brazil)

    2015-07-01

    Present work describes a mathematical model that quantifies the time dependent amount of {sup 222}Rn and {sup 220}Rn altogether and their activities within an ionization chamber as, for example, AlphaGUARD, which is used to measure activity concentration of Rn in soil gas. The differential equations take into account tree main processes, namely: the injection of Rn into the cavity of detector by the air pump including the effect of the traveling time Rn takes to reach the chamber; Rn release by the air exiting the chamber; and radioactive decay of Rn within the chamber. Developed code quantifies the activity of {sup 222}Rn and {sup 220}Rn isotopes separately. Following the standard methodology to measure Rn activity in soil gas, the air pump usually is turned off over a period of time in order to avoid the influx of Rn into the chamber. Since {sup 220}Rn has a short half-life time, approximately 56s, the model shows that after 7 minutes the activity concentration of this isotope is null. Consequently, the measured activity refers to {sup 222}Rn, only. Furthermore, the model also addresses the activity of {sup 220}Rn and {sup 222}Rn progeny, which being metals represent potential risk of ionization chamber contamination that could increase the background of further measurements. Some preliminary comparison of experimental data and theoretical calculations is presented. Obtained transient and steady-state solutions could be used for planning of Rn in soil gas measurements as well as for accuracy assessment of obtained results together with efficiency evaluation of chosen measurements procedure. (author)

  6. A mathematical model of the Mafia game

    CERN Document Server

    Migdal, Piotr

    2010-01-01

    Mafia (also called Werewolf) is a party game. The participants are divided into two competing groups: citizens and a mafia. The objective is to eliminate the opponent group. The game consists of two consecutive phases (day and night) and a certain set of actions (e.g. lynching during day). The mafia members have additional powers (knowing each other, killing during night) whereas the citizens are more numerous. We propose a simple mathematical model of the game, which is essentially a pure death process with discrete time. We find closed-form formulas for mafia winning chances $w(n,m)$ as well as for evolution of the game. Moreover, we investigate discrete properties of results, as well as its continuous-time approximation. I turns out that a relatively small number of the mafia members $m$ (among $n$ players) give $50:50$ winning chances, i.e. $m\\approx\\sqrt{n}$. Furthermore, the game strongly depends on the parity of the total number of players.

  7. Biologists use mathematics to advance our understanding of health, disease

    OpenAIRE

    Trulove, Susan

    2010-01-01

    Math-based computer models are a powerful tool for discovering the details of complex living systems. John Tyson, professor of biology at Virginia Tech, is creating such models to discover how cells process information and make decisions.

  8. NATO Advanced Research Workshop on Exploiting Mental Imagery with Computers in Mathematics Education

    CERN Document Server

    Mason, John

    1995-01-01

    The advent of fast and sophisticated computer graphics has brought dynamic and interactive images under the control of professional mathematicians and mathematics teachers. This volume in the NATO Special Programme on Advanced Educational Technology takes a comprehensive and critical look at how the computer can support the use of visual images in mathematical problem solving. The contributions are written by researchers and teachers from a variety of disciplines including computer science, mathematics, mathematics education, psychology, and design. Some focus on the use of external visual images and others on the development of individual mental imagery. The book is the first collected volume in a research area that is developing rapidly, and the authors pose some challenging new questions.

  9. Mathematics Problem Solving: A More Advanced Skill for Chapter 1. Workshop Leader's Guide.

    Science.gov (United States)

    Advanced Technology, Inc., Indianapolis, IN.

    This guide is designed to assist inservice providers in conducting successful workshops for teachers, administrators, and others associated with Chapter 1 mathematics programs. It contains step-by-step procedures for preparing, organizing, and presenting the workshop. Included in this guide are: (1) an advanced planner, which includes a detailed…

  10. Symmetrization of mathematical model of charge transport in semiconductors

    Directory of Open Access Journals (Sweden)

    Alexander M. Blokhin

    2002-11-01

    Full Text Available A mathematical model of charge transport in semiconductors is considered. The model is a quasilinear system of differential equations. A problem of finding an additional entropy conservation law and system symmetrization are solved.

  11. Generalized Mathematical Model for Hot Rolling Process of Plate

    Institute of Scientific and Technical Information of China (English)

    Zhenshan CUI; Bingye XU

    2003-01-01

    A generalized mathematical model is developed to predict the changes of temperature, rolling pressure, strain,strain rate, and austenite grain size for plate hot rolling and cooling processes. The model is established mainly by incorporating analytical an

  12. PREFACE: Physics-Based Mathematical Models for Nanotechnology

    Science.gov (United States)

    Voon, Lok C. Lew Yan; Melnik, Roderick; Willatzen, Morten

    2008-03-01

    stain-resistant clothing, but with thousands more anticipated. The focus of this interdisciplinary workshop was on determining what kind of new theoretical and computational tools will be needed to advance the science and engineering of nanomaterials and nanostructures. Thanks to the stimulating environment of the BIRS, participants of the workshop had plenty of opportunity to exchange new ideas on one of the main topics of this workshop—physics-based mathematical models for the description of low-dimensional semiconductor nanostructures (LDSNs) that are becoming increasingly important in technological innovations. The main objective of the workshop was to bring together some of the world leading experts in the field from each of the key research communities working on different aspects of LDSNs in order to (a) summarize the state-of-the-art models and computational techniques for modeling LDSNs, (b) identify critical problems of major importance that require solution and prioritize them, (c) analyze feasibility of existing mathematical and computational methodologies for the solution of some such problems, and (d) use some of the workshop working sessions to explore promising approaches in addressing identified challenges. With the possibility of growing practically any shape and size of heterostructures, it becomes essential to understand the mathematical properties of quantum-confined structures including properties of bulk states, interface states, and surface states as a function of shape, size, and internal strain. This workshop put strong emphasis on discussions of the new mathematics needed in nanotechnology especially in relation to geometry and material-combination optimization of device properties such as electronic, optical, and magnetic properties. The problems that were addressed at this meeting are of immense importance in determining such quantum-mechanical properties and the group of invited participants covered very well all the relevant disciplines

  13. Advanced methods of solid oxide fuel cell modeling

    CERN Document Server

    Milewski, Jaroslaw; Santarelli, Massimo; Leone, Pierluigi

    2011-01-01

    Fuel cells are widely regarded as the future of the power and transportation industries. Intensive research in this area now requires new methods of fuel cell operation modeling and cell design. Typical mathematical models are based on the physical process description of fuel cells and require a detailed knowledge of the microscopic properties that govern both chemical and electrochemical reactions. ""Advanced Methods of Solid Oxide Fuel Cell Modeling"" proposes the alternative methodology of generalized artificial neural networks (ANN) solid oxide fuel cell (SOFC) modeling. ""Advanced Methods

  14. Methods and models in mathematical biology deterministic and stochastic approaches

    CERN Document Server

    Müller, Johannes

    2015-01-01

    This book developed from classes in mathematical biology taught by the authors over several years at the Technische Universität München. The main themes are modeling principles, mathematical principles for the analysis of these models, and model-based analysis of data. The key topics of modern biomathematics are covered: ecology, epidemiology, biochemistry, regulatory networks, neuronal networks, and population genetics. A variety of mathematical methods are introduced, ranging from ordinary and partial differential equations to stochastic graph theory and  branching processes. A special emphasis is placed on the interplay between stochastic and deterministic models.

  15. ADVANCED MIXING MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S; Richard Dimenna, R; David Tamburello, D

    2008-11-13

    The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank with one to four dual-nozzle jet mixers located within the tank. The typical criteria to establish a mixed condition in a tank are based on the number of pumps in operation and the time duration of operation. To ensure that a mixed condition is achieved, operating times are set conservatively long. This approach results in high operational costs because of the long mixing times and high maintenance and repair costs for the same reason. A significant reduction in both of these costs might be realized by reducing the required mixing time based on calculating a reliable indicator of mixing with a suitably validated computer code. The work described in this report establishes the basis for further development of the theory leading to the identified mixing indicators, the benchmark analyses demonstrating their consistency with widely accepted correlations, and the application of those indicators to SRS waste tanks to provide a better, physically based estimate of the required mixing time. Waste storage tanks at SRS contain settled sludge which varies in height from zero to 10 ft. The sludge has been characterized and modeled as micron-sized solids, typically 1 to 5 microns, at weight fractions as high as 20 to 30 wt%, specific gravities to 1.4, and viscosities up to 64 cp during motion. The sludge is suspended and mixed through the use of submersible slurry jet pumps. To suspend settled sludge, water is added to the tank as a slurry medium and stirred with the jet pump. Although there is considerable technical literature on mixing and solid suspension in agitated tanks, very little literature has been published on jet mixing in a large-scale tank. If shorter mixing times can be shown to support Defense Waste Processing Facility (DWPF) or other feed requirements, longer pump lifetimes can be achieved with associated operational cost and

  16. The mathematical model of a LUNG simulator

    Directory of Open Access Journals (Sweden)

    František Šolc

    2014-12-01

    Full Text Available The paper discusses the design, modelling, implementation and testing of a specific LUNG simulator,. The described research was performed as a part of the project AlveoPic – Advanced Lung Research for Veterinary Medicine of Particles for Inhalation. The simulator was designed to establish a combined study programme comprising Biomedical Engineering Sciences (FEEC BUT and Healthcare and Rehabilitation Technology (FH Technikum Wien. The simulator is supposed to be an advanced laboratory equipment which should enhance the standard of the existing research activities within the above-mentioned study programs to the required level. Thus, the proposed paper introduces significant technical equipment for the laboratory education of students at both FH Technikum Wien and the Faculty of Electrical Engineering and Communication, Brno University of Technology. The apparatuses described here will be also used to support cooperative research activities. In the given context, the authors specify certain technical solutions and parameters related to artificial lungs, present the electrical equipment of the system, and point out the results of the PC-based measurement and control.

  17. ADVANCED MIXING MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S; Dimenna, R; Tamburello, D

    2011-02-14

    height from zero to 10 ft. The sludge has been characterized and modeled as micron-sized solids, typically 1 to 5 microns, at weight fractions as high as 20 to 30 wt%, specific gravities to 1.4, and viscosities up to 64 cp during motion. The sludge is suspended and mixed through the use of submersible slurry jet pumps. To suspend settled sludge, water is added to the tank as a slurry medium and stirred with the jet pump. Although there is considerable technical literature on mixing and solid suspension in agitated tanks, very little literature has been published on jet mixing in a large-scale tank. One of the main objectives in the waste processing is to provide feed of a uniform slurry composition at a certain weight percentage (e.g. typically {approx}13 wt% at SRS) over an extended period of time. In preparation of the sludge for slurrying, several important questions have been raised with regard to sludge suspension and mixing of the solid suspension in the bulk of the tank: (1) How much time is required to prepare a slurry with a uniform solid composition? (2) How long will it take to suspend and mix the sludge for uniform composition in any particular waste tank? (3) What are good mixing indicators to answer the questions concerning sludge mixing stated above in a general fashion applicable to any waste tank/slurry pump geometry and fluid/sludge combination?

  18. Typhoid transmission: a historical perspective on mathematical model development.

    Science.gov (United States)

    Bakach, Iurii; Just, Matthew R; Gambhir, Manoj; Fung, Isaac Chun-Hai

    2015-11-01

    Mathematical models of typhoid transmission were first developed nearly half a century ago. To facilitate a better understanding of the historical development of this field, we reviewed mathematical models of typhoid and summarized their structures and limitations. Eleven models, published in 1971 to 2014, were reviewed. While models of typhoid vaccination are well developed, we highlight the need to better incorporate water, sanitation and hygiene interventions into models of typhoid and other foodborne and waterborne diseases. Mathematical modeling is a powerful tool to test and compare different intervention strategies which is important in the world of limited resources. By working collaboratively, epidemiologists and mathematicians should build better mathematical models of typhoid transmission, including pharmaceutical and non-pharmaceutical interventions, which will be useful in epidemiological and public health practice.

  19. Mathematical modeling and computational intelligence in engineering applications

    CERN Document Server

    Silva Neto, Antônio José da; Silva, Geraldo Nunes

    2016-01-01

    This book brings together a rich selection of studies in mathematical modeling and computational intelligence, with application in several fields of engineering, like automation, biomedical, chemical, civil, electrical, electronic, geophysical and mechanical engineering, on a multidisciplinary approach. Authors from five countries and 16 different research centers contribute with their expertise in both the fundamentals and real problems applications based upon their strong background on modeling and computational intelligence. The reader will find a wide variety of applications, mathematical and computational tools and original results, all presented with rigorous mathematical procedures. This work is intended for use in graduate courses of engineering, applied mathematics and applied computation where tools as mathematical and computational modeling, numerical methods and computational intelligence are applied to the solution of real problems.

  20. Physical vs. Mathematical Models in Rock Mechanics

    Science.gov (United States)

    Morozov, I. B.; Deng, W.

    2013-12-01

    One of the less noted challenges in understanding the mechanical behavior of rocks at both in situ and lab conditions is the character of theoretical approaches being used. Currently, the emphasis is made on spatial averaging theories (homogenization and numerical models of microstructure), empirical models for temporal behavior (material memory, compliance functions and complex moduli), and mathematical transforms (Laplace and Fourier) used to infer the Q-factors and 'relaxation mechanisms'. In geophysical applications, we have to rely on such approaches for very broad spatial and temporal scales which are not available in experiments. However, the above models often make insufficient use of physics and utilize, for example, the simplified 'correspondence principle' instead of the laws of viscosity and friction. As a result, the commonly-used time- and frequency dependent (visco)elastic moduli represent apparent properties related to the measurement procedures and not necessarily to material properties. Predictions made from such models may therefore be inaccurate or incorrect when extrapolated beyond the lab scales. To overcome the above challenge, we need to utilize the methods of micro- and macroscopic mechanics and thermodynamics known in theoretical physics. This description is rigorous and accurate, uses only partial differential equations, and allows straightforward numerical implementations. One important observation from the physical approach is that the analysis should always be done for the specific geometry and parameters of the experiment. Here, we illustrate these methods on axial deformations of a cylindrical rock sample in the lab. A uniform, isotropic elastic rock with a thermoelastic effect is considered in four types of experiments: 1) axial extension with free transverse boundary, 2) pure axial extension with constrained transverse boundary, 3) pure bulk expansion, and 4) axial loading harmonically varying with time. In each of these cases, an

  1. Study on model of onset of nucleate boiling in natural circulation with subcooled boiling using unascertained mathematics

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Tao [Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)]. E-mail: zhoutao@mail.tsinghua.edu.cn; Wang Zenghui [Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Yang Ruichang [Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)

    2005-10-01

    Experiment data got from onset of nucleate boiling (ONB) in natural circulation is analyzed using unascertained mathematics. Unitary mathematics model of the relation between the temperature and onset of nucleate boiling is built up to analysis ONB. Multiple unascertained mathematics models are also built up with the onset of natural circulation boiling equation based on the experiment. Unascertained mathematics makes that affirmative results are a range of numbers that reflect the fluctuation of experiment data more truly. The fluctuating value with the distribution function F(x) is the feature of unascertained mathematics model and can express fluctuating experimental data. Real status can be actually described through using unascertained mathematics. Thus, for calculation of ONB point, the description of unascertained mathematics model is more precise than common mathematics model. Based on the unascertained mathematics, a new ONB model is developed, which is important for advanced reactor safety analysis. It is conceivable that the unascertained mathematics could be applied to many other two-phase measurements as well.

  2. Teaching Writing and Communication in a Mathematical Modeling Course

    Science.gov (United States)

    Linhart, Jean Marie

    2014-01-01

    Writing and communication are essential skills for success in the workplace or in graduate school, yet writing and communication are often the last thing that instructors think about incorporating into a mathematics course. A mathematical modeling course provides a natural environment for writing assignments. This article is an analysis of the…

  3. Mathematics in the Biology Classroom: A Model of Interdisciplinary Education

    Science.gov (United States)

    Hodgson, Ted; Keck, Robert; Patterson, Richard; Maki, Dan

    2005-01-01

    This article describes an interdisciplinary course that develops essential mathematical modeling skills within an introductory biology setting. The course embodies recent recommendations regarding the need for interdisciplinary, inquiry-based mathematical preparation of undergraduates in the biological sciences. Evaluation indicates that the…

  4. Proceedings: Workshop on advanced mathematics and computer science for power systems analysis

    Energy Technology Data Exchange (ETDEWEB)

    Esselman, W.H.; Iveson, R.H. (Electric Power Research Inst., Palo Alto, CA (United States))

    1991-08-01

    The Mathematics and Computer Workshop on Power System Analysis was held February 21--22, 1989, in Palo Alto, California. The workshop was the first in a series sponsored by EPRI's Office of Exploratory Research as part of its effort to develop ways in which recent advances in mathematics and computer science can be applied to the problems of the electric utility industry. The purpose of this workshop was to identify research objectives in the field of advanced computational algorithms needed for the application of advanced parallel processing architecture to problems of power system control and operation. Approximately 35 participants heard six presentations on power flow problems, transient stability, power system control, electromagnetic transients, user-machine interfaces, and database management. In the discussions that followed, participants identified five areas warranting further investigation: system load flow analysis, transient power and voltage analysis, structural instability and bifurcation, control systems design, and proximity to instability. 63 refs.

  5. Economic-mathematical methods and models under uncertainty

    CERN Document Server

    Aliyev, A G

    2013-01-01

    Brief Information on Finite-Dimensional Vector Space and its Application in EconomicsBases of Piecewise-Linear Economic-Mathematical Models with Regard to Influence of Unaccounted Factors in Finite-Dimensional Vector SpacePiecewise Linear Economic-Mathematical Models with Regard to Unaccounted Factors Influence in Three-Dimensional Vector SpacePiecewise-Linear Economic-Mathematical Models with Regard to Unaccounted Factors Influence on a PlaneBases of Software for Computer Simulation and Multivariant Prediction of Economic Even at Uncertainty Conditions on the Base of N-Comp

  6. A New Activity-Based Cost (ABC) Mathematical Model

    Institute of Scientific and Technical Information of China (English)

    JIANG Shuo; SONG Lei

    2003-01-01

    Along with the product price competition growing intensely, it is apparently important for reasonably distributing and counting cost. But, in sharing indirect cost, traditional cost accounting unveils the limitations increasingly, especially in authenticity of cost information. And the accounting theory circles and industry circles begin seeking one kind of new accurate cost calculation method, and the activity-based cost (ABC) method emerges as the times require. In this paper, we will build its mathematical model by the basic principle of ABC, and will improve its mathematical model further. We will establish its comparison mathematical model and make the ABC method go a step further to its practical application.

  7. Mathematical Model of Extrinsic Blood Coagulation Cascade Dynamic System

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The blood coagulation system is very important to life. This paper presents a mathematical blood coagulation model for the extrinsic pathway. This model simulates clotting factor VIII, which plays an important role in the coagulation mechanism. The mathematical model is used to study the equilibrium stability, orbit structure, attractors and global stability behavior, with conclusions in accordance with the physiological phenomena. Moreover, the results provide information about blood related illnesses, which can be used for further study of the coagulation mechanism.

  8. Mathematical modeling of a convective textile drying process

    OpenAIRE

    Johann, G; E. A. Silva; O.C. Motta Lima; N.C. Pereira

    2014-01-01

    This study aims to develop a model that accurately represents the convective drying process of textile materials. The mathematical modeling was developed from energy and mass balances and, for the solution of the mathematical model, the technique of finite differences, in Cartesian coordinates, was used. It transforms the system of partial differential equations into a system of ordinary equations, with the unknowns, the temperature and humidity of both the air and the textile material. The s...

  9. Study on advancement of in vivo counting using mathematical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kinase, Sakae [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-05-01

    To obtain an assessment of the committed effective dose, individual monitoring for the estimation of intakes of radionuclides is required. For individual monitoring of exposure to intakes of radionuclides, direct measurement of radionuclides in the body - in vivo counting- is very useful. To advance in a precision in vivo counting which fulfills the requirements of ICRP 1990 recommendations, some problems, such as the investigation of uncertainties in estimates of body burdens by in vivo counting, and the selection of the way to improve the precision, have been studied. In the present study, a calibration technique for in vivo counting application using Monte Carlo simulation was developed. The advantage of the technique is that counting efficiency can be obtained for various shapes and sizes that are very difficult to change for phantoms. To validate the calibration technique, the response functions and counting efficiencies of a whole-body counter installed in JAERI were evaluated using the simulation and measurements. Consequently, the calculations are in good agreement with the measurements. The method for the determination of counting efficiency curves as a function of energy was developed using the present technique and a physiques correction equation was derived from the relationship between parameters of correction factor and counting efficiencies of the JAERI whole-body counter. The uncertainties in body burdens of {sup 137}Cs estimated with the JAERI whole-body counter were also investigated using the Monte Carlo simulation and measurements. It was found that the uncertainties of body burdens estimated with the whole-body counter are strongly dependent on various sources of uncertainty such as radioactivity distribution within the body and counting statistics. Furthermore, the evaluation method of the peak efficiencies of a Ge semi-conductor detector was developed by Monte Carlo simulation for optimum arrangement of Ge semi-conductor detectors for

  10. Mathematical Modeling of Pottery Production in Different Industrial Furnaces

    Science.gov (United States)

    Ramírez Argáez, Marco Aurelio; Huacúz, Salvador Lucas; Trápaga, Gerardo

    2008-10-01

    The traditional process for pottery production was analyzed in this work by developing a fundamental mathematical model that simulates the operation of rustic pottery furnaces as employed by natives of villages in Michoacán, Mexico. The model describes radiative heat transfer and fluid flow promoted by natural convection, phenomena that determine the operation of these furnaces. An advanced radiation model called the “Discrete Ordinates Model” was implemented within a commercial computational fluid dynamics software. Process analysis was performed to determine the effect of the design variables on the quality of the pottery pieces and on energy efficiency. The variables explored were: (a) Geometric aspect ratio between diameter and height of the furnace ( D/H) and (b) Refractory thickness ( L). The model was validated using experimental temperature measurements from furnaces located in Santa Fe and Capula, Mexico. Good agreement was obtained between experimental and numerically calculated thermal histories. It was found that furnaces with high aspect ratio D/H and with thick refractory bricks promote thermal uniformity and energy savings. In general, any parameter that increases the conductive thermal resistance of the wall furnace isolates better, and helps energy savings. Operating conditions that provide the smallest thermal gradients and lowest energy consumption are given.

  11. Mathematical modelling of the landslide occurred at Gagliano Castelferrato (Italy

    Directory of Open Access Journals (Sweden)

    M. Maugeri

    2006-01-01

    Full Text Available Shallow slopes in clayey colluvial covers are often involved in progressive downhill motion with discontinuous rate of movements, depending on fluctuations in pore-water pressure. In geotechnical engineering research on natural slopes, the main efforts have been concentrated on stability analysis, always with a rigid perfectly plastic body assumption. In case of slow slope movements, however, the notion of stability losses its sense, so the main question is not to evaluate a stability factor, but to model a velocity field and to define the kinematic and dynamic features of the movement (mobility analysis. Many authors, in their researches, deal with slow slope movements and for the complexity of the problem and the great number of parameters involved they agree about applying numerical techniques (FEM, FDM and advanced material modelling (elastoviscoplasticity and suggest to calibrate the involved parameters values with the help of ''back analyses'' of existing case histories. In this paper a mathematical model predicting the landslide body viscous deformations, is presented. The model has been implemented in a computer FDM code, and has been tested on some well known case histories. Here it is applied to the case of a landslide occurred at Gagliano Castelferrato (Sicily – Italy, where a great number of field measurements was available.

  12. Mathematics of tsunami: modelling and identification

    Science.gov (United States)

    Krivorotko, Olga; Kabanikhin, Sergey

    2015-04-01

    Tsunami (long waves in the deep water) motion caused by underwater earthquakes is described by shallow water equations ( { ηtt = div (gH (x,y)-gradη), (x,y) ∈ Ω, t ∈ (0,T ); η|t=0 = q(x,y), ηt|t=0 = 0, (x,y) ∈ Ω. ( (1) Bottom relief H(x,y) characteristics and the initial perturbation data (a tsunami source q(x,y)) are required for the direct simulation of tsunamis. The main difficulty problem of tsunami modelling is a very big size of the computational domain (Ω = 500 × 1000 kilometres in space and about one hour computational time T for one meter of initial perturbation amplitude max|q|). The calculation of the function η(x,y,t) of three variables in Ω × (0,T) requires large computing resources. We construct a new algorithm to solve numerically the problem of determining the moving tsunami wave height S(x,y) which is based on kinematic-type approach and analytical representation of fundamental solution. Proposed algorithm of determining the function of two variables S(x,y) reduces the number of operations in 1.5 times than solving problem (1). If all functions does not depend on the variable y (one dimensional case), then the moving tsunami wave height satisfies of the well-known Airy-Green formula: S(x) = S(0)° --- 4H (0)/H (x). The problem of identification parameters of a tsunami source using additional measurements of a passing wave is called inverse tsunami problem. We investigate two different inverse problems of determining a tsunami source q(x,y) using two different additional data: Deep-ocean Assessment and Reporting of Tsunamis (DART) measurements and satellite altimeters wave-form images. These problems are severely ill-posed. The main idea consists of combination of two measured data to reconstruct the source parameters. We apply regularization techniques to control the degree of ill-posedness such as Fourier expansion, truncated singular value decomposition, numerical regularization. The algorithm of selecting the truncated number of

  13. The possibilities of a modelling perspective for school mathematics

    Directory of Open Access Journals (Sweden)

    Dirk Wessels

    2009-09-01

    complex teaching methodology requires in-depth thinking about the role of the teacher, the role of the learner, the nature of the classroom culture, the nature of the negotiation of meaning between the teacher and individuals or groups, the nature of selected problems and material, as well as the kind of integrative assessment used in the mathematics classroom. Modelling is closely related to the problem-centred teaching approach, but it also smoothly relates to bigger and longer mathematical tasks. This article gives a theoretical exposition of the scope and depth of mathematical modelling. It is possible to introduce modelling at every school phase in our educational sytem. Modelling in school mathematics seems to make the learning of mathematics more effective. The mastering of problem solving and modelling strategies has definitely changed the orientation, the competencies and performances of learners at each school level. It would appear from research that learners like the application side of mathematics and that they want to see it in action. Genuine real life problems should be selected, which is why a modelling perspective is so important for the teaching and mastering of mathematics. Modelling should be integrated into the present curriculum because learners will then get full access to involvement in the classroom, to mathematisation, to doing problems, to criticising arguments, to finding proofs, to recognising concepts and to obtaining the ability to abstract these from the realistic situation. Modelling should be given a full opportunity in mathematics teacher education so that our learners can get the full benefit of it. This will put the mathematical performances of learners in our country on a more solid base, which will make our learners more competitive at all levels in the future. 

  14. Mathematical modeling of urea transport in the kidney.

    Science.gov (United States)

    Layton, Anita T

    2014-01-01

    Mathematical modeling techniques have been useful in providing insights into biological systems, including the kidney. This article considers some of the mathematical models that concern urea transport in the kidney. Modeling simulations have been conducted to investigate, in the context of urea cycling and urine concentration, the effects of hypothetical active urea secretion into pars recta. Simulation results suggest that active urea secretion induces a "urea-selective" improvement in urine concentrating ability. Mathematical models have also been built to study the implications of the highly structured organization of tubules and vessels in the renal medulla on urea sequestration and cycling. The goal of this article is to show how physiological problems can be formulated and studied mathematically, and how such models may provide insights into renal functions.

  15. Applying Mathematical Optimization Methods to an ACT-R Instance-Based Learning Model

    Science.gov (United States)

    Said, Nadia; Engelhart, Michael; Kirches, Christian; Körkel, Stefan; Holt, Daniel V.

    2016-01-01

    Computational models of cognition provide an interface to connect advanced mathematical tools and methods to empirically supported theories of behavior in psychology, cognitive science, and neuroscience. In this article, we consider a computational model of instance-based learning, implemented in the ACT-R cognitive architecture. We propose an approach for obtaining mathematical reformulations of such cognitive models that improve their computational tractability. For the well-established Sugar Factory dynamic decision making task, we conduct a simulation study to analyze central model parameters. We show how mathematical optimization techniques can be applied to efficiently identify optimal parameter values with respect to different optimization goals. Beyond these methodological contributions, our analysis reveals the sensitivity of this particular task with respect to initial settings and yields new insights into how average human performance deviates from potential optimal performance. We conclude by discussing possible extensions of our approach as well as future steps towards applying more powerful derivative-based optimization methods. PMID:27387139

  16. Recent advances in opinion modeling: control and social influence

    CERN Document Server

    Albi, Giacomo; Toscani, Giuseppe; Zanella, Mattia

    2016-01-01

    We survey some recent developments on the mathematical modeling of opinion dynamics. After an introduction on opinion modeling through interacting multi-agent systems described by partial differential equations of kinetic type, we focus our attention on two major advancements: optimal control of opinion formation and influence of additional social aspects, like conviction and number of connections in social networks, which modify the agents' role in the opinion exchange process.

  17. On the mathematical modelling of measurement

    OpenAIRE

    Barzilai, Jonathan

    2006-01-01

    The operations of linear algebra, calculus, and statistics are routinely applied to measurement scales but certain mathematical conditions must be satisfied in order for these operations to be applicable. We call attention to the conditions that lead to construction of measurement scales that enable these operations.

  18. [Mathematical model of value of population].

    Science.gov (United States)

    Sha, J; Wang, S

    1983-09-29

    The authors define the value of population as an economic concept and present mathematical formulas for calculating this value. Included in this theoretical discussion are different kinds of surplus value of population and the social significance of population value. PMID:12279805

  19. Modeling Students' Interest in Mathematics Homework

    Science.gov (United States)

    Xu, Jianzhong; Yuan, Ruiping; Xu, Brian; Xu, Melinda

    2016-01-01

    The authors examine the factors influencing mathematics homework interest for Chinese students and compare the findings with a recent study involving U.S. students. The findings from multilevel analyses revealed that some predictors for homework interest functioned similarly (e.g., affective attitude toward homework, learning-oriented reasons,…

  20. Mathematical Modelling of Unmanned Aerial Vehicles with Four Rotors

    Directory of Open Access Journals (Sweden)

    Zoran Benić

    2016-01-01

    Full Text Available Mathematical model of an unmanned aerial vehicle with four propulsors (quadcopter is indispensable in quadcopter movement simulation and later modelling of the control algorithm. Mathematical model is, at the same time, the first step in comprehending the mathematical principles and physical laws which are applied to the quadcopter system. The objective is to define the mathematical model which will describe the quadcopter behavior with satisfactory accuracy and which can be, with certain modifications, applicable for the similar configurations of multirotor aerial vehicles. At the beginning of mathematical model derivation, coordinate systems are defined and explained. By using those coordinate systems, relations between parameters defined in the earth coordinate system and in the body coordinate system are defined. Further, the quadcopter kinematic is described which enables setting those relations. Also, quadcopter dynamics is used to introduce forces and torques to the model through usage of Newton-Euler method. Final derived equation is Newton’s second law in the matrix notation. For the sake of model simplification, hybrid coordinate system is defined, and quadcopter dynamic equations derived with the respect to it. Those equations are implemented in the simulation. Results of behavior of quadcopter mathematical model are graphically shown for four cases. For each of the cases the propellers revolutions per minute (RPM are set in a way that results in the occurrence of the controllable variables which causes one of four basic quadcopter movements in space.

  1. Mathematical Modelling for Micropiles Embedded in Salt Rock

    Directory of Open Access Journals (Sweden)

    Rădan (Toader Georgiana

    2016-03-01

    Full Text Available This study presents the results of the mathematical modelling for the micropiles foundation of an investement objective located in Slanic, Prahova county. Three computing models were created and analyzed with software, based on Finite Element Method. With Plaxis 2D model was analyzed the isolated micropile and the three-dimensional analysis was made with Plaxis 3D model, for group of micropiles. For the micropiles foundation was used Midas GTS-NX model. The mathematical models were calibrated based with the in-situ tests results for axially loaded micropiles, embedded in salt rock. The paper presents the results obtained with the three software, the calibration and validation models.

  2. Mathematical modelling with case studies using Maple and Matlab

    CERN Document Server

    Barnes, B

    2014-01-01

    Introduction to Mathematical ModelingMathematical models An overview of the book Some modeling approaches Modeling for decision makingCompartmental Models Introduction Exponential decay and radioactivity Case study: detecting art forgeries Case study: Pacific rats colonize New Zealand Lake pollution models Case study: Lake Burley Griffin Drug assimilation into the blood Case study: dull, dizzy, or dead? Cascades of compartments First-order linear DEs Equilibrium points and stability Case study: money, money, money makes the world go aroundModels of Single PopulationsExponential growth Density-

  3. Advances in machining process modeling

    International Nuclear Information System (INIS)

    Ever increasing speed and affordability of computing resources together with the advances in the modeling techniques made it possible to use the numerical models like finite element method (FEM), to simulate the metal cutting processes numerically. This paper explains the recent technological advances made in the commercial DEFORMTM system to facilitate the modeling of metal cutting process. During the first phase of this work a 2D system has been developed which assumes orthogonal cutting conditions. The second phase of this work has resulted in the development of a modeling system for 3D machining processes with main focus on turning. The modeling tools developed in this project utilize a hybrid procedure including both transient and steady state approaches. Automated remeshing procedure is being used with great success. Multiple coating layers on the insert can be modeled to study their thermal effects. Elastic and thermal response of the insert during the machining process can also be modeled using this system. The Usui's wear model has also been implemented in the system to study the tool wear. The system developed has been validated with various results reported from actual cutting tests and comparisons are found to be reasonably accurate

  4. Mechanical-mathematical modeling for landslide process

    Science.gov (United States)

    Svalova, V.

    2009-04-01

    500 m and displacement of a landslide in the plan over 1 m. Last serious activization of a landslide has taken place in 2002 with a motion on 53 cm. Catastrophic activization of the deep blockglide landslide in the area of Khoroshevo in Moscow took place in 2006-2007. A crack of 330 m long appeared in the old sliding circus, along which a new 220 m long creeping block was separated from the plateau and began sinking with a displaced surface of the plateau reaching to 12 m. Such activization of the landslide process was not observed in Moscow since mid XIX century. The sliding area of Khoroshevo was stable during long time without manifestations of activity. Revealing of the reasons of deformation and development of ways of protection from deep landslide motions is extremely actual and difficult problem which decision is necessary for preservation of valuable historical monuments and modern city constructions. The reasons of activization and protective measures are discussed. Structure of monitoring system for urban territories is elaborated. Mechanical-mathematical model of high viscous fluid was used for modeling of matter behavior on landslide slopes. Equation of continuity and an approximated equation of the Navier-Stockes for slow motions in a thin layer were used. The results of modelling give possibility to define the place of highest velocity on landslide surface, which could be the best place for monitoring post position. Model can be used for calibration of monitoring equipment and gives possibility to investigate some fundamental aspects of matter movement on landslide slope.

  5. MAPCLUS: A Mathematical Programming Approach to Fitting the ADCLUS Model.

    Science.gov (United States)

    Arabie, Phipps

    1980-01-01

    A new computing algorithm, MAPCLUS (Mathematical Programming Clustering), for fitting the Shephard-Arabie ADCLUS (Additive Clustering) model is presented. Details and benefits of the algorithm are discussed. (Author/JKS)

  6. Mathematical modeling of electromechanical processes in a brushless DC motor

    Directory of Open Access Journals (Sweden)

    V.I. Tkachuk

    2014-03-01

    Full Text Available On the basis of initial assumptions, a mathematical model that describes electromechanical processes in a brushless DC electric motor with a salient-pole stator and permanent-magnet excitation is created.

  7. Mathematical modelling of water radiolysis kinetics under reactor conditions

    International Nuclear Information System (INIS)

    Experimental data on coolant radiolysis (RBMK-1000 reactor) were used to construct mathematical model of water radiolysis kinetics under reactor conditions. Good agreement of calculation results with the experiment is noted

  8. RECENT MATHEMATICAL STUDIES IN THE MODELING OF OPTICS AND ELECTROMAGNETICS

    Institute of Scientific and Technical Information of China (English)

    Gang Bao

    2004-01-01

    This work is concerned with mathematical modeling, analysis, and computation of optics and electromagnetics, motivated particularly by optical and microwave applications.The main technical focus is on Maxwell's equations in complex linear and nonlinear media.

  9. A mathematical look at a physical power prediction model

    DEFF Research Database (Denmark)

    Landberg, L.

    1998-01-01

    This article takes a mathematical look at a physical model used to predict the power produced from wind farms. The reason is to see whether simple mathematical expressions can replace the original equations and to give guidelines as to where simplifications can be made and where they cannot....... The article shows that there is a linear dependence between the geostrophic wind and the local wind at the surface, but also that great care must be taken in the selection of the simple mathematical models, since physical dependences play a very important role, e.g. through the dependence of the turning...

  10. Mathematics

    CERN Document Server

    Eringen, A Cemal

    2013-01-01

    Continuum Physics: Volume 1 - Mathematics is a collection of papers that discusses certain selected mathematical methods used in the study of continuum physics. Papers in this collection deal with developments in mathematics in continuum physics and its applications such as, group theory functional analysis, theory of invariants, and stochastic processes. Part I explains tensor analysis, including the geometry of subspaces and the geometry of Finsler. Part II discusses group theory, which also covers lattices, morphisms, and crystallographic groups. Part III reviews the theory of invariants th

  11. A mathematical model of pulmonary gas exchange under inflammatory stress

    OpenAIRE

    Reynolds, Angela; Ermentrout, G. Bard; Clermont, Gilles

    2010-01-01

    During a severe local or systemic inflammatory response, immune mediators target lung tissue. This process may lead to acute lung injury and impaired diffusion of gas molecules. Although several mathematical models of gas exchange have been described, none simulate acute lung injury following inflammatory stress. In view of recent laboratory and clinical progress in the understanding of the pathophysiology of acute lung injury, such a mathematical model would be useful. We first derived a par...

  12. The Mathematical Modelling of Heat Transfer in Electrical Cables

    OpenAIRE

    Bugajev Andrej; Jankevičiūtė Gerda; Tumanova Natalija

    2014-01-01

    This paper describes a mathematical modelling approach for heat transfer calculations in underground high voltage and middle voltage electrical power cables. First of the all typical layout of the cable in the sand or soil is described. Then numerical algorithms are targeted to the two-dimensional mathematical models of transient heat transfer. Finite Volume Method is suggested for calculations. Different strategies of nonorthogonality error elimination are considered. Acute triangles meshes ...

  13. Mathematical modelling and numerical simulation of oil pollution problems

    CERN Document Server

    2015-01-01

    Written by outstanding experts in the fields of marine engineering, atmospheric physics and chemistry, fluid dynamics and applied mathematics, the contributions in this book cover a wide range of subjects, from pure mathematics to real-world applications in the oil spill engineering business. Offering a truly interdisciplinary approach, the authors present both mathematical models and state-of-the-art numerical methods for adequately solving the partial differential equations involved, as well as highly practical experiments involving actual cases of ocean oil pollution. It is indispensable that different disciplines of mathematics, like analysis and numerics,  together with physics, biology, fluid dynamics, environmental engineering and marine science, join forces to solve today’s oil pollution problems.   The book will be of great interest to researchers and graduate students in the environmental sciences, mathematics and physics, showing the broad range of techniques needed in order to solve these poll...

  14. Advanced Model of Electromagnetic Launcher

    Directory of Open Access Journals (Sweden)

    Karel Leubner

    2015-01-01

    Full Text Available An advanced 2D model of electromagnetic launcher is presented respecting the influence of eddy currents induced in the accelerated ferromagnetic body. The time evolution of electromagnetic field in the system, corresponding forces acting on the projectile and time evolutions of its velocity and current in the field circuit are solved numerically using own application Agros2d. The results are then processed and evaluated in Wolfram Mathematica. The methodology is illustrated with an example whose results are discussed.

  15. Mathematical modelling: From school to university

    OpenAIRE

    Ansie Harding

    2009-01-01

    The outcomes based education (OBE) system is characterised by controversy and the 2008 matric results that rendered admission to an unusually large number of students did nothing to silence critics. The first students who completed their full cycle of school education in the OBE system entered universities in 2009 and their preparedness for university mathematics as well as their performance at university level are important as indicaters for estimating the success or otherwise of the OBE syst...

  16. Mathematical Formulation Requirements and Specifications for the Process Models

    Energy Technology Data Exchange (ETDEWEB)

    Steefel, C.; Moulton, D.; Pau, G.; Lipnikov, K.; Meza, J.; Lichtner, P.; Wolery, T.; Bacon, D.; Spycher, N.; Bell, J.; Moridis, G.; Yabusaki, S.; Sonnenthal, E.; Zyvoloski, G.; Andre, B.; Zheng, L.; Davis, J.

    2010-11-01

    The Advanced Simulation Capability for Environmental Management (ASCEM) is intended to be a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The ASCEM program is aimed at addressing critical EM program needs to better understand and quantify flow and contaminant transport behavior in complex geological systems. It will also address the long-term performance of engineered components including cementitious materials in nuclear waste disposal facilities, in order to reduce uncertainties and risks associated with DOE EM's environmental cleanup and closure activities. Building upon national capabilities developed from decades of Research and Development in subsurface geosciences, computational and computer science, modeling and applied mathematics, and environmental remediation, the ASCEM initiative will develop an integrated, open-source, high-performance computer modeling system for multiphase, multicomponent, multiscale subsurface flow and contaminant transport. This integrated modeling system will incorporate capabilities for predicting releases from various waste forms, identifying exposure pathways and performing dose calculations, and conducting systematic uncertainty quantification. The ASCEM approach will be demonstrated on selected sites, and then applied to support the next generation of performance assessments of nuclear waste disposal and facility decommissioning across the EM complex. The Multi-Process High Performance Computing (HPC) Simulator is one of three thrust areas in ASCEM. The other two are the Platform and Integrated Toolsets (dubbed the Platform) and Site Applications. The primary objective of the HPC Simulator is to provide a flexible and extensible computational engine to simulate the coupled processes and flow scenarios described by the conceptual models developed using the ASCEM Platform. The graded and iterative approach to assessments

  17. A Mathematical Model of Intermittent Androgen Suppression for Prostate Cancer

    Science.gov (United States)

    Ideta, Aiko Miyamura; Tanaka, Gouhei; Takeuchi, Takumi; Aihara, Kazuyuki

    2008-12-01

    For several decades, androgen suppression has been the principal modality for treatment of advanced prostate cancer. Although the androgen deprivation is initially effective, most patients experience a relapse within several years due to the proliferation of so-called androgen-independent tumor cells. Bruchovsky et al. suggested in animal models that intermittent androgen suppression (IAS) can prolong the time to relapse when compared with continuous androgen suppression (CAS). Therefore, IAS has been expected to enhance clinical efficacy in conjunction with reduction in adverse effects and improvement in quality of life of patients during off-treatment periods. This paper presents a mathematical model that describes the growth of a prostate tumor under IAS therapy based on monitoring of the serum prostate-specific antigen (PSA). By treating the cancer tumor as a mixed assembly of androgen-dependent and androgen-independent cells, we investigate the difference between CAS and IAS with respect to factors affecting an androgen-independent relapse. Numerical and bifurcation analyses show how the tumor growth and the relapse time are influenced by the net growth rate of the androgen-independent cells, a protocol of the IAS therapy, and the mutation rate from androgen-dependent cells to androgen-independent ones.

  18. Mathematical Modeling Is Also Physics--Interdisciplinary Teaching between Mathematics and Physics in Danish Upper Secondary Education

    Science.gov (United States)

    Michelsen, Claus

    2015-01-01

    Mathematics plays a crucial role in physics. This role is brought about predominantly through the building, employment, and assessment of mathematical models, and teachers and educators should capture this relationship in the classroom in an effort to improve students' achievement and attitude in both physics and mathematics. But although there…

  19. Mathematical modelling, problem solving, project and ethnomathematics: Confluent points

    OpenAIRE

    Salett Biembengut, Maria

    2015-01-01

    This paper presents a documental study about the con-fluent points among mathematical modelling, problem solving, project and ethnomathematics as methods of research and mathematics teaching. As a result, the study has shown that there are elements that bind these methods structurally together as research methods. Starting from the fact that education should promote knowledge this study provides evidence for these methods. Thus in each one of them, it is required knowledge from the student ab...

  20. Mathematical Modeling of the Induced Mutation Process in Bacterial Cells

    Science.gov (United States)

    Belov, Oleg V.; Krasavin, Evgeny A.; Parkhomenko, Alexander Yu.

    2010-01-01

    A mathematical model of the ultraviolet (UV) irradiation-induced mutation process in bacterial cells Escherichia coli is developed. Using mathematical approaches, the whole chain of events is tracked from a cell exposure to the damaging factor to mutation formation in the DNA chain. An account of the key special features of the regulation of this genetic network allows predicting the effects induced by the cell exposure to certain UV energy fluence.

  1. Postcorrection and mathematical model of life in Extended Everett's Concept

    OpenAIRE

    Mensky, Michael B.

    2007-01-01

    Extended Everett's Concept (EEC) recently developed by the author to explain the phenomenon of consciousness is considered. A mathematical model is proposed for the principal feature of consciousness assumed in EEC, namely its ability (in the state of sleep, trance or meditation, when the explicit consciousness is disabled) to obtain information from all alternative classical realities (Everett's worlds) and select the favorable realities. To represent this ability, a mathematical operation c...

  2. Identification of Chemical Reactor Plant’s Mathematical Model

    Directory of Open Access Journals (Sweden)

    Pyakillya Boris

    2015-01-01

    Full Text Available This work presents a solution of the identification problem of chemical reactor plant’s mathematical model. The main goal is to obtain a mathematical description of a chemical reactor plant from experimental data, which based on plant’s time response measurements. This data consists sequence of measurements for water jacket temperature and information about control input signal, which is used to govern plant’s behavior.

  3. A mathematical model on germinal center kinetics andtermination

    DEFF Research Database (Denmark)

    Kesmir, Can; De Boer, R.J.

    1999-01-01

    We devise a mathematical model to study germinal center (GC) kinetics. Earlier models for GC kinetics areextended by explicitly modeling 1) the cell division history of centroblasts, 2) the Ag uptake by centrocytes,and 3) T cell dynamics. Allowing for T cell kinetics and T-B cell interactions, we...

  4. Mathematical Modelling and Experimental Analysis of Early Age Concrete

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Anders Boe

    1997-01-01

    lead to cracks in the later cooling phase. The matrial model has intrigate couplings between the involved mechanics, and in the thesis special emphasize is put on the creep behaviour. The mathematical models are based on experimental analysis and numerical implementation of the models in a finite...

  5. PP/MMT Nanocomposite: Mathematic Modelling of Layered Nanofiller

    Directory of Open Access Journals (Sweden)

    Dagmar Merinska

    2012-01-01

    Full Text Available The comparison of calculated data from proposed mathematic model and experimentally obtained data of PP/clay nanocomposites was done with the focus on the layered shape of MMT platelets. Based on the well-known Kerner's model and the Halpin-Tsai' equation with the use of some described presumption, the mathematic model for PP/clay nanocomposite was proposed. Data from the measurement of prepared PP/clay samples were taken and compared with the calculated ones from the proposed model. The good agreement was found.

  6. Mathematical Modeling and Dimension Reduction in Dynamical Systems

    DEFF Research Database (Denmark)

    Elmegård, Michael

    thesis is attacking two problems. The first is concerned with the mathematical modelling and analysis of an experiment of a vibro-impacting beam. This type of dynamical system has received much attention in the recent years and they occur frequently in mechanical applications, where they induce noise......Processes that change in time are in mathematics typically described by differential equations. These may be applied to model everything from weather forecasting, brain patterns, reaction kinetics, water waves, finance, social dynamics, structural dynamics and electrodynamics to name only a few...... and wear which decrease the life time of machines. From the modelling point of view these systems are often particularly rich in nonlinear dynamics. In the present study a mathematical model is derived. Amongst other outcomes the model was successfully applied to predict a nonlinear phenomenon, namely...

  7. Mathematics

    CERN Document Server

    Stein, Sherman K

    2010-01-01

    Anyone can appreciate the beauty, depth, and vitality of mathematics with the help of this highly readable text, specially developed from a college course designed to appeal to students in a variety of fields. Readers with little mathematical background are exposed to a broad range of subjects chosen from number theory, topology, set theory, geometry, algebra, and analysis. Starting with a survey of questions on weight, the text discusses the primes, the fundamental theorem of arithmetic, rationals and irrationals, tiling, tiling and electricity, probability, infinite sets, and many other topi

  8. Advanced Mirror & Modelling Technology Development

    Science.gov (United States)

    Effinger, Michael; Stahl, H. Philip; Abplanalp, Laura; Maffett, Steven; Egerman, Robert; Eng, Ron; Arnold, William; Mosier, Gary; Blaurock, Carl

    2014-01-01

    The 2020 Decadal technology survey is starting in 2018. Technology on the shelf at that time will help guide selection to future low risk and low cost missions. The Advanced Mirror Technology Development (AMTD) team has identified development priorities based on science goals and engineering requirements for Ultraviolet Optical near-Infrared (UVOIR) missions in order to contribute to the selection process. One key development identified was lightweight mirror fabrication and testing. A monolithic, stacked, deep core mirror was fused and replicated twice to achieve the desired radius of curvature. It was subsequently successfully polished and tested. A recently awarded second phase to the AMTD project will develop larger mirrors to demonstrate the lateral scaling of the deep core mirror technology. Another key development was rapid modeling for the mirror. One model focused on generating optical and structural model results in minutes instead of months. Many variables could be accounted for regarding the core, face plate and back structure details. A portion of a spacecraft model was also developed. The spacecraft model incorporated direct integration to transform optical path difference to Point Spread Function (PSF) and between PSF to modulation transfer function. The second phase to the project will take the results of the rapid mirror modeler and integrate them into the rapid spacecraft modeler.

  9. Mathematics

    International Nuclear Information System (INIS)

    The 1988 progress report of the Mathematics center (Polytechnic School, France), is presented. The Center is composed of different research teams: analysis, Riemann geometry, group theory, formal calculus and algorithm geometry, dynamical systems, topology and singularity. For each team, the members, the research topics, the national and international cooperations, are given. The papers concerning the investigations carried out in 1988, are listed

  10. Mathematical Models of the Sinusoidal Screen Family

    Directory of Open Access Journals (Sweden)

    Tajana Koren

    2011-06-01

    Full Text Available In this paper we will define a family of sinusoidal screening elements and explore the possibilities of their application in graphic arts, securities printing and design solutions in photography and typography editing. For this purpose mathematical expressions of sinusoidal families were converted into a Postscript language. The introduction of a random variable results in a countless number of various mutations which cannot be repeated without knowing the programming code itself. The use of the family of screens in protection of securities is thus of great importance. Other possible application of modulated sinusoidal screens is related to the large format color printing. This paper will test the application of sinusoidal screens in vector graphics, pixel graphics and typography. The development of parameters in the sinusoidal screen element algorithms gives new forms defined within screening cells with strict requirements of coverage implementation. Individual solutions include stochastic algorithms, as well as the autonomy of screening forms in regard to multicolor printing channels.

  11. MATHEMATICAL MODELING FOR DURABILITY CHARACTERISTICS OF FLY ASH CONCRETE

    Directory of Open Access Journals (Sweden)

    JINO JOHN

    2012-01-01

    Full Text Available This paper presents the results obtained from the mathematical modeling for the durability characteristics of fly ash concrete. A mathematical model is employed to predict the saturated water absorption, permeability, sorpitivity and acid resistance of the concrete containing fly ash as a replacement of cement at a range of 0%, 10%, 20%, 30%, 40% and 50 %. This model is valid for mixes with cement quantity 208 to 416 kg/m3, water cement ratio 0.38 to 0.76, flyash 0 to 208 kg/m3 and cement/ total aggregate ratio varying from 0.11 to 0.22. Fly ash content and water cement ratio are the main parameters which influence the durability characteristics. The predicted mathematical model for saturated water absorption, permeability, sorpitivity and acid resistance produced accurate results for the respective ages when compared with the experimental results.

  12. What Is Known about Elementary Grades Mathematical Modelling

    Directory of Open Access Journals (Sweden)

    Micah S. Stohlmann

    2016-01-01

    Full Text Available Mathematical modelling has often been emphasized at the secondary level, but more research is needed at the elementary level. This paper serves to summarize what is known about elementary mathematical modelling to guide future research. A targeted and general literature search was conducted and studies were summarized based on five categories: content of mathematical modelling intervention, assessment data collected, unit of analysis studied, population, and effectiveness. It was found that there were three main units of analysis into which the studies could be categorized: representational and conceptual competence, models created, and student beliefs. The main findings from each of these units of analysis are discussed along with future research that is needed.

  13. Solutions manual to accompany finite mathematics models and applications

    CERN Document Server

    Morris, Carla C

    2015-01-01

    A solutions manual to accompany Finite Mathematics: Models and Applications In order to emphasize the main concepts of each chapter, Finite Mathematics: Models and Applications features plentiful pedagogical elements throughout such as special exercises, end notes, hints, select solutions, biographies of key mathematicians, boxed key principles, a glossary of important terms and topics, and an overview of use of technology. The book encourages the modeling of linear programs and their solutions and uses common computer software programs such as LINDO. In addition to extensive chapters on pr

  14. Analysis of mathematical model for micromechanical vibratory wheel gyroscope

    Institute of Scientific and Technical Information of China (English)

    LUO Yue-sheng; FAN Chong-jin; TAN Zhen-fan

    2003-01-01

    By the sketch of structure of MVWG,the working laws of this kind of gyroscope were explained.To the aid of Euler′s Dynamics Equation,a mathematical model of the gyroscope was constructed,and then by the basic working laws of MVWG the model was simplified.Under the conditions of the three axial direction rotations and general rotation,the mathematical model was resolved.And finally by the solutions, the working laws of the gyroscope, the working disparity among all sorts of gyrations and the influences from the gyrations in the axial directions were analysed.

  15. Predictive control applied to an evaporator mathematical model

    Directory of Open Access Journals (Sweden)

    Daniel Alonso Giraldo Giraldo

    2010-07-01

    Full Text Available This paper outlines designing a predictive control model (PCM applied to a mathematical model of a falling film evaporator with mechanical steam compression like those used in the dairy industry. The controller was designed using the Connoisseur software package and data gathered from the simulation of a non-linear mathematical model. A control law was obtained from minimising a cost function sublect to dynamic system constraints, using a quadratic programme (QP algorithm. A linear programming (LP algorithm was used for finding a sub-optimal operation point for the process in stationary state.

  16. Modeling Tool Advances Rotorcraft Design

    Science.gov (United States)

    2007-01-01

    Continuum Dynamics Inc. (CDI), founded in 1979, specializes in advanced engineering services, including fluid dynamic modeling and analysis for aeronautics research. The company has completed a number of SBIR research projects with NASA, including early rotorcraft work done through Langley Research Center, but more recently, out of Ames Research Center. NASA Small Business Innovation Research (SBIR) grants on helicopter wake modeling resulted in the Comprehensive Hierarchical Aeromechanics Rotorcraft Model (CHARM), a tool for studying helicopter and tiltrotor unsteady free wake modeling, including distributed and integrated loads, and performance prediction. Application of the software code in a blade redesign program for Carson Helicopters, of Perkasie, Pennsylvania, increased the payload and cruise speeds of its S-61 helicopter. Follow-on development resulted in a $24 million revenue increase for Sikorsky Aircraft Corporation, of Stratford, Connecticut, as part of the company's rotor design efforts. Now under continuous development for more than 25 years, CHARM models the complete aerodynamics and dynamics of rotorcraft in general flight conditions. CHARM has been used to model a broad spectrum of rotorcraft attributes, including performance, blade loading, blade-vortex interaction noise, air flow fields, and hub loads. The highly accurate software is currently in use by all major rotorcraft manufacturers, NASA, the U.S. Army, and the U.S. Navy.

  17. Mathematical modeling of a rotary hearth coke calciner

    OpenAIRE

    Hilde C. Meisingset; Jens G. Balchen

    1995-01-01

    A mathematical model of a rotary hearth coke calciner is developed. The model is based on first principles including the most important dynamic phenomena. The model is a thermodynamic model involving heat and mass transfer and chemical reactions. Fundamental mass and energy balance equations for the coke phase, the gas phase and the lining are formulated. For the gas phase, a stationary model is used. The equations are solved numerically, and simulated temperature profiles are shown in this p...

  18. Mathematical Modeling of Vascular Tumor Growth and Development

    OpenAIRE

    Cooper, Michele

    2010-01-01

    Mathematical modeling of cancer is of significant interest due to its potential to aid in our understanding of the disease, including investigation into which factors are most important in the progression of cancer. With this knowledge and model different paths of treatment can be examined; (e.g. simulation of different treatment techniques followed by the more costly venture of testing on animal models). Significant work has been done in the field of cancer modeling with models ranging from ...

  19. Mathematical modeling of a rotary hearth coke calciner

    Directory of Open Access Journals (Sweden)

    Hilde C. Meisingset

    1995-10-01

    Full Text Available A mathematical model of a rotary hearth coke calciner is developed. The model is based on first principles including the most important dynamic phenomena. The model is a thermodynamic model involving heat and mass transfer and chemical reactions. Fundamental mass and energy balance equations for the coke phase, the gas phase and the lining are formulated. For the gas phase, a stationary model is used. The equations are solved numerically, and simulated temperature profiles are shown in this paper.

  20. Mathematical modelling of slow drug release from collagen matrices

    OpenAIRE

    Erichsen, Birgitte Riisøen

    2014-01-01

    This master's thesis is about controlled drug release, which is a relatively new area of mathematical modelling. In this thesis there have been two major focuses. The first is to further understand the model for drug release from collagen matrices developed earlier by solving it with a different numerical scheme, and the second to develop a new model based on a different geometry. Both models are based on mass conservation and Fick's law, and are therefore possible to compare. The two models ...

  1. A Numerical Method for Solving the Mathematical Model of Controlled Drug Release

    OpenAIRE

    Öztürk, Yalçın; GÜLSU, Aydan; Gülsu, Mustafa

    2013-01-01

    Over the past few decades, significant medical advances have been made in the area of drug delivery with the development of controlled release dosage forms. Controlled release formulations bring scientists in different fields to work together with the common aim of realizing more and more effective products. For this purpose, the use of mathematical modeling turns out to be very useful as this approach enables, in the best case, the prediction of release kinetics before the release systems ar...

  2. Applying Mathematical Models to Surgical Patient Planning

    OpenAIRE

    Oostrum, Jeroen

    2009-01-01

    textabstractOn a daily basis surgeons, nurses, and managers face cancellation of surgery, peak demands on wards, and overtime in operating rooms. Moreover, the lack of an integral planning approach for operating rooms, wards, and intensive care units causes low resource utilization and makes patient flows unpredictable. An ageing population and advances in medicine are putting the available healthcare budget under great pressure. Under these circumstances, hospitals are seeking innovative way...

  3. Mathematical model of desublimation process of volatile metal fluorides

    OpenAIRE

    Smolkin, P. А.; Buynovskiy, А. S.; Lazarchuk, V. V.; Matveev, А. А.; Sofronov, V. L.

    2007-01-01

    Mathematical model for calculation of optimal temperature desublimation in metal fluorides and the number of desublimation stages has been developed; it permits achieving the degree of base product recovery from gas-vapour mixture nearly to 100 %. Experimental checking of modeling results at uranium hexafluoride desublimation shows a good correlation with the theoretical data.

  4. Metaphors and Models in Translation between College and Workplace Mathematics

    Science.gov (United States)

    Williams, Julian; Wake, Geoff

    2007-01-01

    We report a study of repairs in communication between workers and visiting outsiders (students, researchers or teachers). We show how cultural models such as metaphors and mathematical models facilitated explanations and repair work in inquiry and pedagogical dialogues. We extend previous theorisations of metaphor by Black; Lakoff and Johnson;…

  5. Mathematical model of bisubject qualimetric arbitrary objects evaluation

    Science.gov (United States)

    Morozova, A.

    2016-04-01

    An analytical basis and the process of formalization of arbitrary objects bisubject qualimetric evaluation mathematical model information spaces are developed. The model is applicable in solving problems of control over both technical and socio-economic systems for objects evaluation using systems of parameters generated by different subjects taking into account their performance and priorities of decision-making.

  6. Analysis of rear end impact using mathematical human modelling

    NARCIS (Netherlands)

    Happee, R.; Meijer, R.; Horst, M.J. van der; Ono, K.; Yamazaki, K.

    2000-01-01

    At TNO an omni-directional mathematical human body model has been developed. Until now this human model has been validated for frontal and lateral loading using response data of volunteer and post mortem human subject (PMHS) sled tests. For rearward loading it has been validated for high speed impac

  7. Preparation of mathematical model of electronic regulator to calculation researches

    OpenAIRE

    Лисовал, А. А.

    2008-01-01

    The stage of design of microprocessor regulator for a diesel with supercharger is presented: the development of a dynamic mathematical model of an electronic regulator. Adequacy of the created model is confirmed during realization of her in the software environment of MATLAB/Simulink. Il. 6. Bibliogr. 7 names.

  8. Mathematical Models for Room Air Distribution - Addendum

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    1982-01-01

    A number of different models on the air distribution in rooms are introduced. This includes the throw model, a model on penetration length of a cold wall jet and a model for maximum velocity in the dimensioning of an air distribution system in highly loaded rooms and shows that the amount of heat...

  9. Mathematical Models for Room Air Distribution

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    1982-01-01

    A number of different models on the air distribution in rooms are introduced. This includes the throw model, a model on penetration length of a cold wall jet and a model for maximum velocity in the dimensioning of an air distribution system in highly loaded rooms and shows that the amount of heat...

  10. Mathematical models of a diffusion-convection in porous media

    Directory of Open Access Journals (Sweden)

    Anvarbek M. Meirmanov

    2012-06-01

    Full Text Available Mathematical models of a diffusion-convection in porous media are derived from the homogenization theory. We start with the mathematical model on the microscopic level, which consist of the Stokes system for a weakly compressible viscous liquid occupying a pore space, coupled with a diffusion-convection equation for the admixture. We suppose that the viscosity of the liquid depends on a concentration of the admixture and for this nonlinear system we prove the global in time existence of a weak solution. Next we rigorously fulfil the homogenization procedure as the dimensionless size of pores tends to zero, while the porous body is geometrically periodic. As a result, we derive new mathematical models of a diffusion-convection in absolutely rigid porous media.

  11. Mathematical models of regulatory mechanisms of sleep-wake rhythms.

    Science.gov (United States)

    Nakao, M; Karashima, A; Katayama, N

    2007-05-01

    Studies of regulatory mechanisms of sleep-wake rhythms have benefited greatly from mathematical modeling. There are two major frameworks of modeling: one integrates homeostatic and circadian regulations and the other consists of multiple interacting oscillators. In this article, model constructions based on these respective frameworks and their characteristics are reviewed. The two-process model and the multioscillator model are explained in detail. An appropriate mathematical abstraction is also shown to provide a viewpoint unifying the model structures, which might seem to be distinct. Recently acquired knowledge of neural regulatory mechanisms of sleep-wake rhythm has prompted modeling at the neural network level. Such a detailed model is also reviewed, and could be used to explore a possible neural mechanism underlying a pathological state of sleep-wake rhythm. PMID:17364138

  12. CHOOSING A MATHEMATICAL MODEL OF HEAT SUPPLY NETWORK ROUTE

    Directory of Open Access Journals (Sweden)

    V. N. Melkumov

    2012-02-01

    Full Text Available Problem statement. Modern computational technologies allow to develop mathematical modelsfor choosing optimal topology and construction routes of heat supply networks taking into accounta large amount of influencing factors. Important pivots when developing a mathematical model arethe choice of source data representation, of the model of choosing the optimal topology and routeand the computational algorithms for model implementation at computing facilities. The difficultyof choosing a computational method, aside from the nature of topological models, is complicatedby a large amount of limiting factors. This is the reason why the choice of forms of representationof mathematical models and the efficiency of computational methods of their solution is actualwhen used in practical applications.Results. A mathematical model of the cost of construction of heat supply networks has been developedwhich, as opposed to traditional models, leaves the necessary degrees of freedom for determiningacceptable and optimal topology and construction route for account of using multicriterionoptimization. A method of weighted summation has been proposed for usage for combiningraster maps corresponding to different routing criteria.Conclusions. The considered method allows to take account of the whole system of factors influencingthe construction route of heat supply network and to conduct route optimization basedon several criteria, which allows to choose the optimal topology and construction route under theinfluence of multiple external and internal factors.

  13. Modeling eBook acceptance: A study on mathematics teachers

    Science.gov (United States)

    Jalal, Azlin Abd; Ayub, Ahmad Fauzi Mohd; Tarmizi, Rohani Ahmad

    2014-12-01

    The integration and effectiveness of eBook utilization in Mathematics teaching and learning greatly relied upon the teachers, hence the need to understand their perceptions and beliefs. The eBook, an individual laptop completed with digitized textbook sofwares, were provided for each students in line with the concept of 1 student:1 laptop. This study focuses on predicting a model on the acceptance of the eBook among Mathematics teachers. Data was collected from 304 mathematics teachers in selected schools using a survey questionnaire. The selection were based on the proportionate stratified sampling. Structural Equation Modeling (SEM) were employed where the model was tested and evaluated and was found to have a good fit. The variance explained for the teachers' attitude towards eBook is approximately 69.1% where perceived usefulness appeared to be a stronger determinant compared to perceived ease of use. This study concluded that the attitude of mathematics teachers towards eBook depends largely on the perception of how useful the eBook is on improving their teaching performance, implying that teachers should be kept updated with the latest mathematical application and sofwares to use with the eBook to ensure positive attitude towards using it in class.

  14. A full body mathematical model of an oil palm harvester

    Science.gov (United States)

    Tumit, NP; Rambely, A. S.; BMT, Shamsul; Shahriman A., B.; Ng Y., G.; Deros, B. M.; Zailina, H.; Goh Y., M.; Arumugam, Manohar; Ismail I., A.; Abdul Hafiz A., R.

    2015-09-01

    The main purpose of this article is to develop a mathematical model of human body during harvesting via Kane's method. This paper is an extension model of previous biomechanical model representing a harvester movement during harvesting a Fresh Fruit Bunch (FFB) from a palm oil tree. The ten segment model consists of foot, leg, trunk, the head and the arms segment. Finally, the inverse dynamic equations are represented in a matrix form.

  15. Mathematically modelling proportions of Japanese populations by industry

    Science.gov (United States)

    Hirata, Yoshito

    2016-10-01

    I propose a mathematical model for temporal changes of proportions for industrial sectors. I prove that the model keeps the proportions for the primary, the secondary, and the tertiary sectors between 0 and 100% and preserves their total as 100%. The model fits the Japanese historical data between 1950 and 2005 for the population proportions by industry very well. The model also predicts that the proportion for the secondary industry becomes negligible and becomes less than 1% at least around 2080.

  16. Mathematical model of seed germination process

    International Nuclear Information System (INIS)

    An analytical model of seed germination process was described. The model based on proposed working hypothesis leads - by analogy - to a law corresponding with Verhulst-Pearl's law, known from the theory of population kinetics. The model was applied to describe the germination kinetics of tomato seeds, Promyk field cultivar, biostimulated by laser treatment. Close agreement of experimental and model data was obtained

  17. Mathematical modelling of undrained clay behavior

    Science.gov (United States)

    Prevost, J. H.; Noeg, K.

    1976-01-01

    The proposed general analytical model describes the anisotropic, elastoplastic, path-dependent, stress-strain properties of inviscid saturated clays under undrained conditions. Model parameters are determined by using results from strain-controlled simple shear tests on a saturated clay. The model's accuracy is evaluated by applying it to predict the results of other tests on the same clay, including monotonic and cyclic loading. The model explains the very anisotropic shear strength behavior observed for weak marine clays.

  18. Mathematical model in controlling dengue transmission with sterile mosquito strategies

    Science.gov (United States)

    Aldila, D.; Nuraini, N.; Soewono, E.

    2015-09-01

    In this article, we propose a mathematical model for controlling dengue disease transmission with sterile mosquito techniques (SIT). Sterile male introduced from lab in to habitat to compete with wild male mosquito for mating with female mosquito. Our aim is to displace gradually the natural mosquito from the habitat. Mathematical model analysis for steady states and the basic reproductive ratio are performed analytically. Numerical simulation are shown in some different scenarios. We find that SIT intervention is potential to controlling dengue spread among humans population

  19. A mathematical look at a physical power prediction model

    Energy Technology Data Exchange (ETDEWEB)

    Landberg, L. [Riso National Lab., Roskilde (Denmark)

    1997-12-31

    This paper takes a mathematical look at a physical model used to predict the power produced from wind farms. The reason is to see whether simple mathematical expressions can replace the original equations, and to give guidelines as to where the simplifications can be made and where they can not. This paper shows that there is a linear dependence between the geostrophic wind and the wind at the surface, but also that great care must be taken in the selection of the models since physical dependencies play a very important role, e.g. through the dependence of the turning of the wind on the wind speed.

  20. Mathematical modelling in the computer-aided process planning

    Science.gov (United States)

    Mitin, S.; Bochkarev, P.

    2016-04-01

    This paper presents new approaches to organization of manufacturing preparation and mathematical models related to development of the computer-aided multi product process planning (CAMPP) system. CAMPP system has some peculiarities compared to the existing computer-aided process planning (CAPP) systems: fully formalized developing of the machining operations; a capacity to create and to formalize the interrelationships among design, process planning and process implementation; procedures for consideration of the real manufacturing conditions. The paper describes the structure of the CAMPP system and shows the mathematical models and methods to formalize the design procedures.

  1. Mass Extinction in a Simple Mathematical Biological Model

    CERN Document Server

    Tokita, K; Tokita, Kei; Yasutomi, Ayumu

    1997-01-01

    Introducing the effect of extinction into the so-called replicator equations in mathematical biology, we construct a general model of ecosystems. The present model shows mass extinction by its own extinction dynamics when the system initially has a large number of species ( diversity). The extinction dynamics shows several significant features such as a power law in basin size distribution, induction time, etc. The present theory can be a mathematical foundation of the species-area effect in the paleontologic theory for mass extinction.

  2. Rock Burst Mechanics: Insight from Physical and Mathematical Modelling

    OpenAIRE

    Vacek, J.; J. Chocholoušová

    2008-01-01

    Rock burst processes in mines are studied by many groups active in the field of geomechanics. Physical and mathematical modelling can be used to better understand the phenomena and mechanisms involved in the bursts. In the present paper we describe both physical and mathematical models of a rock burst occurring in a gallery of a coal mine.For rock bursts (also called bumps) to occur, the rock has to possess certain particular rock burst properties leading to accumulation of energy and the pot...

  3. Mathematical model for spreading dynamics of social network worms

    International Nuclear Information System (INIS)

    In this paper, a mathematical model for social network worm spreading is presented from the viewpoint of social engineering. This model consists of two submodels. Firstly, a human behavior model based on game theory is suggested for modeling and predicting the expected behaviors of a network user encountering malicious messages. The game situation models the actions of a user under the condition that the system may be infected at the time of opening a malicious message. Secondly, a social network accessing model is proposed to characterize the dynamics of network users, by which the number of online susceptible users can be determined at each time step. Several simulation experiments are carried out on artificial social networks. The results show that (1) the proposed mathematical model can well describe the spreading dynamics of social network worms; (2) weighted network topology greatly affects the spread of worms; (3) worms spread even faster on hybrid social networks

  4. MATHEMATICAL MODELING OF ORANGE SEED DRYING KINETICS

    Directory of Open Access Journals (Sweden)

    Daniele Penteado Rosa

    2015-06-01

    Full Text Available Drying of orange seeds representing waste products from juice processing was studied in the temperatures of 40, 50, 60 and 70 °C and drying velocities of 0.6, 1.0 and 1.4 m/s. Experimental drying kinetics of orange seeds were obtained using a convective air forced dryer. Three thin-layer models: Page model, Lewis model, and the Henderson-Pabis model and the diffusive model were used to predict the drying curves. The Henderson-Pabis and the diffusive models show the best fitting performance and statistical evaluations. Moreover, the temperature dependence on the effective diffusivity followed an Arrhenius relationship, and the activation energies ranging from 16.174 to 16.842 kJ/mol

  5. Mathematical modeling of the human knee joint

    Energy Technology Data Exchange (ETDEWEB)

    Ricafort, Juliet [Univ. of Southern California, Los Angeles, CA (United States). Dept. of Biomedical Engineering

    1996-05-01

    A model was developed to determine the forces exerted by several flexor and extensor muscles of the human knee under static conditions. The following muscles were studied: the gastrocnemius, biceps femoris, semitendinosus, semimembranosus, and the set of quadricep muscles. The tibia and fibula were each modeled as rigid bodies; muscles were modeled by their functional lines of action in space. Assumptions based on previous data were used to resolve the indeterminacy.

  6. Mathematical model of the dynamics of psychotherapy

    OpenAIRE

    Larry S. Liebovitch; Peluso, Paul R.; Norman, Michael D.; Su, Jessica; Gottman, John M.

    2011-01-01

    The success of psychotherapy depends on the nature of the therapeutic relationship between a therapist and a client. We use dynamical systems theory to model the dynamics of the emotional interaction between a therapist and client. We determine how the therapeutic endpoint and the dynamics of getting there depend on the parameters of the model. Previously Gottman et al. used a very similar approach (physical-sciences paradigm) for modeling and making predictions about husband–wife relationshi...

  7. A Mathematical Model for Segmenting ECG Signals

    Science.gov (United States)

    Feier, Horea; Roşu, Doina; Falniţǎ, Lucian; Roşu, Şerban; Pater, Liana

    2010-09-01

    This paper deals with the behavior of the modulus of the continuous wavelet transform (CWT) for some known mother wavelets like the Morlet wavelet and the Mexican Hat. By exploiting these properties, the models presented can behave as a segmentation/ recognition signal processing tool by modeling the temporal structure of the observed surface ECG.

  8. Undergraduate Research: Mathematical Modeling of Mortgages

    Science.gov (United States)

    Choi, Youngna; Spero, Steven

    2010-01-01

    In this article, we study financing in the real estate market and show how various types of mortgages can be modeled and analyzed. With only an introductory level of interest theory, finance, and calculus, we model and analyze three types of popular mortgages with real life examples that explain the background and inevitable outcome of the current…

  9. A Mathematical Model for Freeze-Drying

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Based on the experiments on freeze-drying carrot and potato slabs, the effects of some parameters, such as heating temperature and pressure on the freeze-drying process are examined. A simple model of freeze-drying is established to predict drying time and the mass variations of materials during the drying. The experimental results agree well with those calculated by the model.

  10. A Mathematical model of copper corrosion

    CERN Document Server

    Clarelli, Fabrizio; Natalini, Roberto

    2012-01-01

    A new partial differential model for monitoring and detecting copper corrosion products (mainly brochantite and cuprite) is proposed to provide predictive tools suitable for describing the evolution of damage induced on bronze specimens by sulfur dioxide (SO_2) pollution. This model is characterized by the movement of a double free boundary. Numerical simulations show a nice agreement with experimental result.

  11. Development of a revised mathematical model of the gastrointestinal tract

    International Nuclear Information System (INIS)

    The objectives of this research are as follows. First, to incorporate new biological data into a revised mathematical adult gastrointestinal tract model that includes: ingestion in both liquid and solid forms; consideration of absorption in the stomach, small intestine, ascending colon, transverse colon or not at all; gender and age of the adult; and whether the adult is a smoker or not. Next, to create a computer program in basic language for calculating residence times in each anatomical section of the GI tract for commonly used radionuclides. Also, to compare and contrast the new model with the ICRP 30 GI tract model in terms of physiological concepts, mathematical concepts, and revised residence times for several commonly used radionuclides. Finally, to determine whether the new model is sufficiently better than the current model to warrant its use as a replacement for the Eve model

  12. A Computational and Mathematical Model for Device Induced Thrombosis

    Science.gov (United States)

    Wu, Wei-Tao; Aubry, Nadine; Massoudi, Mehrdad; Antaki, James

    2015-11-01

    Based on the Sorenson's model of thrombus formation, a new mathematical model describing the process of thrombus growth is developed. In this model the blood is treated as a Newtonian fluid, and the transport and reactions of the chemical and biological species are modeled using CRD (convection-reaction-diffusion) equations. A computational fluid dynamic (CFD) solver for the mathematical model is developed using the libraries of OpenFOAM. Applying the CFD solver, several representative benchmark problems are studied: rapid thrombus growth in vivo by injecting Adenosine diphosphate (ADP) using iontophoretic method and thrombus growth in rectangular microchannel with a crevice which usually appears as a joint between components of devices and often becomes nidus of thrombosis. Very good agreements between the numerical and the experimental results validate the model and indicate its potential to study a host of complex and practical problems in the future, such as thrombosis in blood pumps and artificial lungs.

  13. Mathematical analysis and numerical simulation of a model of morphogenesis.

    Science.gov (United States)

    Muñoz, Ana I; Tello, José Ignacio

    2011-10-01

    We consider a simple mathematical model of distribution of morphogens (signaling molecules responsible for the differentiation of cells and the creation of tissue patterns). The mathematical model is a particular case of the model proposed by Lander, Nie and Wan in 2006 and similar to the model presented in Lander, Nie, Vargas and Wan 2005. The model consists of a system of three equations: a PDE of parabolic type with dynamical boundary conditions modelling the distribution of free morphogens and two ODEs describing the evolution of bound and free receptors. Three biological processes are taken into account: diffusion, degradation and reversible binding. We study the stationary solutions and the evolution problem. Numerical simulations show the behavior of the solution depending on the values of the parameters.

  14. A mathematical prognosis model for pancreatic cancer patients receiving immunotherapy.

    Science.gov (United States)

    Li, Xuefang; Xu, Jian-Xin

    2016-10-01

    Pancreatic cancer is one of the most deadly types of cancer since it typically spreads rapidly and can seldom be detected in its early stage. Pancreatic cancer therapy is thus a challenging task, and appropriate prognosis or assessment for pancreatic cancer therapy is of critical importance. In this work, based on available clinical data in Niu et al. (2013) we develop a mathematical prognosis model that can predict the overall survival of pancreatic cancer patients who receive immunotherapy. The mathematical model incorporates pancreatic cancer cells, pancreatic stellate cells, three major classes of immune effector cells CD8+ T cells, natural killer cells, helper T cells, and two major classes of cytokines interleukin-2 (IL-2) and interferon-γ (IFN-γ). The proposed model describes the dynamic interaction between tumor and immune cells. In order for the model to be able to generate appropriate prognostic results for disease progression, the distribution and stability properties of equilibria in the mathematical model are computed and analysed in absence of treatments. In addition, numerical simulations for disease progression with or without treatments are performed. It turns out that the median overall survival associated with CIK immunotherapy is prolonged from 7 to 13months compared with the survival without treatment, this is consistent with the clinical data observed in Niu et al. (2013). The validity of the proposed mathematical prognosis model is thus verified. Our study confirms that immunotherapy offers a better prognosis for pancreatic cancer patients. As a direct extension of this work, various new therapy methods that are under exploration and clinical trials could be assessed or evaluated using the newly developed mathematical prognosis model. PMID:27338302

  15. SARS epidemical forecast research in mathematical model

    Institute of Scientific and Technical Information of China (English)

    DING Guanghong; LIU Chang; GONG Jianqiu; WANG Ling; CHENG Ke; ZHANG Di

    2004-01-01

    The SIJR model, simplified from the SEIJR model, is adopted to analyze the important parameters of the model of SARS epidemic such as the transmission rate, basic reproductive number. And some important parameters are obtained such as the transmission rate by applying this model to analyzing the situation in Hong Kong, Singapore and Canada at the outbreak of SARS. Then forecast of the transmission of SARS is drawn out here by the adjustment of parameters (such as quarantined rate) in the model. It is obvious that inflexion lies on the crunode of the graph, which indicates the big difference in transmission characteristics between the epidemic under control and not under control. This model can also be used in the comparison of the control effectiveness among different regions. The results from this model match well with the actual data in Hong Kong, Singapore and Canada and as a by-product, the index of the effectiveness of control in the later period can be acquired. It offers some quantitative indexes, which may help the further research in epidemic diseases.

  16. Physical and Mathematical Modeling in Experimental Papers.

    Science.gov (United States)

    Möbius, Wolfram; Laan, Liedewij

    2015-12-17

    An increasing number of publications include modeling. Often, such studies help us to gain a deeper insight into the phenomena studied and break down barriers between experimental and theoretical communities. However, combining experimental and theoretical work is challenging for authors, reviewers, and readers. To help maximize the usefulness and impact of combined theoretical and experimental research, this Primer describes the purpose, usefulness, and different types of models and addresses the practical aspect of integrated publications by outlining characteristics of good modeling, presentation, and fruitful collaborations.

  17. MATHEMATICAL MODELS FOR MICROSTRUCTURE EVOLUTION IN THE SEAMLESS TUBE ROLLING

    OpenAIRE

    Ricardo Nolasco de Carvalho; Marcelo Almeida Cunha Ferreira; Dagoberto Brandão Santos; Ronaldo Antônio Neves Marques Barbosa

    2013-01-01

    The goal of this work is to present recent developments on mathematical modeling for microstructure evolution in different steel types, applied to a continuous rolling of seamless tubes. The development of these models depends on careful characterization of the thermomechanical cycle and/on correct selection and adjustment of equations which describes the several metallurgical phenomena involved on this process. The adjustments of these models are done using the results obtained i...

  18. Mathematical modeling of recombinant Escherichia coli aerobic batch fermentations

    OpenAIRE

    Costa, Rafael S; Rocha, I; Ferreira, E. C.

    2008-01-01

    In this work, three competing unstructured mathematical models for the biomass growth by recombinant E. coli strains with different acetate inhibition kinetics terms were evaluated for batch processes at constant temperature and pH. The models considered the dynamics of biomass growth, acetate accumulation, substrate consumption, Green Fluorescence Protein (GFP) production and three metabolic pathways for E. coli. Parameter estimation and model validation was carried out usi...

  19. Mathematical Modelling of Metabolic Regulation in Aging

    Directory of Open Access Journals (Sweden)

    Mark T. Mc Auley

    2015-04-01

    Full Text Available The underlying cellular mechanisms that characterize aging are complex and multifaceted. However, it is emerging that aging could be regulated by two distinct metabolic hubs. These hubs are the pathway defined by the mammalian target of rapamycin (mTOR and that defined by the NAD+-dependent deacetylase enzyme, SIRT1. Recent experimental evidence suggests that there is crosstalk between these two important pathways; however, the mechanisms underpinning their interaction(s remains poorly understood. In this review, we propose using computational modelling in tandem with experimentation to delineate the mechanism(s. We briefly discuss the main modelling frameworks that could be used to disentangle this relationship and present a reduced reaction pathway that could be modelled. We conclude by outlining the limitations of computational modelling and by discussing opportunities for future progress in this area.

  20. Economics, Mathematical Models, and Environmental Policy

    OpenAIRE

    Conrad, John M.

    1987-01-01

    This paper briefly reviews several models of externality which provide the theoretical basis of environmental economics. An externality may be defined as a situation where the output or action of a firm or individual affects the production possibilities or welfare of another firm or individual who has no direct control over the initial level of the output or activity. Pollution, resulting from the disposal of residual wastes, is a classic example of externality. Three static models examine th...

  1. Mathematical Modeling and Dynamic Simulation of Metabolic Reaction Systems Using Metabolome Time Series Data

    Directory of Open Access Journals (Sweden)

    Kansuporn eSriyudthsak

    2016-05-01

    Full Text Available The high-throughput acquisition of metabolome data is greatly anticipated for the complete understanding of cellular metabolism in living organisms. A variety of analytical technologies have been developed to acquire large-scale metabolic profiles under different biological or environmental conditions. Time series data are useful for predicting the most likely metabolic pathways because they provide important information regarding the accumulation of metabolites, which implies causal relationships in the metabolic reaction network. Considerable effort has been undertaken to utilize these data for constructing a mathematical model merging system properties and quantitatively characterizing a whole metabolic system in toto. However, there are technical difficulties between benchmarking the provision and utilization of data. Although hundreds of metabolites can be measured, which provide information on the metabolic reaction system, simultaneous measurement of thousands of metabolites is still challenging. In addition, it is nontrivial to logically predict the dynamic behaviors of unmeasurable metabolite concentrations without sufficient information on the metabolic reaction network. Yet, consolidating the advantages of advancements in both metabolomics and mathematical modeling remain to be accomplished. This review outlines the conceptual basis of and recent advances in technologies in both the research fields. It also highlights the potential for constructing a large-scale mathematical model by estimating model parameters from time series metabolome data in order to comprehensively understand metabolism at the systems level.

  2. Mathematical modeling of clearing liquid drop diffusion after intradermal injection

    Science.gov (United States)

    Stolnitz, Mikhail M.; Bashkatov, Alexey N.; Genina, Elina A.; Tuchin, Valery V.

    2007-05-01

    The mathematical model of clearing agent diffusion after intradermal injection has been developed. Skin was presented as multilayer medium, but one layer with proper boundary conditions is considered. Analytical solution of the boundary problem for small and large time intervals is obtained.

  3. Unlocking pathogen genotyping information for public health by mathematical modeling

    NARCIS (Netherlands)

    M. Kretzschmar; M.G. M. Gomes; R.A. Coutinho; J.S. Koopman

    2010-01-01

    Molecular typing and mathematical modeling have gone through rapid development in the past decade. Both offer new insights into the epidemiology of infectious diseases, thereby contributing to a better understanding of transmission dynamics. Infectious disease surveillance and control benefit from t

  4. Mathematical models and dynamic characteristics of the WWER-440 unit

    International Nuclear Information System (INIS)

    Dynamic characteristics of the WWER-440 unit are determined. Using suitable mathematical models the dynamic properties of the reactor fuel channel, steam generator and individual parts of the secondary circuit were investigated. General relations of the corresponding transfer function and its numerical value are calculated as well as the transfer functions of different configurations of two parallel lines of the secondary circuit. (author)

  5. Mathematical Model of Lifetime Duration at Insulation of Electrical Machines

    Directory of Open Access Journals (Sweden)

    Mihaela Răduca

    2009-10-01

    Full Text Available Abstract. This paper present a mathematical model of lifetime duration at hydro generator stator winding insulation when at hydro generator can be appear the damage regimes. The estimation to make by take of the programming and non-programming revisions, through the introduction and correlation of the new defined notions.

  6. Conceptualizing professional development in mathematics: elements of a model

    OpenAIRE

    Sztajn, Paola; Campbell, Mathew; Yoon, Kwang Suk

    2011-01-01

    This theoretical paper discusses the concept of models for mathematics professional development. After examining the related literature, we propose a definition of this concept that includes four elements: goals, theories, contexts, and structure. We present aspects of professional development that comprise each element.

  7. Evolution and History in a new "Mathematical SETI" model

    Science.gov (United States)

    Maccone, Claudio

    2014-01-01

    important exact equations yielding the b-lognormal when its birth time, senility-time (descending inflexion point) and death time (where the tangent at senility intercepts the time axis) are known. These also are brand-new results. In particular, the σ=1 b-lognormals are shown to be related to the golden ratio, so famous in the arts and in architecture, and these special b-lognormals we call "golden b-lognormals". Applying this new mathematical apparatus to Human History leads to the discovery of the exponential trend of progress between Ancient Greece and the current USA Empire as the envelope of the b-lognormals of all Western Civilizations over a period of 2500 years. We then invoke Shannon's Information Theory. The entropy of the obtained b-lognormals turns out to be the index of "development level" reached by each historic civilization. As a consequence, we get a numerical estimate of the entropy difference (i.e. the difference in the evolution levels) between any two civilizations. In particular, this was the case when Spaniards first met with Aztecs in 1519, and we find the relevant entropy difference between Spaniards an Aztecs to be 3.84 bits/individual over a period of about 50 centuries of technological difference. In a similar calculation, the entropy difference between the first living organism on Earth (RNA?) and Humans turns out to equal 25.57 bits/individual over a period of 3.5 billion years of Darwinian Evolution. Finally, we extrapolate our exponentials into the future, which is of course arbitrary, but is the best Humans can do before they get in touch with any alien civilization. The results are appalling: the entropy difference between aliens 1 million years more advanced than Humans is of the order of 1000 bits/individual, while 10,000 bits/individual would be requested to any Civilization wishing to colonize the whole Galaxy (Fermi Paradox). In conclusion, we have derived a mathematical model capable of estimating how much more advanced than humans

  8. Mathematical Modeling of Neuro-Vascular Coupling in Rat Cerebellum

    DEFF Research Database (Denmark)

    Rasmussen, Tina

    Activity in the neurons called climbing fibers causes blood flow changes. But the physiological mechanisms which mediate the coupling are not well understood. This PhD thesis investigates the mechanisms of neuro-vascular coupling by means of mathematical methods. In experiments, the extracellularly...... measured field potential is used as an indicator of neuronal activity, and the cortical blood flow is measured by means of laser-Doppler flowmetry. Using system identification methods, these measurements have been used to construct and validate parametric mathematical models of the neuro-vascular system...

  9. Mathematical modeling of a convective textile drying process

    Directory of Open Access Journals (Sweden)

    G. Johann

    2014-12-01

    Full Text Available This study aims to develop a model that accurately represents the convective drying process of textile materials. The mathematical modeling was developed from energy and mass balances and, for the solution of the mathematical model, the technique of finite differences, in Cartesian coordinates, was used. It transforms the system of partial differential equations into a system of ordinary equations, with the unknowns, the temperature and humidity of both the air and the textile material. The simulation results were compared with experimental data obtained from the literature. In the statistical analysis the Shapiro-Wilk test was used to validate the model and, in all cases simulated, the results were p-values greater than 5 %, indicating normality of the data. The R-squared values were above 0.997 and the ratios Fcalculated/Fsimulated, at the 95 % confidence level, higher than five, indicating that the modeling was predictive in all simulations.

  10. Mathematical Model of Hot Metal Desulfurization by Powder Injection

    Directory of Open Access Journals (Sweden)

    Yolanda Cepeda Rodríguez

    2012-01-01

    Full Text Available Although there have been a numerous number of studies on mathematical model of hot metal desulfurization by deep injection of calcium carbide, the research field as a whole is not well integrated. This paper presents a model that takes into account the kinetics, thermodynamics, and transport processes to predict the sulfur levels in the hot metal throughout a blow. The model could be utilized to assess the influence of the treatment temperature, rate of injection, gas flow rate, and initial concentration of sulfur on the desulfurization kinetics. In the second part of this paper an analysis of the industrial data for injection of calcium carbide using this model is described. From a mathematical model that describes the characteristics of a system, it is possible to predict the behavior of the variables involved in the process, resulting in savings of time and money. Discretization is realized through the finite difference method combined with interpolation in the border domain by Taylor series.

  11. Quantum Mechanics: Fundamentals; Advanced Quantum Mechanics; Mathematical Concepts of Quantum Mechanics

    International Nuclear Information System (INIS)

    second book under consideration, that of Schwabl, contains 'Advanced' elements of quantum theory; it is designed for a course following on from one for which Gottfried and Yan, or Schwabl's own 'Quantum Mechanics' might be recommended. Many useful student problems are included. The presentation is said to be rigorous, but again this is a book for the physicist rather than the mathematician. The third book under consideration, that by Gustafson and Sigal is very different from the others. In academic level, at least the initial sections may actually be slightly lower; the book covers a one-term course taken by senior undergraduates or junior graduate students in mathematics or physics, and the initial chapters are on basic topics, such as the physical background, basic dynamics, observables and the uncertainty principle. However the level of mathematical sophistication is far higher than in the other books. While the mathematical prerequisites are modest, a third of the book is made up of what are called mathematical supplements. On the basis of these supplements, the level of mathematical sophistication and difficulty is increased substantially in the middle section of the book, where the topics considered are many-particle systems, density matrices, positive temperatures, the Feynman path integral, and quasi-classical analysis, and there is a final substantial step for the concluding chapters on resonances, an introduction to quantum field theory, and quantum electrodynamics of non-relativistic particles. A supplementary chapter contains an interesting approach to the renormalization group due to Bach, Froehlich and Sigal himself. This book is well-written, and the topics discussed have been well thought-out. It would provide a useful approach to quantum theory for the mathematician, and would also provide access for the physicist to some mathematically advanced methods and topics, but the physicist would definitely have to be prepared to work hard at the mathematics

  12. Mathematical models of ecology and evolution

    DEFF Research Database (Denmark)

    Zhang, Lai

    2012-01-01

    dynamics but as a trade-o promotes species survival by shortening juvenile delay between birth and the onset of reproduction. Paper II compares the size-spectrum and food-web representations of communities using two traits (body size and habitat location) based unstructured population model of Lotka......) based size-structured population model, that is, interference in foraging, maintenance, survival, and recruitment. Their impacts on the ecology and evolution of size-structured populations and communities are explored. Ecologically, interference aects population demographic properties either negatively...... interference mechanisms, survival interference is more likely to produce large communities with complex trophic patterns through gradual evolution and successive speciation...

  13. Mathematical modeling to predict residential solid waste generation

    International Nuclear Information System (INIS)

    One of the challenges faced by waste management authorities is determining the amount of waste generated by households in order to establish waste management systems, as well as trying to charge rates compatible with the principle applied worldwide, and design a fair payment system for households according to the amount of residential solid waste (RSW) they generate. The goal of this research work was to establish mathematical models that correlate the generation of RSW per capita to the following variables: education, income per household, and number of residents. This work was based on data from a study on generation, quantification and composition of residential waste in a Mexican city in three stages. In order to define prediction models, five variables were identified and included in the model. For each waste sampling stage a different mathematical model was developed, in order to find the model that showed the best linear relation to predict residential solid waste generation. Later on, models to explore the combination of included variables and select those which showed a higher R2 were established. The tests applied were normality, multicolinearity and heteroskedasticity. Another model, formulated with four variables, was generated and the Durban-Watson test was applied to it. Finally, a general mathematical model is proposed to predict residential waste generation, which accounts for 51% of the total

  14. Affinity and Hostility in Divided Communities: a Mathematical Model

    CERN Document Server

    Thron, Christopher

    2015-01-01

    We propose, develop, and analyze a mathematical model of intergroup attitudes in a community that is divided between two distinct social groups (which may be distinguished by religion, ethnicity, or some other socially distinguishing factor). The model is based on very simple premises that are both intuitive and justified by sociological research. We investigate the behavior of the model in various special cases, for various model configurations. We discuss the stability of the model, and the continuous or discontinuous dependence of model behavior on various parameters. Finally, we discuss possible implications for strategies to improve intergroup affinity, and to defuse tension and prevent deterioration of intergroup relationships.

  15. Three dimensional mathematical model of tooth for finite element analysis

    Directory of Open Access Journals (Sweden)

    Puškar Tatjana

    2010-01-01

    Full Text Available Introduction. The mathematical model of the abutment tooth is the starting point of the finite element analysis of stress and deformation of dental structures. The simplest and easiest way is to form a model according to the literature data of dimensions and morphological characteristics of teeth. Our method is based on forming 3D models using standard geometrical forms (objects in programmes for solid modeling. Objective. Forming the mathematical model of abutment of the second upper premolar for finite element analysis of stress and deformation of dental structures. Methods. The abutment tooth has a form of a complex geometric object. It is suitable for modeling in programs for solid modeling SolidWorks. After analyzing the literature data about the morphological characteristics of teeth, we started the modeling dividing the tooth (complex geometric body into simple geometric bodies (cylinder, cone, pyramid,.... Connecting simple geometric bodies together or substricting bodies from the basic body, we formed complex geometric body, tooth. The model is then transferred into Abaqus, a computational programme for finite element analysis. Transferring the data was done by standard file format for transferring 3D models ACIS SAT. Results. Using the programme for solid modeling SolidWorks, we developed three models of abutment of the second maxillary premolar: the model of the intact abutment, the model of the endodontically treated tooth with two remaining cavity walls and the model of the endodontically treated tooth with two remaining walls and inserted post. Conclusion Mathematical models of the abutment made according to the literature data are very similar with the real abutment and the simplifications are minimal. These models enable calculations of stress and deformation of the dental structures. The finite element analysis provides useful information in understanding biomechanical problems and gives guidance for clinical research.

  16. Mathematical models for space shuttle ground systems

    Science.gov (United States)

    Tory, E. G.

    1985-01-01

    Math models are a series of algorithms, comprised of algebraic equations and Boolean Logic. At Kennedy Space Center, math models for the Space Shuttle Systems are performed utilizing the Honeywell 66/80 digital computers, Modcomp II/45 Minicomputers and special purpose hardware simulators (MicroComputers). The Shuttle Ground Operations Simulator operating system provides the language formats, subroutines, queueing schemes, execution modes and support software to write, maintain and execute the models. The ground systems presented consist primarily of the Liquid Oxygen and Liquid Hydrogen Cryogenic Propellant Systems, as well as liquid oxygen External Tank Gaseous Oxygen Vent Hood/Arm and the Vehicle Assembly Building (VAB) High Bay Cells. The purpose of math modeling is to simulate the ground hardware systems and to provide an environment for testing in a benign mode. This capability allows the engineers to check out application software for loading and launching the vehicle, and to verify the Checkout, Control, & Monitor Subsystem within the Launch Processing System. It is also used to train operators and to predict system response and status in various configurations (normal operations, emergency and contingent operations), including untried configurations or those too dangerous to try under real conditions, i.e., failure modes.

  17. Using Archeological Data to Model Mathematics

    Science.gov (United States)

    Yanik, H. Bahadir; Kurz, Terri L.; Memis, Yasin

    2014-01-01

    The purpose of this investigation is to describe an implementation of a modeling task using mock data from an ancient archeological find. Students discover the relationship between the height of a person and his or her stride length. Qualitative data from student discussions document thinking and reasoning.

  18. Managing mathematical modelling by guiding and monitoring

    NARCIS (Netherlands)

    Scholten, H.; Beulens, A.J.M.

    2006-01-01

    This case study discusses how a knowledge base can be used to solve complex multi-disciplinary problems through a model based approach in the water management sector. We learn how successful execution and completion of multi-disciplinary complex projects can be supported through a knowledge-based sy

  19. Physical and mathematical modelling of extrusion processes

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Gronostajski, Z.; Niechajowics, A.;

    2000-01-01

    The main objective of the work is to study the extrusion process using physical modelling and to compare the findings of the study with finite element predictions. The possibilities and advantages of the simultaneous application of both of these methods for the analysis of metal forming processes...

  20. Innovative mathematical modeling in environmental remediation

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Gour T. [Taiwan Typhoon and Flood Research Institute (Taiwan); National Central Univ. (Taiwan); Univ. of Central Florida (United States); Gwo, Jin Ping [Nuclear Regulatory Commission (NRC), Rockville, MD (United States); Siegel, Malcolm D. [Sandia National Laboratories, Albuquerque, NM (United States); Li, Ming-Hsu [National Central Univ. (Taiwan); ; Fang, Yilin [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Zhang, Fan [Inst. of Tibetan Plateau Research, Chinese Academy of Sciences (China); Luo, Wensui [Inst. of Tibetan Plateau Research, Chinese Academy of Sciences (China); Yabusaki, Steven B. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2013-05-01

    There are two different ways to model reactive transport: ad hoc and innovative reaction-based approaches. The former, such as the Kd simplification of adsorption, has been widely employed by practitioners, while the latter has been mainly used in scientific communities for elucidating mechanisms of biogeochemical transport processes. It is believed that innovative mechanistic-based models could serve as protocols for environmental remediation as well. This paper reviews the development of a mechanistically coupled fluid flow, thermal transport, hydrologic transport, and reactive biogeochemical model and example-applications to environmental remediation problems. Theoretical bases are sufficiently described. Four example problems previously carried out are used to demonstrate how numerical experimentation can be used to evaluate the feasibility of different remediation approaches. The first one involved the application of a 56-species uranium tailing problem to the Melton Branch Subwatershed at Oak Ridge National Laboratory (ORNL) using the parallel version of the model. Simulations were made to demonstrate the potential mobilization of uranium and other chelating agents in the proposed waste disposal site. The second problem simulated laboratory-scale system to investigate the role of natural attenuation in potential off-site migration of uranium from uranium mill tailings after restoration. It showed inadequacy of using a single Kd even for a homogeneous medium. The third example simulated laboratory experiments involving extremely high concentrations of uranium, technetium, aluminum, nitrate, and toxic metals (e.g.,Ni, Cr, Co).The fourth example modeled microbially-mediated immobilization of uranium in an unconfined aquifer using acetate amendment in a field-scale experiment. The purposes of these modeling studies were to simulate various mechanisms of mobilization and immobilization of radioactive wastes and to illustrate how to apply reactive transport models

  1. Mathematical modelling of triple arterial stenoses.

    Science.gov (United States)

    Ang, K C; Mazumdar, J

    1995-06-01

    This paper examines the effects of triple stenoses (ie. three stenoses in series) in a reasonably large artery. The model developed is axi-symmetric and blood is assumed to be a Newtonian fluid. The governing equations are the Navier-Stokes equations and the continuity equation. These equations are solved using the Finite Element Method and the FIDAP computational fluid dynamics (C.F.D.) package. Various combinations of differing degrees of stenosis in the triplet are considered. Pressure drop profiles and streamline plots of the solutions to these models show that the effects of milder stenoses are diminished in the presence of more severe ones. Also, a pressure recovery is observed whenever a mild stenosis follows a more severe stenosis in multiply stenosed arteries.

  2. Mathematical Modeling on Open Limestone Channel

    CERN Document Server

    Bandstra, Joel; Wu, Naiyi

    2014-01-01

    Acid mine drainage (AMD) is the outflow of acidic water from metal mines or coal mines. When exposed to air and water, metal sulfides from the deposits of the mines are oxidized and produce acid, metal ions and sulfate, which lower the pH value of the water. An open limestone channel (OLC) is a passive and low cost way to neutralize AMD. The dissolution of calcium into the water increases the pH value of the solution. A differential equation model is numerically solved to predict the variation of concentration of each species in the OLC solution. The diffusion of Calcium due to iron precipitates is modeled by a linear equation. The results give the variation of pH value and the concentration of Calcium.

  3. Solar Panel Mathematical Modeling Using Simulink

    OpenAIRE

    Chandani Sharma; Anamika Jain

    2014-01-01

    For decades, electricity is a key driver of socio-economy development. Nowadays, in the context of competition there is a direct relationship between electricity generation and sustainable development of the country. This paper presents distinct use of a Photovoltaic array offering great potential as source of electricity. The simulation uses One-diode equivalent circuit in order to investigate I-V and P-V characteristics. The GUI model is designed with Simulink block librarie...

  4. Voltammetry: mathematical modelling and Inverse Problem

    CERN Document Server

    Koshev, N A; Kuzina, V V

    2016-01-01

    We propose the fast semi-analytical method of modelling the polarization curves in the voltammetric experiment. The method is based on usage of the special func- tions and shows a big calculation speed and a high accuracy and stability. Low computational needs of the proposed algorithm allow us to state the set of Inverse Problems of voltammetry for the reconstruction of metal ions concentrations or the other parameters of the electrolyte under investigation.

  5. Mathematical modeling of gas turbine cooled elements

    Energy Technology Data Exchange (ETDEWEB)

    Pashayev, A.; Askerov, D.; Sadiqov, R.; Samedov, A. [Academy of Aviation, Baku (Azerbaijan). Dept. of Mathematical Modeling and Design of Gas Turbine Engines

    2007-07-01

    The profile section of a gas turbine blade with convective cooling was modelled. Converging quadrature processes were used to determine the stationary and quasi-stationary temperature field of the profile part of the blade. Profiles were visualized using the least squares method along with automatic conjecture, device spline, smooth replenishment, and neural nets. Heat exchange boundary conditions were characterized using the finite difference method; finite element analysis (FEA); the Monte Carlo method; and the boundary integral equations method (BIEM). Boundary conditions included the heat quantity assigned by convection of the cooler transmitted by heat conduction of the blade material to the surface of cooling channels. Errors were investigated using a quadratures method and Tikhonov regularization. A Kirchhoff permutation was used to linearize tasks. The developed equation was then transformed into a Laplace equation. The model was then compared with experimental investigations to validate heat and hydraulic characteristics, as well as the temperature field of the blade cross section. It was concluded that the model can be used to assess the reliability of gas turbine engine designs. 3 refs., 1 fig.

  6. Mathematical modeling of elastic inverted pendulum control system

    Institute of Scientific and Technical Information of China (English)

    Chao XU; Xin YU

    2004-01-01

    Inverted pendulums are important objects of theoretical investigation and experiment in the area of control theory and engineering.The researches concentrate on the rigid finite dimensional models which are described by ordinary differential equations(ODEs).Complete rigidity is the approximation of practical models;Elasticity should be introduced into mathematical models in the analysis of system dynamics and integration of highly precise controller.A new kind of inverted pendulum,elastic inverted pendulum was proposed,and elasticity was considered.Mathematical model was derived from Hamiltonian principle and variational methods,which were formulated by the coupling of partial differential equations(PDE) and ODE.Because of infinite dimensional,system analysis and control of elastic inverted pendulum is more sophisticated than the rigid one.

  7. Mathematical Modeling of Carcinogenesis Based on Chromosome Aberration Data

    Institute of Scientific and Technical Information of China (English)

    Xiao-bo Li

    2009-01-01

    Objective: The progression of human cancer is characterized by the accumulation of genetic instability. An increasing number of experimental genetic molecular techniques have been used to detect chromosome aberrations. Previous studies on chromosome abnormalities often focused on identifying the frequent loci of chromosome alterations, but rarely addressed the issue of interrelationship of chromosomal abnormalities. In the last few years, several mathematical models have been employed to construct models of carcinogenesis, in an attempt to identify the time order and cause-and-effect relationship of chromosome aberrations. The principles and applications of these models are reviewed and compared in this paper. Mathematical modeling of carcinogenesis can contribute to our understanding of the molecular genetics of tumor development, and identification of cancer related genes, thus leading to improved clinical practice of cancer.

  8. Experimentally supported mathematical modeling of continuous baking processes

    DEFF Research Database (Denmark)

    Stenby Andresen, Mette

    The scope of the PhD project was to increase knowledge on the process-to-product interactions in continuous tunnel ovens. The work has focused on five main objectives. These objectives cover development of new experimental equipment for pilot plant baking experiments, mathematical modeling of heat...... and temperature) and control the process (air flow, temperature, and humidity) are therefore emphasized. The oven is furthermore designed to work outside the range of standard tunnel ovens, making it interesting for manufacturers of both baking products and baking equipment. A mathematical model describing...... the heat and mass transfer in butter cookies during baking was formulated. The model was solved numerically by the use of a finite element method. Model optimization and validation was successfully carried out against experimental data obtained in the new pilot plant oven. The effect of the baking tray...

  9. On the treatment of airline travelers in mathematical models.

    Directory of Open Access Journals (Sweden)

    Michael A Johansson

    Full Text Available The global spread of infectious diseases is facilitated by the ability of infected humans to travel thousands of miles in short time spans, rapidly transporting pathogens to distant locations. Mathematical models of the actual and potential spread of specific pathogens can assist public health planning in the case of such an event. Models should generally be parsimonious, but must consider all potentially important components of the system to the greatest extent possible. We demonstrate and discuss important assumptions relative to the parameterization and structural treatment of airline travel in mathematical models. Among other findings, we show that the most common structural treatment of travelers leads to underestimation of the speed of spread and that connecting travel is critical to a realistic spread pattern. Models involving travelers can be improved significantly by relatively simple structural changes but also may require further attention to details of parameterization.

  10. Mathematical Modelling of Surfactant Self-assembly at Interfaces

    KAUST Repository

    Morgan, C. E.

    2015-01-01

    © 2015 Society for Industrial and Applied Mathematics. We present a mathematical model to describe the distribution of surfactant pairs in a multilayer structure beneath an adsorbed monolayer. A mesoscopic model comprising a set of ordinary differential equations that couple the rearrangement of surfactant within the multilayer to the surface adsorption kinetics is first derived. This model is then extended to the macroscopic scale by taking the continuum limit that exploits the typically large number of surfactant layers, which results in a novel third-order partial differential equation. The model is generalized to allow for the presence of two adsorbing boundaries, which results in an implicit free-boundary problem. The system predicts physically observed features in multilayer systems such as the initial formation of smaller lamellar structures and the typical number of layers that form in equilibrium.

  11. Mathematical Modelling and Parameter Optimization of Pulsating Heat Pipes

    OpenAIRE

    Yang, Xin-She; Karamanoglu, Mehmet; Luan, Tao; Koziel, Slawomir

    2014-01-01

    Proper heat transfer management is important to key electronic components in microelectronic applications. Pulsating heat pipes (PHP) can be an efficient solution to such heat transfer problems. However, mathematical modelling of a PHP system is still very challenging, due to the complexity and multiphysics nature of the system. In this work, we present a simplified, two-phase heat transfer model, and our analysis shows that it can make good predictions about startup characteristics. Furtherm...

  12. Mathematical models of a liquid filtration from reservoirs

    OpenAIRE

    Anvarbek Meirmanov; Nelly Erygina; Saltanbek Mukhambetzhanov

    2014-01-01

    This article studies the filtration from reservoirs into porous media under gravity. We start with the exact mathematical model at the microscopic level, describing the joint motion of a liquid in reservoir and the same liquid and the elastic solid skeleton in the porous medium. Then using a homogenization procedure we derive the chain of macroscopic models from the poroelasticity equations up to the simplest Darcy's law in the porous medium and hydraulics in the reser...

  13. Mathematical model of induced flow on the airplane vertical tail

    Science.gov (United States)

    Rotaru, Constantin; Cîrciu, Ionicǎ; Edu, Raluca Ioana

    2016-06-01

    In this paper is presented a mathematical model of the flow around the vertical tail of an airplane, based on the general elements of the aerodynamic design, with details leading to the separate formulation of the Fourier coefficients in the series solution of the Prandtl's lifting-line equation. Numerical results are obtained in Maple soft environment, for a standard configuration of an airplane geometry. The results include the discussion of the vortex model for the sidewash gradient on the vertical stabilizer.

  14. Mathematical modeling of human behaviors during catastrophic events

    OpenAIRE

    Verdière, Nathalie; Lanza, Valentina; Charrier, Rodolphe; Provitolo, Damienne; Dubos-Paillard, Edwige; Bertelle, Cyrille; Aziz-Alaoui, Moulay

    2014-01-01

    In this paper, we introduce a new approach for modeling the human collective behaviors in the speci c scenario of a sudden catastrophe, this catastrophe can be natural (i.e. earthquake, tsunami) or technological (nuclear event). The novelty of our work is to propose a mathematical model taking into account di erent concurrent behaviors in such situation and to include the processes of transition from one behavior to the other during the event. Here, we focus more on the sequence of behaviors ...

  15. MATHEMATICAL MODEL OF RIVER BED CHANGE DOWNSTREAM OF XIAOLANGDI RESERVOIR

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A mathematical model of river bed change downstream of the Xiaolangdi Reservoir was developed based on the most recent achievement of sediment theory in the Yellow River. The model was verified by the comparison of computed results and measured data from 1986 to 1996. Numerical prediction of the erosion and deposition downstream of the Xiaolangdi Reservoir in its first operation year was carried out, and a series of suggestions were given for reservoir operation mode in its early operation period.

  16. Mathematical Modeling of Competition in Sponsored Search Market

    OpenAIRE

    Liu, Jian; Chiu, Dah Ming

    2010-01-01

    Sponsored search mechanisms have drawn much attention from both academic community and industry in recent years since the seminal papers of [13] and [14]. However, most of the existing literature concentrates on the mechanism design and analysis within the scope of only one search engine in the market. In this paper we propose a mathematical framework for modeling the interaction of publishers, advertisers and end users in a competitive market. We first consider the monopoly market model and ...

  17. Mathematical models of a liquid filtration from reservoirs

    Directory of Open Access Journals (Sweden)

    Anvarbek Meirmanov

    2014-02-01

    Full Text Available This article studies the filtration from reservoirs into porous media under gravity. We start with the exact mathematical model at the microscopic level, describing the joint motion of a liquid in reservoir and the same liquid and the elastic solid skeleton in the porous medium. Then using a homogenization procedure we derive the chain of macroscopic models from the poroelasticity equations up to the simplest Darcy's law in the porous medium and hydraulics in the reservoir.

  18. Mathematical model of a cell size checkpoint.

    Directory of Open Access Journals (Sweden)

    Marco Vilela

    Full Text Available How cells regulate their size from one generation to the next has remained an enigma for decades. Recently, a molecular mechanism that links cell size and cell cycle was proposed in fission yeast. This mechanism involves changes in the spatial cellular distribution of two proteins, Pom1 and Cdr2, as the cell grows. Pom1 inhibits Cdr2 while Cdr2 promotes the G2 → M transition. Cdr2 is localized in the middle cell region (midcell whereas the concentration of Pom1 is highest at the cell tips and declines towards the midcell. In short cells, Pom1 efficiently inhibits Cdr2. However, as cells grow, the Pom1 concentration at midcell decreases such that Cdr2 becomes activated at some critical size. In this study, the chemistry of Pom1 and Cdr2 was modeled using a deterministic reaction-diffusion-convection system interacting with a deterministic model describing microtubule dynamics. Simulations mimicked experimental data from wild-type (WT fission yeast growing at normal and reduced rates; they also mimicked the behavior of a Pom1 overexpression mutant and WT yeast exposed to a microtubule depolymerizing drug. A mechanism linking cell size and cell cycle, involving the downstream action of Cdr2 on Wee1 phosphorylation, is proposed.

  19. Mathematical modeling in biology: A critical assessment

    International Nuclear Information System (INIS)

    The molecular revolution and the development of biology-derived industry have led in the last fifty years to an unprecedented 'lead forward' of life sciences in terms of experimental data. Less success has been achieved in the organisation of such data and in the consequent development of adequate explanatory and predictive theories and models. After a brief historical excursus inborn difficulties of mathematisation of biological objects and processes derived from the complex dynamics of life are discussed along with the logical tools (simplifications, choice of observation points etc.) used to overcome them. 'Autistic', monodisciplinary attitudes towards biological modeling of mathematicians, physicists, biologists aimed in each case at the use of the tools of other disciplines to solve 'selfish' problems are also taken into account and a warning against derived dangers (reification of mono disciplinary metaphors, lack of falsification etc.) is given. Finally 'top.down' (deductive) and 'bottom up' (inductive) heuristic interactive approaches to mathematisation are critically discussed with the help of serie of examples

  20. Mathematical Viscosity Models for Ternary Metallic and Silicate Melts

    Institute of Scientific and Technical Information of China (English)

    FU Yuan-kun; MENG Xian-min; GUO Han-jie

    2004-01-01

    The mathematical viscosity models for metallic melts were discussed. The experimental data of Ag-Au-Cu systems were used to verify the models based on Chou's general geometric thermodynamic model and the calculated results are consistent with the reported experimental data. A new model predicting the viscosity of multi-component silicate melts was established. The CaO-MnO-SiO2, CaO-FeO-SiO2 and FeO-MnO-SiO2 silicate slag systems were used to verify the model.

  1. Semantic Web Based Efficient Search Using Ontology and Mathematical Model

    Directory of Open Access Journals (Sweden)

    K.Palaniammal

    2014-01-01

    Full Text Available The semantic web is the forthcoming technology in the world of search engine. It becomes mainly focused towards the search which is more meaningful rather than the syntactic search prevailing now. This proposed work concerns about the semantic search with respect to the educational domain. In this paper, we propose semantic web based efficient search using ontology and mathematical model that takes into account the misleading, unmatched kind of service information, lack of relevant domain knowledge and the wrong service queries. To solve these issues in this framework is designed to make three major contributions, which are ontology knowledge base, Natural Language Processing (NLP techniques and search model. Ontology knowledge base is to store domain specific service ontologies and service description entity (SDE metadata. The search model is to retrieve SDE metadata as efficient for Education lenders, which include mathematical model. The Natural language processing techniques for spell-check and synonym based search. The results are retrieved and stored in an ontology, which in terms prevents the data redundancy. The results are more accurate to search, sensitive to spell check and synonymous context. This paper reduces the user’s time and complexity in finding for the correct results of his/her search text and our model provides more accurate results. A series of experiments are conducted in order to respectively evaluate the mechanism and the employed mathematical model.

  2. Mathematical analysis of intermittent gas injection model in oil production

    Science.gov (United States)

    Tasmi, Silvya, D. R.; Pudjo, S.; Leksono, M.; Edy, S.

    2016-02-01

    Intermittent gas injection is a method to help oil production process. Gas is injected through choke in surface and then gas into tubing. Gas forms three areas in tubing: gas column area, film area and slug area. Gas column is used to propel slug area until surface. A mathematical model of intermittent gas injection is developed in gas column area, film area and slug area. Model is expanding based on mass and momentum conservation. Using assume film thickness constant in tubing, model has been developed by Tasmi et. al. [14]. Model consists of 10 ordinary differential equations. In this paper, assumption of pressure in gas column is uniform. Model consist of 9 ordinary differential equations. Connection of several variables can be obtained from this model. Therefore, dynamics of all variables that affect to intermittent gas lift process can be seen from four equations. To study the behavior of variables can be analyzed numerically and mathematically. In this paper, simple mathematically analysis approach is used to study behavior of the variables. Variables that affect to intermittent gas injection are pressure in upstream valve and in gas column. Pressure in upstream valve will decrease when gas mass in valve greater than gas mass in choke. Dynamic of the pressure in the gas column will decrease and increase depending on pressure in upstream valve.

  3. Mathematical Properties Relevant to Geomagnetic FieldModeling

    DEFF Research Database (Denmark)

    Sabaka, Terence J.; Hulot, Gauthier; Olsen, Nils

    2010-01-01

    Geomagnetic field modeling consists in converting large numbers of magnetic observations into a linear combination of elementary mathematical functions that best describes those observations.The set of numerical coefficients defining this linear combination is then what one refers to as a geomagn......Geomagnetic field modeling consists in converting large numbers of magnetic observations into a linear combination of elementary mathematical functions that best describes those observations.The set of numerical coefficients defining this linear combination is then what one refers...... to as a geomagnetic field model. Such models can be used to produce maps.More importantly, they form the basis for the geophysical interpretation of the geomagnetic field, by providing the possibility of separating fields produced by various sources and extrapolating those fields to places where they cannot...... be directly measured. In this chapter, the mathematical foundation of global (as opposed to regional) geomagnetic field modeling is reviewed, and the spatial modeling of the field in spherical coordinates is focussed. Time can be dealt with as an independent variable and is not explicitly considered...

  4. Mathematical models and numerical simulation in electromagnetism

    CERN Document Server

    Bermúdez, Alfredo; Salgado, Pilar

    2014-01-01

    The book represents a basic support for a master course in electromagnetism oriented to numerical simulation. The main goal of the book is that the reader knows the boundary-value problems of partial differential equations that should be solved in order to perform computer simulation of electromagnetic processes. Moreover it includes a part devoted to electric circuit theory  based on ordinary differential equations. The book is mainly oriented to electric engineering applications, going from the general to the specific, namely, from the full Maxwell’s equations to the particular cases of electrostatics, direct current, magnetostatics and eddy currents models. Apart from standard exercises related to analytical calculus, the book includes some others oriented to real-life applications solved with MaxFEM free simulation software.

  5. Analysing the Competency of Mathematical Modelling in Physics

    CERN Document Server

    Redish, Edward F

    2016-01-01

    A primary goal of physics is to create mathematical models that allow both predictions and explanations of physical phenomena. We weave maths extensively into our physics instruction beginning in high school, and the level and complexity of the maths we draw on grows as our students progress through a physics curriculum. Despite much research on the learning of both physics and math, the problem of how to successfully teach most of our students to use maths in physics effectively remains unsolved. A fundamental issue is that in physics, we don't just use maths, we think about the physical world with it. As a result, we make meaning with math-ematical symbology in a different way than mathematicians do. In this talk we analyze how developing the competency of mathematical modeling is more than just "learning to do math" but requires learning to blend physical meaning into mathematical representations and use that physical meaning in solving problems. Examples are drawn from across the curriculum.

  6. Mathematical modeling of earth's dynamical systems a primer

    CERN Document Server

    Slingerland, Rudy

    2011-01-01

    Mathematical Modeling of Earth's Dynamical Systems gives earth scientists the essential skills for translating chemical and physical systems into mathematical and computational models that provide enhanced insight into Earth's processes. Using a step-by-step method, the book identifies the important geological variables of physical-chemical geoscience problems and describes the mechanisms that control these variables. This book is directed toward upper-level undergraduate students, graduate students, researchers, and professionals who want to learn how to abstract complex systems into sets of dynamic equations. It shows students how to recognize domains of interest and key factors, and how to explain assumptions in formal terms. The book reveals what data best tests ideas of how nature works, and cautions against inadequate transport laws, unconstrained coefficients, and unfalsifiable models. Various examples of processes and systems, and ample illustrations, are provided. Students using this text should be f...

  7. Mathematical modeling applied to the left ventricle of heart

    CERN Document Server

    Ranjbar, Saeed

    2014-01-01

    Background: How can mathematics help us to understand the mechanism of the cardiac motion? The best known approach is to take a mathematical model of the fibered structure, insert it into a more-or-less complex model of cardiac architecture, and then study the resulting fibers of activation that propagate through the myocardium. In our paper, we have attempted to create a novel software capable of demonstrate left ventricular (LV) model in normal hearts. Method: Echocardiography was performed on 70 healthy volunteers. Data evaluated included: velocity (radial, longitudinal, rotational and vector point), displacement (longitudinal and rotational), strain rate (longitudinal and circumferential) and strain (radial, longitudinal and circumferential) of all 16 LV myocardial segments. Using these data, force vectors of myocardial samples were estimated by MATLAB software, interfaced in the echocardiograph system. Dynamic orientation contraction (through the cardiac cycle) of every individual myocardial fiber could ...

  8. Mathematical models in cell biology and cancer chemotherapy

    CERN Document Server

    Eisen, Martin

    1979-01-01

    The purpose of this book is to show how mathematics can be applied to improve cancer chemotherapy. Unfortunately, most drugs used in treating cancer kill both normal and abnormal cells. However, more cancer cells than normal cells can be destroyed by the drug because tumor cells usually exhibit different growth kinetics than normal cells. To capitalize on this last fact, cell kinetics must be studied by formulating mathematical models of normal and abnormal cell growth. These models allow the therapeutic and harmful effects of cancer drugs to be simulated quantitatively. The combined cell and drug models can be used to study the effects of different methods of administering drugs. The least harmful method of drug administration, according to a given criterion, can be found by applying optimal control theory. The prerequisites for reading this book are an elementary knowledge of ordinary differential equations, probability, statistics, and linear algebra. In order to make this book self-contained, a chapter on...

  9. Pneumatic Adaptive Absorber: Mathematical Modelling with Experimental Verification

    Directory of Open Access Journals (Sweden)

    Grzegorz Mikułowski

    2016-01-01

    Full Text Available Many of mechanical energy absorbers utilized in engineering structures are hydraulic dampers, since they are simple and highly efficient and have favourable volume to load capacity ratio. However, there exist fields of applications where a threat of toxic contamination with the hydraulic fluid contents must be avoided, for example, food or pharmacy industries. A solution here can be a Pneumatic Adaptive Absorber (PAA, which is characterized by a high dissipation efficiency and an inactive medium. In order to properly analyse the characteristics of a PAA, an adequate mathematical model is required. This paper proposes a concept for mathematical modelling of a PAA with experimental verification. The PAA is considered as a piston-cylinder device with a controllable valve incorporated inside the piston. The objective of this paper is to describe a thermodynamic model of a double chamber cylinder with gas migration between the inner volumes of the device. The specific situation considered here is that the process cannot be defined as polytropic, characterized by constant in time thermodynamic coefficients. Instead, the coefficients of the proposed model are updated during the analysis. The results of the experimental research reveal that the proposed mathematical model is able to accurately reflect the physical behaviour of the fabricated demonstrator of the shock absorber.

  10. Modeling School Mathematics Teaching in Initial Teacher Training Colleges for Multilingual Classrooms

    Science.gov (United States)

    Chitera, Nancy

    2011-01-01

    In this article, the author presents a discussion of how mathematics teacher educators model school mathematics teaching in initial teacher training colleges, as they prepare the student teachers to teach mathematics in multilingual classrooms in Malawi. In particular, the article examines the instructional practices that mathematics teacher…

  11. Mathematical Modelling at Secondary School: The MACSI-Clongowes Wood College Experience

    Science.gov (United States)

    Charpin, J. P. F.; O'Hara, S.; Mackey, D.

    2013-01-01

    In Ireland, to encourage the study of STEM (science, technology, engineering and mathematics) subjects and particularly mathematics, the Mathematics Applications Consortium for Science and Industry (MACSI) and Clongowes Wood College (County Kildare, Ireland) organized a mathematical modelling workshop for senior cycle secondary school students.…

  12. Mathematical models with singularities a zoo of singular creatures

    CERN Document Server

    Torres, Pedro J

    2015-01-01

    The book aims to provide an unifying view of a variety (a 'zoo') of mathematical models with some kind of singular nonlinearity, in the sense that it becomes infinite when the state variable approaches a certain point. Up to 11 different concrete models are analyzed in separate chapters. Each chapter starts with a discussion of the basic model and its physical significance. Then the main results and typical proofs are outlined, followed by open problems. Each chapter is closed by a suitable list of references. The book may serve as a guide for researchers interested in the modelling of real world processes.

  13. A review of mathematical models in economic environmental problems

    DEFF Research Database (Denmark)

    Nahorski, Z.; Ravn, H.F.

    2000-01-01

    The paper presents a review of mathematical models used,in economic analysis of environmental problems. This area of research combines macroeconomic models of growth, as dependent on capital, labour, resources, etc., with environmental models describing such phenomena like natural resources...... exhaustion or pollution accumulation and degradation. In simpler cases the models can be treated analytically and the utility function can be optimized using, e.g., such tools as the maximum principle. In more complicated cases calculation of the optimal environmental policies requires a computer solution....

  14. Mathematical modeling is also physics—interdisciplinary teaching between mathematics and physics in Danish upper secondary education

    Science.gov (United States)

    Michelsen, Claus

    2015-07-01

    Mathematics plays a crucial role in physics. This role is brought about predominantly through the building, employment, and assessment of mathematical models, and teachers and educators should capture this relationship in the classroom in an effort to improve students’ achievement and attitude in both physics and mathematics. But although there are overwhelming amounts of literature on modeling in science and mathematics education, the interdisciplinary position is seldom addressed explicitly. Furthermore, there has been a striking lack of exposure of the question of how future teachers, who are largely educated in a mono-disciplinary fashion, can best become equipped to introduce genuinely interdisciplinary teaching activities to their future pupils. This paper presents some preliminary reflections upon a graduate course, which aims to prepare future physics and mathematics teachers for interdisciplinary teaching, and which has been designed on the basis of influential theoretical expositions of the concept of interdisciplinarity.

  15. Mathematical Modeling and Analysis of Multirobot Cooperative Hunting Behaviors

    Directory of Open Access Journals (Sweden)

    Yong Song

    2015-01-01

    Full Text Available This paper presents a mathematical model of multirobot cooperative hunting behavior. Multiple robots try to search for and surround a prey. When a robot detects a prey it forms a following team. When another “searching” robot detects the same prey, the robots form a new following team. Until four robots have detected the same prey, the prey disappears from the simulation and the robots return to searching for other prey. If a following team fails to be joined by another robot within a certain time limit the team is disbanded and the robots return to searching state. The mathematical model is formulated by a set of rate equations. The evolution of robot collective hunting behaviors represents the transition between different states of robots. The complex collective hunting behavior emerges through local interaction. The paper presents numerical solutions to normalized versions of the model equations and provides both a steady state and a collaboration ratio analysis. The value of the delay time is shown through mathematical modeling to be a strong factor in the performance of the system as well as the relative numbers of the searching robots and the prey.

  16. Preventing clonal evolutionary processes in cancer: Insights from mathematical models.

    Science.gov (United States)

    Rodriguez-Brenes, Ignacio A; Wodarz, Dominik

    2015-07-21

    Clonal evolutionary processes can drive pathogenesis in human diseases, with cancer being a prominent example. To prevent or treat cancer, mechanisms that can potentially interfere with clonal evolutionary processes need to be understood better. Mathematical modeling is an important research tool that plays an ever-increasing role in cancer research. This paper discusses how mathematical models can be useful to gain insights into mechanisms that can prevent disease initiation, help analyze treatment responses, and aid in the design of treatment strategies to combat the emergence of drug-resistant cells. The discussion will be done in the context of specific examples. Among defense mechanisms, we explore how replicative limits and cellular senescence induced by telomere shortening can influence the emergence and evolution of tumors. Among treatment approaches, we consider the targeted treatment of chronic lymphocytic leukemia (CLL) with tyrosine kinase inhibitors. We illustrate how basic evolutionary mathematical models have the potential to make patient-specific predictions about disease and treatment outcome, and argue that evolutionary models could become important clinical tools in the field of personalized medicine.

  17. Mathematical and computer modeling of component surface shaping

    Science.gov (United States)

    Lyashkov, A.

    2016-04-01

    The process of shaping technical surfaces is an interaction of a tool (a shape element) and a component (a formable element or a workpiece) in their relative movements. It was established that the main objects of formation are: 1) a discriminant of a surfaces family, formed by the movement of the shape element relatively the workpiece; 2) an enveloping model of the real component surface obtained after machining, including transition curves and undercut lines; 3) The model of cut-off layers obtained in the process of shaping. When modeling shaping objects there are a lot of insufficiently solved or unsolved issues that make up a single scientific problem - a problem of qualitative shaping of the surface of the tool and then the component surface produced by this tool. The improvement of known metal-cutting tools, intensive development of systems of their computer-aided design requires further improvement of the methods of shaping the mating surfaces. In this regard, an important role is played by the study of the processes of shaping of technical surfaces with the use of the positive aspects of analytical and numerical mathematical methods and techniques associated with the use of mathematical and computer modeling. The author of the paper has posed and has solved the problem of development of mathematical, geometric and algorithmic support of computer-aided design of cutting tools based on computer simulation of the shaping process of surfaces.

  18. Mathematical Model of Asynchronous Machine in MATLAB Simulink

    Directory of Open Access Journals (Sweden)

    A A Ansari

    2010-05-01

    Full Text Available Different mathematical models have been used over the years to examine different problems associated with induction motors. These range from the simple equivalent circuit models to more complex d,q models and abc models which allow the inclusion of various forms of impedance and/or voltage unbalance. Recently, hybrid models have been developed which allow the inclusion of supply side unbalance but with the computational economy of the d,q models. This paper presents these models with typical results and provides guidelines for their use The dynamic simulation of small power induction motor based on mathematical modelling is proposed in this paper. The dynamic simulation is one of the key steps in the validation of the design process of the motor drive systems and it is needed for eliminating inadvertent design mistakes and the resulting error in the prototype construction and testing. This paper demonstrates the simulation of steady-state performance of induction motor by MATLAB Program Threephase induction motor is modeled and simulated with SIMULINK model.

  19. THE RELATIONSHIP BETWEEN PRE-SERVICE MATHEMATICS TEACHERS’ ACADEMIC ACHIEVEMENTS IN CALCULUS AND THEIR MATHEMATICAL MODELLING APPROACHES

    Directory of Open Access Journals (Sweden)

    Esra BUKOVA GÜZEL

    2010-05-01

    Full Text Available The purpose of this study is to examine the relationships between pre-service mathematics teachers’ achievements in calculus course and their mathematical modelling approaches. This case study has been conducted with twelve pre-service teachers from the Department of Secondary School Mathematics Education who have different academic achievement levels. While the study group has been formed, the mean of five written exams given in Calculus-I course has been taken into account. According to the mean of these exams, four participants have been equally chosen from groups which have higher, average and low achievement. Data have been collected through using mathematical modelling problems. While the problems have been analyzed, the mathematical modelling processes in literature have been taken into account, and a five-step scoring system has been developed by the researchers of the study. The results of study have shown that academic achievement of the pre-service teachers affected their mathematical modelling approaches to some extend. With this study, it has been aimed to provide contribution to the researches the purpose of which is to improve mathematical modelling approaches.

  20. Mathematical modeling and the two-phase constitutive equations

    International Nuclear Information System (INIS)

    The problems raised by the mathematical modeling of two-phase flows are summarized. The models include several kinds of equations, which cannot be discussed independently, such as the balance equations and the constitutive equations. A review of the various two-phase one-dimensional models proposed to date, and of the constitutive equations they imply, is made. These models are either mixture models or two-fluid models. Due to their potentialities, the two-fluid models are discussed in more detail. To avoid contradictions, the form of the constitutive equations involved in two-fluid models must be sufficiently general. A special form of the two-fluid models, which has particular advantages, is proposed. It involves three mixture balance equations, three balance equations for slip and thermal non-equilibriums, and the necessary constitutive equations

  1. Nonlinear Mathematical Modeling in Pneumatic Servo Position Applications

    Directory of Open Access Journals (Sweden)

    Antonio Carlos Valdiero

    2011-01-01

    Full Text Available This paper addresses a new methodology for servo pneumatic actuators mathematical modeling and selection from the dynamic behavior study in engineering applications. The pneumatic actuator is very common in industrial application because it has the following advantages: its maintenance is easy and simple, with relatively low cost, self-cooling properties, good power density (power/dimension rate, fast acting with high accelerations, and installation flexibility. The proposed fifth-order nonlinear mathematical model represents the main characteristics of this nonlinear dynamic system, as servo valve dead zone, air flow-pressure relationship through valve orifice, air compressibility, and friction effects between contact surfaces in actuator seals. Simulation results show the dynamic performance for different pneumatic cylinders in order to see which features contribute to a better behavior of the system. The knowledge of this behavior allows an appropriate choice of pneumatic actuator, mainly contributing to the success of their precise control in several applications.

  2. Mathematical modeling and numerical simulation of Czochralski Crystal Growth

    Energy Technology Data Exchange (ETDEWEB)

    Jaervinen, J.; Nieminen, R. [Center for Scientific Computing, Espoo (Finland)

    1996-12-31

    A detailed mathematical model and numerical simulation tools based on the SUPG Finite Element Method for the Czochralski crystal growth has been developed. In this presentation the mathematical modeling and numerical simulation of the melt flow and the temperature distribution in a rotationally symmetric crystal growth environment is investigated. The temperature distribution and the position of the free boundary between the solid and liquid phases are solved by using the Enthalpy method. Heat inside of the Czochralski furnace is transferred by radiation, conduction and convection. The melt flow is governed by the incompressible Navier-Stokes equations coupled with the enthalpy equation. The melt flow is numerically demonstrated and the temperature distribution in the whole Czochralski furnace. (author)

  3. Modified Mathematical Model For Neutralization System In Stirred Tank Reactor

    Directory of Open Access Journals (Sweden)

    Ahmmed Saadi Ibrehem

    2011-05-01

    Full Text Available A modified model for the neutralization process of Stirred Tank Reactors (CSTR reactor is presented in this study. The model accounts for the effect of strong acid [HCL] flowrate and strong base [NaOH] flowrate with the ionic concentrations of [Cl-] and [Na+] on the Ph of the system. In this work, the effect of important reactor parameters such as ionic concentrations and acid and base flowrates on the dynamic behavior of the CSTR is investigated and the behavior of mathematical model is compared with the reported models for the McAvoy model and Jutila model. Moreover, the results of the model are compared with the experimental data in terms of pH dynamic study. A good agreement is observed between our model prediction and the actual plant data. © 2011 BCREC UNDIP. All rights reserved(Received: 1st March 2011, Revised: 28th March 2011; Accepted: 7th April 2011[How to Cite: A.S. Ibrehem. (2011. Modified Mathematical Model For Neutralization System In Stirred Tank Reactor. Bulletin of Chemical Reaction Engineering & Catalysis, 6(1: 47-52. doi:10.9767/bcrec.6.1.825.47-52][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.1.825.47-52 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/825 ] | View in 

  4. Mathematical modeling of sedimentation process of nanoparticles in gradient medium

    Science.gov (United States)

    Ezhenkova, S. I.; Chivilikhin, S. A.

    2015-11-01

    Mathematical model describing the motion of a light ray in the medium with a varying index of refraction formed by particles settling in a liquid has been built. We have received size distribution of particles settling in a liquid; calculated the light ray's trajectory in the medium; investigated the dependence of the light ray's trajectory on the initial particles concentration; received the solution of the equation of convective diffusion for nanoparticles.

  5. Mathematical modeling and simulation of nanopore blocking by precipitation

    KAUST Repository

    Wolfram, M-T

    2010-10-29

    High surface charges of polymer pore walls and applied electric fields can lead to the formation and subsequent dissolution of precipitates in nanopores. These precipitates block the pore, leading to current fluctuations. We present an extended Poisson-Nernst-Planck system which includes chemical reactions of precipitation and dissolution. We discuss the mathematical modeling and present 2D numerical simulations. © 2010 IOP Publishing Ltd.

  6. Mathematical modeling of sediment transport jn estuaries and coastal regions

    Institute of Scientific and Technical Information of China (English)

    窦国仁; 董凤舞; 窦希萍; 李禔来

    1995-01-01

    Based on the suspended sediment transport equation and transport capacity formula under the action of tidal currents and wind waves, a horizontal 2-D mathematical model of suspended sediment transport for estuaries and coastal regions is established. The verification of calculations shows that the sediment concentration distribution and sea bed deformation in the estuaries and coastal regions can be successfully simulated. Therefore, a new method for studying and solving the sediment problems in the estuarine and coastal engineering is presented.

  7. Mathematical modeling and analysis of insulin clearance in vivo

    OpenAIRE

    Koschorreck, Markus; Gilles, Ernst Dieter

    2008-01-01

    Background Analyzing the dynamics of insulin concentration in the blood is necessary for a comprehensive understanding of the effects of insulin in vivo. Insulin removal from the blood has been addressed in many studies. The results are highly variable with respect to insulin clearance and the relative contributions of hepatic and renal insulin degradation. Results We present a dynamic mathematical model of insulin concentration in the blood and of insulin receptor activation in hepatocytes. ...

  8. Mathematical modeling and analysis of insulin clearance in vivo

    OpenAIRE

    Koschorreck, M.; Gilles, E. D.

    2008-01-01

    Background: Analyzing the dynamics of insulin concentration in the blood is necessary for a comprehensive understanding of the effects of insulin in vivo. Insulin removal from the blood has been addressed in many studies. The results are highly variable with respect to insulin clearance and the relative contributions of hepatic and renal insulin degradation. Results: We present a dynamic mathematical model of insulin concentration in the blood and of insulin receptor acti...

  9. Mathematical modeling and analysis of insulin clearance in vivo

    OpenAIRE

    Koschorreck, M.; Gilles, E.

    2008-01-01

    Background: Analyzing the dynamics of insulin concentration in the blood is necessary for a comprehensive understanding of the effects of insulin in vivo. Insulin removal from the blood has been addressed in many studies. The results are highly variable with respect to insulin clearance and the relative contributions of hepatic and renal insulin degradation. Results: We present a dynamic mathematical model of insulin concentration in the blood and of insulin receptor activation in hepatocytes...

  10. Two Mathematical Models for Generation of Crowned Tooth Surface

    OpenAIRE

    Laszlo Kelemen; Jozsef Szente

    2014-01-01

    Gear couplings are mechanical components to connect shaft ends and eliminate the misalignments. The most important element of the gear coupling is the hub which is an external gear having crowned teeth. The crowned teeth on the hub are typically produced by hobbing. The resulting tooth surface depends on several parameters. It is influenced by the size of the hob and the feed. In this paper two mathematical models of the crowned tooth surface are introduced for the generation of the idealized...

  11. Territorial intrusion risk and antipredator behaviour: a mathematical model.

    OpenAIRE

    Díaz-Uriarte, R.

    2001-01-01

    In territorial animals that hide to avoid predators, a predatory attack creates a conflict because a hiding animal cannot defend its territory from conspecific intruders. When intruders are persistent, a past conspecific intrusion informs a territorial resident that future intrusions by the same animal are likely. Using a mathematical model, I examine the effects that past territorial intrusions can have on antipredator behaviour. Past territorial intrusions rarely affect a resident animal's ...

  12. Nonlinear dynamics mathematical models for rigid bodies with a liquid

    CERN Document Server

    Lukovsky, Ivan A

    2015-01-01

    This book is devoted to analytically approximate methods in the nonlinear dynamics of a rigid body with cavities partly filled by liquid. It combines several methods and compares the results with experimental data. It is useful for experienced and early-stage readers interested in analytical approaches to fluid-structure interaction problems, the fundamental mathematical background and modeling the dynamics of such complex mechanical systems.

  13. Mathematical analysis techniques for modeling the space network activities

    Science.gov (United States)

    Foster, Lisa M.

    1992-01-01

    The objective of the present work was to explore and identify mathematical analysis techniques, and in particular, the use of linear programming. This topic was then applied to the Tracking and Data Relay Satellite System (TDRSS) in order to understand the space network better. Finally, a small scale version of the system was modeled, variables were identified, data was gathered, and comparisons were made between actual and theoretical data.

  14. Mathematical modelling of drying food products: application to tropical fruits

    OpenAIRE

    Shahari, Nor Azni

    2012-01-01

    Drying is an old traditional method of removing liquid from inside material, suchas wood, food, paper, ceramics, building materials, textiles, granular products, pharmaceutical and electronic devices. The kinetics of this liquid removal depends on the material properties of the solid phase as well as on cellular structure. The aim of this project is to understand the effect of complex interaction of heat, moisture and shrinkage to create a detailed mathematical modelling to quantify the ...

  15. Mathematical model of delay lines based on magnetostatic waves

    Directory of Open Access Journals (Sweden)

    E. V. Kudinov

    2010-12-01

    Full Text Available On the example of the delay line have demonstrated the possibility of applying the principle of decomposition  to  construct  mathematical  models  of  microwave  devices  using  magnetostatic waves (MSW in a magnetized epitaxial ferrite films, which allows for a unified methodological basis and the lowest cost to the experimental optimization design of MSW devices for various applications

  16. Mathematical model of processes of reactor with gasified fluidized bed

    International Nuclear Information System (INIS)

    An original scheme of steam generator with gasifying fluidized bed has been presented as a possible solution for reconstruction of furnace with pulverized burning of coal. The method is effective when applied in combination with desulfurization for the purpose of reducing the CO2 emissions level. A mathematical model has been developed, which determines the correlation primary (fluidizing) and (burning out) secondary air with sufficient for the practice accuracy

  17. Mathematical modeling for digestible protein in animal feeds for tilapia

    OpenAIRE

    Luiz Vítor Oliveira Vidal; Wilson Massamitu Furuya; Elias Nunes Martins; Tadeu Orlandi Xavier; Mariana Michelato; Themis Sakaguti Graciano

    2012-01-01

    The objective of this study was to formulate mathematical models to estimate digestible protein in some animal feeds for tilapia. Literature results of the proximate composition of crude protein, ether extract, and mineral matter, as well as digestible protein obtained in biological assays, were used. The data were subjected to multiple linear stepwise backward regression. Path analysis was performed to measure the direct and indirect effects of each independent variable on the dependent one....

  18. Mathematical model of delay lines based on magnetostatic waves

    OpenAIRE

    E. V. Kudinov

    2010-01-01

    On the example of the delay line have demonstrated the possibility of applying the principle of decomposition  to  construct  mathematical  models  of  microwave  devices  using  magnetostatic waves (MSW) in a magnetized epitaxial ferrite films, which allows for a unified methodological basis and the lowest cost to the experimental optimization design of MSW devices for various applications

  19. Mathematical Model of Oxygen Transport in Tuberculosis Granulomas

    OpenAIRE

    Datta, Meenal; Via, Laura E.; Chen, Wei; Baish, James W.; Xu, Lei; Barry, Clifton E.; Jain, Rakesh K.

    2015-01-01

    Pulmonary granulomas—the hallmark of Mycobacterium tuberculosis (MTB) infection—are dense cellular lesions that often feature regions of hypoxia and necrosis, partially due to limited transport of oxygen. Low oxygen in granulomas can impair the host immune response, while MTB are able to adapt and persist in hypoxic environments. Here, we used a physiologically based mathematical model of oxygen diffusion and consumption to calculate oxygen profiles within the granuloma, assuming Michaelis–Me...

  20. Mathematical Modeling of Contact Resistance in Silicon Photovoltaic Cells

    KAUST Repository

    Black, J. P.

    2013-10-22

    In screen-printed silicon-crystalline solar cells, the contact resistance of a thin interfacial glass layer between the silicon and the silver electrode plays a limiting role for electron transport. We analyze a simple model for electron transport across this layer, based on the driftdiffusion equations. We utilize the size of the current/Debye length to conduct asymptotic techniques to simplify the model; we solve the model numerically to find that the effective contact resistance may be a monotonic increasing, monotonic decreasing, or nonmonotonic function of the electron flux, depending on the values of the physical parameters. © 2013 Society for Industrial and Applied Mathematics.

  1. A MATHEMATICAL HEAT TRANSFER MODEL IN STATIC AND CONTINUOUS CASTING

    Institute of Scientific and Technical Information of China (English)

    R. Ghasemzadeh

    2004-01-01

    The application of a heat flow model to describe the thermal characteristics of freezing alloys with narrow mushy zones from a refrigerated mould wall was outlined. The extension of the model was to treat the continuous casting of metals with low thermal conductivity,such as steels, which will be outlined. The model was based on the mathematical expedient for replacing thermal resistance of the metal/mould interface by virtual adjuncts of metal/mould material. It provided a good description of the pool profile and the technique exhibits advantages in terms of both computation and versatility of application.

  2. Mathematical modelling of the combustion of a single wood particle

    Energy Technology Data Exchange (ETDEWEB)

    Porteiro, J.; Miguez, J.L.; Granada, E.; Moran, J.C. [Departamento de Ingenieria Mecanica, Maquinas y Motores Termicos y Fluidos. Universidad de Vigo, Lagoas Marcosende 9 36200 Vigo (Spain)

    2006-01-15

    A mathematical model describing the thermal degradation of densified biomass particles is presented here. The model uses a novel discretisation scheme and combines intra-particle combustion processes with extra-particle transport processes, thereby including thermal and diffusional control mechanisms. The influence of structural changes on the physical-thermal properties of wood in its different stages is studied together with shrinkage of the particle during its degradation. The model is used to compare the predicted data with data on the mass loss dynamics and internal temperature of several particles from previous works and relevant literature, with good agreement. (author)

  3. Mathematical model for the gasification of coal under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Biba, V.; Macak, J.; Kloss, E.; Malecha, J.

    1978-01-01

    A mathematical model for the the high-pressure gasification of solid fuels in the charged layer is presented which permits the quantitative description of the the static behavior of the generator. Deals with the parameters of reaction kinetics and of the transfer of matter and energy which are necessary for developing the model of a fixed-bed reactor. To obtain a practical model, simplifications are needed which concern the gasification, degasification, and drying processes. They are dealt with individually. For calculating the concentration and temperature profiles for the solid and gas phases along the gasification bed height, a system of differential equations was obtained which was supplemented by some algebraic equations.

  4. Generalized Mathematical Model Predicting the Mechanical Processing Topography

    Science.gov (United States)

    Leonov, S. L.; Markov, A. M.; Belov, A. B.; Sczygol, N.

    2016-04-01

    We propose a unified approach for the construction of mathematical models for the formation of surface topography and calculation of its roughness parameters for different methods of machining processes. The approach is based on a process of geometric copy tool in the material which superimposes plastico-elastic deformation, oscillatory occurrences in processing and random components of the profile. The unified approach makes it possible to reduce the time forcreation of simulated stochastic model for a specific type of processing and guarantee the accuracy of geometric parameters calculation of the surface. We make an application example of generalized model for calculation of roughness density distribution Ra in external sharpening.

  5. The limitations of mathematical modeling in high school physics education

    Science.gov (United States)

    Forjan, Matej

    The theme of the doctoral dissertation falls within the scope of didactics of physics. Theoretical analysis of the key constraints that occur in the transmission of mathematical modeling of dynamical systems into field of physics education in secondary schools is presented. In an effort to explore the extent to which current physics education promotes understanding of models and modeling, we analyze the curriculum and the three most commonly used textbooks for high school physics. We focus primarily on the representation of the various stages of modeling in the solved tasks in textbooks and on the presentation of certain simplifications and idealizations, which are in high school physics frequently used. We show that one of the textbooks in most cases fairly and reasonably presents the simplifications, while the other two half of the analyzed simplifications do not explain. It also turns out that the vast majority of solved tasks in all the textbooks do not explicitly represent model assumptions based on what we can conclude that in high school physics the students do not develop sufficiently a sense of simplification and idealizations, which is a key part of the conceptual phase of modeling. For the introduction of modeling of dynamical systems the knowledge of students is also important, therefore we performed an empirical study on the extent to which high school students are able to understand the time evolution of some dynamical systems in the field of physics. The research results show the students have a very weak understanding of the dynamics of systems in which the feedbacks are present. This is independent of the year or final grade in physics and mathematics. When modeling dynamical systems in high school physics we also encounter the limitations which result from the lack of mathematical knowledge of students, because they don't know how analytically solve the differential equations. We show that when dealing with one-dimensional dynamical systems

  6. Mathematical modelling of steam generator and design of temperature regulator

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanovic, S.S. [EE Institute Nikola Tesla, Belgrade (Yugoslavia)

    1999-07-01

    The paper considers mathematical modelling of once-through power station boiler and numerical algorithm for simulation of the model. Fast and numerically stable algorithm based on the linearisation of model equations and on the simultaneous solving of differential and algebraic equations is proposed. The paper also presents the design of steam temperature regulator by using the method of projective controls. Dynamic behaviour of the system closed with optimal linear quadratic regulator is taken as the reference system. The desired proprieties of the reference system are retained and solutions for superheated steam temperature regulator are determined. (author)

  7. Mathematical model of the dynamics of countercurrent chromatography

    Institute of Scientific and Technical Information of China (English)

    陆向红; 任其龙; 吴平东

    2002-01-01

    A mathematical model of the dynamic behavior of countercurrent chromatography was proposed, and the model parameters, including the partition coefficient, the axial dispersion coefficient, the intraparticle diffusion coefficient and the external mass ransfer coefficient were calculated by the method of chromatogram moment analysis. Comparison of the experimental chromatograms of caffeine and theophylline determined in this work with the simulated curves computed by the proposed model showed fairly good agreement. Further, the difference between the average identified the partition coefficients by chromatogram moment analysis and the experimental values was small also, and the relationship between the external mass transfer rate and the linear velocity was similar to that obtained with solid-liquid chromatography.

  8. Mathematically modelling and controlling prostate cancer under intermittent hormone therapy

    Institute of Scientific and Technical Information of China (English)

    Yoshito Hirata; Gouhei Tanaka; Nicholas Bruchovsky; Kazuyuki Aihara

    2012-01-01

    In this review,we summarize our recently developed mathematical models that predict the effects of intermittent androgen suppression therapy on prostate cancer (PCa).Although hormone therapy for PCa shows remarkable results at the beginning of treatment,cancer cells frequently acquire the ability to grow without androgens during long-term therapy,resulting in an eventual relapse.To circumvent hormone resistance,intermittent androgen suppression was investigated as an alternative treatment option.However,at the present time,it is not possible to select an optimal schedule of on- and off-treatment cycles for any given patient.In addition,clinical trials have revealed that intermittent androgen suppression is effective for some patients but not for others.To resolve these two problems,we have developed mathematical models for PCa under intermittent androgen suppression.The mathematical models not only explain the mechanisms of intermittent androgen suppression but also provide an optimal treatment schedule for the on- and off-treatment periods.

  9. A New Mathematical Modeling Technique for Pull Production Control Systems

    Directory of Open Access Journals (Sweden)

    O. Srikanth

    2013-12-01

    Full Text Available The Kanban Control System widely used to control the release of parts of multistage manufacturing system operating under a pull production control system. Most of the work on Kanban Control System deals with multi-product manufacturing system. In this paper, we are proposing a regression modeling technique in a multistage manufacturing system is to be coordinates the release of parts into each stage of the system with the arrival of customer demands for final products. And also comparing two variants stages of the Kanban Control System model and combines with mathematical and Simulink model for the production coordination of parts in an assembly manufacturing systems. In both variants, the production of a new subassembly is authorized only when an assembly Kanban is available. Assembly kanbans become available when finished product is consumed. A simulation environment for the product line system has to generate with the proposed model and the mathematical model have to give implementation against the simulation model in the working platform of MATLAB. Both the simulation and model outputs have provided an in depth analysis of each of the resulting control system for offering model of a product line system.

  10. NATO Advanced Study Institute on Recent Advances in the Modeling of Hydrologic Systems

    CERN Document Server

    O’Connell, P

    1991-01-01

    Modeling of the rainfall-runoff process is of both scientific and practical significance. Many of the currently used mathematical models of hydrologic systems were developed a genera­ tion ago. Much of the effort since then has focused on refining these models rather than on developing new models based on improved scientific understanding. In the past few years, however, a renewed effort has been made to improve both our fundamental understanding of hydrologic processes and to exploit technological advances in computing and remote sensing. It is against this background that the NATO Advanced Study Institute on Recent Advances in the Modeling of Hydrologic Systems was organized. The idea for holding a NATO ASI on this topic grew out of an informal discussion between one of the co-directors and Professor Francisco Nunes-Correia at a previous NATO ASI held at Tucson, Arizona in 1985. The Special Program Panel on Global Transport Mechanisms in the Geo-Sciences of the NATO Scientific Affairs Division agreed to sp...

  11. Applying Mathematical Optimization Methods to an ACT-R Instance-Based Learning Model.

    Directory of Open Access Journals (Sweden)

    Nadia Said

    Full Text Available Computational models of cognition provide an interface to connect advanced mathematical tools and methods to empirically supported theories of behavior in psychology, cognitive science, and neuroscience. In this article, we consider a computational model of instance-based learning, implemented in the ACT-R cognitive architecture. We propose an approach for obtaining mathematical reformulations of such cognitive models that improve their computational tractability. For the well-established Sugar Factory dynamic decision making task, we conduct a simulation study to analyze central model parameters. We show how mathematical optimization techniques can be applied to efficiently identify optimal parameter values with respect to different optimization goals. Beyond these methodological contributions, our analysis reveals the sensitivity of this particular task with respect to initial settings and yields new insights into how average human performance deviates from potential optimal performance. We conclude by discussing possible extensions of our approach as well as future steps towards applying more powerful derivative-based optimization methods.

  12. Accurate Modeling of Advanced Reflectarrays

    DEFF Research Database (Denmark)

    Zhou, Min

    Analysis and optimization methods for the design of advanced printed re ectarrays have been investigated, and the study is focused on developing an accurate and efficient simulation tool. For the analysis, a good compromise between accuracy and efficiency can be obtained using the spectral domain...

  13. Mathematical Modelling of Cation Transport and Regulation in Yeast.

    Science.gov (United States)

    Kahm, Matthiasé; Kschischo, Maik

    2016-01-01

    Mathematical modelling of ion transport is a strategy to understand the complex interplay between various ionic species and their transporters. Such models should provide new insights and suggest new interesting experiments. Two essential variables in models for ion transport and control are the membrane potential and the intracellular pH, which generates an additional layer of complexity absent from many other models of biochemical reaction pathways. The aim of this text is to introduce the reader to the basic principles and assumptions of modelling in this field. A simplified model of potassium transport will be used as an example and will be derived in a step by step manner. This forms the basis for understanding the advantages and limitations of more complex models. These are briefly reviewed at the end of this chapter.

  14. Mathematical models of Ebola-Consequences of underlying assumptions.

    Science.gov (United States)

    Feng, Zhilan; Zheng, Yiqiang; Hernandez-Ceron, Nancy; Zhao, Henry; Glasser, John W; Hill, Andrew N

    2016-07-01

    Mathematical models have been used to study Ebola disease transmission dynamics and control for the recent epidemics in West Africa. Many of the models used in these studies are based on the model of Legrand et al. (2007), and most failed to accurately project the outbreak's course (Butler, 2014). Although there could be many reasons for this, including incomplete and unreliable data on Ebola epidemiology and lack of empirical data on how disease-control measures quantitatively affect Ebola transmission, we examine the underlying assumptions of the Legrand model, and provide alternate formulations that are simpler and provide additional information regarding the epidemiology of Ebola during an outbreak. We developed three models with different assumptions about disease stage durations, one of which simplifies to the Legrand model while the others have more realistic distributions. Control and basic reproduction numbers for all three models are derived and shown to provide threshold conditions for outbreak control and prevention. PMID:27130854

  15. A three-dimensional mathematical model of electromagnetic casting and testing against a physical model: Part I. The mathematical model

    Science.gov (United States)

    Cook, D. P.; Evans, J. W.

    1995-02-01

    This first of two related articles describes a mathematical model for electromagnetic casting in three dimensions, i.e., where the dependent variables are functions of all three spatial coordinates. It is shown how the method of inductances can be extended to three dimensions in order to solve Maxwell's equations for the electromagnetic field in and around the caster. The principal task here is the calculation of the inductances between loops of irregular shape, and the method by which this is done is described. The computations are self-consistent ones in that the free surface of the molten metal is adjusted in response to the supporting electromagnetic forces which are themselves dependent on the shape of that surface. The computed electromagnetic forces are input into a second phase of the calculation where melt flow is computed in three dimensions using the finite element package FIDAP.

  16. Mathematical modeling of the neuron morphology using two dimensional images.

    Science.gov (United States)

    Rajković, Katarina; Marić, Dušica L; Milošević, Nebojša T; Jeremic, Sanja; Arsenijević, Valentina Arsić; Rajković, Nemanja

    2016-02-01

    In this study mathematical analyses such as the analysis of area and length, fractal analysis and modified Sholl analysis were applied on two dimensional (2D) images of neurons from adult human dentate nucleus (DN). Using mathematical analyses main morphological properties were obtained including the size of neuron and soma, the length of all dendrites, the density of dendritic arborization, the position of the maximum density and the irregularity of dendrites. Response surface methodology (RSM) was used for modeling the size of neurons and the length of all dendrites. However, the RSM model based on the second-order polynomial equation was only possible to apply to correlate changes in the size of the neuron with other properties of its morphology. Modeling data provided evidence that the size of DN neurons statistically depended on the size of the soma, the density of dendritic arborization and the irregularity of dendrites. The low value of mean relative percent deviation (MRPD) between the experimental data and the predicted neuron size obtained by RSM model showed that model was suitable for modeling the size of DN neurons. Therefore, RSM can be generally used for modeling neuron size from 2D images.

  17. Analyzing electrical activities of pancreatic β cells using mathematical models.

    Science.gov (United States)

    Cha, Chae Young; Powell, Trevor; Noma, Akinori

    2011-11-01

    Bursts of repetitive action potentials are closely related to the regulation of glucose-induced insulin secretion in pancreatic β cells. Mathematical studies with simple β-cell models have established the central principle that the burst-interburst events are generated by the interaction between fast membrane excitation and slow cytosolic components. Recently, a number of detailed models have been developed to simulate more realistic β cell activity based on expanded findings on biophysical characteristics of cellular components. However, their complex structures hinder our intuitive understanding of the underlying mechanisms, and it is becoming more difficult to dissect the role of a specific component out of the complex network. We have recently developed a new detailed model by incorporating most of ion channels and transporters recorded experimentally (the Cha-Noma model), yet the model satisfies the charge conservation law and reversible responses to physiological stimuli. Here, we review the mechanisms underlying bursting activity by applying mathematical analysis tools to representative simple and detailed models. These analyses include time-based simulation, bifurcation analysis and lead potential analysis. In addition, we introduce a new steady-state I-V (ssI-V) curve analysis. We also discuss differences in electrical signals recorded from isolated single cells or from cells maintaining electrical connections within multi-cell preparations. Towards this end, we perform simulations with our detailed pancreatic β-cell model.

  18. Postcorrection and mathematical model of life in Extended Everett's Concept

    CERN Document Server

    Mensky, Michael B

    2007-01-01

    Extended Everett's Concept (EEC) recently developed by the author to explain the phenomenon of consciousness is considered. A mathematical model is proposed for the principal feature of consciousness assumed in EEC, namely its ability (in the state of sleep, trance or meditation, when the explicit consciousness is disabled) to obtain information from all alternative classical realities (Everett's worlds) and select the favorable realities. To represent this ability, a mathematical operation called postcorrection is introduced, which corrects the present state to guarantee certain characteristics of the future state. Evolution of living matter is thus determined by goals (first of all by the goal of survival) as well as by causes. The resulting theory, in a way symmetrical in time direction, follows from a sort of antropic principle. Possible criteria for postcorrection and corresponding phenomena in the sphere of life are classified. Both individual and collective criteria of survival are considered as well a...

  19. Mathematical modeling of mechanical vibration assisted conductivity imaging

    CERN Document Server

    Ammari, Habib; Kwon, Hyeuknam; Seo, Jin Keun; Woo, Eung Je

    2014-01-01

    This paper aims at mathematically modeling a new multi-physics conductivity imaging system incorporating mechanical vibrations simultaneously applied to an imaging object together with current injections. We perturb the internal conductivity distribution by applying time-harmonic mechanical vibrations on the boundary. This enhances the effects of any conductivity discontinuity on the induced internal current density distribution. Unlike other conductivity contrast enhancing frameworks, it does not require a prior knowledge of a reference data. In this paper, we provide a mathematical framework for this novel imaging modality. As an application of the vibration-assisted impedance imaging framework, we propose a new breast image reconstruction method in electrical impedance tomography (EIT). As its another application, we investigate a conductivity anomaly detection problem and provide an efficient location search algorithm. We show both analytically and numerically that the applied mechanical vibration increas...

  20. Mathematical and numerical models for eddy currents and magnetostatics with selected applications

    CERN Document Server

    Rappaz, Jacques

    2013-01-01

    This monograph addresses fundamental aspects of mathematical modeling and numerical solution methods of electromagnetic problems involving low frequencies, i.e. magnetostatic and eddy current problems which are rarely presented in the applied mathematics literature. In the first part, the authors introduce the mathematical models in a realistic context in view of their use for industrial applications. Several geometric configurations of electric conductors leading to different mathematical models are carefully derived and analyzed, and numerical methods for the solution of the obtained problem