WorldWideScience

Sample records for advanced industrial concepts

  1. Advanced Turbine Systems Program industrial system concept development

    Energy Technology Data Exchange (ETDEWEB)

    Gates, S.

    1995-12-31

    Solar approached Phase II of ATS program with the goal of 50% thermal efficiency. An intercolled and recuperated gas turbine was identified as the ultimate system to meet this goal in a commercial gas turbine environment. With commercial input from detailed market studies and DOE`s ATS program, Solar redefined the company`s proposed ATS to fit both market and sponsor (DOE) requirements. Resulting optimized recuperated gas turbine will be developed in two sizes, 5 and 15 MWe. It will show a thermal efficiency of about 43%, a 23% improvement over current industrial gas turbines. Other ATS goals--emissions, RAMD (reliability, availability, maintainability, durability), cost of power--will be met or exceeded. During FY95, advanced development of key materials, combustion and component technologies proceeded to the point of acceptance for inclusion in ATS Phase III.

  2. Advanced Turbine Systems Program industrial system concept development

    Energy Technology Data Exchange (ETDEWEB)

    Gates, S. [Solar Turbines Inc., San Diego, CA (United States)

    1995-10-01

    The objective of Phase II of the Advanced Turbine Systems Program is to develop conceptual designs of gas fired advanced turbine systems that can be adapted for operation on coal and biomass fuels. The technical, economic, and environmental performance operating on natural gas and in a coal fueled mode is to be assessed. Detailed designs and test work relating to critical components are to be completed and a market study is to be conducted.

  3. AICD -- Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program. 1993 Annual summary report

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, G.; Bair, K.; Ross, J. [eds.

    1994-03-01

    The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.

  4. Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2005-11-01

    The study examines current and emerging melting technologies and discusses their technical barriers to scale-up issues and research needed to advance these technologies, improving melting efficiency, lowering metal transfer heat loss, and reducing scrap.

  5. Atmospheric fluidized bed combustion advanced system concepts applicable to small industrial and commercial markets. Topical report, Level 2

    Energy Technology Data Exchange (ETDEWEB)

    Ake, T.R.; Dixit, V.B.; Mongeon, R.K.

    1992-09-01

    As part of an overall strategy to promote FBC coal combustion and to improve the marketability of the eastern coals, the US Department of Energy`s Morgantown Energy Research Center awarded a three level contract to Riley Stoker Corporation to develop advanced Multi Solids Fluidized Bed (MSFB) boiler designs. The first level of this contract targeted the small package boiler (10,000--50,000 lb/hr steam) and industrial size boiler (75,000--150,000 lb/hr steam) markets. Two representative sizes, 30,000 lb/hr and 110,000 lb/hr of steam, were selected for the two categories for a detailed technical and economic evaluation. Technically, both the designs showed promise, however, the advanced industrial design was favored on economic considerations. It was thus selected for further study in the second level of the contract. Results of this Level-2 effort, presented in this report, consisted of testing the design concept in Riley`s 4.4 MBtu/hr pilot MSFB facility located at Riley Research Center in Worcester, Mass. The design and economics of the proof of concept facility developed in Level-1 of the contract were then revised in accordance with the findings of the pilot test program. A host site for commercial demonstration in Level-3 of the contract was also secured. It was determined that co-firing coal in combination with paper de-inking sludge will broaden the applicability of the design beyond conventional markets. International Paper (IP), the largest paper company in the world, is willing to participate in this part of the program. IP has offered its Hammermill operation at Lockhaven, Pa, site of a future paper de-inking plant, for the proof of concept installation. This plant will go in operation in 1994. It is recommended that METC proceed to the commercial demonstration of the design developed. The approach necessary to satisfy the needs of the customer while meeting the objectives of this program is presented along with a recommended plan of action.

  6. Advanced nuclear propulsion concepts

    Energy Technology Data Exchange (ETDEWEB)

    Howe, S.D. [Los Alamos National Lab., NM (United States)

    1994-12-31

    A preliminary analysis has been carried out for two potential advanced nuclear propulsion systems: a contained pulsed nuclear propulsion engine and an antiproton initiated ICF system. The results of these studies indicate that both concepts have a high potential to help enable manned planetary exploration but require substantial development.

  7. Practical applications of safety culture concepts in human performance advances on Russian nuclear industry

    International Nuclear Information System (INIS)

    Sometimes, many from negative external factors can be compensated by human psychological readiness of worker. However there would be main worse to come: some cases of personnel activity and organisational factors, some person's peculiarities (attitudes, responsibility, etc.) add considerable number of the events at NPPs. A lot of aspects of Human Factor Reliability are united in Safety Culture concept. This paper presents some results of our recently research in that area. In 'proactive approach': Unique methods for measuring maturity and satisfaction of personnel motivation: comparative analysis of the labour and safety culture motivation from attitude; organization of the socio-psychological climate and safety attitude examining monitoring at all of Russia's NPPs; working-out recommendations for managers on improving human performance are presented. Besides, ergonomic research concerning work conditions at the NPP is displayed. In 'reactive approach': Analysis of the incorrect activity cases, which led to the breaches of work of the Russian NPPs, is shown. The special method to work-up is used. It was issue, that events caused by a human error, depends not only on the worker's professional competence, but on the attitude and motivation, some professionally important psychological and psycho-physiological quality data, the functional state, the group's socio-psychological climate, etc. (author)

  8. Advanced Accelerator Concepts

    International Nuclear Information System (INIS)

    This conference proceedings represent the results of theThird Advanced Accelerator Concepts Workshop held in PortJefferson, New York. The workshop was sponsored by the U.S.Department of Energy, the Office of Navel Research and BrookhavenNational Laboratory. The purpose was to assess new techniques forproduction of ultra-high gradient acceleration and to addressengineering issues in achieving this goal. There are eighty-onepapers collected in the proceedings and all have been abstractedfor the database

  9. Advances in industrial heat transfer

    CERN Document Server

    Minea, Alina Adriana

    2012-01-01

    Advances in Industrial Heat Transfer presents the basic principles of industrial heat transfer enhancement. Serving as a reference and guide for future research, this book presents a complete approach, from redesigning equipment to the use of nanofluids in industry. Based on the latest methods of the experiment and their interpretation, this book presents a unified conception of the industrial heat transfer process and procedures which will help decrease global energy consumption. Containing both theoretical and practical results, the book uses text, pictures, graphs, and definitions to illust

  10. Advanced microwave processing concepts

    Energy Technology Data Exchange (ETDEWEB)

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymeric materials. The variable frequency microwave furnace, whose initial conception and design was funded by the AIM Materials Program, allows the authors, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of various thermoset resins will be studied because it holds the potential of in-situ curing of continuous-fiber composites for strong, lightweight components or in-situ curing of adhesives, including metal-to-metal. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  11. Advanced microwave processing concepts

    Energy Technology Data Exchange (ETDEWEB)

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L. [Oak Ridge National Laboratory, TN (United States)

    1995-05-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymer composites. The variable frequency microwave furnace, whose initial conception and design was funded by the AIC Materials Program, will allow us, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of thermoset resins will be studied because it hold the potential of in-situ curing of continuous-fiber composites for strong, lightweight components. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  12. ADVANCED SULFUR CONTROL CONCEPTS

    Energy Technology Data Exchange (ETDEWEB)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  13. Advanced fusion concepts program

    International Nuclear Information System (INIS)

    While the prospects for the eventual development of a tokamak-based fusion reactor appear promising at the present time, the Department of Energy maintains a vigorous program in alternate magnetic fusion concepts. Several of the concepts presently supported include the toroidal reversed field pinch, Tormac, Elmo Bumpy Torus, and various linear options. Recent technical accomplishments and program evaluations indicate that the possibility now exists for undertaking the next development stage, a proof-of-principle experiment, for a few of the most promising alternate concepts

  14. Advanced Welding Concepts

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  15. Advanced tokamak concepts

    NARCIS (Netherlands)

    Oomens, A. A. M.

    1998-01-01

    From a discussion of fusion reactor designs based on today's well-established experience gained in the operation of large tokamaks, it is concluded that such reactors are economically not attractive. The physics involved in the various options for concept improvement is described and the main e

  16. Advanced tokamak concepts

    NARCIS (Netherlands)

    Oomens, A. A. M.

    1996-01-01

    From a discussion of fusion reactor designs based on today's well-established experience gained in the operation of large tokamaks, it is concluded that such reactors are economically not attractive. The physics involved in the various options for concept improvement is described and the main e

  17. Advanced fusion concepts project summaries

    International Nuclear Information System (INIS)

    The activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, DOE, are described. These descriptions are project summaries of each of the individual projects, and contain title, persons responsible, funding, purpose, approach, recent progress, future plans, planned milestones, graduate students and other staff, and recent publications

  18. Challenging industry conceptions with provotypes

    DEFF Research Database (Denmark)

    Boer, Laurens; Donovan, Jared; Buur, Jacob

    2013-01-01

    . Provotypes are ethnographically rooted, technically working, robust artefacts that deliberately challenge stakeholder conceptions by reifying and exposing tensions that surround a field of organizational interest. The daily and local experience of provotypes aim to stir dialectical processes of reflection...... on how conceptions currently are, and fuel the front end of a development process by speculating how conceptions could be different. In this article we start by making explicit the relation between provotypes, practices of critical design and organizational sense-making. We then illustrate through...... a multi-stakeholder project that concerned the field of indoor climate how provotypes facilitate transfers of user knowledge to industry, and how they contribute to the development of new products and services. We end by framing the role of the design researcher and discuss the politics that are inherent...

  19. Advances in integrated and sustainable supply chain planning concepts, methods, tools and solution approaches toward a platform for industrial practice

    CERN Document Server

    Laínez-Aguirre, José Miguel

    2015-01-01

    Decision making at the enterprise level often encompass not only production operations and  product R&D, but other strategic functions such as financial planning and marketing. With the aim of maximizing growth and a firm’s value, companies often focus on co-ordinating these functional components as well as traditional hierarchical decision levels. Understanding this interplay can enhance enterprise capabilities of adaptation and response to uncertainties arising from internal processes as well as the external environment. This book presents concepts, methods, tools and solutions based on mathematical programming, which provides the quantitative support needed for integrated decision-making and ultimately for improving the allocation of overall corporate resources (e.g., materials, cash and personnel). Through a systems perspective, the integrated planning of the supply chain also promotes activities of reuse, reduction and recycling for achieving more sustainable environmental impacts of production/di...

  20. Advanced fusion concepts: project summaries

    International Nuclear Information System (INIS)

    This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, US Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications. Information is given for each of the following programs: (1) reverse-field pinch, (2) compact toroid, (3) alternate fuel/multipoles, (4) stellarator/torsatron, (5) linear magnetic fusion, (6) liners, and (7) Tormac

  1. ASME Material Challenges for Advanced Reactor Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Ali Siahpush

    2013-07-01

    This study presents the material Challenges associated with Advanced Reactor Concept (ARC) such as the Advanced High Temperature Reactor (AHTR). ACR are the next generation concepts focusing on power production and providing thermal energy for industrial applications. The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The heat exchanger required for AHTR is subjected to a unique set of conditions that bring with them several design challenges not encountered in standard heat exchangers. The corrosive molten salts, especially at higher temperatures, require materials throughout the system to avoid corrosion, and adverse high-temperature effects such as creep. Given the very high steam generator pressure of the supercritical steam cycle, it is anticipated that water tube and molten salt shell steam generators heat exchanger will be used. In this paper, the ASME Section III and the American Society of Mechanical Engineers (ASME) Section VIII requirements (acceptance criteria) are discussed. Also, the ASME material acceptance criteria (ASME Section II, Part D) for high temperature environment are presented. Finally, lack of ASME acceptance criteria for thermal design and analysis are discussed.

  2. Advancing Uncertainty: Untangling and Discerning Related Concepts

    OpenAIRE

    Janice Penrod

    2002-01-01

    Methods of advancing concepts within the qualitative paradigm have been developed and articulated. In this section, I describe methodological perspectives of a project designed to advance the concept of uncertainty using multiple qualitative methods. Through a series of earlier studies, the concept of uncertainty arose repeatedly in varied contexts, working its way into prominence, and warranting further investigation. Processes of advanced concept analysis were used to initiate the formal in...

  3. Advanced PWR fuel design concepts

    International Nuclear Information System (INIS)

    For nearly 15 years, Combustion Engineering has provided pressurized water reactor fuel with the features most suppliers are now introducing in their advanced fuel designs. Zircaloy grids, removable upper end fittings, large fission gas plenum, high burnup, integral burnable poisons and sophisticated analytical methods are all features of C-E standard fuel which have been well proven by reactor performance. C-E's next generation fuel for pressurized water reactors features 24-month operating cycles, optimal lattice burnable poisons, increased resistance to common industry fuel rod failure mechanisms, and hardware and methodology for operating margin improvements. Application of these various improvements offer continued improvement in fuel cycle economics, plant operation and maintenance. (author)

  4. Advanced Techniques of Industrial Robot Programming

    OpenAIRE

    Cheng, Frank Shaopeng

    2010-01-01

    Creating accurate robot points is an important task in robot programming. This chapter discussed the advanced techniques used in creating robot points for improving robot operation flexibility and reducing robot production downtime. The theory of robotics shows that an industrial robot system represents a robot point in both Cartesian coordinates and proper joint values. The concepts and procedures of designing accurate robot user tool frame UT[k] and robot user frame UF[i] are essential in t...

  5. Advanced Concepts: Aneutronic Fusion Power and Propulsion

    Science.gov (United States)

    Chapman, John J.

    2012-01-01

    Aneutronic Fusion for In-Space thrust, power. Clean energy & potential nuclear gains. Fusion plant concepts, potential to use advanced fuels. Methods to harness ionic momentum for high Isp thrust plus direct power conversion into electricity will be presented.

  6. Design of advanced industrial furnaces using numerical modeling method

    OpenAIRE

    Dong, Wei

    2000-01-01

    This doctoral thesis describes the fundamentals ofmathematical modeling for the industrial furnaces and boilersand presents the results from the numerical simulations of sometypical applications in advanced industrial furnaces andboilers. The main objective of this thesis work is to employcomputational fluid dynamics (CFD) technology as an effectivecomputer simulation tool to study and develop the newcombustion concepts, phenomena and processes in advancedindustrial furnaces and boilers. The ...

  7. Advanced Accelerator Concepts Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wurtele, Jonathan S.

    2014-05-13

    A major focus of research supported by this Grant has been on the ALPHA antihydrogen trap. We first trapped antihydrogen in 2010 and soon thereafter demonstrated trapping for 1000s. We now have observed resonant quantum interactions with antihydrogen. These papers in Nature and Nature Physics report the major milestones in anti-atom trapping. The success was only achieved through careful work that advanced our understanding of collective dynamics in charged particle systems, the development of new cooling and diagnostics, and in- novation in understanding how to make physics measurements with small numbers of anti-atoms. This research included evaporative cooling, autoresonant excitation of longitudinal motion, and centrifugal separation. Antihydrogen trapping by ALPHA is progressing towards the point when a important theories believed by most to hold for all physical systems, such as CPT (Charge-Parity-Time) invariance and the Weak Equivalence Principle (matter and antimatter behaving the same way under the influence of gravity) can be directly tested in a new regime. One motivation for this test is that most accepted theories of the Big Bang predict that we should observe equal amounts of matter and antimatter. However astrophysicists have found very little antimatter in the universe. Our experiment will, if successful over the next seven years, provide a new test of these ideas. Many earlier detailed and beautiful tests have been made, but the trapping of neutral antimatter allows us to explore the possibility of direct, model-independent tests. Successful cooling of the anti atoms, careful limits on systematics and increased trapping rates, all planned for our follow-up experiment (ALPHA-II) will reach unrivaled precision. CPT invariance implies that the spectra of hydrogen and antihydrogen should be identical. Spectra can be measured in principle with great precision, and any di erences we might observe would revolutionize fundamental physics. This is the

  8. Advanced Fusion Concepts project summaries. FY 1983

    International Nuclear Information System (INIS)

    This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, US Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate studients, graduates, other professional staff, and recent publications. The individual project summaries are prepared by the principle investigators in collaboration with the Advanced Fusion Concepts (AFC) Branch. In addition to the project summaries, statements of branch objectives, and budget summaries are also provided

  9. Advanced fusion concepts project summaries: 1981

    International Nuclear Information System (INIS)

    This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, US Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications

  10. Advanced Fusion Concepts project summaries, FY 1982

    International Nuclear Information System (INIS)

    This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, U.S. Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications

  11. Research Opportunities in Advanced Aerospace Concepts

    Science.gov (United States)

    Jones, Gregory S.; Bangert, Linda S.; Garber, Donald P.; Huebner, Lawrence D.; McKinley, Robert E.; Sutton, Kenneth; Swanson, Roy C., Jr.; Weinstein, Leonard

    2000-01-01

    This report is a review of a team effort that focuses on advanced aerospace concepts of the 21st Century. The paper emphasis advanced technologies, rather than cataloging every unusual aircraft that has ever been attempted. To dispel the myth that "aerodynamics is a mature science" an extensive list of "What we cannot do, or do not know" was enumerated. A zeit geist, a feeling for the spirit of the times, was developed, based on existing research goals. Technological drivers and the constraints that might influence these technological developments in a future society were also examined. The present status of aeronautics, space exploration, and non-aerospace applications, both military and commercial, including enabling technologies are discussed. A discussion of non-technological issues affecting advanced concepts research is presented. The benefit of using the study of advanced vehicles as a tool to uncover new directions for technology development is often necessary. An appendix is provided containing examples of advanced vehicle configurations currently of interest.

  12. 2nd European Advanced Accelerator Concepts Workshop

    CERN Document Server

    Assmann, Ralph; Grebenyuk, Julia

    2016-01-01

    The European Advanced Accelerator Concepts Workshop has the mission to discuss and foster methods of beam acceleration with gradients beyond state of the art in operational facilities. The most cost effective and compact methods for generating high energy particle beams shall be reviewed and assessed. This includes diagnostics methods, timing technology, special need for injectors, beam matching, beam dynamics with advanced accelerators and development of adequate simulations. This workshop is organized in the context of the EU-funded European Network for Novel Accelerators (EuroNNAc2), that includes 52 Research Institutes and universities.

  13. Systems analysis and futuristic designs of advanced biofuel factory concepts.

    Energy Technology Data Exchange (ETDEWEB)

    Chianelli, Russ; Leathers, James; Thoma, Steven George; Celina, Mathias Christopher; Gupta, Vipin P.

    2007-10-01

    The U.S. is addicted to petroleum--a dependency that periodically shocks the economy, compromises national security, and adversely affects the environment. If liquid fuels remain the main energy source for U.S. transportation for the foreseeable future, the system solution is the production of new liquid fuels that can directly displace diesel and gasoline. This study focuses on advanced concepts for biofuel factory production, describing three design concepts: biopetroleum, biodiesel, and higher alcohols. A general schematic is illustrated for each concept with technical description and analysis for each factory design. Looking beyond current biofuel pursuits by industry, this study explores unconventional feedstocks (e.g., extremophiles), out-of-favor reaction processes (e.g., radiation-induced catalytic cracking), and production of new fuel sources traditionally deemed undesirable (e.g., fusel oils). These concepts lay the foundation and path for future basic science and applied engineering to displace petroleum as a transportation energy source for good.

  14. Advanced Industrial Materials (AIM) Program: Annual progress report FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This Annual Report for FY 1995 contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Areas covered here are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

  15. Advanced fusion concepts project summaries, FY 1988

    International Nuclear Information System (INIS)

    This report summarizes all the projects supported by the Advanced Fusion Concepts Branch of the Applied Plasma Physics Division of the Office of Fusion Energy, US Department of Energy. Each project summary was written by the respective principal investigator using the format: title, principal investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications. This report is organized into three sections: Section one contains five summaries describing work in the reversed-field pinch program being performed by a diversified group of contractors, these include a national laboratory, a private company, and several universities. Section two contains eight summaries of work from the compact toroid area which encompasses field-reversed configurations, spheromaks, and heating and formation experiments. Section three contains summaries from two other programs, a density Z-pinch experiment and high-beta Q machine experiment. The intent of this collection of project summaries is to help the contractors of the Advanced Fusion Concepts Branch understand their relationship with the rest of the branch's activities. It is also meant to provide background to those outside the program by showing the range of activities of interest of the Advanced Fusion Concepts Branch

  16. Research advances in industrial engineering

    CERN Document Server

    2015-01-01

    This book provides discussions and the exchange of information on principles, strategies, models, techniques, methodologies and applications of industrial engineering. It communicates the latest developments and research activity on industrial engineering and is useful for all those interested in the technological challenges in the field.

  17. Penn State advanced light water reactor concept

    International Nuclear Information System (INIS)

    The accident at Three Mile Island heightened concerns over the safety of nuclear power. In response to these concerns, a research group at the Pennsylvania State University (Penn State) undertook the conceptual design of an advanced light water reactor (ALWR) under sponsorship of the US Dept. of Energy (DOE). The design builds on the literally hundreds of years worth of experience with light water reactor technology. The concept is a reconfigured pressurized water reactor (PWR) with the capability of being shut down to a safe condition simply by removing all ac power, both off-site and on-site. Using additional passively activated heat sinks and replacing the pressurizer with a pressurizing pump system, the concept essentially eliminates the concerns of core damage associated with a total station blackout. Evaluation of the Penn State ALWR concept has been conducted using the EPRI Modular Modeling System (MMS). Results show that a superior response to normal operating transients can be achieved in comparison to the response with a conventional PWR pressurizer. The DOE-sponsored Penn State ALWR concept has evolved into a significant reconfiguration of a PWR leading to enhanced safety characteristics. The reconfiguration has touched a number of areas in overall plant design including a shutdown turbine in the secondary system, additional passively activated heat sinks, a unique primary side pressurizing concept, a low pressure cleanup system, reactor building layout, and a low power density core design

  18. CONCEPT OF ADVANCED FLEXIBLE USE OF AIRSPACE

    Directory of Open Access Journals (Sweden)

    Oleksandr Luppo

    2016-06-01

    Full Text Available Purpose: Concept of Flexible Use of Airspace (FUA allows to eliminate many problems on the basis of civil-military coordination, but there are still a lot of areas for improvement. These improvements will be implemented in the Advanced Flexible Use of Airspace (AFUA concept. Methods: We examine the airspace structure in the frames of AFUA concept, which includes variable profile areas, temporary reserved and temporary segregated areas, danger or restricted areas. Mission Trajectory in AFUA which allows designing ad-hoc structures delineation at short notice is also examined. Regarding the performance enhancements of AFUA we compare these with FUA concept. Examination of AFUA structure gives us better view of the functions and opportunities of this concept. Result: AFUA concept provides many advantages for the civil aviation stakeholders and includes many other positive sides. Variable Profile Areas provide more flexibility, particularly in a high density traffic area and any combination of basic volume possible. Collaborative decision-making will increase the situational awareness of both parties and help to decrease the transit between airbases and training areas, allows military to use larger airspaces for missions on an absolute time-limited basis. As a result of mission trajectory implementation in AFUA concept general air traffic crossing are possible in all type of airspace structures, after coordination or under specific permanent agreements. The use of Centralized AFUA Services will allow the central collection, integration and provision of ASM data in support of continuous collaborative network processes, in such a way improving operational performance during the planning and execution phases (predictability, flexibility, better use of capacity, enhanced flight efficiency, real time sharing of information, better management of available airspace. Discussion: Given the important contribution that AFUA brings into air traffic management

  19. Social capital for industrial development: operationalizing the concept

    NARCIS (Netherlands)

    P. Knorringa (Peter); I.P. van Staveren (Irene)

    2006-01-01

    textabstractThe present report on Social capital for industrial development: operationalizing the concept is part of the broader Combating Marginalization and Poverty through Industrial Development (COMPID), research programme of the United Nations Industrial Development Organization (UNIDO), design

  20. Radar foundations for imaging and advanced concepts

    CERN Document Server

    Sullivan, Roger

    2004-01-01

    Through courses internally taught at IDA, Dr. Roger Sullivan has devised a book that brings readers fully up to speed on the most essential quantitave aspects of general radar in order to introduce study of the most exciting and relevant applications to radar imaging and advanced concepts: Synthetic Aperture Radar (4 chapters), Space-time Adaptive Processing, moving target indication (MTI), bistatic radar, low probability of intercept (LPI) radar, weather radar, and ground-penetrating radar. Whether you're a radar novice or experienced professional, this is an essential refer

  1. Advanced Gasifier Pilot Plant Concept Definition

    Energy Technology Data Exchange (ETDEWEB)

    Steve Fusselman; Alan Darby; Fred Widman

    2005-08-31

    This report presents results from definition of a preferred commercial-scale advanced gasifier configuration and concept definition for a gasification pilot plant incorporating those preferred technologies. The preferred commercial gasifier configuration was established based on Cost Of Electricity estimates for an IGCC. Based on the gasifier configuration trade study results, a compact plug flow gasifier, with a dry solids pump, rapid-mix injector, CMC liner insert and partial quench system was selected as the preferred configuration. Preliminary systems analysis results indicate that this configuration could provide cost of product savings for electricity and hydrogen ranging from 15%-20% relative to existing gasifier technologies. This cost of product improvement draws upon the efficiency of the dry feed, rapid mix injector technology, low capital cost compact gasifier, and >99% gasifier availability due to long life injector and gasifier liner, with short replacement time. A pilot plant concept incorporating the technologies associated with the preferred configuration was defined, along with cost and schedule estimates for design, installation, and test operations. It was estimated that a 16,300 kg/day (18 TPD) pilot plant gasifier incorporating the advanced gasification technology and demonstrating 1,000 hours of hot-fire operation could be accomplished over a period of 33 months with a budget of $25.6 M.

  2. Advanced High Voltage Power Device Concepts

    CERN Document Server

    Baliga, B Jayant

    2012-01-01

    Advanced High Voltage Power Device Concepts describes devices utilized in power transmission and distribution equipment, and for very high power motor control in electric trains and steel-mills. Since these devices must be capable of supporting more than 5000-volts in the blocking mode, this books covers operation of devices rated at 5,000-V, 10,000-V and 20,000-V. Advanced concepts (the MCT, the BRT, and the EST) that enable MOS-gated control of power thyristor structures are described and analyzed in detail. In addition, detailed analyses of the silicon IGBT, as well as the silicon carbide MOSFET and IGBT, are provided for comparison purposes. Throughout the book, analytical models are generated to give a better understanding of the physics of operation for all the structures. This book provides readers with: The first comprehensive treatment of high voltage (over 5000-volts) power devices suitable for the power distribution, traction, and motor-control markets;  Analytical formulations for all the device ...

  3. Applying SOA Concepts to Distributed Industrial Applications Using WCF Technology

    Science.gov (United States)

    Stopper, Markus; Gastermann, Bernd

    2010-10-01

    Software Development is subject to a constant process of change. In the meantime web services, access to remote services or distributed applications are already the standard. Simultaneously with their advancement demands on these techniques are rising significantly. Defined support for security issues, coordination of transactions and reliable communications are expected. Windows Communication Foundation (WCF)—as a part of Microsoft Corporation's .NET Framework—supports these requirements in line with wide range interoperability. WCF provides the development of distributed and interconnected software applications by means of a service-oriented programming model. This paper introduces a service-oriented communication concept based on WCF, which is specifically designed for industrial applications within a production environment using a central manufacturing information system (MIS) database. It introduces applied technologies and provides an overview of some important design aspects and base service sets of WCF. Additionally, this paper also shows a factual implementation of the presented service-oriented communication concept in the form of an industrial software application used in plastics industry.

  4. THE CONCEPT OF MANAGERIAL ACCOUNTING FOR BUSINESS CLOTHING INDUSTRY

    OpenAIRE

    Luchko, М.

    2010-01-01

    The article discusses the problem of constructing the management accounting concept for business clothing industry taking into account factors of production decline in the current context. Concept of separate components is studies, which depend on the characteristics of clothing manufacture.

  5. Advanced Nacelle Acoustic Lining Concepts Development

    Science.gov (United States)

    Bielak, G.; Gallman, J.; Kunze, R.; Murray, P.; Premo, J.; Kosanchick, M.; Hersh, A.; Celano, J.; Walker, B.; Yu, J.; Parrott, Tony L. (Technical Monitor)

    2002-01-01

    The work reported in this document consisted of six distinct liner technology development subtasks: 1) Analysis of Model Scale ADP Fan Duct Lining Data (Boeing): An evaluation of an AST Milestone experiment to demonstrate 1995 liner technology superiority relative to that of 1992 was performed on 1:5.9 scale model fan rig (Advanced Ducted Propeller) test data acquired in the NASA Glenn 9 x 15 foot wind tunnel. The goal of 50% improvement was deemed satisfied. 2) Bias Flow Liner Investigation (Boeing, VCES): The ability to control liner impedance by low velocity bias flow through liner was demonstrated. An impedance prediction model to include bias flow was developed. 3) Grazing Flow Impedance Testing (Boeing): Grazing flow impedance tests were conducted for comparison with results achieved at four different laboratories. 4) Micro-Perforate Acoustic Liner Technology (BFG, HAE, NG): Proof of concept testing of a "linear liner." 5) Extended Reaction Liners (Boeing, NG): Bandwidth improvements for non-locally reacting liner were investigated with porous honeycomb core test liners. 6) Development of a Hybrid Active/Passive Lining Concept (HAE): Synergism between active and passive attenuation of noise radiated by a model inlet was demonstrated.

  6. Industrial Advanced Turbine Systems Program overview

    Energy Technology Data Exchange (ETDEWEB)

    Esbeck, D.W. [Solar Turbines Inc., San Diego, CA (United States)

    1995-10-01

    The U.S. Department of Energy (DOE), in partnership with industry, has set new performance standards for industrial gas turbines through the creation of the Industrial Advanced Turbine System Program. Their leadership will lead to the development of an optimized, energy efficient, and environmentally friendly gas turbine power systems in this size class (3-to-20 MW). The DOE has already created a positive effect by encouraging gas turbine system manufacturers to reassess their product and technology plans using the new higher standards as the benchmark. Solar Turbines has been a leader in the industrial gas turbine business, and is delighted to have joined with the DOE in developing the goals and vision for this program. We welcome the opportunity to help the national goals of energy conservation and environmental enhancement. The results of this program should lead to the U.S. based gas turbine industry maintaining its international leadership and the creation of highly paid domestic jobs.

  7. The Advanced Industrial Materials (AIM) program office of industrial technologies fiscal year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Sorrell, C.A.

    1997-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in FY95 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven `Vision Industries` that use about 80% of industrial energy and generated about 90% of industrial wastes. These are: aluminium; chemical; forest products; glass; metal casting; refineries; and steel. OIT is working with these industries, through appropriate organizations, to develop Visions of the desired condition of each industry some 20 to 25 years in the future and then to prepare Road Maps and Implementation Plans to enable them to reach their goals. The mission of AIM has, therefore, changed to `Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`

  8. Imaging spectrometer - An advanced multispectral imaging concept

    Science.gov (United States)

    Wellman, J. B.; Breckinridge, J. B.; Kupferman, P. N.; Salazar, R.

    1982-01-01

    The concept of an imaging spectrometer, which is being studied as a potential Space Shuttle experiment, is evaluated as a 'push-broom' imager that includes a spectrometer to disperse each line of imaging information into its spectral components. Using this instrument, the dispersed energy falls upon a two-dimensional focal plane array that detects both spatial and spectral information. As the line field of view is advanced over the earth by the motion of the spacecraft, the focal plane is read out constantly, which produces 'push-broom' images at multiple wavelengths. Ground instantaneous fields of view of 10 m in the visual and 20 m in the infrared are provided by the system, at a spectral resolution of 20 nm over the range from 0.4-2.5 microns. The system utilizes a triple-pass Schmidt optical system with a mosaic focal plane. A subset of the data stream is selected and encoded for transmission by the use of onboard processing.

  9. Modern Times: The Industrial Revolution and the Concept of Time.

    Science.gov (United States)

    Doppen, Frans H.

    1999-01-01

    Discusses the role the Industrial Revolution had in changing humankind's perception of time and recommends using the flashback approach in order to encourage students to think about how the process of industrialization still affects their lives. Provides activities that address the concept of time caused by the Industrial Revolution. (CMK)

  10. Technical and economic evaluation of advanced air cargo system concepts

    Science.gov (United States)

    Whitehead, A. H., Jr.

    1977-01-01

    The paper reviews NASA air cargo market studies, reports on NASA and NASA-sponsored studies of advanced freighter concepts, and identifies the opportunities for the application of advanced technology. The air cargo market is studied to evaluate the timing for, and the potential market response to, advanced technology aircraft. The degree of elasticity in future air freight markets is also being investigated, since the demand for a new aircraft is most favorable in a price-sensitive environment. Aircraft design studies are considered with attention to mission and design requirements, incorporation of advanced technologies in transport aircraft, new cargo aircraft concepts, advanced freighter evaluation, and civil-military design commonality.

  11. Advanced sunflower antenna concept development. [stowable reflectors

    Science.gov (United States)

    Archer, J. S.

    1980-01-01

    The feasibility of stowing large solid antenna reflectors in the shuttle was demonstrated for applications with 40 foot apertures at frequencies of 100 GHz. Concepts allowing extension of the basic concept to 80-foot apertures operable at 60 GHz were identified.

  12. The Concept of Modularisation of Industrial Services

    OpenAIRE

    Seite, Fabrice; Schneider, Oliver; Nobs, Andreas

    2010-01-01

    International audience; The paper summarises findings from an action research project on modularisation of industrial services. Based on literature about modularisation of physical goods and literature on modularisation of services, several research gaps are highlighted and appropriate approaches discussed. Module drivers addressing modularisation benefits are transferred to services. Interdependencies among service elements are presented. Research gaps on design opportunities of modular serv...

  13. Advanced Wind Turbine Drivetrain Concepts. Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-12-01

    This report presents key findings from the Department of Energy’s Advanced Drivetrain Workshop, held on June 29-30, 2010, to assess different advanced drivetrain technologies, their relative potential to improve the state-of-the-art in wind turbine drivetrains, and the scope of research and development needed for their commercialization in wind turbine applications.

  14. Specification process reengineering: concepts and experiences from Danish industry

    DEFF Research Database (Denmark)

    Hansen, Benjamin Loer; Riis, Jesper; Hvam, Lars

    2003-01-01

    This paper presents terminologies and concepts related to the IT automation of specification processes in companies manufacturing custom made products. Based on 11 cases from the Danish industry the most significant development trends are discussed.......This paper presents terminologies and concepts related to the IT automation of specification processes in companies manufacturing custom made products. Based on 11 cases from the Danish industry the most significant development trends are discussed....

  15. Life Cycle Concept and Management Practice in Industry

    OpenAIRE

    Razvigorova, E.; Acs, J.

    1988-01-01

    The workshop "Life Cycle Theory and Management Practice" demonstrated the widespread acceptance of the life cycle concept in the scientific community and in management practice. Based on a summary of the main terms and the various stages of life cycles for products, processes, and industries, and an description of the relationships between these phases and various aspects of organizations, industries and products, the value of using different life cycle concepts and the importance of the...

  16. Advances in Information Technology and Industry Applications

    CERN Document Server

    2012-01-01

    With success of ICEEE 2010 in Wuhan, China, and December 4 to 5, 2010, the second International Conference of Electrical and Electronics Engineering (ICEEE 2011) will be held in Macau, China, and December 1 to 2, 2011. ICEEE is an annual conference to call together researchers, engineers, academicians as well as industrial professionals from all over the world to present their research results and development activities in Electrical and Electronics Engineering along with Computer Science and Technology, Communication Technology, Artificial Intelligence, Information Technology, etc.   This year ICEEE is sponsored by International Industrial Electronics Center, Hong Kong. And based on the deserved reputation, more than 750 papers have been submitted to ICEEE 2011, from which about 94 high quality original papers have been selected for the conference presentation and inclusion in the “Advanced Computer, Communication, and Control” book based on the referees’ comments from peer-refereed. All the papers wi...

  17. Advanced Industrial Materials (AIM) fellowship program

    Energy Technology Data Exchange (ETDEWEB)

    McCleary, D.D. [Oak Ridge Institute for Science and Education, TN (United States)

    1997-04-01

    The Advanced Industrial Materials (AIM) Program administers a Graduate Fellowship Program focused toward helping students who are currently under represented in the nation`s pool of scientists and engineers, enter and complete advanced degree programs. The objectives of the program are to: (1) establish and maintain cooperative linkages between DOE and professors at universities with graduate programs leading toward degrees or with degree options in Materials Science, Materials Engineering, Metallurgical Engineering, and Ceramic Engineering, the disciplines most closely related to the AIM Program at Oak Ridge National Laboratory (ORNL); (2) strengthen the capabilities and increase the level of participation of currently under represented groups in master`s degree programs, and (3) offer graduate students an opportunity for practical research experience related to their thesis topic through the three-month research assignment or practicum at ORNL. The program is administered by the Oak Ridge Institute for Science and Education (ORISE).

  18. "Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

    2008-06-12

    ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

  19. Advanced tokamak concepts and reactor designs

    NARCIS (Netherlands)

    Oomens, A. A. M.

    2000-01-01

    From a discussion of fusion reactor designs based on today's well-established experience gained in the operation of large tokamaks, it is concluded that such reactors are economically not attractive. The physics involved in the various options for concept improvement is described, some examples

  20. Advanced Interval Management (IM) Concepts of Operations

    Science.gov (United States)

    Barmore, Bryan E.; Ahmad, Nash'at N.; Underwood, Matthew C.

    2014-01-01

    This document provides a high-level description of several advanced IM operations that NASA is considering for future research and development. It covers two versions of IM-CSPO and IM with Wake Mitigation. These are preliminary descriptions to support an initial benefits analysis

  1. Workshop II: Nanotechnology and Advanced Cell Concepts

    Science.gov (United States)

    2007-01-01

    Workshop focused on few emerging concepts(beyond tandem cells): 1. Engineering incident sun spectrum and transparency losses a) Nano emitters (dot concentrator); b) Surface plasmonics; c) Up converters; d) Down converter. 2. Intermediate band solar cells a) Efficiency projections (detail energy balance projections); b) Inserting 0,1 and 2D semiconductor structures in solar cells 3. Polymer and hybrid cells a) Nanotubes/dot polymers; b) Exciton dissociation.

  2. Advances in Industrial Engineering Applications and Pratice

    DEFF Research Database (Denmark)

    Sørensen, Torben

    1997-01-01

    This paper address how neutral product model interfaces can be developed to provide intelligent and flexible means for information management in manufacturing of discrete mechanical products. The use of advanced computer based systems, such as CAD, CAE, CNC, and robotics, offers a potential...... for significant cost-savings and quality improvements in manufacturing of discrete mechanical products. However, these systems are introduced into production as 'islands of information', and to benefit from the said potential, the systems must be integrated into an integrated manufacturing unit. Such units...... are known as Computer Integrated Manufacturing and Engineering (CIME) systems. The basic concept in CIME is to share and reuse information between the different computer based subsystems. Consequently, for the integration purposes, the CIME systems are highly dependent on reliable product model interfaces...

  3. Advanced Energy Industries, Inc. SEGIS developments.

    Energy Technology Data Exchange (ETDEWEB)

    Scharf, Mesa P. (Advanced Energy Industries, Inc., Bend, OR); Bower, Ward Isaac; Mills-Price, Michael A. (Advanced Energy Industries, Inc., Bend, OR); Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali; Kuszmaul, Scott S.; Gonzalez, Sigifredo

    2012-03-01

    The Solar Energy Grid Integration Systems (SEGIS) initiative is a three-year, three-stage project that includes conceptual design and market analysis (Stage 1), prototype development/testing (Stage 2), and commercialization (Stage 3). Projects focus on system development of solar technologies, expansion of intelligent renewable energy applications, and connecting large-scale photovoltaic (PV) installations into the electric grid. As documented in this report, Advanced Energy Industries, Inc. (AE), its partners, and Sandia National Laboratories (SNL) successfully collaborated to complete the final stage of the SEGIS initiative, which has guided new technology development and development of methodologies for unification of PV and smart-grid technologies. The combined team met all deliverables throughout the three-year program and commercialized a broad set of the developed technologies.

  4. Advanced high strength steels for automotive industry

    Directory of Open Access Journals (Sweden)

    Galán, J.

    2012-04-01

    Full Text Available The car industry is facing pressure because of the growing demand for more fuel-efficient passenger cars. In order to limit energy consumption and air pollution the weight of the carbody has to be reduced. At the same time, high levels of safety have to be guaranteed. In this situation, the choice of material becomes a key decision in car design. As a response to the requirements of the automotive sector, high strength steels and advanced high strength steels have been developed by the steel industry. These modern steel grades offer an excellent balance of low cost, light weight and mechanical properties.

    La industria del automóvil se enfrenta a una creciente demanda de vehículos de pasajeros más eficientes. Con el fin de disminuir el consumo de energía y la contaminación ambiental, el peso del vehículo tiene que ser reducido, al mismo tiempo que se garantizan altos niveles de seguridad. Ante esta situación, la elección de material se convierte en una decisión crucial en el diseño del vehículo. Como respuesta a las necesidades del sector automovilístico, nuevos aceros avanzados y de alta resistencia, han sido desarrollados por la industria siderúrgica. Dichos tipos de acero ofrecen un excelente equilibrio de precio, peso y propiedades mecánicas.

  5. Advances in industrial high-power lasers

    Science.gov (United States)

    Schlueter, Holger

    2005-03-01

    Four major types of laser sources are used for material processing. Excluding Excimer lasers, this paper focuses on advances in High Power CO2 lasers, Solid State Lasers and Diode Lasers. Because of their unrivaled cost to brightness relationship the fast axial flow CO2 laser remains unrivaled for flat-sheet laser cutting. Adding approximately a kW of output power ever four years, this laser type has been propelling the entire sheet metal fabrication industry for the last two decades. Very robust, diffusion cooled annular discharge CO2 lasers with 2kW output power have enabled robot mounted lasers for 3D applications. Solid State Lasers are chosen mainly because of the option of fiber delivery. Industrial applications still rely on lamp-pumped Nd:YAG lasers with guaranteed output powers of 4.5 kW at the workpiece. The introduction of the diode pumped Thin Disc Laser 4.5 kW laser enables new applications such as the Programmable Focus Optics. Pumping the Thin Disc Laser requires highly reliable High Power Diode Lasers. The necessary reliability can only be achieved in a modern, automated semiconductor manufacturing facility. For Diode Lasers, electro-optical efficiencies above 65% are as important as the passivation of the facets to avoid Burn-In power degradation.

  6. Advanced concepts in particle and field theory

    CERN Document Server

    Hübsch, Tristan

    2015-01-01

    Uniting the usually distinct areas of particle physics and quantum field theory, gravity and general relativity, this expansive and comprehensive textbook of fundamental and theoretical physics describes the quest to consolidate the basic building blocks of nature, by journeying through contemporary discoveries in the field, and analysing elementary particles and their interactions. Designed for advanced undergraduates and graduate students and abounding in worked examples and detailed derivations, as well as including historical anecdotes and philosophical and methodological perspectives, this textbook provides students with a unified understanding of all matter at the fundamental level. Topics range from gauge principles, particle decay and scattering cross-sections, the Higgs mechanism and mass generation, to spacetime geometries and supersymmetry. By combining historically separate areas of study and presenting them in a logically consistent manner, students will appreciate the underlying similarities and...

  7. Advanced Concepts for Underwater Acoustic Channel Modeling

    Science.gov (United States)

    Etter, P. C.; Haas, C. H.; Ramani, D. V.

    2014-12-01

    This paper examines nearshore underwater-acoustic channel modeling concepts and compares channel-state information requirements against existing modeling capabilities. This process defines a subset of candidate acoustic models suitable for simulating signal propagation in underwater communications. Underwater-acoustic communications find many practical applications in coastal oceanography, and networking is the enabling technology for these applications. Such networks can be formed by establishing two-way acoustic links between autonomous underwater vehicles and moored oceanographic sensors. These networks can be connected to a surface unit for further data transfer to ships, satellites, or shore stations via a radio-frequency link. This configuration establishes an interactive environment in which researchers can extract real-time data from multiple, but distant, underwater instruments. After evaluating the obtained data, control messages can be sent back to individual instruments to adapt the networks to changing situations. Underwater networks can also be used to increase the operating ranges of autonomous underwater vehicles by hopping the control and data messages through networks that cover large areas. A model of the ocean medium between acoustic sources and receivers is called a channel model. In an oceanic channel, characteristics of the acoustic signals change as they travel from transmitters to receivers. These characteristics depend upon the acoustic frequency, the distances between sources and receivers, the paths followed by the signals, and the prevailing ocean environment in the vicinity of the paths. Properties of the received signals can be derived from those of the transmitted signals using these channel models. This study concludes that ray-theory models are best suited to the simulation of acoustic signal propagation in oceanic channels and identifies 33 such models that are eligible candidates.

  8. Manufacturing concepts and development trends in the industrial production of microelectromechanical systems

    Science.gov (United States)

    Schuenemann, Matthias; Grimme, Ralf; Kaufmann, Thomas; Schwaab, Gerhard; Baeder, Uwe; Schaefer, Wolfgang; Dorner, Johann

    1998-01-01

    During the past few years, remarkable affords have been made for the realization of microscale sensors, actuators and microelectromechanical system. Due to advances in solid state and micromachining technologies, significant advances in designing, fabricating and testing of microminiaturized devices have been achieved at laboratory level. However, the technical and economical realization of microelectromechanical systems is considerably impeded by the lack of satisfying device technology for their industrial production. A production concept for the industrial production of hybrid microelectromechanical systems was developed and investigated. The concept is based on the resources and requirements of medium-sized enterprises and is characterized by its flexibility. Microsystem fabrication is separated into microfabrication steps performed in-house and technological steps performed by external technology providers. The modularity of the concept allows for a gradual increase in the degree of automation and the in-house production depth, depending on market capacity and financial resources. To demonstrate the feasibility of this approach, the design and realization of a microfabrication process center, which includes tasks like transport and handling, processing, cleaning, testing and storing are discussed. Special attention is given to the supply and feeding of microparts, to the necessary magazines, trays and transport systems, to the implementation of homogeneous mechanical, environmental and information interfaces, to the employment of advanced control, scheduling, and lot tracking concepts, and to the application of highly modular and cost-efficient clean production concepts.

  9. AREAL test facility for advanced accelerator and radiation source concepts

    Science.gov (United States)

    Tsakanov, V. M.; Amatuni, G. A.; Amirkhanyan, Z. G.; Aslyan, L. V.; Avagyan, V. Sh.; Danielyan, V. A.; Davtyan, H. D.; Dekhtiarov, V. S.; Gevorgyan, K. L.; Ghazaryan, N. G.; Grigoryan, B. A.; Grigoryan, A. H.; Hakobyan, L. S.; Haroutiunian, S. G.; Ivanyan, M. I.; Khachatryan, V. G.; Laziev, E. M.; Manukyan, P. S.; Margaryan, I. N.; Markosyan, T. M.; Martirosyan, N. V.; Mehrabyan, Sh. A.; Mkrtchyan, T. H.; Muradyan, L. Kh.; Nikogosyan, G. H.; Petrosyan, V. H.; Sahakyan, V. V.; Sargsyan, A. A.; Simonyan, A. S.; Toneyan, H. A.; Tsakanian, A. V.; Vardanyan, T. L.; Vardanyan, A. S.; Yeremyan, A. S.; Zakaryan, S. V.; Zanyan, G. S.

    2016-09-01

    Advanced Research Electron Accelerator Laboratory (AREAL) is a 50 MeV electron linear accelerator project with a laser driven RF gun being constructed at the CANDLE Synchrotron Research Institute. In addition to applications in life and materials sciences, the project aims as a test facility for advanced accelerator and radiation source concepts. In this paper, the AREAL RF photoinjector performance, the facility design considerations and its highlights in the fields of free electron laser, the study of new high frequency accelerating structures, the beam microbunching and wakefield acceleration concepts are presented.

  10. Advanced Energy Saving and its Applications in Industry

    CERN Document Server

    Matsuda, Kazuo; Fushimi, Chihiro; Tsutsumi, Atsushi; Kishimoto, Akira

    2013-01-01

    The conventional approach for energy saving in a process system is to maximize heat recovery without changing any process conditions by using pinch technology. “Self-heat recuperation technology” was developed to achieve further energy saving in the process system by eliminating the necessity for any external heat input, such as firing or imported steam. Advanced Energy Saving and its Applications in Industry introduces the concept of self-heat recuperation and the application of such technology to a wide range of processes from heavy chemical complexes to other processes such as drying and gas separation processes, which require heating and cooling during operation.   Conventional energy saving items in a utility system are applied and implemented based on a single site approach, however, when looking at heavy chemical complexes, it was apparent that the low-grade heat discharged as waste from a refinery could also be used in an adjacent petrochemical plant. There could therefore be a large energy savin...

  11. A New Concept for Advanced Heterogeneous Metal Catalysts

    Institute of Scientific and Technical Information of China (English)

    Xu Bo-Qing

    2004-01-01

    Oxide-supported metal catalysts, having always nano-sized structures in which the metal catalysts are prepared as highly dispersed nano-crystals (typically 1-20 nm) on support oxide particles that are often one to several orders of magnitude larger than the metal nano-particles, are an important class of heterogeneous metal catalysts that finds many applications in chemical/petrochemical industries, in environmental protection, in chemical sensors and in the manufacture of fine and special chemicals. It is believed that catalysis by supported metals is the oldest application of nanotechnology. The literature has been rich in nano-size effect of metal nanoparticles in the metal/oxide catalysts. However, it is until recently that the development of size-controlled synthesis of oxide nanoparticles has made it possible to study the nano-size effect of oxide-support particles. When the particle sizes of an oxide support are reduced to become comparable to the sizes of the active metal nanoparticles, the oxide could deviate dramatically from its function as a conventional support. Such metal/oxide catalysts consisting of comparably sized metal and oxide nanocrystals are better called metal/oxide nanocomposite catalysts or catalytic nanoarchitectures.In this presentation, several attempts with reducing the particle size of oxide supports (ZrO2, TiO2,MgO, Al2O3) to approach the metal/oxide nanocomposite concept will be discussed to emphasize the importance of the support size effect. Examples will be given on characteristics of nanocomposite Ni/oxide catalysts for the reforming of natural gas with CO2 and/or steam, and on Au/oxide catalysts for CO oxidation and hydrogenation of unsaturated organic compounds. It will be emphasized that systematic investigations into the size effects of both the metal and oxide nanoparticles approaching the metal/oxide nanocomposite concept can lead to advanced heterogeneous metal catalysts.Moreover, intensive practice of the nanocomposite

  12. Advancing industrial marketing theory: The need for improved research

    OpenAIRE

    LaPlaca, Peter

    2014-01-01

    Industrial Marketing Management was the first journal devoted exclusively to advancing the science of industrial or business-to-business marketing. Prior to its launch in 1972, fewer than five percent of all articles published in marketing journals focused on industrial marketing1 while over half of the GDP in industrialized economies was due to B2B activities. Consumer marketing dominated academic research. With a new outlet for B2B research, the percentage of articles focusing on industrial...

  13. Preliminary design concepts of an advanced integral reactor

    International Nuclear Information System (INIS)

    An integral reactor on the basis of PWR technology is being conceptually developed at KAERI. Advanced technologies such as intrinsic and passive safety features are implemented in establishing the design concepts of the reactor to enhance the safety and performance. Research and development including laboratory-scale tests are concurrently underway for confirming the technical adoption of those concepts to the rector design. The power output of the reactor will be in the range of 100MWe to 600MWe which is relatively small compared to the existing loop type reactors. The detailed analysis to assure the design concepts is in progress. (author). 3 figs, 1 tab

  14. Preliminary design concept of an advanced integral reactor

    International Nuclear Information System (INIS)

    An integral reactor on the basis of PWR technology is being conceptually developed at KAERI. Advanced technologies such as intrinsic and passive safety features are implemented in establishing the design concepts of the reactor to enhance the safety and performance. Research and development including laboratory-scale tests are concurrently underway for confirming the technical adoption of those concepts to the reactor design. The power output of the reactor will be in the range of 100MWe to 600MWe which is relatively small compared to the existing loop type reactors. The detailed analysis to assure the design concepts is in progress. (author)

  15. SIRIUS : An Advanced Concept For Photo-Interpretation

    Science.gov (United States)

    Petit, Jean L.

    1984-01-01

    With the renovation of its fleet of reconnaissance aircraft, typified by the adoption of a special version of the MIRAGE Fl tactical support aircraft, the French Air Force wanted to rethink all the received reconnaissance concepts by completely renewing its: - sensors, - interpretation equipment, and by adopting advanced systems for : - mission preparation and planning, - stand-off reconnaissance, and - accelerated data access.

  16. Final Scientific Report - Wireless and Sensing Solutions Advancing Industrial Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Budampati, Rama; McBrady, Adam; Nusseibeh, Fouad

    2009-09-28

    The project team's goal for the Wireless and Sensing Solution Advancing Industrial Efficiency award (DE-FC36-04GO14002) was to develop, demonstrate, and test a number of leading edge technologies that could enable the emergence of wireless sensor and sampling systems for the industrial market space. This effort combined initiatives in advanced sensor development, configurable sampling and deployment platforms, and robust wireless communications to address critical obstacles in enabling enhanced industrial efficiency.

  17. Operating Guangzhou Hotel Industry with Service Concept of Cantonese Food

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ As the completion of New Baiyun International Airport and Pazhou International Conference Center and the fast development of exhibition industry, the commerce and trade position of Guangzhou (the historical and cultural international city) is growing with each passing day. With the Cantonese food service concept and guest receiving methods of "Culture, Trend,Friendly and Hospitality", Guangzhou hotel industry has won the satisfaction from domestic and foreign businessmen and tourists. With the cultural tinge of and trend of Lingnan, Guangzhou hotels have become the display window to foreign guests. Guangzhou hotels treat all the guests very well during the spring and autumn China Export Commodities Fairs.

  18. Identification of improvements of advanced light water reactor concepts

    International Nuclear Information System (INIS)

    The scope of this report is to identify the improvement of reactor developments with respect to reactor safety. This includes the collection of non-proprietary information on the description of the advanced design characteristics, especially summary design descriptions and general publications. This documentation is not intended to include a safety evaluation of the advanced concepts; however, it is structured in such a way that it can serve as a basis for a future safety evaluation. This is taken into account in the structure of the information regarding the distinction of the various concepts with respect to their 'advancement' and the classification of design characteristics according to some basic safety aspects. The overall description concentrates on those features which are relevant to safety. Other aspects, such as economy, operational features, maintenance, the construction period, etc...are not considered explicitly in this report

  19. Advanced laser sensing receiver concepts based on FPA technology.

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, P. L. (Phillip L.); Petrin, R. R. (Roger R.); Jolin, J. L. (John L.); Foy, B. R. (Bernard R.); Lowrance, J. L.; Renda, G. (George)

    2002-01-01

    The ultimate performance of any remote sensor is ideally governed by the hardware signal-to-noise capability and allowed signal-averaging time. In real-world scenarios, this may not be realizable and the limiting factors may suggest the need for more advanced capabilities. Moving from passive to active remote sensors offers the advantage of control over the illumination source, the laser. Added capabilities may include polarization discrimination, instantaneous imaging, range resolution, simultaneous multi-spectral measurement, or coherent detection. However, most advanced detection technology has been engineered heavily towards the straightforward passive sensor requirements, measuring an integrated photon flux. The need for focal plane array technology designed specifically for laser sensing has been recognized for some time, but advances have only recently made the engineering possible. This paper will present a few concepts for laser sensing receiver architectures, the driving specifications behind those concepts, and test/modeling results of such designs.

  20. Advanced Industrial Materials (AIM) program. Compilation of project summaries and significant accomplishments FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven {open_quotes}Vision Industries{close_quotes} that use about 80% of industrial energy and generated about 90% of industrial wastes. These are: (1) Aluminum; (2) Chemical; (3) Forest Products; (4) Glass; (5) Metal Casting; (6) Refineries; and (7) Steel. This report is a compilation of project summaries and significant accomplishments on materials.

  1. Reduced risk HTGR concept for industrial heat application

    International Nuclear Information System (INIS)

    The industrial process heat market has been identified as major market for the High Temperature Gas-Cooled Reactor (HTGR), however, this market introduces stringent availability requirements on the reactor system relative to electric plants which feed a large existing grid. The characteristics and requirements of the industrial heat markets are summarized; the risks associated with serving this market with a single large HTGR will be discussed; and the modular concept, which has the potential to reduce both safety and investment risks, will be described. The reference modular concept described consists of several small, relatively benign nuclear heat sources linked together to supply heat energy to a balance-of-plant incorporating a process gas train/thermochemical pipe line system and a normal steam-electric plant

  2. Corporate social responsibility concept in the ice cream industry

    OpenAIRE

    Jílková, Andrea

    2015-01-01

    The bachelor thesis is focused on the corporate social responsibility concept in the ice cream industry and in Ben & Jerry's company. Ben & Jerry's ice cream is Vermont- based company and subsidiary of Unilever and produces high quality ice cream while striving to serve to greater good. Collected data about the company that were used in analyses of the internal environment and CSR environment revealed some unique techniques of how company Ben & Jerry's deals with CSR. These analyses were equa...

  3. ADDRESSING WATER FOOTPRINT CONCEPT: A DEMONSTRABLE STRATEGY FOR PAPERMAKING INDUSTRY

    Directory of Open Access Journals (Sweden)

    Jing Shen,

    2012-05-01

    Full Text Available Since the introduction of the water footprint concept in 2002, in the context of humankind’s ever-increasing awareness of the valuable global freshwater resources, it has received more and more attention. The application of this relatively new concept has been expected to provide ecological and environmental benefits. For the water-intensive papermaking industry, it seems that water footprint needs to be addressed. The water footprint of cellulosic paper can be divided into three components, including its green water footprint, blue water footprint, and grey water footprint, which may be accounted for by considering the individual contributions of wood or non-wood materials, pulp production processes, effluent discharge to the receiving water bodies, process chemicals and additives, energy consumption, etc. In the literature, the accounting of water footprint during the whole production chain of cellulosic paper is already available, and relevant research findings can provide useful insights into the application of the concept; however, further development of the accounting methodologies is much needed, so that the quantitative and qualitative evaluation of water footprint can be internationally recognized, certified, and standardized. Although there are ongoing or upcoming debates and challenges associated with the concept, its application to papermaking industry may be expected to provide various encouraging possibilities and impacts.

  4. Advanced Industrial Materials (AIM) Program: Compilation of project summaries and significant accomplishments, FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This report contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Subject areas covered are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

  5. LEAN AND SIX SIGMA CONCEPTS APPLICATION IN PHARMACEUTICAL INDUSTRY

    Directory of Open Access Journals (Sweden)

    Katarina Pavlović

    2012-03-01

    Full Text Available LEAN thinking and Six Sigma have been utilized by manufacturing industries to decrease cost and improve quality and productivity by reducing variation and production defects [1]. Because of the dramatic successes in manufacturing, there is rising interest among companies in the pharmaceutical industry, which chooses to implement LEAN in order to accomplish such goals as decreased wait time to release product to the market, reduce production waste, and improve communication with end users and raize quality level both in the production and in testing laboratories. In this article, basics of LEAN and Six Sigma are presented and suggestion was given for application of their concepts in pharmaceutical industry together with harmonization with legal regulation represented by requirements Good Manufacturing Practice (cGMP, in order to work "smarter", more cost-effectively and avoid was ting time and other resources.

  6. LEAN AND SIX SIGMA CONCEPTS - APPLICATION IN PHARMACEUTICAL INDUSTRY

    Directory of Open Access Journals (Sweden)

    Katarina Pavlović

    2011-06-01

    Full Text Available LEAN thinking and Six Sigma have been utilized by manufacturing industries to decrease cost and improve quality and productivity by reducing variation and production defects. Because of the dramatic successes in manufacturing, there is rising interest among companies in the pharmaceutical industry, which choose to implement LEAN in order to accomplish such goals as decreased wait time to release product to the market, reduce production waste, improve communication with end users and raise quality level both in the production and in testing laboratories. In this article, basics of LEAN and Six Sigma are presented and suggestion was given for application of their concepts in pharmaceutical industry together with harmonization with legal regulation represented by requirements Good Manufacturing Practice (cGMP, in order to work "smarter", more cost- effectively and avoid wasting time and other resources.

  7. PNC`s proposal on the Advanced Fuel Recycle concept

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, Masayoshi; Shinoda, Yoshihiko; Ojima, Hisao [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works

    1998-03-01

    MOX fuel for FBR is allowed to contain impurities within several thousand ppm, which means less than 1000 of decontamination factor (DF) in reprocessing is enough for Pu and U recycle use. The Advanced Fuel Recycle proposed by PNC is on this basis. The concept consists of innovations on both MOX fuel fabrication and aqueous reprocessing technologies based on the Purex process and it is believed that successful optimization of fuel cycle interface condition is the key issue to realize the concept. The lower DF such as 1000 can be easily obtained by the simplified Purex flowsheet which has no purification steps. However, new subject arises in MOX fuel fabrication, that is, fabrication is conducted in the shielding cell using equipment which is maintained remotely. A simplified fabrication technology becomes essential to establish the remote maintenance system and is one of the critical path for achieving the Advanced Fuel Recycle. The PNC`s proposal on the advanced fuel recycle concept consists of modified PUREX process having single extraction cycle and crystallization, Remote fuel fabrication such as gelation and vibro-packing. In the Advanced Fuel Recycle concept, as it is low DF cycle system, all processes should be installed in remote maintenance cells. Then both reprocessing and fabrication facility would be able to be integrated into a same building. Integrated fuel cycle plant has several merits. No transportation of nuclear material between reprocessing and fabrication enhances non-proriferation aspect in addition to the low-DF concept. Cost performance is also improved because of optimization and rationalization of auxiliary equipment, and so on. (author)

  8. Validation Database Based Thermal Analysis of an Advanced RPS Concept

    Science.gov (United States)

    Balint, Tibor S.; Emis, Nickolas D.

    2006-01-01

    Advanced RPS concepts can be conceived, designed and assessed using high-end computational analysis tools. These predictions may provide an initial insight into the potential performance of these models, but verification and validation are necessary and required steps to gain confidence in the numerical analysis results. This paper discusses the findings from a numerical validation exercise for a small advanced RPS concept, based on a thermal analysis methodology developed at JPL and on a validation database obtained from experiments performed at Oregon State University. Both the numerical and experimental configurations utilized a single GPHS module enabled design, resembling a Mod-RTG concept. The analysis focused on operating and environmental conditions during the storage phase only. This validation exercise helped to refine key thermal analysis and modeling parameters, such as heat transfer coefficients, and conductivity and radiation heat transfer values. Improved understanding of the Mod-RTG concept through validation of the thermal model allows for future improvements to this power system concept.

  9. "Little Helper" - An Autonomous Industrial Mobile Manipulator Concept

    Directory of Open Access Journals (Sweden)

    Mads Hvilshoj

    2011-06-01

    Full Text Available This paper presents the concept "autonomous industrial mobile manipulation" (AIMM based on the mobile manipulator "Little Helper" - an ongoing research project at Aalborg University, Denmark, concerning the development of an autonomous and flexible manufacturing assistant. The paper focuses on the contextual aspects and the working principles of AIMM. Furthermore, the paper deals with the design principles and overall hardware and software architectures of "Little Helper" from a functional and modular mechatronics point of view, in order to create a generic AIMM platform. The design challenges faced in the project is to integrate commercial off‐the‐shelf (COTS and dedicated highly integrated systems into an autonomous mobile manipulator system with the ability to perform diverse tasks in industrial environments. We propose an action based domain specific communication language for AIMM for routine and task definition, in order to lower the entry barriers for the users of the technology. To demonstrate the "Little Helper" concept a full‐scale prototype has been built and different application examples carried out. Experiences and knowledge gained from this show promising results regarding industrial integration, exploitation and maturation of the AIMM technology.

  10. Development of environmentally advanced hydropower turbine system design concepts

    International Nuclear Information System (INIS)

    A team worked together on the development of environmentally advanced hydro turbine design concepts to reduce hydropower''s impact on the environment, and to improve the understanding of the technical and environmental issues involved, in particular, with fish survival as a result of their passage through hydro power sites. This approach brought together a turbine design and manufacturing company, biologists, a utility, a consulting engineering firm and a university research facility, in order to benefit from the synergy of diverse disciplines. Through a combination of advanced technology and engineering analyses, innovative design concepts adaptable to both new and existing hydro facilities were developed and are presented. The project was divided into 4 tasks. Task 1 investigated a broad range of environmental issues and how the issues differed throughout the country. Task 2 addressed fish physiology and turbine physics. Task 3 investigated individual design elements needed for the refinement of the three concept families defined in Task 1. Advanced numerical tools for flow simulation in turbines are used to quantify characteristics of flow and pressure fields within turbine water passageways. The issues associated with dissolved oxygen enhancement using turbine aeration are presented. The state of the art and recent advancements of this technology are reviewed. Key elements for applying turbine aeration to improve aquatic habitat are discussed and a review of the procedures for testing of aerating turbines is presented. In Task 4, the results of the Tasks were assembled into three families of design concepts to address the most significant issues defined in Task 1. The results of the work conclude that significant improvements in fish passage survival are achievable

  11. Development of environmentally advanced hydropower turbine system design concepts

    Energy Technology Data Exchange (ETDEWEB)

    Franke, G.F.; Webb, D.R.; Fisher, R.K. Jr. [Voith Hydro, Inc. (United States)] [and others

    1997-08-01

    A team worked together on the development of environmentally advanced hydro turbine design concepts to reduce hydropower`s impact on the environment, and to improve the understanding of the technical and environmental issues involved, in particular, with fish survival as a result of their passage through hydro power sites. This approach brought together a turbine design and manufacturing company, biologists, a utility, a consulting engineering firm and a university research facility, in order to benefit from the synergy of diverse disciplines. Through a combination of advanced technology and engineering analyses, innovative design concepts adaptable to both new and existing hydro facilities were developed and are presented. The project was divided into 4 tasks. Task 1 investigated a broad range of environmental issues and how the issues differed throughout the country. Task 2 addressed fish physiology and turbine physics. Task 3 investigated individual design elements needed for the refinement of the three concept families defined in Task 1. Advanced numerical tools for flow simulation in turbines are used to quantify characteristics of flow and pressure fields within turbine water passageways. The issues associated with dissolved oxygen enhancement using turbine aeration are presented. The state of the art and recent advancements of this technology are reviewed. Key elements for applying turbine aeration to improve aquatic habitat are discussed and a review of the procedures for testing of aerating turbines is presented. In Task 4, the results of the Tasks were assembled into three families of design concepts to address the most significant issues defined in Task 1. The results of the work conclude that significant improvements in fish passage survival are achievable.

  12. Advanced Monobore Concept, Development of CFEX Self-Expanding Tubular Technology

    Energy Technology Data Exchange (ETDEWEB)

    Jeff Spray

    2007-09-30

    The Advanced Monobore Concept--CFEX{copyright} Self-Expanding Tubular Technology Development was a successfully executed fundamental research through field demonstration project. This final report is presented as a progression, according to basic technology development steps. For this project, the research and development steps used were: concept development, engineering analysis, manufacturing, testing, demonstration, and technology transfer. The CFEX{copyright} Technology Development--Advanced Monobore Concept Project successfully completed all of the steps for technology development, covering fundamental research, conceptual development, engineering design, advanced-level prototype construction, mechanical testing, and downhole demonstration. Within an approximately two year period, a partially defined, broad concept was evolved into a substantial new technological area for drilling and production engineering applicable a variety of extractive industries--which was also successfully demonstrated in a test well. The demonstration achievement included an actual mono-diameter placement of two self-expanding tubulars. The fundamental result is that an economical and technically proficient means of casing any size of drilling or production well or borehole is indicated as feasible based on the results of the project. Highlighted major accomplishments during the project's Concept, Engineering, Manufacturing, Demonstration, and Technology Transfer phases, are given.

  13. ADVANCED OXIDATION PROCESSES FOR FOOD INDUSTRIAL WASTEWATER DECONTAMINATION

    OpenAIRE

    Dorota Krzemińska; Ewa Neczaj; Gabriel Borowski

    2015-01-01

    High organic matter content is a basic problem in food industry wastewaters. Typically, the amount and composition of the effluent varies considerably. In the article four groups of advanced processes and their combination of food industry wastewater treatment have been reviewed: electrochemical oxidation (EC), Fenton’s process, ozonation of water and photocatalytic processes. All advanced oxidation processes (AOP`s) are characterized by a common chemical feature: the capability of exploiting...

  14. Structural Configuration Systems Analysis for Advanced Aircraft Fuselage Concepts

    Science.gov (United States)

    Mukhopadhyay, Vivek; Welstead, Jason R.; Quinlan, Jesse R.; Guynn, Mark D.

    2016-01-01

    Structural configuration analysis of an advanced aircraft fuselage concept is investigated. This concept is characterized by a double-bubble section fuselage with rear mounted engines. Based on lessons learned from structural systems analysis of unconventional aircraft, high-fidelity finite-element models (FEM) are developed for evaluating structural performance of three double-bubble section configurations. Structural sizing and stress analysis are applied for design improvement and weight reduction. Among the three double-bubble configurations, the double-D cross-section fuselage design was found to have a relatively lower structural weight. The structural FEM weights of these three double-bubble fuselage section concepts are also compared with several cylindrical fuselage models. Since these fuselage concepts are different in size, shape and material, the fuselage structural FEM weights are normalized by the corresponding passenger floor area for a relative comparison. This structural systems analysis indicates that an advanced composite double-D section fuselage may have a relative structural weight ratio advantage over a conventional aluminum fuselage. Ten commercial and conceptual aircraft fuselage structural weight estimates, which are empirically derived from the corresponding maximum takeoff gross weight, are also presented and compared with the FEM- based estimates for possible correlation. A conceptual full vehicle FEM model with a double-D fuselage is also developed for preliminary structural analysis and weight estimation.

  15. The concept and implementation mechanism of industrial enterprises restructuring

    Directory of Open Access Journals (Sweden)

    Elena V. Romanovskaya

    2014-01-01

    Full Text Available Objective to define the term quotrestructuringquot to analyze the effects of economic restructuring mechanism. Methods situational and economicstatistical analysis methods were applied. Results the author considers the concept of quotrestructuringquot basing on the analysis of definitions proposed by other researchers. It is proved that the choice of the structural change method should be justified from the point of view of the properties of organizational structures criteria objectives strategies of the enterprise development. Basing on a survey of managers and employees of industrial enterprises the author systematizes problems hindering structural changes. Scientific novelty definitions of different scientists in the studied sphere of activity are analyzed and systematized the notion of quotrestructuringquot is detailed on that bases. Practical value is manifested in the opportunity for the industrial enterprises to choose the most optimal approach to restructuring on the basis of the analysis of existing approaches to the restructuring mechanism implementation.

  16. Advanced Technical Drafting (Industrial Arts) Curriculum Guide. Bulletin 1751.

    Science.gov (United States)

    Louisiana State Dept. of Education, Baton Rouge. Div. of Vocational Education.

    This curriculum guide contains materials for a 17-unit course in advanced technical drafting, a followup to the basic technical drafting course in the industrial arts curriculum for grades 10-12. It is intended for use by industrial arts teachers, supervisors, counselors, administrators, and teacher educators. A three-page course overview provides…

  17. THE PHILOSOPHY - TOOL CONTINUUM: PROVIDING STRUCTURE TO INDUSTRIAL ENGINEERING CONCEPTS

    Directory of Open Access Journals (Sweden)

    L. Van Dyk

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Industrial Engineering concepts are often referred to as either a tool, technique, method, approach or philosophy. These terminologies can be positioned on a continuum according to their meaning as defined by the Oxford English dictionary (tools B techniques Bmethods B approaches B philosophies. The philosophy of Total Quality Management is used as example to show how the appropriate naming of Industrial Engineering concepts can enhance the understanding and application thereof. This continuum is used to show that although the philosophies of TQM and Scientific Management may differ, the same pool of tools and techniques are used by both of these philosophies.

    AFRIKAANSE OPSOMMING: Bedryfsingenieurs verwys dikwels na filosofiee, benaderings, metodes, tegnieke en gereedskap. Hierdie terminologiee kan kan op 'n kontinuum geposisioneer word na aanleiding van hulle woordeboekbetekenis (gereedskap f-t tegniek f-t metode f-t benadering f-t filosofie. Die filosofie .van Totale Kwaliteitsbeheer (TQM word as voorbeeld gebruik om te wys dat die gepaste benaming van Bedryfsingenieurskonsepte die begrip en toepassing daarvan verhoog . Hierdie kontinuum word gebruik om te wys dat, alhoewel die filosofie van TQM en Wetenskaplike Bestuur ("Scientific Management" verskil, dieselfde versameling vail gereedskap en tegnieke deur beide gebruik word.

  18. Composite Structure Modeling and Analysis of Advanced Aircraft Fuselage Concepts

    Science.gov (United States)

    Mukhopadhyay, Vivek; Sorokach, Michael R.

    2015-01-01

    NASA Environmentally Responsible Aviation (ERA) project and the Boeing Company are collabrating to advance the unitized damage arresting composite airframe technology with application to the Hybrid-Wing-Body (HWB) aircraft. The testing of a HWB fuselage section with Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) construction is presently being conducted at NASA Langley. Based on lessons learned from previous HWB structural design studies, improved finite-element models (FEM) of the HWB multi-bay and bulkhead assembly are developed to evaluate the performance of the PRSEUS construction. In order to assess the comparative weight reduction benefits of the PRSEUS technology, conventional cylindrical skin-stringer-frame models of a cylindrical and a double-bubble section fuselage concepts are developed. Stress analysis with design cabin-pressure load and scenario based case studies are conducted for design improvement in each case. Alternate analysis with stitched composite hat-stringers and C-frames are also presented, in addition to the foam-core sandwich frame and pultruded rod-stringer construction. The FEM structural stress, strain and weights are computed and compared for relative weight/strength benefit assessment. The structural analysis and specific weight comparison of these stitched composite advanced aircraft fuselage concepts demonstrated that the pressurized HWB fuselage section assembly can be structurally as efficient as the conventional cylindrical fuselage section with composite stringer-frame and PRSEUS construction, and significantly better than the conventional aluminum construction and the double-bubble section concept.

  19. Modeling Innovations Advance Wind Energy Industry

    Science.gov (United States)

    2009-01-01

    In 1981, Glenn Research Center scientist Dr. Larry Viterna developed a model that predicted certain elements of wind turbine performance with far greater accuracy than previous methods. The model was met with derision from others in the wind energy industry, but years later, Viterna discovered it had become the most widely used method of its kind, enabling significant wind energy technologies-like the fixed pitch turbines produced by manufacturers like Aerostar Inc. of Westport, Massachusetts-that are providing sustainable, climate friendly energy sources today.

  20. Advanced programming languages for industrial robots

    International Nuclear Information System (INIS)

    With this report, the sponsor of the project on automation in manufacture introduces to the public several new programming procedures for industrial robots which are still under construction. In addition to the programming systems SRL - which, as already previously reported, represent an further development of the AL and ROBEX systems - two additional programming procedures are being described. These are adjusted to perform interactive work at the production site. As introduction to this report, a survey is offered on the status and development of robot programming in the Federal Republic of Germany and in other countries. (orig.)

  1. Terahertz Tools Advance Imaging for Security, Industry

    Science.gov (United States)

    2010-01-01

    Picometrix, a wholly owned subsidiary of Advanced Photonix Inc. (API), of Ann Arbor, Michigan, invented the world s first commercial terahertz system. The company improved the portability and capabilities of their systems through Small Business Innovation Research (SBIR) agreements with Langley Research Center to provide terahertz imaging capabilities for inspecting the space shuttle external tanks and orbiters. Now API s systems make use of the unique imaging capacity of terahertz radiation on manufacturing floors, for thickness measurements of coatings, pharmaceutical tablet production, and even art conservation.

  2. Proof-of-concept and advancement of the CellFlux concept

    Science.gov (United States)

    Odenthal, Christian; Steinmann, Wolf-Dieter

    2016-05-01

    The CellFlux storage system is a new concept for reducing the costs of medium to high temperature thermal energy storage. Initially designed for solar thermal power plants, the concept is suitable for industrial processes and power to heat applications as well. This paper gives first results of a new pilot scale plant set up at DLR in Stuttgart as a proof of concept. Experimental results are used for the validation of a simplified model. The model is apllied to calculate pareto optimal storage configurations in terms of necessary storage mass and exergetic efficiency, suitable for two types of solar thermal power plants. Particularly for applications having larger temperature differences, high exergetic efficiencies at low costs for the storage material can be achieved.

  3. New Developments in the Simulation of Advanced Accelerator Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Paul, K.; Cary, J.R.; Cowan, B.; Bruhwiler, D.L.; Geddes, C.G.R.; Mullowney, P.J.; Messmer, P.; Esarey, E.; Cormier-Michel, E.; Leemans, W.P.; Vay, J.-L.

    2008-09-10

    Improved computational methods are essential to the diverse and rapidly developing field of advanced accelerator concepts. We present an overview of some computational algorithms for laser-plasma concepts and high-brightness photocathode electron sources. In particular, we discuss algorithms for reduced laser-plasma models that can be orders of magnitude faster than their higher-fidelity counterparts, as well as important on-going efforts to include relevant additional physics that has been previously neglected. As an example of the former, we present 2D laser wakefield accelerator simulations in an optimal Lorentz frame, demonstrating>10 GeV energy gain of externally injected electrons over a 2 m interaction length, showing good agreement with predictions from scaled simulations and theory, with a speedup factor of ~;;2,000 as compared to standard particle-in-cell.

  4. Ceramics technology for advanced industrial gas turbines

    International Nuclear Information System (INIS)

    Recent developments in the fabrication of high strength ceramic materials and in their application to automotive and aerospace gas turbine engines may lead also to significant improvements in the performance of industrial gas turbines. This paper presents a brief review of the improvements projected in a study initiated by the U.S. Department of Energy. The future costs of power generated by small gas turbines (up to 25 MW) are predicted, as well as the potential for fuel savings. Gas turbines in this size range are used extensively for gas compression and for cogeneration, as well as in a variety of more diverse applications. This paper includes results of analyses of the ways in which changes in gas turbine cost and performance are likely to affect market penetration. These results lead to predictions of future savings in U.S. fuel consumption in the industrial sector that would result. The paper also presents a brief overview of the scope of a suggested R and D program, with an appropriate schedule, which would provide a technical basis for achieving the projected results. Important parts of this program would cover ceramic design and fabrication technology, engine development and demonstration, and combustion technology

  5. Advanced technologies in the meat industry.

    Science.gov (United States)

    Longdell, G R

    1994-01-01

    New Zealand has invested heavily in the development of slaughter dressing and deboning equipment and machinery for sheep and lamb. In total some thirteen machines have been developed to date and all are now commercially available and many examples are working within New Zealand and overseas. Significant economic savings have been derived from the introduction of these machines. The Australian meat industry is funding a major programme in beef slaughter technology development. Eleven modules have been developed and at present they are being incorporated into a commercial plant at Kilcoy in Queensland, Australia. The Netherlands have a programme named Slaughterline 2000 which includes a number of pork slaughtering and processing initiations. Stunning, sticking and an automatic carcass opener are developments within this programme.

  6. Advanced Engineering Platform for Industrial Development

    Directory of Open Access Journals (Sweden)

    M. A. González-Palacios

    2012-06-01

    Full Text Available This paper introduces a full description of a software development platform involving libraries that allow the creationof software packages focused not only on industrial applications, but also on applications where design, modelingand/or on-line simulation are required. The flexibility of the main classes simplifies the generation of modules thatconstitute an application developed with this platform. Furthermore, any custom application starting from scratchcontains by default a set of functions that facilitates the developer firstly to build the graphical environment withcapabilities to interact with the pointing device, and secondly, to accomplish machinery control tasks whilecommunicating with input/output components; such is the case of digital-analog cards or modules connectedremotely. Besides, any fully developed application can be considered as a platform to generate another with a higherlevel of specialization. Several applications built with this platform are reported here as case studies.

  7. Cogeneration power plant concepts using advanced gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Huettenhofer, K.; Lezuo, A. [Siemens Power Generation, Erlangen (Germany)

    2001-07-01

    Cogeneration of heat and power (CHP) is undeniably the environmentally most favourable way of making efficient use of energy in the power generation industry. Cogeneration is also particularly appreciated by political decision makers because of its high yield from primary energy sources, and thus its contribution to the protection of the environment and the conservation of resources. Advanced gas turbines, along with an intelligent power plant design consisting of pre-engineered, modular power plant items, will help cogeneration to play an important role in future energy markets also from an economic point of view. (orig.)

  8. Advanced Industrial Materials (AIM) Program annual progress report, FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    The Advanced Industrial Materials (AIM) Program is a part of the Office of Industrial Technologies (OIT), Energy Efficiency and Renewable Energy, US Department of Energy (DOE). The mission of AIM is to support development and commercialization of new or improved materials to improve energy efficiency, productivity, product quality, and reduced waste in the major process industries. OIT has embarked on a fundamentally new way of working with industries--the Industries of the Future (IOF) strategy--concentrating on the major process industries that consume about 90% of the energy and generate about 90% of the waste in the industrial sector. These are the aluminum, chemical, forest products, glass, metalcasting, and steel industries. OIT has encouraged and assisted these industries in developing visions of what they will be like 20 or 30 years into the future, defining the drivers, technology needs, and barriers to realization of their visions. These visions provide a framework for development of technology roadmaps and implementation plans, some of which have been completed. The AIM Program supports IOF by conducting research and development on materials to solve problems identified in the roadmaps. This is done by National Laboratory/industry/university teams with the facilities and expertise needed to develop new and improved materials. Each project in the AIM Program has active industrial participation and support.

  9. Advancing the Economies through SPA Industry

    Directory of Open Access Journals (Sweden)

    Vandana DESWAL

    2015-12-01

    Full Text Available This paper is an attempt to present a clear picture of how important is spa industry in promoting tourism and the ways in which it can be made instrumental in drawing tourists from various places to a destination. People have been visiting places famous for their spas since ancient times. People would visit places famous for their healing waters and stay there for days. Romans and Greeks were known for their luxurious baths devoted to relaxation and rejuvenation. Recently, spas are witnessing a revival of interest in them and they are becoming a force to reckon with in the hospitality sector. This research is an attempt to understand the role spas are playing in stimulating tourism of the place. A survey of 200 people was conducted and the responses were taken on a Likert like scale for the purpose of percentage analysis. It was found that Spas and Tourism of a destination have very symbiotic relationship and if harnessed well, spas can substantially add to the tourism of the place.

  10. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    International Nuclear Information System (INIS)

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  11. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    Science.gov (United States)

    Shafie Sani, Mohd; Aziz, Faieza Abdul

    2013-06-01

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  12. ADVANCED OXIDATION PROCESSES FOR FOOD INDUSTRIAL WASTEWATER DECONTAMINATION

    Directory of Open Access Journals (Sweden)

    Dorota Krzemińska

    2015-02-01

    Full Text Available High organic matter content is a basic problem in food industry wastewaters. Typically, the amount and composition of the effluent varies considerably. In the article four groups of advanced processes and their combination of food industry wastewater treatment have been reviewed: electrochemical oxidation (EC, Fenton’s process, ozonation of water and photocatalytic processes. All advanced oxidation processes (AOP`s are characterized by a common chemical feature: the capability of exploiting high reactivity of HO• radicals in driving oxidation processes which are suitable for achieving decolonization and odour reduction, and the complete mineralization or increase of bioavailability of recalcitrant organic pollutants.

  13. Engineering industrial yeast for renewable advanced biofuels applications

    Science.gov (United States)

    The industrial yeast Saccharomyces cerevisiae is a candidate for the next-generation biocatalyst development due to its unique genomic background and robust performance in fermentation-based production. In order to meet challenges of renewable and sustainable advanced biofuels conversion including ...

  14. Advanced Woodworking (Industrial Arts) Curriculum Guide. Bulletin 1752.

    Science.gov (United States)

    Louisiana State Dept. of Education, Baton Rouge. Div. of Vocational Education.

    This curriculum guide contains materials for a 12-unit course in advanced woodworking for grades 11-12. It is intended for use by industrial arts teachers, supervisors, counselors, administrators, and teacher educators. A two-page course overview provides a brief course description; indicates target grade level, prerequisites, course goals, and…

  15. The Rural Advanced Industrial Society: Social and Economic Change.

    Science.gov (United States)

    Bradshaw, Ted K.

    The decline of rural areas caused by agricultural mechanization may now have run its course with the rise of post- or advanced-industrialism which is offering a new set of opportunities and problems for the development of many rural areas. Instead of the pastoral subsistence farm of the past, rural America is becoming primarily non-agricultural…

  16. Advanced Gas Storage Concepts: Technologies for the Future

    Energy Technology Data Exchange (ETDEWEB)

    Freeway, Katy (PB-KBB Inc.); Rogers, R.E. (Mississippi State University); DeVries, Kerry L.; Nieland, Joel D.; Ratigan, Joe L.; Mellegard, Kirby D. (RESPEC)

    2000-02-01

    This full text product includes: 1) A final technical report titled Advanced Underground Gas Storage Concepts, Refrigerated-Mined Cavern Storage and presentations from two technology transfer workshops held in 1998 in Houston, Texas, and Pittsburgh, Pennsylvania (both on the topic of Chilled Gas Storage in Mined Caverns); 2) A final technical report titled Natural Gas Hydrates Storage Project, Final Report 1 October 1997 - 31 May 1999; 3) A final technical report titled Natural Gas Hydrates Storage Project Phase II: Conceptual Design and Economic Study, Final Report 9 June - 10 October 1999; 4) A final technical report titled Commerical Potential of Natural Gas Storage in Lined Rock Caverns (LRC) and presentations from a DOE-sponsored workshop on Alternative Gas Storage Technologies, held Feb 17, 2000 in Pittsburgh, PA; and 5) Phase I and Phase II topical reports titled Feasibility Study for Lowering the Minimum Gas Pressure in Solution-Mined Caverns Based on Geomechanical Analyses of Creep-Induced Damage and Healing.

  17. Advanced steel body concepts for automotive lightweight design

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, H.G. [DaimlerChrysler AG, Stuttgart (Germany). Research Body and Powertrain

    2005-07-01

    Lightweight design is a must for future vehicle concepts due to the self-commitment on the reduction of fleet consumption. Body concepts for mid- and high-volume vehicles demand smart lightweight solutions without increasing costs and without sacrificing the high level of safety (e.g. future passive safety standards). Furthermore, all lightweight activities have to comply with requirements in terms of reliability (no additional efforts for maintenance), NVH (no additional weight for e.g. damping) and future stricter recycling quotas. Successful lightweight design solutions are determined by the best relation between weight-saving and additional costs as a function of the annual production volume. Using advanced high-strength steels (TWIP-steels) seems to be a very promising approach for cost-optimized lightweight design of body structures. In addition, by applying bionic optimization, the weight of body-structures can be significantly reduced. As a consequence, only a holistic approach for lightweight design combining the three areas materials, design and manufacturing is needed in order to use the full potential of cost-optimized weight-reduction. (orig.)

  18. A solar powered wireless computer mouse. Industrial design concepts

    Energy Technology Data Exchange (ETDEWEB)

    Reich, N.H.; Van Sark, W.G.J.H.M.; Alsema, E.A.; Turkenburg, W.C. [Department of Science, Technology and Society, Copernicus Institute, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht (Netherlands); Veefkind, M.; Silvester, S. [Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, 2628 CE Delft (Netherlands)

    2009-02-15

    A solar powered wireless computer mouse (SPM) was chosen to serve as a case study for the evaluation and optimization of industrial design processes of photovoltaic (PV) powered consumer systems. As the design process requires expert knowledge in various technical fields, we assessed and compared the following: appropriate selection of integrated PV type, battery capacity and type, possible electronic circuitries for PV-battery coupling, and material properties concerning mechanical incorporation of PV into the encasing. Besides technical requirements, ergonomic aspects and design aesthetics with respect to good 'sun-harvesting' properties influenced the design process. This is particularly important as simulations show users can positively influence energy balances by 'sun-bathing' the PV mouse. A total of 15 SPM prototypes were manufactured and tested by actual users. Although user satisfaction proved the SPM concept to be feasible, future research still needs to address user acceptance related to product dimensions and user willingness to pro-actively 'sun-bath' PV powered products in greater detail. (author)

  19. Implementation of the Environmental Management Concept in the Hospitality Industry

    Directory of Open Access Journals (Sweden)

    Manuela Dora Orboi

    2015-10-01

    Full Text Available Globally, the concern for the environment is continually growing, among travel and tourism industry operators. Each unit hotel has its identity, its characteristics, and therefore, it is necessary to use and apply specific information about the environment, so as to create their own proactive environment protection policies. It must be performed an overview of environmental issues affecting the company and the performance that it has. Each unit hotel policy must be based on actual consumer demand for tourist services - as an active and conscious part - along with unit staff. Environmental action planning of a hotel unit has to go through several stages. The preparation of environmental actions of a hotel unit, involves biological control, which should help in making decisions on the most important measures that would benefit. Implementing the concept of environmental management in the hospitality unit requires including and taking the following steps: motivation, actions planning, analyze their performance and progress. They form an annual cycle of environmental management, which will go each year, to identify both the difficulties that have arisen and achievements and recommendations for the future.

  20. Advanced concepts in ground thermal energy storage systems

    Science.gov (United States)

    Woods, Kevin David

    In recent years, ground thermal energy storage has become a topic of interest in the energy community for solar thermal energy storage systems, ground sourced heat pump systems, and data center thermal management systems due to an increase in the energy efficiency of such systems utilizing the ground as a thermal reservoir. The most common method for transferring thermal energy to the ground formation is the geothermal borehole. This dissertation presents the state of the art in geothermal borehole modeling and derives novel analytical functions to model advanced concepts concerning their operation. The novel solutions derived allow a geothermal borehole designer to better understand and design ground energy storage systems. The state of the art in geothermal borehole modeling is the stationary line source solution which is limited to boreholes operating without groundwater flow. Novel solutions for modeling a geothermal borehole with groundwater advection are presented through derivation of a transient moving line source solution as well as a transient moving cylindrical surface source solution. These solutions are applied to model a specific type of open loop geothermal borehole called a standing column well with groundwater advection and are compared to empirical and numerical data for validation. The dissertation then moves into derivation of a property determination method for geothermal boreholes with groundwater advection. The traditional property determination method used to obtain ground formation properties is based on the stationary transient line source method and fails in the presence of groundwater flow. The proposed novel property determination method calculates the thermal conductivity, thermal diffusivity, and superficial flow velocity of groundwater within a ground formation. These methods and solutions are novel tools allowing for geothermal borehole designers to grasp a better understanding of the systems they are designing as well as open other

  1. A CONCEPT FOR NEXT STEP ADVANCED TOKAMAK FUSION DEVICE

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A concept is introduced for initiating the design study of a special class of tokamak,which has a magnetic confinement configuration intermediate between contemporary advanced tokamak and the recently established spherical torus (ST,also well known by the name "spherical tokamak").The leading design parameter in the present proposal is a dimensionless geometrical parameter, the machine aspect ratio A=R0/a0=2.0,where the parameters a0 and R0 denote,respectively,the plasma (equatorial) minor radius and the plasma major radius.The aim of this choice is to technologically and experimentally go beyond the aspect ratio frontier (R0/a0≈2.5) of present day tokamaks and enter a broad unexplored domain existing on the (a0,R0) parameter space in current international tokamak database,between the data region already moderately well covered by the advanced conventional tokamaks and the data region planned to be covered by STs.Plasma minor radius a0 has been chosen to be the second basic design parameter, and consequently,the plasma major radius R0 is regarded as a dependent design parameter.In the present concept,a nominal plasma minor radius a0=1.2m is adopted to be the principal design value,and smaller values of a0 can be used for auxiliary design purposes,to establish extensive database linkage with existing tokamaks.Plasma minor radius can also be adjusted by mechanical and/or electromagnetic means to smaller values during experiments,for making suitable data linkages to existing machines with higher aspect ratios and smaller plasma minor radii.The basic design parameters proposed enable the adaptation of several confinement techniques recently developed by STs,and thereby a specially arranged central-bore region inside the envisioned tokamak torus,with retrieved space in the direction of plasma minor radius,will be available for technological adjustments and maneuverings to facilitate implementation of engineering instrumentation and real time high

  2. Advanced storage concepts for solar and low energy buildings, IEA-SHC Task 32. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, J.M.; Andersen, Elsa; Furbo, S.

    2008-01-15

    This report reports on the results of the activities carried through in connection with the Danish part of the IEA SHC Task 32 project: Advanced Storage Concepts for Solar and Low Energy Buildings. The Danish involvement has focused on Subtask C: Storage Concepts Based on Phase Change Materials and Subtask D: Storage Concepts Based on Advanced Water Tanks and Special Devices. The report describes activities concerning heat-of-fusion storage and advanced water storage. (BA)

  3. Human factors aspects of advanced instrumentation in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Carter, R.J.

    1989-01-01

    An important consideration in regards to the use of advanced instrumentation in the nuclear industry is the interface between the instrumentation system and the human. A survey, oriented towards identifying the human factors aspects of digital instrumentation, was conducted at a number of United States (US) and Canadian nuclear vendors and utilities. Human factors issues, subsumed under the categories of computer-generated displays, controls, organizational support, training, and related topics were identified. 20 refs., 2 tabs.

  4. Human factors aspects of advanced instrumentation in the nuclear industry

    International Nuclear Information System (INIS)

    An important consideration in regards to the use of advanced instrumentation in the nuclear industry is the interface between the instrumentation system and the human. A survey, oriented towards identifying the human factors aspects of digital instrumentation, was conducted at a number of United States (US) and Canadian nuclear vendors and utilities. Human factors issues, subsumed under the categories of computer-generated displays, controls, organizational support, training, and related topics were identified. 20 refs., 2 tabs

  5. Advanced transportation system studies. Alternate propulsion subsystem concepts: Propulsion database

    Science.gov (United States)

    Levack, Daniel

    1993-01-01

    The Advanced Transportation System Studies alternate propulsion subsystem concepts propulsion database interim report is presented. The objective of the database development task is to produce a propulsion database which is easy to use and modify while also being comprehensive in the level of detail available. The database is to be available on the Macintosh computer system. The task is to extend across all three years of the contract. Consequently, a significant fraction of the effort in this first year of the task was devoted to the development of the database structure to ensure a robust base for the following years' efforts. Nonetheless, significant point design propulsion system descriptions and parametric models were also produced. Each of the two propulsion databases, parametric propulsion database and propulsion system database, are described. The descriptions include a user's guide to each code, write-ups for models used, and sample output. The parametric database has models for LOX/H2 and LOX/RP liquid engines, solid rocket boosters using three different propellants, a hybrid rocket booster, and a NERVA derived nuclear thermal rocket engine.

  6. Investigations and advanced concepts on gyrotron interaction modeling and simulations

    Science.gov (United States)

    Avramidis, K. A.

    2015-12-01

    In gyrotron theory, the interaction between the electron beam and the high frequency electromagnetic field is commonly modeled using the slow variables approach. The slow variables are quantities that vary slowly in time in comparison to the electron cyclotron frequency. They represent the electron momentum and the high frequency field of the resonant TE modes in the gyrotron cavity. For their definition, some reference frequencies need to be introduced. These include the so-called averaging frequency, used to define the slow variable corresponding to the electron momentum, and the carrier frequencies, used to define the slow variables corresponding to the field envelopes of the modes. From the mathematical point of view, the choice of the reference frequencies is, to some extent, arbitrary. However, from the numerical point of view, there are arguments that point toward specific choices, in the sense that these choices are advantageous in terms of simulation speed and accuracy. In this paper, the typical monochromatic gyrotron operation is considered, and the numerical integration of the interaction equations is performed by the trajectory approach, since it is the fastest, and therefore it is the one that is most commonly used. The influence of the choice of the reference frequencies on the interaction simulations is studied using theoretical arguments, as well as numerical simulations. From these investigations, appropriate choices for the values of the reference frequencies are identified. In addition, novel, advanced concepts for the definitions of these frequencies are addressed, and their benefits are demonstrated numerically.

  7. Conceptual design study advanced concepts test (ACT) facility

    Energy Technology Data Exchange (ETDEWEB)

    Zaloudek, F.R.

    1978-09-01

    The Advanced Concepts Test (ACT) Project is part of program for developing improved power plant dry cooling systems in which ammonia is used as a heat transfer fluid between the power plant and the heat rejection tower. The test facility will be designed to condense 60,000 lb/hr of exhaust steam from the No. 1 turbine in the Kern Power Plant at Bakersfield, CA, transport the heat of condensation from the condenser to the cooling tower by an ammonia phase-change heat transport system, and dissipate this heat to the environs by a dry/wet deluge tower. The design and construction of the test facility will be the responsibility of the Electric Power Research Institute. The DOE, UCC/Linde, and the Pacific Northwest Laboratories will be involved in other phases of the project. The planned test facilities, its structures, mechanical and electrical equipment, control systems, codes and standards, decommissioning requirements, safety and environmental aspects, and energy impact are described. Six appendices of related information are included. (LCL)

  8. 78 FR 73915 - Community Alliance, Inc., Defi Global, Inc., Easy Energy, Inc., Industry Concept Holdings, Inc...

    Science.gov (United States)

    2013-12-09

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION Community Alliance, Inc., Defi Global, Inc., Easy Energy, Inc., Industry Concept Holdings, Inc... information concerning the securities of Industry Concept Holdings, Inc. because it has not filed any...

  9. NASA Advanced Explorations Systems: Concepts for Logistics to Living

    Science.gov (United States)

    Shull, Sarah A.; Howe, A. Scott; Flynn, Michael T.; Howard, Robert

    2012-01-01

    , Howard 2010]. Several of the L2L concepts that have shown the most potential in the past are based on NASA cargo transfer bags (CTBs) or their equivalents which are currently used to transfer cargo to and from the ISS. A high percentage of all logistics supplies are packaging mass and for a 6-month mission a crew of four might need over 100 CTBs. These CTBs are used for on-orbit transfer and storage but eventually becomes waste after use since down mass is very limited. The work being done in L2L also considering innovative interior habitat construction that integrate the CTBs into the walls of future habitats. The direct integration could provide multiple functions: launch packaging, stowage, radiation protection, water processing, life support augmentation, as well as structure. Reuse of these CTBs would reduce the amount of waste generated and also significantly reduce future up mass requirements for exploration missions. Also discussed here is the L2L water wall , an innovative reuse of an unfolded CTB as a passive water treatment system utilizing forward osmosis. The bags have been modified to have an inner membrane liner that allows them to purify wastewater. They may also provide a structural water-wall element that can be used to provide radiation protection and as a structural divider. Integration of the components into vehicle/habitat architecture and consideration of operations concepts and human factors will be discussed. In the future these bags could be designed to treat wastewater, concentrated brines, and solid wastes, and to dewater solid wastes and produce a bio-stabilized construction element. This paper will describe the follow-on work done in design, fabrication and demonstrations of various L2L concepts, including advanced CTBs for reuse/repurposing, internal outfitting studies and the CTB-based forward osmosis water wall.

  10. Assessment of Marketing Orientation Concept in Jordanian Service Industry

    OpenAIRE

    Shaker Ismail; Mustafa A.   Shaiekh; Mamdouh A.   Ziadat

    2009-01-01

    Problem statement: The objective of this study was to explore the extent to which the concept of marketing orientation was clear and adopted by Jordanian service firms, focusing on the financial sector. Approach: Based on an empirical fieldwork. Results: The study concluded that the majority of Jordanian financial service firms had a misconception of marketing orientation concept. They believed that they exercise marketing orientation concept, while their actual practice of selling orientatio...

  11. Concept design of an ultra-light industrial robot

    OpenAIRE

    Jaber, André

    2012-01-01

    The use of industrial robots are increasing in areas such as food, consumer goods, wood, plastics and electronics, but is still mostly concentrated in the automotive industry. A problem is that workstations in smaller and medium sized companies that produce small batches of products don’t get productive enough by having a permanently placed industrial robot. A solution could be a lightweight robot that is adaptable to the product need. It would have lower moving mass that will reduce the powe...

  12. Introduction of the innovative marketing concept in activity of the industrial enterprises

    OpenAIRE

    N.S. Illiashenko

    2010-01-01

    Article is devoted working out of conceptual bases of introduction of the innovative marketing concept in activity of the domestic industrial enterprises: it is defined two basic directions of enterprise activity according to innovative marketing concept, the scheme of the concept introduction in activity of the enterprises is offered, the complex of innovative marketing is offered.

  13. Advanced solidification processing of an industrial gas turbine engine component

    Science.gov (United States)

    Clemens, Mei Ling; Price, Allen; Bellows, Richard S.

    2003-03-01

    This paper will describe the efforts of the Advanced Turbine Airfoil Manufacturing Technology Program sponsored by the U.S. Department of Energy through the Oak Ridge National Laboratory and Howmet Research Corporation. The purpose of the program is to develop single-crystal and directionally solidified casting technologies to benefit Advanced Turbine Systems (ATS) industrial and utility gas turbine engines. The focus is on defining and implementing advanced Vacuum Induction Melting (VIM) furnace enhancements that provide precise control of mold temperatures during solidification. Emphasis was placed on increasing the total magnitude of thermal gradients while minimizing the difference in maximum and minimum gradients produced during the solidification process. Advanced VIM casting techniques were applied to Solar Turbines Incorporated’s Titan 130 First Stage High Pressure Turbine Blade under the ATS program. A comparison of the advanced VIM casting process to the conventional Bridgeman casting process will be presented as it pertains to the thermal gradients achieved during solidification, microstructure, elemental partitioning characterization, and solution heat treat response.

  14. High-pressure propulsion - advanced concepts for cooling

    Science.gov (United States)

    Schoerman, Leonard

    The state-of-the-art liquid propellant cooled combustion chambers utilized in the space shuttle are third-generation designs which have evolved from a continuing demand for higher operating pressure and aircraft-type reusability. History has shown that major advances in cooling occur in approximately ten-year cycles, with each cycle providing a nominal 400% increase in operating pressure and/or a higher degree of reusability. The previous technologies include the first-generation double-wall steel jackets used in the 220 psi V-2 and Aerobee, and the second generation wire-wrapped double tapered tubular assemblies typical of the 800 psi Titan I, II, and III, and 1000 psi F-1 engines. The third-generation designs utilize milled slot, high thermal conductivity liners and electrodeposited nickel closures. The space shuttle main engine operating at 3200 psia is adequate for individual flights; however, the desired goal of 55 service-free missions has yet to be realized. Future single-stage-to-orbit propulsion concepts can benefit from a further increase in operating pressures to 6000 to 10,000 psi combined with engine reuse capabilities in excess of the 55 flight goals of the space shuttle. A fourth-generation approach will be required to attain these more ambitious goals. These new designs will require a combination of cooling processes, including regenerative and transpiration, combined with improved high-temperature materials and new fabrication techniques. The limitations of the third-generation designs, the impact of propellant/coolant selection, and the approaches for the coming fourth-generation cooling technologies are discussed.

  15. Advanced Concept Exploration for Fast Ignition Science Program, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Richard Burnite [General Atomics; McLean, Harry M. [Lawrence Livermore National Laboratory; Theobald, Wolfgang [Laboratory for Laser Energetics; Akli, Kramer U. [The Ohio State University; Beg, Farhat N. [University of California, San Diego; Sentoku, Yasuhiko [University of Nevada, Reno; Schumacher, Douglass W. [The Ohio State University; Wei, Mingsheng [General Atomics

    2013-09-04

    The Fast Ignition (FI) Concept for Inertial Confinement Fusion (ICF) has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy reactors. FI differs from conventional “central hot spot” (CHS) target ignition by decoupling compression from heating: using a laser (or heavy ion beam or Z pinch) drive pulse (10’s of nanoseconds) to create a dense fuel and a second, much shorter (~10 picoseconds) high intensity pulse to ignite a small volume within the dense fuel. The physics of fast ignition process was the focus of our Advanced Concept Exploration (ACE) program. Ignition depends critically on two major issues involving Relativistic High Energy Density (RHED) physics: The laser-induced creation of fast electrons and their propagation in high-density plasmas. Our program has developed new experimental platforms, diagnostic packages, computer modeling analyses, and taken advantage of the increasing energy available at laser facilities to advance understanding of the fundamental physics underlying these issues. Our program had three thrust areas: • Understand the production and characteristics of fast electrons resulting from FI relevant laser-plasma interactions and their dependence on laser prepulse and laser pulse length. • Investigate the subsequent fast electron transport in solid and through hot (FI-relevant) plasmas. • Conduct and understand integrated core-heating experiments by comparison to simulations. Over the whole period of this project (three years for this contract), we have greatly advanced our fundamental understanding of the underlying properties in all three areas: • Comprehensive studies on fast electron source characteristics have shown that they are controlled by the laser intensity distribution and the topology and plasma density gradient. Laser pre-pulse induced pre-plasma in front of a solid surface results in increased stand-off distances from the electron origin to the high density

  16. Assessment of Marketing Orientation Concept in Jordanian Service Industry

    Directory of Open Access Journals (Sweden)

    Shaker Ismail

    2009-01-01

    Full Text Available Problem statement: The objective of this study was to explore the extent to which the concept of marketing orientation was clear and adopted by Jordanian service firms, focusing on the financial sector. Approach: Based on an empirical fieldwork. Results: The study concluded that the majority of Jordanian financial service firms had a misconception of marketing orientation concept. They believed that they exercise marketing orientation concept, while their actual practice of selling orientation. Conclusions: The study also concluded that the majority of these firms kept strategic planning at the top management level. Statistical testing showed that the length of experience in business was an important factor in the firm's clarity of the concept of marketing orientation. Several implications of the findings and recommendations were finally presented.

  17. A New Concept for Motion Control of Industrial Robots

    OpenAIRE

    Björkman, Mattias; Brogårdh, Torgny; Hanssen, Sven; Lindström, Sven-Erik; Moberg, Stig; Norrlöf, Mikael

    2008-01-01

    This paper gives a short summary of an industrial development work on model-based motion control. This development has resultet in high robot motion performance simultaneously with an efficient use of the installed drive system of the robot.

  18. On sustainable development of uranium mining industry in China based on the concept of ecological security

    International Nuclear Information System (INIS)

    Ecological security is an important issue for sustainable development of mining industry, on which the development of nuclear industry and nuclear power is based. But uranium mining and processing has larger effect on ecological environment which mainly include tailings, waste rock, waste water, and radiation effects. In this paper, the dialectical relationship between ecological security and sustainable relationship is analyzed, the ecological safety concept at home and abroad is compared and the role that ecological safety plays in the sustainable development of uranium mining based on analysis of restricting factors on uranium mining in China from the perspective of ecological security is also probed into. To achieve sustainable development of the uranium mining industry in China, an ecological security concept from four aspects must be established: 1) the concept of ecological security management; 2) the scientific concept of ecological security; 3) the concept of ecological security investment; and 4) the concept of ecological security responsibility. (authors)

  19. 2nd International Afro-European Conference for Industrial Advancement

    CERN Document Server

    Wegrzyn-Wolska, Katarzyna; Hassanien, Aboul; Snasel, Vaclav; Alimi, Adel

    2016-01-01

    This volume contains papers presented at the 2nd International Afro-European Conference for Industrial Advancement -- AECIA 2015. The conference aimed at bringing together the foremost experts and excellent young researchers from Africa, Europe and the rest of the world to disseminate the latest results from various fields of engineering, information, and communication technologies. The topics, discussed at the conference, covered a broad range of domains spanning from ICT and engineering to prediction, modeling, and analysis of complex systems. The 2015 edition of AECIA featured a distinguished special track on prediction, modeling and analysis of complex systems -- Nostradamus, and special sessions on Advances in Image Processing and Colorization and Data Processing, Protocols, and Applications in Wireless Sensor Networks.

  20. Advanced-power-reactor design concepts and performance characteristics

    Science.gov (United States)

    Davison, H. W.; Kirchgessner, T. A.; Springborn, R. H.; Yacobucci, H. G.

    1974-01-01

    Five reactor cooling concepts which allow continued reactor operation following a single rupture of the coolant system are presented for application with the APR. These concepts incorporate convective cooling, double containment, or heat pipes to ensure operation after a coolant line rupture. Based on an evaluation of several control system concepts, a molybdenum clad, beryllium oxide sliding reflector located outside the pressure vessel is recommended.

  1. 1st International Afro-European Conference for Industrial Advancement

    CERN Document Server

    Krömer, Pavel; Snasel, Vaclav

    2015-01-01

    This volume contains accepted papers presented at AECIA2014, the First International Afro-European Conference for Industrial Advancement. The aim of AECIA was to bring together the foremost experts as well as excellent young researchers from Africa, Europe, and the rest of the world to disseminate latest results from various fields of engineering, information, and communication technologies.  The first edition of AECIA was organized jointly by Addis Ababa Institute of Technology, Addis Ababa University, and VSB - Technical University of Ostrava, Czech Republic and took place in Ethiopia's capital, Addis Ababa.

  2. ADVANCED UNDERGROUND GAS STORAGE CONCEPTS REFRIGERATED-MINED CAVERN STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill-withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. Five regions of the U.S.A. were studied for underground storage development and PB-KBB reviewed the literature to determine if the geology of these regions was suitable for siting hard rock storage caverns. Area gas market conditions in these regions were also studied to determine the need for such storage. Based on an analysis of many factors, a possible site was determined to be in Howard and Montgomery Counties, Maryland. The area has compatible geology and a gas industry infrastructure for the nearby market populous of Baltimore and Washington D.C.. As Gas temperature is lowered, the compressibility of the gas reaches an optimum value. The compressibility of the gas, and the resultant gas density, is a function of temperature and pressure. This relationship can be used to commercial advantage by reducing the size of a storage cavern for a given working volume of natural gas. This study looks at this relationship and and the potential for commercialization of the process in a storage application. A conceptual process design, and cavern design were developed for various operating conditions. Potential site locations were considered

  3. NASA's Advanced Information Systems Technology (AIST) Program: Advanced Concepts and Disruptive Technologies

    Science.gov (United States)

    Little, M. M.; Moe, K.; Komar, G.

    2014-12-01

    NASA's Earth Science Technology Office (ESTO) manages a wide range of information technology projects under the Advanced Information Systems Technology (AIST) Program. The AIST Program aims to support all phases of NASA's Earth Science program with the goal of enabling new observations and information products, increasing the accessibility and use of Earth observations, and reducing the risk and cost of satellite and ground based information systems. Recent initiatives feature computational technologies to improve information extracted from data streams or model outputs and researchers' tools for Big Data analytics. Data-centric technologies enable research communities to facilitate collaboration and increase the speed with which results are produced and published. In the future NASA anticipates more small satellites (e.g., CubeSats), mobile drones and ground-based in-situ sensors will advance the state-of-the-art regarding how scientific observations are performed, given the flexibility, cost and deployment advantages of new operations technologies. This paper reviews the success of the program and the lessons learned. Infusion of these technologies is challenging and the paper discusses the obstacles and strategies to adoption by the earth science research and application efforts. It also describes alternative perspectives for the future program direction and for realizing the value in the steps to transform observations from sensors to data, to information, and to knowledge, namely: sensor measurement concepts development; data acquisition and management; data product generation; and data exploitation for science and applications.

  4. Advanced monitoring of industrial burners based on fluctuating flame signals

    Energy Technology Data Exchange (ETDEWEB)

    A. Sanz; J. Ballester; R. Hernandez; L.M. Cerecedo [University of Zaragoza, Zaragoza (Spain). Fluid Mechanics Group/LITEC

    2008-06-15

    The present work explores the potential of pressure and radiation sensors for the advanced monitoring/control of industrial flames. These instruments are rugged, non-intrusive and non-expensive and might be used in routine plant operation to obtain direct information from the flame. However, further research is needed to assess the existence of relationships among their outputs and operating conditions as well as to define suitable methods for signal processing. Those aspects have been addressed by means of a thorough experimental programme in a model industrial burner. Parametric analysis of flame signals recorded for a broad range of operating conditions revealed that they varied widely with the actual combustion state. In order to perform a systematic study, different correlation techniques were tried. Multiple regression methods provided some insight into mutual influences among different variables, although only in case of linear dependences. Artificial neural networks have been used as a more versatile type of algorithms, suitable for complex functional forms between input and output variables. Remarkably good results were obtained when NOx emissions or some burner settings were estimated from selected features of the flame signals, supporting their applicability for the development of advanced diagnostic methods in combustion processes. 40 refs., 13 figs., 3 tabs.

  5. Disruption Management in the Airline Industry - Concepts, Models and Methods

    DEFF Research Database (Denmark)

    Clausen, Jens; Larsen, Allan; Larsen, Jesper

    2005-01-01

    The airline industry is notably one of the success stories with respect to the use of optimization based methods and tools in planning. Both in planning of the assignment of available aircraft to flights and in crew scheduling, these methods play a major role. Plans are usually made several months...

  6. Advanced composites structural concepts and materials technologies for primary aircraft structures: Design/manufacturing concept assessment

    Science.gov (United States)

    Chu, Robert L.; Bayha, Tom D.; Davis, HU; Ingram, J. ED; Shukla, Jay G.

    1992-01-01

    Composite Wing and Fuselage Structural Design/Manufacturing Concepts have been developed and evaluated. Trade studies were performed to determine how well the concepts satisfy the program goals of 25 percent cost savings, 40 percent weight savings with aircraft resizing, and 50 percent part count reduction as compared to the aluminum Lockheed L-1011 baseline. The concepts developed using emerging technologies such as large scale resin transfer molding (RTM), automatic tow placed (ATP), braiding, out-of-autoclave and automated manufacturing processes for both thermoset and thermoplastic materials were evaluated for possible application in the design concepts. Trade studies were used to determine which concepts carry into the detailed design development subtask.

  7. Partnering with Industry to Advance Biofuels and Bioproducts (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2011-12-01

    Fact sheet describing NREL's Integrated Biorefinery Research Facility, a biochemical pilot plant and partnership facility containing equipment and lab space for pretreatement, enzymatic hydrolysis, fermentation, compositional analysis, and downstream processing. For more than 30 years, the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) has been at the leading edge of research and technology advancements to develop renewable fuels and bioproducts. NREL works to develop cost-competitive alternatives to conventional transportation fuels and value-added biobased chemicals that can be used to manufacture clothing, plastics, lubricants, and other products. NREL is developing technologies and processes to produce a range of sustainable, energy-dense advanced biofuels that are compatible with our existing transportation fuel infrastructure. As part of that effort, NREL's National Bioenergy Center has entered into more than 90 collaborations in the past five years with companies ranging in size from start-ups to those that appear on Fortune magazine's Fortune 100 list. The new Integrated Biorefinery Research Facility (IBRF) showcases NREL's commitment to collaboration and to meeting the nation's biofuels and bioproducts development and deployment goals. Designed to speed the growth of the biofuels and bioproducts industries, the IBRF is a unique $33.5 million pilot facility capable of supporting a variety of projects. The IBRF is available to industry partners who work with NREL through cooperative research and development, technical, and analytical service agreements. With 27,000 ft2 of high bay space, the IBRF provides industry partners with the opportunity to operate, test, and develop their own biorefining technology and equipment.

  8. Concepts and recent advances in generalized information measures and statistics

    CERN Document Server

    Kowalski, Andres M

    2013-01-01

    Since the introduction of the information measure widely known as Shannon entropy, quantifiers based on information theory and concepts such as entropic forms and statistical complexities have proven to be useful in diverse scientific research fields. This book contains introductory tutorials suitable for the general reader, together with chapters dedicated to the basic concepts of the most frequently employed information measures or quantifiers and their recent applications to different areas, including physics, biology, medicine, economics, communication and social sciences. As these quantif

  9. Robot skills for manufacturing: From concept to industrial deployment

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Rath; Nalpantidis, Lazaros; Andersen, Rasmus Skovgaard;

    2016-01-01

    Due to a general shift in manufacturing paradigm from mass production towards mass customization, reconfigurable automation technologies, such as robots, are required. However, current industrial robot solutions are notoriously difficult to program, leading to high changeover times when new......-asserting robot skills for manufacturing. We show how a relatively small set of skills are derived from current factory worker instructions, and how these can be transferred to industrial mobile manipulators. General robot skills can not only be implemented on these robots, but also be intuitively concatenated...... to program the robots to perform a variety of tasks, through the use of simple task-level programming methods. We demonstrate various approaches to this, extensively tested with several people inexperienced in robotics. We validate our findings through several deployments of the complete robot system...

  10. Currents in industrial mathematics from concepts to research to education

    CERN Document Server

    Prätzel-Wolters, Dieter

    2015-01-01

    Mathematics has many branches: there are the pure, the applied, and the applicable; the theoretical and the practical. There is mathematics for school, for college, and for industry. All these belong to the same family and are bound together by a "mathematical way of thinking." Some mathematicians devote themselves entirely to the well being of this family by preserving it, developing it, and teaching it to the next generation. Others use the familial attributes to help outsiders by taking up their problems and transforming them into mathematical questions in order to solve them. The work of these mathematicians is thus problem driven, based on mathematical models, and oriented on the goal of offering practicable solutions. This second group is sizeable; its members include almost all college graduates working in industry, in the private sector, or in the Fraunhofer Institutes, for example. This group is hardly visible, however, and one seldom hears its voices either. This book remedies this situation by rela...

  11. Implementation of the Environmental Management Concept in the Hospitality Industry

    OpenAIRE

    Manuela Dora Orboi

    2015-01-01

    Globally, the concern for the environment is continually growing, among travel and tourism industry operators. Each unit hotel has its identity, its characteristics, and therefore, it is necessary to use and apply specific information about the environment, so as to create their own proactive environment protection policies. It must be performed an overview of environmental issues affecting the company and the performance that it has. Each unit hotel policy must be based on actual consumer de...

  12. Reference Operational Concepts for Advanced Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Hugo, Jacques Victor [Idaho National Lab. (INL), Idaho Falls, ID (United States); Farris, Ronald Keith [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    This report represents the culmination of a four-year research project that was part of the Instrumentation and Control and Human Machine Interface subprogram of the DOE Advanced Reactor Technologies program.

  13. Concept Development for Advanced Spaceborne Synthetic Aperture Radar Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The effort will focus on P-Band and L-band polarimetric radar architectures that employ advanced and innovative techniques to increase the science value of the...

  14. High efficient ammonia heat pump system for industrial process water using the ISEC concept. Part 2

    DEFF Research Database (Denmark)

    Olesen, Martin F.; Madsen, Claus; Olsen, Lars;

    2014-01-01

    The Isolated System Energy Charging (ISEC) concept allows for a high efficiency of a heat pump system for hot water production. The ISEC concept consists of two water storage tanks, one charged and one discharged. The charged tank is used for the industrial process, while the discharged tank...

  15. Comparing the Design Cognition of Concept Design Reviews of Industrial and Mechanical Engineering Designers

    OpenAIRE

    Gero, John; Hao, Jiang

    2014-01-01

    This paper presents the preliminary results of comparing the design cognition of concept design review conversations of two product design disciplines: industrial design and mechanical engineering design. The comparison is based on a protocol analysis of two concept design review cases using the FBS ontologically-based coding scheme. Inter-disciplinary differences of concept design review were first examined in terms of each review session’s focus of cognitive effort expended on reasoning abo...

  16. Rotor compound concept for designing an industrial HTS synchronous motor

    Energy Technology Data Exchange (ETDEWEB)

    Kashani, M., E-mail: kamran.unk@gmail.com; Hosseina, M.; Sarrafan, K.; Darabi, A.

    2013-06-15

    Highlights: • The superconducting tapes are used in the industrial synchronous motor winding due to their electrical characteristics. • The high magnetic field with no electric loss is obtainable by using the superconducting rotor coils. • The rotor core can be replaced by light non-magnetic materials which drops the rotor total weight up to 50%. • Decreasing the rotor weight was verified by FEM analyses for a sample motor. -- Abstract: Recently, producing power with smaller amount of losses become as a goal in our daily life. Today, large amount of energy waste in power networks all around the world. The main reason is “resistive electric equipments” of power networks. Since early 1980s, simultaneous with the development of high temperature superconductive (HTS) technology, superconductors gently attracted the mankind attentions. Using superconductive equipments instead of conventional resistive ones are result in salient electric loss reduction in power systems. Especially to reduce losses in power networks superconductive industrial rotating machines can potentially perform a significant role. In early recent century, first generation of HTS rotating machines was born. But unfortunately they have long way to penetrate the commercial markets yet. In HTS rotating machines the conventional copper made windings are replaced with the HTS superconductors. In this paper an industrial HTS synchronous motor with YBCO coated conductor field windings was designed. As a new approach, model was equipped with a compound rotor that includes both magnetic and non-magnetic materials. So, large amount of heavy iron made part was replaced by light non-magnetic material such as G-10 fiberglass. Furthermore, in this structure iron loss in rotor could be reduced to its lowest value. Also less weight and more air gap energy density were the additional advantages. Regarding zero electric loss production in field windings and less iron loss in rotor construction, this model

  17. Rotor compound concept for designing an industrial HTS synchronous motor

    International Nuclear Information System (INIS)

    Highlights: • The superconducting tapes are used in the industrial synchronous motor winding due to their electrical characteristics. • The high magnetic field with no electric loss is obtainable by using the superconducting rotor coils. • The rotor core can be replaced by light non-magnetic materials which drops the rotor total weight up to 50%. • Decreasing the rotor weight was verified by FEM analyses for a sample motor. -- Abstract: Recently, producing power with smaller amount of losses become as a goal in our daily life. Today, large amount of energy waste in power networks all around the world. The main reason is “resistive electric equipments” of power networks. Since early 1980s, simultaneous with the development of high temperature superconductive (HTS) technology, superconductors gently attracted the mankind attentions. Using superconductive equipments instead of conventional resistive ones are result in salient electric loss reduction in power systems. Especially to reduce losses in power networks superconductive industrial rotating machines can potentially perform a significant role. In early recent century, first generation of HTS rotating machines was born. But unfortunately they have long way to penetrate the commercial markets yet. In HTS rotating machines the conventional copper made windings are replaced with the HTS superconductors. In this paper an industrial HTS synchronous motor with YBCO coated conductor field windings was designed. As a new approach, model was equipped with a compound rotor that includes both magnetic and non-magnetic materials. So, large amount of heavy iron made part was replaced by light non-magnetic material such as G-10 fiberglass. Furthermore, in this structure iron loss in rotor could be reduced to its lowest value. Also less weight and more air gap energy density were the additional advantages. Regarding zero electric loss production in field windings and less iron loss in rotor construction, this model

  18. Advanced transportation concept for round-trip space travel

    Science.gov (United States)

    Yen, Chen-Wan L.

    1988-01-01

    A departure from the conventional concept of round-trip space travel is introduced. It is shown that a substantial reduction in the initial load required of the Shuttle or other launch vehicle can be achieved by staging the ascent orbit and leaving fuel for the return trip at each stage of the orbit. Examples of round trips from a low-inclination LEO to a high-inclination LEO and from an LEO to a GEO are used to show the merits of the new concept. Potential problem areas and research needed for the development of an efficient space transportation network are discussed.

  19. [Advance Directives: theoretical concept and practical significance in the USA].

    Science.gov (United States)

    Vollmann, J; Pfaff, M

    2003-07-01

    The article examines on the basic of empirical data the discrepancy between the theoretical demand and the practical role of advance directives. Often advance directives have no influence on medical decision-making in clinical care of critically ill patients. The vague language of the widely used standard living wills and the lack of physician-patient communication in the process of delivering an advance directives are contributing factors. However, many physicians even disregard patients' preferences in concrete and meaningful living wills at the end of life. Besides the lack of information many even seriously ill patients do not deliver an advance because they misjudge their medical prognosis and life expectancy. Often the communication between patients and doctors are blocked because they expect from the each other the first step to talk about end of life decisions and advance directives. In this context physicians claim lack of time, training in communication skills and their discomfort in talking about death and dying with their patients.

  20. Operation safety of complex industrial systems. Main concepts; Surete de fonctionnement des systemes industriels complexes. Principaux concepts

    Energy Technology Data Exchange (ETDEWEB)

    Zwingelstein, G

    2009-06-15

    Operation safety consists in knowing, evaluating, foreseeing, measuring and mastering the technological system and human failures in order to avoid their impacts on health and people's safety, on productivity, and on the environment, and to preserve the Earth's resources. This article recalls the main concepts of operation safety: 1 - evolutions in the domain; 2 - failures, missions and functions of a system and of its components: functional failure, missions and functions, industrial processes, notions of probability; 3 - basic concepts and operation safety: reliability, unreliability, failure density, failure rate, relations between them, availability, maintainability, safety. (J.S.)

  1. Advancing metabolic engineering through systems biology of industrial microorganisms.

    Science.gov (United States)

    Dai, Zongjie; Nielsen, Jens

    2015-12-01

    Development of sustainable processes to produce bio-based compounds is necessary due to the severe environmental problems caused by the use of fossil resources. Metabolic engineering can facilitate the development of highly efficient cell factories to produce these compounds from renewable resources. The objective of systems biology is to gain a comprehensive and quantitative understanding of living cells and can hereby enhance our ability to characterize and predict cellular behavior. Systems biology of industrial microorganisms is therefore valuable for metabolic engineering. Here we review the application of systems biology tools for the identification of metabolic engineering targets which may lead to reduced development time for efficient cell factories. Finally, we present some perspectives of systems biology for advancing metabolic engineering further.

  2. Advancing metabolic engineering through systems biology of industrial microorganisms

    DEFF Research Database (Denmark)

    Dai, Zongjie; Nielsen, Jens

    2015-01-01

    resources. The objective of systems biology is to gain a comprehensive and quantitative understanding of living cells and can hereby enhance our ability to characterize and predict cellular behavior. Systems biology of industrial microorganisms is therefore valuable for metabolic engineering. Here we review......Development of sustainable processes to produce bio-based compounds is necessary due to the severe environmental problems caused by the use of fossil resources. Metabolic engineering can facilitate the development of highly efficient cell factories to produce these compounds from renewable...... the application of systems biology tools for the identification of metabolic engineering targets which may lead to reduced development time for efficient cell factories. Finally, we present some perspectives of systems biology for advancing metabolic engineering further....

  3. Rotor compound concept for designing an industrial HTS synchronous motor

    Science.gov (United States)

    Kashani, M.; Hosseina, M.; Sarrafan, K.; Darabi, A.

    2013-06-01

    Recently, producing power with smaller amount of losses become as a goal in our daily life. Today, large amount of energy waste in power networks all around the world. The main reason is “resistive electric equipments” of power networks. Since early 1980s, simultaneous with the development of high temperature superconductive (HTS) technology, superconductors gently attracted the mankind attentions. Using superconductive equipments instead of conventional resistive ones are result in salient electric loss reduction in power systems. Especially to reduce losses in power networks superconductive industrial rotating machines can potentially perform a significant role. In early recent century, first generation of HTS rotating machines was born. But unfortunately they have long way to penetrate the commercial markets yet. In HTS rotating machines the conventional copper made windings are replaced with the HTS superconductors. In this paper an industrial HTS synchronous motor with YBCO coated conductor field windings was designed. As a new approach, model was equipped with a compound rotor that includes both magnetic and non-magnetic materials. So, large amount of heavy iron made part was replaced by light non-magnetic material such as G-10 fiberglass. Furthermore, in this structure iron loss in rotor could be reduced to its lowest value. Also less weight and more air gap energy density were the additional advantages. Regarding zero electric loss production in field windings and less iron loss in rotor construction, this model potentially is more effective than the other iron made HTS motors.

  4. Technological advances in perioperative monitoring: Current concepts and clinical perspectives.

    Science.gov (United States)

    Chilkoti, Geetanjali; Wadhwa, Rachna; Saxena, Ashok Kumar

    2015-01-01

    Minimal mandatory monitoring in the perioperative period recommended by Association of Anesthetists of Great Britain and Ireland and American Society of Anesthesiologists are universally acknowledged and has become an integral part of the anesthesia practice. The technologies in perioperative monitoring have advanced, and the availability and clinical applications have multiplied exponentially. Newer monitoring techniques include depth of anesthesia monitoring, goal-directed fluid therapy, transesophageal echocardiography, advanced neurological monitoring, improved alarm system and technological advancement in objective pain assessment. Various factors that need to be considered with the use of improved monitoring techniques are their validation data, patient outcome, safety profile, cost-effectiveness, awareness of the possible adverse events, knowledge of technical principle and ability of the convenient routine handling. In this review, we will discuss the new monitoring techniques in anesthesia, their advantages, deficiencies, limitations, their comparison to the conventional methods and their effect on patient outcome, if any.

  5. Advanced Level Physics Students' Conceptions of Quantum Physics.

    Science.gov (United States)

    Mashhadi, Azam

    This study addresses questions about particle physics that focus on the nature of electrons. Speculations as to whether they are more like particles or waves or like neither illustrate the difficulties with which students are confronted when trying to incorporate the concepts of quantum physics into their overall conceptual framework. Such…

  6. Report on the Lake Arrowhead workshop on advanced acceleration concepts

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrini, C.

    1989-03-01

    We review the present status of the field of New Acceleration Concepts, as presented at the Lake Arrowhead workshop, held at the beginning of 1989. Many new and promising results have been obtained recently, and the field is actively developing. We discuss briefly some of the main results presented at the workshop. 43 refs., 2 tabs.

  7. Advanced High Strength Steel in Auto Industry: an Overview

    Directory of Open Access Journals (Sweden)

    N. Baluch

    2014-08-01

    Full Text Available The world’s most common alloy, steel, is the material of choice when it comes to making products as diverse as oil rigs to cars and planes to skyscrapers, simply because of its functionality, adaptability, machine-ability and strength. Newly developed grades of Advanced High Strength Steel (AHSS significantly outperform competing materials for current and future automotive applications. This is a direct result of steel’s performance flexibility, as well as of its many benefits including low cost, weight reduction capability, safety attributes, reduced greenhouse gas emissions and superior recyclability. To improve crash worthiness and fuel economy, the automotive industry is, increasingly, using AHSS. Today, and in the future, automotive manufacturers must reduce the overall weight of their cars. The most cost-efficient way to do this is with AHSS. However, there are several parameters that decide which of the AHSS types to be used; the most important parameters are derived from the geometrical form of the component and the selection of forming and blanking methods. This paper describes the different types of AHSS, highlights their advantages for use in auto metal stampings, and discusses about the new challenges faced by stampers, particularly those serving the automotive industry.

  8. Summary of innovative concepts for industrial process improvement: An experimental technology exchange

    Energy Technology Data Exchange (ETDEWEB)

    Conger, R.L. [Pacific Northwest Lab., Richland, WA (United States); Lee, V.E.; Buel, L.M. [eds.] [Pacific Northwest Lab., Richland, WA (United States)

    1995-08-01

    This document is a compilation of one-page technical briefs that summarize the highlights of thirty-eight innovations that were presented at the seventh Innovative Concepts Fair, held in Denver, Colorado on April 20--21, 1995. Sixteen of the innovations were funded through the Innovative Concepts Program, and twenty-two innovations represent other state or federally funded programs. The concepts in this year`s fair addressed innovations that can substantially improve industrial processes. Each tech brief describes the need for the proposed concept; the concept being proposed; and the concept`s economics and market potential, key experimental results, and future development needs. A contact block is also included with each flier.

  9. Concept - or no concept

    DEFF Research Database (Denmark)

    Thorsteinsson, Uffe

    1999-01-01

    Discussion about concept in industrial companies. A method for mapping of managerial concept in specific area is shown......Discussion about concept in industrial companies. A method for mapping of managerial concept in specific area is shown...

  10. Fostering Visions for the Future: A Review of the NASA Institute for Advanced Concepts

    Science.gov (United States)

    2009-01-01

    The NASA Institute for Advanced Concepts (NIAC) was formed in 1998 to provide an independent source of advanced aeronautical and space concepts that could dramatically impact how NASA develops and conducts its missions. Until the program's termination in August 2007, NIAC provided an independent open forum, a high-level point of entry to NASA for an external community of innovators, and an external capability for analysis and definition of advanced aeronautics and space concepts to complement the advanced concept activities conducted within NASA. Throughout its 9-year existence, NIAC inspired an atmosphere for innovation that stretched the imagination and encouraged creativity. As requested by Congress, this volume reviews the effectiveness of NIAC and makes recommendations concerning the importance of such a program to NASA and to the nation as a whole, including the proper role of NASA and the federal government in fostering scientific innovation and creativity and in developing advanced concepts for future systems. Key findings and recommendations include that in order to achieve its mission, NASA must have, and is currently lacking, a mechanism to investigate visionary, far-reaching advanced concepts. Therefore, a NIAC-like entity should be reestablished to fill this gap.

  11. Advanced in the neutron feedback ICF reactor concept

    International Nuclear Information System (INIS)

    Results are reviewed and updated from an earlier design study of a novel nuclear-pumped flashlamp laser (NP-FL) inertial fusion energy (IFE) power reactor based on the neutron feedback concept for IFE. This concept includes nuclear pumping of the laser flashlamp, a D-T seeded D-3He target and magnetic protection of the first wall of the reactor chamber coupled with direct conversion of deflected charged particles. Advantages include an increased overall plant efficiency due to improved energy coupling via neutron feedback, increased thermal-to-electric energy conversion efficiency, and lower neutron activation and waste. These factors are reflected in a driver energy of 5 MJ and a target gain of only 50 for a 53 % efficient 1000-MWe power plant operating at 6 Hz, novel components involved. However, they require further technological development. Consequently, the NP-FL plant appears to provide a very attractive 'second-generation' IFE reactor. (authors)

  12. Quality of experience advanced concepts, applications and methods

    CERN Document Server

    Raake, Alexander

    2014-01-01

    This pioneering book develops definitions and concepts related to Quality of Experience in the context of multimedia- and telecommunications-related applications, systems and services, and applies these to various fields of communication and media technologies. The editors bring together numerous key-protagonists of the new discipline “Quality of Experience” and combine the state-of-the-art knowledge in one single volume. 

  13. Advanced SFR Concept Based on PRISM and KALIMER

    International Nuclear Information System (INIS)

    The Sodium-cooled Fast Reactor has been recognized as one of the promising nuclear options for generating electricity with efficient uranium resource utilization and reduction of radioactive wastes from nuclear power plants. This paper compares design features, identifies differences between KALIMER-600 and S-PRISM sodium-cooled reactors, and derives R and D requirements in order to explore the possibility of developing a novel SFR concept. (author)

  14. Investigation for industrial development related to the establishment of advanced radiation application research center

    CERN Document Server

    Lee, Y I; Kim In Kyu

    2002-01-01

    To promote an enhance the radiation application research through the cooperation between industry and Advanced Radiation Application Research Center, the related industries with radiation technology were surveyed. The related industries were bioresources, environment control and chemical industries and non-destructive testing including trace technology

  15. A Novel superconducting toroidal field magnet concept using advanced materials

    Science.gov (United States)

    Schwartz, J.

    1992-03-01

    The plasma physics database indicates that two distinct approaches to tokamak design may lead to commercial fusion reactors: low Aspect ratio, high plasma current, relatively low magnetic field devices, and high Aspect ratio, high field devices. The former requires significant enhancements in plasma performance, while the latter depends primarily upon technology development. The key technology for the commercialization of the high-field approach is large, high magnetic field superconducting magnets. In this paper, the physics motivation for the high field approach and key superconducting magnet (SCM) development issues are reviewed. Improved SCM performance may be obtained from improved materials and/or improved engineering. Superconducting materials ranging from NbTi to high- T c oxides are reviewed, demonstrating the broad range of potential superconducting materials. Structural material options are discussed, including cryogenic steel alloys and fiber-reinforced composite materials. Again, the breadth of options is highlighted. The potential for improved magnet engineering is quantified in terms of the Virial Theorem Limit, and two examples of approaches to highly optimized magnet configurations are discussed. The force-reduced concept, which is a finite application of the force-free solutions to Ampere's Law, appear promising for large SCMs but may be limited by the electromagnetics of a fusion plasma. The Solid Superconducting Cylinder (SSC) concept is proposed. This concept combines the unique properties of high- T c superconductors within a low- T c SCM to obtain (1) significant reductions in the structural material volume, (2) a decoupling of the tri-axial (compressive and tensile) stress state, and (3) a demountable TF magnet system. The advantages of this approach are quantified in terms of a 24 T commercial reactor TF magnet system. Significant reductions in the mechanical stress and the TF radial build are demonstrated.

  16. Knowledge based systems advanced concepts, techniques and applications

    CERN Document Server

    1997-01-01

    The field of knowledge-based systems (KBS) has expanded enormously during the last years, and many important techniques and tools are currently available. Applications of KBS range from medicine to engineering and aerospace.This book provides a selected set of state-of-the-art contributions that present advanced techniques, tools and applications. These contributions have been prepared by a group of eminent researchers and professionals in the field.The theoretical topics covered include: knowledge acquisition, machine learning, genetic algorithms, knowledge management and processing under unc

  17. Importance of Advanced Planning of Manufacturing for Nuclear Industry

    Directory of Open Access Journals (Sweden)

    Shykinov Nick

    2016-06-01

    Full Text Available In the context of energy demands by growing economies, climate changes, fossil fuel pricing volatility, and improved safety and performance of nuclear power plants, many countries express interest in expanding or acquiring nuclear power capacity. In the light of the increased interest in expanding nuclear power the supply chain for nuclear power projects has received more attention in recent years. The importance of the advanced planning of procurement and manufacturing of components of nuclear facilities is critical for these projects. Many of these components are often referred to as long-lead items. They may be equipment, products and systems that are identified to have a delivery time long enough to affect directly the overall timing of a project. In order to avoid negatively affecting the project schedule, these items may need to be sourced out or manufactured years before the beginning of the project. For nuclear facilities, long-lead items include physical components such as large pressure vessels, instrumentation and controls. They may also mean programs and management systems important to the safety of the facility. Authorized nuclear operator training, site evaluation programs, and procurement are some of the examples. The nuclear power industry must often meet very demanding construction and commissioning timelines, and proper advanced planning of the long-lead items helps manage risks to project completion time. For nuclear components there are regulatory and licensing considerations that need to be considered. A national nuclear regulator must be involved early to ensure the components will meet the national legal regulatory requirements. This paper will discuss timing considerations to address the regulatory compliance of nuclear long-lead items.

  18. Active load management with advanced window wall systems: Research and industry perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eleanor S.; Selkowitz, Stephen E.; Levi, Mark S.; Blanc, Steven L.; McConahey, Erin; McClintock, Maurya; Hakkarainen, Pekka; Sbar, Neil L.; Myser, Michael P.

    2002-06-01

    Advanced window wall systems have the potential to provide demand response by reducing peak electric loads by 20-30% in many commercial buildings through the active control of motorized shading systems, switchable window coatings, operable windows, and ventilated double-skin facade systems. These window strategies involve balancing daylighting and solar heat gains, heat rejection through ventilation, and night-time natural ventilation to achieve space-conditioning and lighting energy use reductions without the negative impacts on occupants associated with other demand responsive (DR) strategies. This paper explores conceptually how advanced window systems fit into the context of active load management programs, which cause customers to directly experience the time-varying costs of their consumption decisions. Technological options are suggested. We present pragmatic criteria that building owners use to determine whether to deploy such strategies. A utility's perspective is given. Industry also provides their perspectives on where the technology is today and what needs to happen to implement such strategies more broadly in the US. While there is significant potential for these advanced window concepts, widespread deployment is unlikely to occur with business-as-usual practice. Technologically, integrated window-lighting-HVAC products are underdeveloped. Implementation is hindered by fragmented labor practices, non-standard communication protocols, and lack of technical expertise. Design tools and information products that quantify energy performance, occupant impacts, reliability, and other pragmatic concerns are not available. Interest within the building industry in sustainability, energy-efficiency, and increased occupant amenity, comfort, and productivity will be the driving factors for these advanced facades in the near term--at least until the dust settles on the deregulated electricity market.

  19. Advances in sliding mode control concept, theory and implementation

    CERN Document Server

    Janardhanan, S; Spurgeon, Sarah

    2013-01-01

    The sliding mode control paradigm has become a mature technique for the design of robust controllers for a wide class of systems including nonlinear, uncertain and time-delayed systems. This book is a collection of plenary and invited talks delivered at the 12th IEEE International Workshop on Variable Structure System held at the Indian Institute of Technology, Mumbai, India in January 2012. After the workshop, these researchers were invited to develop book chapters for this edited collection in order to reflect the latest results and open research questions in the area. The contributed chapters have been organized by the editors to reflect the various themes of sliding mode control which are the current areas of theoretical research and applications focus; namely articulation of the fundamental underpinning theory of the sliding mode design paradigm, sliding modes for decentralized system representations, control of time-delay systems, the higher order sliding mode concept, results applicable to nonlinear an...

  20. Advanced fuel developments for an industrial accelerator driven system prototype

    Energy Technology Data Exchange (ETDEWEB)

    Delage, Fabienne; Ottaviani, Jean Pierre [Commissariat a l' Energie Atomique CEA (France); Fernandez-Carretero, Asuncion; Staicu, Dragos [JRC-ITU (Germany); Boccaccini, Claudia-Matzerath; Chen, Xue-Nong; Mascheck, Werner; Rineiski, Andrei [Forschungszentrum Karlsruhe - FZK (Germany); D' Agata, Elio [JRC-IE (Netherlands); Klaassen, Frodo [NRG, PO Box 25, NL-1755 ZG Petten (Netherlands); Sobolev, Vitaly [SCK-CEN (Belgium); Wallenius, Janne [KTH Royal Institute of Technology (Sweden); Abram, T. [National Nuclear Laboratory - NNL (United Kingdom)

    2009-06-15

    Fuel to be used in an Accelerator Driven System (ADS) for transmutation in a fast spectrum, can be described as a highly innovative concept in comparison with fuels used in critical cores. ADS fuel is not fertile, so as to improve the transmutation performance. It necessarily contains a high concentration ({approx}50%) of minor actinides and plutonium. This unusual fuel composition results in high gamma and neutron emissions during its fabrication, as well as degraded core performance. So, an optimal ADS fuel is based on finding the best compromise between thermal, mechanical, chemical, neutronic and technological constraints. CERCER and CERMET composite fuels consisting of particles of (Pu,MA)O{sub 2} phases dispersed in a magnesia or molybdenum matrix are under investigation within the frame of the ongoing European Integrated Project EUROTRANS (European Research programme for Transmutation) which aims at performing a conceptual design of a 400 MWth transmuter: the European Facility for Industrial Transmutation (EFIT). Performances and safety of EFIT cores loaded with CERCER and CERMET fuels have been evaluated. Out-of-pile and in-pile experiments are carried out to gain knowledge on the properties and the behaviour of these fuels. The current paper gives an overview of the work progress. (authors)

  1. Recent Advances in Fungal Hydrophobin Towards Using in Industry.

    Science.gov (United States)

    Khalesi, Mohammadreza; Gebruers, Kurt; Derdelinckx, Guy

    2015-08-01

    Fungal hydrophobin is a family of low molecular weight proteins consisting of four disulfide bridges and an extraordinary hydrophobic patch. The hydrophobic patch of hydrophobins and the molecules of gaseous CO2 may interact together and form the stable CO2-nanobubbles covered by an elastic membrane in carbonated beverages. The nanobubbles provide the required energy to provoke primary gushing. Due to the hydrophobicity of hydrophobin, this protein is used as a biosurfactant, foaming agent or encapsulating agent in food products and medicine formulations. Increasing demands for using of hydrophobins led to a challenge regarding production and purification of this product. However, the main issue to use hydrophobin in the industry is the regulatory affairs: yet there is no approved legislation for using hydrophobin in food and beverages. To comply with the legislation, establishing a consistent method for obtaining pure hydrophobins is necessary. Currently, few research teams in Europe are focusing on different aspects of hydrophobins. In this paper, an up-to-date collection of highlights from those special groups about the bio-chemical and physicochemical characteristics of hydrophobins have been studied. The recent advances of those groups concerning the production and purification, positive applications and negative function of hydrophobin are also summarised.

  2. The Efficiency Analyses of Croatian Sugar Industry by Using the Concept of Intellectual Capital

    Directory of Open Access Journals (Sweden)

    Dražen Holmik

    2006-03-01

    Full Text Available During the last fi ve years the sugar industry has become one of the most important branches of Croatian food industry. It is connected with a signifi cant number of various industries in a complex way and employs a signifi cant number of people. A development of the sugar industry stimulates development of commerce, logistics, and a number of correlated industries whose products are necessary in sugar production. Croatian sugar factories have been present at the neighbouring markets and the European Union market for several years. Th e share of sugar in the total export of agricultural products increases every year and in the year 2004, it was 26.8% with the tendency of increasing in the year 2005. Th e foundation of the Intellectual capital (IC concept, as a method of increasing the entire business effi ciency, can be found in the papers of economic theoreticians in the middle of the last century but it reached its real break through in the past 15 years when the concept got more applied and the theory of intellectual capital was developed. In order to prepare Croatian economy for the competition that is expecting Croatia by joining the European Union with full membership, especially the agricultural sector, the application of the IC concept is expected to result with an increase of business effi ciency. Th e intellectual capital concept represents a recommended base, which will help Croatian sugar mills in achieving a better position at the highly competitive market of the European Union.

  3. Advanced sulfur control concepts for hot-gas desulfurization technology

    International Nuclear Information System (INIS)

    This research project examined the feasibility of a second generation high-temperature coal gas desulfurization process in which elemental sulfur is produced directly during the sorbent regeneration phase. Two concepts were evaluated experimentally. In the first, FeS was regenerated in a H2O-O2 mixture. Large fractions of the sulfur were liberated in elemental form when the H2O-O2 ratio was large. However, the mole percent of elemental sulfur in the product was always quite small (<<1%) and a process based on this concept was judged to be impractical because of the low temperature and high energy requirements associated with condensing the sulfur. The second concept involved desulfurization using CeO2 and regeneration of the sulfided sorbent, Ce2O2S, using SO2 to produce elemental sulfur directly. No significant side reactions were observed and the reaction was found to be quite rapid over the temperature range of 500C to 700C. Elemental sulfur concentrations (as S2) as large as 20 mol% were produced. Limitations associated with the cerium sorbent process are concentrated in the desulfurization phase. High temperature and highly reducing coal gas such as produced in the Shell gasification process are required if high sulfur removal efficiencies are to be achieved. For example, the equilibrium H2S concentration at 800C from a Shell gas in contact with CeO2 is about 300 ppmv, well above the allowable IGCC specification. In this case, a two-stage desulfurization process using CeO2 for bulk H2S removal following by a zinc sorbent polishing step would be required. Under appropriate conditions, however, CeO2 can be reduced to non-stoichiometric CeOn (n<2) which has significantly greater affinity for H2S. Pre-breakthrough H2S concentrations in the range of 1 ppmv to 5 ppmv were measured in sulfidation tests using CeOn at 700C in highly reducing gases, as measured by equilibrium O2 concentration, comparable to the Shell gas. Good sorbent durability was indicated in a

  4. ADVANCED SULFUR CONTROL CONCEPTS FOR HOT-GAS DESULFURIZATION TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    A. LOPEZ ORTIZ; D.P. HARRISON; F.R. GROVES; J.D. WHITE; S. ZHANG; W.-N. HUANG; Y. ZENG

    1998-10-31

    This research project examined the feasibility of a second generation high-temperature coal gas desulfurization process in which elemental sulfur is produced directly during the sorbent regeneration phase. Two concepts were evaluated experimentally. In the first, FeS was regenerated in a H2O-O2 mixture. Large fractions of the sulfur were liberated in elemental form when the H2O-O2 ratio was large. However, the mole percent of elemental sulfur in the product was always quite small (<<1%) and a process based on this concept was judged to be impractical because of the low temperature and high energy requirements associated with condensing the sulfur. The second concept involved desulfurization using CeO2 and regeneration of the sulfided sorbent, Ce2O2S, using SO2 to produce elemental sulfur directly. No significant side reactions were observed and the reaction was found to be quite rapid over the temperature range of 500°C to 700°C. Elemental sulfur concentrations (as S2) as large as 20 mol% were produced. Limitations associated with the cerium sorbent process are concentrated in the desulfurization phase. High temperature and highly reducing coal gas such as produced in the Shell gasification process are required if high sulfur removal efficiencies are to be achieved. For example, the equilibrium H2S concentration at 800°C from a Shell gas in contact with CeO2 is about 300 ppmv, well above the allowable IGCC specification. In this case, a two-stage desulfurization process using CeO2 for bulk H2S removal following by a zinc sorbent polishing step would be required. Under appropriate conditions, however, CeO2 can be reduced to non-stoichiometric CeOn (n<2) which has significantly greater affinity for H2S. Pre-breakthrough H2S concentrations in the range of 1 ppmv to 5 ppmv were measured in sulfidation tests using CeOn at 700°C in highly reducing gases, as measured by equilibrium O2 concentration, comparable to the Shell gas. Good sorbent durability was indicated in

  5. Combining total energy and energy industrial center concepts to increase utilization efficiency of geothermal energy

    Science.gov (United States)

    Bayliss, B. P.

    1974-01-01

    Integrating energy production and energy consumption to produce a total energy system within an energy industrial center which would result in more power production from a given energy source and less pollution of the environment is discussed. Strong governmental support would be required for the crash drilling program necessary to implement these concepts. Cooperation among the federal agencies, power producers, and private industry would be essential in avoiding redundant and fruitless projects, and in exploiting most efficiently our geothermal resources.

  6. Advanced combustor design concept to control NOx and air toxics

    Energy Technology Data Exchange (ETDEWEB)

    Eddings, E.G.; Pershing, D.W.; Molina, A.; Sarofim, A.F.; Spinti, J.P.; Veranth, J.

    1999-03-29

    Direct coal combustion needs to be a primary energy source for the electric utility industry and for heavy manufacturing during the next several decades because of the availability and economic advantage of coal relative to other fuels and because of the time required to produce major market penetration in the energy field. However, the major obstacle to coal utilization is a set of ever-tightening environmental regulations at both the federal and local level. It is, therefore, critical that fundamental research be conducted to support the development of low-emission, high-efficiency pulverized coal power systems. The objective of this program was to develop fundamental understanding regarding the impact of fuel and combustion changes on NOx formation, carbon burnout and air toxic emissions from pulverized coal (pc) combustion. During pc combustion, nitrogen in the coal can be oxidized to form nitrogen oxides (NO{sub x}). The 1990 Clean Air Act Amendments established much stricter NO{sub x} emissions limits for new and existing coal-fired plants, so there has been renewed interest in the processes by which NO{sub x} forms in pc flames. One of the least understood aspects of NO{sub x} formation from pc combustion is the process by which char-N (nitrogen remaining in the char after devolatilization) forms either NO{sub x} or N{sub 2}, and the development of a fundamental understanding of this process was a major focus of this research. The overall objective of this program was to improve the ability of combustion system designers and boiler manufacturers to build high efficiency, low emission pulverized coal systems by improving the design tools available to the industry. The specific program goals were to: Use laboratory experiments and modeling to develop fundamental understanding for a new submodel for char nitrogen oxidation (a critical piece usually neglected in most NOx models.); Use existing bench scale facilities to investigate alternative schemes to

  7. Prescriptive concepts for advanced nuclear materials control and accountability systems

    International Nuclear Information System (INIS)

    Networking- and distributed-processing hardware and software have the potential of greatly enhancing nuclear materials control and accountability (MC and A) systems, from both safeguards and process operations perspectives, while allowing timely integrated safeguards activities and enhanced computer security at reasonable cost. A hierarchical distributed system is proposed consisting of groups of terminal and instruments in plant production and support areas connected to microprocessors that are connected to either larger microprocessors or minicomputers. These micros and/or minis are connected to a main machine, which might be either a mainframe or a super minicomputer. Data acquisition, preliminary input data validation, and transaction processing occur at the lowest level. Transaction buffering, resource sharing, and selected data processing occur at the intermediate level. The host computer maintains overall control of the data base and provides routine safeguards and security reporting and special safeguards analyses. The research described outlines the distribution of MC and A system requirements in the hierarchical system and distributed processing applied to MC and A. Implications of integrated safeguards and computer security concepts for the distributed system design are discussed. 10 refs., 4 figs

  8. Advanced concept considerations for STOL short-haul systems

    Science.gov (United States)

    Sweet, H. S.; Renshaw, J. H.

    1975-01-01

    Design, performance, and economic tradeoffs for STOL short-haul systems are presented. The analyses showed that quiet, short-field aircraft can be economically viable and provide benefits to airport congestion and to community noise relief. The objective of the studies was to compare and evaluate propulsive-lift systems and low-wing-loading aircraft provided with ride quality control and gust load alleviation, and to determine fuel consumption and cost tradeoffs, along with recommendations for development of technology, noise criteria, and airport planning. In the low density arena, the optimum aircraft sized for less than 50 passengers have active controls for ride quality and gust alleviation; turboprop propulsion offers significant cost and fuel saving with no appreciable block time penalty for the short typical stage lengths (on the order of 150 miles). In the high density arena, high bypass-ratio fan-powered aircraft, with design cruise speed of 0.7 to 0.75M and range capability to 1500 miles, are considered to be optimum. Field performance of 3000 feet or better can be achieved by the hybrid over-the-wing/internally blown flap concept with viable economics and low fuel consumption. Mechanical flap aircraft with high bypass-ratio engines are indicated to be superior for field lengths of 3500 feet or more. Technology development of propulsive lift is required, and further definition of the best fan-powered engine for low noise and low fuel consumption is needed.

  9. Composite Fan Blade Design for Advanced Engine Concepts

    Science.gov (United States)

    Abumeri, Galib H.; Kuguoglu, Latife H.; Chamis, Christos C.

    2004-01-01

    The aerodynamic and structural viability of composite fan blades of the revolutionary Exo-Skeletal engine are assessed for an advanced subsonic mission using the NASA EST/BEST computational simulation system. The Exo-Skeletal Engine (ESE) calls for the elimination of the shafts and disks completely from the engine center and the attachment of the rotor blades in spanwise compression to a rotating casing. The fan rotor overall adiabatic efficiency obtained from aerodynamic analysis is estimated at 91.6 percent. The flow is supersonic near the blade leading edge but quickly transitions into a subsonic flow without any turbulent boundary layer separation on the blade. The structural evaluation of the composite fan blade indicates that the blade would buckle at a rotor speed that is 3.5 times the design speed of 2000 rpm. The progressive damage analysis of the composite fan blade shows that ply damage is initiated at a speed of 4870 rpm while blade fracture takes place at 7640 rpm. This paper describes and discusses the results for the composite blade that are obtained from aerodynamic, displacement, stress, buckling, modal, and progressive damage analyses. It will be demonstrated that a computational simulation capability is readily available to evaluate new and revolutionary technology such as the ESE.

  10. Some Advanced Concepts in Discrete Aerodynamic Sensitivity Analysis

    Science.gov (United States)

    Taylor, Arthur C., III; Green, Lawrence L.; Newman, Perry A.; Putko, Michele M.

    2003-01-01

    An efficient incremental iterative approach for differentiating advanced flow codes is successfully demonstrated on a two-dimensional inviscid model problem. The method employs the reverse-mode capability of the automatic differentiation software tool ADIFOR 3.0 and is proven to yield accurate first-order aerodynamic sensitivity derivatives. A substantial reduction in CPU time and computer memory is demonstrated in comparison with results from a straightforward, black-box reverse-mode applicaiton of ADIFOR 3.0 to the same flow code. An ADIFOR-assisted procedure for accurate second-rder aerodynamic sensitivity derivatives is successfully verified on an inviscid transonic lifting airfoil example problem. The method requires that first-order derivatives are calculated first using both the forward (direct) and reverse (adjoinct) procedures; then, a very efficient noniterative calculation of all second-order derivatives can be accomplished. Accurate second derivatives (i.e., the complete Hesian matrices) of lift, wave drag, and pitching-moment coefficients are calculated with respect to geometric shape, angle of attack, and freestream Mach number.

  11. Advanced Direct Liquefaction Concepts for PETC Generic Units - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-09-01

    Reported here are the results of Laboratory and Bench- Scale experiments and supporting technical and economic assessments conducted under DOE Contract No. DE- AC22- 91PC91040 during the period April 1, 1997 to June 30, 1997. This contract is with the University of Kentucky Research Foundation which supports work with the University of Kentucky Center for Applied Energy Research, CONSOL, Inc., LDP Associates, and Hydrocarbon Technologies, Inc. This work involves the introduction into the basic two stage liquefaction process several novel concepts which includes dispersed lower- cost catalysts, coal cleaning by oil agglomeration, and distillate hydrotreating and dewaxing. This report includes a data analysis of the ALC- 2 run which was the second continuous run in which Wyodak Black Thunder coal was fed to a two kg/ h bench- scale unit. One of the objectives of that run was to determine the relative activity of several Mo- based coal impregnated catalyst precursors. The precursors included ammonium heptamolybdate (100 mg Mo/ kg dry coal), which was used alone as well as in combination with ferrous sulfate (1% Fe/ dry coal) and nickel sulfate (50 mg Ni/ kg dry coal). The fourth precursor that was tested was phosphomolybdic acid which was used at a level of 100 mg Mo/ kg dry coal. Because of difficulties in effectively separating solids from the product stream, considerable variation in the feed stream occurred. Although the coal feed rate was nearly constant, the amount of recycle solvent varied which resulted in wide variations of resid, unconverted coal and mineral matter in the feed stream. Unfortunately, steady state was not achieved in any of the four conditions that were run. Earlier it was reported that Ni- Mo catalyst appeared to give the best results based upon speculative steady- state yields that were developed.

  12. Earth's Critical Zone and hydropedology: concepts, characteristics, and advances

    Directory of Open Access Journals (Sweden)

    H. Lin

    2010-01-01

    Full Text Available The Critical Zone (CZ is a holistic framework for integrated studies of water with soil, rock, air, and biotic resources in the near-surface terrestrial environment. This most heterogeneous and complex region of the Earth ranges from the vegetation top to the aquifer bottom, with a highly variable thickness globally and a yet-to-be clearly defined lower boundary of active water cycle. Interfaces among different compartments in the CZ are critical, which provide fertile ground for interdisciplinary research. The reconciliation of coupled geological and biological cycles (vastly different in space and time scales is essential to understanding the complexity and evolution of the CZ. Irreversible evolution, coupled cycling, interactive layers, and hierarchical heterogeneity are the characteristics of the CZ, suggesting that forcing, coupling, interfacing, and scaling are grand challenges for advancing CZ science. Hydropedology – the science of the behaviour and distribution of soil-water interactions in contact with mineral and biological materials in the CZ – is an important contributor to CZ study. The pedosphere is the foundation of the CZ, which represents a geomembrance across which water and solutes, as well as energy, gases, solids, and organisms are actively exchanged with the atmosphere, biosphere, hydrosphere, and lithosphere, thereby creating a life-sustaining environment. Hydropedology emphasizes in situ soils in the landscape setting, where distinct pedogenic features and soil-landscape relationships are essential to understanding interactive pedologic and hydrologic processes. Both CZ science and hydropedology embrace an evolutionary and holistic worldview, which offers stimulating opportunities through steps such as integrated systems approach, evolutionary mapping-monitoring-modeling framework, and fostering a global alliance. Our capability to predict the behaviour and evolution of the CZ in response to changing environment can

  13. Vermicomposting as an advanced biological treatment for industrial waste from the leather industry.

    Science.gov (United States)

    Nunes, Ramom R; Bontempi, Rhaissa M; Mendonça, Giovane; Galetti, Gustavo; Rezende, Maria Olímpia O

    2016-01-01

    The leather industry (tanneries) generates high amounts of toxic wastes, including solid and liquid effluents that are rich in organic matter and mineral content. Vermicomposting was studied as an alternative method of treating the wastes from tanneries. Vermicompost was produced from the following tannery residues: tanned chips of wet-blue leather, sludge from a liquid residue treatment station, and a mixture of both. Five hundred earthworms (Eisenia fetida) were added to each barrel. During the following 135 days the following parameters were evaluated: pH, total organic carbon (TOC), organic matter (OM), cation exchange capacity (CEC), C:N ratio, and chromium content as Cr (III) and Cr (VI). The results for pH, TOC and OM contents showed decreases in their values during the composting process, whereas values for CEC and total nitrogen rose, indicating that the vermicompost reached maturity. For chromium, at 135 days, all values of Cr (VI) were below the detectable level. Therefore, the Cr (VI) content had probably been biologically transformed into Cr (III), confirming the use of this technique as an advanced biological treatment. The study reinforces the idea that vermicomposting could be introduced as an effective technology for the treatment of industrial tannery waste and the production of agricultural inputs.

  14. Vermicomposting as an advanced biological treatment for industrial waste from the leather industry.

    Science.gov (United States)

    Nunes, Ramom R; Bontempi, Rhaissa M; Mendonça, Giovane; Galetti, Gustavo; Rezende, Maria Olímpia O

    2016-01-01

    The leather industry (tanneries) generates high amounts of toxic wastes, including solid and liquid effluents that are rich in organic matter and mineral content. Vermicomposting was studied as an alternative method of treating the wastes from tanneries. Vermicompost was produced from the following tannery residues: tanned chips of wet-blue leather, sludge from a liquid residue treatment station, and a mixture of both. Five hundred earthworms (Eisenia fetida) were added to each barrel. During the following 135 days the following parameters were evaluated: pH, total organic carbon (TOC), organic matter (OM), cation exchange capacity (CEC), C:N ratio, and chromium content as Cr (III) and Cr (VI). The results for pH, TOC and OM contents showed decreases in their values during the composting process, whereas values for CEC and total nitrogen rose, indicating that the vermicompost reached maturity. For chromium, at 135 days, all values of Cr (VI) were below the detectable level. Therefore, the Cr (VI) content had probably been biologically transformed into Cr (III), confirming the use of this technique as an advanced biological treatment. The study reinforces the idea that vermicomposting could be introduced as an effective technology for the treatment of industrial tannery waste and the production of agricultural inputs. PMID:26828795

  15. Advanced materials and concepts for energy storage devices

    Science.gov (United States)

    Teng, Shiang Jen

    Over the last decade, technological progress and advances in the miniaturization of electronic devices have increased demands for light-weight, high-efficiency, and carbon-free energy storage devices. These energy storage devices are expected to play important roles in automobiles, the military, power plants, and consumer electronics. Two main types of electrical energy storage systems studied in this research are Li ion batteries and supercapacitors. Several promising solid state electrolytes and supercapacitor electrode materials are investigated in this research. The first section of this dissertation is focused on the novel results on pulsed laser annealing of Li7La3Zr2O12 (LLZO). LLZO powders with a tetragonal structure were prepared by a sol-gel technique, then a pulsed laser annealing process was employed to convert the tetragonal powders to cubic LLZO without any loss of lithium. The second section of the dissertation reports on how Li5La 3Nb2O12 (LLNO) was successfully synthesized via a novel molten salt synthesis (MSS) method at the relatively low temperature of 900°C. The low sintering temperature prevented the loss of lithium that commonly occurs during synthesis using conventional solid state or wet chemical reactions. The second type of energy storage device studied is supercapacitors. Currently, research on supercapacitors is focused on increasing their energy densities and lowering their overall production costs by finding suitable electrode materials. The third section of this dissertation details how carbonized woods electrodes were used as supercapacitor electrode materials. A high energy density of 45.6 Wh/kg and a high power density of 2000 W/kg were obtained from the supercapacitor made from carbonized wood electrodes. The high performance of the supercapacitor was discovered to originate from the hierarchical porous structures of the carbonized wood. Finally, the fourth section of this dissertation is on the electrochemical effects of

  16. Aging Workforce Management in the Automobile Industry : Defining the Concept and its Constituting Elements

    NARCIS (Netherlands)

    Streb, Christoph; Voelpel, Sven; Leibold, Marius

    2009-01-01

    This paper presents the results of a grounded theory study on the automobile industry aimed at developing a concept of aging workforce management by identifying and constructing its constituting elements. Through an in-depth research investigation, it answers the question of how the challenge of an

  17. High efficient ammonia heat pump system for industrial process water using the ISEC concept. Part 1

    DEFF Research Database (Denmark)

    Rothuizen, Erasmus Damgaard; Madsen, C.; Elmegaard, Brian;

    2014-01-01

    The purpose of the Isolated System Energy Charging (ISEC) is to provide a high-efficient ammonia heat pump system for hot water production. The ISEC concept uses two storage tanks for the water, one discharged and one charged. The charged tank is used for the industrial process while the discharged...

  18. Advance ultrasonic instrumentation and sensor for tubing industries

    International Nuclear Information System (INIS)

    For thin wall tubing specially in nuclear industry, there are number of institutes/industries provides dimension and flaw detection ultrasonic units. However, full dimension information, for example average ID, OD, wall thickness, true ID, OD, wall thickness, ovality and eccentricity etc. is not available. The paper discusses the state-of-the-art Ultrasonic System and Sensor and its application in tubing industries

  19. The Space Weather Observation Network (SWON) Concept - Inauguration of the DLR Advanced Study Group

    OpenAIRE

    Maiwald, Volker; Weiß, André; Quantius, Dominik; Schubert, Daniel; Jansen, Frank

    2011-01-01

    The DLR Advanced Study Group (ASG) is a team of engineers and scientists that investigates visionary or unusual aerospace concepts regarding their feasibility and applicability to scientific problems, in an attempt to erase the “fiction” from the “science fiction” of scientifically valid ideas and make them rigorous science. To achieve this, the ASG uses established processes and new approaches for concept analysis, like so called Concurrent Evaluation sessions. One of the first ideas investi...

  20. Proceedings of the Workshop on Advanced Network and Technology Concepts for Mobile, Micro, and Personal Communications

    Science.gov (United States)

    Paul, Lori (Editor)

    1991-01-01

    The Workshop on Advanced Network and Technology Concepts for Mobile, Micro, and Personal Communications was held at NASA's JPL Laboratory on 30-31 May 1991. It provided a forum for reviewing the development of advanced network and technology concepts for turn-of-the-century telecommunications. The workshop was organized into three main categories: (1) Satellite-Based Networks (L-band, C-band, Ku-band, and Ka-band); (2) Terrestrial-Based Networks (cellular, CT2, PCN, GSM, and other networks); and (3) Hybrid Satellite/Terrestrial Networks. The proceedings contain presentation papers from each of the above categories.

  1. Quality Nursing Care for Hospitalized Patients with Advanced Illness: Concept Development

    OpenAIRE

    Izumi, Shigeko; Baggs, Judith G.; Knafl, Kathleen A.

    2010-01-01

    The quality of nursing care as perceived by hospitalized patients with advanced illness has not been examined. A concept of quality nursing care for this population was developed by integrating the literature on constructs defining quality nursing care with empirical findings from interviews of 16 patients with advanced illness. Quality nursing care was characterized as competence and personal caring supported by professionalism and delivered with an appropriate demeanor. Although the attribu...

  2. BASIC PRINCIPLES AND CONCEPTS UNDERLYING RECENT ADVANCES IN MRI OF THE DEVELOPING BRAIN

    OpenAIRE

    Panigrahy, Ashok; Borzage, Matthew; Blüml, Stefan

    2010-01-01

    Over the last decade, magnetic resonance imaging has become an essential tool in the evaluation of both in vivo human brain development and perinatal brain injury. Recent technology including MR compatible neonatal incubators, neonatal head coils, advanced MR pulse sequences and 3T field strength magnets allow high quality MR imaging studies to be performed on sick neonates. This article will review basic principles and concepts underlying recent advances in MR spectroscopy, diffusion, perfus...

  3. Environmental Design of Industrial Products (EDIP), anchoring of the life cycle concept in industry and society

    DEFF Research Database (Denmark)

    Alting, Leo; Wenzel, Henrik; Hauschild, Michael Zwicky

    1999-01-01

    The Danish methodology and tools for environmental assessment of products (EDIP) became public available in 1996-97. Following the EDIP-project, projects reflecting methodological developments and simplifications for a broader use have been lanuched, also taking the methodology beyond Danish...... borders and into Europe and Asia. Simplification projects comprise development of a manual for SME's and identification of product families. Industrial applications are exemplified by a product development project at the pump manufacturer Grundfos, and by this company's use of the EDIP...

  4. Evaluating the barriers for enhacing the utilization level of advanced manufacturing technologies (AMTs in manufacturing industry

    Directory of Open Access Journals (Sweden)

    Preetam singh sankhla

    2014-10-01

    Full Text Available This research has been out within the field of the barriers of advanced manufacturing technology. It has been goal to investigate the barriers affecting the implementation of AMT in the organisation. the work with this paper has been carried out in cooperation with machine well with the goal to create recommendation for the company in how they could implement AMT successfully in the company in order to answer the question what should a small industry focus on to implement the AMT concept successfully, an investigation in the two middle size industries in the Rajasthan (India were visited. One interview was carried out with managers at both the two companies and a questionnaire was handed out to workers. The aim was to see if there were any large differences in the barriers of AMT which is applying in the company. The interview and questionnaire did show that a company should know about barriers of AMT & their inter relationship if they wanted to accomplish more in the organisation with tea work and get more busy from the employees. It is important that all workers know the vision and goal why a company is implementing AMT. Advanced manufacturing technology (AMT has been viewed strategic weapon to gain competitive advantages by manufacturing organisation . The small and medium scale industries (SMISs are under increasing pressure to adopt advanced manufacturing technology to be competitive or simply to survive. The successful implementation of AMT will requires the companies to have a workforce with higher level of skills, a flexible organizational structure and include a new culture in managing and training a workforce in the manufacturing industries. The ability of the workers to run multiple machines, stopping production when problem occur, communication of organizational goals and participation in idea generation and decision making are important in achieving a higher benefits of AMT. The SMIs have to increase the educational and supervision

  5. Development of a metal-clad advanced composite shear web design concept

    Science.gov (United States)

    Laakso, J. H.

    1974-01-01

    An advanced composite web concept was developed for potential application to the Space Shuttle Orbiter main engine thrust structure. The program consisted of design synthesis, analysis, detail design, element testing, and large scale component testing. A concept was sought that offered significant weight saving by the use of Boron/Epoxy (B/E) reinforced titanium plate structure. The desired concept was one that was practical and that utilized metal to efficiently improve structural reliability. The resulting development of a unique titanium-clad B/E shear web design concept is described. Three large scale components were fabricated and tested to demonstrate the performance of the concept: a titanium-clad plus or minus 45 deg B/E web laminate stiffened with vertical B/E reinforced aluminum stiffeners.

  6. Advanced Industrial Materials Program. Annual progress report, FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    Stooksbury, F. [comp.

    1994-06-01

    Mission of the AIM program is to commercialize new/improved materials and materials processing methods that will improve energy efficiency, productivity, and competitiveness. Program investigators in the DOE national laboratories are working with about 100 companies, including 15 partners in CRDAs. Work is being done on intermetallic alloys, ceramic composites, metal composites, polymers, engineered porous materials, and surface modification. The program supports other efforts in the Office of Industrial Technologies to assist the energy-consuming process industries. The aim of the AIM program is to bring materials from basic research to industrial application to strengthen the competitive position of US industry and save energy.

  7. Advanced processes for minor actinides recycling: studies towards potential industrialization

    International Nuclear Information System (INIS)

    In June 2006, a new act on sustainable management of radioactive waste was voted by the French parliament with a national plan on radioactive materials and radioactive waste management (PNG-MDR). Concerning partitioning and transmutation, the program is connected to 4. generation reactors, in which transmutation of minor actinides could be operated. In this frame, the next important milestone is 2012, with the assessment of the possible transmutation roads, which are either homogeneous recycling of the minor actinides in the whole reactor fleet, with a low content of M.A (∼3%) in all fuel assemblies, or heterogeneous recycling of the minor actinides in about one third of the reactor park, with a higher content of M.A. (∼20%) in dedicated targets dispatched in the periphery of the reactor. Advanced processes for the recycling of minor actinides are being developed to address the challenges of these various management options. An important part of the program consists in getting closer to process implementation conditions. The processes based on liquid-liquid extraction benefit from the experience gained by operating the PUREX process at the La Hague plant. In the field of extracting apparatus, a large experience is available. In the field of extracting apparatus, a large experience is already available. Nevertheless, the processes present specificities which have to be considered more precisely. They have been classified in the following fields: - Evolution of the simulation codes, including phenomenological representations: with such a simulation tool, it will be possible to assess operating tolerances, lead sensitivity studies and calculate transient states; - Definition of the implementation conditions in continuous contactors (such as pulse columns), according to the extractant physico-chemical characteristics; - Scale-up of new extractants, such as malonamides used in the DIAMEX process, facing purity specifications and costs estimation; - Solvent clean

  8. The role of advanced technology in the future of the power generation industry

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel, T.F.

    1994-10-01

    This presentation reviews the directions that technology has given the power generation industry in the past and how advanced technology will be the key for the future of the industry. The topics of the presentation include how the industry`s history has defined its culture, how today`s economic and regulatory climate has constrained its strategy, and how certain technology options might give some of the players an unfair advantage.

  9. Estimates of emergency operating capacity in US manufacturing and nonmanufacturing industries - Volume 1: Concepts and Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Belzer, D.B. (Pacific Northwest Lab., Richland, WA (USA)); Serot, D.E. (D/E/S Research, Richland, WA (USA)); Kellogg, M.A. (ERCE, Inc., Portland, OR (USA))

    1991-03-01

    Development of integrated mobilization preparedness policies requires planning estimates of available productive capacity during national emergency conditions. Such estimates must be developed in a manner to allow evaluation of current trends in capacity and the consideration of uncertainties in various data inputs and in engineering assumptions. This study developed estimates of emergency operating capacity (EOC) for 446 manufacturing industries at the 4-digit Standard Industrial Classification (SIC) level of aggregation and for 24 key nonmanufacturing sectors. This volume lays out the general concepts and methods used to develop the emergency operating estimates. The historical analysis of capacity extends from 1974 through 1986. Some nonmanufacturing industries are included. In addition to mining and utilities, key industries in transportation, communication, and services were analyzed. Physical capacity and efficiency of production were measured. 3 refs., 2 figs., 12 tabs. (JF)

  10. An Exploration of Learners' Conceptions of Language, Culture, and Learning in Advanced-Level Spanish Courses

    Science.gov (United States)

    Drewelow, Isabelle; Mitchell, Claire

    2015-01-01

    This article reports on an exploratory study, which examines learners' rating of culture in relation to other concepts in advanced Spanish courses and their justification of the ratings attributed. Open-ended responses, elicited from a questionnaire completed by 179 respondents, were analysed line by line using an interpretive approach. Data…

  11. Advanced Planning Concepts in the Closed-Loop Container Network of ARN

    NARCIS (Netherlands)

    Le Blanc, H.M.; van Krieken, M.G.C.; Krikke, H.R.; Fleuren, H.A.

    2004-01-01

    In this paper we discuss a real-life case study in the optimization of the logistics network for the collection of containers from end-of-life vehicle dismantlers in the Netherlands.Advanced planning concepts like dynamic assignment of dismantlers to logistic service providers are analyzed by a simu

  12. Teaching Advanced Concepts in Computer Networks: VNUML-UM Virtualization Tool

    Science.gov (United States)

    Ruiz-Martinez, A.; Pereniguez-Garcia, F.; Marin-Lopez, R.; Ruiz-Martinez, P. M.; Skarmeta-Gomez, A. F.

    2013-01-01

    In the teaching of computer networks the main problem that arises is the high price and limited number of network devices the students can work with in the laboratories. Nowadays, with virtualization we can overcome this limitation. In this paper, we present a methodology that allows students to learn advanced computer network concepts through…

  13. Proofpoint unveils the industry's most advanced anti-spam laboratory

    CERN Multimedia

    2003-01-01

    "Proofpoint, Inc., the leader in large enterprise anti-spam solutions, today unveiled its Anti-Spam Laboratory, the world's most advanced center for spam research and analysis, and the first to be based on advanced Machine Learning science" (1 page).

  14. Design concepts and advanced manipulator development for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    In the Fuel Recycle Division, Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory, a comprehensive remote systems development program has existed for the past seven years. The new remote technology under development is expected to significantly improve remote operations by extending the range of tasks accomplished by remote means and increasing the efficiency of remote work undertaken. The application of advanced manipulation is viewed as an essential part of a series of design directions whose sum describes a somewhat unique blend of old and new technology. A design direction based upon the Teletec concept is explained and recent progress in the development of an advanced servomanipulator-based maintenance concept is summarized to show that a new generation of remote systems is feasible through advanced technology. 14 refs., 14 figs

  15. Highlights of Recent Advances in Refractories for Iron and Steel Industry in China

    Institute of Scientific and Technical Information of China (English)

    LI Tingshou; ZHOU Ningsheng; SU Tiansen

    2003-01-01

    Recently procured outstanding achievements in iron and steel industry in China are presented by data or facts in steel output, energy consumption, technical and economical indicators and advanced technologies that are being adopted. The latest achievements in refractonries for this biggest user industry are reviewed, covering new refractories for CDQ coke oven, BF hearth, AOD Lining, long life tundish, SEN for clean steel making and regenerative reheating furnace. The reciprocal relationship is obvious that the rapid development of iron and steel industry has given an impetus to the advance of refractories industry, which in return has contributed greatly to the former.

  16. A Model for Infusing Energy Concepts into Vocational Education Programs. Advanced Solar Systems.

    Science.gov (United States)

    Delta Vocational Technical School, Marked Tree, AR.

    This instructional unit consists of materials designed to help students understand terms associated with solar energy; identify components of advanced solar systems; and identify applications of solar energy in business, industry, agriculture, and photovoltaics. Included in the unit are the following materials: suggested activities, instructional…

  17. Down Selection of the Design Options for an Advanced Gen IV SFR Concept

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Bum; Lee, D. U.; Kim, Y. I.; Won, B. C.; Hahn, Do Hee

    2008-11-15

    Several design concepts for incorporating those concepts into a Generation IV SFR reactor concept were proposed, based on the KALIMER-600 design developed previously by KAERI. Those concepts were suggested to define capacity, conversion ratio, cladding material, number of loops for a heat transport system and turbine type. This report addresses the main results and progress achieved this year in each research and development work for specifying each concept finally next year. The capacity of a breakeven core was defined to be 1200 MWe taking into account a TRU inventory and a discharge burnup from the viewpoint of fuel utilization. For the breakeven core specification, an enrichment split core configuration having the advantage of better neutronic economics and simpler fuel fabrication, has been selected and its core design is being carried out. Total twenty specimens for the first and second candidate alloys were designed and manufactured to develop a new cladding alloy. For those alloy specimens, a mechanical performance was evaluated and a microscopic structure has been observed. A candidate for a new cladding alloy will finally be determined following the evaluation of the third candidate alloy next year. In terms of less component units per loop and a smaller installation space, a two-loop heat transport system was selected and its detailed configuration is being developed. For defining a steam generator concept, a double walled tube type was selected from the viewpoint of reliability, economics and manufacture capability of a steam generator. A steam generator type will finally be determined to be either a straight tube type or a helical tube type, judging advances achieved in future development of the steam generator concepts. A Rankine cycle concept established well was given preference as a reference concept for BOP. A S-CO{sub 2} Brayton cycle concept newly developed as an advanced concept needs a long-term R and D work and experimental verification to

  18. Application of the Social Capital Concept in Ludology Research: An Example of the Games Industry

    OpenAIRE

    Klimczuk, Andrzej

    2009-01-01

    More and more people around the world are using computer (video) games. The development of the gaming industry means increasing of its complexity in all aspects. Not only is the content represented in games continuously differentiating, but we also see the increasing diversity among their creators, users, researchers and the public. This article aims to draw attention to the possibility of using the concept of social capital in ludologists’ research as well as in improving the quality of game...

  19. Advanced Spacesuit Portable Life Support System Packaging Concept Mock-Up Design & Development

    Science.gov (United States)

    O''Connell, Mary K.; Slade, Howard G.; Stinson, Richard G.

    1998-01-01

    A concentrated development effort was begun at NASA Johnson Space Center to create an advanced Portable Life Support System (PLSS) packaging concept. Ease of maintenance, technological flexibility, low weight, and minimal volume are targeted in the design of future micro-gravity and planetary PLSS configurations. Three main design concepts emerged from conceptual design techniques and were carried forth into detailed design, then full scale mock-up creation. "Foam", "Motherboard", and "LEGOtm" packaging design concepts are described in detail. Results of the evaluation process targeted maintenance, robustness, mass properties, and flexibility as key aspects to a new PLSS packaging configuration. The various design tools used to evolve concepts into high fidelity mock ups revealed that no single tool was all encompassing, several combinations were complimentary, the devil is in the details, and, despite efforts, many lessons were learned only after working with hardware.

  20. Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm

    Science.gov (United States)

    Robinson, John W.; McCleskey, Carey M.; Rhodes, Russel E.; Lepsch, Roger A.; Henderson, Edward M.; Joyner, Claude R., III; Levack, Daniel J. H.

    2013-01-01

    This paper describes Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm. It builds on the work of the previous paper "Approach to an Affordable and Productive Space Transportation System". The scope includes both flight and ground system elements, and focuses on their compatibility and capability to achieve a technical solution that is operationally productive and also affordable. A clear and revolutionary approach, including advanced propulsion systems (advanced LOX rich booster engine concept having independent LOX and fuel cooling systems, thrust augmentation with LOX rich boost and fuel rich operation at altitude), improved vehicle concepts (autogeneous pressurization, turbo alternator for electric power during ascent, hot gases to purge system and keep moisture out), and ground delivery systems, was examined. Previous papers by the authors and other members of the Space Propulsion Synergy Team (SPST) focused on space flight system engineering methods, along with operationally efficient propulsion system concepts and technologies. This paper continues the previous work by exploring the propulsion technology aspects in more depth and how they may enable the vehicle designs from the previous paper. Subsequent papers will explore the vehicle design, the ground support system, and the operations aspects of the new delivery paradigm in greater detail.

  1. A Framework for Human Performance Criteria for Advanced Reactor Operational Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Jacques V Hugo; David I Gertman; Jeffrey C Joe

    2014-08-01

    This report supports the determination of new Operational Concept models needed in support of the operational design of new reactors. The objective of this research is to establish the technical bases for human performance and human performance criteria frameworks, models, and guidance for operational concepts for advanced reactor designs. The report includes a discussion of operating principles for advanced reactors, the human performance issues and requirements for human performance based upon work domain analysis and current regulatory requirements, and a description of general human performance criteria. The major findings and key observations to date are that there is some operating experience that informs operational concepts for baseline designs for SFR and HGTRs, with the Experimental Breeder Reactor-II (EBR-II) as a best-case predecessor design. This report summarizes the theoretical and operational foundations for the development of a framework and model for human performance criteria that will influence the development of future Operational Concepts. The report also highlights issues associated with advanced reactor design and clarifies and codifies the identified aspects of technology and operating scenarios.

  2. How the "open innovation" concept might be used to improve profitability in the service industry

    OpenAIRE

    Hellerslien, Michael Kent

    2012-01-01

    Innovation drives economic growth and profitability. History reveals that innovation leading to technological advances occurs when knowledge is shared. Research shows that some innovative companies that produce goods have successfully adopted open innovation processes. The research question is: How can the service industry implement successful open innovation processes that lead to improved profitability? Using a systematic review process we identified the most critical 42 articles in the fie...

  3. Industrialization and City Change; the Concept and Historical Evolution of Urban Regeneration

    Directory of Open Access Journals (Sweden)

    Armin Mehdipour

    2013-04-01

    Full Text Available This study is essentially motivated by the increasing number of problems caused by industrial diversity in urban areas. Environmental degradation, Social decay and economic decline as ultimate outcomes of the Industrialization period forced dramatic changes in the process of urbanization, particularly in the developed countries where the population growth rapidly transformed the textures of cities. Hence, several cities were compelled to reconsider and encourage the practice of sustainable urban regeneration as a momentous process to revitalize these declined urban fabrics. This study first aims to trigger a brief discussion about the Industrialization period and how this trend contributed to transformation of cities. Subsequently, the concept and objectives of urban regeneration process will be extensively explained.

  4. Advances in ICT for business, industry and public sector

    CERN Document Server

    Olszak, Celina; Pełech-Pilichowski, Tomasz

    2015-01-01

    This contributed volume is a result of discussions held at ABICT’13(4th International Workshop on Advances in Business ICT) in Krakow, September 8-11, 2013. The book focuses on Advances in Business ICT approached from a multidisciplinary perspective and demonstrates different ideas and tools for developing and supporting organizational creativity, as well as advances in decision support systems.This book is an interesting resource for researchers, analysts and IT professionals including software designers. The book comprises eleven chapters presenting research results on business analytics in organization, business processes modeling, problems with processing big data, nonlinear time structures and nonlinear time ontology application, simulation profiling, signal processing (including change detection problems), text processing and risk analysis.    

  5. Advances toward industrialization of novel molten salt electrochemical processes.

    Science.gov (United States)

    Ito, Yasuhiko; Nishikiori, Tokujiro; Tsujimura, Hiroyuki

    2016-08-15

    We have invented various novel molten salt electrochemical processes, that can be put to practical use in the fields of energy and materials. These processes are promising from both technological and commercial viewpoints, and they are currently under development for industrial application. To showcase current developments in work toward industrialization, we focus here on three of these processes: (1) electrolytic synthesis of ammonia from water and nitrogen under atmospheric pressure, (2) electrochemical formation of carbon film, and (3) plasma-induced discharge electrolysis to produce nanoparticles. PMID:27265244

  6. UTILIZATION OF ULTRASOUND TECHNOGICAL ADVANCES IN FOOD INDUSTRY

    Directory of Open Access Journals (Sweden)

    Bina Rani

    2012-03-01

    Full Text Available Ultrasound has been employed for processing purposes in industries and now it is emerging as a perspective technology in different segments of food industries. This potential technology is gaining rapid momentum in food processing organization. Earlier, ultrasonics was used for cleaning purposes in food sectors. The range extends from the cleaning of nozzles used in breweries to the cleaning of bread pans in bakeries. Besides cleaning, it has also proved its significance and potential for the extraction of juice, concentration of thixotropic composition, homogenization and emulsification, improving crystallization rate and drying. This broad spectrum of application can safeguard its use as a valuable technology of the 21st century.

  7. Project T.E.A.M. (Technical Education Advancement Modules). Introduction to Industrial Physics.

    Science.gov (United States)

    Whisenhunt, James E.

    This instructional guide, one of a series developed by the Technical Education Advancement Modules (TEAM) project, is a 20-hour introduction to industrial physics that explains and demonstrates to industrial maintenance mechanics the direct relationship of physics to machinery. Project TEAM is intended to upgrade basic technical competencies of…

  8. Waste-to-energy advanced cycles and new design concepts for efficient power plants

    CERN Document Server

    Branchini, Lisa

    2015-01-01

    This book provides an overview of state-of-the-art technologies for energy conversion from waste, as well as a much-needed guide to new and advanced strategies to increase Waste-to-Energy (WTE) plant efficiency. Beginning with an overview of municipal solid waste production and disposal, basic concepts related to Waste-To-Energy conversion processes are described, highlighting the most relevant aspects impacting the thermodynamic efficiency of WTE power plants. The pervasive influences of main steam cycle parameters and plant configurations on WTE efficiency are detailed and quantified. Advanc

  9. Advanced Reactors Thermal Energy Transport for Process Industries

    Energy Technology Data Exchange (ETDEWEB)

    P. Sabharwall; S.J. Yoon; M.G. McKellar; C. Stoots; George Griffith

    2014-07-01

    The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as liquid fuel production, district heating, desalination, hydrogen production, and other process heat applications, etc. Some of the major technology challenges that must be overcome before the advanced reactors could be licensed on the reactor side are qualification of next generation of nuclear fuel, materials that can withstand higher temperature, improvement in power cycle thermal efficiency by going to combined cycles, SCO2 cycles, successful demonstration of advanced compact heat exchangers in the prototypical conditions, and from the process side application the challenge is to transport the thermal energy from the reactor to the process plant with maximum efficiency (i.e., with minimum temperature drop). The main focus of this study is on doing a parametric study of efficient heat transport system, with different coolants (mainly, water, He, and molten salts) to determine maximum possible distance that can be achieved.

  10. Advanced Technology Training Program for the Apparel Industry. Final Report.

    Science.gov (United States)

    El Paso Community Coll., TX.

    A project developed rapid response, advanced technology courses that met the apparel market labor needs of the El Paso (Texas) community. Courses were designed for four options: computerized marker making and pattern grading, computerized front office systems, high technology machinery operation, and high technology machinery mechanics. The…

  11. Basic research and industrialization of CANDU advanced fuel

    International Nuclear Information System (INIS)

    Wolsong Unit 1 as the first heavy water reactor in Korea has been in service for 17 years since 1983. It would be about the time to prepare a plan for the solution of problems due to aging of the reactor. The aging of CANDU reactor could lead especially to the steam generator cruding and pressure tube sagging and creep and then decreases the operation margin to make some problems on reactor operations and safety. The counterplan could be made in two ways. One is to repair or modify reactor itself. The other is to develop new advanced fuel to increase of CANDU operation margin effectively, so as to compensate the reduced operation margin. Therefore, the first objectives in the present R and D is to develop the CANFLEX-NU (CANDU Flexible fuelling-Natural Uranium) fuel as a CANDU advanced fuel. The second objectives is to develop CANDU advanced fuel bundle to utilize advanced fuel cycles such as recovered uranium, slightly enriched uranium, etc. and so to raise adaptability for change in situation of uranium market. Also, it is to develop CANDU advanced fuel technology which improve uranium utilization to cope with a world-wide imbalance between uranium supply and demand, without significant modification of nuclear reactor design and refuelling strategies. As the implementations to achieve the above R and D goal, the work contents and scope of technology development of CANDU advanced fuel using natural uranium (CANFLEX-NU) are the fuel element/bundle designs, the nuclear design and fuel management analysis, the thermalhydraulic analysis, the safety analysis, fuel fabrication technologies, the out-pile thermalhydraulic test and in-pile irradiation tests performed. At the next, the work scopes and contents of feasibility study of CANDU advanced fuel using recycled uranium (CANFLEX-RU) are the fuel element/bundle designs, the reactor physics analysis, the thermalhydraulic analysis, the basic safety analysis of a CANDU-6 reactor with CANFLEX-RU fuel, the fabrication and

  12. Basic research and industrialization of CANDU advanced fuel

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Suk Ho; Park, Joo Hwan; Jun, Ji Su [and others

    2000-04-01

    Wolsong Unit 1 as the first heavy water reactor in Korea has been in service for 17 years since 1983. It would be about the time to prepare a plan for the solution of problems due to aging of the reactor. The aging of CANDU reactor could lead especially to the steam generator cruding and pressure tube sagging and creep and then decreases the operation margin to make some problems on reactor operations and safety. The counterplan could be made in two ways. One is to repair or modify reactor itself. The other is to develop new advanced fuel to increase of CANDU operation margin effectively, so as to compensate the reduced operation margin. Therefore, the first objectives in the present R and D is to develop the CANFLEX-NU (CANDU Flexible fuelling-Natural Uranium) fuel as a CANDU advanced fuel. The second objectives is to develop CANDU advanced fuel bundle to utilize advanced fuel cycles such as recovered uranium, slightly enriched uranium, etc. and so to raise adaptability for change in situation of uranium market. Also, it is to develop CANDU advanced fuel technology which improve uranium utilization to cope with a world-wide imbalance between uranium supply and demand, without significant modification of nuclear reactor design and refuelling strategies. As the implementations to achieve the above R and D goal, the work contents and scope of technology development of CANDU advanced fuel using natural uranium (CANFLEX-NU) are the fuel element/bundle designs, the nuclear design and fuel management analysis, the thermalhydraulic analysis, the safety analysis, fuel fabrication technologies, the out-pile thermalhydraulic test and in-pile irradiation tests performed. At the next, the work scopes and contents of feasibility study of CANDU advanced fuel using recycled uranium (CANFLEX-RU) are the fuel element/bundle designs, the reactor physics analysis, the thermalhydraulic analysis, the basic safety analysis of a CANDU-6 reactor with CANFLEX-RU fuel, the fabrication and

  13. Evolution and current situation of the quality and industrial safety. Concepts, laws and regulations; Evolucion y situacion actual de la calidad y seguridad industrial. Conceptos, leyes y reglamentos

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, A.

    2013-06-01

    The aim of this article is to show the difference between the concepts of quality and industrial safety and how in the legislation of products and industrial installation there is a very close relationship between both concepts. So, that Spanish companies could place in the market not only safe products but also reliable ones that meet the society's demand regarding quality. (Author)

  14. Technological capabilities and late shakeouts : Industrial dynamics in the advanced gas turbine industry, 1987-2002

    OpenAIRE

    Bergek, Anna; Tell, Fredrik; Berggren, Christian; Watson, J

    2008-01-01

    This article focuses on technological discontinuities and late shakeouts in mature industries. The empirical case is combined cycle gas turbine technology in the power generation industry, where two of four main incumbents (GE, ABB, Siemens, and Westinghouse) exited the industry after several years of competition. We show that the vast differences in firm performance are strongly related to variation in technological capabilities, such as sourcing and integration of knowledge from related ind...

  15. Developing more open and equitable relationships with industry to improve advancements in clinical research in dermatology.

    Science.gov (United States)

    Campa, M; Ryan, C; Menter, A

    2016-06-01

    Relationships between physicians, scientists, and the pharmaceutical industry can be complicated by conflicts of interest. Honest and equitable relationships, however, are essential to the advancement of dermatologic clinical research. Several factors can increase transparency in clinical trials including preregistration of clinical trials, reporting of all data produced from clinical trials, non-industry ownership of clinical trial data, clarity of statistical methods and publication of both positive and negative results. Through collaborative, scientifically rigorous studies, physicians and industry can achieve significant advances in dermatologic care. PMID:27317287

  16. Yttrium-90 Radioembolization of Hepatocellular Carcinoma-Performance, Technical Advances, and Future Concepts.

    Science.gov (United States)

    Molvar, Christopher; Lewandowski, Robert

    2015-12-01

    Hepatocellular carcinoma (HCC) is a lethal tumor, claiming over half a million lives per year. Treatment of HCC is commonly performed without curative intent, and palliative options dominate, including catheter-based therapies, namely, transarterial chemoembolization and yttrium-90 ((90)Y) radioembolization. This review will showcase the performance of (90)Y radioembolization for the treatment of HCC, focusing on recent seminal data and technical advances. In particular, novel radioembolization treatment concepts are discussed and compared with conventional HCC therapy.

  17. Biology and Industrial Applications of Chlorella: Advances and Prospects.

    Science.gov (United States)

    Liu, Jin; Chen, Feng

    2016-01-01

    Chlorella represents a group of eukaryotic green microalgae that has been receiving increasing scientific and commercial interest. It possesses high photosynthetic ability and is capable of growing robustly under mixotrophic and heterotrophic conditions as well. Chlorella has long been considered as a source of protein and is now industrially produced for human food and animal feed. Chlorella is also rich in oil, an ideal feedstock for biofuels. The exploration of biofuel production by Chlorella is underway. Chlorella has the ability to fix carbon dioxide efficiently and to remove nutrients of nitrogen and phosphorous, making it a good candidate for greenhouse gas biomitigation and wastewater bioremediation. In addition, Chlorella shows potential as an alternative expression host for recombinant protein production, though challenges remain to be addressed. Currently, omics analyses of certain Chlorella strains are being performed, which will help to unravel the biological implications of Chlorella and facilitate the future exploration of industrial applications.

  18. Study of advanced composite structural design concepts for an arrow wing supersonic cruise configuration, task 3

    Science.gov (United States)

    1978-01-01

    A structural design study was conducted to assess the relative merits of structural concepts using advanced composite materials for an advanced supersonic aircraft cruising at Mach 2.7. The configuration and structural arrangement developed during Task I and II of the study, was used as the baseline configuration. Allowable stresses and strains were established for boron and advanced graphite fibers based on projected fiber properties available in the next decade. Structural concepts were designed and analyzed using graphite polyimide and boron polyimide, applied to stiffened panels and conventional sandwich panels. The conventional sandwich panels were selected as the structural concept to be used on the wing structure. The upper and lower surface panels of the Task I arrow wing were redesigned using high-strength graphite polyimide sandwich panels over the titanium spars and ribs. The ATLAS computer system was used as the basis for stress analysis and resizing the surface panels using the loads from the Task II study, without adjustment for change in aeroelastic deformation. The flutter analysis indicated a decrease in the flutter speed compared to the baseline titanium wing design. The flutter analysis indicated a decrease in the flutter speed compared to the baseline titanium wing design. The flutter speed was increased to that of the titanium wing, with a weight penalty less than that of the metallic airplane.

  19. NASA Advanced Concepts Office, Earth-To-Orbit Team Design Process and Tools

    Science.gov (United States)

    Waters, Eric D.; Garcia, Jessica; Beers, Benjamin; Philips, Alan; Holt, James B.; Threet, Grady E., Jr.

    2013-01-01

    The Earth to Orbit (ETO) Team of the Advanced Concepts Office (ACO) at NASA Marshal Space Flight Center (MSFC) is considered the preeminent group to go to for prephase A and phase A concept definition. The ACO team has been at the forefront of a multitude of launch vehicle studies determining the future direction of the Agency as a whole due, in part, to their rapid turnaround time in analyzing concepts and their ability to cover broad trade spaces of vehicles in that limited timeframe. Each completed vehicle concept includes a full mass breakdown of each vehicle to tertiary subsystem components, along with a vehicle trajectory analysis to determine optimized payload delivery to specified orbital parameters, flight environments, and delta v capability. Additionally, a structural analysis of the vehicle based on material properties and geometries is performed as well as an analysis to determine the flight loads based on the trajectory outputs. As mentioned, the ACO Earth to Orbit Team prides themselves on their rapid turnaround time and often need to fulfill customer requests within limited schedule or little advanced notice. Due to working in this fast paced environment, the ETO team has developed some finely honed skills and methods to maximize the delivery capability to meet their customer needs. This paper will describe the interfaces between the 3 primary disciplines used in the design process; weights and sizing, trajectory, and structural analysis, as well as the approach each discipline employs to streamline their particular piece of the design process.

  20. Design Concept of Advanced Sodium-Cooled Fast Reactor and Related R&D in Korea

    Directory of Open Access Journals (Sweden)

    Yeong-il Kim

    2013-01-01

    Full Text Available Korea imports about 97% of its energy resources due to a lack of available energy resources. In this status, the role of nuclear power in electricity generation is expected to become more important in future years. In particular, a fast reactor system is one of the most promising reactor types for electricity generation, because it can utilize efficiently uranium resources and reduce radioactive waste. Acknowledging the importance of a fast reactor in a future energy policy, the long-term advanced SFR development plan was authorized by KAEC in 2008 and updated in 2011 which will be carried out toward the construction of an advanced SFR prototype plant by 2028. Based upon the experiences gained during the development of the conceptual designs for KALIMER, KAERI recently developed advanced sodium-cooled fast reactor (SFR design concepts of TRU burner that can better meet the generation IV technology goals. The current status of nuclear power and SFR design technology development program in Korea will be discussed. The developments of design concepts including core, fuel, fluid system, mechanical structure, and safety evaluation have been performed. In addition, the advanced SFR technologies necessary for its commercialization and the basic key technologies have been developed including a large-scale sodium thermal-hydraulic test facility, super-critical Brayton cycle system, under-sodium viewing techniques, metal fuel development, and developments of codes, and validations are described as R&D activities.

  1. Advanced glycation End-products (AGEs): an emerging concern for processed food industries.

    Science.gov (United States)

    Sharma, Chetan; Kaur, Amarjeet; Thind, S S; Singh, Baljit; Raina, Shiveta

    2015-12-01

    The global food industry is expected to increase more than US $ 7 trillion by 2014. This rise in processed food sector shows that more and more people are diverging towards modern processed foods. As modern diets are largely heat processed, they are more prone to contain high levels of advanced glycation end products (AGEs). AGEs are a group of complex and heterogeneous compounds which are known as brown and fluorescent cross-linking substances such as pentosidine, non-fluorescent cross-linking products such as methylglyoxal-lysine dimers (MOLD), or non-fluorescent, non-cross linking adducts such as carboxymethyllysine (CML) and pyrraline (a pyrrole aldehyde). The chemistry of the AGEs formation, absorption and bioavailability and their patho-biochemistry particularly in relation to different complications like diabetes and ageing discussed. The concept of AGEs receptor - RAGE is mentioned. AGEs contribute to a variety of microvascular and macrovascular complications through the formation of cross-links between molecules in the basement membrane of the extracellular matrix and by engaging the receptor for advanced glycation end products (RAGE). Different methods of detection and quantification along with types of agents used for the treatment of AGEs are reviewed. Generally, ELISA or LC-MS methods are used for analysis of foods and body fluids, however lack of universally established method highlighted. The inhibitory effect of bioactive components on AGEs by trapping variety of chemical moieties discussed. The emerging evidence about the adverse effects of AGEs makes it necessary to investigate the different therapies to inhibit AGEs.

  2. Integrated production of cellulosic bioethanol and succinic acid from industrial hemp in a biorefinery concept

    DEFF Research Database (Denmark)

    Kuglarz, Mariusz; Alvarado-Morales, Merlin; Karakashev, Dimitar Borisov;

    2016-01-01

    The aim of this study was to develop integrated biofuel (cellulosic bioethanol) and biochemical (succinic acid) production from industrial hemp (Cannabis sativa L.) in a biorefinery concept. Two types of pretreatments were studied (dilute-acid and alkaline oxidative method). High cellulose recovery...... productivity. With respect to succinic acid production, the highest productivity was obtained after liquid fraction fermentation originated from steam treatment with 1.5% of acid. The mass balance calculations clearly showed that 149 kg of EtOH and 115 kg of succinic acid can be obtained per 1 ton of dry hemp...

  3. APPLICATION OF PROFITABILITY CONCEPT: A CASE IN THE PLASTIC RECYCLING INDUSTRY

    Directory of Open Access Journals (Sweden)

    S.A. Oke

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT:In this article the principles of industrial engineering are applied to maximize the profitability of the recycling industry. A case in the plastic recycling industry is presented to demonstrate the practical application of the financial calculation functions developed in the paper. In particular, the profitability maximization concept for the plastic recycling industry was examined, based on the theory of demand and supply. By estimating the profit realizable on regular as well as high product demand, part of the objective of the paper was achieved. Inventory principles were further applied to determine optimum inventory levels.

    AFRIKAANSE OPSOMMING: Die beginsels van bedryfsingenieurswese word in die artikel toegepas om die maksimisering van winsgewendheid by herwinbaarheidsvraagstukke te bewerkstellig. 'n Voorbeeld wat voorkom by die herwinbaarheid van plastiek word voorgehou om te toon hoedat finansiële modellering aangewend kan word. Voorraadhouding onder toestande van stabiele en toenemende vraag word behandel en in besonderheid ondersoek.

  4. Advanced coal-fueled industrial cogeneration gas turbine system

    Energy Technology Data Exchange (ETDEWEB)

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1991-07-01

    Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

  5. To MARS and Beyond with Nuclear Power - Design Concept of Korea Advanced Nuclear Thermal Engine Rocket

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Hyun; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    The President Park of ROK has also expressed support for space program promotion, praising the success of NARO as evidence of a positive outlook. These events hint a strong signal that ROK's space program will be accelerated by the national eager desire. In this national eager desire for space program, the policymakers and the aerospace engineers need to pay attention to the advanced nuclear technology of ROK that is set to a major world nuclear energy country, even exporting the technology. The space nuclear application is a very much attractive option because its energy density is the most enormous among available energy sources in space. This paper presents the design concept of Korea Advanced Nuclear Thermal Engine Rocket (KANuTER) that is one of the advanced nuclear thermal rocket engine developing in Korea Advanced Institute of Science and Technology (KAIST) for space application. Solar system exploration relying on CRs suffers from long trip time and high cost. In this regard, nuclear propulsion is a very attractive option for that because of higher performance and already demonstrated technology. Although ROK was a late entrant into elite global space club, its prospect as a space racer is very bright because of the national eager desire and its advanced technology. Especially it is greatly meaningful that ROK has potential capability to launch its nuclear technology into space as a global nuclear energy leader and a soaring space adventurer. In this regard, KANuTER will be a kind of bridgehead for Korean space nuclear application.

  6. Advanced Scintillator Detector Concept (ASDC): A Concept Paper on the Physics Potential of Water-Based Liquid Scintillator

    CERN Document Server

    Alonso, J R; Bergevin, M; Bernstein, A; Bignell, L; Blucher, E; Calaprice, F; Conrad, J M; Descamps, F B; Diwan, M V; Dwyer, D A; Dye, S T; Elagin, A; Feng, P; Grant, C; Grullon, S; Hans, S; Jaffe, D E; Kettell, S H; Klein, J R; Lande, K; Learned, J G; Luk, K B; Maricic, J; Marleau, P; Mastbaum, A; McDonough, W F; Oberauer, L; Gann, G D Orebi; Rosero, R; Rountree, S D; Sanchez, M C; Shaevitz, M H; Shokair, T M; Smy, M B; Strait, M; Svoboda, R; Tolich, N; Vagins, M R; van Bibber, K A; Viren, B; Vogelaar, R B; Wetstein, M J; Winslow, L; Wonsak, B; Worcester, E T; Wurm, M; Yeh, M; Zhang, C

    2014-01-01

    The recent development of Water-based Liquid Scintillator (WbLS), and the concurrent development of high-efficiency and high-precision-timing light sensors, has opened up the possibility for a new kind of large-scale detector capable of a very broad program of physics. The program would include determination of the neutrino mass hierarchy and observation of CP violation with long-baseline neutrinos, searches for proton decay, ultra-precise solar neutrino measurements, geo- and supernova neutrinos including diff?use supernova antineutrinos, and neutrinoless double beta decay. We outline here the basic requirements of the Advanced Scintillation Detector Concept (ASDC), which combines the use of WbLS, doping with a number of potential isotopes for a range of physics goals, high efficiency and ultra-fast timing photosensors, and a deep underground location. We are considering such a detector at the Long Baseline Neutrino Facility (LBNF) far site, where the ASDC could operate in conjunction with the liquid argon t...

  7. US long distance fiber optic networks: Technology, evolution and advanced concepts. Volume 3: Advanced networks and economics

    Science.gov (United States)

    1986-01-01

    This study projects until 2000 the evolution of long distance fiber optic networks in the U.S. Volume 1 is the executive Summary. Volume 2 focuses on fiber optic components and systems that are directly related to the operation of long-haul networks. Optimistic, pessimistic and most likely scenarios of technology development are presented. The activities of national and regional companies implementing fiber long haul networks are also highlighted, along with an analysis of the market and regulatory forces affecting network evolution. Volume 3 presents advanced fiber optic network concept definitions. Inter-LATA traffic is quantified and forms the basis for the construction of 11-, 15-, 17-, and 23-node networks. Using the technology projections from Volume 2, a financial model identifies cost drivers and determines circuit mile costs between any two LATAs. A comparison of fiber optics with alternative transmission concludes the report.

  8. Motivational Factors on Adopting Modular Coordination Concept in Industrialized Building System (IBS

    Directory of Open Access Journals (Sweden)

    Yunus Riduan

    2016-01-01

    Full Text Available Modular coordination (MC is recognized as a tool towards rationalization and industrialization. The implementation of MC concept in the design stage may improve the constructability and construction time. However, the implementation of MC in Industrialized Building System (IBS implementation is still low compare to other developed countries such as the United Kingdom, Sweden and Japan. This paper examined the interrelationship between motivational factors of stakeholders in adopting MC concept using Interpretative Structural Modeling (ISM. Questionnaire survey was engaged in this study to identify significant motivational factors. Then, semi-structure interviews were used to collect qualitative data. ISM was adopted to build relationship between factors and develop an initial model to promote the adoption of MC in IBS construction. Seven (7 significant motivational factors were identified in this research namely 1 ‘stakeholder’s commitment’, 2 ‘reduce site disruption’, 3 ‘increase productivity’, 4 ‘high skilled workers’, 5 ‘site sustainability (environment, economy and social benefits’ 6 ‘standardization’ and 7 ‘enabling ‘open building’ concept’. The result using Matrice d’Impacts Croises Multiplication Applique an Clasment (MICMAC shows that there are three factors can be categorized as Independent / Driving Factors namely ‘stakeholder’s commitment’, ‘standardization’ and ‘enabling “open building” concept’. These factors should be explored in details to enhance the adoption of IBS in Malaysia. The findings provide a very good platform for a further research in formulating an efficient solution to promote MC concept adoption among the stakeholders. This scenario will improve the deliverables of IBS construction and eliminate negative perception in its implementation.

  9. BALANCED SCORECARD AS AN ADVANCED MANAGEMENT CONCEPT WITHIN THE INTEGRATED QUALITY MANAGEMENT MODEL

    Directory of Open Access Journals (Sweden)

    Stevan Zivojinovic

    2008-03-01

    Full Text Available The significance of >Integratedquality management< (IQM model, originating form St.Gallen-model, is reflected in the need for synergic application of new and advanced concepts of management theory and practise. Balanced score card (BSC within IQM model becomes a catalyst of business success for a modern organization by focusing on organizational variables-business strategy, organization structure and corporate culture. BSC is the leading system of performance tracking and strategy implementation, consistent with other management concepts and methods for managing process improvement. Through BSC, IQM processes' activities correlate with organization business results. BSC management processes enable integration of all decision-making levels, from institutional via strategic to operative, in the process starting from planing, i.e. formulating and implementation of strategy, to feed back by performance measurement and control.

  10. Optimization of an Advanced Hybrid Wing Body Concept Using HCDstruct Version 1.2

    Science.gov (United States)

    Quinlan, Jesse R.; Gern, Frank H.

    2016-01-01

    Hybrid Wing Body (HWB) aircraft concepts continue to be promising candidates for achieving the simultaneous fuel consumption and noise reduction goals set forth by NASA's Environmentally Responsible Aviation (ERA) project. In order to evaluate the projected benefits, improvements in structural analysis at the conceptual design level were necessary; thus, NASA researchers developed the Hybrid wing body Conceptual Design and structural optimization (HCDstruct) tool to perform aeroservoelastic structural optimizations of advanced HWB concepts. In this paper, the authors present substantial updates to the HCDstruct tool and related analysis, including: the addition of four inboard and eight outboard control surfaces and two all-movable tail/rudder assemblies, providing a full aeroservoelastic analysis capability; the implementation of asymmetric load cases for structural sizing applications; and a methodology for minimizing control surface actuation power using NASTRAN SOL 200 and HCDstruct's aeroservoelastic finite-element model (FEM).

  11. Work Domain Analysis Methodology for Development of Operational Concepts for Advanced Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hugo, Jacques [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    This report describes a methodology to conduct a Work Domain Analysis in preparation for the development of operational concepts for new plants. This method has been adapted from the classical method described in the literature in order to better deal with the uncertainty and incomplete information typical of first-of-a-kind designs. The report outlines the strategy for undertaking a Work Domain Analysis of a new nuclear power plant and the methods to be used in the development of the various phases of the analysis. Basic principles are described to the extent necessary to explain why and how the classical method was adapted to make it suitable as a tool for the preparation of operational concepts for a new nuclear power plant. Practical examples are provided of the systematic application of the method and the various presentation formats in the operational analysis of advanced reactors.

  12. Study of advanced composite structural design concepts for an arrow wing supersonic cruise configuration

    Science.gov (United States)

    Turner, M. J.; Grande, D. L.

    1978-01-01

    Based on estimated graphite and boron fiber properties, allowable stresses and strains were established for advanced composite materials. Stiffened panel and conventional sandwich panel concepts were designed and analyzed, using graphite/polyimide and boron/polyimide materials. The conventional sandwich panel was elected as the structural concept for the modified wing structure. Upper and lower surface panels of the arrow wing structure were then redesigned, using high strength graphite/polyimide sandwich panels, retaining the titanium spars and ribs from the prior study. The ATLAS integrated analysis and design system was used for stress analysis and automated resizing of surface panels. Flutter analysis of the hybrid structure showed a significant decrease in flutter speed relative to the titanium wing design. The flutter speed was increased to that of the titanium design by selective increase in laminate thickness and by using graphite fibers with properties intermediate between high strength and high modulus values.

  13. Development and proof-testing of advanced absorption refrigeration cycle concepts

    Energy Technology Data Exchange (ETDEWEB)

    Modahl, R.J.; Hayes, F.C. (Trane Co., La Crosse, WI (United States). Applied Unitary/Refrigeration Systems Div.)

    1992-03-01

    The overall objectives of this project are to evaluate, develop, and proof-test advanced absorption refrigeration cycles that are applicable to residential and commercial heat pumps for space conditioning. The heat pump system is to be direct-fired with natural gas and is to use absorption working fluids whose properties are known. Target coefficients of performance (COPs) are 1.6 at 47{degrees}F and 1.2 at 17{degrees} in the heating mode, and 0.7 at 95{degree}F in the cooling mode, including the effect of flue losses. The project is divided into three phases. Phase I entailed the analytical evaluation of advanced cycles and included the selection of preferred concepts for further development. Phase II involves the development and testing of critical components and of a complete laboratory breadboard version of the selected system. Phase III calls for the development of a prototype unit and is contingent on the successful completion of Phase II. This report covers Phase I work on the project. In Phase 1, 24 advanced absorption cycle/fluid combinations were evaluated, and computer models were developed to predict system performance. COP, theoretical pump power, and internal heat exchange were calculated for each system, and these calculations were used as indicators of operating and installed costs in order to rank the relative promise of each system. The highest ranking systems involve the cycle concept of absorber/generator heat exchange, generator heat exchanger/absorber heat exchange, regeneration, and resorption/desorption, in combination with the NH{sub 3}/H{sub 2}O/LiBr ternary absorption fluid mixture or with the NH{sub 3}/H{sub 2}O binary solution. Based upon these conclusions, the recommendation was made to proceed to Phase II, the laboratory breadboard proof-of- concept.

  14. Development of Advanced Concept for Shortening Construction Period of ABWR Plant

    International Nuclear Information System (INIS)

    Construction of a nuclear power plant (NPP) requires a very long period because of large amount of construction materials and many issues for negotiation among multiple sections. Shortening the construction period advances the date of return on an investment, and can also result in reduced construction cost. Therefore, the study of this subject has a very high priority for utilities. We achieved a construction period of 37 months from the first concrete work to fuel loading (F/L) (51.5 months from the inspection of the foundation (I/F) to the start of commercial operation (C/O)) at the Kashiwazaki-Kariwa NPPs No. 6 and 7 (KK-6/7), which are the first ABWR plants in the world. At TEPCO's next plant, we think that a construction period of less than 36 months (45 months from I/F to C/O) can be realized based on conventional methods such as early start of equipment installation and blocking of equipment to be brought in advance. Furthermore, we are studying the feasibility of a 21.5-month construction period (30 months from I/F to C/O) with advanced ideas and methods. The important concepts for a 21.5-month construction period are adoption of a new building structure that is the steel plate reinforced concrete (SC) structure and promotion of extensive modularization of equipment and building structure. With introducing these new concepts, we are planning the master schedule (M/S) and finding solutions to conflicts in the schedule of area release from building construction work to equipment installation work (schedule-conflicts.) In this report, we present the shortest construction period and an effective method to put it into practice for the conventional general arrangement (GA) of ABWR. In the future, we will continue the study on the improvement of building configuration and arrangements, and make clear of the concept for large composite modules of building structures and equipment. (authors)

  15. DEVELOPMENT OF OPERATIONAL CONCEPTS FOR ADVANCED SMRs: THE ROLE OF COGNITIVE SYSTEMS ENGINEERING

    Energy Technology Data Exchange (ETDEWEB)

    Jacques Hugo; David Gertman

    2014-04-01

    Advanced small modular reactors (AdvSMRs) will use advanced digital instrumentation and control systems, and make greater use of automation. These advances not only pose technical and operational challenges, but will inevitably have an effect on the operating and maintenance (O&M) cost of new plants. However, there is much uncertainty about the impact of AdvSMR designs on operational and human factors considerations, such as workload, situation awareness, human reliability, staffing levels, and the appropriate allocation of functions between the crew and various automated plant systems. Existing human factors and systems engineering design standards and methodologies are not current in terms of human interaction requirements for dynamic automated systems and are no longer suitable for the analysis of evolving operational concepts. New models and guidance for operational concepts for complex socio-technical systems need to adopt a state-of-the-art approach such as Cognitive Systems Engineering (CSE) that gives due consideration to the role of personnel. This approach we report on helps to identify and evaluate human challenges related to non-traditional concepts of operations. A framework - defining operational strategies was developed based on the operational analysis of Argonne National Laboratory’s Experimental Breeder Reactor-II (EBR-II), a small (20MWe) sodium-cooled reactor that was successfully operated for thirty years. Insights from the application of the systematic application of the methodology and its utility are reviewed and arguments for the formal adoption of CSE as a value-added part of the Systems Engineering process are presented.

  16. Draft Function Allocation Framework and Preliminary Technical Basis for Advanced SMR Concepts of Operations

    Energy Technology Data Exchange (ETDEWEB)

    Jacques Hugo; John Forester; David Gertman; Jeffrey Joe; Heather Medema; Julius Persensky; April Whaley

    2013-08-01

    This report presents preliminary research results from the investigation into the development of new models and guidance for Concepts of Operations in advanced small modular reactor (AdvSMR) designs. AdvSMRs are nuclear power plants (NPPs), but unlike conventional large NPPs that are constructed on site, AdvSMRs systems and components will be fabricated in a factory and then assembled on site. AdvSMRs will also use advanced digital instrumentation and control systems, and make greater use of automation. Some AdvSMR designs also propose to be operated in a multi-unit configuration with a single central control room as a way to be more cost-competitive with existing NPPs. These differences from conventional NPPs not only pose technical and operational challenges, but they will undoubtedly also have regulatory compliance implications, especially with respect to staffing requirements and safety standards.

  17. Advanced Supersonic Nozzle Concepts: Experimental Flow Visualization Results Paired With LES

    Science.gov (United States)

    Berry, Matthew; Magstadt, Andrew; Stack, Cory; Gaitonde, Datta; Glauser, Mark; Syracuse University Team; The Ohio State University Team

    2015-11-01

    Advanced supersonic nozzle concepts are currently under investigation, utilizing multiple bypass streams and airframe integration to bolster performance and efficiency. This work focuses on the parametric study of a supersonic, multi-stream jet with aft deck. The single plane of symmetry, rectangular nozzle, displays very complex and unique flow characteristics. Flow visualization techniques in the form of PIV and schlieren capture flow features at various deck lengths and Mach numbers. LES is compared to the experimental results to both validate the computational model and identify limitations of the simulation. By comparing experimental results to LES, this study will help create a foundation of knowledge for advanced nozzle designs in future aircraft. SBIR Phase II with Spectral Energies, LLC under direction of Barry Kiel.

  18. Advanced Hybrid Spacesuit Concept Featuring Integrated Open Loop and Closed Loop Ventilation Systems

    Science.gov (United States)

    Daniel, Brian A.; Fitzpatrick, Garret R.; Gohmert, Dustin M.; Ybarra, Rick M.; Dub, Mark O.

    2013-01-01

    A document discusses the design and prototype of an advanced spacesuit concept that integrates the capability to function seamlessly with multiple ventilation system approaches. Traditionally, spacesuits are designed to operate both dependently and independently of a host vehicle environment control and life support system (ECLSS). Spacesuits that operate independent of vehicle-provided ECLSS services must do so with equipment selfcontained within or on the spacesuit. Suits that are dependent on vehicle-provided consumables must remain physically connected to and integrated with the vehicle to operate properly. This innovation is the design and prototype of a hybrid spacesuit approach that configures the spacesuit to seamlessly interface and integrate with either type of vehicular systems, while still maintaining the ability to function completely independent of the vehicle. An existing Advanced Crew Escape Suit (ACES) was utilized as the platform from which to develop the innovation. The ACES was retrofitted with selected components and one-off items to achieve the objective. The ventilation system concept was developed and prototyped/retrofitted to an existing ACES. Components were selected to provide suit connectors, hoses/umbilicals, internal breathing system ducting/ conduits, etc. The concept utilizes a lowpressure- drop, high-flow ventilation system that serves as a conduit from the vehicle supply into the suit, up through a neck seal, into the breathing helmet cavity, back down through the neck seal, out of the suit, and returned to the vehicle. The concept also utilizes a modified demand-based breathing system configured to function seamlessly with the low-pressure-drop closed-loop ventilation system.

  19. Advanced direct liquefaction concepts for PETC generic units. Final report, Phase I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    The Advanced Concepts for Direct Coal Liquefaction program was initiated by the Department of Energy in 1991 to develop technologies that could significantly reduce the cost of producing liquid fuels by the direct liquefaction of coal. The advanced 2-stage liquefaction technology that was developed at Wilsonville over the past 10 years has contributed significantly toward decreasing the cost of producing liquids from coal to about $33/bbl. It remains, however, the objective of DOE to further reduce this cost to a level more competitive with petroleum based products. This project, among others, was initiated to investigate various alternative approaches to develop technologies that might ultimately lead to a 25 % reduction in cost of product. In this project a number of novel concepts were investigated, either individually or in a coupled configuration that had the potential to contribute toward meeting the DOE goal. The concepts included mature technologies or ones closely related to them, such as coal cleaning by oil agglomeration, fluid coking and distillate hydrotreating and dewaxing. Other approaches that were either embryonic or less developed were chemical pretreatment of coal to remove oxygen, and dispersed catalyst development for application in the 2-stage liquefaction process. This report presents the results of this project. It is arranged in four sections which were prepared by participating organizations responsible for that phase of the project. A summary of the overall project and the principal results are given in this section. First, however, an overview of the process economics and the process concepts that were developed during the course of this program is presented.

  20. A concept of an advanced inertia fusion reactor; TAKANAWA-I

    International Nuclear Information System (INIS)

    A concept of an advanced inertia fusion reactor: TAKANAWA-I is proposed. A pellet with DT ignitor and DD major fuel, Pb wet walls, C or SiC blocks for shielding, and SiC vessels in the water pool are employed. This reactor does not need blanckets for T breeding, since T is supplied through DD reaction, and has low induced radioactivities. These and a simple structure might give a hopeful prediction of economical and safe advantages and mitigate difficulties of reactor technologies, especially remote maintenance of the reactor. (author)

  1. Advanced automation concepts applied to Experimental Breeder Reactor-II startup

    International Nuclear Information System (INIS)

    The major objective of this work is to demonstrate through simulations that advanced liquid-metal reactor plants can be operated from low power by computer control. Development of an automatic control system with this objective will help resolve specific issues and provide proof through demonstration that automatic control for plant startup is feasible. This paper presents an advanced control system design for startup of the Experimental Breeder Reactor-2 (EBR-2) located at Idaho Falls, Idaho. The design incorporates recent methods in nonlinear control with advanced diagnostics techniques such as neural networks to form an integrated architecture. The preliminary evaluations are obtained in a simulated environment by a low-order, valid nonlinear model. Within the framework of phase 1 research, the design includes an inverse dynamics controller, a fuzzy controller, and an artificial neural network controller. These three nonlinear control modules are designed to follow the EBR-2 startup trajectories in a multi-input/output regime. They are coordinated by a supervisory routine to yield a fault-tolerant, parallel operation. The control system operates in three modes: manual, semiautomatic, and fully automatic control. The simulation results of the EBR-2 startup transients proved the effectiveness of the advanced concepts. The work presented in this paper is a preliminary feasibility analysis and does not constitute a final design of an automated startup control system for EBR-2. 14 refs., 43 figs

  2. Advanced Industrial Materials (AIM) Program: Compilation of project summaries and significant accomplishments, FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    The mission of the Advanced Industrial Materials (AIM) Program is to support development and commercialization of new or improved materials to improve energy efficiency, productivity, product quality, and reduced waste in the major process industries. A fundamentally new way of working with industries--the Industries of the Future (IOF) strategy--concentrates on the major process industries that consume about 90% of the energy and generate about 90% of the waste in the industrial sector. These are the aluminum, chemical, forest products, glass, metalcasting, and steel industries. OIT has encouraged and assisted these industries in developing visions of what they will be like 20 or 30 years into the future, defining the drivers, technology needs, and barriers to realization of their visions. These visions provide a framework for development of technology roadmaps and implementation plans. The AIM Program supports IOF by conducting research and development on materials to solve problems identified in the roadmaps. This is done by National Laboratory/industry/university teams with the facilities and expertise needed to develop new and improved materials. Each project in the AIM Program has active industrial participation and support. Assessments of materials needs and opportunities in the process industries are an on-going effort within the program. These assessments are being used for program planning and priority setting, followed by support of work to satisfy those needs. All the industries have identified materials as critical, particularly for high-temperature strength, corrosion resistance, and wear resistance. Also important from the energy efficiency viewpoint are membranes, catalytic membranes, and reactors for separations, both for processing and waste reduction. AIM focuses, therefore, on high-temperature materials, corrosion resistant materials, wear resistant materials, strong polymers, coatings, and membrane materials for industrial applications.

  3. Advances in Chemical Engineering — A Review of Petrochemical Industry in China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Chemical engineering has played an important role in the development of petrochemical industry. Some important advances in chemical engineering have been discussed in detail, i. e. petroleum refining, organic chemicals, synthetic resin, synthetic fibers and relevant raw materials, synthetic rubber, and process energy integration. The main business targets of China Petroleum & Chemical Corporation (SINOPEC Corp.) and the focus of further researches are also addressed.

  4. Opportunities for the Advancement of Home Economists in the Home Equipment and Related-Product Industries.

    Science.gov (United States)

    Michael, Carol M.; Hunt, Fern E.

    1987-01-01

    Home economists' (n=151) perceptions of and factors associated with advancement in the home equipment and related-product industries were analyzed. Relationships were found between index score and educational level, extent of business training, years of employment, number of professional positions held, years in career, and mentor/sponsor…

  5. ESL for Hotel/Hospitality Industry. Level: Advanced Beginner/Intermediate.

    Science.gov (United States)

    Western Suffolk County Board of Cooperative Educational Services, Northport, NY.

    This document contains 16 lesson plans for an advanced beginning and intermediate course in work-related English for non-English- or limited-English-speaking entry-level employees in the hotel and hospitality industry. Course objectives are as follows: helping participants understand and use job-specific vocabulary; receive and understand…

  6. Advances in the effective application of membrane technology in the food industry

    DEFF Research Database (Denmark)

    Pinelo, Manuel; Jonsson, Gunnar Eigil; Meyer, Anne S.

    2011-01-01

    This chapter focuses on the recent advances in the use of membrane technology for efficient separation and concentration of solutes in the dairy and fruit juice industry, as well as in the purification of bioactive compounds to be used as food additives. The importance of fouling reduction...

  7. Retention and Advancement in the Retail Industry: A Career Ladder Approach.

    Science.gov (United States)

    Prince, Heath J.

    Retailing is the largest industry in the United States, employing roughly 18 percent of the total labor force. However, high turnover resulting from low wages in entry-level positions and the perceptions of retail workers that job security is far from certain and that advancement potential is limited have resulted in low levels of employee…

  8. Advances in the technological development of the steel industry; Advances en el desarollo tecnologico siderurgico

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Guarda, J. [ILAFA (Venezuela)

    1996-01-01

    A review of the world steel industry is given, based on information from the 36th ILAFA congress in Cartagena, September 1995. Direct reduction processes such as COREX are becoming increasingly important, some based on natural gas, some based on coal. The COREX (coal) and MIDREX (natural gas) are described and compared with coke based systems. The new FINMET system from Venezuela was also described, based on fluidized bed reactors connected in series. 4 figs.

  9. Tribopolymerization: An advanced lubrication concept for automotive engines and systems of the future

    Energy Technology Data Exchange (ETDEWEB)

    Furey, M.J. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States); Kajdas, C. [Warsaw Univ. of Technology, Plock (Poland); Kaltenbach, K.W. [Triad Investors Corp., Baltimore, MD (United States)

    1997-12-31

    Advanced lubrication technologies based on the concept of tribopolymerization as a mechanism of boundary lubrication are described. Advantages of this approach as well as potential applications which could have an impact on the design, manufacture, and performance of existing and future automotive engines are presented and discussed. Tribopolymerization, a novel concept of molecular design developed by Furey and Kajdas, involves the continuous formation of thin polymeric films on rubbing surfaces; the protective films formed are self-replenishing. The antiwear compounds developed from this technology are effective with metals as well as ceramics and in the liquid as well as vapor phases. Furthermore, they are ashless and contain no harmful phosphorus or sulfur; and many are biodegradable. Thus, potential applications of this technology are diverse and include a variety of cost/performance/energy/environmental advantages. Examples include the following: (a) machining and cutting applications using thin films to reduce friction and ceramic tool wear; (b) the lubrication of ceramic engines (e.g., low heat rejection diesel engines) or ceramic components; (c) the development of ashless lubricants for existing and future automotive engines to reduce exhaust catalyst poisoning and environmental emissions; (d) ashless antiwear or ``lubricity`` additives for fuels, including gasoline, diesel and jet fuel; (e) vapor phase applications of this technology to high temperature gaseous systems or to fuel injector wear problems associated with the use of natural gas engines; and (f) the use of the concept of tribopolymerization as an enabling technology in the development of new engines and new automotive propulsion systems.

  10. Draft Function Allocation Framework and Preliminary Technical Basis for Advanced SMR Concepts of Operations

    Energy Technology Data Exchange (ETDEWEB)

    Jacques Hugo; John Forester; David Gertman; Jeffrey Joe; Heather Medema; Julius Persensky; April Whaley

    2013-04-01

    This report presents preliminary research results from the investigation in to the development of new models and guidance for concepts of operations (ConOps) in advanced small modular reactor (aSMR) designs. In support of this objective, three important research areas were included: operating principles of multi-modular plants, functional allocation models and strategies that would affect the development of new, non-traditional concept of operations, and the requiremetns for human performance, based upon work domain analysis and current regulatory requirements. As part of the approach for this report, we outline potential functions, including the theoretical and operational foundations for the development of a new functional allocation model and the identification of specific regulatory requirements that will influence the development of future concept of operations. The report also highlights changes in research strategy prompted by confirmationof the importance of applying the work domain analysis methodology to a reference aSMR design. It is described how this methodology will enrich the findings from this phase of the project in the subsequent phases and help in identification of metrics and focused studies for the determination of human performance criteria that can be used to support the design process.

  11. Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries

    Energy Technology Data Exchange (ETDEWEB)

    Adam Polcyn; Moe Khaleel

    2009-01-06

    The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

  12. Generic Repository Concepts and Thermal Analysis for Advanced Fuel Cycles - 12477

    International Nuclear Information System (INIS)

    A geologic disposal concept for spent nuclear fuel (SNF) or high-level waste (HLW) consists of three components: waste inventory, geologic setting, and concept of operations. A set of reference geologic disposal concepts has been developed by the U.S. Department of Energy (DOE), Used Fuel Disposition campaign. Reference concepts are identified for crystalline rock, clay/shale, bedded salt, and deep borehole (crystalline basement) geologic settings. These were analyzed for waste inventory cases representing a range of waste types that could be produced by advanced nuclear fuel cycles. Concepts of operation consisting of emplacement mode, repository layout, and engineered barrier descriptions, were selected based on international progress. All of these disposal concepts are enclosed emplacement modes, whereby waste packages are in direct contact with encapsulating engineered or natural materials. Enclosed modes have less capacity to dissipate heat than open modes such as that proposed for a repository at Yucca Mountain. Thermal analysis has identified important relationships between waste package size and capacity, and the duration of surface decay storage needed to meet temperature limits for different disposal concepts. For the crystalline rock and clay/shale repository concepts, a waste package surface temperature limit of 100 deg. C was assumed to prevent changes in clay-based buffer material or clay-rich host rock. Surface decay storage of 50 to 100 years is needed for disposal of high-burnup LWR SNF in 4-PWR packages, or disposal of HLW glass from reprocessing LWR uranium oxide (UOX) fuel. High-level waste (HLW) from reprocessing of metal fuel used in a fast reactor could be disposed after decay storage of 50 years or less. For disposal in salt the rock thermal conductivity is significantly greater, and higher temperatures (200 deg. C) can be tolerated at the waste package surface. Decay storage of 10 years or less is needed for high-burnup LWR SNF in 4-PWR

  13. Generic Repository Concepts and Thermal Analysis for Advanced Fuel Cycles - 12477

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Ernest [Sandia National Laboratories, P.O. Box 5800 MS 0736, Albuquerque, NM 87185 (United States); Blink, James [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808 (United States); Carter, Joe [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States); Fratoni, Massimiliano; Greenberg, Harris; Sutton, Mark [Lawrence Livermore National Laboratory (United States); Howard, Robert [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States)

    2012-07-01

    A geologic disposal concept for spent nuclear fuel (SNF) or high-level waste (HLW) consists of three components: waste inventory, geologic setting, and concept of operations. A set of reference geologic disposal concepts has been developed by the U.S. Department of Energy (DOE), Used Fuel Disposition campaign. Reference concepts are identified for crystalline rock, clay/shale, bedded salt, and deep borehole (crystalline basement) geologic settings. These were analyzed for waste inventory cases representing a range of waste types that could be produced by advanced nuclear fuel cycles. Concepts of operation consisting of emplacement mode, repository layout, and engineered barrier descriptions, were selected based on international progress. All of these disposal concepts are enclosed emplacement modes, whereby waste packages are in direct contact with encapsulating engineered or natural materials. Enclosed modes have less capacity to dissipate heat than open modes such as that proposed for a repository at Yucca Mountain. Thermal analysis has identified important relationships between waste package size and capacity, and the duration of surface decay storage needed to meet temperature limits for different disposal concepts. For the crystalline rock and clay/shale repository concepts, a waste package surface temperature limit of 100 deg. C was assumed to prevent changes in clay-based buffer material or clay-rich host rock. Surface decay storage of 50 to 100 years is needed for disposal of high-burnup LWR SNF in 4-PWR packages, or disposal of HLW glass from reprocessing LWR uranium oxide (UOX) fuel. High-level waste (HLW) from reprocessing of metal fuel used in a fast reactor could be disposed after decay storage of 50 years or less. For disposal in salt the rock thermal conductivity is significantly greater, and higher temperatures (200 deg. C) can be tolerated at the waste package surface. Decay storage of 10 years or less is needed for high-burnup LWR SNF in 4-PWR

  14. Advanced payload concepts and system architecture for emerging services in Indian National Satellite Systems

    Science.gov (United States)

    Balasubramanian, E. P.; Rao, N. Prahlad; Sarkar, S.; Singh, D. K.

    2008-07-01

    Over the past two decades Indian Space Research Organization (ISRO) has developed and operationalized satellites to generate a large capacity of transponders for telecommunication service use in INSAT system. More powerful on-board transmitters are built to usher-in direct-to-home broadcast services. These have transformed the Satcom application scenario in the country. With the proliferation of satellite technology, a shift in the Indian market is witnessed today in terms of demand for new services like Broadband Internet, Interactive Multimedia, etc. While it is imperative to pay attention to market trends, ISRO is also committed towards taking the benefits of technological advancement to all round growth of our population, 70% of which dwell in rural areas. The initiatives already taken in space application related to telemedicine, tele-education and Village Resource Centres are required to be taken to a greater height of efficiency. These targets pose technological challenges to build a large capacity and cost-effective satellite system. This paper addresses advanced payload concepts and system architecture along with the trade-off analysis on design parameters in proposing a new generation satellite system capable of extending the reach of the Indian broadband structure to individual users, educational and medical institutions and enterprises for interactive services. This will be a strategic step in the evolution of INSAT system to employ advanced technology to touch every human face of our population.

  15. Integral design concepts of advanced water cooled reactors. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    Under the sub-programme on non-electrical applications of advanced reactors, the International Atomic Energy Agency has been providing a worldwide forum for exchange of information on integral reactor concepts. Two Technical Committee meetings were held in 1994 and 1995 on the subject where state-of-the-art developments were presented. Efforts are continuing for the development of advanced nuclear reactors of both evolutionary and innovative design, for electricity, co-generation and heat applications. While single purpose reactors for electricity generation may require small and medium sizes under certain conditions, reactors for heat applications and co-generation would be necessary in the small and medium range and need to be located closer to the load centres. The integral design approach to the development of advanced light water reactors has received special attention over the past few years. Several designs are in the detailed design stage, some are under construction, one prototype is in operation. A need has been felt for guidance on a number of issues, ranging from design objectives to the assessment methodology needed to show how integral designs can meet these objectives, and also to identify their advantages and problem areas. The technical document addresses the current status of the design, safety and operational issues of integral reactors and recommends areas for future development

  16. Integrated production of cellulosic bioethanol and succinic acid from industrial hemp in a biorefinery concept.

    Science.gov (United States)

    Kuglarz, Mariusz; Alvarado-Morales, Merlin; Karakashev, Dimitar; Angelidaki, Irini

    2016-01-01

    The aim of this study was to develop integrated biofuel (cellulosic bioethanol) and biochemical (succinic acid) production from industrial hemp (Cannabis sativa L.) in a biorefinery concept. Two types of pretreatments were studied (dilute-acid and alkaline oxidative method). High cellulose recovery (>95%) as well as significant hemicelluloses solubilization (49-59%) after acid-based method and lignin solubilization (35-41%) after alkaline H2O2 method were registered. Alkaline pretreatment showed to be superior over the acid-based method with respect to the rate of enzymatic hydrolysis and ethanol productivity. With respect to succinic acid production, the highest productivity was obtained after liquid fraction fermentation originated from steam treatment with 1.5% of acid. The mass balance calculations clearly showed that 149kg of EtOH and 115kg of succinic acid can be obtained per 1ton of dry hemp. Results obtained in this study clearly document the potential of industrial hemp for a biorefinery. PMID:26551652

  17. Geophysics, realism, and industry how commercial interests shaped geophysical conceptions, 1900–1960

    CERN Document Server

    Anduaga, Aitor

    2016-01-01

    Have industry and commerce affected the concepts, values, and epistemic foundations of different sciences? If so, how and to what extent? This book suggests that the most significant influence of industry on science, in the two case studies treated here, had to do with the issue of realism. These two cases deal with the elucidation of the layers of the upper atmosphere and the Earth’s crust. Using wave propagation as the common thread, this book simultaneously analyses the emergence of realist attitudes towards the entities of the ionosphere and the Earth’s crust. However, what was it that led physicists and engineers to adopt realist attitudes? This book suggests that a new kind of realism—one with social and cultural origins—is the answer: a preliminary, entity realism responding to specific commercial and engineering interests; i.e. a realism that was neither strictly instrumental nor exclusively operational. The book has two parts: while Part I focuses on the study of the ionosphere and how the Br...

  18. Integrated production of cellulosic bioethanol and succinic acid from industrial hemp in a biorefinery concept.

    Science.gov (United States)

    Kuglarz, Mariusz; Alvarado-Morales, Merlin; Karakashev, Dimitar; Angelidaki, Irini

    2016-01-01

    The aim of this study was to develop integrated biofuel (cellulosic bioethanol) and biochemical (succinic acid) production from industrial hemp (Cannabis sativa L.) in a biorefinery concept. Two types of pretreatments were studied (dilute-acid and alkaline oxidative method). High cellulose recovery (>95%) as well as significant hemicelluloses solubilization (49-59%) after acid-based method and lignin solubilization (35-41%) after alkaline H2O2 method were registered. Alkaline pretreatment showed to be superior over the acid-based method with respect to the rate of enzymatic hydrolysis and ethanol productivity. With respect to succinic acid production, the highest productivity was obtained after liquid fraction fermentation originated from steam treatment with 1.5% of acid. The mass balance calculations clearly showed that 149kg of EtOH and 115kg of succinic acid can be obtained per 1ton of dry hemp. Results obtained in this study clearly document the potential of industrial hemp for a biorefinery.

  19. Advanced Technology Subsonic Transport Study: N+3 Technologies and Design Concepts

    Science.gov (United States)

    Raymer, Daniel P.; Wilson, Jack; Perkins, H. Douglas; Rizzi, Arthur; Zhang, Mengmeng; RamirezPuentes, Alfredo

    2011-01-01

    Conceptual Research Corporation, the Science of the Possible, has completed a two-year study of concepts and technologies for future airliners in the 180-passenger class. This NASA-funded contract was primarily focused on the ambitious goal of a 70 percent reduction in fuel consumption versus the market-dominating Boeing 737-800. The study is related to the N+3 contracts awarded in 2008 by NASA s Aeronautics Research Mission Directorate to teams led by Boeing, GE Aviation, MIT, and Northrop Grumman, but with more modest goals and funding. CRC s contract featured a predominant emphasis on propulsion and fuel consumption, but since fuel consumption depends upon air vehicle design as much as on propulsion technology, the study included notional vehicle design, analysis, and parametric studies. Other NASA goals including NOx and noise reduction are of long-standing interest but were not highlighted in this study, other than their inclusion in the propulsion system provided to CRC by NASA. The B-737-800 was used as a benchmark, parametric tool, and design point of departure. It was modeled in the RDS-Professional aircraft design software then subjected to extensive parametric variations of parasitic drag, drag-due-to-lift, specific fuel consumption, and unsized empty weight. These studies indicated that the goal of a 70 percent reduction in fuel consumption could be attained with roughly a 30 percent improvement in all four parameters. The results were then fit to a Response Surface and coded for ease of use in subsequent trade studies. Potential technologies to obtain such savings were identified and discussed. More than 16 advanced concept designs were then prepared, attempting to investigate almost every possible emerging concept for application to this class airliner. A preliminary assessment of these concepts was done based on their total wetted area after design normalization of trimmed maximum lift. This assessment points towards a Tailless Airliner concept which

  20. Improvement of environmental aspects of thermal power plant operation by advanced control concepts

    Directory of Open Access Journals (Sweden)

    Mikulandrić Robert

    2012-01-01

    Full Text Available The necessity of the reduction of greenhouse gas emissions, as formulated in the Kyoto Protocol, imposes the need for improving environmental aspects of existing thermal power plants operation. Improvements can be reached either by efficiency increment or by implementation of emission reduction measures. Investments in refurbishment of existing plant components or in plant upgrading by flue gas desulphurization, by primary and secondary measures of nitrogen oxides reduction, or by biomass co-firing, are usually accompanied by modernisation of thermal power plant instrumentation and control system including sensors, equipment diagnostics and advanced controls. Impact of advanced control solutions implementation depends on technical characteristics and status of existing instrumentation and control systems as well as on design characteristics and actual conditions of installed plant components. Evaluation of adequacy of implementation of advanced control concepts is especially important in Western Balkan region where thermal power plants portfolio is rather diversified in terms of size, type and commissioning year and where generally poor maintenance and lack of investments in power generation sector resulted in high greenhouse gases emissions and low efficiency of plants in operation. This paper is intended to present possibilities of implementation of advanced control concepts, and particularly those based on artificial intelligence, in selected thermal power plants in order to increase plant efficiency and to lower pollutants emissions and to comply with environmental quality standards prescribed in large combustion plant directive. [Acknowledgements. This paper has been created within WBalkICT - Supporting Common RTD actions in WBCs for developing Low Cost and Low Risk ICT based solutions for TPPs Energy Efficiency increasing, SEE-ERA.NET plus project in cooperation among partners from IPA SA - Romania, University of Zagreb - Croatia and Vinca

  1. The development of advanced robotics for the nuclear industry -The development of advanced robotic technology-

    International Nuclear Information System (INIS)

    Main activity in this year is to develop both remote handling system and telepresence techniques, which can be used for people involved in extremely hazardous working area to alleviate their burden. In the robot vision technology part, KAERI-PSM system, stereo imaging camera module, stereo BOOM/MOLLY unit, and stereo HMD unit are developed. Also, autostereo TV system which falls under the category of next generation stereo imaging technology has been studied. The performance of KAERI-PSM system for remote handling task is evaluated and compared with other stereo imaging systems as well as general TV imaging system. The result shows that KAERI-PSM system is superior to the other stereo imaging systems about remote operation speedup and accuracy. The automatic recognition algorithm of instrument panel is studied and passive visual target tracking system is developed. The 5 DOF camera serving unit has been designed and fabricated. It is designed to function like human's eye. In the sensing and intelligent control research part, thermal image database system for thermal image analysis is developed and remote temperature monitoring technique using fiber optics is investigated. And also, two dimensional radioactivity sensor head for radiation profile monitoring system is designed. In the part of intelligent robotics, mobile robot is fabricated and its autonomous navigation using fuzzy control logic is studied. These remote handling and telepresence techniques developed in this project can be applied to nozzle-dam installation/removal robot system, reactor inspection unit, underwater nuclear pellet inspection and pipe abnormality inspection. And these developed remote handling and telepresence techniques will be applied in general industry, medical science, and military as well as nuclear facilities. It has been looking for these techniques to expand the working area of human, raise the working efficiencies of remote task to the highest degree, and enhance the industrial

  2. Development of a VOR/DME model for an advanced concepts simulator

    Science.gov (United States)

    Steinmetz, G. G.; Bowles, R. L.

    1984-01-01

    The report presents a definition of a VOR/DME, airborne and ground systems simulation model. This description was drafted in response to a need in the creation of an advanced concepts simulation in which flight station design for the 1980 era can be postulated and examined. The simulation model described herein provides a reasonable representation of VOR/DME station in the continental United States including area coverage by type and noise errors. The detail in which the model has been cast provides the interested researcher with a moderate fidelity level simulator tool for conducting research and evaluation of navigator algorithms. Assumptions made within the development are listed and place certain responsibilities (data bases, communication with other simulation modules, uniform round earth, etc.) upon the researcher.

  3. A program to develop advanced EBT [ELMO Bumpy Torus] concepts and international collaboration on the Bumpy Torus concept: Final report

    International Nuclear Information System (INIS)

    This project was undertaken to develop innovative concepts for improving the performance of ELMO Bumpy Torus devices in those aspects of plasma confinement that are particularly relevant to an eventual EBT reactor concept. These include effective magnetic utilization using Andreoletti coils, enhanced confinement using positive ambipolar potentials, and attractive divertor concepts that are compatible with formation and maintenance of ELMO rings. Each of the three major objectives was achieved and, except for the divertor studies, documented for publication and presentation at major scientific meetings. This report provides a brief recapitulation of the major results achieved in the form of a collection of those publications, together with this Introduction

  4. Industrial Advanced Turbine Systems: Development and Demonstration. Annual report, September 14, 1995--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The U.S. Department of Energy (DOE) has initiated a program for advanced turbine systems (ATS) that will serve industrial power generation markets. The objective of the cooperative agreements granted under the program is to join the DOE with industry in research and development that will lead to commercial offerings in the private sector. The ATS will provide ultra-high efficiency, environmental superiority, and cost competitiveness. The ATS will foster (1) early market penetration that enhances the global competitiveness of U.S. industry, (2) public health benefits resulting from reduced exhaust gas emissions of target pollutants, (3) reduced cost of power used in the energy-intensive industrial marketplace and (4) the retention and expansion of the skilled U.S. technology base required for the design, development and maintenance of state-of-the-art advanced turbine products. The Industrial ATS Development and Demonstration program is a multi-phased effort. Solar Turbines Incorporated (Solar) has participated in Phases 1 and 2 of the program. On September 14, 1995 Solar was awarded a Cooperative Agreement for Phases 3 and 4 of the program (DE-FC21-95MC31173) by the DOE`s Office of Energy Efficiency and Renewable Energy (EE). Technical administration of the Cooperative Agreement will be provided from EE`s Chicago Operations Office. Contract administration of the Cooperative Agreement will be provided from DOE`s Office of Fossil Energy, Morgantown Energy Technology Center (METC).

  5. The advanced light source: America's brightest light for science and industry

    International Nuclear Information System (INIS)

    America's brightest light comes from the Advanced Light Source (ALS), a national facility for scientific research, product development, and manufacturing. Completed in 1993, the ALS produces light in the ultraviolet and x-ray regions of the spectrum. Its extreme brightness provides opportunities for scientific and technical progress not possible anywhere else. Technology is poised on the brink of a major revolution - one in which vital machine components and industrial processes will be drastically miniaturized. Industrialized nations are vying for leadership in this revolution - and the huge economic rewards the leaders will reap

  6. The development of advanced robotic technology -The development of advanced robotics for the nuclear industry-

    International Nuclear Information System (INIS)

    In this year (the second year of this project), researches and development have been carried out to establish the essential key technologies applied to robot system for nuclear industry. In the area of robot vision, in order to construct stereo vision system necessary to tele-operation, stereo image acquisition camera module and stereo image displayer have been developed. Stereo matching and storing programs have been developed to analyse stereo images. According to the result of tele-operation experiment, operation efficiency has been enhanced about 20% by using the stereo vision system. In a part of object recognition, a tele-operated robot system has been constructed to evaluate the performance of the stereo vision system and to develop the vision algorithm to automate nozzle dam operation. A nuclear fuel rod character recognition system has been developed by using neural network. As a result of perfomance evaluation of the recognition system, 99% recognition rate has been achieved. In the area of sensing and intelligent control, temperature distribution has been measured by using the analysis of thermal image histogram and the inspection algorithm has been developed to determine of the state be normal or abnormal, and the fuzzy controller has been developed to control the compact mobile robot designed for path moving on block-typed path. (Author)

  7. The development of advanced robotics for the nuclear industry -The development of advanced robotic technology-

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Min; Lee, Yong Bum; Park, Soon Yong; Cho, Jae Wan; Lee, Nam Hoh; Kim, Woong Kee; Moon, Byung Soo; Kim, Seung Hoh; Kim, Chang Heui; Kim, Byung Soo; Hwang, Suk Yong; Lee, Yung Kwang; Moon, Je Sun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    Main activity in this year is to develop both remote handling system and telepresence techniques, which can be used for people involved in extremely hazardous working area to alleviate their burden. In the robot vision technology part, KAERI-PSM system, stereo imaging camera module, stereo BOOM/MOLLY unit, and stereo HMD unit are developed. Also, autostereo TV system which falls under the category of next generation stereo imaging technology has been studied. The performance of KAERI-PSM system for remote handling task is evaluated and compared with other stereo imaging systems as well as general TV imaging system. The result shows that KAERI-PSM system is superior to the other stereo imaging systems about remote operation speedup and accuracy. The automatic recognition algorithm of instrument panel is studied and passive visual target tracking system is developed. The 5 DOF camera serving unit has been designed and fabricated. It is designed to function like human`s eye. In the sensing and intelligent control research part, thermal image database system for thermal image analysis is developed and remote temperature monitoring technique using fiber optics is investigated. And also, two dimensional radioactivity sensor head for radiation profile monitoring system is designed. In the part of intelligent robotics, mobile robot is fabricated and its autonomous navigation using fuzzy control logic is studied. These remote handling and telepresence techniques developed in this project can be applied to nozzle-dam installation/removal robot system, reactor inspection unit, underwater nuclear pellet inspection and pipe abnormality inspection. And these developed remote handling and telepresence techniques will be applied in general industry, medical science, and military as well as nuclear facilities. 203 figs, 12 tabs, 72 refs. (Author).

  8. Advances in Chemical Engineering A Review of Petrochemical Industry in China

    Institute of Scientific and Technical Information of China (English)

    洪定一

    2001-01-01

    Chemical engineering has played an important role in the development of petrochemical industry. Some important advances in chemical engineering have been discussed in detail, i. e. petroleum refining, organic chemicals,synthetic resin, synthetic fibers and relevant raw materials, synthetic rubber, and process energy integration. The main business targets of China Petroleum & Chemical Corporation (SINOPEC Corp.) and the focus of further researches axe also addressed.

  9. The development of advanced robotics for the nuclear industry -The development of advanced robotic technology

    International Nuclear Information System (INIS)

    The comparison study of 3 kinds of stereo camera modules done in this final year of 4 year's longterm project shows that regenerating characteristics of stereo image of stereo camera using horizontally moving lens axis method is superior to the other two modules. Base on this comparison result, stereo camera module using horizontally moving lens method is developed. Also, stereo-Boom unit, high definition polarized stereo monitor(KAERI-PSM II) and 10.4sec. auto-stereogram TV using parallax barrier method are developed. These developed systems can be used for people involved in extremely hazardous working area to give vivid reality image of work environment. In the recognition and tracking section, auto-vergencing technology using focus fixation and cepstral filter, stereo camera calibration, range measurement technology using stereo camera module are developed. And active target tracking technology is developed also. In the sensing and intelligent control research part, active radioactivity image monitoring unit is developed. The spatial resolution of monitoring unit is 10cm at 1m distance, FOV is 60x40 deg [HXV], and radioactivity detection limit is 1mR/hr. Also, radiation-resistant inspection camera for nuclear facilities is designed. In the intelligent control section, fuzzy control algorithm for obstacle detouring navigation of mobile robot is developed. The smoothing techniques by fuzzy set is adapted to raise the pliability of obstacle detouring navigation of mobile robot. In order to raise robustness of developed fuzzy algorithm, fuzzy control algorithm is applied to 'Truck Backer Upper' problem and tuned. These advanced critical robot technology and telepresence techniques developed in this project can be applied to nozzle-dam installation/removal robot system, can be used to realize unmanned remotelization of nozzle-dam installation/removal task in steam generator of nuclear power plant, which can be contributed for people involved in extremely hazardous

  10. Final Report - ADVANCED LASER-BASED SENSORS FOR INDUSTRIAL PROCESS CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Manish; Baer, Douglas

    2013-09-30

    The objective of this work is to capture the potential of real-time monitoring and overcome the challenges of harsh industrial environments, Los Gatos Research (LGR) is fabricating, deploying, and commercializing advanced laser-based gas sensors for process control monitoring in industrial furnaces (e.g. electric arc furnaces). These sensors can achieve improvements in process control, leading to enhanced productivity, improved product quality, and reduced energy consumption and emissions. The first sensor will utilize both mid-infrared and near-infrared lasers to make rapid in-situ measurements of industrial gases and associated temperatures in the furnace off-gas. The second sensor will make extractive measurements of process gases. During the course of this DOE project, Los Gatos Research (LGR) fabricated, tested, and deployed both in-situ tunable diode laser absorption spectrometry (TDLAS) analyzers and extractive Off-Axis Integrated Cavity Output Spectroscopy (Off-Axis ICOS) analyzers.

  11. Industrialization of Biology. A Roadmap to Accelerate the Advanced Manufacturing of Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Douglas C. [National Academy of Sciences, Washington, DC (United States)

    2015-09-01

    The report stresses the need for efforts to inform the public of the nature of industrial biotechnology and of its societal benefits, and to make sure that concerns are communicated effectively between the public and other stakeholders. In addition to scientific advances, a number of governance and societal factors will influence the industrialization of biology. Industry norms and standards need to be established in areas such as read/write accuracy for DNA, data and machine technology specifications, and organism performance in terms of production rates and yields. An updated regulatory regime is also needed to accelerate the safe commercialization of new host organisms, metabolic pathways, and chemical products, and regulations should be coordinated across nations to enable rapid, safe, and global access to new technologies and products.

  12. Energy efficient--advanced oxidation process for treatment of cyanide containing automobile industry wastewater.

    Science.gov (United States)

    Mudliar, R; Umare, S S; Ramteke, D S; Wate, S R

    2009-05-30

    Destruction of cyanide (CN) from an automobile industry wastewater by advance oxidation process (AOP) has been evaluated. The operating conditions (in an indigenously designed photoreactor) for three different treatment strategies have been optimized. The treatment strategies involved use of, ultra violet light (UV), hydrogen peroxide (H(2)O(2)) and ozone (O(3)) in various combinations. Treatment of automobile industry wastewater (250 mg/L CN) showed fastest CN destruction, which was significantly (Pwater bodies. The specific energy consumption by the photoreactor following this treatment was comparable to that obtained by conventional treatments, which use photocatalyst. Since the present treatment does not use catalyst, it provides an excellent energy efficient and economical option for treatment and safe disposal of CN containing industrial wastewater.

  13. Technology Alignment and Portfolio Prioritization (TAPP): Advanced Methods in Strategic Analysis, Technology Forecasting and Long Term Planning for Human Exploration and Operations, Advanced Exploration Systems and Advanced Concepts

    Science.gov (United States)

    Funaro, Gregory V.; Alexander, Reginald A.

    2015-01-01

    The Advanced Concepts Office (ACO) at NASA, Marshall Space Flight Center is expanding its current technology assessment methodologies. ACO is developing a framework called TAPP that uses a variety of methods, such as association mining and rule learning from data mining, structure development using a Technological Innovation System (TIS), and social network modeling to measure structural relationships. The role of ACO is to 1) produce a broad spectrum of ideas and alternatives for a variety of NASA's missions, 2) determine mission architecture feasibility and appropriateness to NASA's strategic plans, and 3) define a project in enough detail to establish an initial baseline capable of meeting mission objectives ACO's role supports the decision­-making process associated with the maturation of concepts for traveling through, living in, and understanding space. ACO performs concept studies and technology assessments to determine the degree of alignment between mission objectives and new technologies. The first step in technology assessment is to identify the current technology maturity in terms of a technology readiness level (TRL). The second step is to determine the difficulty associated with advancing a technology from one state to the next state. NASA has used TRLs since 1970 and ACO formalized them in 1995. The DoD, ESA, Oil & Gas, and DoE have adopted TRLs as a means to assess technology maturity. However, "with the emergence of more complex systems and system of systems, it has been increasingly recognized that TRL assessments have limitations, especially when considering [the] integration of complex systems." When performing the second step in a technology assessment, NASA requires that an Advancement Degree of Difficulty (AD2) method be utilized. NASA has used and developed or used a variety of methods to perform this step: Expert Opinion or Delphi Approach, Value Engineering or Value Stream, Analytical Hierarchy Process (AHP), Technique for the Order of

  14. Proceedings of the International Symposium on Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances

    Energy Technology Data Exchange (ETDEWEB)

    Faybishenko, B. (ed.)

    1999-02-01

    This publication contains extended abstracts of papers presented at the International Symposium ''Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances'' held at Ernest Orlando Lawrence Berkeley National Laboratory on February 10-12, 1999. This Symposium is organized in Honor of the 80th Birthday of Paul A. Witherspoon, who initiated some of the early investigations on flow and transport in fractured rocks at the University of California, Berkeley, and at Lawrence Berkeley National Laboratory. He is a key figure in the development of basic concepts, modeling, and field measurements of fluid flow and contaminant transport in fractured rock systems. The technical problems of assessing fluid flow, radionuclide transport, site characterization, modeling, and performance assessment in fractured rocks remain the most challenging aspects of subsurface flow and transport investigations. An understanding of these important aspects of hydrogeology is needed to assess disposal of nu clear wastes, development of geothermal resources, production of oil and gas resources, and remediation of contaminated sites. These Proceedings of more than 100 papers from 12 countries discuss recent scientific and practical developments and the status of our understanding of fluid flow and radionuclide transport in fractured rocks. The main topics of the papers are: Theoretical studies of fluid flow in fractured rocks; Multi-phase flow and reactive chemical transport in fractured rocks; Fracture/matrix interactions; Hydrogeological and transport testing; Fracture flow models; Vadose zone studies; Isotopic studies of flow in fractured systems; Fractures in geothermal systems; Remediation and colloid transport in fractured systems; and Nuclear waste disposal in fractured rocks.

  15. Organization of the 16th Advanced Accelerator Concepts (AAC) Workshop by Stanford University

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhirong [Stanford Univ., CA (United States); Hogan, Mark [Stanford Univ., CA (United States)

    2015-09-30

    Essentially all we know today and will learn in the future about the fundamental nature of matter is derived from probing it with directed beams of particles such as electrons, protons, neutrons, heavy ions, and photons. The resulting ability to “see” the building blocks of matter has had an immense impact on society and our standard of living. Over the last century, particle accelerators have changed the way we look at nature and the universe we live in and have become an integral part of the Nation’s technical infrastructure. Today, particle accelerators are essential tools of modern science and technology. The cost and capabilities of accelerators would be greatly enhanced by breakthroughs in acceleration methods and technology. For the last 32 years, the Advanced Accelerator Concepts (AAC) Workshop has acted as the focal point for discussion and development of the most promising acceleration physics and technology. It is a particularly effective forum where the discussion is leveraged and promoted by the unique and demanding feature of the AAC Workshop: the working group structure, in which participants are asked to consider their contributions in terms of even larger problems to be solved. The 16th Advanced Accelerator Concepts (AAC2014) Workshop was organized by Stanford University from July 13 - 18, 2014 at the Dolce Hays Mansion in San Jose, California. The conference had a record 282 attendees including 62 students. Attendees came from 11 countries representing 66 different institutions. The workshop format consisted of plenary sessions in the morning with topical leaders from around the world presenting the latest breakthroughs to the entire workshop. In the late morning and afternoons attendees broke out into eight different working groups for more detailed presentations and discussions that were summarized on the final day of the workshop. In addition, there were student tutorial presentations on two afternoons to provide in depth education and

  16. 2014 U.S. Offshore Wind Market Report: Industry Trends, Technology Advancement, and Cost Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Aaron; Stehly, Tyler; Walter Musial

    2015-09-29

    2015 has been an exciting year for the U.S. offshore wind market. After more than 15 years of development work, the U.S. has finally hit a crucial milestone; Deepwater Wind began construction on the 30 MW Block Island Wind Farm (BIWF) in April. A number of other promising projects, however, have run into economic, legal, and political headwinds, generating much speculation about the future of the industry. This slow, and somewhat painful, start to the industry is not without precedent; each country in northern Europe began with pilot-scale, proof-of-concept projects before eventually moving to larger commercial scale installations. Now, after more than a decade of commercial experience, the European industry is set to achieve a new deployment record, with more than 4 GW expected to be commissioned in 2015, with demonstrable progress towards industry-wide cost reduction goals. DWW is leveraging 25 years of European deployment experience; the BIWF combines state-of-the-art technologies such as the Alstom 6 MW turbine with U.S. fabrication and installation competencies. The successful deployment of the BIWF will provide a concrete showcase that will illustrate the potential of offshore wind to contribute to state, regional, and federal goals for clean, reliable power and lasting economic development. It is expected that this initial project will launch the U.S. industry into a phase of commercial development that will position offshore wind to contribute significantly to the electric systems in coastal states by 2030.

  17. Parabolic Flight Investigation for Advanced Exercise Concept Hardware Hybrid Ultimate Lifting Kit (HULK)

    Science.gov (United States)

    Weaver, A. S.; Funk, J. H.; Funk, N. W.; Sheehan, C. C.; Humphreys, B. T.; Perusek, G. P.

    2015-01-01

    Long-duration space flight poses many hazards to the health of the crew. Among those hazards is the physiological deconditioning of the musculoskeletal and cardiovascular systems due to prolonged exposure to microgravity. To combat this erosion of physical condition space flight may take on the crew, the Human Research Program (HRP) is charged with developing Advanced Exercise Concepts to maintain astronaut health and fitness during long-term missions, while keeping device mass, power, and volume to a minimum. The goal of this effort is to preserve the physical capability of the crew to perform mission critical tasks in transit and during planetary surface operations. The HULK is a pneumatic-based exercise system, which provides both resistive and aerobic modes to protect against human deconditioning in microgravity. Its design targeted the International Space Station (ISS) Advanced Resistive Exercise Device (ARED) high level performance characteristics and provides up to 600 foot pounds resitive loading with the capability to allow for eccentric to concentric (E:C) ratios of higher than 1:1 through a DC motor assist component. The device's rowing mode allows for high cadence aerobic activity. The HULK parabolic flight campaign, conducted through the NASA Flight Opportunities Program at Ellington Field, resulted in the creation of device specific data sets including low fidelity motion capture, accelerometry and both inline and ground reaction forces. These data provide a critical link in understanding how to vibration isolate the device in both ISS and space transit applications. Secondarily, the study of human exercise and associated body kinematics in microgravity allows for more complete understanding of human to machine interface designs to allow for maximum functionality of the device in microgravity.

  18. Concept and design of a virtual reality work environment for industrial designers; Konzeption und Entwurf eines VR Arbeitsplatzes im Bereich des Industrial Design

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, T.; Bruder, R. [Universitaet Essen (Germany). Institut fuer Ergonomie und Designforschung

    2002-07-01

    This concept of a working environment for industrial designers is based on the use of Virtual Reality. The project aims at making the design process using new technologies just as intuitive as the work involving traditional tools. Basis of the development is a human centered principle, not the concentration on available technologies. The project was developed in cooperation with the Fraunhofer Gesellschaft (Institute for media communication) in Sankt Augustin, Germany. (orig.)

  19. Development of advanced magnetic resonance sensor for industrial applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    De Los Santos, A.

    1997-06-01

    Southwest Research Institute (SwRI) and various subcontractors, in a cooperative agreement with the DOE, have developed and tested an advanced magnetic resonance (MR) sensor for several industrial applications and made various market surveys. The original goal of the program was to develop an advanced moisture sensor to allow more precise and rapid control of drying processes so that energy and/or product would not be wasted. Over the course of the program, it was shown that energy savings were achievable but in many processes the return in investment did not justify the cost of a magnetic resonance sensor. However, in many processes, particularly chemical, petrochemical, paper and others, the return in investment can be very high as to easily justify the cost of a magnetic resonance sensor. In these industries, substantial improvements in product yield, quality, and efficiency in production can cause substantial energy savings and reductions in product wastage with substantial environmental effects. The initial applications selected for this program included measurement of corn gluten at three different points and corn germ at one point in an American Maize corn processing plant. During the initial phases (I and II) of this program, SwRI developed a prototype advanced moisture sensor utilizing NMR technology capable of accurately and reliably measuring moisture in industrial applications and tested the sensor in the laboratory under conditions simulating on-line products in the corn wet milling industry. The objective of Phase III was to test the prototype sensor in the plant environment to determine robustness, reliability and long term stability. Meeting these objectives would permit extended field testing to improve the statistical database used to calibrate the sensor and subject the sensor to true variations in operating conditions encountered in the process rather than those which could only be simulated in the laboratory.

  20. Virtual Commissioning of Small to Medium Scale Industry Using the Concepts of Digital Manufacturing

    OpenAIRE

    Akash.M.R; Dr. B. R. Narendra Babu

    2015-01-01

    Small scale industries produce certain products depending on the type of industry they have established. If these small scale industries decide to become medium scale certain changes have to be incorporated in plant layout to meet certain requirements. Certain changes include change in layout design, introducing new machines and equipments in the industry in order to produce new component .To implement these changes in the company we have to get information regarding the new compo...

  1. GTOC8: Results and Methods of ESA Advanced Concepts Team and JAXA-ISAS

    CERN Document Server

    Izzo, Dario; Märtens, Marcus; Getzner, Ingmar; Nowak, Krzysztof; Heffernan, Anna; Campagnola, Stefano; Yam, Chit Hong; Ozaki, Naoya; Sugimoto, Yoshihide

    2016-01-01

    We consider the interplanetary trajectory design problem posed by the 8th edition of the Global Trajectory Optimization Competition and present the end-to-end strategy developed by the team ACT-ISAS (a collaboration between the European Space Agency's Advanced Concepts Team and JAXA's Institute of Space and Astronautical Science). The resulting interplanetary trajectory won 1st place in the competition, achieving a final mission value of $J=146.33$ [Mkm]. Several new algorithms were developed in this context but have an interest that go beyond the particular problem considered, thus, they are discussed in some detail. These include the Moon-targeting technique, allowing one to target a Moon encounter from a low Earth orbit; the 1-$k$ and 2-$k$ fly-by targeting techniques, enabling one to design resonant fly-bys while ensuring a targeted future formation plane% is acquired at some point after the manoeuvre ; the distributed low-thrust targeting technique, admitting one to control the spacecraft formation plane...

  2. Improved best estimate plus uncertainty methodology including advanced validation concepts to license evolving nuclear reactors

    International Nuclear Information System (INIS)

    Many evolving nuclear energy technologies use advanced predictive multi-scale, multi-physics modeling and simulation (MS) capabilities to reduce the cost and schedule of design and licensing. A new methodology is needed for the validation of these predictive tools. The main components of the proposed methodology are verification, validation, calibration, and uncertainty quantification-steps similar to the components of the traditional US Nuclear Regulatory Commission (NRC) licensing approach, with the exception of the calibration step. An enhanced calibration concept is introduced here, and is accomplished through data assimilation. The goal of this methodology is to enable best-estimate prediction of system behaviors in both normal and safety-related environments. This goal requires the additional steps of estimating the domain of validation, and quantification of uncertainties, allowing for the extension of results to areas of the validation domain that are not directly tested with experiments. These might include the extension of the MS capabilities for application to full-scale systems. The new methodology suggests a formalism to quantify an adequate level of validation (predictive maturity) with respect to existing for data, so that required new testing can be minimized, saving cost by demonstrating that further testing will not enhance the quality of the predictive tools. The proposed methodology is at a conceptual level. The document is an extended abstract

  3. Advances and New Concepts in Alcohol-Induced Organelle Stress, Unfolded Protein Responses and Organ Damage

    Directory of Open Access Journals (Sweden)

    Cheng Ji

    2015-06-01

    Full Text Available Alcohol is a simple and consumable biomolecule yet its excessive consumption disturbs numerous biological pathways damaging nearly all organs of the human body. One of the essential biological processes affected by the harmful effects of alcohol is proteostasis, which regulates the balance between biogenesis and turnover of proteins within and outside the cell. A significant amount of published evidence indicates that alcohol and its metabolites directly or indirectly interfere with protein homeostasis in the endoplasmic reticulum (ER causing an accumulation of unfolded or misfolded proteins, which triggers the unfolded protein response (UPR leading to either restoration of homeostasis or cell death, inflammation and other pathologies under severe and chronic alcohol conditions. The UPR senses the abnormal protein accumulation and activates transcription factors that regulate nuclear transcription of genes related to ER function. Similarly, this kind of protein stress response can occur in other cellular organelles, which is an evolving field of interest. Here, I review recent advances in the alcohol-induced ER stress response as well as discuss new concepts on alcohol-induced mitochondrial, Golgi and lysosomal stress responses and injuries.

  4. Lessons learned from U.S. Department of Defense 911-Bio Advanced Concept Technology Demonstrations.

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, T.; Gasper, W.; Lacher, L.; Newsom, D.; Yantosik, G.

    1999-07-06

    The US Department of Defense (DoD), in cooperation with other federal agencies, has taken many initiatives to improve its ability to support civilian response to a domestic biological terrorism incident. This paper discusses one initiative, the 911-Bio Advanced Concept Technology Demonstrations (ACTDs), conducted by the Office of the Secretary of Defense during 1997 to better understand: (1) the capability of newly developed chemical and biological collection and identification technologies in a field environment; (2) the ability of specialized DoD response teams to use these new technologies within the structure of cooperating DoD and civilian consequence management organizations; and (3) the adequacy of current modeling tools for predicting the dispersal of biological hazards. This paper discusses the experience of the ACTDs from the civilian community support perspective. The 911-Bio ACTD project provided a valuable opportunity for DoD and civilian officials to learn how they should use their combined capabilities to manage the aftermath of a domestic biological terrorism incident.

  5. Predicted reliability of aerospace electronics: Application of two advanced probabilistic concepts

    Science.gov (United States)

    Suhir, E.

    Two advanced probabilistic design-for-reliability (PDfR) concepts are addressed and discussed in application to the prediction, quantification and assurance of the aerospace electronics reliability: 1) Boltzmann-Arrhenius-Zhurkov (BAZ) model, which is an extension of the currently widely used Arrhenius model and, in combination with the exponential law of reliability, enables one to obtain a simple, easy-to-use and physically meaningful formula for the evaluation of the probability of failure (PoF) of a material or a device after the given time in operation at the given temperature and under the given stress (not necessarily mechanical), and 2) Extreme Value Distribution (EVD) technique that can be used to assess the number of repetitive loadings that result in the material/device degradation and eventually lead to its failure by closing, in a step-wise fashion, the gap between the bearing capacity (stress-free activation energy) of the material or the device and the demand (loading). It is shown that the material degradation (aging, damage accumulation, flaw propagation, etc.) can be viewed, when BAZ model is considered, as a Markovian process, and that the BAZ model can be obtained as the ultimate steady-state solution to the well-known Fokker-Planck equation in the theory of Markovian processes. It is shown also that the BAZ model addresses the worst, but a reasonably conservative, situation. It is suggested therefore that the transient period preceding the condition addressed by the steady-state BAZ model need not be accounted for in engineering evaluations. However, when there is an interest in understanding the transient degradation process, the obtained solution to the Fokker-Planck equation can be used for this purpose. As to the EVD concept, it attributes the degradation process to the accumulation of damages caused by a train of repetitive high-level loadings, while loadings of levels that are considerably lower than their extreme values do not contribute

  6. Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume VIII. Advanced concepts

    International Nuclear Information System (INIS)

    The goal of the Nonproliferation Alternative Systems Assessment Program has been to provide recommendations for the development and deployment of more proliferation-resistant civilian nuclear-power systems without jeopardizing the development of nuclear energy. In principle, new concepts for nuclear-power systems could be designed so that materials and facilities would be inherently more proliferation-resistant. Such advanced, i.e., less-developed systems, are the subject of this volume. Accordingly, from a number of advanced concepts that were proposed for evaluation, six representative concepts were selected: the fast mixed-spectrum reactor; the denatured molten-salt reactor; the mixed-flow gaseous-core reactor; the linear-accelerator fuel-regenerator reactor; the ternary metal-fueled electronuclear fuel-producer reactor; and the tokamak fusion-fission hybrid reactor

  7. New Paradigms in International University/Industry/Government Cooperation. Canada-China Collaboration in Advanced Manufacturing Technologies.

    Science.gov (United States)

    Bulgak, Akif Asil; Liquan, He

    1996-01-01

    A Chinese university and a Canadian university collaborated on an advanced manufacturing technologies project designed to address human resource development needs in China. The project featured university/industry/government partnership and attention to environmental issues. (SK)

  8. Proceedings of the national symposium on advances in utility systems for industrial and nuclear installations (held at Bombay during January 9-11, 1992)

    International Nuclear Information System (INIS)

    The symposium was held when various utility systems, integral and peripheral to industries and organizations undergone a significant advancement in the recent years to cope with the stringent requirements of operating conditions, energy conservation and reliability. The concept of multidisciplinary approach for operating and designing these utility systems have been proved successful to meet demand of ever growing and complex processes. Keeping this in view, the subjects of the symposium were diversified in few major areas like mechanical and electrical systems, control and instrumentation, energy conservation and safety. 73 papers were included in the proceedings

  9. 'You can get there from here': Advanced low cost propulsion concepts for small satellites beyond LEO

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Adam M.; Silva Curiel, Alex da; Sweeting, Martin [Surrey Satellite Technology Ltd., Surrey (United Kingdom); Schaffner, Jake [California Polytechnic State Univ., San Luis Obispo, CA (United States)

    2005-10-15

    control. (2) Orbit transfer of an enhanced microsatellite from a typical 700 km sun-synchronous orbit to a lower or higher orbit using a low cost 40 N thrust concentrated hydrogen peroxide/kerosene bipropellant engine. A spin stabilized 'tug' concept capable of providing between 130 and 300 m/s of deltaV to the payload is described. (3) Transfer of an enhanced microsatellite from LEO to lunar orbit using a novel, storable propellant solar thermal propulsion system under development at the Surrey Space Centre. The solar thermal propulsion unit is designed for low cost small satellite support and will be compared with a more traditional approach using an industry standard storable bipropellant chemical engine. (4) Nanosatellite manoeuvring for formation flying using advanced low power electric propulsion. A colloid thruster system concept is planned for development jointly between SSTL, Queen Mary University London and Rutherford Appleton Laboratory, UK. The colloid thruster system is designed to complement an existing butane resistojet to give full 3-axis manoeuvrability to an upgraded SNAP nanosatellite platform which could be reflown in 2007 alongside ESA's Proba 2 technology demonstrator microsatellite. A comparison between low power resistojets, a colloid thruster system, and pulsed plasma thrusters for orbit manoeuvring of microsatellites will be made. This paper's final section will briefly describe some of the interplanetary missions which have been considered at the Surrey Space Centre, and will highlight the few as yet practical solutions for sending small spacecraft on high deltaV missions without the use of a costly upper stage. (Author)

  10. “You can get there from here”: Advanced low cost propulsion concepts for small satellites beyond LEO

    Science.gov (United States)

    Baker, Adam M.; da Silva Curiel, Alex; Schaffner, Jake; Sweeting, Martin

    2005-07-01

    microsatellite from a typical 700 km sun-synchronous orbit to a lower or higher orbit using a low cost 40 N thrust concentrated hydrogen peroxide/kerosene bipropellant engine. A spin stabilized 'tug' concept capable of providing between 130 and 300 m/s of deltaV to the payload is described. Transfer of an enhanced microsatellite from LEO to lunar orbit using a novel, storable propellant solar thermal propulsion system under development at the Surrey Space Centre. The solar thermal propulsion unit is designed for low cost small satellite support and will be compared with a more traditional approach using and industry standard storable bipropellant chemical engine. Nanosatellite manoeuvring for formation flying using advanced low power electric propulsion. A colloid thruster system concept is planned for development jointly between SSTL, Queen Mary University London and Rutherford Appleton Laboratory, UK. The colloid thruster system is designed to complement an existing butane resistojet to give full 3-axis manoeuvrability to an upgraded SNAP nanosatellite platform which could be reflown in 2007 alongside ESA's Proba 2 technology demonstrator microsatellite. A comparison between low power resistojets, a colloid thruster system, and pulsed plasma thrusters for orbit manoeuvring of microsatellites will be made. This paper's final section will briefly describe some of the interplanetary missions which have been considered at the Surrey Space Centre, and will highlight the few as yet practical solutions for sending small spacecraft on high deltaV missions without the use of a costly upper stage.

  11. Konsep Lima Kekuatan Porter untuk Membedah Kondisi Industri Rotan Indonesia (The Concept of Porter‘s Five Forces in Evaluating Indonesian Rattan Industry

    Directory of Open Access Journals (Sweden)

    Lisman Sumardjani

    2011-05-01

    Full Text Available Rattan is one of non timber product forest which is very famous in Indonesia. Indonesia has 350 from  the total of 600 rattan species in the world.  Indonesia rattan potential is getting more significant when it is known that among 350 species, only 53 species have been traded in both local and international market. Recently, Indonesia rattan industry facing some serious conditions, such as decreasing raw rattan production, dropping export volume and value of rattan product, and popping out the  imitation rattan.  Improper policy of government, by closing and opening the export the half-finished product of rattan without comprehensive consideration and analyzing become active catalyst of falling down for Indonesia rattan industry. Whereas in “Porter’s Five Forces” concept which was written by Michael Porter (1980, it was stated that the material component is one of five industrial environmental conditions. This concept can be used to analyze industry and company strategy development for looking at market interest.  Based on this concept, Indonesia has potential advantage as world’s main rattan supplier, because rattan can not be found in other place, except a little one.  In application stage, there are some steps can be done to return the glory of rattan, namely: assuring the market of round-semi finished rattan product is opened widely, guarantying the rattan product which has strong competitive value through design development and production cost efficiency, and national campaign to increase the usage of rattan product.Keywords: rattan, raw material, supplier, Porter’s five forces, market

  12. Industrial advanced turbine systems: Development and demonstration. Annual report, October 1, 1996--September 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The US DOE has initiated a program for advanced turbine systems (ATS) that will serve industrial power generation markets. The ATS will provide ultra-high efficiency, environmental superiority, and cost competitiveness. The ATS will foster (1) early market penetration that enhances the global competitiveness of US industry, (2) public health benefits resulting from reduced exhaust gas emissions of target pollutants, (3) reduced cost of power used in the energy-intensive industrial marketplace and (4) the retention and expansion of the skilled US technology base required for the design, development and maintenance of state-of-the-art advanced turbine products. The Industrial ATS Development and Demonstration program is a multi-phased effort. Solar Turbines Incorporated (Solar) has participated in Phases 1 and 2 of the program. On September 14, 1995 Solar was awarded a Cooperative Agreement for Phases 3 and 4 of the program. Phase 3 of the work is separated into two subphases: Phase 3A entails Component Design and Development Phase 3B will involve Integrated Subsystem Testing. Phase 4 will cover Host Site Testing. Forecasts call for completion of the program within budget as originally estimated. Scheduled completion is forecasted to be approximately 3 years late to original plan. This delay has been intentionally planned in order to better match program tasks to the anticipated availability of DOE funds. To ensure the timely realization of DOE/Solar program goals, the development schedule for the smaller system (Mercury 50) and enabling technologies has been maintained, and commissioning of the field test unit is scheduled for May of 2000. As of the end of the reporting period work on the program is 22.80% complete based upon milestones completed. This measurement is considered quite conservative as numerous drawings on the Mercury 50 are near release. Variance information is provided in Section 4.0-Program Management.

  13. Proceedings of waste stream minimization and utilization innovative concepts: An experimental technology exchange. Volume 1, Industrial solid waste processing municipal waste reduction/recycling

    Energy Technology Data Exchange (ETDEWEB)

    Lee, V.E. [ed.; Watts, R.L.

    1993-04-01

    This two-volume proceedings summarizes the results of fifteen innovations that were funded through the US Department of Energy`s Innovative Concept Program. The fifteen innovations were presented at the sixth Innovative Concepts Fair, held in Austin, Texas, on April 22--23, 1993. The concepts in this year`s fair address innovations that can substantially reduce or use waste streams. Each paper describes the need for the proposed concept, the concept being proposed, and the concept`s economics and market potential, key experimental results, and future development needs. The papers are divided into two volumes: Volume 1 addresses innovations for industrial solid waste processing and municipal waste reduction/recycling, and Volume 2 addresses industrial liquid waste processing and industrial gaseous waste processing. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  14. D-mu-A new concept in industrial low-energy electron dosimetry

    DEFF Research Database (Denmark)

    Helt-Hansen, Jakob; Miller, Arne; Sharpe, Peter;

    2010-01-01

    , resulting in difficulties in providing traceable dose measurements using reference dosimeters. In order to overcome these problems a new concept is introduced of correcting all measured doses to the average dose in the first micrometer—Dμ. We have applied this concept to dose measurements with dosimeters...

  15. The environmental impacts of Korean advanced nuclear fuel cycle KIEP-21 and disposal concepts

    International Nuclear Information System (INIS)

    We have performed a performance assessment to investigate effects of waste forms and repository designs by comparing the case of direct disposal of used PWR fuel in the Korean Reference Repository System (KRS) concept with the case of Advanced Korean Reference Disposal System (A-KRS) repository containing ILW and HLW from the KIEP-21 system. Numerical evaluations have been made for release rates of actinide and fission product isotopes at the boundaries of the engineered barrier system (EBS) and the natural barrier system (NBS) by the TTB code developed at UC Berkeley. Results show that in both cases, most actinides and their daughters remain as precipitates in the EBS because of their assumed low solubilities. The radionuclides that reach the 1 000-m location in NBS are fission products, 129I, 79Se and 36Cl. They have high solubilities and weak or no sorption with the EBS materials or with the host rock, and are released congruently with waste form alteration. In case of direct disposal, a contribution of 2% of iodine is assumed to be accumulated in the gap between the cladding and fuel pellets released after failure of the waste package and cladding dominates the total release rate. With increase in the waste form alteration time, the peak value of total release rate decreases proportionally because the dominant radionuclides are fission product isotopes, which are released from waste forms congruently with waste form dissolution. It has been shown by PHREEQC simulation that actinide solubilities can be significantly affected by pore water chemistry determined by the evolving EBS materials, waste forms and compositions of groundwater from the far field. (authors)

  16. Final Project Report "Advanced Concept Exploration For Fast Ignition Science Program"

    Energy Technology Data Exchange (ETDEWEB)

    STEPHENS, Richard B.; McLEAN, Harry M.; THEOBALD, Wolfgang; AKLI, Kramer; BEG, Farhat N.; SENTOKU, Yasuiko; SCHUMACHER, Douglas; WEI, Mingsheng S.

    2014-01-31

    The Fast Ignition (FI) Concept for Inertial Confinement Fusion has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy (IFE) reactors. FI differs from conventional “central hot spot” (CHS) target ignition by decoupling compression from heating: using the laser (or heavy ion beam or Z pinch) drive pulse (10’s of ns) to create a dense fuel and a second, much shorter (~10 ps) high intensity pulse to ignite a small region of it. There are two major physics issues concerning this concept; controlling the laser-induced generation of large electron currents and their propagation through high density plasmas. This project has addressed these two significant scientific issues in Relativistic High Energy Density (RHED) physics. Learning to control relativistic laser matter interaction (and the limits and potential thereof) will enable a wide range of applications. While these physics issues are of specific interest to inertial fusion energy science, they are also important for a wide range of other HED phenomena, including high energy ion beam generation, isochoric heating of materials, and the development of high brightness x-ray sources. Generating, controlling, and understanding the extreme conditions needed to advance this science has proved to be challenging: Our studies have pushed the boundaries of physics understanding and are at the very limits of experimental, diagnostic, and simulation capabilities in high energy density laboratory physics (HEDLP). Our research strategy has been based on pursuing the fundamental physics underlying the Fast Ignition (FI) concept. We have performed comprehensive study of electron generation and transport in fast-ignition targets with experiments, theory, and numerical modeling. A major issue is that the electrons produced in these experiments cannot be measured directly—only effects due to their transport. We focused mainly on x-ray continuum photons from bremsstrahlung

  17. Improved best estimate plus uncertainty methodology, including advanced validation concepts, to license evolving nuclear reactors

    International Nuclear Information System (INIS)

    Research highlights: → The best estimate plus uncertainty methodology (BEPU) is one option in the licensing of nuclear reactors. → The challenges for extending the BEPU method for fuel qualification for an advanced reactor fuel are primarily driven by schedule, the need for data, and the sufficiency of the data. → In this paper we develop an extended BEPU methodology that can potentially be used to address these new challenges in the design and licensing of advanced nuclear reactors. → The main components of the proposed methodology are verification, validation, calibration, and uncertainty quantification. → The methodology includes a formalism to quantify an adequate level of validation (predictive maturity) with respect to existing data, so that required new testing can be minimized, saving cost by demonstrating that further testing will not enhance the quality of the predictive tools. - Abstract: Many evolving nuclear energy technologies use advanced predictive multiscale, multiphysics modeling and simulation (M and S) capabilities to reduce the cost and schedule of design and licensing. Historically, the role of experiments has been as a primary tool for the design and understanding of nuclear system behavior, while M and S played the subordinate role of supporting experiments. In the new era of multiscale, multiphysics computational-based technology development, this role has been reversed. The experiments will still be needed, but they will be performed at different scales to calibrate and validate the models leading to predictive simulations for design and licensing. Minimizing the required number of validation experiments produces cost and time savings. The use of multiscale, multiphysics models introduces challenges in validating these predictive tools - traditional methodologies will have to be modified to address these challenges. This paper gives the basic aspects of a methodology that can potentially be used to address these new challenges in

  18. 21 reports of future industry

    International Nuclear Information System (INIS)

    This book deals with 21 reports on future industry, which contain revolution of digital educations, genetic engineering, the newest medical device, environmental industry, artificial intelligence, virtual reality, bio-green revolution, energy of the future, advanced concept computer, e-commerce, digital cash, game industry, information technology for future, next DRAM, information protection industry, robot to replace manpower, medium for information display, navigation systems, a space development, design industry and, home automation.

  19. Advanced exergy analysis and exergoeconomic performance evaluation of thermal processes in an existing industrial plant

    International Nuclear Information System (INIS)

    Highlights: • Exergoeconomic analysis of a complex industrial energy supply plant is presented. • Unavoidable exergy destruction is used to identify efficiency increase potential. • Measures for plant improvements are evaluated with respect to efficiency and costs. • Measures result with higher exergy efficiency and reduced fuel and product costs. - Abstract: Exergy analysis and exergoeconomics are often used to evaluate industrial energy systems performance from the thermodynamic and economic points of view. While the classical exergy analysis can be used to recognize the sources of inefficiency and irreversibilities, so called advanced exergy analysis is convenient for identifying real potential for thermodynamic improvements of the system by splitting exergy destruction into avoidable and unavoidable parts. In this paper, the advanced exergy analysis is used to identify performance critical components and the potential for exergy efficiency improvement of a complex industrial energy supply plant. This plant is a part of a rubber factory and its role is to provide steam, compressed air and cooling water to the production facilities, as well as hot water for space heating and sanitary use. The plant is first analyzed as is and the avoidable (and the unavoidable) part of exergy destruction is identified for each observed component. Then, the measures for removing the avoidable destruction are defined. Finally, the plant is analyzed as if the measures were implemented and avoidable losses eliminated. Numerical analysis is based on real data, some of which are collected during on site measurements. Large system of nonlinear and linear equations is defined and solved numerically using the Engineering Equation Solver. Results of the presented analysis show the difference in thermodynamic and economic operational parameters of the plant for the cases without and with the efficiency measures implemented, i.e. the current state and the state with the avoidable

  20. Recent advances in engineering the central carbon metabolism of industrially important bacteria

    Directory of Open Access Journals (Sweden)

    Papagianni Maria

    2012-04-01

    Full Text Available Abstract This paper gives an overview of the recent advances in engineering the central carbon metabolism of the industrially important bacteria Escherichia coli, Bacillus subtilis, Corynobacterium glutamicum, Streptomyces spp., Lactococcus lactis and other lactic acid bacteria. All of them are established producers of important classes of products, e.g. proteins, amino acids, organic acids, antibiotics, high-value metabolites for the food industry and also, promising producers of a large number of industrially or therapeutically important chemicals. Optimization of existing or introduction of new cellular processes in these microorganisms is often achieved through manipulation of targets that reside at major points of central metabolic pathways, such as glycolysis, gluconeogenesis, the pentose phosphate pathway and the tricarboxylic acid cycle with the glyoxylate shunt. Based on the huge progress made in recent years in biochemical, genetic and regulatory studies, new fascinating engineering approaches aim at ensuring an optimal carbon and energy flow within central metabolism in order to achieve optimized metabolite production.

  1. Creating conditions for the success of the French industrial advanced therapy sector.

    Science.gov (United States)

    Lirsac, Pierre Noel; Blin, Olivier; Magalon, Jérémy; Angot, Pierre; de Barbeyrac, Estelle; Bilbault, Pascal; Bourg, Elisabeth; Damour, Odile; Faure, Patrick; Ferry, Nicolas; Garbil, Bénédicte; Larghero, Jérôme; Nguon, Marina; Pattou, François; Thumelin, Stéphane; Yates, Frank

    2015-01-01

    Although the European Union merely followed the initiatives of the United States and Japan by introducing special regimes for orphan medicinal products, it has introduced a special status for a new category of biological medicinal products, advanced therapy medicinal products (ATMPs), adopting specific associated regulations. European Regulation (which constitutes the highest legal instrument in the hierarchy of European law texts) [EC] No. 1394/2007, published in 2007, uses this term to define somatic cell therapy medicinal products, tissue-engineered products, and gene therapy medicinal products, possibly combined with medical devices. The stated objective was two-fold: both to promote their industrialization and market access, while guaranteeing a high level of health protection for patients. Since publication of the regulation, few marketing authorizations have been granted in Europe, and these have not been accompanied by commercial success. However, certain recent studies show that this is a growing sector and that France remains the leading European nation in terms of clinical trials. This round table brought together a panel of representatives of French public and private protagonists from the advanced therapy sector. The discussions focused on the conditions to ensure the success of translational research and, more generally, the French advanced therapy sector. These enabled a number of obstacles to be identified, which once lifted, by means of recommendations, would facilitate the development and success of this sector.

  2. Creating conditions for the success of the French industrial advanced therapy sector.

    Science.gov (United States)

    Lirsac, Pierre Noel; Blin, Olivier; Magalon, Jérémy; Angot, Pierre; de Barbeyrac, Estelle; Bilbault, Pascal; Bourg, Elisabeth; Damour, Odile; Faure, Patrick; Ferry, Nicolas; Garbil, Bénédicte; Larghero, Jérôme; Nguon, Marina; Pattou, François; Thumelin, Stéphane; Yates, Frank

    2015-01-01

    Although the European Union merely followed the initiatives of the United States and Japan by introducing special regimes for orphan medicinal products, it has introduced a special status for a new category of biological medicinal products, advanced therapy medicinal products (ATMPs), adopting specific associated regulations. European Regulation (which constitutes the highest legal instrument in the hierarchy of European law texts) [EC] No. 1394/2007, published in 2007, uses this term to define somatic cell therapy medicinal products, tissue-engineered products, and gene therapy medicinal products, possibly combined with medical devices. The stated objective was two-fold: both to promote their industrialization and market access, while guaranteeing a high level of health protection for patients. Since publication of the regulation, few marketing authorizations have been granted in Europe, and these have not been accompanied by commercial success. However, certain recent studies show that this is a growing sector and that France remains the leading European nation in terms of clinical trials. This round table brought together a panel of representatives of French public and private protagonists from the advanced therapy sector. The discussions focused on the conditions to ensure the success of translational research and, more generally, the French advanced therapy sector. These enabled a number of obstacles to be identified, which once lifted, by means of recommendations, would facilitate the development and success of this sector. PMID:25747840

  3. Conceptual design of advanced central receiver power systems sodium-cooled receiver concept. Volume 2, Book 2. Appendices. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-03-01

    The appendices include: (A) design data sheets and P and I drawing for 100-MWe commercial plant design, for all-sodium storage concept; (B) design data sheets and P and I drawing for 100-MWe commercial plant design, for air-rock bed storage concept; (C) electric power generating water-steam system P and I drawing and equipment list, 100-MWe commercial plant design; (D) design data sheets and P and I drawing for 281-MWe commercial plant design; (E) steam generator system conceptual design; (F) heat losses from solar receiver surface; (G) heat transfer and pressure drop for rock bed thermal storage; (H) a comparison of alternative ways of recovering the hydraulic head from the advanced solar receiver tower; (I) central receiver tower study; (J) a comparison of mechanical and electromagnetic sodium pumps; (K) pipe routing study of sodium downcomer; and (L) sodium-cooled advanced central receiver system simulation model. (WHK)

  4. Advanced Electroactive Single Crystal and Polymer Actuator Concepts for Passive Optics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes large stroke and high precision piezoelectric single crystal and electroactive polymer actuator concepts?HYBrid Actuation System (HYBAS)...

  5. The anticipation of converging industries a concept applied to nutraceuticals and functional foods

    CERN Document Server

    Curran, Clive-Steven

    2013-01-01

    The blurring of boundaries between hitherto distinct scientific disciplines, technologies or markets is a common and powerful phenomenon. Subjects of this convergence often change consumer behaviours, favouring products and platforms with multiple functions. The Anticipation of Converging Industries provides a detailed focus on the triggers, drivers and consequences of convergence to create a more concise definition of convergence.   This detailed analysis includes a specifically developed toolbox for ‘convergence foresight’, creating a forecasting method for convergence trends. With the focus on the chemical, biotechnological and pharmaceutical industries, several indicators of convergence in the areas of Nutraceuticals/Functional Foods, Cosmeceuticals and ICT are derived from samples including over 1million patents and scientific publications.   By supporting this methodical approach with real world data, The Anticipation of Converging Industries is perfect for industry practitioners looking for a com...

  6. Advanced Information Processing System (AIPS) proof-of-concept system functional design I/O network system services

    Science.gov (United States)

    1985-01-01

    The function design of the Input/Output (I/O) services for the Advanced Information Processing System (AIPS) proof of concept system is described. The data flow diagrams, which show the functional processes in I/O services and the data that flows among them, are contained. A complete list of the data identified on the data flow diagrams and in the process descriptions are provided.

  7. Introduction to strategic research program “Advanced Technologies of Energy Generation” under which the Smart Grid concept is developed

    OpenAIRE

    Marek Laskowski; Michał Zabielski

    2016-01-01

    The paper presents a brief introduction to strategic programme “Advanced Technologies of Energy Generation”, under which Research Task 4. “Development of Integrated technologies for Production of Fuels and Energy from Biomass, Agricultural Waste and Other Materials” is implemented. The context justifies joining the task, its main objectives, management structure, and entities involved. Also justified is the inclusion of Smart Grid concept to the project scope.

  8. Introduction to strategic research program “Advanced Technologies of Energy Generation” under which the Smart Grid concept is developed

    Directory of Open Access Journals (Sweden)

    Marek Laskowski

    2016-01-01

    Full Text Available The paper presents a brief introduction to strategic programme “Advanced Technologies of Energy Generation”, under which Research Task 4. “Development of Integrated technologies for Production of Fuels and Energy from Biomass, Agricultural Waste and Other Materials” is implemented. The context justifies joining the task, its main objectives, management structure, and entities involved. Also justified is the inclusion of Smart Grid concept to the project scope.

  9. The concept of HPWS-Performance relationship: Framework for Education Industry

    OpenAIRE

    Osman Sadiq Paracha; Wan Khairuzzaman Wan Ismail; Salmiah Mohamad Amin

    2014-01-01

    Purpose: The purpose of this paper is to enhance the knowledge of High Performance Work Systems (HPWS)-Performance relationship by presenting a review of existing literature and suggesting a comprehensive framework for education industry. Design/methodology/approach: A review of existing literature is presented followed by its critical assessment. A conceptual framework is then provided in order to determine the HPWS-Performance relationship in education industry. Findings: Existing HPWS-Perf...

  10. Improved best estimate plus uncertainty methodology including advanced validation concepts to license evolving nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Unal, Cetin [Los Alamos National Laboratory; Williams, Brian [Los Alamos National Laboratory; Mc Clure, Patrick [Los Alamos National Laboratory; Nelson, Ralph A [IDAHO NATIONAL LAB

    2010-01-01

    Many evolving nuclear energy programs plan to use advanced predictive multi-scale multi-physics simulation and modeling capabilities to reduce cost and time from design through licensing. Historically, the role of experiments was primary tool for design and understanding of nuclear system behavior while modeling and simulation played the subordinate role of supporting experiments. In the new era of multi-scale multi-physics computational based technology development, the experiments will still be needed but they will be performed at different scales to calibrate and validate models leading predictive simulations. Cost saving goals of programs will require us to minimize the required number of validation experiments. Utilization of more multi-scale multi-physics models introduces complexities in the validation of predictive tools. Traditional methodologies will have to be modified to address these arising issues. This paper lays out the basic aspects of a methodology that can be potentially used to address these new challenges in design and licensing of evolving nuclear technology programs. The main components of the proposed methodology are verification, validation, calibration, and uncertainty quantification. An enhanced calibration concept is introduced and is accomplished through data assimilation. The goal is to enable best-estimate prediction of system behaviors in both normal and safety related environments. To achieve this goal requires the additional steps of estimating the domain of validation and quantification of uncertainties that allow for extension of results to areas of the validation domain that are not directly tested with experiments, which might include extension of the modeling and simulation (M&S) capabilities for application to full-scale systems. The new methodology suggests a formalism to quantify an adequate level of validation (predictive maturity) with respect to required selective data so that required testing can be minimized for cost

  11. The concept of HPWS-Performance relationship: Framework for Education Industry

    Directory of Open Access Journals (Sweden)

    Osman Sadiq Paracha

    2014-05-01

    Full Text Available Purpose: The purpose of this paper is to enhance the knowledge of High Performance Work Systems (HPWS-Performance relationship by presenting a review of existing literature and suggesting a comprehensive framework for education industry. Design/methodology/approach: A review of existing literature is presented followed by its critical assessment. A conceptual framework is then provided in order to determine the HPWS-Performance relationship in education industry. Findings: Existing HPWS-Performance literature has mostly focused on manufacturing sector ignoring the service sector especially the education industry, the authors suggest that this relationship be determined in this neglected sector while considering the "industry-specific" mediating and contingent factors which may have an effect on this relationship. The authors provide an integrated framework to measure the effect of HPWS on performance. Research limitations/implications: The provided framework is yet to be tested empirically but can be used as a model for future research. Originality/value: The paper provides an overview of HPWS-Performance literature and provides a framework based on "industry-specific" factors for education industry for empirical testing. 

  12. Developing an Engineering Data Bank Service for the Precision Machinery Industry Cluster Using the Living Lab Concept

    Directory of Open Access Journals (Sweden)

    Kuo-Shu Luo

    2012-09-01

    Full Text Available In Taiwan the precision machinery industry has always played an important role in promoting important industrial upgrades. Small and medium enterprises (SMEs account for the vast majority of participants in this industry. Because of their size and number they face a number of problems. These include difficulty in responding quickly to market demand, a low level of collaboration, and insufficient interaction between designers in central factories and the subcontractors who manufacture components for them. Taiwan’s i236 initiative applied a Living Lab Concept, along with information and communication technology (ICT, to develop a cloud-based ‘Engineering Data Bank Service’ to act as a hub for gathering data together from a local precision machinery industry ecosystem. The Taichung City Precision Machinery Innovation Technology Park was selected as the test site. After deploying the service to more than 400 SMEs, it is found that this service has a low deployment cost, and can indeed effectively enhance the working efficiency of R&D personnel and increase the interaction between central factories and subcontractors, thereby enhancing the international competitiveness of the precision machinery industry in Taiwan.

  13. 北京高端装备制造业大数据应用现状调查分析%Investigation and Study on the Application of Big Data in Advanced Equipment Manufacturing Industry in Beijing

    Institute of Scientific and Technical Information of China (English)

    张铁山; 肖皓文; 刘骐宁; 周恢

    2016-01-01

    通过对北京高端装备制造业相关企业的调研,从四个方面总结大数据的应用现状存在的问题,并提出相应的对策:树立高端装备产业中大数据应用的数据安全观;加强对高端装备产业中大数据应用的理论和政策研究;开展高端装备产业中大数据应用的商业模式研究与经验交流;建设北京高端装备产业大数据应用云中心。%Through the investigation of related enterprises in Beijing in the advanced equipment manufacturing industry,this paper summarizes status of the existing problems of the big data application from four aspects,and than put forward four suggestions:establish the concept of data security in big data applications in advanced equipment manufacturing industry; strengthen the research on theory and policy of big data application in advanced equipment manufacturing industry; develop research and exchange of experience on business model of big data applications in advanced equipment manufacturing industry; establish Big Data Application Cloud Center of Beijing in advanced equipment manufacturing industry.

  14. Advanced Wind Turbine Drivetrain Concepts: Workshop Report, June 29-30, 2010

    Energy Technology Data Exchange (ETDEWEB)

    DOE, EERE

    2010-12-01

    This report presents key findings from the Department of Energy's Advanced Drivetrain Workshop, held on June 29-30, 2010 in Broomfield, Colorado, to assess different advanced drivetrain technologies, their relative potential to improve the state-of-the-art in wind turbine drivetrains, and the scope of research and development needed for their commercialization in wind turbine applications.

  15. Application of advanced oxidation processes (AOPs) for the treatment of a particular industrial wastewater

    International Nuclear Information System (INIS)

    The present paper refers about the use of some advanced oxidation processes for the treatment of a particular industrial wastewater polluted by organic acids and solvents. Such waste is generated during the electrodeposition of paint in cathodic technological systems (cataphoresis). The AOPs studied were the following: H2O2-UV, O3 in strongly alkaline media and Fe(met)-H2O2. The latter which represents a derivation of the Fenton process gave the best results in terms of reaction times, costs in management and reduction rate of organic matter. Its efficiency was also confirmed by some laboratory tests made on synthetic samples. The reactors used to perform the experiments with ozone and H2O2-UV were especially created. The degradation of the organic compounds was quantified by monitoring the COD parameter and in some cases by detecting the concentration of each individual pollutant

  16. An industrial batch dryer simulation tool based on the concept of the characteristic drying curve

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Elmegaard, Brian; Schneider, P.

    2013-01-01

    content in the material to be invariant in the airflow direction. In the falling-rate period, the concept of the Characteristic Drying Curve (CDC) is used as proposed by Langrish et al. (1991), but modified to account for a possible end-drying rate. Using the CDC both hygroscopic and non...

  17. Advancements in NDE for utilities and the petrochemical industry through electromagnetic acoustic transducers (EMATs)

    Science.gov (United States)

    Robertson, M. O.; Stevens, Donald M.; Schlader, Daniel M.; Tilley, Richard M.

    1998-03-01

    The ultrasonic testing (UT) method continues to broaden in its effectiveness and capabilities for nondestructive evaluation (NDE). Much of this expansion can be attributed to advancements in specific techniques of the method. The utilization of electromagnetic acoustic transducers (EMATs) in dedicated ultrasonic systems has provided McDermott Technology, Inc. (MTI), formerly Babcock & Wilcox, with significant advantages over conventional ultrasonics. In recent years, through significant R&D, MTI has been instrumental in bringing about considerable advancements in the maturing EMAT technology. Progress in electronic design, magnet configurations, and sensor concepts has greatly improved system capabilities while reducing cost and equipment size. These improvements, coupled with the inherent advantages of utilizing the non-contact EMAT technique, have combined to make this technology a viable option for many commercial system inspection applications. MTI has recently completed the development and commercialization of an EMAT-based UT scanner for boiler tube thickness measurements. MTI is currently developing an automated EMAT scanner, based on phased array technology, for complete volumetric inspection of circumferential girth welds associated with pipelines (intended primarily for offshore applications). Additional benefits of phased array technology for providing materials characterization are currently being researched.

  18. Simulation-assisted technology assessment of an industrial X-ray source concept up to 1 MV

    International Nuclear Information System (INIS)

    The contribution presents a novel technical concept for a future generation of industrial X-ray sources up to 1MV in single-tank design, with a ceramic cascade X-ray tube that is connected directly with the HV cascade and electrically insulated with SF6. For a performance assessment, Monte-Carlo simulations were carried out and compared with measurements on a laboratory prototype. This way, the interdependence between design parameters and efficiency can be understood efficiently, technological limits can be assessed, and potentials for improvement can be identified at an early stage

  19. Introduction of Sustainability Concepts into Industrial Engineering Education: A Modular Approach

    Science.gov (United States)

    Nazzal, Dima; Zabinski, Joseph; Hugar, Alexander; Reinhart, Debra; Karwowski, Waldemar; Madani, Kaveh

    2015-01-01

    Sustainability in operations, production, and consumption continues to gain relevance for engineers. This trend will accelerate as demand for goods and services grows, straining resources and requiring ingenuity to replace boundless supply in meeting the needs of a more crowded, more prosperous world. Industrial engineers are uniquely positioned…

  20. Virtual Commissioning of Small to Medium Scale Industry Using the Concepts of Digital Manufacturing

    Directory of Open Access Journals (Sweden)

    Akash.M.R

    2015-04-01

    Full Text Available Small scale industries produce certain products depending on the type of industry they have established. If these small scale industries decide to become medium scale certain changes have to be incorporated in plant layout to meet certain requirements. Certain changes include change in layout design, introducing new machines and equipments in the industry in order to produce new component .To implement these changes in the company we have to get information regarding the new component the company would produce based on this information we have design new plant layout. The purpose of this project is to plan a suitable plant layout which could meet company requirement. To design a new plant layout we are using Delmia as the simulation software. DELMIA Production System Simulation allows the process planner to validate the manufacturing system dynamically. Product flow and operation time, as well as scheduled maintenance and random equipment failure events, are simulated to help the planner understand how they will impact the system’s capacity. Process planners can determine if changes to the system are needed to achieve the desired production demands.

  1. Advanced Concepts of the Propulsion System for the Futuristic Gun Ammunition

    OpenAIRE

    R.S. Darnse; Amarjit Singh

    2003-01-01

    This review paper reports various concepts of the gun propulsion system to meet the goal of the futuristic hypervelocity projectiles. The nonconventional concepts, such as liquid gun propellant, rail gun, coil gun, electrothermal gun, electrothermal chemical gun along with conventional energetic solid gun propellant have been discussed. Even though muzzle velocity around 2000 m/s has been claimed to be achieved using such nonconventional propulsion systems, it will take quite some time before...

  2. Advanced sulfur control concepts in hot-gas desulfurization technology. Quarterly report, April--June 1994

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, D.P.

    1994-07-01

    The primary objective of this research project is the direct production of elemental sulfur during the regeneration of known high temperature desulfurization sorbents. The contract was awarded to LSU on April 12, 1994, and this quarterly report covers accomplishments during the first 2 1/2 months of the project. Effort during the initial 2 1/2 month period has been limited to Tasks 1 and 2, and involves a search of the literature to identify concepts for producing elemental sulfur during regeneration of known metal oxide sorbents and a thermodynamic evaluation of these concepts. While searching and evaluating the literature is a continuing process, concentrated effort on that phase is now complete and a detailed summary is included in this report. Three possible concepts for the direct production of elemental sulfur were identified in the LSU proposal, and the literature search has not uncovered any additional concepts. Thus, the three concepts being investigated involve: (1) regeneration with SO{sub 2}, (2) regeneration with mixtures Of 02 and H{sub 2}O, and (3) regeneration with H{sub 2}O. While concept (3) directly produces H{sub 2}S instead of elemental sulfur, the concept is included because the possibility exists for converting H{sub 2}S to elemental sulfur using the Claus process. Each of the concepts will ultimately be compared to the Direct Sulfur Recovery Process (DSRP) under development by RTI. DSRP involves initial sorbent regeneration to SO{sub 2}, and the inclusion of additional processing steps to reduce the SO{sub 2} to elemental sulfur.

  3. Selection of an industrial natural-gas-fired advanced turbine system - Task 3A

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, G.M.

    1997-05-01

    TASK OBJECTIVES: Identify a gas-fueled turbine and steam system which will meet the program goals for efficiency - and emissions. TECHNICAL GOALS AND REQUIREMENTS: Goals for the Advanced Turbine System Program (ATS) where outlined in the statement of work for five basic categories: Cycle Efficiency - System heat rate to have a 15% improvement over 1991 vintage systems being offered to the market. Environmental No post-combustion devices while meeting the following parameter targets: (1) Nitrous Oxide (NO{sub x}) emissions to equal 8 parts per million dry (ppmd) with 15% oxygen. (2) Carbon monoxide (CO) and unburned hydrocarbon (UHC) emissions to equal 20 parts per million(ppmd) each. Cost of electricity to be 10 percent less when compared to similar 1991 systems. Fuel Flexibility Have to ability to burn coal or coal derived fuels without extensive redesign. Reliability, Availability, Maintainability Reliability, availability and maintainability must be comparable to modern advanced power generation systems. For all cycle and system studies, analyses were done for the following engine system ambient conditions: Temperature - 59F; Altitude - Sea Level; Humidity - 60%. For the 1991 reference system, GE Aircraft Engines used its LM6OOO engine product offering for comparison of the Industrial System parameters developed under this program.

  4. Melt Infiltrated Ceramic Matrix Composites for Shrouds and Combustor Liners of Advanced Industrial Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Corman; Krishan Luthra; Jill Jonkowski; Joseph Mavec; Paul Bakke; Debbie Haught; Merrill Smith

    2011-01-07

    This report covers work performed under the Advanced Materials for Advanced Industrial Gas Turbines (AMAIGT) program by GE Global Research and its collaborators from 2000 through 2010. A first stage shroud for a 7FA-class gas turbine engine utilizing HiPerComp{reg_sign}* ceramic matrix composite (CMC) material was developed. The design, fabrication, rig testing and engine testing of this shroud system are described. Through two field engine tests, the latter of which is still in progress at a Jacksonville Electric Authority generating station, the robustness of the CMC material and the shroud system in general were demonstrated, with shrouds having accumulated nearly 7,000 hours of field engine testing at the conclusion of the program. During the latter test the engine performance benefits from utilizing CMC shrouds were verified. Similar development of a CMC combustor liner design for a 7FA-class engine is also described. The feasibility of using the HiPerComp{reg_sign} CMC material for combustor liner applications was demonstrated in a Solar Turbines Ceramic Stationary Gas Turbine (CSGT) engine test where the liner performed without incident for 12,822 hours. The deposition processes for applying environmental barrier coatings to the CMC components were also developed, and the performance of the coatings in the rig and engine tests is described.

  5. Through the Past Decade: How Advanced Energy Design Guides have influenced the Design Industry

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bing; Athalye, Rahul A.

    2015-07-31

    Advanced Energy Design Guides (AEDGs) were originally developed intended to provide a simple approach to building professionals seeking energy efficient building designs better than ASHRAE Standard 90.1. Since its first book was released in 2004, the AEDG series provided inspiration for the design industry and were seen by designers as a starting point for buildings that wished to go beyond minimum codes and standards. In addition, U.S. Department of Energy’s successful Commercial Building Partnerships (CBP) program leveraged many of the recommendations from the AEDGs to achieve 50% energy savings over ASHRAE Standard 90.1-2004 for prototypical designs of large commercial entities in the retail, banking and lodging sectors. Low-energy technologies and strategies developed during the CBP process have been applied by commercial partners throughout their national portfolio of buildings. Later, the AEDGs served as the perfect platform for both Standard 90.1 and ASHRAE’s high performance buildings standard, Standard 189.1. What was high performance a few years ago, however, has become minimum code today. Indeed, most of the prescriptive envelope component requirements in ASHRAE Standard 90.1-2013 are values recommended in the 50% AEDGs several years ago. Similarly, AEDG strategies and recommendations have penetrated the lighting and HVAC sections of both Standard 189.1 and Standard 90.1. Finally, as we look to the future of codes and standards, the AEDGs are serving as a blueprint for how minimum code requirements could be expressed. By customizing codes to specific building types, design strategies tailored for individual buildings could be prescribed as minimum code, just like in the AEDGs. This paper describes the impact that AEDGs have had over the last decade on the design industry and how they continue to influence the future of codes and Standards. From design professionals to code officials, everyone in the building industry has been affected by the AEDGs.

  6. Future visioning system for designing and developing new product concepts in the consumer electronics industries

    OpenAIRE

    Jeong, Jinho

    2002-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. This thesis discusses development of a future visioning system model that can be adopted to create new product concepts for consumer electronics companies operating in a highly competitive business environment. The research work investigates consumer electronic product companies and their market environment to identify problematic issues and indicates that a proactive new product strategy whi...

  7. The Brazilian equipment for photovoltaic systems industry: current concepts; A industria brasileira de equipamentos para sistemas fotovoltaicos: panorama atual

    Energy Technology Data Exchange (ETDEWEB)

    Varella, Fabiana Karla de Oliveira Martins; Cavaliero, Carla Kazue Nakao [Universidade Estadual de Campinas (DE/FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Energia], e-mail: fkv@fem.unicamp.br, e-mail: cavaliero@fem.unicamp.br; Silva, Ennio Peres da [Universidade Estadual de Campinas (DFA/IFGW/UNICAMP), SP (Brazil). Inst. de Fisica Gleb Wataghin. Dept. de Fisica Aplicada], e-mail: lh2ennio@ifi.unicamp.br

    2008-07-01

    The use of renewable alternative sources of energy in the world has been growing in the last few decades due to concerns about dependence on fossil sources and to environmental reasons, related to climatic change and its effects on mankind. Tax and/or financial incentives have been instituted for the population, to have access to renewable source technologies, and for the local equipment industry, to develop more quickly. In Brazil, the PV (photovoltaic) equipment to convert solar into electricity is more often used in low income rural communities, located distant from the grid network. However, since there is no currently specific regulatory incentive mechanism for this source in the country, the Brazilian PV equipment industry has not made great advances and the market is largely dominated by multinationals. Against this background, this work has as objective to analyze the current PV equipment industry in Brazil, in such way that the obtained information can aid in a future elaboration of a national program development to promote the use of this technology, stimulating the domestic industry and reducing the dependence on imported equipment. (author)

  8. Reduction of organic trace compounds and fresh water consumption by recovery of advanced oxidation processes treated industrial wastewater.

    Science.gov (United States)

    Bierbaum, S; Öller, H-J; Kersten, A; Klemenčič, A Krivograd

    2014-01-01

    Ozone (O(3)) has been used successfully in advanced wastewater treatment in paper mills, other sectors and municipalities. To solve the water problems of regions lacking fresh water, wastewater treated by advanced oxidation processes (AOPs) can substitute fresh water in highly water-consuming industries. Results of this study have shown that paper strength properties are not impaired and whiteness is slightly impaired only when reusing paper mill wastewater. Furthermore, organic trace compounds are becoming an issue in the German paper industry. The results of this study have shown that AOPs are capable of improving wastewater quality by reducing organic load, colour and organic trace compounds.

  9. Towards the re-industrialization of Europe a concept for manufacturing for 2030

    CERN Document Server

    Westkämper, Engelbert

    2014-01-01

    Not only are European industries shrinking and experiencing diminishment of their capability to add value, but Europe has lost more than a third of its GDP, which had been primarily based on manufacturing, and it suffers the consequences in high unemployment and weakened states finance. This book is intended as a significant contribution to the on-going European discussions after the economic crisis and the economic problems in many regions. It is meant to enrich actual political dialogues for overcoming the crises by activating new potentials of high added value. As such, it seeks to provide the necessary orientation for enacting fundamental changes of business models and factory capabilities in order to meet the challenges of the global economy and minimizing environmental impacts. It also opens perspectives for enterprise strategies and for further research topics. Concrete recommendations are made for fields of action and future development towards achieving a sustainable industrial sector in Europe. ‘T...

  10. ANALYSIS AND UNDERSTANDING OF KEY MARKETING CONCEPTS MARKETING ACTIVITIES ORGANIZED WITHIN THE FOOTWEAR INDUSTRY COMPANIES

    OpenAIRE

    Carmen Adina Pastiu

    2011-01-01

    Marketing in its hypostasis: optical and economic design, practice science andart, it appears and develops in the context of a competitive economy, as a necessity ofbusiness success. These considerations and not only determined us researching its directsteps: business to business, and to identify characteristics of marketing activities undertakenby companies in competitive markets. In this paper we follow, based on research carried outon a sample of 160 statistical units (footwear industry co...

  11. Industrial Districts and Innovation Business Networks: New Theories and Concepts for Entrepreneurship Development

    OpenAIRE

    Tremblay, Diane-Gabrielle

    1998-01-01

    Over recent years, the study of industrial districts, inter-organizational relations and networks has become a major theme of interest in entrepreneurship research. Theories point to a new form of entrepreneurship and firm development which is based on the idea of creating links between firms to increase their chances of success and development. In this paper, we will present some data from a research we have conducted in Canada, in the province of Quebec to be exact, but first, we will prese...

  12. Some advanced concepts of mobile robotics for plant inspection and maintenance

    International Nuclear Information System (INIS)

    The paper introduces two concepts in robotics the feasibility of which are presently being studied for plant inspection/maintenance purposes. One of them is a walking machine platform which utilizes walking on discrete set of points making it possible to feed energy trough legs and/or grip on fixing points when needing strong support or climbing on walls. The other is a robot society concept in which the work is distributed among the member robots of the society. The society has an inner communication system trough which information is spread between the members. The control system of the society takes care of the task coordination and communication between the society and the user. As a special feature energy distribution within the society is considered. The concept is suggested for inspection and cleaning type of work in process equipment area and also inside processes in some cases. (author)

  13. Applications of fatigue and fracture tolerant design concepts in the nuclear power industry

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.L.; Marston, T.U.; Tagart, S.W.; Norris, D.M.; Nickell, R.E.

    1982-01-01

    To assure the integrity of nuclear power plant components, fatigue and fracture tolerant design concepts have been incorporated in Sections III and XI of the ASME Code; these contain requirements for nuclear power plant design, construction, and in-service inspection. The methods used in the Code to design against fatigue and brittle fracture are described together with the fracture mechanics based procedure suggested in Sections XI for the evaluation of flaws detected by in-service inspections. Some aspects of the present Code methods that could probably be improved are identified. 19 refs.

  14. ISLAMIC EDUCATION IN CIVILIZATION OF FASHION INDUSTRY: CLOTHES CONCEPT REFLECTION IN ISLAM

    OpenAIRE

    Ahmad Mustami

    2015-01-01

    This article discusses the concept Apparel in Islamic education. This was currently a lot of variety of fashion in dress. Although the general function of clothes was a human genitalia cover and protect the body from the heat of the sun. However hijab at this time not just cover the nakedness, but rather as a fashion style that became a common thing now was infecting the womenfolk including Muslim. Ranging from clothes, pants, until hijab began in innovation so as to attract the eye. Although...

  15. Design and fabrication of an advanced, lightweight, high stiffness, railgun barrel concept

    International Nuclear Information System (INIS)

    An advanced lightweight and high stiffness railgun barrel design and incorporates several new design features and advanced materials is being developed by SPARTA, Inc. The program is sponsored by the U.S. Army Armament Research, Development, and Engineering Center ARDEC and by the Defense Advanced Research Projects Agency (DARPA). The railgun is 7 m long and has a 90 mm round bore. It is designed to accommodate both solid and plasma armatures. Muzzle energies are expected in the range of 9 to 15 MJ. Analysis and final design has been completed and the barrel and other railgun subassemblies are in the fabrication stage at SPARTA, Inc. in San Diego, California. Initial testing will be conducted at Maxwell Laboratories Green Farm facility in September 1990 and will subsequently be shipped to the ARDEC Railgun Laboratory in October 1990 for full power operation and testing. This paper discusses the design features and fabrication approaches for this high performance, lightweight railgun barrel system

  16. Advancement of proprotor technology. Task 1: Design study summary. [aerodynamic concept of minimum size tilt proprotor research aircraft

    Science.gov (United States)

    1969-01-01

    A tilt-proprotor proof-of-concept aircraft design study has been conducted. The results are presented. The ojective of the contract is to advance the state of proprotor technology through design studies and full-scale wind-tunnel tests. The specific objective is to conduct preliminary design studies to define a minimum-size tilt-proprotor research aircraft that can perform proof-of-concept flight research. The aircraft that results from these studies is a twin-engine, high-wing aircraft with 25-foot, three-bladed tilt proprotors mounted on pylons at the wingtips. Each pylon houses a Pratt and Whitney PT6C-40 engine with a takeoff rating of 1150 horsepower. Empty weight is estimated at 6876 pounds. The normal gross weight is 9500 pounds, and the maximum gross weight is 12,400 pounds.

  17. Development of Proof-of-Concept Units for the Advanced Medium-Sized Mobile Power Sources (AMMPS) Program

    Energy Technology Data Exchange (ETDEWEB)

    Andriulli, JB

    2002-04-03

    The purpose of this report is to document the development of the proof-of-concept units within the Advanced Medium-sized Mobile Power Sources (AMMPS) program. The design used a small, lightweight diesel engine, a permanent magnet alternator, power electronics and digital controls as outlined in the philosophy detailed previously. One small proof-of-concept unit was completed and delivered to the military. The unit functioned well but was not optimized at the time of delivery to the military. A tremendous amount of experience was gained during this phase that can be used in the development of any follow-on AMMPS production systems. Lessons learned and recommendations for follow-on specifications are provided. The unit demonstrated that significant benefits are possible with the new design philosophy. Trade-offs will have to be made but many of the advantages appear to be within the technical grasp of the market.

  18. Development and proof-testing of advanced absorption refrigeration cycle concepts. Report on Phases 1 and 1A

    Energy Technology Data Exchange (ETDEWEB)

    Modahl, R.J.; Hayes, F.C. [Trane Co., La Crosse, WI (United States). Applied Unitary/Refrigeration Systems Div.

    1992-03-01

    The overall objectives of this project are to evaluate, develop, and proof-test advanced absorption refrigeration cycles that are applicable to residential and commercial heat pumps for space conditioning. The heat pump system is to be direct-fired with natural gas and is to use absorption working fluids whose properties are known. Target coefficients of performance (COPs) are 1.6 at 47{degrees}F and 1.2 at 17{degrees} in the heating mode, and 0.7 at 95{degree}F in the cooling mode, including the effect of flue losses. The project is divided into three phases. Phase I entailed the analytical evaluation of advanced cycles and included the selection of preferred concepts for further development. Phase II involves the development and testing of critical components and of a complete laboratory breadboard version of the selected system. Phase III calls for the development of a prototype unit and is contingent on the successful completion of Phase II. This report covers Phase I work on the project. In Phase 1, 24 advanced absorption cycle/fluid combinations were evaluated, and computer models were developed to predict system performance. COP, theoretical pump power, and internal heat exchange were calculated for each system, and these calculations were used as indicators of operating and installed costs in order to rank the relative promise of each system. The highest ranking systems involve the cycle concept of absorber/generator heat exchange, generator heat exchanger/absorber heat exchange, regeneration, and resorption/desorption, in combination with the NH{sub 3}/H{sub 2}O/LiBr ternary absorption fluid mixture or with the NH{sub 3}/H{sub 2}O binary solution. Based upon these conclusions, the recommendation was made to proceed to Phase II, the laboratory breadboard proof-of- concept.

  19. Concept of advanced back-up control panel design of digital control room

    International Nuclear Information System (INIS)

    Back-up control panel (BCP) of digital main control room (DMCR) is the back-up means for main computerized control means (MCM). This paper focus on technical issues for advanced design of back-up panel (BCP) for CPR1000 using qualified computer-based video display unit to display plant process indication and alarms. Human factors engineering (HFE) issues also have been considered in the BCP design. Then, as the mean to fulfill safety target of nuclear power plant (NPP), an ideal ergonomic design method is exploited for advanced BCP design. (author)

  20. Market orientation at industry and value chain levels: Concepts, determinants and consequences

    DEFF Research Database (Denmark)

    Grunert, Klaus G.; Jeppesen, Lisbeth Fruensgaard; Jespersen, Kristina Risom;

    The term market orientation, defined as sets of activities dealing with the generation and dissemination of market intelligence as well as with responding to it, is extended from the organisation level to the value chain level. By drawing on theories from industrial economics, neo......-institutional theory, transaction cost economics, network theory and the political-economic approach to the analysis of marketing channels, potential determinants of market orientation at value chain levels are identified. These determinants and their possible interaction may serve as guiding principles for empirical...

  1. Productive potentials or protected individuals? The concept of disability and mental illness in advanced welfare states

    DEFF Research Database (Denmark)

    Ringø, Pia; Høgsbro, Kjeld

    2017-01-01

    The chapter presents historical developments in the conception of disability and services for people with disability and mental illness. It identifies the social, political and technological movements, which have led to the epistemologies that exist in this field today. The diverse understandings...

  2. Conceptual design of advanced central receiver power systems sodium-cooled receiver concept. Volume 1. Executive summary. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    The conceptual design of an advanced central receiver power system using liquid sodium as a heat transport medium has been completed by a team consisting of the Energy Systems Group (prime contractor), McDonnell Douglas, Stearns-Roger, The University of Houston, and Salt River Project. The purpose of this study was to determine the technical and economic advantages of this concept for commercial-scale power plants. This final report covers all tasks of the project. These tasks were as follows: (1) review and analysis of preliminary specification; (2) parametric analysis; (3) select commercial configuration; (4) commercial plant conceptual design; (5) assessment of commercial plant; (6) advanced central receiver power system development plan; (7) program plan; (8) reports and data; (9) program management; and (10) safety analysis. A programmatic overview of the accomplishments of this program is given. The 100-MW conceptual commercial plant, the 281-MW optimum plant, and the 10-MW pilot plant are described. (WHK)

  3. Effective energy management system using ISO 9000/14000 concept industries

    International Nuclear Information System (INIS)

    Energy management is a system of managing energy utilization wisely and it includes issues such as energy efficiency (conservation), use of renewable energy, use of technology and development of energy policy. Its benefits has been well known for cost reduction and increase competitiveness and also other indirect impact such as preserving the natural resources and reduction of green-house gases. Although various strategies have been formulated by the government for the industries to adopt energy management, the result seems to be minimal and stagnant in some ways due to the various barriers which exists. Industries on the other hand, have successfully welcomed two famous management system namely the Environmental Management System ISO 14000 and the Quality Management System ISO 9000 to be implemented at their premises. This paper shows how energy management system can be effectively implemented by comparing similar generic management elements of energy management to ISO 9000/14000 standards. The seven (7) elements of energy management system discussed are top management commitment, policy establishment, energy management team, energy audit, energy efficiency projects, monitoring and training

  4. Ecological problems related to uranium mining and uranium reprocessing industry in Ukraine and restoration strategy concept

    International Nuclear Information System (INIS)

    In the later years of the former USSR era Ukraine produced about 1000 ton of Uranium. The main uranium mines area in Ukraine situated in vicinity of Zhevti Wody town and other sites of Kirovograd and Dniepropetrovsk regions. Two main Industrial sites for Uranium milling were in operation in Zhevti Wody and Dnierodzerzhinsk towns. Moreover during many years in past from early 50s to early 90s of the last century significant amount of Uranium ores delivered to Ukraine (Dnieprodzerzhinsk) from Germany, Check Republic and Russia for reprocessing and enrichment. Since Ukraine became independent Uranium production in Ukraine was significantly declined. However during period of such industry operation the number of uranium tailing and other radioactive wastes disposal sites related to the former Uranium production were created at the vicinity of Dnieprodzerzhinsk and Zhevti Wody sites. These industrial areas being significantly contaminated and situating on-site radioactive waste disposal and uranium tailings were and to be in future acting as the sources of radionuclide releases into the environment. The main path via which the radionuclide releases impacts the environment are the following: - exhalation of 222Rn and radon dispersion within the air to the surrounding areas, radon releases from mines, waste rock dumps and mill tailings piles, - leaching of Uranium products (234,238U, 234Th, 210Pb, 210Po) from tailing to the groundwater, and their subsequent transport in water to the rivers and reservoirs; - contamination of mine water with TENORM radionuclides and toxic non-radioactive substances and its releases to the surface waters, - erosion of tailings storage systems leading to dispersal of tailings by wind and water etc. Preliminary Pathway Analysis and Radiological Assessment of the actual sources and pathways show that among of potential sources of uranium product pollution the main impact to the environment occurs by uranium damps and releases from radioactive

  5. Advanced and Innovative Reactor Concept Designs, Associated Objectives and Driving Forces

    International Nuclear Information System (INIS)

    Advanced and innovative options for fast reactors are presented through a short selection of recent publications at international conferences. Driving forces and major trends are analysed to give a comprehensive overview of the various existing projects and supportive R and D. (author)

  6. Treatment of real industrial wastewater using the combined approach of advanced oxidation followed by aerobic oxidation.

    Science.gov (United States)

    Ramteke, Lokeshkumar P; Gogate, Parag R

    2016-05-01

    Fenton oxidation and ultrasound-based pretreatment have been applied to improve the treatment of real industrial wastewater based on the use of biological oxidation. The effect of operating parameters such as Fe(2+) loading, contact time, initial pH, and hydrogen peroxide loading on the extent of chemical oxygen demand (COD) reduction and change in biochemical oxygen demand (BOD5)/COD ratio has been investigated. The optimum operating conditions established for the pretreatment were initial pH of 3.0, Fe(2+) loading of 2.0, and 2.5 g L(-1) for the US/Fenton/stirring and Fenton approach, respectively, and temperature of 25 °C with initial H2O2 loading of 1.5 g L(-1). The use of pretreatment resulted in a significant increase in the BOD5/COD ratio confirming the production of easily digestible intermediates. The effect of the type of sludge in the aerobic biodegradation was also investigated based on the use of primary activated sludge (PAS), modified activated sludge (MAS), and activated sludge (AS). Enhanced removal of the pollutants as well as higher biomass yield was observed for MAS as compared to PAS and AS. The use of US/Fenton/stirring pretreatment under the optimized conditions followed by biological oxidation using MAS resulted in maximum COD removal at 97.9 %. The required hydraulic retention time for the combined oxidation system was also significantly lower as compared to only biological oxidation operation. Kinetic studies revealed that the reduction in the COD followed a first-order kinetic model for advanced oxidation and pseudo first-order model for biodegradation. The study clearly established the utility of the combined technology for the effective treatment of real industrial wastewater. PMID:26846248

  7. 77 FR 23673 - Notice of Stakeholder Meeting: Industry Roundtable-DON/USDA/DOE/DOT-FAA Advanced Drop-In Biofuels...

    Science.gov (United States)

    2012-04-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF DEFENSE Department of the Navy Notice of Stakeholder Meeting: Industry Roundtable--DON/USDA/DOE/ DOT-FAA Advanced.... Federal government representatives will also be able to hear from stakeholders as to their abilities...

  8. ISLAMIC EDUCATION IN CIVILIZATION OF FASHION INDUSTRY: CLOTHES CONCEPT REFLECTION IN ISLAM

    Directory of Open Access Journals (Sweden)

    Ahmad Mustami

    2015-06-01

    Full Text Available This article discusses the concept Apparel in Islamic education. This was currently a lot of variety of fashion in dress. Although the general function of clothes was a human genitalia cover and protect the body from the heat of the sun. However hijab at this time not just cover the nakedness, but rather as a fashion style that became a common thing now was infecting the womenfolk including Muslim. Ranging from clothes, pants, until hijab began in innovation so as to attract the eye. Although it is not yet represent the shape and fashion model/standard clothes, but felt able to express Islamic education in the dressing (hijab and a fashion model/Islamic clothing. Obviously keep on religious norms, ethical and moral teachings. Substance of clothing in Islam is polite in accordance with the values of Islamic Education.

  9. Advanced Concepts of the Propulsion System for the Futuristic Gun Ammunition

    Directory of Open Access Journals (Sweden)

    R.S. Darnse

    2003-10-01

    Full Text Available This review paper reports various concepts of the gun propulsion system to meet the goal of the futuristic hypervelocity projectiles. The nonconventional concepts, such as liquid gun propellant, rail gun, coil gun, electrothermal gun, electrothermal chemical gun along with conventional energetic solid gun propellant have been discussed. Even though muzzle velocity around 2000 m/s has been claimed to be achieved using such nonconventional propulsion systems, it will take quite some time before such systems are in regular use in the battlefield. Hence, solid gun propellants containing novel energetic ingredients (binders, plasticisers, and oxidisers would continue to be used in the near future and are expected to meet the requirements of the futuristic gun ammunition.

  10. Artist concept computer graphic of Lockheed Martin X-33 Advance Technology Demonstrator vehicle in f

    Science.gov (United States)

    1998-01-01

    An artist's conception of the X-33 in flight, with the aerospike engine firing. The X-33 demonstrator was designed to test a wide range of new technologies (including the aerospike engine), that would be used in a future single-stage-to-orbit reusable launch vehicle called the VentureStar. Due to technical problems with the liquid hydrogen tank, however, the X-33 program was cancelled in February 2001.

  11. The Effects of Using Concept Mapping for Improving Advanced Level Biology Students' Lower- and Higher-Order Cognitive Skills

    Science.gov (United States)

    Bramwell-Lalor, Sharon; Rainford, Marcia

    2014-01-01

    This paper reports on teachers' use of concept mapping as an alternative assessment strategy in advanced level biology classes and its effects on students' cognitive skills on selected biology concepts. Using a mixed methods approach, the study employed a pre-test/post-test quasi-experimental design involving 156 students and 8 teachers…

  12. Advanced storage concepts for solar thermal systems in low energy buildings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Furbo, S.; Andersen, Elsa; Schultz, Joergen M.

    2006-04-07

    The aim of Task 32 is to develop new and advanced heat storage systems which are economic and technical suitable as long-term heat storage systems for solar heating plants with a high degree of coverage. The project is international and Denmark's participation has focused on Subtask A, C, and D. In Subtask A Denmark has contributed to a status report about heat storage systems. In Subtask C Denmark has focused on liquid thermal storage tanks based on NaCH{sub 3}COO?3H{sub 2}O with a melting point of 58 deg. C. Theoretical and experimental tests have been conducted in order to establish optimum conditions for storage design. In Subtask D theoretical and experimental tests of optimum designs for advanced water tanks for solar heating plants for combined space heating and domestic hot water have been conducted. (BA)

  13. Advanced Transportation System Studies. Technical Area 3: Alternate Propulsion Subsystems Concepts. Volume 3; Program Cost Estimates

    Science.gov (United States)

    Levack, Daniel J. H.

    2000-01-01

    The objective of this contract was to provide definition of alternate propulsion systems for both earth-to-orbit (ETO) and in-space vehicles (upper stages and space transfer vehicles). For such propulsion systems, technical data to describe performance, weight, dimensions, etc. was provided along with programmatic information such as cost, schedule, needed facilities, etc. Advanced technology and advanced development needs were determined and provided. This volume separately presents the various program cost estimates that were generated under three tasks: the F- IA Restart Task, the J-2S Restart Task, and the SSME Upper Stage Use Task. The conclusions, technical results , and the program cost estimates are described in more detail in Volume I - Executive Summary and in individual Final Task Reports.

  14. Advanced SiC fibers and SiC/SiC composites toward industrialization

    International Nuclear Information System (INIS)

    In order to establish the industrialization basis of advanced SiC fibers and SiC/SiC composites to be used in nuclear fusion reactors, R and D of Tyranno-SA grade fibers (Cef-NITETM) and NITE-SiC/SiC with sufficient quality control has been carried out. The important elements in this effort are fiber structure control and matrix density and homogeneity control. From the continuous heat treatments of pre-crystallized SiC fibers, the improved uniformity of grain size for radial position in 7-10 μm diameter SiC fibers has been confirmed with the fiber strength over 2.0 GPa. In order to establish stable mass production of NITE-SiC/SiC (Cera-NITETM), with sufficient quality control, efforts on production of mid-products, such as green sheets, prepreg sheets and preforms, have been extensively carried out. The important elements were to improve the homogeneity and density of preform so that the following sintering process has been modified for improving structure control.

  15. Advances in industrial prospective of cellulosic macromolecules enriched banana biofibre resources: A review.

    Science.gov (United States)

    Pappu, Asokan; Patil, Vikas; Jain, Sonal; Mahindrakar, Amit; Haque, Ruhi; Thakur, Vijay Kumar

    2015-08-01

    Biological macromolecules enriched resources are rapidly emerging as sustainable, cost effective and environmental friendly materials for several industrial applications. Among different biological macromolecules enriched resources, banana fibres are one of the unexplored high potential bio-resources. Compared to various natural fibres such as jute, coir, palm etc., the banana fibres exhibits a better tensile strength i.e. 458 MPa with 17.14 GPa tensile modulus. Traditionally used petroleum based synthetic fibres have been proven to be toxic, non-biodegradable and energy intensive for manufacturing. Cellulosic banana fibres are potential engineering materials having considerable scope to be used as an environmental friendly reinforcing element for manufacturing of polymer based green materials. This paper summarizes the world scenario of current production of biological macromolecules rich banana residues and fibres; major user's of banana fibres. The quality and quantity of biological macromolecules especially the cellulose, hemicellulose, lignin, wax, engineering and mechanical properties of banana biofibre resources are reported and discussed. Subsequently, the findings of the recent research on bio resource composites, materials performance and opportunities have been discussed which would be a real challenge for the tomorrow world to enhance the livelihood environmental friendly advancement. PMID:26001493

  16. [Advanced Treatment of Effluent from Industrial Park Wastewater Treatment Plant by Ferrous Ion Activated Sodium Persulfate].

    Science.gov (United States)

    Zhu, Song-mei; Zhou, Zhen; Gu, Ling-yun; Jiang, Hai-tao; Ren, Jia-min; Wang, Luo-chun

    2016-01-15

    Fe(II) activated sodium persulfate (PS) technology was used for advanced treatment of effluent from industrial park wastewater treatment plant. Separate and combined effects of PS/COD, Fe(II)/PS and pH on COD and TOC removal were analyzed by the response surface methodology. Variations of organic substances before and after Fe(II)-PS oxidation were characterized by UV-Vis spectrometry, gel chromatography and three-dimensional fluorescence. PS/COD and Fe(II)/PS had significant effect on COD removal, while all the three factors had significant effect on TOC removal. The combined effect of PS/COD and pH had significant effect on COD removal. COD and TOC removal efficiencies reached 50.7% and 60.6% under optimized conditions of PS/COD 3.47, Fe(II)/PS 3.32 and pH 6.5. Fe(II)-PS oxidation converted macromolecular organic substances to small ones, and reduced contents of protein-, humic- and fulvic-like substances.

  17. Career advancement of the professional women in the UK construction industry: Career success factors

    OpenAIRE

    Fernando, G.; Amaratunga, Dilanthi; Haigh, Richard

    2010-01-01

    The issue regarding the lack of women in the UK construction industry has become more prominent for some time, attracting government and industry wide attention due to this potential skill shortage facing the industry. In order to meet these future demands the industry cannot rely on recruiting only from the male workforce. Therefore women?s participation for the construction industry especially for professional level is important. This paper explores the importance of career success factors ...

  18. The Viral Concept: the Winning Ticket of the Romanian Online Advertising Industry

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available The connection between the steady development of the Internet in Romania in the last five years, as channel of transmitting the marketing message, and the viral concept, as method of transmitting the message, may become the winning ticket for the Romanian online advertising market. Thus, in the current socio-economic context, any company who wishes to be successful in the virtual space cannot ignore the viral marketing techniques for several reasons. Firstly, we are talking about the profile of Internet users who tend to constitute a new social group. Secondly, we are talking about the thirst for information. And, last but not least, we are talking about the appetite for online chatting, statistics showing that 62% of the Roma-nian Internet users consider it a very "savory" information channel. This article tries to explain, in brief, what viral marketing is, which are its peculiarities, advantages, risks, as well as the limitations of its use, and which the strategies of a viral marketing campaign are. We will illustrate by giving successful examples from the Romanian online market.

  19. Prospects for conversion of solar energy into chemical fuels: the concept of a solar fuels industry.

    Science.gov (United States)

    Harriman, Anthony

    2013-08-13

    There is, at present, no solar fuels industry anywhere in the world despite the well-publicized needs to replace our depleting stock of fossil fuels with renewable energy sources. Many obstacles have to be overcome in order to store sunlight in the form of chemical potential, and there are severe barriers to surmount in order to produce energy on a massive scale, at a modest price and in a convenient form. It is also essential to allow for the intermittent nature of sunlight, its diffusiveness and variability and to cope with the obvious need to use large surface areas for light collection. Nonetheless, we have no alternative but to devise viable strategies for storage of sunlight as biomass or chemical feedstock. Simple alternatives, such as solar heating, are attractive in terms of quick demonstrations but are not the answer. Photo-electrochemical devices might serve as the necessary machinery by which to generate electronic charge but the main problem is to couple these charges to the multi-electron catalysis needed to drive energy-storing chemical reactions. Several potential fuels (CO, H₂, HCOOH, NH₃, O₂, speciality organics, etc.) are possible, but the photochemical reduction of CO₂ deserves particular mention because of ever-growing concerns about overproduction of greenhouse gases. The prospects for achieving these reactions under ambient conditions are considered herein.

  20. Sustainable Process Performance by Application of Six Sigma Concepts: The Research Study of Two Industrial Cases

    Directory of Open Access Journals (Sweden)

    Andrea Sujova

    2016-03-01

    Full Text Available The current approach to business management focuses on increasing the performance of business processes. To achieve the required processes performance means to ensure the required quality and capability of processes. The partial aim of this paper is to confirm the positive effects of the Six Sigma methodology (SSM on the corporate performance in the Slovak Republic and an investigation of the dependency of SSM implementation on the certified quality management system (QMS as a set-forward condition via a questionnaire survey carried out in Slovak industrial enterprises. The survey results confirmed the above-mentioned assumptions. The SSM using DMAIC (Define-Measure-Analyze-Improve-Control was applied in real conditions of two manufacturing enterprises with a different level of quality management system. The results of the research study proved a possibility to implement SSM and to use the same methods in enterprises aside from a level of QMS. However, more remarkable results were achieved by the enterprise which introduced QMS. The first application of SSM in enterprises within specific conditions of furniture production processes can be considered to be a contribution of the research study, as well. The result of the work is the model including the methodology and the appropriate combination of methods and tools for assuring the sustainable performance of the business processes.

  1. Fuzzification of the 'TOWS' strategic concept: a case study of the Magneti Marelli branch in the Serbian automotive industry

    Directory of Open Access Journals (Sweden)

    Pesic, Duska Petar

    2015-08-01

    Full Text Available The purpose of this paper is to introduce a fuzzy approach to the quantification of the TOWS (Threats, Opportunities, Weaknesses, and Strengths strategic concept (also known as ‘SWOT’. Fuzzy logic and triangular fuzzy numbers are used to provide an alternate assessment of the internal strengths and weaknesses and external opportunities and threats in the process of developing strategic alternatives and making strategic choices. The developed fuzzy model is applied to a real-world case, conducted with the management team of the Magneti Marelli branch in Serbia, which operates as the largest supplier in the Serbian automotive industry. The results are discussed, and suggestions for further research are provided

  2. Advancing Empirical Approaches to the Concept of Resilience: A Critical Examination of Panarchy, Ecological Information, and Statistical Evidence

    Directory of Open Access Journals (Sweden)

    Ali Kharrazi

    2016-09-01

    Full Text Available Despite its ambiguities, the concept of resilience is of critical importance to researchers, practitioners, and policy-makers in dealing with dynamic socio-ecological systems. In this paper, we critically examine the three empirical approaches of (i panarchy; (ii ecological information-based network analysis; and (iii statistical evidence of resilience to three criteria determined for achieving a comprehensive understanding and application of this concept. These criteria are the ability: (1 to reflect a system’s adaptability to shocks; (2 to integrate social and environmental dimensions; and (3 to evaluate system-level trade-offs. Our findings show that none of the three currently applied approaches are strong in handling all three criteria. Panarchy is strong in the first two criteria but has difficulty with normative trade-offs. The ecological information-based approach is strongest in evaluating trade-offs but relies on common dimensions that lead to over-simplifications in integrating the social and environmental dimensions. Statistical evidence provides suggestions that are simplest and easiest to act upon but are generally weak in all three criteria. This analysis confirms the value of these approaches in specific instances but also the need for further research in advancing empirical approaches to the concept of resilience.

  3. MODEL OF THE NETWORK COMMUNITY IN THE POST-INDUSTRIAL AND INFORMATION CONCEPTS

    Directory of Open Access Journals (Sweden)

    Luginina A. G.

    2016-06-01

    Full Text Available The article studies the works of the theorists of postindustrial and information concepts of the society’s development. The author thoroughly examines the role of these paradigms in shaping perceptions of the modern socio-cultural space. He notes the high prognostic value of the studies for understanding the phenomenon of the Network society. The author draws attention to the fact that they cannot fully describe the current state of social space and do not have the required methodological diversity. It is noted that new ways of thinking and organizing objects of the virtual environment are required. According to the author, it is important to designate the information as one of the priority components of the transformation process in society. Technology and the Internet mediated communication creates a new type of social relations, switching attention to the creation of social communications as a play environment of interactions. Compression of the space-time continuum described in terms of information and global social space redirection, helps to comprehend the locality, mosaic and fragmentation of the occurring type of sociality. This phenomenon appears due to the involvement of individuals in the total communication system that turns out to be the cultural manipulation, affecting the needs and behavior in all spheres of life, as the information acquires the ability to program. Internet creates the illusion of fullness of socially demanded actions and expectations. The article shows that the interest in the phenomenon of image reality is increasingly growing among the social thinkers, who see it as the future state of the social space. The author draws attention to the fact that the development of the online world is defined by the main task of the modern human sciences, the solution of which is carried out by the ordering and value ranging the virtualization phenomena, by the optimization of methods of control over the interaction of real

  4. Advanced Concepts and Controversies in Emergency Department Pain Management.

    Science.gov (United States)

    Motov, Sergey M; Nelson, Lewis S

    2016-06-01

    Pain is the most common complaint for which patients come to the emergency department (ED). Emergency physicians are responsible for pain relief in a timely, efficient, and safe manner in the ED. The improvement in our understanding of the neurobiology of pain has balanced the utilization of nonopioid and opioid analgesia, and simultaneously has led to more rational and safer opioid prescribing practices. This article reviews advances in pain management in the ED for patients with acute and chronic pain as well as describes several newer strategies and controversies. PMID:27208710

  5. Subsonic Ultra Green Aircraft Research Phase II: N+4 Advanced Concept Development

    Science.gov (United States)

    Bradley, Marty K.; Droney, Christopher K.

    2012-01-01

    This final report documents the work of the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team on Task 1 of the Phase II effort. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. Using a quantitative workshop process, the following technologies, appropriate to aircraft operational in the N+4 2040 timeframe, were identified: Liquefied Natural Gas (LNG), Hydrogen, fuel cell hybrids, battery electric hybrids, Low Energy Nuclear (LENR), boundary layer ingestion propulsion (BLI), unducted fans and advanced propellers, and combinations. Technology development plans were developed.

  6. Accuracy Improvement Capability of Advanced Projectile Based on Course Correction Fuze Concept

    Directory of Open Access Journals (Sweden)

    Ahmed Elsaadany

    2014-01-01

    Full Text Available Improvement in terminal accuracy is an important objective for future artillery projectiles. Generally it is often associated with range extension. Various concepts and modifications are proposed to correct the range and drift of artillery projectile like course correction fuze. The course correction fuze concepts could provide an attractive and cost-effective solution for munitions accuracy improvement. In this paper, the trajectory correction has been obtained using two kinds of course correction modules, one is devoted to range correction (drag ring brake and the second is devoted to drift correction (canard based-correction fuze. The course correction modules have been characterized by aerodynamic computations and flight dynamic investigations in order to analyze the effects on deflection of the projectile aerodynamic parameters. The simulation results show that the impact accuracy of a conventional projectile using these course correction modules can be improved. The drag ring brake is found to be highly capable for range correction. The deploying of the drag brake in early stage of trajectory results in large range correction. The correction occasion time can be predefined depending on required correction of range. On the other hand, the canard based-correction fuze is found to have a higher effect on the projectile drift by modifying its roll rate. In addition, the canard extension induces a high-frequency incidence angle as canards reciprocate at the roll motion.

  7. assistance to the industrial process supervision: toward a methodology of conception

    International Nuclear Information System (INIS)

    This thesis presents a methodological approach to the design of computerized assistance for operators in control industrial processes. We are particularly interested in how to find the solutions which best suit their needs. Our preferred approach is focused on the operator: the main factors influencing his performance are reviewed and we make a synthesis which consists of a categorized list, or typology, of the extents of the operators' activities, tasks and errors. This typology is then used to classify the possible improvements as well as associated computer aids. The DIAPASON held system for fault diagnosis is integrated in this structure. This typology is our chosen basis for defining a specification method which enables the quality of the designed system to be guarantee. We propose a phased approach, the first phase of which involves analysing needs and thus identifying the objectives of the project. The second phase is the preparation of a performance specification which serves as a reference system for the project. In the third phase technical solutions are proposed to meet the requirements set out in the performance specification. The following phases involve studying the technical feasibility of the proposed solutions and the actual development of the system. Together with the feasibility study comes the step of making up a knowledge bank. The usual method of systems analysis are included in the typology of the aids. Furthermore, the SAGACE method uses a new approach to systems analysis based on its description which unites various points of view ; the evaluation of its possibilities forms a part of the construction of a reference system which gathers up the information needed to put the DIAPASON diagnosis system into action. (author)

  8. Industry

    International Nuclear Information System (INIS)

    This chapter of the environmental control report deals with the environmental impact of the industry in Austria. It gives a review of the structure and types of the industry, the legal framework and environmental policy of industrial relevance. The environmental situation of the industry in Austria is analyzed in detail, concerning air pollution (SO2, NOx, CO2, CO, CH4, N2O, NH3, Pb, Cd, Hg, dioxin, furans), waste water, waste management and deposit, energy and water consumption. The state of the art in respect of the IPPC-directives (European Integrated Pollution Prevention and Control Bureau) concerning the best available techniques of the different industry sectors is outlined. The application of European laws and regulations in the Austrian industry is described. (a.n.)

  9. Performance measurement in the UK construction industry and its role in supporting the application of lean construction concepts

    Directory of Open Access Journals (Sweden)

    Saad Sarhan

    2013-03-01

    Full Text Available Performance measurement has received substantial attention from researchers and the construction industry over the past two decades. This study sought to assess UK practitioners’ awareness of the importance of the use of appropriate performance measures and its role in supporting the application of Lean Construction (LC concepts. To enable the study to achieve its objectives, a review of a range of measurements developed to evaluate project performance including those devoted to support LC efforts was conducted. Consequently a questionnaire survey was developed and sent to 198 professionals in the UK construction industry as well as a small sample of academics with an interest in LC. Results indicated that although practitioners recognise the importance of the selection of non-financial performance measures, it has not been properly and widely implemented. The study identified the most common techniques used by UK construction organisations for performance measurement, and ranked a number of non-financial key performance indicators as significant. Some professed to have embraced the Last Planner System methodology as a means for performance measurement and organisational learning, while further questioning suggested otherwise. It was also suggested that substance thinking amongst professionals could be a significant hidden barrier that militates against the successful implementation of LC.

  10. Cooperation with emerging countries in advanced mining training programmes involving an industrial partner

    International Nuclear Information System (INIS)

    Full text: The Centre for Advanced Studies of Mineral Resources (CESMAT) is a Higher Education Institution in France to train and perform the upper management personnel working in mining, throughout the world. The program of study is comprised of seven separate year long study programs, a network of some 2 300 former students from a hundred countries with whom regular contact is maintained, and a permanent think tank unit that concentrates on the training of mining sector managers. The guiding principle for CESMAT is that cooperation and training hold a special position in French policy concerning relations with mineral producing countries. Seven programmes have been progressively developed on minerals prospecting and processing, resources evaluation, open cast mining techniques, mining economics, impact of mining on environment, management of closure of mining activities and the role of the State. These programmes bring together ten to twelve engineers or geologists who have already had professional experience. For non-French speakers, a language-training phase of three months may precede the programs. The following specializations are currently being offered: - Ore Prospecting and Mineral Processing - Nancy School of Geology - CESEV, - Treatment of Industrial Evolutions and Changes - CESTEMIN, - Geostatistical Analysis of Ore Deposits - Paris School of Mines - C.F.S.G., - Open Cut Mining Operations - Paris School of Mines - CESECO, - Economic Analysis of Mining Projects - Paris School of Mines - CESPROMIN, - Mine Safety and Environments - Ales School of Mines - CESSEM, - Mines Public Administration - Paris School of Mines - CESAM. Teaching is done both by Institute professors and by public and private sector industry experts. These instructors rely heavily on technical visits and on practical case studies. One specific example is the student research project mentored by specialists in the field, which is oriented directly to circumstances in the student's country

  11. Additive manufacturing for freeform mechatronics design: from concepts to applications

    NARCIS (Netherlands)

    Baars, G. van; Smeltink, J.; Werff, J. van der; Limpens, M.; Barink, M.; Berg, D. van den; Vreugd, J. de; Witvoet, G.; Galaktionov, O.S.

    2015-01-01

    This article presents developments of freeform mechatronics concepts, enabled by industrial Additive Manufacturing (AM), aiming at breakthroughs for precision engineering challenges such as lightweight, advanced thermal control, and integrated design. To assess potential impact in future application

  12. Advanced Concepts for Ultrahigh Brightness and Low Temperature Beams. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wurtele, Jonathan S. [Univ. of California, Berkeley, CA (United States); Fajans, Joel [Univ. of California, Berkeley, CA (United States)

    2015-06-01

    This grant supported research on techniques to manipulate and combine positrons and antiprotons to synthesize, and to probe, antihydrogen. The majority of the research was conducted as part of the ALPHA Collaboration at CERN. Using ideas and techniques from accelerator physics, we proposed a new method for measuring the the gravitational attraction of antihydrogen to the Earth's field. ALPHA reported the first precision charge measurement on antihydrogen and a crude bound on its gravitational dynamics in the Earth's field. We proposed using a stochastic acceleration method to measure any putative charge of antihydrogen and built numerical models of the mixing of antiprotons and positrons. Further research included proposing the radiator-first concept for operating an X-ray free electron laser driven by a high repetition rate bunch source and studying scattering in passive foil-based ion focusing systems.

  13. Carbon honeycomb grids for advanced lead-acid batteries. Part I: Proof of concept

    Science.gov (United States)

    Kirchev, Angel; Kircheva, Nina; Perrin, Marion

    2011-10-01

    The carbon honeycomb grid is proposed as innovative solution for high energy density lead acid battery. The proof of concept is demonstrated, developing grids suitable for the small capacity, scale of valve-regulated lead acid batteries with 2.5-3 Ah plates. The manufacturing of the grids, includes fast, known and simple processes which can be rescaled for mass production with a minimum, investment costs. The most critical process of green composite carbonisation by heating in inert, atmosphere from 200 to 1000 °C takes about 5 h, guaranteeing the low cost of the grids. An AGM-VRLA, cell with prototype positive plate based on the lead-2% tin electroplated carbon honeycomb grid and, conventional negative plates is cycled demonstrating 191 deep cycles. The impedance spectroscopy, measurements indicate the grid performance remains acceptable despite the evolution of the corrosion, processes during the cycling.

  14. Selected advanced aerodynamics and active controls technology concepts development on a derivative B-747

    Science.gov (United States)

    1980-01-01

    The feasibility of applying wing tip extensions, winglets, and active control wing load alleviation to the Boeing 747 is investigated. Winglet aerodynamic design methods and high speed wind tunnel test results of winglets and of symmetrically deflected ailerons are presented. Structural resizing analyses to determine weight and aeroelastic twist increments for all the concepts and flutter model test results for the wing with winglets are included. Control law development, system mechanization/reliability studies, and aileron balance tab trade studies for active wing load alleviation systems are discussed. Results are presented in the form of incremental effects on L/D, structural weight, block fuel savings, stability and control, airplane price, and airline operating economics.

  15. The European SILEX project and other advanced concepts for optical space communications

    Science.gov (United States)

    Oppenhaeuser, G.; Wittig, M.; Popescu, A.

    1991-05-01

    The European Space Agency (ESA) is developing an optical inter-orbit communication system enabling a link between a low earth orbiting (LEO) and a geostationary (GEO) spacecraft. The link allows the transmission of 50 Mbps between LEO and GEO in an experimental and pre-operational mode. The system uses laser diodes of typically 100 mW optical power at a wavelength of 830 nanometer. Direct intensity modulation is applied. Telescopes of 25 cm diameter are used on both terminals. The breadboard phase has been completed and the launch of both terminals is scheduled for 1994. Other concepts for optical space communication links using Nd:YAG lasers and heterodyne receive systems are outlined.

  16. Advanced manned space flight simulation and training: An investigation of simulation host computer system concepts

    Science.gov (United States)

    Montag, Bruce C.; Bishop, Alfred M.; Redfield, Joe B.

    1989-01-01

    The findings of a preliminary investigation by Southwest Research Institute (SwRI) in simulation host computer concepts is presented. It is designed to aid NASA in evaluating simulation technologies for use in spaceflight training. The focus of the investigation is on the next generation of space simulation systems that will be utilized in training personnel for Space Station Freedom operations. SwRI concludes that NASA should pursue a distributed simulation host computer system architecture for the Space Station Training Facility (SSTF) rather than a centralized mainframe based arrangement. A distributed system offers many advantages and is seen by SwRI as the only architecture that will allow NASA to achieve established functional goals and operational objectives over the life of the Space Station Freedom program. Several distributed, parallel computing systems are available today that offer real-time capabilities for time critical, man-in-the-loop simulation. These systems are flexible in terms of connectivity and configurability, and are easily scaled to meet increasing demands for more computing power.

  17. Computer-assisted generation of individual training concepts for advanced education in manufacturing metrology

    International Nuclear Information System (INIS)

    Due to increasing requirements on the accuracy and reproducibility of measurement results together with a rapid development of novel technologies for the execution of measurements, there is a high demand for adequately qualified metrologists. Accordingly, a variety of training offers are provided by machine manufacturers, universities and other institutions. Yet, for an interested learner it is very difficult to define an optimal training schedule for his/her individual demands. Therefore, a computer-based assistance tool is developed to support a demand-responsive scheduling of training. Based on the difference between the actual and intended competence profile and under consideration of amending requirements, an optimally customized qualification concept is derived. For this, available training offers are categorized according to different dimensions: regarding contents of the course, but also intended target groups, focus of the imparted competences, implemented methods of learning and teaching, expected constraints for learning and necessary preknowledge. After completing a course, the achieved competences and the transferability of gathered knowledge are evaluated. Based on the results, recommendations for amending measures of learning are provided. Thus, a customized qualification for manufacturing metrology is facilitated, adapted to the specific needs and constraints of each individual learner

  18. Advanced target concepts for production of radioactive ions and neutrino beams

    International Nuclear Information System (INIS)

    The 1-20 MW of proton beam power which modern accelerator technology put at our disposal for production of intense secondary beams presents a major technically challenge to the production targets. A conceptual design is presented for a high power pion production target and collection system, which was originally suggested to be used as the source for the proposed CERN muon-neutrino factory. It will be shown that the major parts of this target could also serve as an efficient spallation neutron source for production of 6He and fission products in the two-step converter target concept. The heart of the system consists of a free surface mercury jet with a high axial velocity, which allows the heat to be carried away efficiently from the production region. For the neutrino factory the secondary pions are collected and injected into the pion decay channel by means of a magnetic horn. For the radioactive ion-beam facility the Hg-jet is surrounded by the high-temperature isotope separator on-line (ISOL) production target. The suggested mechanical layout and technical parameters of the Hg-jet, ISOL target, horn and cooling system are discussed. The critical issues are identified and a description of the R and D program designed to provide experimental proof of the principle as well as providing engineering parameters is given

  19. Advanced target concepts for production of radioactive ions and neutrino beams

    CERN Document Server

    Ravn, H L

    2003-01-01

    The 1-20 MW of proton beam power which modern accelerator technology put at our disposal for production of intense secondary beams presents a major technically challenge to the production targets. A conceptual design is presented for a high-power pion production target and collection system, which was originally suggested to be used as the source for the proposed CERN muon-neutrino factory. It will be shown that the major parts of this target could also serve as an efficient spallation neutron source for production of 6He and fission products in the two-step converter-target concept. The heart of the system consists of a free surface Mercury jet with a high axial velocity, which allows the heat to be carried away efficiently from the production region. For the neutrino factory the secondary pions are collected and injected into the pion decay-channel by means of a magnetic horn. For the radioactive ion-beam facility the Hg-jet is surrounded by the high-temperature ISOL production-target. The suggested mechani...

  20. The Advanced X-ray Timing Array (AXTAR): A US MIDEX Mission Concept

    CERN Document Server

    Ray, Paul S; Wood, Kent S; Chakrabarty, Deepto; Remillard, Ronald A; Wilson-Hodge, Colleen A

    2011-01-01

    AXTAR is a NASA MIDEX mission concept for X-ray timing of compact objects that combines very large collecting area, broadband spectral coverage, high time resolution, highly flexible scheduling, and an ability to respond promptly to time-critical targets of opportunity. It is optimized for submillisecond timing of bright Galactic X-ray sources in order to study phenomena at the natural time scales of neutron star surfaces and black hole event horizons, thus probing the physics of ultradense matter, strongly curved spacetimes, and intense magnetic fields. AXTAR's main instrument is a collimated, thick Si pixel detector with 2-50 keV coverage and over 3 square meters effective area. For timing observations of accreting neutron stars and black holes, AXTAR provides at least a factor of five improvement in sensitivity over the RXTE PCA. AXTAR also carries a sensitive sky monitor that acts as a trigger for pointed observations of X-ray transients in addition to providing high duty cycle monitoring of the X-ray sky...

  1. Heat-Pipe Development for Advanced Energy Transport Concepts Final Report Covering the Period January 1999 through September 2001

    Energy Technology Data Exchange (ETDEWEB)

    R.S.Reid; J.F.Sena; A.L.Martinez

    2002-10-01

    This report summarizes work in the Heat-pipe Technology Development for the Advanced Energy Transport Concepts program for the period January 1999 through September 2001. A gas-loaded molybdenum-sodium heat pipe was built to demonstrate the active pressure-control principle applied to a refractory metal heat pipe. Other work during the period included the development of processing procedures for and fabrication and testing of three types of sodium heat pipes using Haynes 230, MA 754, and MA 956 wall materials to assess the compatibility of these materials with sodium. Also during this period, tests were executed to measure the response of a sodium heat pipe to the penetration of water.

  2. US long distance fiber optic networks: Technology, evolution and advanced concepts. Volume 2: Fiber optic technology and long distance networks

    Science.gov (United States)

    1986-01-01

    The study projects until 2000 the evolution of long distance fiber optic networks in the U.S. Volume 1 is the Executive Summary. Volume 2 focuses on fiber optic components and systems that are directly related to the operation of long-haul networks. Optimistic, pessimistic and most likely scenarios of technology development are presented. The activities of national and regional companies implementing fiber long haul networks are also highlighted, along with an analysis of the market and regulatory forces affecting network evolution. Volume 3 presents advanced fiber optic network concept definitions. Inter-LATA traffic is quantified and forms the basis for the construction of 11-, 15-, 17-, and 23-node networks. Using the technology projections from Volume 2, a financial model identifies cost drivers and determines circuit mile costs between any two LATAs. A comparison of fiber optics with alternative transmission concludes the report.

  3. A Research on Consumer Behaviour in the Industrial Valve market and Entry Strategy for Advanced Valve Technologies

    OpenAIRE

    Verma, Vishal

    2005-01-01

    The importance of successful innovation for the long-term performance of companies can hardly be exaggerated. Although pioneers outsell late movers in many markets, in some cases innovative late entry has produced some remarkably successful brands that outsell pioneers. The central theme of this dissertation is to design a market entry strategy for Advanced Valve Technologies (AVT) to launch their product in the industrial valve market. AVT is a valve manufacturing company based in UK. AV...

  4. Biofuels And Chemicals Production From Renewable Raw-Materials. Exploiting yeasts diversity to bridge the gap between the proof-of-concept and industrial success

    OpenAIRE

    Signori, L

    2016-01-01

    The success of the biorefinery concept will require efficient, robust and versatile cell factories. Currently, the major part of industrial microorganisms are used because of historical grounds, rather than being selected for a specific application. Additionally, demands for increased productivity, wider substrate range utilization, and production of nonconventional compounds lead to a great interest in further improving the currently used industrial workhorses (hosts) and the selection or de...

  5. Marketing theories and concepts for the international construction industry: a study of their applicability at the global, national and corporate perspectives

    OpenAIRE

    Pheng, L. S.

    1990-01-01

    The role and applicability of marketing theories and concepts are explored at three levels of analysis for the international construction industry. Developments of the theoretical constructs are traced as marketing evolves to encompass an international perspective. The relevance and need for marketing in the construction industry was examined. Four schools of thought were identified before the strategic significance of marketing in the market place was reviewed and argued. The ...

  6. Feasibility and Safety Assessment for Advanced Reactor Concepts Using Vented Fuel

    International Nuclear Information System (INIS)

    Recent interest in fast reactor technology has led to renewed analysis of past reactor concepts such as Gas Fast Reactors and Sodium Fast Reactors. In an effort to make these reactors more economic, the fuel is required to stay in the reactor for extended periods of time; the longer the fuel stays within the core, the more fertile material is converted into usable fissile material. However, as burnup of the fuel-rod increases, so does the internal pressure buildup due to gaseous fission products. In order to reach the 30 year lifetime requirements of some reactor designs, the fuel pins must have a vented-type design to allow the buildup of fission products to escape. The present work aims to progress the understanding of the feasibility and safety issues related to gas reactors that incorporate vented fuel. The work was separated into three different work-scopes: 1. Quantitatively determine fission gas release from uranium carbide in a representative helium cooled fast reactor; 2. Model the fission gas behavior, transport, and collection in a Fission Product Vent System; and, 3. Perform a safety analysis of the Fission Product Vent System. Each task relied on results from the previous task, culminating in a limited scope Probabilistic Risk Assessment (PRA) of the Fission Product Vent System. Within each task, many key parameters lack the fidelity needed for comprehensive or accurate analysis. In the process of completing each task, the data or methods that were lacking were identified and compiled in a Gap Analysis included at the end of the report.

  7. Feasibility and Safety Assessment for Advanced Reactor Concepts Using Vented Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Andrew [Oregon State Univ., Corvallis, OR (United States). Nuclear Engineering and Radiation Health Physics; Matthews, Topher [Oregon State Univ., Corvallis, OR (United States); Lenhof, Renae [Oregon State Univ., Corvallis, OR (United States); Deason, Wesley [Oregon State Univ., Corvallis, OR (United States); Harter, Jackson [Oregon State Univ., Corvallis, OR (United States)

    2015-01-16

    Recent interest in fast reactor technology has led to renewed analysis of past reactor concepts such as Gas Fast Reactors and Sodium Fast Reactors. In an effort to make these reactors more economic, the fuel is required to stay in the reactor for extended periods of time; the longer the fuel stays within the core, the more fertile material is converted into usable fissile material. However, as burnup of the fuel-rod increases, so does the internal pressure buildup due to gaseous fission products. In order to reach the 30 year lifetime requirements of some reactor designs, the fuel pins must have a vented-type design to allow the buildup of fission products to escape. The present work aims to progress the understanding of the feasibility and safety issues related to gas reactors that incorporate vented fuel. The work was separated into three different work-scopes: 1. Quantitatively determine fission gas release from uranium carbide in a representative helium cooled fast reactor; 2. Model the fission gas behavior, transport, and collection in a Fission Product Vent System; and, 3. Perform a safety analysis of the Fission Product Vent System. Each task relied on results from the previous task, culminating in a limited scope Probabilistic Risk Assessment (PRA) of the Fission Product Vent System. Within each task, many key parameters lack the fidelity needed for comprehensive or accurate analysis. In the process of completing each task, the data or methods that were lacking were identified and compiled in a Gap Analysis included at the end of the report.

  8. Nuclear proliferation and civilian nuclear power: report of the Nonproliferation Alternative Systems Assessment Program. Volume VIII. Advanced concepts

    International Nuclear Information System (INIS)

    The six advanced concepts for nuclear power systems that were selected for evaluation are: the fast mixed-spectrum reactor; the denatured molten-salt reactor; the mixed-flow gaseous-core reactor; the linear-accelerator fuel-regenerator reactor; the ternary metal-fueled electronuclear fuel-producer reactor; and the tokamak fusion-fission hybrid reactor. The design assessment was performed by identifying needs in six specific areas: conceptual plant design; reactor-physics considerations; fuel cycle alternatives; mechanical and thermal-hydraulic considerations; selection, development, and availability of materials; and engineering and operability. While none of the six concepts appears to be a credible commercial alternative to the liquid-metal fast-breeder within the Nonproliferation Alternative Systems Assessment Program horizon of 2025, there are a number of reasons for continued interest in the fast mixed-spectrum reactor: it is a once-through cycle fast reactor with proliferation risk characteristics similar to those of the light-water reactor; only about one-third as much uranium is required as for the once-through light-water reactor; the system will benefit directly from fast-breeder development programs; and, finally, the research and development required to develop the high-burnup metal fuel could benefit the on-going liquid-metal fast-breeder reactor program. Accordingly, a limited research and development effort on the high-burnup fuel seems justified, at present

  9. Quantum Mechanics: Fundamentals; Advanced Quantum Mechanics; Mathematical Concepts of Quantum Mechanics

    International Nuclear Information System (INIS)

    second book under consideration, that of Schwabl, contains 'Advanced' elements of quantum theory; it is designed for a course following on from one for which Gottfried and Yan, or Schwabl's own 'Quantum Mechanics' might be recommended. Many useful student problems are included. The presentation is said to be rigorous, but again this is a book for the physicist rather than the mathematician. The third book under consideration, that by Gustafson and Sigal is very different from the others. In academic level, at least the initial sections may actually be slightly lower; the book covers a one-term course taken by senior undergraduates or junior graduate students in mathematics or physics, and the initial chapters are on basic topics, such as the physical background, basic dynamics, observables and the uncertainty principle. However the level of mathematical sophistication is far higher than in the other books. While the mathematical prerequisites are modest, a third of the book is made up of what are called mathematical supplements. On the basis of these supplements, the level of mathematical sophistication and difficulty is increased substantially in the middle section of the book, where the topics considered are many-particle systems, density matrices, positive temperatures, the Feynman path integral, and quasi-classical analysis, and there is a final substantial step for the concluding chapters on resonances, an introduction to quantum field theory, and quantum electrodynamics of non-relativistic particles. A supplementary chapter contains an interesting approach to the renormalization group due to Bach, Froehlich and Sigal himself. This book is well-written, and the topics discussed have been well thought-out. It would provide a useful approach to quantum theory for the mathematician, and would also provide access for the physicist to some mathematically advanced methods and topics, but the physicist would definitely have to be prepared to work hard at the mathematics

  10. Industrialization

    International Nuclear Information System (INIS)

    This chapter discusses the role-plays by nuclear technology to enhance productivity in industry. Some of the techniques, Non-Destructive Testing (NDT) - x, gamma, electron and neutron radiography, nuclear gauges, materials characterization are discussed thoroughly

  11. Evolutionary pressure on reproductive strategies in flatfish and groundfish: Relevant concepts and methodological advancements

    Science.gov (United States)

    Kjesbu, O. S.; Witthames, P. R.

    2007-07-01

    Flatfish and groundfish show many similarities in reproductive strategies and tactics, both in types present and in responses to fishing pressure or changes in their environment. Over the last 20-30 years the reproduction of Atlantic cod Gadus morhua, Atlantic halibut Hippoglossus hippoglossus, plaice Pleuronectes platessa, sole Solea solea, and turbot Scophthalmus maximus have been extensively studied in the North Atlantic. For cod, halibut and turbot, the research has progressed rapidly due to interest from the aquaculture industry. Extensive overexploitation over many years in combination with climate change represents a potential evolutionary pressure towards changes in growth, lower age at maturity, increased fecundity, smaller egg size (and thereby larval size) and change in spawning time. Early sexual maturity/precocious maturation is also seen in aquaculture and is problematic economically due to a reduction in fillet production. In this paper information is reviewed from studies on both wild and captive populations in experiments, the latter considered important because overexploitation, such as observed in the North Sea, often reduces the natural dynamics in growth and reproduction and complicates collection of sufficiently large samples. Evidence from laboratory experiments demonstrates the inherent plasticity of fecundity production and how this is controlled by food availability and length of photoperiod, while recent information from field studies demonstrates the evolution of genotypes in response to fishing mortality. Today several laboratories have adopted modern techniques for analysis of reproductive investments (fecundity, atresia and sperm characterisation) in controlled experimental situations to explore the effect of temperature or other environmental parameters (such as salinity) on reproduction. These developments, in combination with the rapid implementation of molecular techniques, should make it possible in the future to present highly

  12. Development of a test bed for operator aid and advanced control concepts in nuclear power plants

    International Nuclear Information System (INIS)

    A great amount of research and development is currently under way in the utilization of artificial intelligence (AI), expert system, and control theory advances in nuclear power plants as a basis for operator aids and automatic control systems. This activity requires access to the measured dynamic responses of the plant to malfunction, operator- or automatic-control-initiated actions. This can be achieved by either simulating plant behavior or by using an actual plant. The advantage of utilizing an actual plant versus a simulator is that the true behavior is assured of both the power generation system and instrumentation. Clearly, the disadvantages of using an actual plant are availability due to licensing, economic, and risk constraints and inability to address accident conditions. In this work the authors have decided to employ a functional one-ninth scale model of a pressurized water reactor (PWR). The scaled PWR (SPWR) facility is a two-loop representation of a Westinghouse PWR utilizing freon as the working fluid and electric heater rods for the core. The heater rods are driven by a neutron kinetics model accounting for measured thermal core conditions. A control valve in the main steam line takes the place of the turbine generator. A range of normal operating and accident situations can be addressed. The SPWR comes close to offering all the advantages of both a simulator and an actual physical plant in regard to research and development on AI, expert system, and control theory applications. The SPWR is being employed in the development of an expert-system-based operator aid system. The current status of this project is described

  13. Industrial innovations for tomorrow: Advances in industrial energy-efficiency technologies. Degradable plastic made from potato peels

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    Stimulated by public demand and state and federal legislation, industry has begun to develop bio- and photo- degradable plastics. so far, however, none of these degradable plastics meets all of the criteria for success - adequate physical and mechanical properties for the desired use, cost-effectiveness, and 100% degradability. Polylactic acid (PLA) plastic is one degradable plastic that shows promise. It has the desired properties and is 100% degradable. However, PLA plastic made by conventional techniques is not cost effective. Made from lactic acid, which is typically made form petroleum using a very costly synthesis process. Lactic acid can also be made from carbohydrates (starches), found in food processing wastes such as potato wastes, cheese whey, and sorghum. Conversion of starch to simple sugars, and fermentation of these sugars can produce lactic acid.

  14. Advancing the Use of BIM Through a Government Funded Construction Industry Competency Centre in Ireland

    OpenAIRE

    Hore, Alan V.; Thomas, Ken

    2011-01-01

    The main aim of this paper is to develop the early case for a new Competence Centre dedicated to industry led research in the Irish construction industry. It incorporates the results of a survey carried out by the Construction IT Aliance (CITA) and also identifies similiar centres carrying out industry led research around the world. Results from the survey show a clear support for the establishment of such a centre in Ireland and, in particular, a strong interest in Building Information Model...

  15. Advanced Offshore Wind Turbine/Foundation Concept for the Great Lakes

    Energy Technology Data Exchange (ETDEWEB)

    Afjeh, Abdollah A. [Univ. of Toledo, OH (United States); Windpower, Nautica [Nautica Windpower, Olmsted Falls, OH (United States); Marrone, Joseph [OCC COWI, Vancouver (Canada); Wagner, Thomas [Nautica Windpower, Olmsted Falls, OH (United States)

    2013-08-29

    This project investigated a conceptual 2-bladed rotor wind turbine design and assessed its feasibility for installation in the Great Lakes. The levelized cost of energy was used for this purpose. A location in Lake Erie near the coast of Cleveland, Ohio was selected as the application site. The loading environment was defined using wind and wave data collected at a weather station in Lake Erie near Cleveland. In addition, the probability distributions of the annual significant wave height and wind speed were determined. A model of the dependence of the above two quantities was also developed and used in the study of wind turbine system loads. Loads from ice floes and ridges were also included.The NREL 5 MW 3-bladed rotor wind turbine concept was used as the baseline design. The proposed turbine design employs variable pitch blade control with tip-brakes and a teeter mechanism. The rotor diameter, rated power and the tower dimensions were selected to closely match those of the NREL 5 MW wind turbine.A semi-floating gravity base foundation was designed for this project primarily to adapt to regional logistical constraints to transport and install the gravity base foundation. This foundation consists of, from bottom to top, a base plate, a buoyancy chamber, a taper zone, a column (with ice cone), and a service platform. A compound upward-downward ice cone was selected to secure the foundation from moving because of ice impact.The turbine loads analysis was based on International ElectroTechnical Committee (IEC) Standard 61400-1, Class III winds. The NREL software FAST was the primary computational tool used in this study to determine all design load cases. An initial set of studies of the dynamics of wind turbines using Automatic Dynamic Analysis of Mechanical Systems (ADAMS) demonstrated that FAST and ADAMS load predictions were comparable. Because of its relative simplicity and short run times, FAST was selected for this study. For ice load calculations, a method

  16. EDITORIAL: Advanced Sensors and Instrumentation Systems for the Food and Beverage Industries

    Science.gov (United States)

    Yan, Yong

    2006-02-01

    Advanced sensors and instrumentation systems are becoming increasingly important in the classification, characterization, authentication, quality control and safety management of food products and beverages. To bring together industrialists and academic researchers to discuss the latest developments and trends in this particular area, the ISAT (Instrument Science and Technology) Group of the Institute of Physics organized a highly focused one-day technical meeting, which was held at the Rutherford Conference Centre at the Institute of Physics in London on 15 December 2004. The event was co-sponsored by the Measurement, Sensors, Instrumentation and NDT Professional Network of the Institution of Electrical Engineers and the Measurement Science and Technology Panel of the Institute of Measurement and Control. The special feature in this issue (on pages 229 287) brings together a collection of some of the papers that were presented at the event. Also included in the special feature are two relevant papers that were submitted through the usual route. Technical topics covered, though wide ranging as reflected in part by the diversity of the papers, demonstrate recent developments and possible approaches that may offer solutions to a broad range of sensing and measurement problems in the food and beverage industries. The first paper, reported by Sheridan et al, is concerned with the quality monitoring of chicken, sausages and pastry products during their cooking processes using an optical fibre-based sensing system. Carter et al describe how digital imaging and image processing techniques have been applied to achieve the classification and authentication of rice grains. The challenges in the measurement and control of final moisture content in baked food products such as bread and biscuits are addressed and discussed by McFarlane. Juodeikiene et al report their progress in the development of acoustic echolocation-based techniques for the evaluation of porosity and

  17. The Integrated Safety-Critical Advanced Avionics Communication and Control (ISAACC) System Concept: Infrastructure for ISHM

    Science.gov (United States)

    Gwaltney, David A.; Briscoe, Jeri M.

    2005-01-01

    Integrated System Health Management (ISHM) architectures for spacecraft will include hard real-time, critical subsystems and soft real-time monitoring subsystems. Interaction between these subsystems will be necessary and an architecture supporting multiple criticality levels will be required. Demonstration hardware for the Integrated Safety-Critical Advanced Avionics Communication & Control (ISAACC) system has been developed at NASA Marshall Space Flight Center. It is a modular system using a commercially available time-triggered protocol, ?Tp/C, that supports hard real-time distributed control systems independent of the data transmission medium. The protocol is implemented in hardware and provides guaranteed low-latency messaging with inherent fault-tolerance and fault-containment. Interoperability between modules and systems of modules using the TTP/C is guaranteed through definition of messages and the precise message schedule implemented by the master-less Time Division Multiple Access (TDMA) communications protocol. "Plug-and-play" capability for sensors and actuators provides automatically configurable modules supporting sensor recalibration and control algorithm re-tuning without software modification. Modular components of controlled physical system(s) critical to control algorithm tuning, such as pumps or valve components in an engine, can be replaced or upgraded as "plug and play" components without modification to the ISAACC module hardware or software. ISAACC modules can communicate with other vehicle subsystems through time-triggered protocols or other communications protocols implemented over Ethernet, MIL-STD- 1553 and RS-485/422. Other communication bus physical layers and protocols can be included as required. In this way, the ISAACC modules can be part of a system-of-systems in a vehicle with multi-tier subsystems of varying criticality. The goal of the ISAACC architecture development is control and monitoring of safety critical systems of a

  18. Advanced Underground Gas Storage Concepts: Refrigerated-Mined Cavern Storage, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    none

    1998-09-30

    Over the past 40 years, cavern storage of LPG's, petrochemicals, such as ethylene and propylene, and other petroleum products has increased dramatically. In 1991, the Gas Processors Association (GPA) lists the total U.S. underground storage capacity for LPG's and related products of approximately 519 million barrels (82.5 million cubic meters) in 1,122 separate caverns. Of this total, 70 are hard rock caverns and the remaining 1,052 are caverns in salt deposits. However, along the eastern seaboard of the U.S. and the Pacific northwest, salt deposits are not available and therefore, storage in hard rocks is required. Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. Competing methods include LNG facilities and remote underground storage combined with pipeline transportation to the area. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. DOE has identified five regions, that have not had favorable geological conditions for underground storage development: New England, Mid-Atlantic (NY/NJ), South Atlantic (DL/MD/VA), South Atlantic (NC/SC/GA), and the Pacific Northwest (WA/OR). PB-KBB reviewed published literature and in-house databases of the geology of these regions to determine suitability of hard rock formations for siting

  19. Advanced core physics and thermal hydraulics analysis of boiling water reactors using innovative fuel concepts

    International Nuclear Information System (INIS)

    The economical operation of a boiling water reactor (BWR) is mainly achieved by the axially uniform utilization of the nuclear fuel in the assemblies which is challenging because the neutron spectrum in the active reactor core varies with the axial position. More precisely, the neutron spectrum becomes harder the higher the position is resulting in a decrease of the fuel utilization because the microscopic fission cross section is smaller by several orders of magnitude. In this work, the use of two fuel concepts based on a mixed oxide (MOX) fuel and an innovative thorium-plutonium (ThPu) fuel is investigated by a developed simulation model encompassing thermal hydraulics, neutronics, and fuel burnup. The main feature of these fuel concepts is the axially varying enrichment in plutonium which is, in this work, recycled from spent nuclear fuel and shows a high fission fraction of the absorption cross section for fast incident neutron energies. The potential of balancing the overall fuel utilization by an increase of the fission rate in the upper part of the active height with a combination of the harder spectrum and the higher fission fraction of the absorption cross section in the BWR core is studied. The three particular calculational models for thermal hydraulics, neutronics, and fuel burnup provide results at fuel assembly and/or at core level. In the former case, the main focus lies on the thermal hydraulics analysis, fuel burnup, and activity evolution after unloading from the core and, in the latter case, special attention is paid to reactivity safety coefficients (feedback effects) and the optimization of the operational behavior. At both levels (assembly and core), the isotopic buildup and depletion rates as a function of the active height are analyzed. In addition, a comparison between the use of conventional fuel types with homogeneous enrichments and the use of the innovative fuel types is made. In the framework of the simulations, the ThPu and the MOX

  20. Industry

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  1. ROBOTICALLY ENHANCED ADVANCED MANUFACTURING CONCEPTS TO OPTIMIZE ENERGY, PRODUCTIVITY, AND ENVIRONMENTAL PERFORMANCE

    Energy Technology Data Exchange (ETDEWEB)

    Larry L. Keller; Joseph M. Pack; Robert V. Kolarik II

    2007-11-05

    In the first phase of the REML project, major assets were acquired for a manufacturing line for follow-on installation, capability studies and optimization. That activity has been documented in the DE-FC36-99ID13819 final report. In this the second phase of the REML project, most of the major assets have been installed in a manufacturing line arrangement featuring a green cell, a thermal treatment cell and a finishing cell. Most of the secondary and support assets have been acquired and installed. Assets have been integrated with a commercial, machine-tending gantry robot in the thermal treatment cell and with a low-mass, high-speed gantry robot in the finish cell. Capabilities for masterless gauging of product’s dimensional and form characteristics were advanced. Trial production runs across the entire REML line have been undertaken. Discrete event simulation modeling has aided in line balancing and reduction of flow time. Energy, productivity and cost, and environmental comparisons to baselines have been made. Energy The REML line in its current state of development has been measured to be about 22% (338,000 kVA-hrs) less energy intensive than the baseline conventional low volume line assuming equivalent annual production volume of approximately 51,000 races. The reduction in energy consumption is largely attributable to the energy reduction in the REML thermal treatment cell where the heating devices are energized on demand and are appropriately sized to the heating load of a near single piece flow line. If additional steps such as power factor correction and use of high-efficiency motors were implemented to further reduce energy consumption, it is estimated, but not yet demonstrated, that the REML line would be about 30% less energy intensive than the baseline conventional low volume line assuming equivalent annual production volume. Productivity The capital cost of an REML line would be roughly equivalent to the capital cost of a new conventional line. The

  2. Earth's Critical Zone and hydropedology: concepts, characteristics, and advances

    Directory of Open Access Journals (Sweden)

    H. S. Lin

    2009-04-01

    Full Text Available The Critical Zone (CZ is a holistic framework for integrated studies of water with soil, rock, air, and biotic resources in terrestrial environments. This is consistent with the recognition of water as a unifying theme for research on complex environmental systems. The CZ ranges from the top of the vegetation down to the bottom of the aquifer, with a highly variable thickness (from <0.001 to >10 km. The pedosphere is the foundation of the CZ, which represents a geomembrance across which water and solutes, as well as energy, gases, solids, and organisms are actively exchanged with the atmosphere, biosphere, hydrosphere, and lithosphere to create a life-sustaining environment. Hydropedology – the science of the behaviour and distribution of soil-water interactions in contact with mineral and biological materials in the CZ – is an important contributor to CZ research. This article reviews and discusses the basic ideas and fundamental features of the CZ and hydropedology, and suggests ways for their advances. An "outward" growth model, instead of an "inward" contraction, is suggested for propelling soil science forward. The CZ is the right platform for synergistic collaborations across disciplines. The reconciliation of the geological (or "big" cycle and the biological (or "small" cycle that are orders of magnitude different in space and time is a key to understanding and predicting complex CZ processes. Because of the layered nature of the CZ and the general trend of increasing density with depth, response and feedback to climate change take longer from the above-ground zone down to the soil zone and further to the groundwater zone. Interfaces between layers and cycles are critical controls of the landscape-soil-water-ecosystem dynamics, which present fertile grounds for interdisciplinary research. Ubiquitous heterogeneity in the CZ can be addressed by environmental gradients and landscape patterns, where hierarchical structures control the

  3. Concepts for `superior process control` in the energy industry; Konzepte fuer die uebergeordnete Prozessfuehrung in der Energiewirtschaft

    Energy Technology Data Exchange (ETDEWEB)

    Doellen, U.C. von

    1996-12-01

    The work concerns the task of control described as dispatching of extensive energy supply and distribution networks. Due to the special contractual situation, there are special long-term targets in firms, which must be achieved in addition to the extensive operational tasks of control and monitoring of the networks. The concepts introduced in the work offer a framework for a target-orientated design of computer-aided menus for this superior process control in the energy industry. (orig./GL) [Deutsch] Die Arbeit betrachtet die als Dispatching bezeichnete Aufgabe der Fuehrung ausgedehnter Energieversorgungs- und verteilungsnetze. Aus den speziellen Vertragssituationen ergeben sich in den Unternehmen besondere, langfristige Zielvorgaben an die mit der Betriebsfuehrung beauftragen Operateure, die zusaetzlich zu den umfangreichen operativen Aufgaben der Fuehrung und Ueberwachung der Netze zu erreichen sind. Die in der Arbeit vorgestellten Konzepte bieten den Rahmen fuer einen zielgerichteten Entwurf rechnergestuetzter Hilfsmittel fuer diese uebergeordnete Prozessfuehrung in der Energiewirtschaft. Das erstellte Gesamtsystem wird abschliessend zur Loesung einer konkreten, energiewirtschaftlichen Problemstellung eingesetzt. Die entwickelte Anwendungsloesung wird als Hilfsmittel fuer die technische und vertragliche Optimierung im Dispatching eingesetzt. Wesentliche Zielsetzung ist ein technisch und wirtschaftlich optimaler Einsatz von Energiespeichern zur Deckung von Spitzenlasten. (orig./GL)

  4. First workshop on the possibilities of biorefinery concepts for the industry : held at hotel "De Wageningse Berg", Wageningen, the Netherlands (16 June 2006) : official minutes

    NARCIS (Netherlands)

    Annevelink, E.; Jong, de E.; Ree, van R.; Zwart, R.W.R.

    2006-01-01

    On June the 16th the first ¿workshop on the possibilities of biorefinery concepts for the industry¿ was held, bringing together different Dutch stakeholders, and addressing common as well as conflicting technical and market issues with regard to biorefinery opportunities. The first-of-akind workshop

  5. Partnering with Industry to Advance Biofuels, NREL's Integrated Biorefinery Research Facility (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2010-10-01

    Fact sheet describing NREL's Integrated Biorefinery Research Facility and its availability to biofuels' industry partners who want to operate, test, and develop biorefining technology and equipment.

  6. Choosing a Pathway Towards Advancing China's Reform of the Power Industry

    Institute of Scientific and Technical Information of China (English)

    Lin Boqiang; Jia Yulu

    2007-01-01

    @@ Considering China's reality when moving towards marketization In April 2007,the State Council issued the"Proposal for the Implementation of Furthering the Institutional Reform of the Power Industry during the 11th Five-Year Plan."

  7. Development and Application of Advanced Weather Prediction Technologies for the Wind Energy Industry (Invited)

    Science.gov (United States)

    Mahoney, W. P.; Wiener, G.; Liu, Y.; Myers, W.; Johnson, D.

    2010-12-01

    Wind energy decision makers are required to make critical judgments on a daily basis with regard to energy generation, distribution, demand, storage, and integration. Accurate knowledge of the present and future state of the atmosphere is vital in making these decisions. As wind energy portfolios expand, this forecast problem is taking on new urgency because wind forecast inaccuracies frequently lead to substantial economic losses and constrain the national expansion of renewable energy. Improved weather prediction and precise spatial analysis of small-scale weather events are crucial for renewable energy management. In early 2009, the National Center for Atmospheric Research (NCAR) began a collaborative project with Xcel Energy Services, Inc. to perform research and develop technologies to improve Xcel Energy's ability to increase the amount of wind energy in their generation portfolio. The agreement and scope of work was designed to provide highly detailed, localized wind energy forecasts to enable Xcel Energy to more efficiently integrate electricity generated from wind into the power grid. The wind prediction technologies are designed to help Xcel Energy operators make critical decisions about powering down traditional coal and natural gas-powered plants when sufficient wind energy is predicted. The wind prediction technologies have been designed to cover Xcel Energy wind resources spanning a region from Wisconsin to New Mexico. The goal of the project is not only to improve Xcel Energy’s wind energy prediction capabilities, but also to make technological advancements in wind and wind energy prediction, expand our knowledge of boundary layer meteorology, and share the results across the renewable energy industry. To generate wind energy forecasts, NCAR is incorporating observations of current atmospheric conditions from a variety of sources including satellites, aircraft, weather radars, ground-based weather stations, wind profilers, and even wind sensors on

  8. Engineering propionibacteria as versatile cell factories for the production of industrially important chemicals: advances, challenges, and prospects.

    Science.gov (United States)

    Guan, Ningzi; Zhuge, Xin; Li, Jianghua; Shin, Hyun-Dong; Wu, Jing; Shi, Zhongping; Liu, Long

    2015-01-01

    Propionibacteria are actinobacteria consisting of two principal groups: cutaneous and dairy. Cutaneous propionibacteria are considered primary pathogens to humans, whereas dairy propionibacteria are widely used in the food and pharmaceutical industries. Increasing attention has been focused on improving the performance of dairy propionibacteria for the production of industrially important chemicals, and significant advances have been made through strain engineering and process optimization in the production of flavor compounds, nutraceuticals, and antimicrobial compounds. In addition, genome sequencing of several propionibacteria species has been completed, deepening understanding of the metabolic and physiological features of these organisms. However, the metabolic engineering of propionibacteria still faces several challenges owing to the lack of efficient genome manipulation tools and the existence of various types of strong restriction-modification systems. The emergence of systems and synthetic biology provides new opportunities to overcome these bottlenecks. In this review, we first introduce the major species of propionibacteria and their properties and provide an overview of their functions and applications. We then discuss advances in the genome sequencing and metabolic engineering of these bacteria. Finally, we discuss systems and synthetic biology approaches for engineering propionibacteria as efficient and robust cell factories for the production of industrially important chemicals. PMID:25431012

  9. A Critical Pragmatism: Marcuse, Adorno, and Peirce on the Artificial Stagnation of Individual and Social Development in Advanced Industrial Societies

    Directory of Open Access Journals (Sweden)

    Clancy Smith

    2009-12-01

    Full Text Available This paper will analyze the effects advanced industrial societies have on individual and social development through the eyes of Marcuse’s One-Dimensional Man and the moral consequences of such artificial stagnation through Adorno’s lectures on The Problems of Moral Philosophy. Because such an investigation necessarily brings us into the realm of social psychology, we will turn to the social psychological tradition at the heart of American pragmatism, a target for critical theorists who are often antagonistic to the entire tradition. We will endeavor to advance two alternate readings of the work of C.S. Peirce, arguing that although one type of pragmatism may be justly attacked by critical theorists, there is another, I argue, more critical manifestation of pragmatic human development, that requires the type of autonomy-infused, open-ended development that Marcuse champions. Moreover, I will argue that Peirce’s seminal essay “The Fixation of Belief” anticipated many of Marcuse’s critiques of advanced industrial societies by nearly ninety years.

  10. Application of Advanced Technologies for CO2 Capture from Industrial Sources

    OpenAIRE

    Romano, Matteo C.; Anantharaman, Rahul; Arasto, Antti; Ozcan, Dursun Can; Ahn, Hyungwoong; Dijkstra, Jan Wilco; Carbo, Michiel; Boavida, Dulce

    2013-01-01

    The great majority of the research on CO2 capture worldwide is today devoted to the integration of new technologies in power plants, which are responsible for about 80% of the worldwide CO2 emission from large stationary sources. The remaining 20% are emitted from industrial sources, mainly cement production plants (∼7% of the total emission), refineries (∼6%) and iron and steel industry (∼5%). Despite their lower overall contribution, the CO2 concentration in flue gas and the average emissio...

  11. New advances in traceability of CMMs for almost the entire range of industrial

    DEFF Research Database (Denmark)

    Trapet, E.; Savio, Enrico; De Chiffre, Leonardo

    2004-01-01

    significantly reduce the efforts associated with the traceability of industrial dimensional metrology laboratories by means of the almost exclusive use of coordinate measuring machines (CMMs) in combination with laser interferometers. The second main goal was to develop and validate CMM-specific ......significantly reduce the efforts associated with the traceability of industrial dimensional metrology laboratories by means of the almost exclusive use of coordinate measuring machines (CMMs) in combination with laser interferometers. The second main goal was to develop and validate CMM...

  12. Quantifying the benefits: Energy, cost, and employment impacts of advanced industrial technologies

    International Nuclear Information System (INIS)

    This development effort was supported by the Technologies Partnerships Program established through the US Department of Energy's Office of Energy Efficiency and Renewable Energy via the Office of Industrial Technology (OIT). This program supports research, development, and demonstration of industrial technologies aimed at improving energy efficiency and productivity while reducing pollution, material waste, and operations/maintenance costs. The goal of this program is to develop cost-shared partnerships with industry, government and non-government organizations to foster improved efficiency, productivity, and pollution prevention technologies. This partnership program is believed to be one way that energy efficiency will be delivered to industry in the 21st Century. This paper reports on the development of the Industrial Technology Employment Analysis Model (ITEAM) which calculates economy-wide employment impacts of specific partnership program technologies, using data developed by the technology partner. ITEAM is a desk-top computer model that allows users to evaluate base-case partnership data and/or run sensitivity tests using its graphical-user-interface features. To demonstrate the capabilities of ITEAM, an analysis is presented for the chemicals industry. In addition, the following major industries have been analyzed and summary data are presented: aluminum, stone/clay/glass, forest products, chemicals, metal casting, steel, and petroleum. This paper addresses the development, function, and use of ITEAM. Included is a presentation of key assumptions along with user inputs and a discussion of sensitivities. The results of ITEAM runs for over 20 technology projects in 7 program areas are reported. The paper also explains how the project data are used to modify the 1987 I/O table to impact output and employment. The calculations are explained and the approach is rationalized. The argument for this approach rests on the proposition that improvements in efficiency

  13. Self-consistent Green's function embedding for advanced electronic structure methods based on a dynamical mean-field concept

    Science.gov (United States)

    Chibani, Wael; Ren, Xinguo; Scheffler, Matthias; Rinke, Patrick

    2016-04-01

    We present an embedding scheme for periodic systems that facilitates the treatment of the physically important part (here a unit cell or a supercell) with advanced electronic structure methods, that are computationally too expensive for periodic systems. The rest of the periodic system is treated with computationally less demanding approaches, e.g., Kohn-Sham density-functional theory, in a self-consistent manner. Our scheme is based on the concept of dynamical mean-field theory formulated in terms of Green's functions. Our real-space dynamical mean-field embedding scheme features two nested Dyson equations, one for the embedded cluster and another for the periodic surrounding. The total energy is computed from the resulting Green's functions. The performance of our scheme is demonstrated by treating the embedded region with hybrid functionals and many-body perturbation theory in the GW approach for simple bulk systems. The total energy and the density of states converge rapidly with respect to the computational parameters and approach their bulk limit with increasing cluster (i.e., computational supercell) size.

  14. Recent advances of pore system construction in zeolite-catalyzed chemical industry processes.

    Science.gov (United States)

    Shi, Jing; Wang, Yangdong; Yang, Weimin; Tang, Yi; Xie, Zaiku

    2015-12-21

    The kaleidoscopic applications of zeolite catalysts (zeo-catalysts) in petrochemical processes has been considered as one of the major accomplishments in recent decades. About twenty types of zeolite have been industrially applied so far, and their versatile porous architectures have contributed their most essential features to affect the catalytic efficiency. This review depicts the evolution of pore models in zeolite catalysts accompanied by the increase in industrial and environmental demands. The indispensable roles of modulating pore models are outlined for zeo-catalysts for the enhancement of their catalytic performances in various industrial processes. The zeolites and related industrial processes discussed range from the uni-modal micropore system of zeolite Y (12-ring micropore, 12-R) in fluid catalytic cracking (FCC), zeolite ZSM-5 (10-R) in xylene isomerization and SAPO-34 (8-R) in olefin production to the multi-modal micropore system of MCM-22 (10-R and 12-R pocket) in aromatic alkylation and the hierarchical pores in FCC and catalytic cracking of C4 olefins. The rational construction of pore models, especially hierarchical features, is highlighted with a careful classification from an industrial perspective accompanied by a detailed analysis of the theoretical mechanisms.

  15. Dynamic Modeling of Learning in Emerging Energy Industries: The Example of Advanced Biofuels in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Vimmerstedt, Laura; Peterson, Steve; Bush, Brian

    2016-05-01

    This paper (and its supplemental model) presents novel approaches to modeling interactions and related policies among investment, production, and learning in an emerging competitive industry. New biomass-to-biofuels pathways are being developed and commercialized to support goals for U.S. advanced biofuel use, such as those in the Energy Independence and Security Act of 2007. We explore the impact of learning rates and techno-economics in a learning model excerpted from the Biomass Scenario Model (BSM), developed by the U.S. Department of Energy and the National Renewable Energy Laboratory to explore the impact of biofuel policy on the evolution of the biofuels industry. The BSM integrates investment, production, and learning among competing biofuel conversion options that are at different stages of industrial development. We explain the novel methods used to simulate the impact of differing assumptions about mature industry techno-economics and about learning rates while accounting for the different maturity levels of various conversion pathways. A sensitivity study shows that the parameters studied (fixed capital investment, process yield, progress ratios, and pre-commercial investment) exhibit highly interactive effects, and the system, as modeled, tends toward market dominance of a single pathway due to competition and learning dynamics.

  16. Dynamic Modeling of Learning in Emerging Energy Industries: The Example of Advanced Biofuels in the United States: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Vimmerstedt, Laura J.; Bush, Brian W.; Peterson, Steven O.

    2015-09-03

    This paper (and its supplemental model) presents novel approaches to modeling interactions and related policies among investment, production, and learning in an emerging competitive industry. New biomass-to-biofuels pathways are being developed and commercialized to support goals for U.S. advanced biofuel use, such as those in the Energy Independence and Security Act of 2007. We explore the impact of learning rates and techno-economics in a learning model excerpted from the Biomass Scenario Model (BSM), developed by the U.S. Department of Energy and the National Renewable Energy Laboratory to explore the impact of biofuel policy on the evolution of the biofuels industry. The BSM integrates investment, production, and learning among competing biofuel conversion options that are at different stages of industrial development. We explain the novel methods used to simulate the impact of differing assumptions about mature industry techno-economics and about learning rates while accounting for the different maturity levels of various conversion pathways. A sensitivity study shows that the parameters studied (fixed capital investment, process yield, progress ratios, and pre-commercial investment) exhibit highly interactive effects, and the system, as modeled, tends toward market dominance of a single pathway due to competition and learning dynamics.

  17. Equipment concept design and development plans for microgravity science and applications research on space station: Combustion tunnel, laser diagnostic system, advanced modular furnace, integrated electronics laboratory

    Science.gov (United States)

    Uhran, M. L.; Youngblood, W. W.; Georgekutty, T.; Fiske, M. R.; Wear, W. O.

    1986-01-01

    Taking advantage of the microgravity environment of space NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. Previous studies have been performed to define from the researcher's perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. Functional requirements for the identified experimental apparatus and support equipment were determined. From these hardware requirements, several items were selected for concept designs and subsequent formulation of development plans. This report documents the concept designs and development plans for two items of experiment apparatus - the Combustion Tunnel and the Advanced Modular Furnace, and two items of support equipment the Laser Diagnostic System and the Integrated Electronics Laboratory. For each concept design, key technology developments were identified that are required to enable or enhance the development of the respective hardware.

  18. Spreading the word of the concept 'inherent safety' in a general industrial setting in the Dutch province of Zeeland

    NARCIS (Netherlands)

    Jongen, M.J.M.; Dijkman, A.; Zwanikken, S.; Zwetsloot, G.I.J.M.; Gort, J.

    2007-01-01

    Recent accidents in The Netherlands in different kinds of industries, like fire works storage, catering and energy industry, triggered the Dutch government to start a national program to enhance the enforcement of industrial safety at the regional and municipal level. Stimulated by this program the

  19. Advances in digital industrial radiology - New application areas beyond film radiography

    Science.gov (United States)

    Ewert, Uwe

    2013-01-01

    Similar to the success story of digital photography a major upheaval has been observed in digital industrial radiology. Digital Detector Arrays enable the increase of contrast sensitivity up to a factor of 10 in comparison to film radiography. Computed radiography with phosphor imaging plates substitutes film applications. The increased sensitivity of digital detectors enables the efficient usage for dimensional measurements and functionality tests substituting manual maintenance. The measurement of wall thickness and corrosion status is state of the art in petrochemical industry. X-ray back scatter techniques have been applied in safety and security relevant applications with single sided access of source and detector. Computed tomography (CT) applications cover the range from m to nm scale. The scope of CT applications changes from flaw detection to dimensional measurement in industry. Mobile computed tomography is applied for in-service radiographic crack detection and sizing in welded pipes in nuclear power industry and aerospace applications. CT has been applied for evaluation of hot cracking susceptibility of modern weld alloys. In combination with modified varestraint transvarestraint tests (MVT) the cumulative crack length as function of stress and depth was determined. This enables the quantitative characterization of the weldability properties of different materials.

  20. Development and Deployment of a Library of Industrially Focused Advanced Immersive VR Learning Environments

    Science.gov (United States)

    Cameron, Ian; Crosthwaite, Caroline; Norton, Christine; Balliu, Nicoleta; Tadé, Moses; Hoadley, Andrew; Shallcross, David; Barton, Geoff

    2008-01-01

    This work presents a unique education resource for both process engineering students and the industry workforce. The learning environment is based around spherical imagery of real operating plants coupled with interactive embedded activities and content. This Virtual Reality (VR) learning tool has been developed by applying aspects of relevant…

  1. Application of advanced technologies for CO2 capture from industrial sources

    Energy Technology Data Exchange (ETDEWEB)

    Romano, M.C. [Politecnico di Milano, Energy Department, via Lambruschini 4, 20156 Milano (Italy); Anantharaman, R. [SINTEF Energy Research, Sem Saelands vei 11, 7465 Trondheim (Norway); Arasto, A. [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT (Finland); Ozcan, D.C.; Ahnd, Hyungwoong [IMP-SEE, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JL (United Kingdom); Dijkstra, J.W.; Carbo, M. [Energy research Centre of the Netherlands ECN, P.O. Box 1, 1755 ZG Petten (Netherlands); Boavida, D. [LNEG - Laboratorio Nacional de Energia e Geologia, Estrada do Paco do Lumiar, 22 Edif J, 1649-038 Lisboa (Portugal)

    2013-07-01

    The great majority of the research on CO2 capture worldwide is today devoted to the integration of new technologies in power plants, which are responsible for about 80% of the worldwide CO2 emission from large stationary sources. The remaining 20% are emitted from industrial sources, mainly cement production plants ({approx}7% of the total emission), refineries ({approx}6%) and iron and steel industry ({approx}5%). Despite their lower overall contribution, the CO2 concentration in flue gas and the average emission per source can be higher than in power plants. Therefore, application of CO2 capture processes on these sources can be more effective and can lead to competitive cost of the CO2 avoided with respect to power plants. Furthermore, industrial CO2 capture could be an important early-opportunity application, or a facilitate demonstration of capture technology at a relative small scale or in a side stream. This paper results from a collaborative activity carried out within the Joint Programme on Carbon Capture and Storage of the European Energy Research Alliance (EERA CCS-JP) and aims at investigating the potentiality of new CO2 technologies in the application on the major industrial emitters.

  2. Advancing Understanding on Industrial Relations in Multinational Companies: Key Research Challenges and the INTREPID Contribution

    DEFF Research Database (Denmark)

    Gunnigle, Patrick; Valeria, Pulignano; Edwards, Tony;

    2015-01-01

    companies using INTREPID (Investigation of Transnationals’ Employment Practices: an International Database) data. Finally, the paper identifies some of the main industrial relations issues that remain to be addressed, in effect charting a form of research agenda for future work using the INTREPID data......, with particular focus on the potential contribution from ‘late joiners’ to the INTREPID project....

  3. Advanced Membrane Separation Technologies for Energy Recovery from Industrial Process Streams

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, J. R.; Wang, D. [Gas Technology Institute; Bischoff, B.; Ciora, [Media and Process Technology; Radhakrishnan, B.; Gorti, S. B.

    2013-01-14

    Recovery of energy from relatively low-temperature waste streams is a goal that has not been achieved on any large scale. Heat exchangers do not operate efficiently with low-temperature streams and thus require such large heat exchanger surface areas that they are not practical. Condensing economizers offer one option for heat recovery from such streams, but they have not been widely implemented by industry. A promising alternative to these heat exchangers and economizers is a prototype ceramic membrane system using transport membrane technology for separation of water vapor and recovery of heat. This system was successfully tested by the Gas Technology Institute (GTI) on a natural gas fired boiler where the flue gas is relatively clean and free of contaminants. However, since the tubes of the prototype system were constructed of aluminum oxide, the brittle nature of the tubes limited the robustness of the system and even limited the length of tubes that could be used. In order to improve the robustness of the membrane tubes and make the system more suitable for industrial applications, this project was initiated with the objective of developing a system with materials that would permit the system to function successfully on a larger scale and in contaminated and potentially corrosive industrial environments. This required identifying likely industrial environments and the hazards associated with those environments. Based on the hazardous components in these environments, candidate metallic materials were identified that are expected to have sufficient strength, thermal conductivity and corrosion resistance to permit production of longer tubes that could function in the industrial environments identified. Tests were conducted to determine the corrosion resistance of these candidate alloys, and the feasibility of forming these materials into porous substrates was assessed. Once the most promising metallic materials were identified, the ability to form an alumina

  4. Treatment of leather industrial wastewater via combined advanced oxidation and membrane filtration.

    Science.gov (United States)

    Abdel-Shafy, Hussein I; El-Khateeb, Mohamed A; Mansour, Mona S M

    2016-01-01

    The liming/unhairing operation is among the important processes of the leather industry. It generates large amounts of effluent that are highly loaded with organic hazard wastes. Such effluent is considered one of the most obnoxious materials in the leather industry, causing serious environmental pollution and health risks. The effluent is characterized by high concentrations of the pollution parameters. Conventional chemical and/or biological treatment of such wastewater is inefficient to meet the required limits of standard specifications, due to the presence of resistant and toxic compounds. The present investigation deals with an effective treatment approach for the lime/unhair effluent using the Fenton reaction followed by membrane filtration. The experiment was extended to a laboratory pilot-scale in a continuous treatment study. In this study the raw wastewater was treated with the predetermined Fenton's optimum dose followed by membrane filtration. The wastewater was efficiently treated and the final effluent met the standards for unrestricted water reuse.

  5. Treatment of leather industrial wastewater via combined advanced oxidation and membrane filtration.

    Science.gov (United States)

    Abdel-Shafy, Hussein I; El-Khateeb, Mohamed A; Mansour, Mona S M

    2016-01-01

    The liming/unhairing operation is among the important processes of the leather industry. It generates large amounts of effluent that are highly loaded with organic hazard wastes. Such effluent is considered one of the most obnoxious materials in the leather industry, causing serious environmental pollution and health risks. The effluent is characterized by high concentrations of the pollution parameters. Conventional chemical and/or biological treatment of such wastewater is inefficient to meet the required limits of standard specifications, due to the presence of resistant and toxic compounds. The present investigation deals with an effective treatment approach for the lime/unhair effluent using the Fenton reaction followed by membrane filtration. The experiment was extended to a laboratory pilot-scale in a continuous treatment study. In this study the raw wastewater was treated with the predetermined Fenton's optimum dose followed by membrane filtration. The wastewater was efficiently treated and the final effluent met the standards for unrestricted water reuse. PMID:27508363

  6. Advanced Approach to Information Security Management System Model for Industrial Control System

    Directory of Open Access Journals (Sweden)

    Sanghyun Park

    2014-01-01

    Full Text Available Organizations make use of important information in day-to-day business. Protecting sensitive information is imperative and must be managed. Companies in many parts of the world protect sensitive information using the international standard known as the information security management system (ISMS. ISO 27000 series is the international standard ISMS used to protect confidentiality, integrity, and availability of sensitive information. While an ISMS based on ISO 27000 series has no particular flaws for general information systems, it is unfit to manage sensitive information for industrial control systems (ICSs because the first priority of industrial control is safety of the system. Therefore, a new information security management system based on confidentiality, integrity, and availability as well as safety is required for ICSs. This new ISMS must be mutually exclusive of an ICS. This paper provides a new paradigm of ISMS for ICSs, which will be shown to be more suitable than the existing ISMS.

  7. Advanced Approach to Information Security Management System Model for Industrial Control System

    Science.gov (United States)

    2014-01-01

    Organizations make use of important information in day-to-day business. Protecting sensitive information is imperative and must be managed. Companies in many parts of the world protect sensitive information using the international standard known as the information security management system (ISMS). ISO 27000 series is the international standard ISMS used to protect confidentiality, integrity, and availability of sensitive information. While an ISMS based on ISO 27000 series has no particular flaws for general information systems, it is unfit to manage sensitive information for industrial control systems (ICSs) because the first priority of industrial control is safety of the system. Therefore, a new information security management system based on confidentiality, integrity, and availability as well as safety is required for ICSs. This new ISMS must be mutually exclusive of an ICS. This paper provides a new paradigm of ISMS for ICSs, which will be shown to be more suitable than the existing ISMS. PMID:25136659

  8. Advancements and performance of iterative methods in industrial applications codes on CRAY parallel/vector supercomputers

    Energy Technology Data Exchange (ETDEWEB)

    Poole, G.; Heroux, M. [Engineering Applications Group, Eagan, MN (United States)

    1994-12-31

    This paper will focus on recent work in two widely used industrial applications codes with iterative methods. The ANSYS program, a general purpose finite element code widely used in structural analysis applications, has now added an iterative solver option. Some results are given from real applications comparing performance with the tradition parallel/vector frontal solver used in ANSYS. Discussion of the applicability of iterative solvers as a general purpose solver will include the topics of robustness, as well as memory requirements and CPU performance. The FIDAP program is a widely used CFD code which uses iterative solvers routinely. A brief description of preconditioners used and some performance enhancements for CRAY parallel/vector systems is given. The solution of large-scale applications in structures and CFD includes examples from industry problems solved on CRAY systems.

  9. Advances in statistical monitoring of complex multivariate processes with applications in industrial process control

    CERN Document Server

    Kruger, Uwe

    2012-01-01

    The development and application of multivariate statistical techniques in process monitoring has gained substantial interest over the past two decades in academia and industry alike.  Initially developed for monitoring and fault diagnosis in complex systems, such techniques have been refined and applied in various engineering areas, for example mechanical and manufacturing, chemical, electrical and electronic, and power engineering.  The recipe for the tremendous interest in multivariate statistical techniques lies in its simplicity and adaptability for developing monitoring applica

  10. Asymmetric catalysis in Brazil: development and potential for advancement of Brazilian chemical industry

    International Nuclear Information System (INIS)

    The preparation of enantiomerically pure or enriched substances is of fundamental importance to pharmaceutical, food, agrochemical, and cosmetics industries and involves a growing market of hundreds of billions of dollars. However, most chemical processes used for their production are not environmentally friendly because in most cases, stoichiometric amounts of chiral inductors are used and substantial waste is produced. In this context, asymmetric catalysis has emerged as an efficient tool for the synthesis of enantiomerically enriched compounds using chiral catalysts. More specifically, considering the current scenario in the Brazilian chemical industry, especially that of pharmaceuticals, the immediate prospect for the use of synthetic routes developed in Brazil in an enantioselective fashion or even the discovery of new drugs is practically null. Currently, the industrial production of drugs in Brazil is primarily focused on the production of generic drugs and is basically supported by imports of intermediates from China and India. In order to change this panorama and move forward toward the gradual incorporation of genuinely Brazilian synthetic routes, strong incentive policies, especially those related to continuous funding, will be needed. These incentives could be a breakthrough once we establish several research groups working in the area of organic synthesis and on the development and application of chiral organocatalysts and ligands in asymmetric catalysis, thus contributing to boost the development of the Brazilian chemical industry. Considering these circumstances, Brazil can benefit from this opportunity because we have a wide biodiversity and a large pool of natural resources that can be used as starting materials for the production of new chiral catalysts and are creating competence in asymmetric catalysis and related areas. This may decisively contribute to the growth of chemistry in our country. (author)

  11. RELIABILITY CENTRED MAINTENANCE FOR INDUSTRIAL USE: SIGNIFICANT ADVANCES FOR THE NEW MILLENNIUM

    Directory of Open Access Journals (Sweden)

    J.L. Coetzee

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Maintenance organisations have to obtain the correct strategic ’mix’ to ensure success. This includes having a strategically sound maintenance policy and managerial procedures, a well thought through maintenance plan, a proper maintenance management and operational system, proper operational procedures, employment of the necessary technology and sensible management of human resources. Reliability Centred Maintenance (RCM has enabled maintenance users to develop, scientifically founded maintenance plans. However, due to shortcomings in the methodology and shortcuts taken by RCM practitioners, these benefits have not been forthcoming in industrial use. This paper addresses these limitations and develops an improved RCM methodology. It was tested against the ’classical’ RCM in a typical industrial setting, with significant benefits being demonstrated.

    AFRIKAANSE OPSOMMING: Instandhoudingsorganisasies moet die regte strategiese ’mengsel’ verkry om sukses te verseker. Dit sluit ’n strategies gesonde instandhoudingsbeleid en bestuursprosedures, sowel as a weldeurdagte instandhoudingsplan, ’n goeie instandhoudingbestuur en -operasionele stelsel, goeie operasionele prosedures, die regte vlak van instandhoudingstegnologie asook goeie mensbestuur in. Betroubaarheidsgebaseerde Instandhouding (BGI stel gebruikers in staat om wetenskaplik gefundeerde instandhoudingsplanne daar te stel. Desnieteenstaande word hierdie voordele meesal nie in industriële toepassing verkry nie vanweë tekortkominge in die BGI metodologie asook die neem van kortpaaie deur BGI praktisyns. Hierdie artikel ondersoek hierdie beperkings en ontwikkel ’n verbeterde BGI metodologie. Dit is teenoor ’klassieke’ BGI in ’n tipiese industriële omgewing getoets en het beduidende voordele getoon.

  12. Advanced Industrial Archaeology: A new reverse-engineering process for contextualizing and digitizing ancient technical objects

    OpenAIRE

    Laroche, Florent; Bernard, Alain; Cotte, Michel

    2008-01-01

    International audience Since virtual engineering has been introduced inside industries, time processes have been reduced and products are more adapted to customer needs. Nowadays, the DMU is the centre point for all teams: design, manufacturing, communication etc. However, physical mock-ups and prototypes are sometimes requested. Consequently, a back-and-forth action between the real and the virtual worlds is necessary. Our research team has developed a reverse-engineering methodology for ...

  13. Effect of (partial) advanced oxidation processes (AOPs) on the decolourisation and biodegradability of an industrial wastewater

    OpenAIRE

    Van Aken, Pieter; Van Eyck, Kwinten; Lambert, Nico; Luyten, Jan; Liers, Sven

    2009-01-01

    Synthetic dyes are among the major industrial pollutants and water contaminants. These coloured dye effluents cause serious environmental pollution problems by releasing toxic and potential carcinogenic substances. Traditional treatment techniques applied to remove colour from wastewaters, are chemical coagulation/flocculation, membrane separation or activated carbon adsorption. The overall result of these techniques is, however, only a phase transfer of the pollutant. In this paper, the pote...

  14. Technological advances and industrial characteristics:Some evidence from developed and developing countries

    OpenAIRE

    Ram Upendra Das

    2007-01-01

    The need of technological advances for competitiveness is rather well known. However, the structural impacts of technological improvements on unemployment remain largely unexplored in the existing literature. The paper analyses the complex interlinkages among technological adaptation, labour productivity gains and scale expansion. It highlights the two opposing effects of technological improvements and labour productivity on employment. The paper demonstrates the role of scale expansion both ...

  15. Advanced Methods for Robot-Environment Interaction towards an Industrial Robot Aware of Its Volume

    Directory of Open Access Journals (Sweden)

    Fabrizio Romanelli

    2011-01-01

    Full Text Available A fundamental aspect of robot-environment interaction in industrial environments is given by the capability of the control system to model the structured and unstructured environment features. Industrial robots have to perform complex tasks at high speeds and have to satisfy hard cycle times while maintaining the operations extremely precise. The capability of the robot to perceive the presence of environmental objects is something still missing in the real industrial context. Although anthropomorphic robot producers have faced problems related to the interaction between robot and its environment, there is not an exhaustive study on the capabilities of the robot being aware of its volume and on the tools eventually mounted on its flange. In this paper, a solution to model the environment of the robot in order to make it capable of perceiving and avoiding collisions with the objects in its surroundings is shown. Furthermore, the model will be extended to take also into account the volume of the robot tool in order to extend the perception capabilities of the entire system. Testing results will be showed in order to validate the method, proving that the system is able to cope with complex real surroundings.

  16. Developing an Engineering Data Bank Service for the Precision Machinery Industry Cluster Using the Living Lab Concept

    OpenAIRE

    Kuo-Shu Luo; Shiang-Shin Lin; Kuei Kai Shao; Hui-Hua Lin

    2012-01-01

    In Taiwan the precision machinery industry has always played an important role in promoting important industrial upgrades. Small and medium enterprises (SMEs) account for the vast majority of participants in this industry. Because of their size and number they face a number of problems. These include difficulty in responding quickly to market demand, a low level of collaboration, and insufficient interaction between designers in central factories and the subcontractors who manufacture compone...

  17. Recovery Act: Innovative CO2 Sequestration from Flue Gas Using Industrial Sources and Innovative Concept for Beneficial CO2 Use

    Energy Technology Data Exchange (ETDEWEB)

    Dando, Neal; Gershenzon, Mike; Ghosh, Rajat

    2012-07-31

    field testing of a biomimetic in-duct scrubbing system for the capture of gaseous CO2 coupled with sequestration of captured carbon by carbonation of alkaline industrial wastes. The Phase 2 project, reported on here, combined efforts in enzyme development, scrubber optimization, and sequestrant evaluations to perform an economic feasibility study of technology deployment. The optimization of carbonic anhydrase (CA) enzyme reactivity and stability are critical steps in deployment of this technology. A variety of CA enzyme variants were evaluated for reactivity and stability in both bench scale and in laboratory pilot scale testing to determine current limits in enzyme performance. Optimization of scrubber design allowed for improved process economics while maintaining desired capture efficiencies. A range of configurations, materials, and operating conditions were examined at the Alcoa Technical Center on a pilot scale scrubber. This work indicated that a cross current flow utilizing a specialized gas-liquid contactor offered the lowest system operating energy. Various industrial waste materials were evaluated as sources of alkalinity for the scrubber feed solution and as sources of calcium for precipitation of carbonate. Solids were mixed with a simulated sodium bicarbonate scrubber blowdown to comparatively examine reactivity. Supernatant solutions and post-test solids were analyzed to quantify and model the sequestration reactions. The best performing solids were found to sequester between 2.3 and 2.9 moles of CO2 per kg of dry solid in 1-4 hours of reaction time. These best performing solids were cement kiln dust, circulating dry scrubber ash, and spray dryer absorber ash. A techno-economic analysis was performed to evaluate the commercial viability of the proposed carbon capture and sequestration process in full-scale at an aluminum smelter and a refinery location. For both cases the in-duct scrubber technology was compared to traditional amine- based capture

  18. Advanced industrial gas turbine technology readiness demonstration program. Phase II. Final report: compressor rig fabrication assembly and test

    Energy Technology Data Exchange (ETDEWEB)

    Schweitzer, J. K.; Smith, J. D.

    1981-03-01

    The results of a component technology demonstration program to fabricate, assemble and test an advanced axial/centrifugal compressor are presented. This work was conducted to demonstrate the utilization of advanced aircraft gas turbine cooling and high pressure compressor technology to improve the performance and reliability of future industrial gas turbines. Specific objectives of the compressor component testing were to demonstrate 18:1 pressure ratio on a single spool at 90% polytropic efficiency with 80% fewer airfoils as compared to current industrial gas turbine compressors. The compressor design configuration utilizes low aspect ratio/highly-loaded axial compressor blading combined with a centrifugal backend stage to achieve the 18:1 design pressure ratio in only 7 stages and 281 axial compressor airfoils. Initial testing of the compressor test rig was conducted with a vaneless centrifugal stage diffuser to allow documentation of the axial compressor performance. Peak design speed axial compressor performance demonstrated was 91.8% polytropic efficiency at 6.5:1 pressure ratio. Subsequent documentation of the combined axial/centrifugal performance with a centrifugal stage pipe diffuser resulted in the demonstration of 91.5% polytropic efficiency and 14% stall margin at the 18:1 overall compressor design pressure ratio. The demonstrated performance not only exceeded the contract performance goals, but also represents the highest known demonstrated compressor performance in this pressure ratio and flow class. The performance demonstrated is particularly significant in that it was accomplished at airfoil loading levels approximately 15% higher than that of current production engine compressor designs. The test results provide conclusive verification of the advanced low aspect ratio axial compressor and centrifugal stage technologies utilized.

  19. Integration von Industrie- und Innovationspolitik

    DEFF Research Database (Denmark)

    Wydra, Sven; Leimbach, Timo

    2015-01-01

    After the relatively successful recovery of countries with a strong industry share from the euro / financial crisis (e.g. Germany), a number of advanced nations like the US or UK, but also the European Union, launched programs to strengthen the share of industry in their economy. They address...... primarily highly innovative industrial and technological areas. In this article, we analyze the role of innovation and technology policy and its instruments in concepts of modern industrial policy and present current insights about its successful integra-tion. The systemic innovation policy contributes...... substantially to the conception of a modern industrial policy. This is reflected by a modification of the role of policy, the provision of key design principles for public policy and the higher diversification of policy tools. Past examples of biotechnology in the US and the software industry illustrate...

  20. Major advances in globalization and consolidation of the artificial insemination industry.

    Science.gov (United States)

    Funk, D A

    2006-04-01

    The artificial insemination (AI) industry in the United States has gone through many consolidations, mergers, and acquisitions over the past 25 yr. There are 5 major AI companies in the United States today: 3 large cooperatives, 1 private company, and 1 public company. The latter 2 have majority ownership outside of the United States. The AI industry in the United States progeny-tests more than 1,000 Holstein young sires per year. Because healthy, mature dairy bulls are capable of producing well over 100,000 straws of frozen semen per year, only a relatively small number of bulls are needed to breed the world's population of dairy cows. Most AI companies in the United States do not own many, if any, females and tend to utilize the same maternal families in their breeding programs. Little differences exist among the selection programs of the AI companies in the United States. The similarity of breeding programs and the extreme semen-production capabilities of bulls have contributed to difficulties the AI companies have had in developing genetically different product lines. Exports of North American Holstein genetics increased steadily from the 1970s into the 1990s because of the perceived superiority of North American Holsteins for dairy traits compared with European strains, especially for production. The breeding industry moved towards international genetic evaluations of bulls in the 1990s, with the International Bull Evaluation Service (Interbull) in Sweden coordinating the evaluations. The extensive exchange of elite genetics has led to a global dairy genetics industry with bulls that are closely related, and the average inbreeding level for the major dairy breeds continues to increase. Genetic markers have been used extensively and successfully by the industry for qualitative traits, especially for recessive genetic disorders, but markers have had limited impact for quantitative traits. Selection emphasis continues to migrate away from production traits and

  1. Removal of coloured compounds from textile industry effluents by UV/H2O2 advanced oxidation and toxicity evaluation.

    Science.gov (United States)

    Nagel-Hassemer, Maria Eliza; Carvalho-Pinto, Catia Regina S; Matias, William Gerson; Lapolli, Flávio Rubens

    2011-12-01

    This study has investigated the reduction in coloured substances and toxic compounds present in textile industry effluent by the use of an advanced oxidation process using hydrogen peroxide (H2O2) as oxidant, activated by ultraviolet radiation. The investigation was carried out on industrial effluents, both raw and after biological treatment, using different concentrations of H2O2 in a photochemical reactor equipped with a 250 W high-pressure mercury vapour lamp. The results showed that after 60 minutes of ultraviolet irradiation a H2O2 concentration of 500 mg L(-1) was able to remove approximately 73% of the coloured compounds present in raw effluent and 96% of those present in biologically treated effluent. Additionally, post-treatment toxicity tests performed using the microcrustacean Daphnia magna showed a significant effective reduction in the acute toxicity of the raw effluent. In tests carried out with treatment at a concentration of 750 and 1000 mg L(-1) H2O2, analysis of the frequency ofmicronuclei in erythrocytes of Tilapia cf rendalli exposed to treated effluent samples confirmed that there were no mutagenic effects on the fish. Together, these results indicate that the oxidation process offers a good alternative for the removal of colour and toxicity from textile industry effluent. PMID:22439575

  2. Continuous improvement concepts as a link between quality assurance and implementation of cleaner production: Case study in the generic pharmaceutical industry

    Directory of Open Access Journals (Sweden)

    Boltić Zorana

    2016-01-01

    Full Text Available The subject and the research objective presented in this article is establishing of the relationship between quality assurance and implementation of cleaner production in the generic pharmaceutical industry through the comprehensive concept of continuous improvement. This is mostly related to application of Lean and Six Sigma tools and techniques for process improvement and their link to other known concepts used in the industrial environment, especially manufacturing of generic pharmaceutical products from which two representative case studies were selected for comparative analysis, also considering relevant regulatory requirements in the field of quality management, as well as appropriate quality standards. Although the methodology discussed in this conceptual and practice oriented article is strongly related to chemical engineering, the focus is mainly on process industry, i.e. production systems, rather than any specific technological process itself. The scope of this research is an engineering approach to evaluation of the production systems in terms of continuous improvement concepts application, considering both quality aspects and efficiency of such systems. [Projekat Ministarstva nauke Republike Srbije, br. TR 34009

  3. Slaughterhouse wastewater characteristics, treatment, and management in the meat processing industry: A review on trends and advances.

    Science.gov (United States)

    Bustillo-Lecompte, Ciro Fernando; Mehrvar, Mehrab

    2015-09-15

    A thorough review of advancement in slaughterhouse wastewater (SWW) characteristics, treatment, and management in the meat processing industry is presented. This study also provides a general review of the environmental impacts, health effects, and regulatory frameworks relevant to the SWW management. A significant progress in high-rate anaerobic treatment, nutrient removal, advanced oxidation processes (AOPs), and the combination of biological treatment and AOPs for SWW treatment is highlighted. The treatment processes are described and few examples of their applications are given. Conversely, few advances are accounted in terms of waste minimization and water use reduction, reuse, and recycle in slaughterhouses, which may offer new alternatives for cost-effective waste management. An overview of the most frequently applied technologies and combined processes for organic and nutrient removal during the last decade is also summarized. Several types of individual and combined processes have been used for the SWW treatment. Nevertheless, the selection of a particular technology depends on the characteristics of the wastewater, the available technology, and the compliance with regulations. This review facilitates a better understanding of current difficulties that can be found during production and management of the SWW, including treatment and characteristics of the final effluent.

  4. Conceptual design of advanced central receiver power systems sodium-cooled receiver concept. Volume 4. Commercial and pilot plant cost data. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-03-01

    This volume of the advanced central receiver final report presents the cost data using the cost breakdown structure identified in the preliminary specification. Cost summaries are presented in the following sections for the 100-MWe and 281-MWe commercial plant and a 10-MWe pilot plant. Cost substantiation data for this volume are presented in the appendices. Other cost summary data include Nth plant data for the 100-MWe and 281-MWe commercial plants, and a summary for the alternative concept air-rock storage system. The main description of the plant costing technique occurs as part of Section II for the 100-MWe baseline concept.

  5. A proof-of-concept implementation of a unit-based advanced practice registered nurse (APRN) role: structural empowerment, role clarity and team effectiveness.

    Science.gov (United States)

    Feistritzer, Nancye R; Jones, Pam O

    2014-03-01

    The quest for decreased cost of care and improved outcomes has created the need for highly effective clinical roles and teams. This article describes the role of a unit-based advanced practice registered nurse (APRN) within a proof-of-concept implementation of a new care delivery model, the Vanderbilt Anticipatory Care Team. Role clarity is central to both structural empowerment of the APRN and team effectiveness. A modified PeaceHealth Team Development Measure tool measured baseline role clarity as a component of overall team effectiveness. A role description for the unit-based APRN based on a comprehensive assessment of the proof-of-concept unit is provided.

  6. Investigation on dissimilar laser welding of advanced high strength steel sheets for the automotive industry

    Energy Technology Data Exchange (ETDEWEB)

    Rossini, M., E-mail: matteo.rossini@unibz.it [Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano (Italy); Spena, P. Russo, E-mail: pasquale.russospena@unibz.it [Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano (Italy); Cortese, L., E-mail: luca.cortese@unibz.it [Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano (Italy); Matteis, P., E-mail: paolo.matteis@polito.it [Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Firrao, D., E-mail: donato.firrao@polito.it [Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2015-03-25

    To support the use of advanced high strength steels in car body design and fabrication, an investigation was carried out on dissimilar butt laser welding between TWinning Induced Plasticity (TWIP) steels, Dual Phase (DP) steels, hot stamping boron (22MnB5) steels, and TRansformation Induced Plasticity (TRIP) steels. The base materials and the weldments were fully characterized by means of metallography, microhardness, and tensile tests. Digital image analysis was also used to provide additional information on the local strain field in the joint during the tensile tests. Fractographic examination was finally performed on the fracture surfaces of the tensile samples. The dissimilar joints between the DP, 22MnB5, and TRIP steels exhibit good resistance properties. On the contrary, the dissimilar joints encompassing the TWIP steel exhibit poor mechanical strength and fail along the weld seam by intergranular fracture, probably due to presence of Mn segregations. Therefore, the laser welding of TWIP steel with other advanced high strength steels is not recommended without the use of proper metal fillers. Dissimilar laser welding of DP, TRIP and 22MnB5 combinations, on the contrary, can be a solution to assemble car body parts made of these steel grades.

  7. Investigation on dissimilar laser welding of advanced high strength steel sheets for the automotive industry

    International Nuclear Information System (INIS)

    To support the use of advanced high strength steels in car body design and fabrication, an investigation was carried out on dissimilar butt laser welding between TWinning Induced Plasticity (TWIP) steels, Dual Phase (DP) steels, hot stamping boron (22MnB5) steels, and TRansformation Induced Plasticity (TRIP) steels. The base materials and the weldments were fully characterized by means of metallography, microhardness, and tensile tests. Digital image analysis was also used to provide additional information on the local strain field in the joint during the tensile tests. Fractographic examination was finally performed on the fracture surfaces of the tensile samples. The dissimilar joints between the DP, 22MnB5, and TRIP steels exhibit good resistance properties. On the contrary, the dissimilar joints encompassing the TWIP steel exhibit poor mechanical strength and fail along the weld seam by intergranular fracture, probably due to presence of Mn segregations. Therefore, the laser welding of TWIP steel with other advanced high strength steels is not recommended without the use of proper metal fillers. Dissimilar laser welding of DP, TRIP and 22MnB5 combinations, on the contrary, can be a solution to assemble car body parts made of these steel grades

  8. Prioritization of engineering support requests and advanced technology projects using decision support and industrial engineering models

    Science.gov (United States)

    Tavana, Madjid

    1995-01-01

    The evaluation and prioritization of Engineering Support Requests (ESR's) is a particularly difficult task at the Kennedy Space Center (KSC) -- Shuttle Project Engineering Office. This difficulty is due to the complexities inherent in the evaluation process and the lack of structured information. The evaluation process must consider a multitude of relevant pieces of information concerning Safety, Supportability, O&M Cost Savings, Process Enhancement, Reliability, and Implementation. Various analytical and normative models developed over the past have helped decision makers at KSC utilize large volumes of information in the evaluation of ESR's. The purpose of this project is to build on the existing methodologies and develop a multiple criteria decision support system that captures the decision maker's beliefs through a series of sequential, rational, and analytical processes. The model utilizes the Analytic Hierarchy Process (AHP), subjective probabilities, the entropy concept, and Maximize Agreement Heuristic (MAH) to enhance the decision maker's intuition in evaluating a set of ESR's.

  9. Recent advances in the development of high average power induction accelerators for industrial and environmental applications

    International Nuclear Information System (INIS)

    Short-pulse accelerator technology developed during time period from the early 60's through the late 80's is now being extended to high average power systems capable of being used in industrial and environmental applications. Processes requiring high dose levels and/or high volume throughput may require systems with beam power levels from several hundreds of kilowatts to megawatts. Processes may include chemical waste mitigation, flue gas cleanup, food pasteurization, and new forms of materials preparation and treatment. This paper will address the present status of high average power systems now in operation that use combinations of semiconductor and saturable core magnetic switches with inductive voltage adders to achieve MeV beams of electrons or x-rays over areas of 10,000 cm2 or more. Similar high average power technology is also being used below 1 MeV to drive repetitive ion beam sources for treatment of material surfaces

  10. Energy, economic, and environmental impacts of advanced technology in the process industries

    International Nuclear Information System (INIS)

    The spreadsheet-based economic model shown here has been successfully used to analyze the impacts of technology used in a variety of industrial areas. It generates projections on energy, waste, and production cost savings that can be used to gauge the potential benefits that may result from technology adoption. The model is highly flexible, and can be used to incorporate unique benefits that fall outside the realm of energy savings. Although only aggregated results are shown here to protect developer confidentially, it is obvious that when the same information is viewed on the project level it can be invaluable to the research program manager. With the data provided by the model the value of a project can be assessed in terms of the federal investment as well as national impacts. This is a distinct advantage for government research managers who much allocate very scarce federal research funds among a multitude of potentially important research projects

  11. Development of advanced fermentor control applications for use in an industrial automation environment.

    Science.gov (United States)

    Hamilton, Ryan; Tamminana, Krishna; Boyd, John; Sasaki, Gen; Toda, Alex; Haskell, Sid; Danbe, Elizabeth

    2013-04-01

    We present a software platform developed by Genentech and MathWorks Consulting Group that allows arbitrary MATLAB (MATLAB is a registered trademark of The MathWorks, Inc.) functions to perform supervisory control of process equipment (in this case, fermentors) via the OLE for process control (OPC) communication protocol, under the direction of an industrial automation layer. The software features automated synchronization and deployment of server control code and has been proven to be tolerant of OPC communication interruptions. Since deployment in the spring of 2010, this software has successfully performed supervisory control of more than 700 microbial fermentations in the Genentech pilot plant and has enabled significant reductions in the time required to develop and implement novel control strategies (months reduced to days). The software is available for download at the MathWorks File Exchange Web site at http://www.mathworks.com/matlabcentral/fileexchange/36866.

  12. Development of indigenous industrial electron accelerators as sources for advanced material processing

    International Nuclear Information System (INIS)

    Over the last few decades, the electron beams have brought in a revolutionary change in the area of advanced material processing. Beams varying from a few hundred keV to a ten of MeV and powers from a few hundred watts to a few hundred kW, have been employed for this purpose. Right from curing of coatings and adhesives to the cross linking of cables, sterilization of medical products and treatment of sewage, all are being addressed through the electron beams. Realising the enormous potential of these beams, BARC has initiated an indigenous programme in this direction. Two DC accelerators having ratings as 0.5 MeV/10kW, 3 MeV/30 kW and an RF linac of 10 MeV/10 kW, are being developed indigenously for this purpose. This article gives a brief account of this programme. (author)

  13. Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, June 1990--June 1991

    Energy Technology Data Exchange (ETDEWEB)

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1991-07-01

    Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

  14. Reconstructing the Industrial Revolution: analyses, perceptions and conceptions of Britain’s precocious transition to Europe’s first industrial society

    OpenAIRE

    Riello, Giorgio; O'Brien, Patrick

    2004-01-01

    The Industrial Revolution continues to be analysed by economic historians deploying the conceptual vocabularies of modern social science, particularly economics. Their approach which gives priority to the elaboration of causes and processes of evolution is far too often and superficially contrasted with post-modern forms of social and cultural history with their aspirations to recover the meanings of the Revolution for those who lived through its turmoil and for ‘witnesses’ from the mainland ...

  15. Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fiber manufacturing industry

    KAUST Repository

    Zheng, Tianlong

    2015-02-02

    This work investigated microbubble-ozonation for the treatment of a refractory wet-spun acrylic fiber wastewater in comparison to macrobubble-ozonation. CODcr, NH3-N, and UV254 of the wastewater were removed by 42%, 21%, and 42%, respectively in the microbubble-ozonation, being 25%, 9%, and 35% higher than the removal rates achieved by macrobubble-ozonation at the same ozone dose. The microbubbles (with average diameter of 45μm) had a high concentration of 3.9×105 counts/mL at a gas flow rate of 0.5L/min. The gas holdup, total ozone mass-transfer coefficient, and average ozone utilization efficiency in the microbubble-ozonation were 6.6, 2.2, and 1.5 times higher than those of the macrobubble-ozonation. Greater generation of hydroxyl radicals and a higher zeta potential of the bubbles were also observed in the microbubble ozonation process. The biodegradability of the wastewater was also significantly improved by microbubble-ozonation, which was ascribed to the enhanced degradation of alkanes, aromatic compounds, and the many other bio-refractory organic compounds in the wastewater. Microbubble-ozonation can thus be a more effective treatment process than traditional macrobubble-ozonation for refractory wastewater produced by the acrylic fiber manufacturing industry.

  16. Advanced Data Communications for Downhole Data Logging and Control Applications in the Oil Industry

    International Nuclear Information System (INIS)

    We present details of 'Mercury', a high-speed downhole communications system that utilizes the (metallic) wall of a gas or oil pipeline or a drill 'string' as the communications 'channel' to control or monitor equipment or sensors used in the oil industry. Conventional downhole communication systems typically use 'mud pulse' telemetry for 'Measurement While Drilling' (MWD) operations. Current mud pulse telemetry technology offers bandwidths of up to 40 bit/s. However the data rate drops with increasing length of the wellbore and is typically as low as 1.5 bit/s – 3.0 bit/s at a depth of 35,000 ft. – 40,000 ft. The system described, by contrast, offers data rates of several megabits per second over distances of many kilometres and uses Orthogonal Frequency Division Multiplexing (OFDM) coupled with Wideband Frequency Division Multiple Access (W-CDMA). This paper presents details of our system; results of several trials undertaken on actual gas pipelines in the UK will be presented at the Conference

  17. Industrial fiber beam delivery system for ultrafast lasers: applications and recent advances

    Science.gov (United States)

    Eilzer, Sebastian; Funck, Max C.; Wedel, Björn

    2016-03-01

    Fiber based laser beam delivery is the method of choice for high power laser applications whenever great flexibility is required. For cw-lasers fiber beam delivery has long been established but has recently also become available for ultrafast lasers. Using micro-structured hollow core fibers that guide the laser beam mostly inside a hollow core, nonlinear effects and catastrophic damage that arise in conventional glass fibers can be avoided. Today, ultrafast pulses with several 100 μJ and hundreds of MW can be transmitted in quasi single mode fashion. In addition, the technology opens new possibilities for beam delivery systems as the pulse propagation inside the fiber can be altered on purpose. For example to shorten the pulse duration of picosecond lasers down into the femtosecond regime. We present a modular fiber beam delivery system for micromachining applications with industrial pico- and femtosecond lasers that is flexibly integrated into existing applications. Micro-structured hollow core fibers inside the sealed laser light cable efficiently guide high-power laser pulses over distances of several meters with excellent beam quality, while power, pulse duration and polarization are maintained. Robust and stable beam transport during dynamic operation as in robot or gantry systems will be discussed together with optional pulse compression.

  18. Agricultural Industry Advanced Vehicle Technology: Benchmark Study for Reduction in Petroleum Use

    Energy Technology Data Exchange (ETDEWEB)

    Roger Hoy

    2014-09-01

    Diesel use on farms in the United States has remained relatively constant since 1985, decreasing slightly in 2009, which may be attributed to price increases and the economic recession. During this time, the United States’ harvested area also has remained relatively constant at roughly 300 million acres. In 2010, farm diesel use was 5.4% of the total United States diesel use. Crops accounting for an estimated 65% of United States farm diesel use include corn, soybean, wheat, hay, and alfalfa, respectively, based on harvested crop area and a recent analysis of estimated fuel use by crop. Diesel use in these cropping systems primarily is from tillage, harvest, and various other operations (e.g., planting and spraying) (Figure 3). Diesel efficiency is markedly variable due to machinery types, conditions of operation (e.g., soil type and moisture), and operator variability. Farm diesel use per acre has slightly decreased in the last two decades and diesel is now estimated to be less than 5% of farm costs per acre. This report will explore current trends in increasing diesel efficiency in the farm sector. The report combines a survey of industry representatives, a review of literature, and data analysis to identify nascent technologies for increasing diesel efficiency

  19. Industrial Market Research Report: Feasibility of commercialization of the advanced antifouling coating of Copperlok, Inc

    Energy Technology Data Exchange (ETDEWEB)

    Gormley, G.J.

    1990-10-01

    The Copperlok antifouling process was designed to prevent marine growth on surfaces exposed to sea water. It is a method of bonding thermally sprayed Cu and Cu alloys onto an epoxy material containing microballoons (hollow spheres). After the epoxy cures, the surface is abraded so that the microballoons are fractured, exposing microscopic concave porosity. The sprayed material is directed to the surface, where it impregnates the pores, bridges and then welds across the surface, creating a very thin laminate of the metal materials security bonded to the bond coat and to the substrate. The Copperlok process laminates an approximate layer of Cu-Ni alloy 8 mils thick with an expected active life of 15--20 y. This report addresses the perceived acceptability of the process in several different marketplaces with the hope of directing the invention to the most receptive consumer group. The opinion surveys of the recreational marine industry were limited to the three coastal areas of the Atlantic, Gulf, and Pacific.

  20. Industrial Market Research Report: Feasibility of commercialization of the advanced antifouling coating of Copperlok, Inc.

    Energy Technology Data Exchange (ETDEWEB)

    Gormley, G.J.

    1990-10-01

    The Copperlok antifouling process was designed to prevent marine growth on surfaces exposed to sea water. It is a method of bonding thermally sprayed Cu and Cu alloys onto an epoxy material containing microballoons (hollow spheres). After the epoxy cures, the surface is abraded so that the microballoons are fractured, exposing microscopic concave porosity. The sprayed material is directed to the surface, where it impregnates the pores, bridges and then welds across the surface, creating a very thin laminate of the metal materials security bonded to the bond coat and to the substrate. The Copperlok process laminates an approximate layer of Cu-Ni alloy 8 mils thick with an expected active life of 15--20 y. This report addresses the perceived acceptability of the process in several different marketplaces with the hope of directing the invention to the most receptive consumer group. The opinion surveys of the recreational marine industry were limited to the three coastal areas of the Atlantic, Gulf, and Pacific.

  1. Assistance to the industrial process supervision: toward a methodology of conception; Aide a la supervision des processus industriels: vers une methodologie de conception

    Energy Technology Data Exchange (ETDEWEB)

    Benkhannouche, S.

    1996-05-31

    This thesis presents a methodological approach to the design of computerized assistance for operators in control industrial processes. We are particularly interested in how to find the solutions which best suit their needs. Our preferred approach is focused on the operator: the main factors influencing his performance are reviewed and we make a synthesis which consists of a categorized list, or typology, of the extents of the operators` activities, tasks and errors. This typology is then used to classify the possible improvements as well as associated computer aids. The DIAPASON held system for fault diagnosis is integrated in this structure. This typology is our chosen basis for defining a specification method which enables the quality of the designed system to be guarantee. We propose a phased approach, the first phase of which involves analysing needs and thus identifying the objectives of the project. The second phase is the preparation of a performance specification which serves as a reference system for the project. In the third phase technical solutions are proposed to meet the requirements set out in the performance specification. The following phases involve studying the technical feasibility of the proposed solutions and the actual development of the system. Together with the feasibility study comes the step of making up a knowledge bank. The usual method of systems analysis are included in the typology of the aids. Furthermore, the SAGACE method uses a new approach to systems analysis based on its description which unites various points of view ; the evaluation of its possibilities forms a part of the construction of a reference system which gathers up the information needed to put the DIAPASON diagnosis system into action. (author).

  2. The Development of Nanotechnologies and Advanced Materials Industry in Science and Entrepreneurship: Socioeconomic and Technical Indicators. A Case Study of Latvia (Part One

    Directory of Open Access Journals (Sweden)

    Geipele I.

    2016-08-01

    Full Text Available The present scientific paper is the first part of two publications, where the authors obtain results from the scientific research presented in a series of works on the development of the nanotechnologies and advanced materials industry in science and entrepreneurship in Latvia. The study has a focus on finding proper socioeconomic and technical indicators. It provides resume on a scope of the study. The paper contains the developed structure of engineering economic indicator system, determined groups of indicators for assessment of the development of nanotechnologies and advanced materials industry in Latvia and results of the evaluation of the obtained statistics on the economic indicators.

  3. The Development of Nanotechnologies and Advanced Materials Industry in Science and Entrepreneurship: Socioeconomic and Technical Indicators. A Case Study of Latvia (Part One)

    Science.gov (United States)

    Geipele, I.; Geipele, S.; Staube, T.; Ciemleja, G.; Zeltins, N.

    2016-08-01

    The present scientific paper is the first part of two publications, where the authors obtain results from the scientific research presented in a series of works on the development of the nanotechnologies and advanced materials industry in science and entrepreneurship in Latvia. The study has a focus on finding proper socioeconomic and technical indicators. It provides resume on a scope of the study. The paper contains the developed structure of engineering economic indicator system, determined groups of indicators for assessment of the development of nanotechnologies and advanced materials industry in Latvia and results of the evaluation of the obtained statistics on the economic indicators.

  4. THE FEATURES OF TRAINING WITH ADVANCED STUDY OF FOREIGN LANGUAGES FOR INDUSTRIAL JOINT COMPANIES

    Directory of Open Access Journals (Sweden)

    Berezhnoy S. B.

    2015-04-01

    Full Text Available This article deals with the problems of system development of professional education and enhanced training in foreign languages for the Russian-German (Swiss, French joint venture companies. We have shown new perspectives and possibilities improving work efficiency in staff training in relation with the new Russian Federation Federal Law of Education, creation basic universities departments in enterprises, ligitation new network forms for the implementation of network programs. We have also presented some measures to improve the quality of education, to attract highly qualified specialists of enterprises, the use of their scientific and technical base, ties companies with leading foreign organizations, the use of new educational technologies, assessment of professional competence of students in educational programs. At present the main role is played by foreign language, possession of which at this stage is an essential attribute of a successful specialist. The article has an analysis of existing methods and training courses in foreign languages and proposes a system of training of foreign language on the basis of educational industrial cluster which allows using not only the faculty of universities and training facilities, but the full potential of joint ventures, including foreign training. The proposed system involves learning a foreign language training in the following courses: general business, specialized business, intensive English, business training and other. The substantive content of special courses focused on professional activities with the use of interactive teaching methods, such as role-playing, methods for solving situational problems, methods of design activity that contributes to the development of skills to analyze, compare facts and events, to learn independently, to work in teams, to express and defend their point of view

  5. Konsep Lima Kekuatan Porter untuk Membedah Kondisi Industri Rotan Indonesia (The Concept of Porter‘s Five Forces in Evaluating Indonesian Rattan Industry)

    OpenAIRE

    Lisman Sumardjani

    2011-01-01

    Rattan is one of non timber product forest which is very famous in Indonesia. Indonesia has 350 from  the total of 600 rattan species in the world.  Indonesia rattan potential is getting more significant when it is known that among 350 species, only 53 species have been traded in both local and international market. Recently, Indonesia rattan industry facing some serious conditions, such as decreasing raw rattan production, dropping export volume and value of rattan product, and popping out t...

  6. Determination of Effective Parameters on Removal of Organic Materials from Pharmaceutical Industry Wastewater by Advanced Oxidation Process (H2O2/UV)

    OpenAIRE

    Esmaeil Azizi; Mehdi Ghayebzadeh; Abdollah Dargahi; Lida Hemati; Masoumeh Beikmohammadi; Kiomars Sharafi

    2016-01-01

    Background & Aims of the Study: Pharmaceutical wastewater is one of the major complex and toxic industrial effluents that contain little or no biodegradable organic matters. Materials & Methods: In this study, H2O2/UV base advance oxidation process (AOP) was used to remove organic materials from pharmaceutical industry effluent. Experiments were conducted for the chemical oxygen demand (COD) removal using medium pressure mercury vapor UV lamp coupled with hydrogen peroxide (H2O2/UV). ...

  7. Advancing Empirical Approaches to the Concept of Resilience: A Critical Examination of Panarchy, Ecological Information, and Statistical Evidence

    OpenAIRE

    Ali Kharrazi; Fath, Brian D.; Harald Katzmair

    2016-01-01

    Despite its ambiguities, the concept of resilience is of critical importance to researchers, practitioners, and policy-makers in dealing with dynamic socio-ecological systems. In this paper, we critically examine the three empirical approaches of (i) panarchy; (ii) ecological information-based network analysis; and (iii) statistical evidence of resilience to three criteria determined for achieving a comprehensive understanding and application of this concept. These criteria are the ability: (...

  8. 面向行业的高等教育理念建言%A Contribution to the Concept and Philosophy of Industry-Oriented Higher Education

    Institute of Scientific and Technical Information of China (English)

    HUSSEY Matt; LAWLESS Deirdre; WU Bing; O'SHEA Brendan; CARROLL Dave

    2007-01-01

    A turbulent re-engineering of higher education and higher education institutions is underway in many countries across the world to achieve a more direct and pro-active engagement with society in general than ever before. This paper presents the authors' suggestions on the concepts and philosophy of quality-assured industry-oriented higher education based on the close cooperation between DIT and HIT, particularly on the recently completed EU Asia-Link EMERSION project in relation to software education, as a constructive contribution to the process of re-engineering higher education.

  9. Using Novel 2D Image Manipulation Methods to Aid Initial Concept Generation with Postgraduate Industrial Design Students

    Science.gov (United States)

    Hurn, Karl; Storer, Ian

    2015-01-01

    The aim of this paper is to provide educators and industrial design professionals with an insight into the development of innovative design ideation images manipulation techniques and, highlight how these techniques could be used to not only improve student ideation skills, but also as design enablers for a broader range of professionals working…

  10. The effect of industry clockspeed on supply chain co-ordination: Classical theory to sharpen an emerging concept

    NARCIS (Netherlands)

    Meijboom, Bert; Voordijk, Hans; Akkermans, Henk

    2007-01-01

    Purpose – The relevance of “industry clockspeed” to supply chain co-ordination (SCC) has recently been stressed but hardly been researched. Taking an information-processing perspective, the purpose of this paper is to examine the development of SCC theory under varying clockspeed circumstances. De

  11. Working with and regulating the oil industry in Prince William Sound; a new concept of public involvement

    International Nuclear Information System (INIS)

    The lessons learned about local involvement in the regulating of oil industry activities in the Prince William Sound area of Alaska are reviewed. An important point is the realization that progress towards achieving positive industry contingency planning and oversight results is better obtained by a spirit of cooperation with citizen groups, the industry, and the Coast Guard. To have an adequately efficient spill response requires a suitable strategy with the equipment on hand, with the capability of bringing equipment into the area as necessary. The contingency planning must also include adequate training and drills. Oversight programs must be designed to build public trust that the industry is being properly regulated. In addition, a mechanism is needed to counter the tendency toward complacency. Progress toward the above goals is being achieved by formation of a steering committee and an informal working group approach. New legislation implemented after the Exxon Valdez spill is also discussed, with reference to the formation of citizens' advisory committees and drafting of regulations and standards to conform with the new legislation. The involvement of the Alaska environmental department with the citizens' committee is also outlined

  12. Integration of Advanced Concepts and Vehicles Into the Next Generation Air Transportation System. Volume 1; Introduction, Key Messages, and Vehicle Attributes

    Science.gov (United States)

    Zellweger, Andres; Resnick, Herbert; Stevens, Edward; Arkind, Kenneth; Cotton William B.

    2010-01-01

    Raytheon, in partnership with NASA, is leading the way in ensuring that the future air transportation continues to be a key driver of economic growth and stability and that this system provides an environmentally friendly, safe, and effective means of moving people and goods. A Raytheon-led team of industry and academic experts, under NASA contract NNA08BA47C, looked at the potential issues and impact of introducing four new classes of advanced aircraft into the next generation air transportation system -- known as NextGen. The study will help determine where NASA should further invest in research to support the safe introduction of these new air vehicles. Small uncrewed or unmanned aerial systems (SUAS), super heavy transports (SHT) including hybrid wing body versions (HWB), very light jets (VLJ), and supersonic business jets (SSBJ) are the four classes of aircraft that we studied. Understanding each vehicle's business purpose and strategy is critical to assessing the feasibility of new aircraft operations and their impact on NextGen's architecture. The Raytheon team used scenarios created by aviation experts that depict vehicles in year 2025 operations along with scripts or use cases to understand the issues presented by these new types of vehicles. The information was then mapped into the Joint Planning and Development Office's (JPDO s) Enterprise Architecture to show how the vehicles will fit into NextGen's Concept of Operations. The team also identified significant changes to the JPDO's Integrated Work Plan (IWP) to optimize the NextGen vision for these vehicles. Using a proven enterprise architecture approach and the JPDO s Joint Planning Environment (JPE) web site helped make the leap from architecture to planning efficient, manageable and achievable. Very Light Jets flying into busy hub airports -- Supersonic Business Jets needing to climb and descend rapidly to achieve the necessary altitude Super-heavy cargo planes requiring the shortest common flight

  13. Fuzzification of the 'TOWS' strategic concept: a case study of the Magneti Marelli branch in the Serbian automotive industry

    OpenAIRE

    Pesic, Duska Petar; Pesic, Aleksandar Budimir; Ivkovic, Slavko Trivun; Apostolovic, Dejan Stojan

    2015-01-01

    The purpose of this paper is to introduce a fuzzy approach to the quantification of the TOWS (Threats, Opportunities, Weaknesses, and Strengths) strategic concept (also known as ‘SWOT’). Fuzzy logic and triangular fuzzy numbers are used to provide an alternate assessment of the internal strengths and weaknesses and external opportunities and threats in the process of developing strategic alternatives and making strategic choices. The developed fuzzy model is applied to a real-world case, cond...

  14. [Report from the Committee for Advanced Therapies (CAT). Pitfalls on the way from concept to medical treatment with advanced therapy medicinal products].

    Science.gov (United States)

    Reiss, M; Büttel, I C; Schneider, C K

    2011-07-01

    Advanced therapy medicinal products (ATMP) are highly innovative and complex medicines. They comprise gene therapy medicinal products, somatic cell therapy medicinal products, and tissue-engineered products (TEP). With the European Regulation on ATMP that came into force in 2008, a consolidated regulatory framework was created, where the Committee for Advanced Therapies (CAT) at the European Medicines Agency (EMA) plays a central role. This article discusses pitfalls and challenges that the CAT has experienced in its discussions of various procedures. Often ATMPs are developed by small and medium-sized enterprises (SME) which also face nonscientific challenges. The CAT wishes to meet these challenges on a scientific and regulatory level during its 2010-2015 work program.

  15. Decision Point 3 of Statement of Project Objectives (SOPO) “Recovery Act: Development of ITM Oxygen Technology for Integration with Advanced Industrial Systems”

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Phillip

    2012-03-01

    Air Products is carrying out a scope of work under Phase 5 of the ITM Oxygen Cooperative Agreement to design, build, and operate a ceramic membrane fabrication facility (the -CerFabII) to enable production of membrane modules to supply a conceptual 2000 ton per day (TPD) ITM Oxygen facility (the -ITM Oxygen Development FacilityII), and to perform supporting development tasks in materials development and engineering development toward industrial, carbon capture and sequestration applications. Air Products is executing this project under the American Recovery and Reinvestment Act (ARRA) with the objective to accelerate the adoption of ITM Oxygen technology to help meet the country’s goals for deploying clean power plants. The objective of this Topical Report is to address the requirements of Decision Point 3 (DP3), which pertains to the status of all Tasks within Phase 5 and most notably the project status of the CerFab (Task 30) prior to authorization of funds for equipment purchase and construction of the facility. The intent of the DP3 is to provide the opportunity for DOE-NETL to review the status of these tasks and to make recommendations on forward project direction, including a recommendation to pass into Budget Period 8. In the area of Materials Development, Air Products has specified a high pressure dilatometer system which will enable measurements of material expansion of ITM ceramic compounds at very high oxygen partial pressures consistent with CCS applications. Under Task 28.2, subcontractor Ceramatec has made significant progress since DP2 in materials selection and process development and improvement for advanced architecture module fabrication. Ceramatec has determined a materials specification, and has selected a process for making the material. Ceramatec has further developed and selected the process for applying the membrane to unsintered advanced architecture wafers with a Two Step process. Ceramatec has built submodules meeting leak rate

  16. Smart Product Design and Production Control for Effective Mass Customization in the Industry 4.0 Concept

    Directory of Open Access Journals (Sweden)

    Zawadzki Przemysław

    2016-09-01

    Full Text Available The paper presents a general concept of smart design and production control as key elements for efficient operation of a smart factory. The authors present various techniques that aid the design process of individualized products and organization of their production in the context of realization of the mass customization strategy, which allows a shortened time of development for a new product. Particular attention was paid to integration of additive manufacturing technologies and virtual reality techniques, which are a base of the so-called hybrid prototyping.

  17. Advance the Harmonious Development of Higher Education Institutions under the Guidance of the Scientific Concept of Development

    Science.gov (United States)

    Lan, Jiang-qiao

    2006-01-01

    To build up and carry out the scientific concept of development will have a major and directive significance in solving the problems and conflicts of the development of higher education institutions (HEIs). This paper is based on drawing up the development strategy of a university, and brings up the idea of grasping the strategic opportunity,…

  18. How Do Concept-Maps Function for Reading Comprehension Improvement of Iranian Advanced EFL Learners of Both Genders?

    Science.gov (United States)

    Khaghaninejad, Mohammad Saber; Arefinejad, Mansour

    2015-01-01

    This study was an attempt to examine the effect of concept mapping on reading comprehension of Iranian EFL learners. Pretest-posttest design was employed to scrutinize the possible improvement of the study's participants who were male and female learners whose ages ranged from 19 to 40 and had taken general English courses at Islamic Azad…

  19. Validation of a Computational Model for the SLS Core Stage Oxygen Tank Diffuser Concept and the Low Profile Diffuser - An Advanced Development Design for the SLS

    Science.gov (United States)

    Brodnick, Jacob; Richardson, Brian; Ramachandran, Narayanan

    2015-01-01

    The Low Profile Diffuser (LPD) project originated as an award from the Marshall Space Flight Center (MSFC) Advanced Development (ADO) office to the Main Propulsion Systems Branch (ER22). The task was created to develop and test an LPD concept that could produce comparable performance to a larger, traditionally designed, ullage gas diffuser while occupying a smaller volume envelope. Historically, ullage gas diffusers have been large, bulky devices that occupy a significant portion of the propellant tank, decreasing the tank volume available for propellant. Ullage pressurization of spacecraft propellant tanks is required to prevent boil-off of cryogenic propellants and to provide a positive pressure for propellant extraction. To achieve this, ullage gas diffusers must slow hot, high-pressure gas entering a propellant tank from supersonic speeds to only a few meters per second. Decreasing the incoming gas velocity is typically accomplished through expansion to larger areas within the diffuser which has traditionally led to large diffuser lengths. The Fluid Dynamics Branch (ER42) developed and applied advanced Computational Fluid Dynamics (CFD) analysis methods in order to mature the LPD design from and initial concept to an optimized test prototype and to provide extremely accurate pre-test predictions of diffuser performance. Additionally, the diffuser concept for the Core Stage of the Space Launch System (SLS) was analyzed in a short amount of time to guide test data collection efforts of the qualification of the device. CFD analysis of the SLS diffuser design provided new insights into the functioning of the device and was qualitatively validated against hot wire anemometry of the exterior flow field. Rigorous data analysis of the measurements was performed on static and dynamic pressure data, data from two microphones, accelerometers and hot wire anemometry with automated traverse. Feasibility of the LPD concept and validation of the computational model were

  20. A NEW CONCEPT TOWARD INDUSTRIALIZATION OF Cu-Ⅲ-Ⅵ2 THIN FILM SOLAR CELLS AND SOME PRELIMINARY EXPERIMENT RESULTS

    Institute of Scientific and Technical Information of China (English)

    L.X. Shao; H.L. Hwang

    2005-01-01

    A new concept of full vacuum manufacturing for Cu-Ⅲ-Ⅳ2 thin-film solar cells has been discussed. Cu-Ⅲ-Ⅳ2 thin-film solar cells manufactured using full in-line reactive sputtering will result in lower cost than that of the conventional method with CdS layer fabricated with chemical bath deposition (CBS) method. Using reactive sputtering process with organometallic gases, the compositions and electronic properties of Cu-Ⅲ-Ⅳ2 thin-film can be fine-tuned and precisely controlled. n-type Cu-Ⅲ-Ⅳ2 film and ZnS suffer layer can also be deposited using the in-line sputtering instead of using the CdS layer. The environmental pollution problems arising from using CdS can be eliminated and the ultimate goal of full in-line process development can then be realized. Some preliminary experimental results on a modal solar cell fabricated by the new technique in the new concept have been presented.