WorldWideScience

Sample records for advanced heat engines

  1. Ceramic Technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  2. Ceramic technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1991-07-01

    Significant accomplishments in fabricating ceramic components for advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and database and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. This project is managed by ORNL for the Office of Transportation Technologies, Office of Transportation Materials, and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DOD, and industry.

  3. Ceramic technology for advanced heat engines project

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems in Conservation and Renewable Energy. This project was developed to meet the ceramic technology requirements of the OTT's automotive technology programs. This project is managed by ORNL and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DoD, and industry. Research is discussed under the following topics; Turbomilling of SiC Whiskers; microwave sintering of silicon nitride; and milling characterization; processing of monolithics; silicon nitride matrix; oxide matrix; silicate matrix; thermal and wear coatings; joining; design; contact interfaces; time-dependent behavior; environmental effects; fracture mechanics; nondestructive evaluation; and technology transfer. References, figures, and tables are included with each topic.

  4. Improved silicon carbide for advanced heat engines

    Science.gov (United States)

    Whalen, Thomas J.

    1989-01-01

    The development of high strength, high reliability silicon carbide parts with complex shapes suitable for use in advanced heat engines is studied. Injection molding was the forming method selected for the program because it is capable of forming complex parts adaptable for mass production on an economically sound basis. The goals were to reach a Weibull characteristic strength of 550 MPa (80 ksi) and a Weibull modulus of 16 for bars tested in four-point loading. Statistically designed experiments were performed throughout the program and a fluid mixing process employing an attritor mixer was developed. Compositional improvements in the amounts and sources of boron and carbon used and a pressureless sintering cycle were developed which provided samples of about 99 percent of theoretical density. Strengths were found to improve significantly by annealing in air. Strengths in excess of 550 MPa (80 ksi) with Weibull modulus of about 9 were obtained. Further improvements in Weibull modulus to about 16 were realized by proof testing. This is an increase of 86 percent in strength and 100 percent in Weibull modulus over the baseline data generated at the beginning of the program. Molding yields were improved and flaw distributions were observed to follow a Poisson process. Magic angle spinning nuclear magnetic resonance spectra were found to be useful in characterizing the SiC powder and the sintered samples. Turbocharger rotors were molded and examined as an indication of the moldability of the mixes which were developed in this program.

  5. Advanced Materials Development Program: Ceramic Technology for Advanced Heat Engines program plan, 1983--1993

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    The purpose of the Ceramic Technology for Advanced Heat Engines (CTAHE) Project is the development of an industrial technology base capable of providing reliable and cost-effective high temperature ceramic components for application in advanced heat engines. There is a deliberate emphasis on industrial'' in the purpose statement. The project is intended to support the US ceramic and engine industries by providing the needed ceramic materials technology. The heat engine programs have goals of component development and proof-of-concept. The CTAHE Project is aimed at developing generic basic ceramic technology and does not involve specific engine designs and components. The materials research and development efforts in the CTAHE Project are focused on the needs and general requirements of the advanced gas turbine and low heat rejection diesel engines. The CTAHE Project supports the DOE Office of Transportation Systems' heat engine programs, Advanced Turbine Technology Applications (ATTAP) and Heavy Duty Transport (HDT) by providing the basic technology required for development of reliable and cost-effective ceramic components. The heat engine programs provide the iterative component design, fabrication, and test development logic. 103 refs., 18 figs., 11 tabs.

  6. Advanced materials for alternative fuel capable directly fired heat engines

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, J.W.; Stringer, J. (eds.)

    1979-12-01

    The first conference on advanced materials for alternative fuel capable directly fired heat engines was held at the Maine Maritime Academy, Castine, Maine. It was sponsored by the US Department of Energy, (Assistant Secretary for Fossil Energy) and the Electric Power Research Institute, (Division of Fossil Fuel and Advanced Systems). Forty-four papers from the proceedings have been entered into EDB and ERA and one also into EAPA; three had been entered previously from other sources. The papers are concerned with US DOE research programs in this area, coal gasification, coal liquefaction, gas turbines, fluidized-bed combustion and the materials used in these processes or equipments. The materials papers involve alloys, ceramics, coatings, cladding, etc., and the fabrication and materials listing of such materials and studies involving corrosion, erosion, deposition, etc. (LTN)

  7. Proceedings of the 1987 coatings for advanced heat engines workshop

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    This Workshop was conducted to enhance communication among those involved in coating development for improved heat engine performance and durability. We were fortunate to have Bill Goward review the steady progress and problems encountered along the way in the use of thermal barrier coatings (TBC) in aircraft gas turbine engines. Navy contractors discussed their work toward the elusive goal of qualifying TBC for turbine airfoil applications. In the diesel community, Caterpillar and Cummins are developing TBC for combustion chamber components as part of the low heat rejection diesel engine concept. The diesel engine TBC work is based on gas turbine technology with a goal of more than twice the thickness used on gas turbine engine components. Adoption of TBC in production for diesel engines could justify a new generation of plasma spray coating equipment. Increasing interests in tribology were evident in this Workshop. Coatings have a significant role in reducing friction and wear under greater mechanical loadings at higher temperatures. The emergence of a high temperature synthetic lubricant could have an enormous impact on diesel engine design and operating conditions. The proven coating processes such as plasma spray, electron-beam physical vapor deposition, sputtering, and chemical vapor deposition have shown enhanced capabilities, particularly with microprocessor controls. Also, the newer coating schemes such as ion implantation and cathodic arc are demonstrating intriguing potential for engine applications. Coatings will play an expanding role in higher efficiency, more durable heat engines.

  8. Heat engine requirements for advanced solar thermal power systems

    Science.gov (United States)

    Jaffe, L. D.; Pham, H. Q.

    1981-01-01

    Requirements and constraints are established for power conversion subsystems, including heat engine, alternator and auxiliaries, of dish concentrator solar thermal power systems. In order to be competitive with conventional power systems, it is argued that the heat engine should be of less than 40 kW rated output, in a subsystem with an efficiency of at least 40% at rated output and at least 37% at half power. An interval between major overhauls of 50,000 hours is also desirable, along with minor maintenance and lubrication not more than four times a year requiring no more than one man-hour each time, and optimal reliability. Also found to be important are the capability for hybrid operation using heat from a solar receiver, fuel-fired combustor or both simultaneously, operation at any attitude, stability to transients in input power and output loading, operation at ambient temperatures from -30 to 50 C, and compatibility with environmental and safety requirements. Cost targets include a price of $180/kWe, and operation, maintenance and replacement costs averaging $0.001/kWh for 30 years of operation.

  9. Recent advance on the efficiency at maximum power of heat engines

    Institute of Scientific and Technical Information of China (English)

    Tu Zhan-Chun

    2012-01-01

    This review reports several key advances on the theoretical investigations of efficiency at maximum power of heat engines in the past five years.The analytical results of efficiency at maximum power for the Curzon-Ahlborn heat engine,the stochastic heat engine constructed from a Brownian particle,and Feynman's ratchet as a heat engine are presented.It is found that:the efficiency at maximum power exhibits universal behavior at small relative temperature differences; the lower and the upper bounds might exist under quite general conditions; and the problem of efficiency at maximum power comes down to seeking for the minimum irreversible entropy production in each finite-time isothermal process for a given time.

  10. Life prediction methodology for ceramic components of advanced heat engines. Phase 1: Volume 2, Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This volume presents the following appendices: ceramic test specimen drawings and schematics, mixed-mode and biaxial stress fracture of structural ceramics for advanced vehicular heat engines (U. Utah), mode I/mode II fracture toughness and tension/torsion fracture strength of NT154 Si nitride (Brown U.), summary of strength test results and fractography, fractography photographs, derivations of statistical models, Weibull strength plots for fast fracture test specimens, and size functions.

  11. Engineering for high heat loads on ALS [Advanced Light Source] beamlines

    International Nuclear Information System (INIS)

    This paper discussed general thermal engineering problems and specific categories of thermal design issues for high photon flux beam lines at the LBL Advanced Light Source: thermal distortion of optical surfaces and elevated temperatures of thermal absorbers receiving synchrotron radiation. A generic design for water-cooled heat absorbers is described for use with ALS photon shutters, beam defining apertures, and heat absorbing masks. Also, results of in- situ measurements of thermal distortion of a water-cooled mirror in a synchrotron radiation beam line are compared with calculated performance estimates. 17 refs., 2 figs

  12. Stirling Engine Heat Pump

    Science.gov (United States)

    Kagawa, Noboru

    Recent advances in the feasibility studies related to the Stirling engines and Stirling engine heat pumps which have been considered attractive due to their promising role in helping to solve the global environmental and energy problems,are reviewed. This article begins to describe the brief history of the Stirling engines and theoretical thermodynamic analysis of the Stirling cycle in order to understand several advantages on the Stirling engine. Furthermore,they could throw light on our question why the dream engines had not been promoted to practical applications during two hundred years. The present review shows that the Stirling engines with several unique advantages including 30 to 40% thermal efficiency and preferable exhaust characteristics,had been designed and constructed by recent tackling for the development of the advanced automobile and other applications using them. Based on the current state of art,it is being provided to push the Stirling engines combined with heat pumps based on the reversed Rankine cycle to the market. At present,however, many problems, especially for the durability, cost, and delicate engine parts must be enforced to solve. In addition,there are some possibilities which can increase the attractiveness of the Stirling engines and heat pumps. The review closes with suggestions for further research.

  13. Development of Advanced In-Cylinder Components and Tribological Systems for Low Heat Rejection Diesel Engines

    Science.gov (United States)

    Yonushonis, T. M.; Wiczynski, P. D.; Myers, M. R.; Anderson, D. D.; McDonald, A. C.; Weber, H. G.; Richardson, D. E.; Stafford, R. J.; Naylor, M. G.

    1999-01-01

    In-cylinder components and tribological system concepts were designed, fabricated and tested at conditions anticipated for a 55% thermal efficiency heavy duty diesel engine for the year 2000 and beyond. A Cummins L10 single cylinder research engine was used to evaluate a spherical joint piston and connecting rod with 19.3 MPa (2800 psi) peak cylinder pressure capability, a thermal fatigue resistant insulated cylinder head, radial combustion seal cylinder liners, a highly compliant steel top compression ring, a variable geometry turbocharger, and a microwave heated particulate trap. Components successfully demonstrated in the final test included spherical joint connecting rod with a fiber reinforced piston, high conformability steel top rings with wear resistant coatings, ceramic exhaust ports with strategic oil cooling and radial combustion seal cylinder liner with cooling jacket transfer fins. A Cummins 6B diesel was used to develop the analytical methods, materials, manufacturing technology and engine components for lighter weight diesel engines without sacrificing performance or durability. A 6B diesel engine was built and tested to calibrate analytical models for the aluminum cylinder head and aluminum block.

  14. Advanced Natural Gas Reciprocating Engine(s)

    Energy Technology Data Exchange (ETDEWEB)

    Pike, Edward

    2014-03-31

    The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 – 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cycle efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.

  15. Advanced high temperature heat flux sensors

    Science.gov (United States)

    Atkinson, W.; Hobart, H. F.; Strange, R. R.

    1983-01-01

    To fully characterize advanced high temperature heat flux sensors, calibration and testing is required at full engine temperature. This required the development of unique high temperature heat flux test facilities. These facilities were developed, are in place, and are being used for advanced heat flux sensor development.

  16. Superradiant Quantum Heat Engine

    OpenAIRE

    Hardal, Ali Ü. C.; Müstecaplıoğlu, Özgür E.

    2015-01-01

    Scientific Reports | 5:12953 | DOI: 10.1038/srep12953 1 www.nature.com/scientificreports Superradiant Quantum Heat Engine Ali Ü. C. Hardal & Özgür E. Müstecaplıoğlu Quantum physics revolutionized classical disciplines of mechanics, statistical physics, and electrodynamics. One branch of scientific knowledge however seems untouched: thermodynamics. Major motivation behind thermodynamics is to develop eficient heat engines. Technology has a trend to miniaturize engines, ...

  17. Life prediction methodology for ceramic components of advanced heat engines. Phase 1: Volume 1, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cuccio, J.C.; Brehm, P.; Fang, H.T. [Allied-Signal Aerospace Co., Phoenix, AZ (United States). Garrett Engine Div.] [and others

    1995-03-01

    Emphasis of this program is to develop and demonstrate ceramics life prediction methods, including fast fracture, stress rupture, creep, oxidation, and nondestructive evaluation. Significant advancements were made in these methods and their predictive capabilities successfully demonstrated.

  18. Identification of tribological research and development needs for lubrication of advanced heat engines

    Energy Technology Data Exchange (ETDEWEB)

    Fehrenbacher, L.L.; Levinson, T.M.

    1985-09-01

    The continuous evolution of higher power density propulsion systems has always fueled the search for materials and lubricants with improved thermal and/or durability characteristics. Tribology of the upper cylinder region is the major technology roadblock in the path of the adiabatic diesel engine which has an energy reduction potential that exceeds that of all other engine development types. This tribology assessment resulted in the following major conclusions: a low friction and a low wear seal between the ring belt and cylinder bore are the most critical tribology functions in the diesel combustion chamber; development of solid lubrication systems will not satisfy the simultaneous low friction and low wear requirements in the upper cylinder area; development of separate upper cylinder liquid lubrication systems offers the most attractive design alternative for meeting the operational goals of future ''minimum cooled'' diesel engines.

  19. Adaptive Heat Engine

    Science.gov (United States)

    Allahverdyan, A. E.; Babajanyan, S. G.; Martirosyan, N. H.; Melkikh, A. V.

    2016-07-01

    A major limitation of many heat engines is that their functioning demands on-line control and/or an external fitting between the environmental parameters (e.g., temperatures of thermal baths) and internal parameters of the engine. We study a model for an adaptive heat engine, where—due to feedback from the functional part—the engine's structure adapts to given thermal baths. Hence, no on-line control and no external fitting are needed. The engine can employ unknown resources; it can also adapt to results of its own functioning that make the bath temperatures closer. We determine resources of adaptation and relate them to the prior information available about the environment.

  20. Proceedings of the joint contractors meeting: FE/EE Advanced Turbine Systems conference FE fuel cells and coal-fired heat engines conference

    Energy Technology Data Exchange (ETDEWEB)

    Geiling, D.W. [ed.

    1993-08-01

    The joint contractors meeting: FE/EE Advanced Turbine Systems conference FEE fuel cells and coal-fired heat engines conference; was sponsored by the US Department of Energy Office of Fossil Energy and held at the Morgantown Energy Technology Center, P.O. Box 880, Morgantown, West Virginia 26507-0880, August 3--5, 1993. Individual papers have been entered separately.

  1. Advanced Control Engineering

    DEFF Research Database (Denmark)

    Zhou, Jianjun

    1999-01-01

    This book is developed as a textbook for the course Advanced Control Engineering. The book is intended for students in mechanical engineering and its aim is to provide an understanding of modern control theory as well as methodologies and applications for state space modeling and design...

  2. Development of advanced high temperature in-cylinder components and tribological systems for low heat rejection diesel engines, phase 1

    Science.gov (United States)

    Kroeger, C. A.; Larson, H. J.

    1992-03-01

    Analysis and concept design work completed in Phase 1 have identified a low heat rejection engine configuration with the potential to meet the Heavy Duty Transport Technology program specific fuel consumption goal of 152 g/kW-hr. The proposed engine configuration incorporates low heat rejection, in-cylinder components designed for operation at 24 MPa peak cylinder pressure. Water cooling is eliminated by selective oil cooling of the components. A high temperature lubricant will be required due to increased in-cylinder operating temperatures. A two-stage turbocharger air system with intercooling and aftercooling was selected to meet engine boost and BMEP requirements. A turbocompound turbine stage is incorporated for exhaust energy recovery. The concept engine cost was estimated to be 43 percent higher compared to a Caterpillar 3176 engine. The higher initial engine cost is predicted to be offset by reduced operating costs due the lower fuel consumption.

  3. A sublimation heat engine

    Science.gov (United States)

    Wells, Gary G.; Ledesma-Aguilar, Rodrigo; McHale, Glen; Sefiane, Khellil

    2015-03-01

    Heat engines are based on the physical realization of a thermodynamic cycle, most famously the liquid-vapour Rankine cycle used for steam engines. Here we present a sublimation heat engine, which can convert temperature differences into mechanical work via the Leidenfrost effect. Through controlled experiments, quantified by a hydrodynamic model, we show that levitating dry-ice blocks rotate on hot turbine-like surfaces at a rate controlled by the turbine geometry, temperature difference and solid material properties. The rotational motion of the dry-ice loads is converted into electric power by coupling to a magnetic coil system. We extend our concept to liquid loads, generalizing the realization of the new engine to both sublimation and the instantaneous vapourization of liquids. Our results support the feasibility of low-friction in situ energy harvesting from both liquids and ices. Our concept is potentially relevant in challenging situations such as deep drilling, outer space exploration or micro-mechanical manipulation.

  4. Advanced heat pump cycle

    Energy Technology Data Exchange (ETDEWEB)

    Groll, E.A.; Radermacher, R.

    1993-07-01

    The desorption and absorption process of a vapor compression heat pump with a solution circuit (VCHSC) proceeds at gliding temperature intervals, which can be adjusted over a wide range. In case that the gliding temperature intervals in the desorber and the absorber overlap, a modification of the VCHSC employing a desorber/absorber heat exchange (DAHX) can be introduced, which results in an extreme reduction of the pressure ratio. Although the DAHX-cycle has features of a two-stage cycle, it still requires only one solution pump, one separator and one compressor. Such a cycle for the working pair ammonia/water is built in the Energy Laboratory of the Center for Environmental Energy Engineering at the University of Maryland. The experimental results obtained with the research plant are discussed and compared to those calculated with a simulation program. The possible temperature lift between heat source and heat sink depending on the achievable COP are presented.

  5. Composite bearing and seal materials for advanced heat engine applications to 900 degree C

    Energy Technology Data Exchange (ETDEWEB)

    Sliney, H.E.

    1990-01-01

    Plasma sprayed composite coatings of metal-bonded chromium carbide with additions of silver and thermochemically stable fluorides were previously reported to be lubricative in pin on disk bench tests from room temperature to 900{degree}C. An early coating formulation of this type, designated as PS200, was successfully tested as a cylinder coating in a Stirling engine at a TRRT of 760{degree}C (1450{degree}F) in a hydrogen atmosphere, and as a backup lubricant for gas bearings to 650{degree}C (1250{degree}F). A subsequent optimization program as shown that tribological properties are further improved by increasing the solid lubricant content. The improved coating is designated as PS212. The same powder formulation has been used to make free-standing powder metallurgy (PM212) parts by sintering or hot isostatic pressing. The process is very attractive for making parts that cannot be readily plasma sprayed such as bushings and cylinders that have small bore diameters and/or high length to diameter ratios. The properties of coatings and free-standing parts fabricated from these powders are reviewed. 6 refs., 14 figs., 1 tab.

  6. Holographic Heat Engines

    CERN Document Server

    Johnson, Clifford V

    2014-01-01

    It is shown that in theories of gravity where the cosmological constant is considered a thermodynamic variable, it is natural to use black holes as heat engines. Two examples are presented in detail using AdS charged black holes as the working substance. We notice that for static black holes, the maximally efficient traditional Carnot engine is also a Stirling engine. The case of negative cosmological constant supplies a natural realization of these engines in terms of the field theory description of the fluids to which they are holographically dual. We first propose a precise picture of how the traditional thermodynamic dictionary of holography is extended when the cosmological constant is dynamical and then conjecture that the engine cycles can be performed by using renormalization group flow. We speculate about the existence of a natural dual field theory counterpart to the gravitational thermodynamic volume.

  7. Advancing cardiovascular tissue engineering

    Science.gov (United States)

    Truskey, George A.

    2016-01-01

    Cardiovascular tissue engineering offers the promise of biologically based repair of injured and damaged blood vessels, valves, and cardiac tissue. Major advances in cardiovascular tissue engineering over the past few years involve improved methods to promote the establishment and differentiation of induced pluripotent stem cells (iPSCs), scaffolds from decellularized tissue that may produce more highly differentiated tissues and advance clinical translation, improved methods to promote vascularization, and novel in vitro microphysiological systems to model normal and diseased tissue function. iPSC technology holds great promise, but robust methods are needed to further promote differentiation. Differentiation can be further enhanced with chemical, electrical, or mechanical stimuli. PMID:27303643

  8. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1976-01-01

    Advances in Biomedical Engineering, Volume 5, is a collection of papers that deals with application of the principles and practices of engineering to basic and applied biomedical research, development, and the delivery of health care. The papers also describe breakthroughs in health improvements, as well as basic research that have been accomplished through clinical applications. One paper examines engineering principles and practices that can be applied in developing therapeutic systems by a controlled delivery system in drug dosage. Another paper examines the physiological and materials vari

  9. Cummins/Tacom advanced adiabatic engine

    Energy Technology Data Exchange (ETDEWEB)

    Kamo, R.; Bryzik, W.

    1984-01-01

    Cummins Engine Company, Inc. and the U.S. Army have been jointly developing an adiabatic turbocompound engine during the last nine years. Although progress in the early years was slow, recent developments in the field of advanced ceramics have made it possible to make steady progress. It is now possible to reconsider the temperature limitation imposed on current heat engines and its subsequent influence on higher engine efficiency when using an exhaust energy utilization system. This paper presents an adiabatic turbocompound diesel engine concept in which high-performance ceramics are used in its design. The adiabatic turbocompound engine will enable higher operating temperatures, reduced heat loss, and higher exhaust energy recovery, resulting in higher thermal engine efficiency. This paper indicates that the careful selection of ceramics in engine design is essential. Adiabatic engine materials requirements are defined and the possible ceramic materials which will satisfy these requirements are identified. Examples in design considerations of engine components are illustrated. In addition to these important points, the use of ceramic coatings in the design of engine components. The first generation adiabatic engine with ceramic coatings is described. The advanced adiabatic engine with minimum friction features utilizaing ceramics is also presented. The advanced ceramic turbocharger turbine rotor as well as the oilless ceramic bearing design is described. Finally, the current status of the advanced adiabatic engine program culminating in the AA750 V-8 adiabatic engine is presented.

  10. A sublimation heat engine.

    Science.gov (United States)

    Wells, Gary G; Ledesma-Aguilar, Rodrigo; McHale, Glen; Sefiane, Khellil

    2015-01-01

    Heat engines are based on the physical realization of a thermodynamic cycle, most famously the liquid-vapour Rankine cycle used for steam engines. Here we present a sublimation heat engine, which can convert temperature differences into mechanical work via the Leidenfrost effect. Through controlled experiments, quantified by a hydrodynamic model, we show that levitating dry-ice blocks rotate on hot turbine-like surfaces at a rate controlled by the turbine geometry, temperature difference and solid material properties. The rotational motion of the dry-ice loads is converted into electric power by coupling to a magnetic coil system. We extend our concept to liquid loads, generalizing the realization of the new engine to both sublimation and the instantaneous vapourization of liquids. Our results support the feasibility of low-friction in situ energy harvesting from both liquids and ices. Our concept is potentially relevant in challenging situations such as deep drilling, outer space exploration or micro-mechanical manipulation. PMID:25731669

  11. A sublimation heat engine

    Science.gov (United States)

    Wells, Gary G.; Ledesma-Aguilar, Rodrigo; McHale, Glen; Sefiane, Khellil

    2015-01-01

    Heat engines are based on the physical realization of a thermodynamic cycle, most famously the liquid–vapour Rankine cycle used for steam engines. Here we present a sublimation heat engine, which can convert temperature differences into mechanical work via the Leidenfrost effect. Through controlled experiments, quantified by a hydrodynamic model, we show that levitating dry-ice blocks rotate on hot turbine-like surfaces at a rate controlled by the turbine geometry, temperature difference and solid material properties. The rotational motion of the dry-ice loads is converted into electric power by coupling to a magnetic coil system. We extend our concept to liquid loads, generalizing the realization of the new engine to both sublimation and the instantaneous vapourization of liquids. Our results support the feasibility of low-friction in situ energy harvesting from both liquids and ices. Our concept is potentially relevant in challenging situations such as deep drilling, outer space exploration or micro-mechanical manipulation. PMID:25731669

  12. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1976-01-01

    Advances in Biomedical Engineering, Volume 6, is a collection of papers that discusses the role of integrated electronics in medical systems and the usage of biological mathematical models in biological systems. Other papers deal with the health care systems, the problems and methods of approach toward rehabilitation, as well as the future of biomedical engineering. One paper discusses the use of system identification as it applies to biological systems to estimate the values of a number of parameters (for example, resistance, diffusion coefficients) by indirect means. More particularly, the i

  13. Advanced structural wind engineering

    CERN Document Server

    Kareem, Ahsan

    2013-01-01

    This book serves as a textbook for advanced courses as it introduces state-of-the-art information and the latest research results on diverse problems in the structural wind engineering field. The topics include wind climates, design wind speed estimation, bluff body aerodynamics and applications, wind-induced building responses, wind, gust factor approach, wind loads on components and cladding, debris impacts, wind loading codes and standards, computational tools and computational fluid dynamics techniques, habitability to building vibrations, damping in buildings, and suppression of wind-induced vibrations. Graduate students and expert engineers will find the book especially interesting and relevant to their research and work.

  14. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1973-01-01

    Advances in Biomedical Engineering, Volume 2, is a collection of papers that discusses the basic sciences, the applied sciences of engineering, the medical sciences, and the delivery of health services. One paper discusses the models of adrenal cortical control, including the secretion and metabolism of cortisol (the controlled process), as well as the initiation and modulation of secretion of ACTH (the controller). Another paper discusses hospital computer systems-application problems, objective evaluation of technology, and multiple pathways for future hospital computer applications. The pos

  15. Advanced engineering mathematics

    CERN Document Server

    Jeffrey, Alan

    2001-01-01

    Advanced Engineering Mathematics provides comprehensive and contemporary coverage of key mathematical ideas, techniques, and their widespread applications, for students majoring in engineering, computer science, mathematics and physics. Using a wide range of examples throughout the book, Jeffrey illustrates how to construct simple mathematical models, how to apply mathematical reasoning to select a particular solution from a range of possible alternatives, and how to determine which solution has physical significance. Jeffrey includes material that is not found in works of a similar nature, such as the use of the matrix exponential when solving systems of ordinary differential equations. The text provides many detailed, worked examples following the introduction of each new idea, and large problem sets provide both routine practice, and, in many cases, greater challenge and insight for students. Most chapters end with a set of computer projects that require the use of any CAS (such as Maple or Mathematica) th...

  16. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1974-01-01

    Advances in Biomedical Engineering, Volume 4, is a collection of papers that deals with gas chromatography, mass spectroscopy and the analysis of minute samples, as well as the role of the government in regulating the production, usage, safety, and efficacy of medical devices. One paper reviews the use of mass spectrometry and computer technology in relation to gas-phase analytical methods based on gas chromatograph-mass spectrometer instruments and gas chromatograph-mass spectrometer-computer analytical systems. Many health practitioners, government and private health agencies, the legal prof

  17. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1973-01-01

    Advances in Biomedical Engineering, Volume 3, is a collection of papers that discusses circulatory system models, linguistics in computer usage, and clinical applications on patient monitoring. One paper describes the use of comparative models of overall circulatory mechanics that include models of the cardiac pump, of the vascular systems, and of the overall systems behavior. Another paper describes a model in processing medical language data that employs an explicit semantic structure, becoming the basis for the computer-based, artificial intelligence of the system. One paper cites studies b

  18. Quantum optomechanical heat engine.

    Science.gov (United States)

    Zhang, Keye; Bariani, Francesco; Meystre, Pierre

    2014-04-18

    We investigate theoretically a quantum optomechanical realization of a heat engine. In a generic optomechanical arrangement the optomechanical coupling between the cavity field and the oscillating end mirror results in polariton normal mode excitations whose character depends on the pump detuning and the coupling strength. By varying that detuning it is possible to transform their character from phononlike to photonlike, so that they are predominantly coupled to the thermal reservoir of phonons or photons, respectively. We exploit the fact that the effective temperatures of these two reservoirs are different to produce an Otto cycle along one of the polariton branches. We discuss the basic properties of the system in two different regimes: in the optical domain it is possible to extract work from the thermal energy of a mechanical resonator at finite temperature, while in the microwave range one can in principle exploit the cycle to extract work from the blackbody radiation background coupled to an ultracold atomic ensemble. PMID:24785017

  19. A special relativistic heat engine

    Directory of Open Access Journals (Sweden)

    William S. Cariens

    1983-01-01

    main concepts taken from themodynamics and special relativity are those of a heat engine and E=mc2 respectively. Central to understanding the operation of this relativistic heat engine is the fact that upon heating a mass, its rest mass increases! This concept is nonexistent in classical thermodynamics. An increase in rest mass means that both the internal energy of a mass and its macroscopic kinetic energy increase!!!

  20. Life explained by heat engines

    NARCIS (Netherlands)

    A.W.J. Muller

    2012-01-01

    Mitochondria are in essence fuel cells that use organics as reductant and oxygen as oxidant. In engineering, increasing attention is being given to the replacement of the internal combustion engine by the fuel cell. According to the Thermosynthesis theory, a similar replacement of heat engines by fu

  1. Analytical and experimental evaluation of joining silicon carbide to silicon carbide and silicon nitride to silicon nitride for advanced heat engine applications Phase 2. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, G.J.; Vartabedian, A.M.; Wade, J.A.; White, C.S. [Norton Co., Northboro, MA (United States). Advanced Ceramics Div.

    1994-10-01

    The purpose of joining, Phase 2 was to develop joining technologies for HIP`ed Si{sub 3}N{sub 4} with 4wt% Y{sub 2}O{sub 3} (NCX-5101) and for a siliconized SiC (NT230) for various geometries including: butt joins, curved joins and shaft to disk joins. In addition, more extensive mechanical characterization of silicon nitride joins to enhance the predictive capabilities of the analytical/numerical models for structural components in advanced heat engines was provided. Mechanical evaluation were performed by: flexure strength at 22 C and 1,370 C, stress rupture at 1,370 C, high temperature creep, 22 C tensile testing and spin tests. While the silicon nitride joins were produced with sufficient integrity for many applications, the lower join strength would limit its use in the more severe structural applications. Thus, the silicon carbide join quality was deemed unsatisfactory to advance to more complex, curved geometries. The silicon carbide joining methods covered within this contract, although not entirely successful, have emphasized the need to focus future efforts upon ways to obtain a homogeneous, well sintered parent/join interface prior to siliconization. In conclusion, the improved definition of the silicon carbide joining problem obtained by efforts during this contract have provided avenues for future work that could successfully obtain heat engine quality joins.

  2. Advanced Metasearch Engine Technology

    CERN Document Server

    Meng, Weiyi

    2010-01-01

    Among the search tools currently on the Web, search engines are the most well known thanks to the popularity of major search engines such as Google and Yahoo!. While extremely successful, these major search engines do have serious limitations. This book introduces large-scale metasearch engine technology, which has the potential to overcome the limitations of the major search engines. Essentially, a metasearch engine is a search system that supports unified access to multiple existing search engines by passing the queries it receives to its component search engines and aggregating the returned

  3. Advanced heat pump

    Science.gov (United States)

    Ashley, Joseph L.; Matthews, John D.

    1989-09-01

    This patent application discloses a heat pump which includes a first packed bed of liquid desiccant for removing moisture from outside air in the heating mode of operation, and a pump for transferring the moisture laden desiccant to a second packed bed which humidifies condenser heated inside air by adding water vapor to the air. The first packed bed, by removing moisture from the outside air before it passes through the heat pump's evaporator coils, prevents frost from forming on the coils. In the cooling mode of operation the second packed bed of liquid desiccant removes water vapor from the air inside of the building. The moisture laden desiccant is then transferred to the first packed bed by a second pump where condenser heat transfers the moisture from the desiccant to outside air.

  4. Advances in heat transfer enhancement

    CERN Document Server

    Saha, Sujoy Kumar; Sundén, Bengt; Wu, Zan

    2016-01-01

    This Brief addresses the phenomena of heat transfer enhancement. A companion edition in the SpringerBrief Subseries on Thermal Engineering and Applied Science to three other monographs including “Critical Heat Flux in Flow Boiling in Microchannels,” this volume is idea for professionals, researchers, and graduate students concerned with electronic cooling.

  5. Advances in Medical Engineering

    CERN Document Server

    Buzug, Thorsten M

    2007-01-01

    Presents research and development trends of physics, engineering, mathematics and computer sciences in biomedical engineering. This work uses contributions from industry, clinics, universities and research labs with foci on medical imaging, computer-assisted surgery, and others to give insight to engineering, clinical and mathematical studies.

  6. Plasma heat pump and heat engine

    International Nuclear Information System (INIS)

    A model system where cold charged particles are locally confined in a volume VP within a warm plasma of volume V (VPE. The law of thermodynamics involving PE and an equation of state for PE are obtained. It is shown that the expansion/compression of electrostatic fields associated with charged particles is a new mechanism that converts mechanical work into plasma heat and vice versa. Two applications of this theory are, first we propose a pumping device which heats plasmas by an adiabatic/isothermal compression of fields. Heating power ranging from a few hundred watts to a few kilowatts is possible with the present day technology. Second, we discuss the feasibility of constructing an electrostatic heat engine which converts plasma heat into mechanical work via plasma electric fields. Effects of PE are shown to be observable in colloidal solutions.

  7. Efficiency of Brownian heat engines.

    Science.gov (United States)

    Derényi, I; Astumian, R D

    1999-06-01

    We study the efficiency of one-dimensional thermally driven Brownian ratchets or heat engines. We identify and compare the three basic setups characterized by the type of the connection between the Brownian particle and the two heat reservoirs: (i) simultaneous, (ii) alternating in time, and (iii) position dependent. We make a clear distinction between the heat flow via the kinetic and the potential energy of the particle, and show that the former is always irreversible and it is only the third setup where the latter is reversible when the engine works quasistatically. We also show that in the third setup the heat flow via the kinetic energy can be reduced arbitrarily, proving that even for microscopic heat engines there is no fundamental limit of the efficiency lower than that of a Carnot cycle.

  8. Heat recovery equipment for engines

    Energy Technology Data Exchange (ETDEWEB)

    Segaser, C.L.

    1977-04-01

    The recovery and use of waste heat from prime movers is an important consideration for evaluating an on-site power system, since it is the basic factor that makes possible a substantial increase in fuel-use efficiency. The equipment usually employed to recover waste heat can be categorized as: (a) shell-and-tube type heat exchangers, (b) radiator-type heat exchangers, (c) exhaust gas boilers for the generation of pressurized hot water and/or steam, (d) steam separators, and (e) combined packaged units for ebulliently cooled internal combustion piston engines. The functional requirements and cost considerations involved in applying these devices for the recovery of waste heat from various types of prime-movers considered for application in the ICES Systems Engineering Program are examined.

  9. Mechanical Autonomous Stochastic Heat Engine

    Science.gov (United States)

    Serra-Garcia, Marc; Foehr, André; Molerón, Miguel; Lydon, Joseph; Chong, Christopher; Daraio, Chiara

    2016-07-01

    Stochastic heat engines are devices that generate work from random thermal motion using a small number of highly fluctuating degrees of freedom. Proposals for such devices have existed for more than a century and include the Maxwell demon and the Feynman ratchet. Only recently have they been demonstrated experimentally, using, e.g., thermal cycles implemented in optical traps. However, recent experimental demonstrations of classical stochastic heat engines are nonautonomous, since they require an external control system that prescribes a heating and cooling cycle and consume more energy than they produce. We present a heat engine consisting of three coupled mechanical resonators (two ribbons and a cantilever) subject to a stochastic drive. The engine uses geometric nonlinearities in the resonating ribbons to autonomously convert a random excitation into a low-entropy, nonpassive oscillation of the cantilever. The engine presents the anomalous heat transport property of negative thermal conductivity, consisting in the ability to passively transfer energy from a cold reservoir to a hot reservoir.

  10. Advances in industrial heat transfer

    CERN Document Server

    Minea, Alina Adriana

    2012-01-01

    Advances in Industrial Heat Transfer presents the basic principles of industrial heat transfer enhancement. Serving as a reference and guide for future research, this book presents a complete approach, from redesigning equipment to the use of nanofluids in industry. Based on the latest methods of the experiment and their interpretation, this book presents a unified conception of the industrial heat transfer process and procedures which will help decrease global energy consumption. Containing both theoretical and practical results, the book uses text, pictures, graphs, and definitions to illust

  11. Advanced Control of Turbofan Engines

    CERN Document Server

    Richter, Hanz

    2012-01-01

    Advanced Control of Turbofan Engines describes the operational performance requirements of turbofan (commercial)engines from a controls systems perspective, covering industry-standard methods and research-edge advances. This book allows the reader to design controllers and produce realistic simulations using public-domain software like CMAPSS: Commercial Modular Aero-Propulsion System Simulation, whose versions are released to the public by NASA. The scope of the book is centered on the design of thrust controllers for both steady flight and transient maneuvers. Classical control theory is not dwelled on, but instead an introduction to general undergraduate control techniques is provided. This book also: Develops a thorough understanding of the challenges associated with engine operability from a control systems perspective, describing performance demands and operational constraints into the framework and language of modern control theory Presents solid theoretical support for classical and advanced engine co...

  12. Advances in tissue engineering

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Tissue engineering is a newly developed specialty involved in the construction of tissues and organs either in vitro or in vivo. Tremendous progress has been achieved over the past decade in tisse construction as well as in other related areas, such as bone marrow stromal cells, embryonic stem cells and tissue progenitor cells. In our laboratory, tissues of full-thickness skin, bone, cartilage and tendon have been successfully engineered, and the engineered tissues have repaired full-thickness skin wound, cranial bone defects, articular cartilage defects and tendon defects in animals. In basic research areas, bone marrow stromal cells have been induced and transformed into osteoblasts and chondrocytes in vitro. Mouse embryo stem cell lines we established have differentiated into neuron precursor, cardiac muscle cells and epithelial cells. Genetic modifications of seed cells for promoting cell proliferation, delaying cell aging and inducing immune tolerance have also been investigated.

  13. "Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

    2008-06-12

    ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

  14. Advancement in Engineering Technology

    DEFF Research Database (Denmark)

    Kalia, Kartik; Rehman, M. Atiqur; Hussain, Dil muhammed Akbar;

    2016-01-01

    but to harvest those ideas, technology is a must. With the huge requirement of engineering equipment's, the industry needs specialists who can manage and operate these technologies. Detailed information about the merits and demerits of technology is also mentioned in this paper. Findings: Technology has affected...

  15. Development of improved processing and evaluation methods for high reliability structural ceramics for advanced heat engine applications Phase II. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pujari, V.J.; Tracey, D.M.; Foley, M.R. [and others

    1996-02-01

    The research program had as goals the development and demonstration of significant improvements in processing methods, process controls, and nondestructive evaluation (NDE) which can be commercially implemented to produce high reliability silicon nitride components for advanced heat engine applications at temperatures to 1370{degrees}C. In Phase I of the program a process was developed that resulted in a silicon nitride - 4 w% yttria HIP`ed material (NCX 5102) that displayed unprecedented strength and reliability. An average tensile strength of 1 GPa and a strength distribution following a 3-parameter Weibull distribution were demonstrated by testing several hundred buttonhead tensile specimens. The Phase II program focused on the development of methodology for colloidal consolidation producing green microstructure which minimizes downstream process problems such as drying, shrinkage, cracking, and part distortion during densification. Furthermore, the program focused on the extension of the process to gas pressure sinterable (GPS) compositions. Excellent results were obtained for the HIP composition processed for minimal density gradients, both with respect to room-temperature strength and high-temperature creep resistance. Complex component fabricability of this material was demonstrated by producing engine-vane prototypes. Strength data for the GPS material (NCX-5400) suggest that it ranks very high relative to other silicon nitride materials in terms of tensile/flexure strength ratio, a measure of volume quality. This high quality was derived from the closed-loop colloidal process employed in the program.

  16. Engineering heat transfer

    CERN Document Server

    Annaratone, Donatello

    2010-01-01

    This book is a generalist textbook; it is designed for anybody interested in heat transmission, including scholars, designers and students. Two criteria constitute the foundation of Annaratone's books, including the present one. The first one consists of indispensable scientific rigor without theoretical exasperation. The inclusion in the book of some theoretical studies, even if admirable for their scientific rigor, would have strengthened the scientific foundation of this publication, yet without providing the reader with further applicable know-how. The second criterion is to deliver practi

  17. Dissipative heat engine is thermodynamically inconsistent

    CERN Document Server

    Makarieva, A M

    2009-01-01

    A heat engine operating on the basis of the Carnot cycle is considered, where the mechanical work performed is dissipated within the engine at the temperature of the warmer isotherm and the resulting heat is added to the engine together with an external heat input. The resulting work performed by the engine per cycle is increased at the expense of dissipated work produced in the previous cycle. It is shown that such a dissipative heat engine is thermodynamically inconsistent violating the first and second laws of thermodynamics. The existing physical models employing the dissipative heat engine concept, in particular, the heat engine model of hurricane development, are physically invalid.

  18. Heat regenerative external combustion engine

    Science.gov (United States)

    Duva, Anthony W.

    1993-10-01

    A heat regenerative external combustion engine is disclosed. The engine includes fuel inlet means which extends along the exhaust passage and/or combustion chamber in order to preheat the fuel, To provide for preheating by gases in both the combustion chamber and the exhaust passage, the combustion chamber is arranged annularly around the drive shaft and between the cylinders. This configuration also is advantageous in that it reduces the noise of combustion. The engine of the invention is particularly well-suited for use in a torpedo.

  19. Advanced thermodynamics engineering

    CERN Document Server

    Annamalai, Kalyan; Jog, Milind A

    2011-01-01

    Thermolab Excel-Based Software for Thermodynamic Properties and Flame Temperatures of Fuels IntroductionImportance, Significance and LimitationsReview of ThermodynamicsMathematical BackgroundOverview of Microscopic/NanothermodynamicsSummaryAppendix: Stokes and Gauss Theorems First Law of ThermodynamicsZeroth LawFirst Law for a Closed SystemQuasi Equilibrium (QE) and Nonquasi-equilibrium (NQE) ProcessesEnthalpy and First LawAdiabatic Reversible Process for Ideal Gas with Constant Specific HeatsFirst Law for an Open SystemApplications of First Law for an Open SystemIntegral and Differential Form

  20. Improved silicon carbide for advanced heat engines. II - Pressureless sintering and mechanical properties of injection molded silicon carbide

    Science.gov (United States)

    Whalen, Thomas J.; Baer, J. R.

    1989-01-01

    The influence on density and strength of pressureless sintering in vacuum and argon environments has been evaluated with injection molded SiC materials. Main effects and two factor interactions of sintering (cycle variables temperature, time, heating rate, and atmosphere) were assessed. An improved understanding of the influence of the processing flaws and sintering conditions has been obtained. Strength and density have improved from a baseline level of 299 MPa (43.3 Ksi) and 94 pct of theoretical density to values greater than 483 MPa (70 Ksi) and 97 pct.

  1. Advanced Technology for Engineering Education

    Science.gov (United States)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1998-01-01

    This document contains the proceedings of the Workshop on Advanced Technology for Engineering Education, held at the Peninsula Graduate Engineering Center, Hampton, Virginia, February 24-25, 1998. The workshop was jointly sponsored by the University of Virginia's Center for Advanced Computational Technology and NASA. Workshop attendees came from NASA, other government agencies, industry and universities. The objectives of the workshop were to assess the status of advanced technologies for engineering education and to explore the possibility of forming a consortium of interested individuals/universities for curriculum reform and development using advanced technologies. The presentations covered novel delivery systems and several implementations of new technologies for engineering education. Certain materials and products are identified in this publication in order to specify adequately the materials and products that were investigated in the research effort. In no case does such identification imply recommendation or endorsement of products by NASA, nor does it imply that the materials and products are the only ones or the best ones available for this purpose. In many cases equivalent materials and products are available and would probably produce equivalent results.

  2. Advanced Natural Gas Reciprocating Engine(s)

    Energy Technology Data Exchange (ETDEWEB)

    Kwok, Doris; Boucher, Cheryl

    2009-09-30

    Energy independence and fuel savings are hallmarks of the nation’s energy strategy. The advancement of natural gas reciprocating engine power generation technology is critical to the nation’s future. A new engine platform that meets the efficiency, emissions, fuel flexibility, cost and reliability/maintainability targets will enable American manufacturers to have highly competitive products that provide substantial environmental and economic benefits in the US and in international markets. Along with Cummins and Waukesha, Caterpillar participated in a multiyear cooperative agreement with the Department of Energy to create a 50% efficiency natural gas powered reciprocating engine system with a 95% reduction in NOx emissions by the year 2013. This platform developed under this agreement will be a significant contributor to the US energy strategy and will enable gas engine technology to remain a highly competitive choice, meeting customer cost of electricity targets, and regulatory environmental standard. Engine development under the Advanced Reciprocating Engine System (ARES) program was divided into phases, with the ultimate goal being approached in a series of incremental steps. This incremental approach would promote the commercialization of ARES technologies as soon as they emerged from development and would provide a technical and commercial foundation of later-developing technologies. Demonstrations of the Phase I and Phase II technology were completed in 2004 and 2008, respectively. Program tasks in Phase III included component and system development and testing from 2009-2012. Two advanced ignition technology evaluations were investigated under the ARES program: laser ignition and distributed ignition (DIGN). In collaboration with Colorado State University (CSU), a laser ignition system was developed to provide ignition at lean burn and high boost conditions. Much work has been performed in Caterpillar’s DIGN program under the ARES program. This work

  3. Combination solar photovoltaic heat engine energy converter

    Science.gov (United States)

    Chubb, Donald L.

    1987-01-01

    A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.

  4. Advances in water resources engineering

    CERN Document Server

    Wang, Lawrence

    2015-01-01

    The Handbook of Environmental Engineering is a collection of methodologies that study the effects of pollution and waste in their three basic forms: gas, solid, and liquid. A sister volume to Volume 15: Modern Water Resources Engineering, this volume focuses on the theory and analysis of various water resources systems including watershed sediment dynamics and modeling, integrated simulation of interactive surface water and groundwater systems, river channel stabilization with submerged vanes, non-equilibrium sediment transport, reservoir sedimentation, and fluvial processes, minimum energy dissipation rate theory and applications, hydraulic modeling development and application, geophysical methods for assessment of earthen dams, soil erosion on upland areas by rainfall and overland flow, geofluvial modeling methodologies and applications, and an environmental water engineering glossary. This critical volume will serve as a valuable reference work for advanced undergraduate and graduate students, designers of...

  5. Advanced fuel chemistry for advanced engines.

    Energy Technology Data Exchange (ETDEWEB)

    Taatjes, Craig A.; Jusinski, Leonard E.; Zador, Judit; Fernandes, Ravi X.; Miller, James A.

    2009-09-01

    Autoignition chemistry is central to predictive modeling of many advanced engine designs that combine high efficiency and low inherent pollutant emissions. This chemistry, and especially its pressure dependence, is poorly known for fuels derived from heavy petroleum and for biofuels, both of which are becoming increasingly prominent in the nation's fuel stream. We have investigated the pressure dependence of key ignition reactions for a series of molecules representative of non-traditional and alternative fuels. These investigations combined experimental characterization of hydroxyl radical production in well-controlled photolytically initiated oxidation and a hybrid modeling strategy that linked detailed quantum chemistry and computational kinetics of critical reactions with rate-equation models of the global chemical system. Comprehensive mechanisms for autoignition generally ignore the pressure dependence of branching fractions in the important alkyl + O{sub 2} reaction systems; however we have demonstrated that pressure-dependent 'formally direct' pathways persist at in-cylinder pressures.

  6. Development of improved processing and evaluation methods for high reliability structural ceramics for advanced heat engine applications, Phase 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pujari, V.K.; Tracey, D.M.; Foley, M.R.; Paille, N.I.; Pelletier, P.J.; Sales, L.C.; Wilkens, C.A.; Yeckley, R.L. [Norton Co., Northboro, MA (United States)

    1993-08-01

    The program goals were to develop and demonstrate significant improvements in processing methods, process controls and non-destructive evaluation (NDE) which can be commercially implemented to produce high reliability silicon nitride components for advanced heat engine applications at temperatures to 1,370{degrees}C. The program focused on a Si{sub 3}N{sub 4}-4% Y{sub 2}O{sub 3} high temperature ceramic composition and hot-isostatic-pressing as the method of densification. Stage I had as major objectives: (1) comparing injection molding and colloidal consolidation process routes, and selecting one route for subsequent optimization, (2) comparing the performance of water milled and alcohol milled powder and selecting one on the basis of performance data, and (3) adapting several NDE methods to the needs of ceramic processing. The NDE methods considered were microfocus X-ray radiography, computed tomography, ultrasonics, NMR imaging, NMR spectroscopy, fluorescent liquid dye penetrant and X-ray diffraction residual stress analysis. The colloidal consolidation process route was selected and approved as the forming technique for the remainder of the program. The material produced by the final Stage II optimized process has been given the designation NCX 5102 silicon nitride. According to plan, a large number of specimens were produced and tested during Stage III to establish a statistically robust room temperature tensile strength database for this material. Highlights of the Stage III process demonstration and resultant database are included in the main text of the report, along with a synopsis of the NCX-5102 aqueous based colloidal process. The R and D accomplishments for Stage I are discussed in Appendices 1--4, while the tensile strength-fractography database for the Stage III NCX-5102 process demonstration is provided in Appendix 5. 4 refs., 108 figs., 23 tabs.

  7. Advanced engineering environment collaboration project.

    Energy Technology Data Exchange (ETDEWEB)

    Lamph, Jane Ann; Pomplun, Alan R.; Kiba, Grant W.; Dutra, Edward G.; Dankiewicz, Robert J.; Marburger, Scot J.

    2008-12-01

    The Advanced Engineering Environment (AEE) is a model for an engineering design and communications system that will enhance project collaboration throughout the nuclear weapons complex (NWC). Sandia National Laboratories and Parametric Technology Corporation (PTC) worked together on a prototype project to evaluate the suitability of a portion of PTC's Windchill 9.0 suite of data management, design and collaboration tools as the basis for an AEE. The AEE project team implemented Windchill 9.0 development servers in both classified and unclassified domains and used them to test and evaluate the Windchill tool suite relative to the needs of the NWC using weapons project use cases. A primary deliverable was the development of a new real time collaborative desktop design and engineering process using PDMLink (data management tool), Pro/Engineer (mechanical computer aided design tool) and ProductView Lite (visualization tool). Additional project activities included evaluations of PTC's electrical computer aided design, visualization, and engineering calculations applications. This report documents the AEE project work to share information and lessons learned with other NWC sites. It also provides PTC with recommendations for improving their products for NWC applications.

  8. Cummins advanced turbocompound diesel engine evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, J.L.; Werner, J.R.

    1982-12-01

    An advanced turbocompound diesel engine program was initiated to improve the tank mileage of the turbocompound engine by 5% over the vehicle test engines. Engine improvements could be realized by increasing the available energy of the exhaust gas at the turbine inlet, incorporating gas turbine techniques into improving the turbomachinery efficiencies, and through refined engine system optimization. The individual and cumulative performance gains achieved with the advanced turbocompound engine improvements are presented.

  9. Heat-Flux Sensor For Hot Engine Cylinders

    Science.gov (United States)

    Kim, Walter S.; Barrows, Richard F.; Smith, Floyd A.; Koch, John

    1989-01-01

    Heat-flux sensor includes buried wire thermocouple and thin-film surface thermocouple, made of platinum and platinum with 13 percent rhodium. Sensor intended for use in ceramic-insulated, low-heat-rejection diesel engine at temperatures of about 1,000 K. Thermocouple junction resists environment in cylinder of advanced high-temperature diesel engine created by depositing overlapping films of Pt and 0.87 Pt/0.13 Rh on iron plug. Plug also contains internal thermocouple.

  10. Advanced engineering environment pilot project.

    Energy Technology Data Exchange (ETDEWEB)

    Schwegel, Jill; Pomplun, Alan R.; Abernathy, Rusty (Parametric Technology Corporation, Needham, MA)

    2006-10-01

    The Advanced Engineering Environment (AEE) is a concurrent engineering concept that enables real-time process tooling design and analysis, collaborative process flow development, automated document creation, and full process traceability throughout a product's life cycle. The AEE will enable NNSA's Design and Production Agencies to collaborate through a singular integrated process. Sandia National Laboratories and Parametric Technology Corporation (PTC) are working together on a prototype AEE pilot project to evaluate PTC's product collaboration tools relative to the needs of the NWC. The primary deliverable for the project is a set of validated criteria for defining a complete commercial off-the-shelf (COTS) solution to deploy the AEE across the NWC.

  11. Advances in heat transfer volume 21

    CERN Document Server

    Hartnett †, James P; Cho, Young I

    1991-01-01

    This volume in a series on heat transfer covers the modelling of the dynamics of turbulent transport processes, supercritical pressures, hydrodynamics, mass transfer near rotating surfaces, lost heat in entropy and the mechanics of heat transfer in a multifluid bubbling pool. Other related titles are "Advances in Heat Transfer", volumes 18, 19 and 20.

  12. Quantum point contacts as heat engines

    Science.gov (United States)

    Pilgram, Sebastian; Sánchez, David; López, Rosa

    2015-11-01

    The efficiency of macroscopic heat engines is restricted by the second law of thermodynamics. They can reach at most the efficiency of a Carnot engine. In contrast, heat currents in mesoscopic heat engines show fluctuations. Thus, there is a small probability that a mesoscopic heat engine exceeds Carnot's maximum value during a short measurement time. We illustrate this effect using a quantum point contact as a heat engine. When a temperature difference is applied to a quantum point contact, the system may be utilized as a source of electrical power under steady state conditions. We first discuss the optimal working point of such a heat engine that maximizes the generated electrical power and subsequently calculate the statistics for deviations of the efficiency from its most likely value. We find that deviations surpassing the Carnot limit are possible, but unlikely.

  13. Sodium Heat Engine Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Singh, J.P.; Kupperman, D.S.; Majumdar, S.; Dorris, S.; Gopalsami, N.; Dieckman, S.L.; Jaross, R.A.; Johnson, D.L.; Gregar, J.S.; Poeppel, R.B.; Raptis, A.C.; Valentin, R.A.

    1992-01-01

    The Sodium Heat Engine (SHE) is an efficient thermoelectric conversion device which directly generates electricity from a thermally regenerative electrochemical cell that relies on the unique conduction properties of {beta}{double prime}-alumina solid electrolyte (BASE). Laboratory models of a variety of SHE devices have demonstrated the feasibility and efficiency of the system, engineering development of large prototype devices has been slowed by a series of materials and fabrication problems. Failure of the electrolyte tubes has been a recurring problem and a number of possible causes have been postulated. To address these issues, a two-phase engineering development program was undertaken. This report summarizes the final results of the first phase of the program, which included extensive materials characterization activities, a study of applicable nondestructive evaluation methods, an investigation of possible stress states that would contribute to fracture, and certain operational issues associated with the electromagnetic pumps used in the SHE prototype. Mechanical and microstructural evaluation of commercially obtained BASE tubes revealed that they should be adequate for SHE applications and that sodium exposure produced no appreciable deleterious strength effects. Processing activities to produce a more uniform and smaller grain size for the BASE tubes were completed using isostatic pressing, extrusion, and slip casting. Green tubes were sintered by conventional and microwave plasma methods. Of particular interest is the residual stress state in the BASE tubes, and both analysis and nondestructive evaluation methods were employed to evaluate these stresses. X-ray and neutron diffraction experiments were performed to determine the bulk residual stresses in commercially fabricated BASE tubes; however, tube-to-tube variations and variations among the various methods employed did not allow formulation of a definitive definition of the as-fabricated stress state.

  14. Heat pipe cooling for scramjet engines

    Science.gov (United States)

    Silverstein, Calvin C.

    1986-01-01

    Liquid metal heat pipe cooling systems have been investigated for the combustor liner and engine inlet leading edges of scramjet engines for a missile application. The combustor liner is cooled by a lithium-TZM molybdenum annular heat pipe, which incorporates a separate lithium reservoir. Heat is initially absorbed by the sensible thermal capacity of the heat pipe and liner, and subsequently by the vaporization and discharge of lithium to the atmosphere. The combustor liner temperature is maintained at 3400 F or less during steady-state cruise. The engine inlet leading edge is fabricated as a sodium-superalloy heat pipe. Cooling is accomplished by radiation of heat from the aft surface of the leading edge to the atmosphere. The leading edge temperature is limited to 1700 F or less. It is concluded that heat pipe cooling is a viable method for limiting scramjet combustor liner and engine inlet temperatures to levels at which structural integrity is greatly enhanced.

  15. Genetically Engineered Immunotherapy for Advanced Cancer

    Science.gov (United States)

    In this trial, doctors will collect T lymphocytes from patients with advanced mesothelin-expressing cancer and genetically engineer them to recognize mesothelin. The gene-engineered cells will be multiplied and infused into the patient to fight the cancer

  16. Heat Exchanger Lab for Chemical Engineering Undergraduates

    Science.gov (United States)

    Rajala, Jonathan W.; Evans, Edward A.; Chase, George G.

    2015-01-01

    Third year chemical engineering undergraduate students at The University of Akron designed and fabricated a heat exchanger for a stirred tank as part of a Chemical Engineering Laboratory course. The heat exchanger portion of this course was three weeks of the fifteen week long semester. Students applied concepts of scale-up and dimensional…

  17. Ignition timing advance in the bi-fuel engine

    Directory of Open Access Journals (Sweden)

    Marek FLEKIEWICZ

    2009-01-01

    Full Text Available The influence of ignition timing on CNG combustion process has been presented in this paper. A 1.6 liter SI engine has been tested in the special program. For selected engine operating conditions, following data were acquired: in cylinder pressure, crank angle, fuel mass consumption and exhaust gases temperatures. For the timing advance correction varying between 0 to 15 deg crank angle, the internal temperature of combustion chamber, as well as the charge combustion ratio and ratio of heat release has been estimated. With the help of the mathematical model, emissions of NO, CO and CO2 were additionally estimated. Obtained results made it possible to compare the influence of ignition timing advance on natural gas combustion in the SI engine. The engine torque and in-cylinder pressure were used for determination of the optimum engine timing advance.

  18. Advances in Computer Science and Engineering

    CERN Document Server

    Second International Conference on Advances in Computer Science and Engineering (CES 2012)

    2012-01-01

    This book includes the proceedings of the second International Conference on Advances in Computer Science and Engineering (CES 2012), which was held during January 13-14, 2012 in Sanya, China. The papers in these proceedings of CES 2012 focus on the researchers’ advanced works in their fields of Computer Science and Engineering mainly organized in four topics, (1) Software Engineering, (2) Intelligent Computing, (3) Computer Networks, and (4) Artificial Intelligence Software.

  19. Advances in Solar Heating and Cooling Systems

    Science.gov (United States)

    Ward, Dan S.

    1976-01-01

    Reports on technological advancements in the fields of solar collectors, thermal storage systems, and solar heating and cooling systems. Diagrams aid in the understanding of the thermodynamics of the systems. (CP)

  20. Engineering design of advanced marine reactor MRX

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    JAERI has studied the design of an advanced marine reactor (named as MRX), which meets requirements of the enhancement of economy and reliability, by reflecting results and knowledge obtained from the development of N.S. Mutsu. The MRX with a power of 100 MWt is intended to be used for ship propulsion such as an ice-breaker, container cargo ship and so on. After completion of the conceptual design, the engineering design was performed in four year plan from FY 1993 to 1996. (1) Compactness, light-weightiness and simplicity of the reactor system are realized by adopting an integral-type PWR, i.e. by installing the steam generator, the pressurizer, and the control rod drive mechanism (CRDM) inside the pressure vessel. Because of elimination of the primary coolant circulation pipes in the MRX, possibility of large-scale pipe break accidents can be eliminated. This contributes to improve the safety of the reactor system and to simplify the engineered safety systems. (2) The in-vessel type CRDM contributes not only to eliminate possibilities of rod ejection accidents, but also to make the reactor system compact. (3) The concept of water-filled containment where the reactor pressure vessel is immersed in the water is adopted. It can be of use for emergency core cooling system which maintains core flooding passively in case of a loss-of-coolant accident. The water-filled containment system also contributes essentially light-weightness of the reactor system since the water inside containment acts as a radiation shield and in consequence the secondary radiation shield can be eliminated. (4) Adoption of passive decay heat removal systems has contributed in a greater deal to simplification of the engineered safety systems and to enhancement of reliability of the systems. (5) Operability has been improved by simplification of the whole reactor system, by adoption of the passive safety systems, advanced automatic operation systems, and so on. (J.P.N.)

  1. Cummins advanced turbocompound diesel-engine evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, J.L.; Werner, J.R.

    1982-12-01

    The turbocompound diesel engine has been under development since 1972. Development reached a mature stage following the evolution of three power turbine and gear train designs. In 1978, the Department of Energy sponsored a program for comprehensive vehicle testing of the turbocompound engine. Upon successful completion of the vehicle test program, an advanced turbocompound diesel engine program was initiated in 1980 to improve the tank mileage of the turbocompound engine by 5% over the vehicle test engines. Engine improvements could be realized by increasing the available energy of the exhaust gas at the turbine inlet, incorporating gas turbine techniques into improving the turbomachinery efficiencies, and through refined engine system optimization. This paper presents the individual and cumulative performance gains achieved with the advanced turbocompound engine improvements.

  2. Advances in communication systems and electrical engineering

    CERN Document Server

    Huang, Xu

    2008-01-01

    This volume contains contributions from participants in the 2007 International Multiconference of Engineers and Computer Scientists Topics covered include communications theory, communications protocols, network management, wireless networks, telecommunication, electronics, power engineering, control engineering, signal processing, and industrial applications. The book will offer the states of arts of tremendous advances in communication systems and electrical engineering and also serve as an excellent reference work for researchers and graduate students working with/on communication systems a

  3. Recent advances in coronal heating

    CERN Document Server

    De Moortel, Ineke

    2015-01-01

    The solar corona, the tenuous outer atmosphere of the Sun, is orders of magnitude hotter than the solar surface. This 'coronal heating problem' requires the identification of a heat source to balance losses due to thermal conduction, radiation and (in some locations) convection. The review papers in this Theo Murphy meeting issue present an overview of recent observational findings, large- and small-scale numerical modelling of physical processes occurring in the solar atmosphere and other aspects which may affect our understanding of the proposed heating mechanisms. At the same time, they also set out the directions and challenges which must be tackled by future research. In this brief introduction, we summarize some of the issues and themes which reoccur throughout this issue.

  4. Advanced electric residential heat pump

    Science.gov (United States)

    Veyo, S. E.

    The heat pump concept developed uses the vapor compression refrigeration cycle with R22 as the working fluid. In order to achieve the target efficiency an improved reciprocating compressor with modulatable capacity was developed along with higher efficiency air movers, a breadboard microprocessor based control system and higher effectiveness heat exchangers. The relative proportions of the compressor, blower, fan, and heat exchangers are specified through system optimization to minimize annual ownership cost while constrained to provide comfort. The efficiency of this compressor is comparable to the best available while the ratio of minimum to maximum capacity can be selected as a parameter of optimization. The incremental cost of this compressor is estimated to be one third that of the compressor with two speed drive motor.

  5. Hurricanes as Heat Engines: Two Undergraduate Problems

    Science.gov (United States)

    Pyykko, Pekka

    2007-01-01

    Hurricanes can be regarded as Carnot heat engines. One reason that they can be so violent is that thermodynamically, they demonstrate large efficiency, [epsilon] = (T[subscript h] - T[subscript c]) / T[subscript h], which is of the order of 0.3. Evaporation of water vapor from the ocean and its subsequent condensation is the main heat transfer…

  6. Engineering calculations in radiative heat transfer

    CERN Document Server

    Gray, W A; Hopkins, D W

    1974-01-01

    Engineering Calculations in Radiative Heat Transfer is a six-chapter book that first explains the basic principles of thermal radiation and direct radiative transfer. Total exchange of radiation within an enclosure containing an absorbing or non-absorbing medium is then described. Subsequent chapters detail the radiative heat transfer applications and measurement of radiation and temperature.

  7. Research advances in industrial engineering

    CERN Document Server

    2015-01-01

    This book provides discussions and the exchange of information on principles, strategies, models, techniques, methodologies and applications of industrial engineering. It communicates the latest developments and research activity on industrial engineering and is useful for all those interested in the technological challenges in the field.

  8. Advanced Vortex Hybrid Rocket Engine (AVHRE) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop a unique Advanced Vortex Hybrid Rocket Engine (AVHRE) to achieve a safe, highly-reliable, low-cost and uniquely versatile propulsion...

  9. Advanced Vortex Hybrid Rocket Engine (AVHRE) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Orbital Technologies Corporation (ORBITEC) proposes to develop a unique Advanced Vortex Hybrid Rocket Engine (AVHRE) to achieve a highly-reliable, low-cost and...

  10. Externally heated valve engine a new approach to piston engines

    CERN Document Server

    Kazimierski, Zbyszko

    2016-01-01

    This book reports on a novel approach for generating mechanical energy from different, external heat sources using the body of a typical piston engine with valves. By presenting simple yet effective numerical models, the authors show how this new approach, which combines existing internal combustion technology with a lubrication system, is able to offer an economic solution to the problem of mechanical energy generation in piston engines. Their results also show that a stable heat generation process can be guaranteed outside of the engine. The book offers a detailed report on physical and numerical models of 4-stroke and 2-stroke versions of the EHVE together with different models of heat exchange, valves and results of their simulations. It also delivers the test results of an engine prototype run in laboratory conditions. By presenting a novel theoretical framework and providing readers with extensive knowledge of both the advantages and challenges of the method, this book is expected to inspire academic re...

  11. Advanced Surface Engineering of Titanium Alloys

    Institute of Scientific and Technical Information of China (English)

    H. Dong

    2000-01-01

    Despite their outstanding combination of properties, titanium and its alloys are very susceptible to severe adhesive wear in rubbing with most engineering surfaces and can exhibit poorcorrosion resistance in some aggressive environments. Surface engineering research centred at the University of Birmingham has been focused on creating designer surfaces for titanium components via surface engineering.Great progress has been made recently through the development of such advanced surface engineering techniques as thermal oxidation, palladium-treated thermal oxidation, oxygen boost diffusion and duplex systems.Such advances thus provide scope for designing titanium components for a diversified range of engineering application, usually as direct replacements for steel components. By way of example, some of the successful steps towards titanium designer surfaces are demonstrated. To data, the potential of these advanced technologies has been realised first in auto-sport and off-shore industrials.

  12. Advanced materials for aircraft engine applications.

    Science.gov (United States)

    Backman, D G; Williams, J C

    1992-02-28

    A review of advances for aircraft engine structural materials and processes is presented. Improved materials, such as superalloys, and the processes for making turbine disks and blades have had a major impact on the capability of modern gas turbine engines. New structural materials, notably composites and intermetallic materials, are emerging that will eventually further enhance engine performance, reduce engine weight, and thereby enable new aircraft systems. In the future, successful aerospace manufacturers will combine product design and materials excellence with improved manufacturing methods to increase production efficiency, enhance product quality, and decrease the engine development cycle time.

  13. Advanced computational approaches to biomedical engineering

    CERN Document Server

    Saha, Punam K; Basu, Subhadip

    2014-01-01

    There has been rapid growth in biomedical engineering in recent decades, given advancements in medical imaging and physiological modelling and sensing systems, coupled with immense growth in computational and network technology, analytic approaches, visualization and virtual-reality, man-machine interaction and automation. Biomedical engineering involves applying engineering principles to the medical and biological sciences and it comprises several topics including biomedicine, medical imaging, physiological modelling and sensing, instrumentation, real-time systems, automation and control, sig

  14. Boiling heat transfer modern developments and advances

    CERN Document Server

    Lahey, Jr, RT

    2013-01-01

    This volume covers the modern developments in boiling heat transfer and two-phase flow, and is intended to provide industrial, government and academic researchers with state-of-the-art research findings in the area of multiphase flow and heat transfer technology. Special attention is given to technology transfer, indicating how recent significant results may be used for practical applications. The chapters give detailed technical material that will be useful to engineers and scientists who work in the field of multiphase flow and heat transfer. The authors of all chapters are members of the

  15. Performance and efficiency evaluation and heat release study of a direct-injection stratified-charge rotary engine

    Science.gov (United States)

    Nguyen, H. L.; Addy, H. E.; Bond, T. H.; Lee, C. M.; Chun, K. S.

    1987-01-01

    A computer simulation which models engine performance of the Direct Injection Stratified Charge (DISC) rotary engines was used to study the effect of variations in engine design and operating parameters on engine performance and efficiency of an Outboard Marine Corporation (OMC) experimental rotary combustion engine. Engine pressure data were used in a heat release analysis to study the effects of heat transfer, leakage, and crevice flows. Predicted engine data were compared with experimental test data over a range of engine speeds and loads. An examination of methods to improve the performance of the rotary engine using advanced heat engine concepts such as faster combustion, reduced leakage, and turbocharging is also presented.

  16. Ecological optimization for general heat engines

    Science.gov (United States)

    Long, Rui; Liu, Wei

    2015-09-01

    We conducted an analysis of efficiency and its bounds for general heat engines under the maximum ecological criterion. For generality, both nonisothermal heat-exchanging processes and internal dissipation were taken into consideration. When the product of the internal dissipation and the heat capacity ratio is one, the efficiency under the maximum ecological criterion is the same as that of the irreversible Carnot model. However, the efficiencies have different physical meanings and optimization spaces. Furthermore, the efficiency is independent of the time it takes to complete each process and the heat conductance. For other situations, numerical calculations were conducted to investigate the parameters' effects on optimal efficiency. When the dimensionless contact times approach zero, the irreversible Carnot model is recovered. The general upper and lower bounds of optimal efficiency are obtained by applying the asymmetric heat capacity ratio limits when the dimensionless contact times approach infinity. In addition, the efficiency of general endoreversible heat engines was investigated. The efficiency bounds of different real-life heat engines under the maximum ecological criterion are proposed.

  17. Modeling an efficient Brownian heat engine

    Science.gov (United States)

    Asfaw, Mesfin

    2008-09-01

    We discuss the effect of subdividing the ratchet potential on the performance of a tiny Brownian heat engine that is modeled as a Brownian particle hopping in a viscous medium in a sawtooth potential (with or without load) assisted by alternately placed hot and cold heat baths along its path. We show that the velocity, the efficiency and the coefficient of performance of the refrigerator maximize when the sawtooth potential is subdivided into series of smaller connected barrier series. When the engine operates quasistatically, we analytically show that the efficiency of the engine can not approach the Carnot efficiency and, the coefficient of performance of the refrigerator is always less than the Carnot refrigerator due to the irreversible heat flow via the kinetic energy.

  18. Advances in the heat treatment of steels

    Energy Technology Data Exchange (ETDEWEB)

    Morris, J.W. Jr.; Kim, J.I.; Syn, C.K.

    1978-06-01

    A number of important recent advances in the processing of steels have resulted from the sophisticated uses of heat treatment to tailor the microstructure of the steels so that desirable properties are established. These new heat treatments often involve the tempering or annealing of the steel to accompish a partial or complete reversion from martensite to austenite. The influence of these reversion heat treatments on the product microstructure and its properties may be systematically discussed in terms of the heat treating temperature in relation to the phase diagram. From this perspective, four characteristic heat treatments are defined: (1) normal tempering, (2) inter-critical tempering, (3) intercritical annealing, and (4) austenite reversion. The reactions occurring during each of these treatments are described and the nature and properties of typical product microstructures discussed, with specific reference to new commercial or laboratory steels having useful and exceptional properties.

  19. Advances in the heat treatment of steels

    International Nuclear Information System (INIS)

    A number of important recent advances in the processing of steels have resulted from the sophisticated uses of heat treatment to tailor the microstructure of the steels so that desirable properties are established. These new heat treatments often involve the tempering or annealing of the steel to accompish a partial or complete reversion from martensite to austenite. The influence of these reversion heat treatments on the product microstructure and its properties may be systematically discussed in terms of the heat treating temperature in relation to the phase diagram. From this perspective, four characteristic heat treatments are defined: (1) normal tempering, (2) inter-critical tempering, (3) intercritical annealing, and (4) austenite reversion. The reactions occurring during each of these treatments are described and the nature and properties of typical product microstructures discussed, with specific reference to new commercial or laboratory steels having useful and exceptional properties

  20. Advances in high voltage engineering

    CERN Document Server

    Haddad, A

    2005-01-01

    This book addresses the very latest research and development issues in high voltage technology and is intended as a reference source for researchers and students in the field, specifically covering developments throughout the past decade. This unique blend of expert authors and comprehensive subject coverage means that this book is ideally suited as a reference source for engineers and academics in the field for years to come.

  1. Orbit transfer rocket engine technology program. Phase 2: Advanced engine study

    Science.gov (United States)

    Erickson, C.; Martinez, A.; Hines, B.

    1987-01-01

    In Phase 2 of the Advanced Engine Study, the Failure Modes and Effects Analysis (FMEA) maintenance-driven engine design, preliminary maintenance plan, and concept for space operable disconnects generated in Phase 1 were further developed. Based on the results of the vehicle contractors Orbit Transfer Vehicle (OTV) Concept Definition and System Analysis Phase A studies, minor revisions to the engine design were made. Additional refinements in the engine design were identified through further engine concept studies. These included an updated engine balance incorporating experimental heat transfer data from the Enhanced Heat Load Thrust Chamber Study and a Rao optimum nozzle contour. The preliminary maintenance plan of Phase 1 was further developed through additional studies. These included a compilation of critical component lives and life limiters and a review of the Space Shuttle Main Engine (SSME) operations and maintenance manual in order to begin outlining the overall maintenance procedures for the Orbit Transfer Vehicle Engine and identifying technology requirements for streamlining space-based operations. Phase 2 efforts also provided further definition to the advanced fluid coupling devices including the selection and preliminary design of a preferred concept and a preliminary test plan for its further development.

  2. Work measurement in a quantum heat engine

    Science.gov (United States)

    Bariani, Francesco; Zhang, Keye; Dong, Ying; Meystre, Pierre

    2015-05-01

    We consider an optomechanical quantum heat engine operating on an Otto cycle for photon-phonon polaritons, the working substance of the engine. We discuss both the average value and quantum fluctuations of its work output, concentrating in particular on the effects of quantum non-adiabaticity due to the finite duration of the cycle. We also determine the quantum back-action of both absorptive and dispersive continuous measurements of the work, and quantify their impact on the Curzon-Ahlborn engine efficiency at maximum power and its fluctuations. We ackowledge financial support from National Basic Research Program of China, NSF, ARO and the DARPA QuaSAR programs

  3. Modern thermodynamics from heat engines to dissipative structures

    CERN Document Server

    Kondepudi, Dilip

    2014-01-01

    Modern Thermodynamics: From Heat Engines to Dissipative Structures, Second Edition presents a comprehensive introduction to 20th century thermodynamics that can be applied to both equilibrium and non-equilibrium systems, unifying what was traditionally divided into 'thermodynamics' and 'kinetics' into one theory of irreversible processes. This comprehensive text, suitable for introductory as well as advanced courses on thermodynamics, has been widely used by chemists, physicists, engineers and geologists.  Fully revised and expanded, this new edition includes the following updates and featur

  4. Advances in Soil Mechanics and Geotechnical Engineering

    OpenAIRE

    Cui, Yu-Jun; EMERIAULT, Fabrice; Ghabezloo, Siavash; Pereira, Jean-Michel; Tang, Anh Minh

    2013-01-01

    This book presents the proceedings of the 5th iYGEC, International Young Geotechnical Engineers' Conference, held at Marne-la-Vallée, France, from 31 August to 1 September 2013. It is also the second volume in the series Advances in Soil Mechanics and Geotechnical Engineering. The papers included here cover topics such as laboratory and field testing, geology and groundwater, earthworks, soil behavior, constitutive modeling, ground improvement, earthquake, retaining structures, foundations, s...

  5. Quantum heat engines and refrigerators: continuous devices.

    Science.gov (United States)

    Kosloff, Ronnie; Levy, Amikam

    2014-01-01

    Quantum thermodynamics supplies a consistent description of quantum heat engines and refrigerators up to a single few-level system coupled to the environment. Once the environment is split into three (a hot, cold, and work reservoir), a heat engine can operate. The device converts the positive gain into power, with the gain obtained from population inversion between the components of the device. Reversing the operation transforms the device into a quantum refrigerator. The quantum tricycle, a device connected by three external leads to three heat reservoirs, is used as a template for engines and refrigerators. The equation of motion for the heat currents and power can be derived from first principles. Only a global description of the coupling of the device to the reservoirs is consistent with the first and second laws of thermodynamics. Optimization of the devices leads to a balanced set of parameters in which the couplings to the three reservoirs are of the same order and the external driving field is in resonance. When analyzing refrigerators, one needs to devote special attention to a dynamical version of the third law of thermodynamics. Bounds on the rate of cooling when Tc→0 are obtained by optimizing the cooling current. All refrigerators as Tc→0 show universal behavior. The dynamical version of the third law imposes restrictions on the scaling as Tc→0 of the relaxation rate γc and heat capacity cV of the cold bath. PMID:24689798

  6. Orbit transfer rocket engine technology program: Advanced engine study

    Science.gov (United States)

    Erickson, C. M.

    1992-01-01

    In Task D.6 of the Advanced Engine Study, three primary subtasks were accomplished: (1) design of parametric data; (2) engine requirement variation studies; and (3) vehicle study/engine study coordination. Parametric data were generated for vacuum thrusts ranging from 7500 lbf to 50,000 lbf, nozzle expansion ratios from 600 to 1200, and engine mixture ratios from 5:1 to 7:1. Failure Modes and Effects Analysis (FMEA) was used as a departure point for these parametric analyses. These data are intended to assist in definition and trade studies. In the Engine Requirements Variation Studies, the individual effects of increasing the throttling ratio from 10:1 to 20:1 and requiring the engine to operate at a maximum mixture ratio of 12:1 were determined. Off design engine balances were generated at these extreme conditions and individual component operating requirements analyzed in detail. Potential problems were identified and possible solutions generated. In the Vehicle Study/Engine Study coordination subtask, vehicle contractor support was provided as needed, addressing a variety of issues uncovered during vehicle trade studies. This support was primarily provided during Technical Interchange Meetings (TIM) in which Space Exploration Initiative (SEI) studies were addressed.

  7. Three Important Advances in Engineering Strength Theories

    Institute of Scientific and Technical Information of China (English)

    YuMaohong; FanWen; MitustoshiYoshimine

    2003-01-01

    There are there great advances in the research on engineering strength theories in the latter half of the 20th Century. The first advance was the devel-opment of strength theory from the single-shear strength theory including the Tresca yield criterion and Mohr-Coulomb failure criterion to theoctahe-dral-shear strength theory; the second one was that from the octahedral-shear strength theory to the twin-shear strength theory; and the third wasthe theories from the single criteria to the unifiedstrength theory. These three advances are summa-rized in this paper. It is interesting and useful for re-searchers to choose an appropriate failure criterion in studying the strength of materials and struc-tures, for engineers to correctly use it and for stu-dents to understand strength theory.

  8. Heat transfer applications for the practicing engineer

    CERN Document Server

    Theodore, Louis

    2011-01-01

    This book serves as a training tool for individuals in industry and academia involved with heat transfer applications. Although the literature is inundated with texts emphasizing theory and theoretical derivations, the goal of this book is to present the subject of heat transfer from a strictly pragmatic point of view. The book is divided into four Parts: Introduction, Principles, Equipment Design Procedures and Applications, and ABET-related Topics. The first Part provides a series of chapters concerned with introductory topics that are required when solving most engineering problems, inclu

  9. Dissipation, correlation and lags in heat engines

    Science.gov (United States)

    Campisi, Michele; Fazio, Rosario

    2016-08-01

    By modelling heat engines as driven multi-partite system we show that their dissipation can be expressed in terms of the lag (relative entropy) between the perturbed state of each partition and their equilibrium state, and the correlations that build up among the partitions. We show that the non-negativity of the overall dissipation implies Carnot formulation of the second law. We illustrate the rich interplay between correlations and lags with a two-qubit device driven by a quantum gate.

  10. Quantum optomechanical piston engines powered by heat

    OpenAIRE

    Mari, Andrea; Farace, Alessandro; Giovannetti, Vittorio

    2014-01-01

    We study two different models of optomechanical systems where a temperature gradient between two radiation baths is exploited for inducing self-sustained coherent oscillations of a mechanical resonator. Viewed from a thermodynamic perspective, such systems represent quantum instances of self-contained thermal machines converting heat into a periodic mechanical motion and thus they can be interpreted as nano-scale analogues of macroscopic piston engines. Our models are potentially suitable for...

  11. Experimental Study of the Gas Engine Driven Heat Pump with Engine Heat Recovery

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2015-01-01

    Full Text Available Gas engine driven heat pumps (GEHPs represent one of practical solutions to effectively utilize fossil fuel energy and reduce environmental pollution. In this paper, the performance characteristics of the GEHP were investigated experimentally with engine heat recovery. A GEHP test facility was set up for this purpose. The effects of several important factors including engine speed, ambient temperature, condenser water flow rate, and condenser water inlet temperature on the system performance were studied over a wide range of operating conditions. The results showed that the engine waste heat accounted for about 40–50% of the total heat capacity over the studied operating conditions. It also showed that engine speed and ambient temperature had significant effects on the GEHP performance. The coefficient of performance (COP and the primary energy ratio (PER decreased by 14% and 12%, respectively, as engine speed increased from 1400 rpm to 2000 rpm. On the other hand, the COP and PER of the system increased by 22% and 16%, respectively, with the ambient temperature increasing from 3 to 12°C. Furthermore, it was demonstrated that the condenser water flow rate and condenser water inlet temperature had little influence on the COP of the heat pump and the PER of the GEHP system.

  12. Advanced Engineering Environments: Implications for Aerospace Manufacturing

    Science.gov (United States)

    Thomas, D.

    2001-01-01

    There are significant challenges facing today's aerospace industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker all face the developer of aerospace systems. New information technologies offer promising opportunities to develop advanced engineering environments (AEEs) to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. These advances will enable modeling and simulation of manufacturing methods, which will in turn allow manufacturing considerations to be included much earlier in the system development cycle. Significant cost savings, increased quality, and decreased manufacturing cycle time are expected to result. This paper will give an overview of the NASA's Intelligent Synthesis Environment, the agency initiative to develop an AEE, with a focus on the anticipated benefits in aerospace manufacturing.

  13. NATO Advanced Research Workshop on Molecular Engineering for Advanced Materials

    CERN Document Server

    Schaumburg, Kjeld

    1995-01-01

    An important aspect of molecular engineering is the `property directed' synthesis of large molecules and molecular assemblies. Synthetic expertise has advanced to a state which allows the assembly of supramolecules containing thousands of atoms using a `construction kit' of molecular building blocks. Expansion in the field is driven by the appearance of new building blocks and by an improved understanding of the rules for joining them in the design of nanometer-sized devices. Another aspect is the transition from supramolecules to materials. At present no single molecule (however large) has been demonstrated to function as a device, but this appears to be only a matter of time. In all of this research, which has a strongly multidisciplinary character, both existing and yet to be developed analytical techniques are and will remain indispensable. All this and more is discussed in Molecular Engineering for Advanced Materials, which provides a masterly and up to date summary of one of the most challenging researc...

  14. Development of Advanced Small Hydrogen Engines

    Energy Technology Data Exchange (ETDEWEB)

    Sapru, Krishna; Tan, Zhaosheng; Chao, Ben

    2010-09-30

    The main objective of the project is to develop advanced, low cost conversions of small (< 25 hp) gasoline internal combustion engines (ICEs) to run on hydrogen fuel while maintaining the same performance and durability. This final technical report summarizes the results of i) the details of the conversion of several small gasoline ICEs to run on hydrogen, ii) the durability test of a converted hydrogen engine and iii) the demonstration of a prototype bundled canister solid hydrogen storage system. Peak power of the hydrogen engine achieves 60% of the power output of the gasoline counterpart. The efforts to boost the engine power with various options including installing the over-sized turbocharger, retrofit of custom-made pistons with high compression ratio, an advanced ignition system, and various types of fuel injection systems are not realized. A converted Honda GC160 engine with ACS system to run with hydrogen fuel is successful. Total accumulative runtime is 785 hours. A prototype bundled canister solid hydrogen storage system having nominal capacity of 1.2 kg is designed, constructed and demonstrated. It is capable of supporting a wide range of output load of a hydrogen generator.

  15. The power of a critical heat engine

    Science.gov (United States)

    Campisi, Michele; Fazio, Rosario

    2016-06-01

    Since its inception about two centuries ago thermodynamics has sparkled continuous interest and fundamental questions. According to the second law no heat engine can have an efficiency larger than Carnot's efficiency. The latter can be achieved by the Carnot engine, which however ideally operates in infinite time, hence delivers null power. A currently open question is whether the Carnot efficiency can be achieved at finite power. Most of the previous works addressed this question within the Onsager matrix formalism of linear response theory. Here we pursue a different route based on finite-size-scaling theory. We focus on quantum Otto engines and show that when the working substance is at the verge of a second order phase transition diverging energy fluctuations can enable approaching the Carnot point without sacrificing power. The rate of such approach is dictated by the critical indices, thus showing the universal character of our analysis.

  16. The power of a critical heat engine.

    Science.gov (United States)

    Campisi, Michele; Fazio, Rosario

    2016-06-20

    Since its inception about two centuries ago thermodynamics has sparkled continuous interest and fundamental questions. According to the second law no heat engine can have an efficiency larger than Carnot's efficiency. The latter can be achieved by the Carnot engine, which however ideally operates in infinite time, hence delivers null power. A currently open question is whether the Carnot efficiency can be achieved at finite power. Most of the previous works addressed this question within the Onsager matrix formalism of linear response theory. Here we pursue a different route based on finite-size-scaling theory. We focus on quantum Otto engines and show that when the working substance is at the verge of a second order phase transition diverging energy fluctuations can enable approaching the Carnot point without sacrificing power. The rate of such approach is dictated by the critical indices, thus showing the universal character of our analysis.

  17. The power of a critical heat engine

    Science.gov (United States)

    Campisi, Michele; Fazio, Rosario

    2016-01-01

    Since its inception about two centuries ago thermodynamics has sparkled continuous interest and fundamental questions. According to the second law no heat engine can have an efficiency larger than Carnot's efficiency. The latter can be achieved by the Carnot engine, which however ideally operates in infinite time, hence delivers null power. A currently open question is whether the Carnot efficiency can be achieved at finite power. Most of the previous works addressed this question within the Onsager matrix formalism of linear response theory. Here we pursue a different route based on finite-size-scaling theory. We focus on quantum Otto engines and show that when the working substance is at the verge of a second order phase transition diverging energy fluctuations can enable approaching the Carnot point without sacrificing power. The rate of such approach is dictated by the critical indices, thus showing the universal character of our analysis. PMID:27320127

  18. Work Criteria Function of Irreversible Heat Engines

    Directory of Open Access Journals (Sweden)

    Mahmoud Huleihil

    2014-01-01

    Full Text Available The irreversible heat engine is reconsidered with a general heat transfer law. Three criteria known in the literature—power, power density, and efficient power—are redefined in terms of the work criteria function (WCF, a concept introduced in this study. The formulation enabled the suggestion and analysis of a unique criterion—the efficient power density (which accounts for the efficiency and power density. Practically speaking, the efficient power and the efficient power density could be defined on any order based on the WCF. The applicability of the WCF is illustrated for the Newtonian heat transfer law (n=1 and for the radiative law (n=4. The importance of WCF is twofold: it gives an explicit design and educational tool to analyze and to display graphically the different criteria side by side and thus helps in design process. Finally, the criteria were compared and some conclusions were drawn.

  19. Orbital transfer rocket engine technology: Advanced engine study

    Science.gov (United States)

    Hayden, Warren R.

    1992-01-01

    An advanced LOX/LH2 engine study for the use of NASA and vehicle prime contractors in developing concepts for manned missions to the Moon, Mars, and Phobos is documented. Parametric design data was obtained at five engine thrusts from 7.5K lbf to 50K lbf. Also, a separate task evaluated engine throttling over a 20:1 range and operation at a mixture ratio of 12 plus or minus 1 versus the 6 plus or minus 1 nominal. Cost data was also generated for DDT&E, first unit production, and factors in other life cycle costs. The major limitation of the study was lack of contact with vehicle prime contractors to resolve the issues in vehicle/engine interfaces. The baseline Aerojet dual propellant expander cycle was shown capable of meeting all performance requirements with an expected long operational life due to the high thermal margins. The basic engine design readily accommodated the 20:1 throttling requirement and operation up to a mixture ratio of 10 without change. By using platinum for baffled injector construction the increased thermal margin allowed operation up to mixture ratio 13. An initial engine modeling with an Aerojet transient simulation code (named MLETS) indicates stable engine operation with the baseline control system. A throttle ratio of 4 to 5 seconds from 10 percent to 100 percent thrust is also predicted. Performance predictions are 483.1 sec at 7.5K lbf, 487.3 sec at 20K lbf, and 485.2 sec at 50K lbf with a mixture ratio of 6 and an area ratio of 1200. Engine envelopes varied from 120 in. length/53 in. exit diameter at 7.5K lbf to 305 in. length/136 in. exit diameter at 50 K lbf. Packaging will be an important consideration. Continued work is recommended to include more vehicle prime contractor/engine contractor joint assessment of the interface issues.

  20. Materials for advanced power engineering 2010. Proceedings

    International Nuclear Information System (INIS)

    The 9th Liege Conference on ''Materials for Advanced Power Engineering'' presents the results of the materials related COST Actions 536 ''Alloy Development for Critical Components of Environmentally Friendly Power Plants'' and 538 ''High Temperature Plant Lifetime Extension''. In addition, the broad field of current materials research perspectives for high efficiency, low- and zero- emission power plants and new energy technologies for the next decades are reported. The Conference proceedings are structured as follows: 1. Materials for advanced steam power plants; 2. Gas turbine materials; 3. Materials for nuclear fission and fusion; 4. Solid oxide fuel cells; 5. Corrosion, thermomechanical fatigue and modelling; 6. Zero emission power plants.

  1. Genome engineering in cattle: recent technological advancements.

    Science.gov (United States)

    Wang, Zhongde

    2015-02-01

    Great strides in technological advancements have been made in the past decade in cattle genome engineering. First, the success of cloning cattle by somatic cell nuclear transfer (SCNT) or chromatin transfer (CT) is a significant advancement that has made obsolete the need for using embryonic stem (ES) cells to conduct cell-mediated genome engineering, whereby site-specific genetic modifications can be conducted in bovine somatic cells via DNA homologous recombination (HR) and whereby genetically engineered cattle can subsequently be produced by animal cloning from the genetically modified cells. With this approach, a chosen bovine genomic locus can be precisely modified in somatic cells, such as to knock out (KO) or knock in (KI) a gene via HR, a gene-targeting strategy that had almost exclusively been used in mouse ES cells. Furthermore, by the creative application of embryonic cloning to rejuvenate somatic cells, cattle genome can be sequentially modified in the same line of somatic cells and complex genetic modifications have been achieved in cattle. Very recently, the development of designer nucleases-such as zinc finger nucleases (ZFNs) and transcription activator-like effector nuclease (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-has enabled highly efficient and more facile genome engineering in cattle. Most notably, by employing such designer nucleases, genomes can be engineered at single-nucleotide precision; this process is now often referred to as genome or gene editing. The above achievements are a drastic departure from the traditional methods of creating genetically modified cattle, where foreign DNAs are randomly integrated into the animal genome, most often along with the integrations of bacterial or viral DNAs. Here, I review the most recent technological developments in cattle genome engineering by highlighting some of the major achievements in creating genetically engineered

  2. Solar thermoelectricity via advanced latent heat storage

    Science.gov (United States)

    Olsen, M. L.; Rea, J.; Glatzmaier, G. C.; Hardin, C.; Oshman, C.; Vaughn, J.; Roark, T.; Raade, J. W.; Bradshaw, R. W.; Sharp, J.; Avery, A. D.; Bobela, D.; Bonner, R.; Weigand, R.; Campo, D.; Parilla, P. A.; Siegel, N. P.; Toberer, E. S.; Ginley, D. S.

    2016-05-01

    We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a "thermal valve," which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.

  3. Solar Thermoelectricity via Advanced Latent Heat Storage

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Michele L.; Rea, J.; Glatzmaier, Greg C.; Hardin, C.; Oshman, C.; Vaughn, J.; Roark, T.; Raade, J. W.; Bradshaw, R. W.; Sharp, J.; Avery, Azure D.; Bobela, David; Bonner, R.; Weigand, R.; Campo, D.; Parilla, Philip A.; Siegel, N. P.; Toberer, Eric S.; Ginley, David S.

    2016-05-31

    We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a 'thermal valve,' which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.

  4. Advanced Engineering Strategies for Periodontal Complex Regeneration

    Directory of Open Access Journals (Sweden)

    Chan Ho Park

    2016-01-01

    Full Text Available The regeneration and integration of multiple tissue types is critical for efforts to restore the function of musculoskeletal complex. In particular, the neogenesis of periodontal constructs for systematic tooth-supporting functions is a current challenge due to micron-scaled tissue compartmentalization, oblique/perpendicular orientations of fibrous connective tissues to the tooth root surface and the orchestration of multiple regenerated tissues. Although there have been various biological and biochemical achievements, periodontal tissue regeneration remains limited and unpredictable. The purpose of this paper is to discuss current advanced engineering approaches for periodontal complex formations; computer-designed, customized scaffolding architectures; cell sheet technology-based multi-phasic approaches; and patient-specific constructs using bioresorbable polymeric material and 3-D printing technology for clinical application. The review covers various advanced technologies for periodontal complex regeneration and state-of-the-art therapeutic avenues in periodontal tissue engineering.

  5. Materials for Advanced Power Engineering 2014

    OpenAIRE

    2014-01-01

    The 10th Liege Conference on Materials for Advanced Power Engineering presents theachievements of international materials related research for high eciency, low-emissionpower plants. Furthermore the new demands of the transition of electricity supply towardsmore and more regenerative power sources are reported.Resource preservation and maximization of economic success by improved plant e-ciency were the driving forces in past materials and power plant technology development.Fossil fuels will ...

  6. Risk Assessment in Advanced Engineering Design

    Directory of Open Access Journals (Sweden)

    M. Holický

    2003-01-01

    Full Text Available Traditional methods for designing of civil engineering structures and other engineering systems are frequently based on the concept of target probability of failure. However, this fundamental quantity is usually specified on the basis of comparative studies and past experience only. Moreover, probabilistic design methods suffer from several deficiencies, including lack of consideration for accidental and other hazard situations and their consequences. Both of these extreme conditions are more and more frequently becoming causes of serious failures and other adverse events. Available experience clearly indicates that probabilistic design procedures may be efficiently supplemented by a risk analysis and assessment, which can take into account various consequences of unfavourable events. It is therefore anticipated that in addition to traditional probabilistic concepts the methods of advanced engineering design will also commonly include criteria for acceptable risks.

  7. On-Engine Turbocharger Performance Considering Heat Transfer

    OpenAIRE

    Aghaali, Habib

    2012-01-01

    Heat transfer plays an important role in affecting an on-engine turbocharger performance. However, it is normally not taken into account for turbocharged engine simulations. Generally, an engine simulation based on one-dimensional gas dynamics uses turbocharger performance maps which are measured without quantifying and qualifying the heat transfer, regardless of the fact that they are measured on the hot-flow or cold-flow gas-stand. Since heat transfer situations vary for on-engine turbochar...

  8. Thermodynamic modeling of micro heat engines for power generation

    OpenAIRE

    Khu, Khu; Jiang, Liudi; Markvart, Tom

    2010-01-01

    The need for compact, high power-density power sources has led to significant research interest in micro heat engines. However, there is a lack of suitable thermodynamic models which can be used to evaluate the power performance of micro heat engines by taking into consideration the effect of leakage and finite heat input. This work is the first to develop such a thermodynamic model to predict the upper limit of performance of micro heat engines. The model allows investigation of the effects ...

  9. Recent Advances in Genetic Engineering - A Review

    Directory of Open Access Journals (Sweden)

    Sobiah Rauf

    2012-01-01

    Full Text Available Humans have been doing genetic engineering, a technology which is transforming our world, for thousands of years on a wide range of plants, animals and micro organism and have applications in the field of medicine, research, industry and agriculture. The rapid developments in the field of genetic engineering have given a new impetus to biotechnology. This introduces the possibility of tailoring organisms in order to optimize the production of established or novel metabolites of commercial importance and of transferring genetic material from one organism to another. In order to achieve potential benefits of genetic engineering the only need is to develop perfect tools and techniques. Once it has been perfected then all of the problems associated with food production can be solved, the world environment can be restored, and human health and lifestyle will improve beyond imagination. No doubt that there are almost no limits to what can be achieved through responsible genetic engineering. Classical field of genetic engineering and some of its advancements are discussed in this review.

  10. Thermal Characterization of Nanostructures and Advanced Engineered Materials

    Science.gov (United States)

    Goyal, Vivek Kumar

    to heat-sinking units. This dissertation presents results of the experimental investigation and theoretical interpretation of thermal transport in the advanced engineered materials, which include thin films for thermal management of nanoscale devices, nanostructured superlattices as promising candidates for high-efficiency thermoelectric materials, and improved TIMs with graphene and metal particles as fillers providing enhanced thermal conductivity. The advanced engineered materials studied include chemical vapor deposition (CVD) grown ultrananocrystalline diamond (UNCD) and microcrystalline diamond (MCD) films on Si substrates, directly integrated nanocrystalline diamond (NCD) films on GaN, free-standing polycrystalline graphene (PCG) films, graphene oxide (GOx) films, and "pseudo-superlattices" of the mechanically exfoliated Bi2Te3 topological insulator films, and thermal interface materials (TIMs) with graphene fillers.

  11. Evaluation, engineering and development of advanced cyclone processes

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    Evaluation, Engineering and Development of Advanced Cyclone Processes'' is a research and development project for the reduction of pyritic sulfur in coal. Project goals are to remove 80 to 90% of the ash and pyritic sulfur while retaining 80 to 90% of the parent coal's heating value. A number of media and media separator options are to be evaluated and tested, culminating with the implementation of the preferred combination in a 1,000 lb/hr bench-scale process optimization circuit.

  12. Quantum optomechanical piston engines powered by heat

    Science.gov (United States)

    Mari, A.; Farace, A.; Giovannetti, V.

    2015-09-01

    We study two different models of optomechanical systems where a temperature gradient between two radiation baths is exploited for inducing self-sustained coherent oscillations of a mechanical resonator. From a thermodynamic perspective, such systems represent quantum instances of self-contained thermal machines converting heat into a periodic mechanical motion and thus they can be interpreted as nano-scale analogues of macroscopic piston engines. Our models are potentially suitable for testing fundamental aspects of quantum thermodynamics in the laboratory and for applications in energy efficient nanotechnology.

  13. Surface Engineering for Phase Change Heat Transfer: A Review

    OpenAIRE

    Attinger, Daniel; Frankiewicz, Christophe; Betz, Amy R.; Schutzius, Thomas M.; Ganguly, Ranjan; Das, Arindam; Kim, C. -J.; Megaridis, Constantine M.

    2014-01-01

    Among numerous challenges to meet the rising global energy demand in a sustainable manner, improving phase change heat transfer has been at the forefront of engineering research for decades. The high heat transfer rates associated with phase change heat transfer are essential to energy and industry applications; but phase change is also inherently associated with poor thermodynamic efficiencies at low heat flux, and violent instabilities at high heat flux. Engineers have tried since the 1930'...

  14. Materials for advanced power engineering 2010. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte-Beckers, Jacqueline; Contrepois, Quentin; Beck, Tilmann; Kuhn, Bernd (eds.)

    2010-07-01

    The 9th Liege Conference on ''Materials for Advanced Power Engineering'' presents the results of the materials related COST Actions 536 ''Alloy Development for Critical Components of Environmentally Friendly Power Plants'' and 538 ''High Temperature Plant Lifetime Extension''. In addition, the broad field of current materials research perspectives for high efficiency, low- and zero- emission power plants and new energy technologies for the next decades are reported. The Conference proceedings are structured as follows: 1. Materials for advanced steam power plants; 2. Gas turbine materials; 3. Materials for nuclear fission and fusion; 4. Solid oxide fuel cells; 5. Corrosion, thermomechanical fatigue and modelling; 6. Zero emission power plants.

  15. Distilling complexity to advance cardiac tissue engineering

    Science.gov (United States)

    Ogle, Brenda M.; Bursac, Nenad; Domian, Ibrahim; Huang, Ngan F; Menasché, Philippe; Murry, Charles; Pruitt, Beth; Radisic, Milica; Wu, Joseph C; Wu, Sean M; Zhang, Jianyi; Zimmermann, Wolfram-Hubertus; Vunjak-Novakovic, Gordana

    2016-01-01

    The promise of cardiac tissue engineering is in the ability to recapitulate in vitro the functional aspects of healthy heart and disease pathology as well as to design replacement muscle for clinical therapy. Parts of this promise have been realized; others have not. In a meeting of scientists in this field, five central challenges or “big questions” were articulated that, if addressed, could substantially advance the current state-of-the-art in modeling heart disease and realizing heart repair. PMID:27280684

  16. Exploring heating performance of gas engine heat pump with heat recovery

    Institute of Scientific and Technical Information of China (English)

    董付江; 刘凤国; 李先庭; 尤学一; 赵冬芳

    2016-01-01

    In order to evaluate the heating performance of gas engine heat pump (GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed (1400−2600 r/min), ambient air temperature (2.4−17.8 °C) and condenser water inlet temperature (30−50 °C). The results show that as engine speed increases from 1400 r/min to 2600 r/min, the total heating capacity and energy consumption increase by about 30% and 89%, respectively; while the heat pump coefficient of performance (COP) and system primary energy ratio (PER) decrease by 44% and 31%, respectively. With the increase of ambient air temperature from 2.4 °C to 17.8 °C, the heat pump COP and system PER increase by 32% and 19%, respectively. Moreover, the heat pump COP and system PER decrease by 27% and 15%, respectively, when the condenser water inlet temperature changes from 30 °C to 50 °C. So, it is obvious that the effect of engine speed on the performance is more significant than the effects of ambient air temperature and condenser water inlet temperature.

  17. Continuous fiber ceramic matrix composites for heat engine components

    Science.gov (United States)

    Tripp, David E.

    1988-01-01

    High strength at elevated temperatures, low density, resistance to wear, and abundance of nonstrategic raw materials make structural ceramics attractive for advanced heat engine applications. Unfortunately, ceramics have a low fracture toughness and fail catastrophically because of overload, impact, and contact stresses. Ceramic matrix composites provide the means to achieve improved fracture toughness while retaining desirable characteristics, such as high strength and low density. Materials scientists and engineers are trying to develop the ideal fibers and matrices to achieve the optimum ceramic matrix composite properties. A need exists for the development of failure models for the design of ceramic matrix composite heat engine components. Phenomenological failure models are currently the most frequently used in industry, but they are deterministic and do not adequately describe ceramic matrix composite behavior. Semi-empirical models were proposed, which relate the failure of notched composite laminates to the stress a characteristic distance away from the notch. Shear lag models describe composite failure modes at the micromechanics level. The enhanced matrix cracking stress occurs at the same applied stress level predicted by the two models of steady state cracking. Finally, statistical models take into consideration the distribution in composite failure strength. The intent is to develop these models into computer algorithms for the failure analysis of ceramic matrix composites under monotonically increasing loads. The algorithms will be included in a postprocessor to general purpose finite element programs.

  18. Reprint of : Quantum point contacts as heat engines

    Science.gov (United States)

    Pilgram, Sebastian; Sánchez, David; López, Rosa

    2016-08-01

    The efficiency of macroscopic heat engines is restricted by the second law of thermodynamics. They can reach at most the efficiency of a Carnot engine. In contrast, heat currents in mesoscopic heat engines show fluctuations. Thus, there is a small probability that a mesoscopic heat engine exceeds Carnot's maximum value during a short measurement time. We illustrate this effect using a quantum point contact as a heat engine. When a temperature difference is applied to a quantum point contact, the system may be utilized as a source of electrical power under steady state conditions. We first discuss the optimal working point of such a heat engine that maximizes the generated electrical power and subsequently calculate the statistics for deviations of the efficiency from its most likely value. We find that deviations surpassing the Carnot limit are possible, but unlikely.

  19. Ecological performance of a generalized irreversible Carnot heat engine with complex heat transfer law

    Directory of Open Access Journals (Sweden)

    Jun Li, Lingen Chen, Fengrui Sun

    2011-01-01

    Full Text Available The optimal ecological performance of a generalized irreversible Carnot heat engine with the losses of heat-resistance, heat leakage and internal irreversibility, in which the transfer between the working fluid and the heat reservoirs obeys a complex heat transfer law, including generalized convective heat transfer law and generalized radiative heat transfer law is derived by taking an ecological optimization criterion as the objective, which consists of maximizing a function representing the best compromise between the power and entropy production rate of the heat engine. The effects of heat transfer laws and various loss terms are analyzed. The obtained results include those obtained in many literatures.

  20. Advanced solidification processing of an industrial gas turbine engine component

    Science.gov (United States)

    Clemens, Mei Ling; Price, Allen; Bellows, Richard S.

    2003-03-01

    This paper will describe the efforts of the Advanced Turbine Airfoil Manufacturing Technology Program sponsored by the U.S. Department of Energy through the Oak Ridge National Laboratory and Howmet Research Corporation. The purpose of the program is to develop single-crystal and directionally solidified casting technologies to benefit Advanced Turbine Systems (ATS) industrial and utility gas turbine engines. The focus is on defining and implementing advanced Vacuum Induction Melting (VIM) furnace enhancements that provide precise control of mold temperatures during solidification. Emphasis was placed on increasing the total magnitude of thermal gradients while minimizing the difference in maximum and minimum gradients produced during the solidification process. Advanced VIM casting techniques were applied to Solar Turbines Incorporated’s Titan 130 First Stage High Pressure Turbine Blade under the ATS program. A comparison of the advanced VIM casting process to the conventional Bridgeman casting process will be presented as it pertains to the thermal gradients achieved during solidification, microstructure, elemental partitioning characterization, and solution heat treat response.

  1. Microscale and nanoscale heat transfer fundamentals and engineering applications

    CERN Document Server

    Sobhan, CB

    2008-01-01

    Preface Introduction to Microscale Heat Transfer Microscale Heat Transfer: A Recent Avenue in Energy Transport State of the Art: Some Introductory Remarks Overview of Microscale Transport Phenomena Discussions on Size-Effect Behavior Fundamental Approach for Microscale Heat Transfer Introduction to Engineering Applications of Microscale Heat Transfer Microscale Heat Conduction Review of Conduction Heat Transfer Conduction at the Microscale Space and Timescales Fundamental Approach Thermal Conductivity Boltzmann Equation and Phonon Transport Conduction in Thin Films

  2. [Advanced online search techniques and dedicated search engines for physicians].

    Science.gov (United States)

    Nahum, Yoav

    2008-02-01

    In recent years search engines have become an essential tool in the work of physicians. This article will review advanced search techniques from the world of information specialists, as well as some advanced search engine operators that may help physicians improve their online search capabilities, and maximize the yield of their searches. This article also reviews popular dedicated scientific and biomedical literature search engines.

  3. Surrogate Model Development for Fuels for Advanced Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Anand, Krishnasamy [University of Wisconsin, Madison; Ra, youngchul [University of Wisconsin, Madison; Reitz, Rolf [University of Wisconsin; Bunting, Bruce G [ORNL

    2011-01-01

    The fuels used in internal-combustion engines are complex mixtures of a multitude of different types of hydrocarbon species. Attempting numerical simulations of combustion of real fuels with all of the hydrocarbon species included is highly unrealistic. Thus, a surrogate model approach is generally adopted, which involves choosing a few representative hydrocarbon species whose overall behavior mimics the characteristics of the target fuel. The present study proposes surrogate models for the nine fuels for advanced combustion engines (FACE) that have been developed for studying low-emission, high-efficiency advanced diesel engine concepts. The surrogate compositions for the fuels are arrived at by simulating their distillation profiles to within a maximum absolute error of 4% using a discrete multi-component (DMC) fuel model that has been incorporated in the multi-dimensional computational fluid dynamics (CFD) code, KIVA-ERC-CHEMKIN. The simulated surrogate compositions cover the range and measured concentrations of the various hydrocarbon classes present in the fuels. The fidelity of the surrogate fuel models is judged on the basis of matching their specific gravity, lower heating value, hydrogen/carbon (H/C) ratio, cetane number, and cetane index with the measured data for all nine FACE fuels.

  4. Ecolosical optimization of an irreversible harmonic oscillators Carnot heat engine

    Institute of Scientific and Technical Information of China (English)

    LIU XiaoWei; CHEN LinGen; WU Feng; SUN FengRui

    2009-01-01

    A model of an irreversible quantum Carnot heat engine with heat resistance, internal irreversibility and heat leakage and many non-interacting harmonic oscillators is established in this paper. Based on the quantum master equation and semi-group approach, equations of some important performance parameters, such as power output, efficiency, exergy loss rate and ecological function for the irreversible quantum Carnot heat engine are derived. The optimal ecological performance of the heat engine in the classical limit is analyzed with numerical examples. Effects of internal irreversibility and heat leakage on the ecological performance are discussed. A performance comparison of the quantum heat engine under maximum ecological function and maximum power conditions is also performed.

  5. Ecological optimization of an irreversible harmonic oscillators Carnot heat engine

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A model of an irreversible quantum Carnot heat engine with heat resistance,internal irreversibility and heat leakage and many non-interacting harmonic oscillators is established in this paper. Based on the quantum master equation and semi-group approach,equations of some important performance parameters,such as power output,efficiency,exergy loss rate and ecological function for the irreversible quantum Carnot heat engine are derived. The optimal ecological performance of the heat engine in the classical limit is analyzed with numerical examples. Effects of internal irreversibility and heat leakage on the ecological performance are discussed. A performance comparison of the quantum heat engine under maximum ecological function and maximum power conditions is also performed.

  6. Heat engine development for solar thermal power systems

    Science.gov (United States)

    Pham, H. Q.; Jaffe, L. D.

    1981-01-01

    The parabolic dish solar collector systems for converting sunlight to electrical power through a heat engine will, require a small heat engine of high performance long lifetime to be competitive with conventional power systems. The most promising engine candidates are Stirling, high temperature Brayton, and combined cycle. Engines available in the current market today do not meet these requirements. The development of Stirling and high temperature Brayton for automotive applications was studied which utilizes much of the technology developed in this automotive program for solar power engines. The technical status of the engine candidates is reviewed and the components that may additional development to meet solar thermal system requirements are identified.

  7. Using Simulated Debates to Teach History of Engineering Advances

    Science.gov (United States)

    Reynolds, Terry S.

    1976-01-01

    Described is a technique for utilizing debates of past engineering controversies in the classroom as a means of teaching the history of engineering advances. Included is a bibliography for three debate topics relating to important controversies. (SL)

  8. Advances in Industrial Engineering Applications and Pratice

    DEFF Research Database (Denmark)

    Sørensen, Torben

    1997-01-01

    This paper address how neutral product model interfaces can be developed to provide intelligent and flexible means for information management in manufacturing of discrete mechanical products. The use of advanced computer based systems, such as CAD, CAE, CNC, and robotics, offers a potential...... for significant cost-savings and quality improvements in manufacturing of discrete mechanical products. However, these systems are introduced into production as 'islands of information', and to benefit from the said potential, the systems must be integrated into an integrated manufacturing unit. Such units...... are known as Computer Integrated Manufacturing and Engineering (CIME) systems. The basic concept in CIME is to share and reuse information between the different computer based subsystems. Consequently, for the integration purposes, the CIME systems are highly dependent on reliable product model interfaces...

  9. Survey of manufacturers of high-performance heat engines adaptable to solar applications

    Science.gov (United States)

    Stine, W. B.

    1984-01-01

    The results of an industry survey made during the summer of 1983 are summarized. The survey was initiated in order to develop an information base on advanced engines that could be used in the solar thermal dish-electric program. Questionnaires inviting responses were sent to 39 companies known to manufacture or integrate externally heated engines. Follow-up telephone communication ensured uniformity of response. It appears from the survey that the technology exists to produce external-heat-addition engines of appropriate size with thermal efficiencies of over 40%. Problem areas are materials and sealing.

  10. SAPLE: Sandia Advanced Personnel Locator Engine.

    Energy Technology Data Exchange (ETDEWEB)

    Procopio, Michael J.

    2010-04-01

    We present the Sandia Advanced Personnel Locator Engine (SAPLE) web application, a directory search application for use by Sandia National Laboratories personnel. SAPLE's purpose is to return Sandia personnel 'results' as a function of user search queries, with its mission to make it easier and faster to find people at Sandia. To accomplish this, SAPLE breaks from more traditional directory application approaches by aiming to return the correct set of results while placing minimal constraints on the user's query. Two key features form the core of SAPLE: advanced search query interpretation and inexact string matching. SAPLE's query interpretation permits the user to perform compound queries when typing into a single search field; where able, SAPLE infers the type of field that the user intends to search on based on the value of the search term. SAPLE's inexact string matching feature yields a high-quality ranking of personnel search results even when there are no exact matches to the user's query. This paper explores these two key features, describing in detail the architecture and operation of SAPLE. Finally, an extensive analysis on logged search query data taken from an 11-week sample period is presented.

  11. Heat Flow and Efficiency in a Microscopic Engine

    CERN Document Server

    Ai, B; Xie, H; Liu, L; Ai, Baoquan; Wang, Liqiu; Xie, Huizhang; Liu, Lianggang

    2005-01-01

    We study the energestics of a thermal motor driven by temperature differences, which consists of Brownian particles moving in a sawtooth potential with an external load where the viscous medium is alternately in contact with hot and cold heat reservoir. The motor can work as a heat engine or a refrigerator under different conditions. The heat flow via both potential and kinetic energy are considered. The former is reversible when the engine works quasistatically and the latter is always irreversible. The efficiency of the heat engine (Coefficient Of Performance (COP) of a refrigerator) can never approach Carnot efficiency (COP).

  12. Heat flow and efficiency in a microscopic engine

    Science.gov (United States)

    Ai, B.-Q.; Xie, H.-Z.; Wen, D.-H.; Liu, X.-M.; Liu, L.-G.

    2005-11-01

    We study the energetics of a thermal motor driven by temperature differences, which consists of a Brownian particle moving in a sawtooth potential with an external load where the viscous medium is periodically in contact with hot and cold heat reservoir along space coordinate. The motor can work as a heat engine or a refrigerator under different conditions. The heat flow via both potential and kinetic energy is considered. The former is reversible when the engine works quasistatically and the latter is always irreversible. The efficiency of the heat engine can never approach Carnot efficiency.

  13. Polymers Advance Heat Management Materials for Vehicles

    Science.gov (United States)

    2013-01-01

    For 6 years prior to the retirement of the Space Shuttle Program, the shuttles carried an onboard repair kit with a tool for emergency use: two tubes of NOAX, or "good goo," as some people called it. NOAX flew on all 22 flights following the Columbia accident, and was designed to repair damage that occurred on the exterior of the shuttle. Bill McMahon, a structural materials engineer at Marshall Space Flight Center says NASA needed a solution for the widest range of possible damage to the shuttle s exterior thermal protection system. "NASA looked at several options in early 2004 and decided on a sealant. Ultimately, NOAX performed the best and was selected," he says. To prove NOAX would work effectively required hundreds of samples manufactured at Marshall and Johnson, and a concerted effort from various NASA field centers. Johnson Space Center provided programmatic leadership, testing, tools, and crew training; Glenn Research Center provided materials analysis; Langley Research Center provided test support and led an effort to perform large patch repairs; Ames Research Center provided additional testing; and Marshall provided further testing and the site of NOAX manufacturing. Although the sealant never had to be used in an emergency situation, it was tested by astronauts on samples of reinforced carbon-carbon (RCC) during two shuttle missions. (RCC is the thermal material on areas of the shuttle that experience the most heat, such as the nose cone and wing leading edges.) The material handled well on orbit, and tests showed the NOAX patch held up well on RCC.

  14. Evaluation of heat engine for hybrid vehicle application

    Science.gov (United States)

    Schneider, H. W.

    1984-01-01

    The status of ongoing heat-engine developments, including spark-ignition, compression-ignition, internal-combustion, and external-combustion engines is presented. The potential of engine concepts under consideration for hybrid vehicle use is evaluated, using self-imposed criteria for selection. The deficiencies of the engines currently being evaluated in hybrid vehicles are discussed. Focus is on recent research with two-stroke, rotary, and free-piston engines. It is concluded that these engine concepts have the most promising potential for future application in hybrid vehicles. Recommendations are made for analysis and experimentation to evaluate stop-start and transient emission behavior of recommended engine concepts.

  15. FY2015 Advanced Combustion Engine Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Gurpreet [Vehicle Technologies Office, Washington, DC (United States); Gravel, Roland M. [Vehicle Technologies Office, Washington, DC (United States); Howden, Kenneth C. [Vehicle Technologies Office, Washington, DC (United States); Breton, Leo [Vehicle Technologies Office, Washington, DC (United States)

    2016-03-25

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  16. FY2014 Advanced Combustion Engine Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-01

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  17. Theory of Thermodynamic Variables of Rubber Band Heat Engine

    Science.gov (United States)

    Muharayu, Nurhidayah; Widayani; Khairurrijal

    2016-08-01

    Rubber band heat engine is a heat engine that is easily applied in the experiment. However, to get the data from the experimental results are required a formulation that is able to accommodate the data, so that it will be obtained an accurate value. We show and analyze the variables thermodynamic formulation of rubber band heat engine to accommodate the experimental data, so that the equation of state, heat, work and efficiency are not only studied theoretically but also experimentally. The engine's efficiency is calculated for an idealized but reasonable model. The engine's work cycle is compared with a Carnot cycle, and it is shown to be equivalent to the Carnot cycle as an extremely ideal limiting case. We measured the force law parameters for a working model, and we obtained the efficiency of this model.

  18. Heat recovery in refrigeration engineering. Waermerueckgewinnung in der Kaeltetechnik

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    'Heat recovery in refrigeration engineering' is the title of a publication on operational experience with plants for industrial heat recovery. Various concepts of heat recovery as well as measuring and control and automatic control are studied. A new method for ice accumulation and heat recovery is introduced. Water-induced damage of evaporators is a further issue. To ensure successful use of heat recovery systems a close cooperation of planners, heat pump suppliers and fitters is required. This book contains eight reports, each one dealt with in an abstract.

  19. Geometric Heat Engines Featuring Power that Grows with Efficiency

    Science.gov (United States)

    Raz, O.; Subaşı, Y.; Pugatch, R.

    2016-04-01

    Thermodynamics places a limit on the efficiency of heat engines, but not on their output power or on how the power and efficiency change with the engine's cycle time. In this Letter, we develop a geometrical description of the power and efficiency as a function of the cycle time, applicable to an important class of heat engine models. This geometrical description is used to design engine protocols that attain both the maximal power and maximal efficiency at the fast driving limit. Furthermore, using this method, we also prove that no protocol can exactly attain the Carnot efficiency at nonzero power.

  20. Geometric Heat Engines Featuring Power that Grows with Efficiency.

    Science.gov (United States)

    Raz, O; Subaşı, Y; Pugatch, R

    2016-04-22

    Thermodynamics places a limit on the efficiency of heat engines, but not on their output power or on how the power and efficiency change with the engine's cycle time. In this Letter, we develop a geometrical description of the power and efficiency as a function of the cycle time, applicable to an important class of heat engine models. This geometrical description is used to design engine protocols that attain both the maximal power and maximal efficiency at the fast driving limit. Furthermore, using this method, we also prove that no protocol can exactly attain the Carnot efficiency at nonzero power.

  1. Advanced Diesel Engine Component Development Program, final report - tasks 4-14

    Energy Technology Data Exchange (ETDEWEB)

    Kaushal, T.S.; Weber, K.E.

    1994-11-01

    The Advanced Diesel Engine Component Development (ADECD) Program is a multi-year, multi-phase effort to develop and demonstrate the critical technology needed to advance the heavy-duty low heat rejection (LHR) engine concept for the long-haul, heavy-duty truck market. The ADECD Program has been partitioned into two phases. The first phase, Phase 1, was completed in 1986, resulting in definition of the Advanced Diesel Reference Engine (ADRE)III. The second phase, Phase 11/111, examines the feasibility of the ADRE concepts for application to the on-highway diesel engine. Phase 11/111 is currently underway. This project is sponsored by the U.S. Department of Energy, Office of Transportation Technologies. The work has been performed by the Detroit Diesel Corporation (DDC) under Contract DEN3-329 with the NASA Lewis Research Center, who provide project management and technical direction.

  2. Finite time exergoeconomic performance optimization of a thermoacoustic heat engine

    Directory of Open Access Journals (Sweden)

    Xuxian Kan, Lingen Chen, Fengrui Sun, Feng Wu

    2011-01-01

    Full Text Available Finite time exergoeconomic performance optimization of a generalized irreversible thermoacoustic heat engine with heat resistance, heat leakage, thermal relaxation, and internal dissipation is investigated in this paper. Both the real part and the imaginary part of the complex heat transfer exponent change the optimal profit rate versus efficiency relationship quantitatively. The operation of the generalized irreversible thermoacoustic engine is viewed as a production process with exergy as its output. The finite time exergoeconomic performance optimization of the generalized irreversible thermoacoustic engine is performed by taking profit rate as the objective. The analytical formulas about the profit rate and thermal efficiency of the thermoacoustic engine are derived. Furthermore, the comparative analysis of the influences of various factors on the relationship between optimal profit rate and the thermal efficiency of the generalized irreversible thermoacoustic engine is carried out by detailed numerical examples. The optimal zone on the performance of the thermoacoustic heat engine is obtained by numerical analysis. The results obtained herein may be useful for the selection of the operation parameters for real thermoacoustic heat engines.

  3. On-Engine Turbocharger Performance Considering Heat Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Aghaali, Habib

    2012-07-01

    Heat transfer plays an important role in affecting an on-engine turbocharger performance. However, it is normally not taken into account for turbocharged engine simulations. Generally, an engine simulation based on one-dimensional gas dynamics uses turbocharger performance maps which are measured without quantifying and qualifying the heat transfer, regardless of the fact that they are measured on the hot-flow or cold-flow gas-stand. Since heat transfer situations vary for on-engine turbochargers, the maps have to be shifted and corrected in the 1-D engine simulation, which mass and efficiency multipliers usually do for both the turbine and the compressor. The multipliers change the maps and are often different for every load point. Particularly, the efficiency multiplier is different for every heat transfer situation on the turbocharger. The heat transfer leads to a deviation from turbocharger performance maps, and increased complexity of the turbocharged engine simulation. Turbochargers operate under different heat transfer situations while they are installed on the engines. The main objectives of this thesis are: 1. Heat transfer modeling of a turbocharger to quantify and qualify heat transfer mechanisms. 2. Improving turbocharged engine simulation by including heat transfer in the turbocharger. 3. Assessing the use of two different turbocharger performance maps concerning the heat transfer situation (cold-measured and hot-measured turbocharger performance maps) in the simulation of a measured turbocharged engine. 4. Prediction of turbocharger walls' temperatures and their effects on the turbocharger performance on different heat transfer situations. Experimental investigation has been performed on a water-oil-cooled turbocharger, which was installed on a 2-liter GDI engine for different load points of the engine and different heat transfer situations on the turbocharger by using insulators, an extra cooling fan, radiation shields and water-cooling settings

  4. Advances in Nuclear Power Process Heat Applications

    International Nuclear Information System (INIS)

    Following an IAEA coordinated research project, this publication compiles the findings of research and development activities related to practical nuclear process heat applications. An overview of current progress on high temperature gas cooled reactors coupling schemes for different process heat applications, such as hydrogen production and desalination is included. The associated safety aspects are also highlighted. The summary report documents the results and conclusions of the project.

  5. FY 2007 Progress Report for Advanced Combustion Engine Technologies

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2007-12-01

    Advanced combustion engines have great potential for achieving dramatic energy efficiency improvements in light-duty vehicle applications, where it is suited to both conventional and hybrid- electric powertrain configurations. Light-duty vehicles with advanced combustion engines can compete directly with gasoline engine hybrid vehicles in terms of fuel economy and consumer-friendly driving characteristics; also, they are projected to have energy efficiencies that are competitive with hydrogen fuel cell vehicles when used in hybrid applications.Advanced engine technologies being researched and developed by the Advanced Combustion Engine R&D Sub-Program will also allow the use of hydrogen as a fuel in ICEs and will provide an energy-efficient interim hydrogen-based powertrain technology during the transition to hydrogen/fuelcell-powered transportation vehicles.

  6. Capture of Heat Energy from Diesel Engine Exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Chuen-Sen Lin

    2008-12-31

    Diesel generators produce waste heat as well as electrical power. About one-third of the fuel energy is released from the exhaust manifolds of the diesel engines and normally is not captured for useful applications. This project studied different waste heat applications that may effectively use the heat released from exhaust of Alaskan village diesel generators, selected the most desirable application, designed and fabricated a prototype for performance measurements, and evaluated the feasibility and economic impact of the selected application. Exhaust flow rate, composition, and temperature may affect the heat recovery system design and the amount of heat that is recoverable. In comparison with the other two parameters, the effect of exhaust composition may be less important due to the large air/fuel ratio for diesel engines. This project also compared heat content and qualities (i.e., temperatures) of exhaust for three types of fuel: conventional diesel, a synthetic diesel, and conventional diesel with a small amount of hydrogen. Another task of this project was the development of a computer-aided design tool for the economic analysis of selected exhaust heat recovery applications to any Alaskan village diesel generator set. The exhaust heat recovery application selected from this study was for heating. An exhaust heat recovery system was fabricated, and 350 hours of testing was conducted. Based on testing data, the exhaust heat recovery heating system showed insignificant effects on engine performance and maintenance requirements. From measurements, it was determined that the amount of heat recovered from the system was about 50% of the heat energy contained in the exhaust (heat contained in exhaust was evaluated based on environment temperature). The estimated payback time for 100% use of recovered heat would be less than 3 years at a fuel price of $3.50 per gallon, an interest rate of 10%, and an engine operation of 8 hours per day. Based on experimental data

  7. Advanced Heat Map and Clustering Analysis Using Heatmap3

    OpenAIRE

    Shilin Zhao; Yan Guo; Quanhu Sheng; Yu Shyr

    2014-01-01

    Heat maps and clustering are used frequently in expression analysis studies for data visualization and quality control. Simple clustering and heat maps can be produced from the “heatmap” function in R. However, the “heatmap” function lacks certain functionalities and customizability, preventing it from generating advanced heat maps and dendrograms. To tackle the limitations of the “heatmap” function, we have developed an R package “heatmap3” which significantly improves the original “heatmap”...

  8. Advances in induction-heated plasma torch technology

    Science.gov (United States)

    Poole, J. W.; Vogel, C. E.

    1972-01-01

    Continuing research has resulted in significant advances in induction-heated plasma torch technology which extend and enhance its potential for broad range of uses in chemical processing, materials development and testing, and development of large illumination sources. Summaries of these advances are briefly described.

  9. Heat storage for a bus petrol internal-combustion engine

    Science.gov (United States)

    Vasiliev, Leonard L.; Burak, Victor S.; Kulakov, Andry G.; Mishkinis, Donatas A.; Bohan, Pavel V.

    The heat storage (HS) system for pre-heating a bus petrol internal combustion engine to starting was mathematically modelled and experimentally investigated. The development of such devices is an extremely urgent problem especially for regions with a cold climate. We discuss how HS works on the effect of absorption and rejection of heat energy at a solid-liquid phase change of a HS substance. In the first part of the paper a numerical method to calculate the HS mass-dimensional parameters and their characteristics are described. In the experimental part of the paper results are given of experiments on the pre-heating device aiding to start a carburettor engine under operational conditions and analysis of data received. Practical confirmation of the theoretical development of HS devices for a bus engine for starting by pre-heating is given.

  10. Advanced tendencies in development of photovoltaic cells for power engineering

    Science.gov (United States)

    Strebkov, D. S.

    2015-01-01

    Development of solar power engineering must be based on original innovative Russian and world technologies. It is necessary to develop promising Russian technologies of manufacturing of photovoltaic cells and semiconductor materials: chlorine-free technology for obtaining solar silicon; matrix solar cell technology with an efficiency of 25-30% upon the conversion of concentrated solar, thermal, and laser radiation; encapsulation technology for high-voltage silicon solar modules with a voltage up to 1000 V and a service life up to 50 years; new methods of concentration of solar radiation with the balancing illumination of photovoltaic cells at 50-100-fold concentration; and solar power systems with round-the-clock production of electrical energy that do not require energy storage devices and reserve sources of energy. The advanced tendency in silicon power engineering is the use of high-temperature reactions in heterogeneous modular silicate solutions for long-term (over one year) production of heat and electricity in the autonomous mode.

  11. Systems Engineering Leadership Development: Advancing Systems Engineering Excellence

    Science.gov (United States)

    Hall, Phil; Whitfield, Susan

    2011-01-01

    This slide presentation reviews the Systems Engineering Leadership Development Program, with particular emphasis on the work being done in the development of systems engineers at Marshall Space Flight Center. There exists a lack of individuals with systems engineering expertise, in particular those with strong leadership capabilities, to meet the needs of the Agency's exploration agenda. Therefore there is a emphasis on developing these programs to identify and train systems engineers. The presentation reviews the proposed MSFC program that includes course work, and developmental assignments. The formal developmental programs at the other centers are briefly reviewed, including the Point of Contact (POC)

  12. Advances in biomedical engineering and biotechnology during 2013-2014.

    Science.gov (United States)

    Liu, Feng; Wang, Ying; Burkhart, Timothy A; González Penedo, Manuel Francisco; Ma, Shaodong

    2014-01-01

    The 3rd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2014), held in Beijing from the 25th to the 28th of September 2014, is an annual conference that intends to provide an opportunity for researchers and practitioners around the world to present the most recent advances and future challenges in the fields of biomedical engineering, biomaterials, bioinformatics and computational biology, biomedical imaging and signal processing, biomechanical engineering and biotechnology, amongst others. The papers published in this issue are selected from this conference, which witnesses the advances in biomedical engineering and biotechnology during 2013-2014.

  13. Advanced Supermarket Refrigeration/ Heat Recovery Systems - Workshop Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Lundqvist, P.

    2001-06-15

    This CD ROM brings together proceedings of the Annex 26 Workshop 'Advanced Supermarket Refrigeration/ Heat Recovery Systems' held in Sweden, 2-3 October 2000. Sessions at the workshop were: Session 1: The supermarket as a system, Session 2: Analysis and modeling, Session 3: Field experiences, Session 4: Energy-efficient equipment. Annex 26 investigates candidate advanced system design approaches to determine their potential to reduce refrigerant usage and energy consumption for both refrigeration and heating/ air conditioning in supermarkets. Advanced supermarket refrigeration system concepts to be considered include, but are not limited to secondary loop systems, distributed compressors systems, and self-contained display cases.

  14. Maximum Power Output of Quantum Heat Engine with Energy Bath

    CERN Document Server

    Liu, Shengnan

    2016-01-01

    The difference between quantum isoenergetic process and quantum isothermal process comes from the violation of the law of equipartition of energy in the quantum regime. To reveal an important physical meaning of this fact, here we study a special type of quantum heat engine consisting of three processes: isoenergetic, isothermal and adiabatic processes. Therefore, this engine works between the energy and heat baths. Combining two engines of this kind, it is possible to realize the quantum Carnot engine. Furthermore, considering finite velocity of change of the potential shape, here an infinite square well with moving walls, the power output of the engine is discussed. It is found that the efficiency and power output are both closely dependent on the initial and final states of the quantum isothermal process. The performance of the engine cycle is shown to be optimized by control of the occupation probability of the ground state, which is determined by the temperature and the potential width. The relation betw...

  15. MEMS CLOSED CHAMBER HEAT ENGINE AND ELECTRIC GENERATOR

    Science.gov (United States)

    Landis, Geoffrey A. (Inventor)

    2005-01-01

    A heat engine, preferably combined with an electric generator, and advantageously implemented using micro-electromechanical system (MEMS) technologies as an array of one or more individual heat engine/generators. The heat engine is based on a closed chamber containing a motive medium, preferably a gas; means for alternately enabling and disabling transfer of thermal energy from a heat source to the motive medium; and at least one movable side of the chamber that moves in response to thermally-induced expansion and contraction of the motive medium, thereby converting thermal energy to oscillating movement. The electrical generator is combined with the heat engine to utilize movement of the movable side to convert mechanical work to electrical energy, preferably using electrostatic interaction in a generator capacitor. Preferably at least one heat transfer side of the chamber is placed alternately into and out of contact with the heat source by a motion capacitor, thereby alternately enabling and disabling conductive transfer of heat to the motive medium.

  16. Engineered Materials for Advanced Gas Turbine Engine Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop innovative composite powders and composites that will surpass the properties of currently identified materials for advanced gas turbine...

  17. Geothermal heating a handbook of engineering economics

    CERN Document Server

    Harrison, R; Smarason, O B

    2013-01-01

    To date all books on geothermics have emphasized its use for generating electricity, with applications of lower grade resources for direct heating meriting only a brief chapter. This book brings together research from a range of scientific journals and 'grey' literature to produce the first comprehensive text on geothermal heating. Economics form an important part of the book. It provides a step by step analysis of the various ways in which thermal waters can be used to provide space heating and of the advantages and disadvantages of different approaches. The final section of the book provides

  18. Research advances and engineering application of a new ground-source heat pump system%一种新型地源热泵系统的研究进展与工程应用

    Institute of Scientific and Technical Information of China (English)

    史晓冬; 王杰妮

    2016-01-01

    This paper described the work principle of energy pile system,introduced the pile foundation buried tube heat exchanger and buried pipe types,summarized the matters needing attention in the system design,exampled the engineering practice application of pile system at home and abroad,pointed out that the technology had widely application prospect in our country.%阐述了能量桩系统的工作原理,对桩基埋管换热器及埋管形式进行了介绍,总结了系统设计中的注意事项,列举了能量桩系统在国内外的工程实践应用,指出该技术在我国的应用前景广泛。

  19. Energy and efficiency optimization of a Brownian heat engine

    Science.gov (United States)

    Bekele, Mulugeta; Yalew, Yeneneh

    2007-03-01

    A simple Brownian heat engine is modeled as a Brownian particle moving in an external sawtooth potential (with or without) load assisted by the thermal kick it gets from alternately placed hot and cold heat reservoirs along its path. We get closed form expression for its current in terms of the parameters characterizing the model. After analyzing the way it consumes energy to do useful work, we also get closed form expressions for its efficiency as well as for its coefficient of performance when the engine performs as a refrigerator. Recently suggested optimization criteria enables us to exhaustively explore and compare the different operating conditions of the engine.

  20. Advancing intercultural competency: Canadian engineering employers' experiences with immigrant engineers

    Science.gov (United States)

    Friesen, Marcia; Ingram, Sandra

    2013-05-01

    This paper explores Canadian engineering employers' perceptions of and experiences with internationally educated engineers (recent immigrants to Canada) employed in their organisations for varying lengths of time. Qualitative data were collected from employers using focus group methodology. Findings reflected employers' observations of culturally different behaviours and characteristics in their internationally educated employees, employers' reactions to cultural differences ranging from negative attributions to tolerance, and the implementation of largely ad hoc intra-organisational strategies for managing cultural differences in employer-employee relationships. Findings exposed the lack of corporate intercultural competency in the Canadian engineering profession. Equity and gatekeeping implications are discussed.

  1. Exploring the operation of a tiny heat engine

    Science.gov (United States)

    Asfaw, Mesfin; Bekele, Mulugeta

    2007-10-01

    We model a tiny heat engine as a Brownian particle that moves in a viscous medium in a sawtooth potential (with or without load) assisted by alternately placed hot and cold heat baths along its path. We find closed form expression for the steady-state current as a function of the model parameters. This enables us to deal with the energetics of the model and evaluate either its efficiency or its coefficient of performance depending upon whether the model functions either as a heat engine or as a refrigerator, respectively. We also study the way current changes with changes in parameters of interest. When we plot the phase diagrams showing the way the model operates, we not only find regions where it functions as a heat engine and as a refrigerator but we also identify a region where the model functions as neither of the two.

  2. Advanced Gasoline Turbocharged Direction Injection (GTDI) Engine Development

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Terrance [Ford Motor Co., Dearborn, MI (United States)

    2015-12-31

    This program was undertaken in response to US Department of Energy Solicitation DE-FOA-0000079, resulting in a cooperative agreement with Ford and MTU to demonstrate improvement of fuel efficiency in a vehicle equipped with an advanced GTDI engine. Ford Motor Company has invested significantly in GTDI engine technology as a cost effective, high volume, fuel economy solution, marketed globally as EcoBoost technology. Ford envisions additional fuel economy improvement in the medium and long term by further advancing EcoBoost technology. The approach for the project was to engineer a comprehensive suite of gasoline engine systems technologies to achieve the project objectives, and to progressively demonstrate the objectives via concept analysis / computer modeling, single-cylinder and multi-cylinder engine testing on engine dynamometer, and vehicle level testing on chassis rolls.

  3. International conference on Advances in Engineering Technologies and Physical Science

    CERN Document Server

    Ao, Sio-Iong; Rieger, Burghard; IAENG Transactions on Engineering Technologies : Special Edition of the World Congress on Engineering and Computer Science 2011

    2013-01-01

    This volume contains thirty revised and extended research articles written by prominent researchers participating in an international conference in engineering technologies and physical science and applications. The conference serves as good platforms for the engineering community to meet with each other and to exchange ideas. The conference has also struck a balance between theoretical and application development. The conference is truly international meeting with a high level of participation from many countries. Topics covered include chemical engineering, circuits, communications systems, control theory, engineering mathematics, systems engineering, manufacture engineering, and industrial applications. The book offers the state of art of tremendous advances in engineering technologies and physical science and applications, and also serves as an excellent reference work for researchers and graduate students working with/on engineering technologies and physical science and applications.

  4. Advanced finite element method in structural engineering

    CERN Document Server

    Long, Yu-Qiu; Long, Zhi-Fei

    2009-01-01

    This book systematically introduces the research work on the Finite Element Method completed over the past 25 years. Original theoretical achievements and their applications in the fields of structural engineering and computational mechanics are discussed.

  5. Recent Advances in Genetic Engineering - A Review

    OpenAIRE

    Sobiah Rauf; Zubair Anwar; Hussain Mustatab Wahedi; Jabar Zaman Khan Khattak; Talal Jamil

    2012-01-01

    Humans have been doing genetic engineering, a technology which is transforming our world, for thousands of years on a wide range of plants, animals and micro organism and have applications in the field of medicine, research, industry and agriculture. The rapid developments in the field of genetic engineering have given a new impetus to biotechnology. This introduces the possibility of tailoring organisms in order to optimize the production of established or novel metabolites of commercial imp...

  6. ADVANCED COMPRESSOR ENGINE CONTROLS TO ENHANCE OPERATION, RELIABILITY AND INTEGRITY

    Energy Technology Data Exchange (ETDEWEB)

    Gary D. Bourn; Jess W. Gingrich; Jack A. Smith

    2004-03-01

    This document is the final report for the ''Advanced Compressor Engine Controls to Enhance Operation, Reliability, and Integrity'' project. SwRI conducted this project for DOE in conjunction with Cooper Compression, under DOE contract number DE-FC26-03NT41859. This report addresses an investigation of engine controls for integral compressor engines and the development of control strategies that implement closed-loop NOX emissions feedback.

  7. Removal heat extraction systems in advanced reactors

    International Nuclear Information System (INIS)

    The two main problems generally attributed to the electricity generation by nuclear power are the security of the facility and the radioactivity of the nuclear wastes, in a way that the only tasks of the European Commission on this matter are to make sure a high level of security in the facilities, as well as an adequate fuel and waste management. In this paper we discuss about the main lines in which the CIEMAT and the Polytechnic University of Valencia are working relative to the study of the passive working systems of the advanced designs reactors. (Author) 24 refs

  8. Dual Expander Cycle Rocket Engine with an Intermediate, Closed-cycle Heat Exchanger

    Science.gov (United States)

    Greene, William D. (Inventor)

    2008-01-01

    A dual expander cycle (DEC) rocket engine with an intermediate closed-cycle heat exchanger is provided. A conventional DEC rocket engine has a closed-cycle heat exchanger thermally coupled thereto. The heat exchanger utilizes heat extracted from the engine's fuel circuit to drive the engine's oxidizer turbomachinery.

  9. 1983-2004 Heat Treatment Embraces Surface Engineering

    Institute of Scientific and Technical Information of China (English)

    Tom Bell

    2004-01-01

    The origins of surface engineering lie in antiquity, with the practices in ancient Greece and China of hardening,tempering and crude form of case hardening using solid organic materials. The formation of the International Federation for Heat Treatment in 1971 later to include Surface Engineering has been pre-eminent in the globalisation of the rapidly developing discipline of surface engineering. The dominant effect of environmental aspects of surface engineering are discussed regarding the impact for change to light weight materials and the adoption of environmentally friendly plasma technologies.

  10. Advanced quantum communications an engineering approach

    CERN Document Server

    Imre, Sandor

    2012-01-01

    The book provides an overview of the most advanced quantum informational geometric techniques, which can help quantum communication theorists analyze quantum channels, such as security or additivity properties. Each section addresses an area of major research of quantum information theory and quantum communication networks. The authors present the fundamental theoretical results of quantum information theory, while also presenting the details of advanced quantum ccommunication protocols with clear mathematical and information theoretical background. This book bridges the gap between quantum ph

  11. Design of Heat Exchanger for Ericsson-Brayton Piston Engine

    Directory of Open Access Journals (Sweden)

    Peter Durcansky

    2014-01-01

    Full Text Available Combined power generation or cogeneration is a highly effective technology that produces heat and electricity in one device more efficiently than separate production. Overall effectiveness is growing by use of combined technologies of energy extraction, taking heat from flue gases and coolants of machines. Another problem is the dependence of such devices on fossil fuels as fuel. For the combustion turbine is mostly used as fuel natural gas, kerosene and as fuel for heating power plants is mostly used coal. It is therefore necessary to seek for compensation today, which confirms the assumption in the future. At first glance, the obvious efforts are to restrict the use of largely oil and change the type of energy used in transport. Another significant change is the increase in renewable energy—energy that is produced from renewable sources. Among machines gaining energy by unconventional way belong mainly the steam engine, Stirling engine, and Ericsson engine. In these machines, the energy is obtained by external combustion and engine performs work in a medium that receives and transmits energy from combustion or flue gases indirectly. The paper deals with the principle of hot-air engines, and their use in combined heat and electricity production from biomass and with heat exchangers as primary energy transforming element.

  12. Insoluble coatings for Stirling engine heat pipe condenser surfaces

    Science.gov (United States)

    Dussinger, Peter M.

    1993-01-01

    The work done by Thermacore, Inc., Lancaster, Pennsylvania, for the Phase 1, 1992 SBIR National Aeronautics and Space Administration Contract, 'Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces' is described. The work was performed between January 1992 and July 1992. Stirling heat engines are being developed for electrical power generation use on manned and unmanned earth orbital and planetary missions. Dish Stirling solar systems and nuclear reactor Stirling systems are two of the most promising applications of the Stirling engine electrical power generation technology. The sources of thermal energy used to drive the Stirling engine typically are non-uniform in temperature and heat flux. Liquid metal heat pipe receivers are used as thermal transformers and isothermalizers to deliver the thermal energy at a uniform high temperature to the heat input section of the Stirling engine. The use of a heat pipe receiver greatly enhances system efficiency and potential life span. One issue that is raised during the design phase of heat pipe receivers is the potential solubility corrosion of the Stirling engine heat input section by the liquid metal working fluid. This Phase 1 effort initiated a program to evaluate and demonstrate coatings, applied to nickel based Stirling engine heater head materials, that are practically 'insoluble' in sodium, potassium, and NaK. This program initiated a study of nickel aluminide as a coating and developed and demonstrated a heat pipe test vehicle that can be used to test candidate materials and coatings. Nickel 200 and nickel aluminide coated Nickel 200 were tested for 1000 hours at 800 C at a condensation heat flux of 25 W/sq cm. Subsequent analyses of the samples showed no visible sign of solubility corrosion of either coated or uncoated samples. The analysis technique, photomicrographs at 200X, has a resolution of better than 2.5 microns (.0001 in). The results indicate that the heat pipe environment is not directly

  13. Recent advances in magnetic heat pump technology

    Science.gov (United States)

    Uherka, Kenneth L.; Hull, John R.; Scheihing, Paul E.

    Magnetic heat pump (MHP)/refrigeration systems, incorporating state-of-the-art superconducting magnet technology, were assessed for industrial applications ranging from the liquefaction of gases (20 K to 100 K range) to cold storage refrigeration for food preservation (250 K to 320 K range). Initial market penetration of MHP technology is anticipated to occur in the gas liquefaction sector, since the performance advantages of magnetic refrigeration cycles relative to gas compression cycles and other conventional systems are more pronounced in the lower temperature ranges. Design options for rotary MHP devices include alternative regeneration schemes to obtain the temperature spans necessary for industrial applications. The results of preliminary design assessment studies indicate that active magnetic regenerator concepts, in which the magnetic working material also serves as the regenerative medium, offer advantages over alternative MHP designs for industrial applications.

  14. A thermoacoustic-Stirling heat engine: detailed study

    Science.gov (United States)

    Backhaus; Swift

    2000-06-01

    A new type of thermoacoustic engine based on traveling waves and ideally reversible heat transfer is described. Measurements and analysis of its performance are presented. This new engine outperforms previous thermoacoustic engines, which are based on standing waves and intrinsically irreversible heat transfer, by more than 50%. At its most efficient operating point, it delivers 710 W of acoustic power to its resonator with a thermal efficiency of 0.30, corresponding to 41% of the Carnot efficiency. At its most powerful operating point, it delivers 890 W to its resonator with a thermal efficiency of 0.22. The efficiency of this engine can be degraded by two types of acoustic streaming. These are suppressed by appropriate tapering of crucial surfaces in the engine and by using additional nonlinearity to induce an opposing time-averaged pressure difference. Data are presented which show the nearly complete elimination of the streaming convective heat loads. Analysis of these and other irreversibilities show which components of the engine require further research to achieve higher efficiency. Additionally, these data show that the dynamics and acoustic power flows are well understood, but the details of the streaming suppression and associated heat convection are only qualitatively understood. PMID:10875360

  15. Advanced control for airbreathing engines, volume 2: General Electric aircraft engines

    Science.gov (United States)

    Bansal, Indar

    1993-01-01

    The application of advanced control concepts to air breathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for air breathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 2 of these reports describes the studies performed by GE Aircraft Engines.

  16. Effect of Heat Leak and Finite Thermal Capacity on the Optimal Configuration of a Two-Heat-Reservoir Heat Engine for Another Linear Heat Transfer Law

    OpenAIRE

    Chih Wu; Fengrui Sun; Lingen Chen; Tong Zheng

    2003-01-01

    Abstract: Based on a model of a two-heat-reservoir heat engine with a finite high-temperature source and bypass heat leak, the optimal configuration of the cycle is found for the fixed cycle period with another linear heat transfer law . The finite thermal capacity source without heat leak makes the configuration of the cycle to a class of generalized Carnot cycle. The configuration of the cycle with heat leak and finite thermal capacity source is different from others.

  17. Rocket Engine Innovations Advance Clean Energy

    Science.gov (United States)

    2012-01-01

    During launch countdown, at approximately T-7 seconds, the Space Shuttle Main Engines (SSMEs) roar to life. When the controllers indicate normal operation, the solid rocket boosters ignite and the shuttle blasts off. Initially, the SSMEs throttle down to reduce stress during the period of maximum dynamic pressure, but soon after, they throttle up to propel the orbiter to 17,500 miles per hour. In just under 9 minutes, the three SSMEs burn over 1.6 million pounds of propellant, and temperatures inside the main combustion chamber reach 6,000 F. To cool the engines, liquid hydrogen circulates through miles of tubing at -423 F. From 1981to 2011, the Space Shuttle fleet carried crew and cargo into orbit to perform a myriad of unprecedented tasks. After 30 years and 135 missions, the feat of engineering known as the SSME boasted a 100-percent flight success rate.

  18. Advanced Probability Theory for Biomedical Engineers

    CERN Document Server

    Enderle, John

    2006-01-01

    This is the third in a series of short books on probability theory and random processes for biomedical engineers. This book focuses on standard probability distributions commonly encountered in biomedical engineering. The exponential, Poisson and Gaussian distributions are introduced, as well as important approximations to the Bernoulli PMF and Gaussian CDF. Many important properties of jointly Gaussian random variables are presented. The primary subjects of the final chapter are methods for determining the probability distribution of a function of a random variable. We first evaluate the prob

  19. IEA Annex 26: Advanced Supermarket Refrigeration/Heat Recovery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, VAN

    2003-05-19

    With increased concern about the impact of refrigerant leakage on global warming, a number of new supermarket refrigeration system configurations requiring significantly less refrigerant charge are being considered. In order to help promote the development of advanced systems and expand the knowledge base for energy-efficient supermarket technology, the International Energy Agency (IEA) established IEA Annex 26 (Advanced Supermarket Refrigeration/Heat Recovery Systems) under the ''IEA Implementing Agreement on Heat Pumping Technologies''. Annex 26 focuses on demonstrating and documenting the energy saving and environmental benefits of advanced systems design for food refrigeration and space heating and cooling for supermarkets. Advanced in this context means systems that use less energy, require less refrigerant and produce lower refrigerant emissions. Stated another way, the goal is to identify supermarket refrigeration and HVAC technology options that reduce the total equivalent warming impact (TEWI) of supermarkets by reducing both system energy use (increasing efficiency) and reducing total refrigerant charge. The Annex has five participating countries: Canada, Denmark, Sweden, the United Kingdom, and the United States. The working program of the Annex has involved analytical and experimental investigation of several candidate system design approaches to determine their potential to reduce refrigerant usage and energy consumption. Advanced refrigeration system types investigated include the following: distributed compressor systems--small parallel compressor racks are located in close proximity to the food display cases they serve thus significantly shortening the connecting refrigerant line lengths; secondary loop systems--one or more central chillers are used to refrigerate a secondary coolant (e.g. brine, ice slurry, or CO2) that is pumped to the food display cases on the sales floor; self-contained display cases--each food display case

  20. Heated-Pressure-Ball Monopropellant Rocket Engine

    Science.gov (United States)

    Greene, William D.

    2005-01-01

    A recent technology disclosure presents a concept for a monopropellant thermal spacecraft thruster that would feature both the simplicity of a typical prior pressure-fed propellant supply system and the smaller mass and relative compactness of a typical prior pump-fed system. The source of heat for this thruster would likely be a nuclear- fission reactor. The propellant would be a cryogenic fluid (a liquefied low-molecular-weight gas) stored in a tank at a low pressure. The propellant would flow from the tank, through a feedline, into three thick-walled spherical tanks, denoted pressure balls, that would be thermally connected to the reactor. Valves upstream and downstream of the pressure balls would be operated in a three-phase cycle in which propellant would flow into one pressure ball while the fluid underwent pressurization through heating in another ball and pressurized propellant was discharged from the remaining ball into the reactor. After flowing through the reactor, wherein it would be further heated, the propellant would be discharged through an exhaust nozzle to generate thrust. A fraction of the pressurized gas from the pressure balls would be diverted to maintain the desired pressure in the tank.

  1. Advanced nonlinear engine speed control systems

    DEFF Research Database (Denmark)

    Vesterholm, Thomas; Hendricks, Elbert

    1994-01-01

    Several subsidiary control problems have turned out to be important for improving driveability and fuel consumption in modern spark ignition (SI) engine cars. Among these are idle speed control and cruise control. In this paper the idle speed and cruise control problems will be treated as one...

  2. Uncooled two-stroke gas engine for heat pump drive

    Science.gov (United States)

    Badgley, Patrick; McNulty, Dave; Woods, Melvin

    This paper describes the design and analysis of a family of natural gas fueled, uncooled, two-stroke, lean burn, thermal-ignition engines. The engines were designed specifically to meet the requirements dictated by the commercial heat pump application. The engines have a power output ranging from 15 to 100 kW; a thermal efficiency of 36 percent; a mean time between failure greater than 3 years; and a life expectancy of 45,000 hours. To meet these specifications a family of very simple, uncooled, two-stroke cycle engines were designed which have no belts, gears or pumps. The engines utilize crankcase scavenging, lubrication, stratified fuel introduction to prevent raw fuel from escaping with the exhaust gas, and use of ceramic rolling contact bearings. The Thermal Ignition Combustion System (TICS) is used for ignition to enable the engines to operate with a lean mixture and eliminate spark plug erosion.

  3. A Course in Advanced Topics in Heat and Mass Transfer.

    Science.gov (United States)

    Shaeiwitz, Joseph A.

    1983-01-01

    A three or four semester-hour graduate course was designed to provide basic instruction in heat/mass transfer topics relevant to chemical engineering problems and to train students to develop mathematical descriptions for new situations encountered in problem-solving. Course outline and list of references used in the course are provided. (JM)

  4. Innovations and Advances in Computer, Information, Systems Sciences, and Engineering

    CERN Document Server

    Sobh, Tarek

    2013-01-01

    Innovations and Advances in Computer, Information, Systems Sciences, and Engineering includes the proceedings of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2011). The contents of this book are a set of rigorously reviewed, world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of  Industrial Electronics, Technology and Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning.

  5. Multivariable quadratic synthesis of an advanced turbofan engine controller

    Science.gov (United States)

    Dehoff, R. L.; Hall, W. E., Jr.

    1978-01-01

    A digital controller for an advanced turbofan engine utilizing multivariate feedback is described. The theoretical background of locally linearized control synthesis is reviewed briefly. The application of linear quadratic regulator techniques to the practical control problem is presented. The design procedure has been applied to the F100 turbofan engine, and details of the structure of this system are explained. Selected results from simulations of the engine and controller are utilized to illustrate the operation of the system. It is shown that the general multivariable design procedure will produce practical and implementable controllers for modern, high-performance turbine engines.

  6. Research of the process of heat transfer using numerical Euler method in engineering practice engineering specialties

    OpenAIRE

    Казак, Ірина Олександрівна

    2015-01-01

    The article discusses the use of numerical Euler method to obtain the solution of the differential model of unsteady heat transfer process, investigation of the stability and convergence of the obtained solutions on the example of algorithmization and programming in Fortran MSDev environment. The process of heat transfer is often encountered in engineering practice engineering, so his study under various conditions by the Euler method is very important. Developed programs in Fortran MSDev env...

  7. Optimization criteria, bounds, and efficiencies of heat engines.

    Science.gov (United States)

    Sánchez-Salas, N; López-Palacios, L; Velasco, S; Calvo Hernández, A

    2010-11-01

    The efficiency of four different and representative models of heat engines under maximum conditions for a figure of merit representing a compromise between useful energy and lost energy (the Ω criterion) is investigated and compared with previous results for the same models where the efficiency is considered at maximum power conditions. It is shown that the maximum Ω regime is more efficient and, additionally, that the resulting efficiencies present a similar behavior. For each performance regime we obtain explicit equations accounting for lower and upper bounds. The optimization of refrigeration devices is far from being as clear as heat engines, and some remarks on it are finally considered.

  8. Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces

    Science.gov (United States)

    Dussinger, Peter M.; Lindemuth, James E.

    1997-01-01

    The principal objective of this Phase 2 SBIR program was to develop and demonstrate a practically insoluble coating for nickel-based superalloys for Stirling engine heat pipe applications. Specific technical objectives of the program were: (1) Determine the solubility corrosion rates for Nickel 200, Inconel 718, and Udimet 72OLI in a simulated Stirling engine heat pipe environment, (2) Develop coating processes and techniques for capillary groove and screen wick structures, (3) Evaluate the durability and solubility corrosion rates for capillary groove and screen wick structures coated with an insoluble coating in cylindrical heat pipes operating under Stirling engine conditions, and (4) Design and fabricate a coated full-scale, partial segment of the current Stirling engine heat pipe for the Stirling Space Power Convertor program. The work effort successfully demonstrated a two-step nickel aluminide coating process for groove wick structures and interior wall surfaces in contact with liquid metals; demonstrated a one-step nickel aluminide coating process for nickel screen wick structures; and developed and demonstrated a two-step aluminum-to-nickel aluminide coating process for nickel screen wick structures. In addition, the full-scale, partial segment was fabricated and the interior surfaces and wick structures were coated. The heat pipe was charged with sodium, processed, and scheduled to be life tested for up to ten years as a Phase 3 effort.

  9. Nonstationary heat flow in the piston of the turbocharged engine

    Directory of Open Access Journals (Sweden)

    Piotr GUSTOF

    2010-01-01

    Full Text Available In this study the numeric computations of nonstationary heat flow in form of temperature distribution on characteristic surfaces of the piston of the turbocharged engine at the beginning phase its work was presented. The computations were performed for fragmentary load engine by means of the two-zone combustion model, the boundary conditions of III kind and the finite elements method (FEM by using of COSMOS/M program.

  10. Fundamental heat transfer research for gas turbine engines

    Science.gov (United States)

    Metzger, D. E. (Editor)

    1980-01-01

    Thirty-seven experts from industry and the universities joined 24 NASA Lewis staff members in an exchange of ideas on trends in aeropropulsion research and technology, basic analyses, computational analyses, basic experiments, near-engine environment experiments, fundamental fluid mechanics and heat transfer, and hot technology as related to gas turbine engines. The workshop proceedings described include pre-workshop input from participants, presentations of current activity by the Lewis staff, reports of the four working groups, and a workshop summary.

  11. Advances in Electrical Engineering and Automation

    CERN Document Server

    Huang, Xiong

    2012-01-01

    EEA2011 is an integrated conference concentration its focus on Electrical Engineering and Automation. In the proceeding, you can learn much more knowledge about  Electrical Engineering and Automation of researchers from all around the world. The main role of the proceeding is to be used as an exchange pillar for researchers who are working in the mentioned fields. In order to meet the high quality of Springer, AISC series, the organization committee has made their efforts to do the following things. Firstly, poor quality paper has been refused after reviewing course by anonymous referee experts. Secondly, periodically review meetings have been held around the reviewers about five times for exchanging reviewing suggestions. Finally, the conference organizers had several preliminary sessions before the conference. Through efforts of different people and departments, the conference will be successful and fruitful.  

  12. XG40 - Rolls-Royce Advanced Fighter Engine Demonstrator

    Directory of Open Access Journals (Sweden)

    G. M. Lewis

    1988-10-01

    Full Text Available Commenced in 1982, the XG40 programme is central to the demonstration of Rolls-Royce technology appropriate to the requirements of the advanced combat engine for mid 1990's operation. At the same time, the technology in scaled form is viewed as having wider application than for the advanced combat engine alone.To meet the multi-role requirements of advanced twin and single engined fighters, the combat engine must be designed to give enhanced dry thrust, retain good dry specific fuel consumption and reduce reheated fuel consumption compared with current fighter engines. A thrust/weight ratio of 10 : 1 is targeted and at the same time requirements for operating cost, reliability and durability are stringent.Advanced materials, manufacturing technology and design of structures have been incorporated to enable the required levels of reliability, durability, component cost and weight to be demonstrated.The engine is in the 90/95 kN nominal Sea Level Static Combat thrust class.

  13. Advanced Engineering Environments for Space Transportation System Development

    Science.gov (United States)

    Thomas, L. Dale; Smith, Charles A.; Beveridge, James

    2000-01-01

    There are significant challenges facing today's launch vehicle industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker, all face the developer of a space transportation system. Within NASA, multiple technology development and demonstration projects are underway toward the objectives of safe, reliable, and affordable access to space. New information technologies offer promising opportunities to develop advanced engineering environments to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. At the Marshall Space Flight Center, work has begun on development of an advanced engineering environment specifically to support the design, modeling, and analysis of space transportation systems. This paper will give an overview of the challenges of developing space transportation systems in today's environment and subsequently discuss the advanced engineering environment and its anticipated benefits.

  14. Advanced Print Reading. Heating, Ventilation and Air Conditioning.

    Science.gov (United States)

    Oregon State Dept. of Education, Salem.

    This is a workbook for students learning advanced blueprint reading for heating, ventilation, and air conditioning applications. The workbook contains eight units covering the following material: architectural working drawings; architectural symbols and dimensions; basic architectural electrical symbols; wiring symbols; basic piping symbols;…

  15. Advanced Supermarket Refrigeration/Heat Recovery Systems. Country Report, Denmark

    DEFF Research Database (Denmark)

    Knudsen, Hans-Jørgen Høgaard; Christensen, K. G.

    conclusions as far energy conservation and TEWI reduction is concerned. The conclusion justify that advanced supermarket systems with heat recovery should receive great attention and support. And there is still further research needed in several areas. The Annex also included a thorough system analyses...... provide valuable information for practitioners (designers, installers) and manufactures of supermarket refrigeration systems....

  16. Computational electromagnetics recent advances and engineering applications

    CERN Document Server

    2014-01-01

    Emerging Topics in Computational Electromagnetics in Computational Electromagnetics presents advances in Computational Electromagnetics. This book is designed to fill the existing gap in current CEM literature that only cover the conventional numerical techniques for solving traditional EM problems. The book examines new algorithms, and applications of these algorithms for solving problems of current interest that are not readily amenable to efficient treatment by using the existing techniques. The authors discuss solution techniques for problems arising in nanotechnology, bioEM, metamaterials, as well as multiscale problems. They present techniques that utilize recent advances in computer technology, such as parallel architectures, and the increasing need to solve large and complex problems in a time efficient manner by using highly scalable algorithms.

  17. Conceptual study of advanced VTOL transport aircraft engine; Kosoku VTOL kiyo engine no gainen kento

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Y.; Endo, M.; Matsuda, Y.; Sugiyama, N.; Watanabe, M.; Sugahara, N.; Yamamoto, K. [National Aerospace Laboratory, Tokyo (Japan)

    1996-04-01

    This report proposes the concept of an ultra-low noise engine for advanced high subsonic VTOL transport aircraft, and discusses its technological feasibility. As one of the applications of the previously reported `separated core turbofan engine,` the conceptual engine is composed of 3 core engines, 2 cruise fan engines for high subsonic cruising and 6 lift fan engines producing thrust of 98kN (10000kgf)/engine. The core turbojet engine bleeds a large amount of air at the outlet of a compressor to supply driving high-pressure air for fans to other engines. The lift fan engine is composed of a lift fan, driving combustor, turbine and speed reduction gear, and is featured by not only high operation stability and thin fan engine like a separated core engine but also ultra-low noise operation. The cruise fan engine adopts the same configuration as the lift fan engine. Since this engine configuration has no technological problems difficult to be overcome, its high technological feasibility is expected. 6 refs., 7 figs., 5 tabs.

  18. Exotic properties and optimal control of quantum heat engine

    Science.gov (United States)

    Ou, Congjie; Abe, Sumiyoshi

    2016-02-01

    A quantum heat engine of a specific type is studied. This engine contains a single particle confined in the infinite square well potential with variable width and consists of three processes: the isoenergetic process (which has no classical analogs) as well as the isothermal and adiabatic processes. It is found that the engine possesses exotic properties in its performance. The efficiency takes the maximum value when the expansion ratio of the engine is appropriately set, and, in addition, the lower the temperature is, the higher the maximum efficiency becomes, highlighting aspects of the influence of quantum effects on thermodynamics. A comment is also made on the relevance of this engine to that of Carnot.

  19. Testing of Stirling engine solar reflux heat-pipe receivers

    Energy Technology Data Exchange (ETDEWEB)

    Rawlinson, S.; Cordeiro, P.; Dudley, V.; Moss, T.

    1993-07-01

    Alkali metal heat-pipe receivers have been identified as a desirable interface to couple a Stirling-cycle engine with a parabolic dish solar concentrator. The reflux receiver provides power nearly isothermally to the engine heater heads while de-coupling the heater head design from the solar absorber surface design. The independent design of the receiver and engine heater head leads to high system efficiency. Heat pipe reflux receivers have been demonstrated at approximately 30 kW{sub t} power throughput by others. This size is suitable fm engine output powers up to 10 kW{sub e}. Several 25-kW{sub e}, Stirling-cycle engines exist, as well as designs for 75-kW{sub t} parabolic dish solar concentrators. The extension of heat pipe technology from 30 kW{sub t} to 75 kW{sub t} is not trivial. Heat pipe designs are pushed to their limits, and it is critical to understand the flux profiles expected from the dish, and the local performance of the wick structure. Sandia has developed instrumentation to monitor and control the operation of heat pipe reflux receivers to test their throughput limits, and analytical models to evaluate receiver designs. In the past 1.5 years, several heat pipe receivers have been tested on Sandia`s test bed concentrators (TBC`s) and 60-kW{sub t} solar furnace. A screen-wick heat pipe developed by Dynatherm was tested to 27.5 kW{sub t} throughput. A Cummins Power Generation (CPG)/Thermacore 30-kW{sub t} heat pipe was pushed to a throughput of 41 kW{sub t} to verify design models. A Sandia-design screen-wick and artery 75-kW{sub t} heat pipe and a CPG/Thermacore 75-kW{sub t} sintered-wick heat pipe were also limit tested on the TBC. This report reviews the design of these receivers, and compares test results with model predictions.

  20. VHTR engineering design study: intermediate heat exchanger program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-11-01

    The work reported is the result of a follow-on program to earlier Very High Temperature Reactor (VHTR) studies. The primary use of the VHTR is to provide heat for various industrial processes, such as hydrocarbon reforming and coal gasification. For many processes the use of an intermediate heat transfer barrier between the reactor coolant and the process is desirable; for some processes it is mandatory. Various intermediate heat exchanger (IHX) concepts for the VHTR were investigated with respect to safety, cost, and engineering design considerations. The reference processes chosen were steam-hydrocarbon reforming, with emphasis on the chemical heat pipe, and steam gasification of coal. The study investigates the critically important area of heat transfer between the reactor coolant, helium, and the various chemical processes.

  1. VHTR engineering design study: intermediate heat exchanger program. Final report

    International Nuclear Information System (INIS)

    The work reported is the result of a follow-on program to earlier Very High Temperature Reactor (VHTR) studies. The primary use of the VHTR is to provide heat for various industrial processes, such as hydrocarbon reforming and coal gasification. For many processes the use of an intermediate heat transfer barrier between the reactor coolant and the process is desirable; for some processes it is mandatory. Various intermediate heat exchanger (IHX) concepts for the VHTR were investigated with respect to safety, cost, and engineering design considerations. The reference processes chosen were steam-hydrocarbon reforming, with emphasis on the chemical heat pipe, and steam gasification of coal. The study investigates the critically important area of heat transfer between the reactor coolant, helium, and the various chemical processes

  2. Performance and Weight Estimates for an Advanced Open Rotor Engine

    Science.gov (United States)

    Hendricks, Eric S.; Tong, Michael T.

    2012-01-01

    NASA s Environmentally Responsible Aviation Project and Subsonic Fixed Wing Project are focused on developing concepts and technologies which may enable dramatic reductions to the environmental impact of future generation subsonic aircraft. The open rotor concept (also historically referred to an unducted fan or advanced turboprop) may allow for the achievement of this objective by reducing engine fuel consumption. To evaluate the potential impact of open rotor engines, cycle modeling and engine weight estimation capabilities have been developed. The initial development of the cycle modeling capabilities in the Numerical Propulsion System Simulation (NPSS) tool was presented in a previous paper. Following that initial development, further advancements have been made to the cycle modeling and weight estimation capabilities for open rotor engines and are presented in this paper. The developed modeling capabilities are used to predict the performance of an advanced open rotor concept using modern counter-rotating propeller designs. Finally, performance and weight estimates for this engine are presented and compared to results from a previous NASA study of advanced geared and direct-drive turbofans.

  3. Optimal Control of Diesel Engines with Waste Heat Recovery System

    NARCIS (Netherlands)

    Willems, F.P.T.; Donkers, M.C.F.; Kupper, F.

    2014-01-01

    This study presents an integrated energy and emission management strategy for a Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO2-NOx trade-off by minimizing the operational costs associated with fuel and AdBlue consumpti

  4. On-line information resources in heat transfer engineering

    Energy Technology Data Exchange (ETDEWEB)

    Conkling, T.W.

    1983-06-01

    The computerized information retrieval techniques available to those involved in heat transfer engineering are reviewed. The various types of information contained in on-line data bases, the means of accessing it, and the potential benefits to be gained from its use are discussed.

  5. 2014 Joint Conference on Mechanical Design Engineering and Advanced Manufacturing

    CERN Document Server

    Daidie, Alain; Eynard, Benoit; Paredes, Manuel

    2016-01-01

    Covering key topics in the field such as technological innovation, human-centered sustainable engineering and manufacturing, and manufacture at a global scale in a virtual world, this book addresses both advanced techniques and industrial applications of key research in interactive design and manufacturing. Featuring the full papers presented at the 2014 Joint Conference on Mechanical Design Engineering and Advanced Manufacturing, which took place in June 2014 in Toulouse, France, it presents recent research and industrial success stories related to implementing interactive design and manufacturing solutions.

  6. Bioreactors Drive Advances in Tissue Engineering

    Science.gov (United States)

    2012-01-01

    It was an unlikely moment for inspiration. Engineers David Wolf and Ray Schwarz stopped by their lab around midday. Wolf, of Johnson Space Center, and Schwarz, with NASA contractor Krug Life Sciences (now Wyle Laboratories Inc.), were part of a team tasked with developing a unique technology with the potential to enhance medical research. But that wasn t the focus at the moment: The pair was rounding up colleagues interested in grabbing some lunch. One of the lab s other Krug engineers, Tinh Trinh, was doing something that made Wolf forget about food. Trinh was toying with an electric drill. He had stuck the barrel of a syringe on the bit; it spun with a high-pitched whirr when he squeezed the drill s trigger. At the time, a multidisciplinary team of engineers and biologists including Wolf, Schwarz, Trinh, and project manager Charles D. Anderson, who formerly led the recovery of the Apollo capsules after splashdown and now worked for Krug was pursuing the development of a technology called a bioreactor, a cylindrical device used to culture human cells. The team s immediate goal was to grow human kidney cells to produce erythropoietin, a hormone that regulates red blood cell production and can be used to treat anemia. But there was a major barrier to the technology s success: Moving the liquid growth media to keep it from stagnating resulted in turbulent conditions that damaged the delicate cells, causing them to quickly die. The team was looking forward to testing the bioreactor in space, hoping the device would perform more effectively in microgravity. But on January 28, 1986, the Space Shuttle Challenger broke apart shortly after launch, killing its seven crewmembers. The subsequent grounding of the shuttle fleet had left researchers with no access to space, and thus no way to study the effects of microgravity on human cells. As Wolf looked from Trinh s syringe-capped drill to where the bioreactor sat on a workbench, he suddenly saw a possible solution to both

  7. Orbit Transfer Rocket Engine Technology Program: Advanced engine study, task D.1/D.3

    Science.gov (United States)

    Martinez, A.; Erickson, C.; Hines, B.

    1986-01-01

    Concepts for space maintainability of OTV engines were examined. An engine design was developed which was driven by space maintenance requirements and by a failure mode and effects (FME) analysis. Modularity within the engine was shown to offer cost benefits and improved space maintenance capabilities. Space operable disconnects were conceptualized for both engine change-out and for module replacement. Through FME mitigation the modules were conceptualized to contain the least reliable and most often replaced engine components. A preliminary space maintenance plan was developed around a controls and condition monitoring system using advanced sensors, controls, and condition monitoring concepts. A complete engine layout was prepared satisfying current vehicle requirements and utilizing projected component advanced technologies. A technology plan for developing the required technology was assembled.

  8. Recent Advances in Intelligent Engineering Systems

    CERN Document Server

    Klempous, Ryszard; Araujo, Carmen

    2012-01-01

    This volume is a collection of 19 chapters on intelligent engineering systems written by respectable experts of the fields. The book consists of three parts. The first part is devoted to the foundational aspects of computational intelligence. It consists of 8 chapters that include studies in genetic algorithms, fuzzy logic connectives, enhanced intelligence in product models, nature-inspired optimization technologies, particle swarm optimization, evolution algorithms, model complexity of neural networks, and fitness landscape analysis. The second part contains contributions to intelligent computation in networks, presented in 5 chapters. The covered subjects include the application of self-organizing maps for early detection of denial of service attacks, combating security threats via immunity and adaptability in cognitive radio networks, novel modifications in WSN network design for improved SNR and reliability, a conceptual framework for the design of audio based cognitive infocommunication channels, and a ...

  9. An Exact Efficiency Formula for Holographic Heat Engines

    CERN Document Server

    Johnson, Clifford V

    2016-01-01

    Further consideration is given to the efficiency of black hole heat engines that perform mechanical work via the pdV terms present in the First Law of extended gravitational thermodynamics. It is noted that when the engine cycle is a rectangle with sides parallel to the (p,V) axes, the efficiency can be written simply in terms of the mass of the black hole evaluated at the corners. Since an arbitrary cycle can be approximated to any desired accuracy by a tiling of rectangles, a general geometrical algorithm for computing the efficiency follows. A simple generalization of the algorithm renders it applicable to more general classes of heat engine, beyond the black hole context.

  10. Efficiency at maximum power of thermally coupled heat engines.

    Science.gov (United States)

    Apertet, Y; Ouerdane, H; Goupil, C; Lecoeur, Ph

    2012-04-01

    We study the efficiency at maximum power of two coupled heat engines, using thermoelectric generators (TEGs) as engines. Assuming that the heat and electric charge fluxes in the TEGs are strongly coupled, we simulate numerically the dependence of the behavior of the global system on the electrical load resistance of each generator in order to obtain the working condition that permits maximization of the output power. It turns out that this condition is not unique. We derive a simple analytic expression giving the relation between the electrical load resistance of each generator permitting output power maximization. We then focus on the efficiency at maximum power (EMP) of the whole system to demonstrate that the Curzon-Ahlborn efficiency may not always be recovered: The EMP varies with the specific working conditions of each generator but remains in the range predicted by irreversible thermodynamics theory. We discuss our results in light of nonideal Carnot engine behavior.

  11. Identifying student difficulties with entropy, heat engines, and the Carnot cycle

    Science.gov (United States)

    Smith, Trevor I.; Christensen, Warren M.; Mountcastle, Donald B.; Thompson, John R.

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] We report on several specific student difficulties regarding the second law of thermodynamics in the context of heat engines within upper-division undergraduate thermal physics courses. Data come from ungraded written surveys, graded homework assignments, and videotaped classroom observations of tutorial activities. Written data show that students in these courses do not clearly articulate the connection between the Carnot cycle and the second law after lecture instruction. This result is consistent both within and across student populations. Observation data provide evidence for myriad difficulties related to entropy and heat engines, including students' struggles in reasoning about situations that are physically impossible and failures to differentiate between differential and net changes of state properties of a system. Results herein may be seen as the application of previously documented difficulties in the context of heat engines, but others are novel and emphasize the subtle and complex nature of cyclic processes and heat engines, which are central to the teaching and learning of thermodynamics and its applications. Moreover, the sophistication of these difficulties is indicative of the more advanced thinking required of students at the upper division, whose developing knowledge and understanding give rise to questions and struggles that are inaccessible to novices.

  12. Review of organic Rankine cycles for internal combustion engine exhaust waste heat recovery

    International Nuclear Information System (INIS)

    Escalating fuel prices and future carbon dioxide emission limits are creating a renewed interest in methods to increase the thermal efficiency of engines beyond the limit of in-cylinder techniques. One promising mechanism that accomplishes both objectives is the conversion of engine waste heat to a more useful form of energy, either mechanical or electrical. This paper reviews the history of internal combustion engine exhaust waste heat recovery focusing on Organic Rankine Cycles since this thermodynamic cycle works well with the medium-grade energy of the exhaust. Selection of the cycle expander and working fluid are the primary focus of the review, since they are regarded as having the largest impact on system performance. Results demonstrate a potential fuel economy improvement around 10% with modern refrigerants and advancements in expander technology. -- Highlights: ► This review article focuses on engine exhaust waste heat recovery works. ► The organic Rankine cycle is superior for low to medium exergy heat sources. ► Working fluid and expander selection strongly influence efficiency. ► Several authors demonstrate viable systems for vehicle installation

  13. Powder metallurgy bearings for advanced rocket engines

    Science.gov (United States)

    Fleck, J. N.; Killman, B. J.; Munson, H.E.

    1985-01-01

    Traditional ingot metallurgy was pushed to the limit for many demanding applications including antifriction bearings. New systems require corrosion resistance, better fatigue resistance, and higher toughness. With conventional processing, increasing the alloying level to achieve corrosion resistance results in a decrease in other properties such as toughness. Advanced powder metallurgy affords a viable solution to this problem. During powder manufacture, the individual particle solidifies very rapidly; as a consequence, the primary carbides are very small and uniformly distributed. When properly consolidated, this uniform structure is preserved while generating a fully dense product. Element tests including rolling contact fatigue, hot hardness, wear, fracture toughness, and corrosion resistance are underway on eleven candidate P/M bearing alloys and results are compared with those for wrought 440C steel, the current SSME bearing material. Several materials which offer the promise of a significant improvement in performance were identified.

  14. Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Raade, Justin; Roark, Thomas; Vaughn, John; Bradshaw, Robert

    2013-07-22

    Concentrating solar power (CSP) facilities are comprised of many miles of fluid-filled pipes arranged in large grids with reflective mirrors used to capture radiation from the sun. Solar radiation heats the fluid which is used to produce steam necessary to power large electricity generation turbines. Currently, organic, oil-based fluid in the pipes has a maximum temperature threshold of 400 °C, allowing for the production of electricity at approximately 15 cents per kilowatt hour. The DOE hopes to foster the development of an advanced heat transfer fluid that can operate within higher temperature ranges. The new heat transfer fluid, when used with other advanced technologies, could significantly decrease solar electricity cost. Lower costs would make solar thermal electricity competitive with gas and coal and would offer a clean, renewable source of energy. Molten salts exhibit many desirable heat transfer qualities within the range of the project objectives. Halotechnics developed advanced heat transfer fluids (HTFs) for application in solar thermal power generation. This project focused on complex mixtures of inorganic salts that exhibited a high thermal stability, a low melting point, and other favorable characteristics. A high-throughput combinatorial research and development program was conducted in order to achieve the project objective. Over 19,000 candidate formulations were screened. The workflow developed to screen various chemical systems to discover salt formulations led to mixtures suitable for use as HTFs in both parabolic trough and heliostat CSP plants. Furthermore, salt mixtures which will not interfere with fertilizer based nitrates were discovered. In addition for use in CSP, the discovered salt mixtures can be applied to electricity storage, heat treatment of alloys and other industrial processes.

  15. Maximum Power Output of Quantum Heat Engine with Energy Bath

    Directory of Open Access Journals (Sweden)

    Shengnan Liu

    2016-05-01

    Full Text Available The difference between quantum isoenergetic process and quantum isothermal process comes from the violation of the law of equipartition of energy in the quantum regime. To reveal an important physical meaning of this fact, here we study a special type of quantum heat engine consisting of three processes: isoenergetic, isothermal and adiabatic processes. Therefore, this engine works between the energy and heat baths. Combining two engines of this kind, it is possible to realize the quantum Carnot engine. Furthermore, considering finite velocity of change of the potential shape, here an infinite square well with moving walls, the power output of the engine is discussed. It is found that the efficiency and power output are both closely dependent on the initial and final states of the quantum isothermal process. The performance of the engine cycle is shown to be optimized by control of the occupation probability of the ground state, which is determined by the temperature and the potential width. The relation between the efficiency and power output is also discussed.

  16. Test of an improved gas engine-driven heat pump

    Energy Technology Data Exchange (ETDEWEB)

    Chen, F.C.; Mei, V.C.; Domitrovic, R.

    1998-01-01

    A new generation of natural gas engine-driven heat pump (GEHP) was introduced to the marketplace recently. While the units installed have performed exceptionally well and earned rave reviews for comfort and savings on utility bills, the higher initial cost and relatively long payback time have affected the wide commercialization of this advanced technology. According to a study done for the southeastern US in the Atlanta metropolitan area, the annual operating cost of the GEHP is less than that of a baseline system consisting of a 92% efficiency gas furnace and a SEER 12 air conditioner. The estimated payback time is around 10 years to cover the difference in initial equipment price between the new and the baseline system. It has been projected that a liquid overfeed (LOF) recuperative cycle concept can simplify the hardware design of a GEHP, resulting in reduced cost and improved performance. Laboratory tests have shown that LOF would improve the energy efficiency of a vapor compression unit by 10%. In addition, LOF will reduce the compressor pressure ratio and thereby improve equipment reliability. Based on the assumed performance improvements and cost reduction, a simple payback calculation indicates LOF can reduce the payback time for an improved GEHP considerably in the Atlanta metropolitan area. Laboratory testing of an improved GEHP has been carried out at Oak Ridge National Laboratory. This paper reports on the equipment design modifications required to implement LOF and the results of performance tests at steady-state conditions. The preliminary cooling test results have indicated that the LOF in conjunction with orifice-type expander can be applied to GEHP for cost and performance enhancements. The improvements in energy efficiency will be dependent upon several controlling parameters including the proper refrigeration charge, the selected ambient temperature, and the system operating condition.

  17. Recent Advances and Future Directions for Quality Engineering

    DEFF Research Database (Denmark)

    Vining, Geoff; Kulahci, Murat; Pedersen, Søren

    2015-01-01

    The origins of quality engineering are in manufacturing, where quality engineers apply basic statistical methodologies to improve the quality and productivity of products and processes. In the past decade, people have discovered that these methodologies are effective for improving almost any type...... of system or process, such as financial, health care, and supply chains. This paper begins with a review of key advances and trends within quality engineering over the past decade. The second part uses the first part as a foundation to outline new application areas for the field. It also discusses how...... quality engineering needs to evolve in order to make significant contributions to these new areas. © 2015 The Authors Quality and Reliability Engineering International Published by John Wiley & Sons Ltd....

  18. Thermodynamics an advanced textbook for chemical engineers

    CERN Document Server

    Astarita, Gianni

    1989-01-01

    If a Writer would know how to behave himself with relation to Posterity; let him consider in old Books, what he finds, that he is glad to know; and what Omissions he most laments. Jonathan Swift This book emerges from a long story of teaching. I taught chemical engineering thermodynamics for about ten years at the University of Naples in the 1960s, and I still remember the awkwardness that I felt about any textbook I chose to consider-all of them seemed to be vague at best, and the standard of logical rigor seemed immensely inferior to what I could find in books on such other of the students in my first class subjects as calculus and fluid mechanics. One (who is now Prof. F. Gioia of the University of Naples) once asked me a question which I have used here as Example 4. 2-more than 20 years have gone by, and I am still waiting for a more intelligent question from one of my students. At the time, that question compelled me to answer in a way I didn't like, namely "I'll think about it, and I hope I'll have the ...

  19. Advancement in Engineering Technology: A Novel Perspective

    DEFF Research Database (Denmark)

    Kalia, Kartik; Rehman, M. Atiqur; Hussain, Dil muhammed Akbar;

    2016-01-01

    In this paper we will be discussing about the impact of technology on our daily lives. How everybody is dependent upon technology in one or other way. Methods/Statistical Analysis: Technology has played a significant role in the evolution of the society. Science has produced many new ideas but to...... the environment on a great scale; in some cases, technology is even replacing human being or use of manpower. So proper counter measures have been mentioned, which can be used to control and limit harmful effect....... but to harvest those ideas, technology is a must. With the huge requirement of engineering equipment's, the industry needs specialists who can manage and operate these technologies. Detailed information about the merits and demerits of technology is also mentioned in this paper. Findings: Technology has affected......In this paper we will be discussing about the impact of technology on our daily lives. How everybody is dependent upon technology in one or other way. Methods/Statistical Analysis: Technology has played a significant role in the evolution of the society. Science has produced many new ideas...

  20. Advanced High-Temperature Engine Materials Technology Progresses

    Science.gov (United States)

    1997-01-01

    The objective of the Advanced High Temperature Engine Materials Technology Program (HITEMP) at the NASA Lewis Research Center is to generate technology for advanced materials and structural analysis that will increase fuel economy, improve reliability, extend life, and reduce operating costs for 21st century civil propulsion systems. The primary focus is on fan and compressor materials (polymer-matrix composites - PMC's), compressor and turbine materials (superalloys, and metal-matrix and intermetallic-matrix composites - MMC's and IMC's), and turbine materials (ceramic-matrix composites - CMC's). These advanced materials are being developed in-house by Lewis researchers and on grants and contracts.

  1. Optimal configuration for a finite high-temperature source heat engine cycle with the complex heat transfer law

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The optimal configuration of a heat engine operating between a finite high-temperature source and an infinite low-temperature reservoir is derived by using finite time thermodynamics based on a complex heat transfer law,including Newtonian heat transfer law,linear phenomenological heat transfer law,radiative heat transfer law,Dulong-Petit heat transfer law,generalized convective heat transfer law and generalized radiative heat transfer law,q ∝(△T n). In the engine model the only irreversibility of finite rate heat transfer is considered. The optimal relation between the power output and efficiency of the heat engine is also derived by using an equivalent temperature of the hot reservoir. The obtained results include those obtained in recent literature and can provide some theoretical guidance for the designs of practical engines.

  2. Optimal configuration for a finite high-temperature source heat engine cycle with the complex heat transfer law

    Institute of Scientific and Technical Information of China (English)

    LI Jun; CHEN LinGen; SUN FengRui

    2009-01-01

    The optimal configuration of a heat engine operating between a finite high-temperature source and an infinite low-temperature reservoir is derived by using finite time thermodynamics based on a complex heat transfer law, including Newtonian heat transfer law, linear phenomenological heat transfer law, radiative heat transfer law, Dulong-Petit heat transfer law, generalized convective heat transfer law and generalized radiative heat transfer law, q∝ (△Tn). In the engine model the only irreversibility of finite rate heat transfer is considered. The optimal relation between the power output and efficiency of the heat engine is also derived by using an equivalent temperature of the hot reservoir. The obtained re-sults include those obtained in recent literature and can provide some theoretical guidance for the de-signs of practical engines.

  3. Maximum work for Carnot-like heat engines with infinite heat source

    CERN Document Server

    Long, Rui

    2014-01-01

    An analysis of efficiency and its bounds at maximum work output for Carnot-like heat engines is conducted. The heat transfer processes are described by the linear law with time-dependent heat conductance. The upper bound of efficiency is found to be the CA efficiency,and is independent of the time duration completing each process and the time-dependent conductance. We prove that even the working medium exchanges heat sufficiently with the heat reservoirs, the work which could be extracted is finite and limited. The optimal temperature profiles in the heat exchanging processes are also analyzed. When the dimensionless contact times satisfy certain relations,the endoreversible model is recovered.

  4. Sino-UX Advanced Engineering Cooperation Set Off

    Institute of Scientific and Technical Information of China (English)

    Alice

    2009-01-01

    @@ Asignificant marketing document produced by UK Trade & Investment (UKTI) to promote greater bilateral trade and investment co-operation between the UK and China in the area of advanced engineering was launched on 11 March,Beijing,by HM Ambassador,Sir William Erhman,UK Ambassador to China.

  5. Stem and progenitor cells: advancing bone tissue engineering.

    Science.gov (United States)

    Tevlin, R; Walmsley, G G; Marecic, O; Hu, Michael S; Wan, D C; Longaker, M T

    2016-04-01

    Unlike many other postnatal tissues, bone can regenerate and repair itself; nevertheless, this capacity can be overcome. Traditionally, surgical reconstructive strategies have implemented autologous, allogeneic, and prosthetic materials. Autologous bone--the best option--is limited in supply and also mandates an additional surgical procedure. In regenerative tissue engineering, there are myriad issues to consider in the creation of a functional, implantable replacement tissue. Importantly, there must exist an easily accessible, abundant cell source with the capacity to express the phenotype of the desired tissue, and a biocompatible scaffold to deliver the cells to the damaged region. A literature review was performed using PubMed; peer-reviewed publications were screened for relevance in order to identify key advances in stem and progenitor cell contribution to the field of bone tissue engineering. In this review, we briefly introduce various adult stem cells implemented in bone tissue engineering such as mesenchymal stem cells (including bone marrow- and adipose-derived stem cells), endothelial progenitor cells, and induced pluripotent stem cells. We then discuss numerous advances associated with their application and subsequently focus on technological advances in the field, before addressing key regenerative strategies currently used in clinical practice. Stem and progenitor cell implementation in bone tissue engineering strategies have the ability to make a major impact on regenerative medicine and reduce patient morbidity. As the field of regenerative medicine endeavors to harness the body's own cells for treatment, scientific innovation has led to great advances in stem cell-based therapies in the past decade.

  6. Engineering development of advanced froth flotation. Volume 2, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ferris, D.D.; Bencho, J.R.; Torak, E.R. [ICF Kaiser Engineers, Inc., Pittsburgh, PA (United States)

    1995-03-01

    This report is an account of findings related to the Engineering and Development of Advanced Froth Flotation project. The results from benchscale and proof-of-concept (POC) level testing are presented and the important results from this testing are used to refine a conceptual design and cost estimate for a 20 TPH Semi-Works Facility incorporating the final proposed technology.

  7. A novel heat engine for magnetizing superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, T A; Hong, Z; Zhu, X [Cambridge University Engineering Department, Trumpington Street, CB2 1PZ (United Kingdom); Krabbes, G [IFW Dresden, Helmholtzstrasse 20, 01069 Dresden (Germany)

    2008-03-01

    The potential of bulk melt-processed YBCO single domains to trap significant magnetic fields (Tomita and Murakami 2003 Nature 421 517-20; Fuchs et al 2000 Appl. Phys. Lett. 76 2107-9) at cryogenic temperatures makes them particularly attractive for a variety of engineering applications including superconducting magnets, magnetic bearings and motors (Coombs et al 1999 IEEE Trans. Appl. Supercond. 9 968-71; Coombs et al 2005 IEEE Trans. Appl. Supercond. 15 2312-5). It has already been shown that large fields can be obtained in single domain samples at 77 K. A range of possible applications exist in the design of high power density electric motors (Jiang et al 2006 Supercond. Sci. Technol. 19 1164-8). Before such devices can be created a major problem needs to be overcome. Even though all of these devices use a superconductor in the role of a permanent magnet and even though the superconductor can trap potentially huge magnetic fields (greater than 10 T) the problem is how to induce the magnetic fields. There are four possible known methods: (1) cooling in field; (2) zero field cooling, followed by slowly applied field; (3) pulse magnetization; (4) flux pumping. Any of these methods could be used to magnetize the superconductor and this may be done either in situ or ex situ. Ideally the superconductors are magnetized in situ. There are several reasons for this: first, if the superconductors should become demagnetized through (i) flux creep, (ii) repeatedly applied perpendicular fields (Vanderbemden et al 2007 Phys. Rev. B 75 (17)) or (iii) by loss of cooling then they may be re-magnetized without the need to disassemble the machine; secondly, there are difficulties with handling very strongly magnetized material at cryogenic temperatures when assembling the machine; thirdly, ex situ methods would require the machine to be assembled both cold and pre-magnetized and would offer significant design difficulties. Until room temperature superconductors can be prepared, the

  8. Size dependence of efficiency at maximum power of heat engine

    KAUST Repository

    Izumida, Y.

    2013-10-01

    We perform a molecular dynamics computer simulation of a heat engine model to study how the engine size difference affects its performance. Upon tactically increasing the size of the model anisotropically, we determine that there exists an optimum size at which the model attains the maximum power for the shortest working period. This optimum size locates between the ballistic heat transport region and the diffusive heat transport one. We also study the size dependence of the efficiency at the maximum power. Interestingly, we find that the efficiency at the maximum power around the optimum size attains a value that has been proposed as a universal upper bound, and it even begins to exceed the bound as the size further increases. We explain this behavior of the efficiency at maximum power by using a linear response theory for the heat engine operating under a finite working period, which naturally extends the low-dissipation Carnot cycle model [M. Esposito, R. Kawai, K. Lindenberg, C. Van den Broeck, Phys. Rev. Lett. 105, 150603 (2010)]. The theory also shows that the efficiency at the maximum power under an extreme condition may reach the Carnot efficiency in principle.© EDP Sciences Società Italiana di Fisica Springer-Verlag 2013.

  9. Neural engineering from advanced biomaterials to 3D fabrication techniques

    CERN Document Server

    Kaplan, David

    2016-01-01

    This book covers the principles of advanced 3D fabrication techniques, stem cells and biomaterials for neural engineering. Renowned contributors cover topics such as neural tissue regeneration, peripheral and central nervous system repair, brain-machine interfaces and in vitro nervous system modeling. Within these areas, focus remains on exciting and emerging technologies such as highly developed neuroprostheses and the communication channels between the brain and prostheses, enabling technologies that are beneficial for development of therapeutic interventions, advanced fabrication techniques such as 3D bioprinting, photolithography, microfluidics, and subtractive fabrication, and the engineering of implantable neural grafts. There is a strong focus on stem cells and 3D bioprinting technologies throughout the book, including working with embryonic, fetal, neonatal, and adult stem cells and a variety of sophisticated 3D bioprinting methods for neural engineering applications. There is also a strong focus on b...

  10. Combustion behaviors of a compression-ignition engine fueled with diesel/methanol blends under various fuel delivery advance angles.

    Science.gov (United States)

    Huang, Zuohua; Lu, Hongbing; Jiang, Deming; Zeng, Ke; Liu, Bing; Zhang, Junqiang; Wang, Xibin

    2004-12-01

    A stabilized diesel/methanol blend was described and the basic combustion behaviors based on the cylinder pressure analysis was conducted in a compression-ignition engine. The study showed that increasing methanol mass fraction of the diesel/methanol blends would increase the heat release rate in the premixed burning phase and shorten the combustion duration of the diffusive burning phase. The ignition delay increased with the advancing of the fuel delivery advance angle for both the diesel fuel and the diesel/methanol blends. For a specific fuel delivery advance angle, the ignition delay increased with the increase of the methanol mass fraction (oxygen mass fraction) in the fuel blends and the behaviors were more obvious at low engine load and/or high engine speed. The rapid burn duration and the total combustion duration increased with the advancing of the fuel delivery advance angle. The centre of the heat release curve was close to the top-dead-centre with the advancing of the fuel delivery advance angle. Maximum cylinder gas pressure increased with the advancing of the fuel delivery advance angle, and the maximum cylinder gas pressure of the diesel/methanol blends gave a higher value than that of the diesel fuel. The maximum mean gas temperature remained almost unchanged or had a slight increase with the advancing of the fuel delivery advance angle, and it only slightly increased for the diesel/methanol blends compared to that of the diesel fuel. The maximum rate of pressure rise and the maximum rate of heat release increased with the advancing of the fuel delivery advance angle of the diesel/methanol blends and the value was highest for the diesel/methanol blends.

  11. Advanced Supermarket Refrigeration / Heat Recovery Systems. Annex 26

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-06-01

    This CD-ROM contains the proceedings (16 papers) of a workshop (held in Stockholm, Sweden, 2-3 October 2000) on Advanced Supermarket Refrigeration/ Heat Recovery Systems. Sessions at the workshop discussed: The supermarket as a system, Analysis and modelling, Field experiences and Energy-efficient equipment. The 16 papers presented at the workshop provide a useful information source for all involved in supermarket refrigeration.

  12. Advances in heat pump assisted distillation column: A review

    International Nuclear Information System (INIS)

    Highlights: • This article reviews the heat pump assisted distillation (HPAD) technologies. • It covers the use of vapor recompression in both batch and continuous columns. • It identifies future challenges involved in HPAD schemes. - Abstract: Progressive depletion of conventional fossil fuels with increasing energy demand and federal laws on environmental emissions have stimulated intensive research in improving energy efficiency of the existing fractionation units. In this light, the heat pump assisted distillation (HPAD) scheme has emerged as an attractive separation technology with great potential for energy saving. This paper aims at providing a state-of-the-art assessment of the research work carried out so far on heat pumping systems and identifies future challenges in this respect. At first, the HPAD technology is introduced with its past progresses that have centered upon column configuration, modeling, design and optimization, economic feasibility and experimental verification for steady state operation. Then the focus is turned to review the progress of a few emerging heat integration approaches that leads to motivate the researchers for further advancement of the HPAD scheme. Presenting the recently developed hybrid HPAD based heat integrated distillation configurations, the feasibility of heat pumping in batch processing is discussed. Finally the work highlights the opportunities and future challenges of the potential methodology

  13. A heating system for piglets in farrowing house using waste heat from biogas engine

    Directory of Open Access Journals (Sweden)

    Payungsak Junyusen

    2008-12-01

    Full Text Available The aim of this study is to design and test a heating system for piglets in farrowing house by utilising the waste heat from a biogas engine as a heat source. The study was separated into three parts: the study on the biogas combined heat and power plant, the investigation on the properties of the heat panel, and the installation and testing of the heating system. From the experiment, the condition producing 60 kW of electrical power was a proper one, in which electrical efficiency and specific fuel consumption were 14% and 1.22 m3/kWh respectively. Generating both electricity and heat increased the overall efficiency to 37.7% and decreased the specific fuel consumption to 0.45 m3/kWh. The heat panel, which was made of a plastic material, had a thermal conductivity of 0.58 W/mC and the maximum compressive force and operating pressure of 8.1 kN and 0.35 bar respectively. The surface temperature of the panel was dependent on the inlet water temperature. When hot water of 44C was supplied into the farrowing house with room temperature of 26C, the average surface temperature was 33C. The developed heating system could provide heat for 4.3 farrowing houses. The payback period of this project was 2.5 years.

  14. Design of a pool boiler heat transport system for a 25 kWe advanced Stirling conversion system

    Science.gov (United States)

    Anderson, W. G.; Rosenfeld, J. H.; Noble, J.; Kesseli, J.

    The overall operating temperature and efficiency of solar-powered Stirling engines can be improved by adding a heat transport system to more uniformly supply heat to the heater head tubes. One heat transport system with favorable characteristics is an alkali metal pool boiler. An alkali metal pool boiler heat transport system was designed for a 25-kW advanced Stirling conversion system (ASCS). Solar energy concentrated on the absorber dome boils a eutectic mixture of sodium and potassium. The alkali metal vapors condense on the heater head tubes, supplying the Stirling engine with a uniform heat flux at a constant temperature. Boiling stability is achieved with the use of an enhanced boiling surface and noncondensible gas.

  15. Advancing metabolic engineering through systems biology of industrial microorganisms.

    Science.gov (United States)

    Dai, Zongjie; Nielsen, Jens

    2015-12-01

    Development of sustainable processes to produce bio-based compounds is necessary due to the severe environmental problems caused by the use of fossil resources. Metabolic engineering can facilitate the development of highly efficient cell factories to produce these compounds from renewable resources. The objective of systems biology is to gain a comprehensive and quantitative understanding of living cells and can hereby enhance our ability to characterize and predict cellular behavior. Systems biology of industrial microorganisms is therefore valuable for metabolic engineering. Here we review the application of systems biology tools for the identification of metabolic engineering targets which may lead to reduced development time for efficient cell factories. Finally, we present some perspectives of systems biology for advancing metabolic engineering further.

  16. Advancing metabolic engineering through systems biology of industrial microorganisms

    DEFF Research Database (Denmark)

    Dai, Zongjie; Nielsen, Jens

    2015-01-01

    resources. The objective of systems biology is to gain a comprehensive and quantitative understanding of living cells and can hereby enhance our ability to characterize and predict cellular behavior. Systems biology of industrial microorganisms is therefore valuable for metabolic engineering. Here we review......Development of sustainable processes to produce bio-based compounds is necessary due to the severe environmental problems caused by the use of fossil resources. Metabolic engineering can facilitate the development of highly efficient cell factories to produce these compounds from renewable...... the application of systems biology tools for the identification of metabolic engineering targets which may lead to reduced development time for efficient cell factories. Finally, we present some perspectives of systems biology for advancing metabolic engineering further....

  17. Advanced Space Propulsion Based on Vacuum (Spacetime Metric) Engineering

    CERN Document Server

    Puthoff, Harold E

    2012-01-01

    A theme that has come to the fore in advanced planning for long-range space exploration is the concept that empty space itself (the quantum vacuum, or spacetime metric) might be engineered so as to provide energy/thrust for future space vehicles. Although far-reaching, such a proposal is solidly grounded in modern physical theory, and therefore the possibility that matter/vacuum interactions might be engineered for space-flight applications is not a priori ruled out. As examples, the current development of theoretical physics addresses such topics as warp drives, traversable wormholes and time machines that provide for such vacuum engineering possibilities. We provide here from a broad perspective the physics and correlates/consequences of the engineering of the spacetime metric.

  18. Effect of Heat Leak and Finite Thermal Capacity on the Optimal Configuration of a Two-Heat-Reservoir Heat Engine for Another Linear Heat Transfer Law

    Directory of Open Access Journals (Sweden)

    Chih Wu

    2003-12-01

    Full Text Available Abstract: Based on a model of a two-heat-reservoir heat engine with a finite high-temperature source and bypass heat leak, the optimal configuration of the cycle is found for the fixed cycle period with another linear heat transfer law . The finite thermal capacity source without heat leak makes the configuration of the cycle to a class of generalized Carnot cycle. The configuration of the cycle with heat leak and finite thermal capacity source is different from others.

  19. Particulate Emissions Hazards Associated with Fueling Heat Engines

    Directory of Open Access Journals (Sweden)

    Robert C. Hendricks

    2011-01-01

    Full Text Available All hydrocarbon- (HC- fueled heat engine exhaust (tailpipe emissions (<10 to 140 nm contribute as health hazards, including emissions from transportation vehicles (e.g., aircraft and other HC-fueled power systems. CO2 emissions are tracked and, when mapped, show outlines of major transportation routes and cities. Particulate pollution affects living tissue and is found to be detrimental to cardiovascular and respiratory systems where ultrafine particulates directly translocate to promote vascular system diseases potentially detectable as organic vapors. This paper discusses aviation emissions, fueling, and certification issues, including heat engine emissions hazards, detection at low levels and tracking of emissions, and alternate energy sources for general aviation.

  20. Work Fluctuation-Dissipation Trade-Off in Heat Engines.

    Science.gov (United States)

    Funo, Ken; Ueda, Masahito

    2015-12-31

    Reducing work fluctuation and dissipation in heat engines or, more generally, information heat engines that perform feedback control, is vital to maximize their efficiency. The same problem arises when we attempt to maximize the efficiency of a given thermodynamic task that undergoes nonequilibrium processes for arbitrary initial and final states. We find that the most general trade-off relation between work fluctuation and dissipation applicable to arbitrary nonequilibrium processes is bounded from below by the information distance characterizing how far the system is from thermal equilibrium. The minimum amount of dissipation is found to be given in terms of the relative entropy and the Renyi divergence, both of which quantify the information distance between the state of the system and the canonical distribution. We give an explicit protocol that achieves the fundamental lower bound of the trade-off relation.

  1. On introduction of artificial intelligence elements to heat power engineering

    Science.gov (United States)

    Dregalin, A. F.; Nazyrova, R. R.

    1993-10-01

    The basic problems of 'the thermodynamic intelligence' of personal computers have been outlined. The thermodynamic intellect of personal computers as a concept has been introduced to heat processes occurring in engines of flying vehicles. In particular, the thermodynamic intellect of computers is determined by the possibility of deriving formal relationships between thermodynamic functions. In chemical thermodynamics, a concept of a characteristic function has been introduced.

  2. On the maximum efficiency of realistic heat engines

    CERN Document Server

    Miranda, E N

    2012-01-01

    In 1975, Courzon and Ahlborn studied a Carnot engine with thermal losses and got an expression for its efficiency that described better the performance of actual heat machines than the traditional result due to Carnot. In their original derivation, time appears explicitly and this is disappointing in the framework of classical thermodynamics. In this note a derivation is given without any explicit reference to time.

  3. Heat Engines for Dilatonic Born-Infeld Black Holes

    CERN Document Server

    Bhamidipati, Chandrasekhar

    2016-01-01

    In the context of dilaton coupled Einstein gravity with negative cosmological constant and a Born-Infeld field, we study heat engines where charged black hole is the working substance and the mechanical work is done via the $pdV$ terms present in the first law of extended gravitational thermodynamics. Efficiency is analyzed as a function of dilaton and Born-Infeld couplings, and results compared with Einstein-Maxwell theory.

  4. Mechanics and model-based control of advanced engineering systems

    CERN Document Server

    Irschik, Hans; Krommer, Michael

    2014-01-01

    Mechanics and Model-Based Control of Advanced Engineering Systems collects 32 contributions presented at the International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines, which took place in St. Petersburg, Russia in July 2012. The workshop continued a series of international workshops, which started with a Japan-Austria Joint Workshop on Mechanics and Model Based Control of Smart Materials and Structures and a Russia-Austria Joint Workshop on Advanced Dynamics and Model Based Control of Structures and Machines. In the present volume, 10 full-length papers based on presentations from Russia, 9 from Austria, 8 from Japan, 3 from Italy, one from Germany and one from Taiwan are included, which represent the state of the art in the field of mechanics and model based control, with particular emphasis on the application of advanced structures and machines.

  5. Role of interference in the photosynthetic heat engine.

    Science.gov (United States)

    Xu, Y Y; Liu, J

    2014-11-01

    The observation of quantum coherence in pigment-protein complexes has attracted considerable interest. One such endeavor entails applying a quantum heat engine to model the photosynthetic reaction center, but the definition of work used is inconsistent with that defined in quantum thermodynamics. Using the definition of work proposed in Weimer et al. [Europhys. Lett. 83, 30008 (2008)EULEEJ0295-507510.1209/0295-5075/83/30008], we investigated two proposals for enhancing the performance of the photosynthetic reaction center. In proposal A, which is similar to that in Dorfman et al. [Proc. Natl. Acad. Sci. USA 110, 2746 (2013)PNASA60027-842410.1073/pnas.1212666110], we found that the power and current-voltage characteristic of the heat engine can be increased by Fano interference but the efficiency cannot. In proposal B, which is similar to that in Creatore et al. [Phys. Rev. Lett. 111, 253601 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.253601], we found that the mechanism of strengthening the performance of the heat engine is invalid; i.e., the dipole-dipole interaction between two electron donors could not increase the power, efficiency, or current-voltage characteristic. PMID:25493763

  6. Heat Extraction Project, geothermal reservoir engineering research at Stanford

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, P.

    1989-01-01

    The main objective of the SGP Heat Extraction Project is to provide a means for estimating the thermal behavior of geothermal fluids produced from fractured hydrothermal resources. The methods are based on estimated thermal properties of the reservoir components, reservoir management planning of production and reinjection, and the mixing of reservoir fluids: geothermal, resource fluid cooled by drawdown and infiltrating groundwater, and reinjected recharge heated by sweep flow through the reservoir formation. Several reports and publications, listed in Appendix A, describe the development of the analytical methods which were part of five Engineer and PhD dissertations, and the results from many applications of the methods to achieve the project objectives. The Heat Extraction Project is to evaluate the thermal properties of fractured geothermal resource and forecasted effects of reinjection recharge into operating reservoirs.

  7. Research and Development on Heat Pipes and Related Thermal Engineering Technologies in Japan

    OpenAIRE

    Oshima, Koichi

    1989-01-01

    Five advanced heat pipe systems utilizing phase changing heat transfer concept are introduced, which are; a separate type heat pipe heat exchanger, a heat pipe turbine, micro heat pipes, a thermocapillary loop system and mass-produced tubes with inner fin. Inside of these heat pipes, contrary to the conventional heat transfer tubes, evaporation and condensation processes are heavily influenced by the surface tension effect. This effect is also dominant in the heat pipes operating under micro-...

  8. Collaboration in Research and Engineering for Advanced Technology.

    Energy Technology Data Exchange (ETDEWEB)

    Vrieling, P. Douglas [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2016-01-01

    SNL/CA proposes the Collaboration in Research and Engineering for Advanced Technology and Education (CREATE) facility to support customer-driven national security mission requirements while demonstrating a fiscally responsible approach to cost-control. SNL/CA realizes that due to the current backlog of capital projects in NNSA that following the normal Line Item process to procure capital funding is unlikely and therefore SNL/CA will be looking at all options including Alternative Financing.

  9. Recent advances of nanotechnology in medicine and engineering

    Science.gov (United States)

    Nobile, Lucio; Nobile, Stefano

    2016-05-01

    The aim of this paper is to give an overview of some advances of nanotechnology in medicine and engineering, exploring typical applications of these emerging technologies. The mechanical properties of such small structures determine their utility and are therefore of considerable interest. Based on nanometer scale tests, a theoretical model to predict the bending strength of a nanobeam is proposed. A fracture approach which takes into account imperfections on the beam surface and crack growth is employed.

  10. Performance characteristics of a combination solar photovoltaic heat engine energy converter

    Science.gov (United States)

    Chubb, Donald L.

    1987-01-01

    A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.

  11. Advanced plant engineering and construction of Japanese ABWRs

    International Nuclear Information System (INIS)

    Remarkable improvement has been made in recent nuclear power plant design and construction in Japan. These many improved engineering technologies has been made a good use in the lately commercial operated two world's first 1,356MWe ABW's (Advanced Boiling Water Reactors), and made a great contribution to the smooth progress and the completion of a highly reliable plant construction. Especially, two engineering technologies, (1), three-dimensional computer aided design system through engineering data-base, and (2), large scale modularising construction method, have been successfully applied as the integrated engineering technologies of the plant construction. And two integrated reviews, 'integrated design review, confirmation of new and changed design and prevention of failure recurrence' in the design stage, and 'constructing plant review' at the site, have been widely and systematically conducted as a link in the chain of steady reliability improvement activities. These advanced and/or continuous and steady technologies are one of most important factors for high reliability through the entire lifetime of a nuclear plant, including planning, design, construction, operation and maintenance stages. (author)

  12. Numerical modeling of some engineering heat transfer problems

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Daniel

    1998-04-01

    Engineering heat transfer problems are very often of a complex nature and most often no analytical solutions exist. One way to create solutions to such problems is to apply numerical methods. This study concerns heat transfer problems with coupled conduction, convection and thermal radiation. Five important but different engineering problems are considered. (1) The transient temperature distribution in a rotating cylinder which is exposed to a time varying incident heat flux, e.g. a nuclear burst, is determined. The cylinder is cooled by mixed convection and thermal radiation. The effects of the leading parameters, such as rotation speed, the cooling parameters and the physical properties of the shell are studied. (2) The cooling of a roll system which is transporting/casting a thin hot plastic film. The leading roll is heated by the hot film, cooled at the interior by forced convection and on the outside by forced convection, thermal radiation and contact with a support roll. The influence of the cooling parameters and the rotation are studied. (3) The heat and mass diffusion in pre-insulated district heating/cooling pipes. The task is to determine the effects of the gas mass transport through the casing of the pipes on the thermal behaviour and effects of condensed water due to the mass diffusion of water vapour. The importance of the density of the casing, the wall thickness of the casing, the thickness of the insulation and the surrounding temperature is revealed. (4) The development of a cooling system for an electrical unit in which a time dependent heat is generated due to the Joule effect. (5) The heat transfer from a rectangular fin in a confined space. The fin is cooled by turbulent forced convection. The turbulence model applied is a low Reynolds k-{epsilon}-model. Predicted results are compared with experimental ones, and a correlation for the Nusselt number is proposed. The effects of thermal radiation for non-participating as well as participating

  13. International Conference on Advances in Tribology and Engineering Systems

    CERN Document Server

    Deheri, Gunamani; Patel, Harshvadan; Mehta, Shreya

    2014-01-01

    This book contains advanced-level research material in the area of lubrication theory and related aspects, presented by eminent researchers during the International Conference on Advances in Tribology and Engineering Systems (ICATES 2013) held at Gujarat Technological University, Ahmedabad, India during October 15–17, 2013. The material in this book represents the advanced field of tribology and reflects the work of many eminent researchers from both India and abroad. The treatment of the presentations is the result of the contributions of several professionals working in the industry and academia. This book will be useful for students, researchers, academicians, and professionals working in the area of tribology, in general, and bearing performance characteristics, in particular, especially from the point-of-view of design. This book will also appeal to researchers and professionals working in fluid-film lubrication and other practical applications of tribology. A wide range of topics has been included des...

  14. Work Output and Efficiency at Maximum Power of Linear Irreversible Heat Engines Operating with a Finite-Sized Heat Source

    Science.gov (United States)

    Izumida, Yuki; Okuda, Koji

    2014-05-01

    We formulate the work output and efficiency for linear irreversible heat engines working between a finite-sized hot heat source and an infinite-sized cold heat reservoir until the total system reaches the final thermal equilibrium state with a uniform temperature. We prove that when the heat engines operate at the maximum power under the tight-coupling condition without heat leakage the work output is just half of the exergy, which is known as the maximum available work extracted from a heat source. As a consequence, the corresponding efficiency is also half of its quasistatic counterpart.

  15. Work output and efficiency at maximum power of linear irreversible heat engines operating with a finite-sized heat source.

    Science.gov (United States)

    Izumida, Yuki; Okuda, Koji

    2014-05-01

    We formulate the work output and efficiency for linear irreversible heat engines working between a finite-sized hot heat source and an infinite-sized cold heat reservoir until the total system reaches the final thermal equilibrium state with a uniform temperature. We prove that when the heat engines operate at the maximum power under the tight-coupling condition without heat leakage the work output is just half of the exergy, which is known as the maximum available work extracted from a heat source. As a consequence, the corresponding efficiency is also half of its quasistatic counterpart.

  16. District heating and gas engine heat pump: Economic analysis based on a case study

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.; Noro, M. [Department of Management and Engineering, University of Padova, Stradella, S. Nicola, 3, 36100 Vicenza (Italy)

    2006-02-01

    'S. Nicola' HVAC plant in Vicenza features innovative and significant energy savings characteristics. It has been set up by a gas engine heat pump (coupled to two condensing boilers) whose performances are here evaluated during three years of operation. Due to a grid expansion, the University received the offer of being connected to the district heating grid. This possibility that is often considered advantageous was economically evaluated. As a result of this, a significant increasing of the building annual energy bill was demonstrated in case of acceptance. (author)

  17. Finite-time exergoeconomic performance of a generalized irreversible Carnot heat engine with complex heat transfer law

    Directory of Open Access Journals (Sweden)

    Jun Li, Lingen Chen, Yanlin Ge, Fengrui Sun

    2015-01-01

    Full Text Available The finite time exergoeconomic performance of the generalized irreversible Carnot heat engine with the losses of heat resistance, heat leakage and internal irreversibility, and with a complex heat transfer law, including generalized convective heat transfer law and generalized radiative heat transfer law is investigated in this paper. The focus of this paper is to obtain the compromised optimization between economics (profit and the energy utilization factor (efficiency for the generalized irreversible Carnot heat engine, by searching the optimum efficiency at maximum profit, which is termed as the finite time exergoeconomic performance bound. The obtained results include those obtained in many literatures and can provide some theoretical guidelines for the design of practical heat engines.

  18. Nanoscale phase engineering of thermal transport with a Josephson heat modulator

    Science.gov (United States)

    Fornieri, Antonio; Blanc, Christophe; Bosisio, Riccardo; D'Ambrosio, Sophie; Giazotto, Francesco

    2016-03-01

    Macroscopic quantum phase coherence has one of its pivotal expressions in the Josephson effect, which manifests itself both in charge and energy transport. The ability to master the amount of heat transferred through two tunnel-coupled superconductors by tuning their phase difference is the core of coherent caloritronics, and is expected to be a key tool in a number of nanoscience fields, including solid-state cooling, thermal isolation, radiation detection, quantum information and thermal logic. Here, we show the realization of the first balanced Josephson heat modulator designed to offer full control at the nanoscale over the phase-coherent component of thermal currents. Our device provides magnetic-flux-dependent temperature modulations up to 40 mK in amplitude with a maximum of the flux-to-temperature transfer coefficient reaching 200 mK per flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the exact correspondence in the phase engineering of charge and heat currents, breaking ground for advanced caloritronic nanodevices such as thermal splitters, heat pumps and time-dependent electronic engines.

  19. Performance Analysis and Optimization of a Solar Powered Stirling Engine with Heat Transfer Considerations

    OpenAIRE

    Chia-En Ho; Chieh-Li Chen; Her-Terng Yau

    2012-01-01

    This paper investigates the optimization of the performance of a solar powered Stirling engine based on finite-time thermodynamics. Heat transference in the heat exchangers between a concentrating solar collector and the Stirling engine is studied. The irreversibility of a Stirling engine is considered with the heat transfer following Newton's law. The power generated by a Stirling engine is used as an objective function for maximum power output design with the concentrating solar collec...

  20. ADVANCED NICKEL-BASED AND NICKEL-IRON-BASED SUPERALLOYS FOR CIVIL ENGINEERING APPLICATIONS

    Institute of Scientific and Technical Information of China (English)

    U. Brill

    2005-01-01

    The use of high-temperature materials is especially important in power station construction,heating systems engineering, furnace industry, chemical and petrochemical industry, waste incineration plants, coal gasification plants and for flying gas turbines in civil and military aircrafts and helicopters. Particularly in recent years, the development of new processes and the drive to improve the economics of existing processes have increased the requirements significantly so that it is necessary to change from well-proven materials to new alloys. Hitherto, heat resistant ferritic steels sufficed in conventional power station constructions for temperatures up to 550℃ newly developed ferritic/martensitic steels provide sufficient strength up to about 600-620℃. In new processes, e.g. fiuidized-bed combustion of coal, process temperatures up to 900℃ occur. However, this is not the upper limit, since in combustion engines, e.g. gas turbines. Material temperatures up to 1100℃ are reached locally. Similar development trends can also be identified in the petrochemical industry and in the heat treatment and furnace engineering. The advance to ever higher material temperatures now not only has the consequence of having to use materials with enhanced high-strength properties, considerable attention now also has to be given to their chemical stability in corrosive media. Therefore not only examples of the use of high-temperature alloys for practical applications will be given but also be contributed to some general rules for material selection with regard to their high-temperature strength and corrosion resistance.

  1. Engineering design aspects of the heat-pipe power system

    Science.gov (United States)

    Capell, B. M.; Houts, M. G.; Poston, D. I.; Berte, M.

    1997-01-01

    The Heat-pipe Power System (HPS) is a near-term, low-cost space power system designed at Los Alamos that can provide up to 1,000 kWt for many space nuclear applications. The design of the reactor is simple, modular, and adaptable. The basic design allows for the use of a variety of power conversion systems and reactor materials (including the fuel, clad, and heat pipes). This paper describes a project that was undertaken to develop a database supporting many engineering aspects of the HPS design. The specific tasks discussed in this paper are: the development of an HPS materials database, the creation of finite element models that will allow a wide variety of investigations, and the verification of past calculations.

  2. Tribopolymerization: An advanced lubrication concept for automotive engines and systems of the future

    Energy Technology Data Exchange (ETDEWEB)

    Furey, M.J. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States); Kajdas, C. [Warsaw Univ. of Technology, Plock (Poland); Kaltenbach, K.W. [Triad Investors Corp., Baltimore, MD (United States)

    1997-12-31

    Advanced lubrication technologies based on the concept of tribopolymerization as a mechanism of boundary lubrication are described. Advantages of this approach as well as potential applications which could have an impact on the design, manufacture, and performance of existing and future automotive engines are presented and discussed. Tribopolymerization, a novel concept of molecular design developed by Furey and Kajdas, involves the continuous formation of thin polymeric films on rubbing surfaces; the protective films formed are self-replenishing. The antiwear compounds developed from this technology are effective with metals as well as ceramics and in the liquid as well as vapor phases. Furthermore, they are ashless and contain no harmful phosphorus or sulfur; and many are biodegradable. Thus, potential applications of this technology are diverse and include a variety of cost/performance/energy/environmental advantages. Examples include the following: (a) machining and cutting applications using thin films to reduce friction and ceramic tool wear; (b) the lubrication of ceramic engines (e.g., low heat rejection diesel engines) or ceramic components; (c) the development of ashless lubricants for existing and future automotive engines to reduce exhaust catalyst poisoning and environmental emissions; (d) ashless antiwear or ``lubricity`` additives for fuels, including gasoline, diesel and jet fuel; (e) vapor phase applications of this technology to high temperature gaseous systems or to fuel injector wear problems associated with the use of natural gas engines; and (f) the use of the concept of tribopolymerization as an enabling technology in the development of new engines and new automotive propulsion systems.

  3. Shape memory alloy heat engines and energy harvesting systems

    Science.gov (United States)

    Browne, Alan L; Johnson, Nancy L; Keefe, Andrew C; Alexander, Paul W; Sarosi, Peter Maxwell; Herrera, Guillermo A; Yates, James Ryan

    2013-12-17

    A heat engine includes a first rotatable pulley and a second rotatable pulled spaced from the first rotatable pulley. A shape memory alloy (SMA) element is disposed about respective portions of the pulleys at an SMA pulley ratio. The SMA element includes first spring coil and a first fiber core within the first spring coil. A timing cable is disposed about disposed about respective portions of the pulleys at a timing pulley ratio, which is different than the SMA pulley ratio. The SMA element converts a thermal energy gradient between the hot region and the cold region into mechanical energy.

  4. Convective Heating of the LIFE Engine Target During Injection

    Energy Technology Data Exchange (ETDEWEB)

    Holdener, D S; Tillack, M S; Wang, X R

    2011-10-24

    Target survival in the hostile, high temperature xenon environment of the proposed Laser Inertial Fusion Energy (LIFE) engine is critical. This work focuses on the flow properties and convective heat load imposed upon the surface of the indirect drive target while traveling through the xenon gas. While this rarefied flow is traditionally characterized as being within the continuum regime, it is approaching transition where conventional CFD codes reach their bounds of operation. Thus ANSYS, specifically the Navier-Stokes module CFX, will be used in parallel with direct simulation Monte Carlo code DS2V and analytically and empirically derived expressions for heat transfer to the hohlraum for validation. Comparison of the viscous and thermal boundary layers of ANSYS and DS2V were shown to be nearly identical, with the surface heat flux varying less than 8% on average. From the results herein, external baffles have been shown to reduce this heat transfer to the sensitive laser entrance hole (LEH) windows and optimize target survival independent of other reactor parameters.

  5. An experimental study of the enhanced heating capacity of an electric heat pump (EHP) using the heat recovered from a gas engine generator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Min; Chang, Se Dong [HAC R and D Laboratory, LG Electronics, 327-23 Gasan-Dong, Geumcheon-gu, Seoul 153-802 (Korea); Lee, Jaekeun; Hwang, Yujin [School of Mechanical Engineering, Pusan National University, San 30, Changjeon-Dong, Keumjeong-Ku, Busan 609-735 (Korea)

    2009-11-15

    This paper is concerned with the effect of recovered heat on the heating capacity of an Electric Heat Pump (EHP), which is supplied with electric power and recovered heat from a gas engine generator system. Two methods of supplying recovery heat are examined: (i) to the refrigerant with the discharge line heat exchanger (HEX), and (ii) to the refrigerant of the evaporator with the sub-evaporator. Heating capacity, input power and coefficient of performance (COP) were investigated and compared for each heat recovery method. Conclusively, we found that the second method was most reasonable to recover wasted heat and increased system COP by 215%. (author)

  6. Recovery of Exhaust Waste Heat for ICE Using the Beta Type Stirling Engine

    Directory of Open Access Journals (Sweden)

    Wail Aladayleh

    2015-01-01

    Full Text Available This paper investigates the potential of utilizing the exhaust waste heat using an integrated mechanical device with internal combustion engine for the automobiles to increase the fuel economy, the useful power, and the environment safety. One of the ways of utilizing waste heat is to use a Stirling engine. A Stirling engine requires only an external heat source as wasted heat for its operation. Because the exhaust gas temperature may reach 200 to 700°C, Stirling engine will work effectively. The indication work, real shaft power and specific fuel consumption for Stirling engine, and the exhaust power losses for IC engine are calculated. The study shows the availability and possibility of recovery of the waste heat from internal combustion engine using Stirling engine.

  7. Computational modeling, optimization and manufacturing simulation of advanced engineering materials

    CERN Document Server

    2016-01-01

    This volume presents recent research work focused in the development of adequate theoretical and numerical formulations to describe the behavior of advanced engineering materials.  Particular emphasis is devoted to applications in the fields of biological tissues, phase changing and porous materials, polymers and to micro/nano scale modeling. Sensitivity analysis, gradient and non-gradient based optimization procedures are involved in many of the chapters, aiming at the solution of constitutive inverse problems and parameter identification. All these relevant topics are exposed by experienced international and inter institutional research teams resulting in a high level compilation. The book is a valuable research reference for scientists, senior undergraduate and graduate students, as well as for engineers acting in the area of computational material modeling.

  8. Engineering of Glasses for Advanced Optical Fiber Applications

    Directory of Open Access Journals (Sweden)

    Nathan Carlie

    2009-12-01

    Full Text Available Advanced optical applications (such as fiber opticsdemand the engineering of innovative materialswhich provide the requisite optical performance in aform with specific functionality necessary for thedesired application. We will report on recent effortsto engineer new non-oxide glasses with tailoredphoto-sensitive response, and multi-component oxideglasses optimized for use in next generation Ramanamplification applications. The ultimate performanceof such glasses relies on control of the formation andstability of defective and/or metastable structuralconfigurations and their impact on physical as well aslinear and nonlinear optical properties. Direct laserwriting has drawn considerable attention since thedevelopment of femtosecond lasers and therecognition that such systems possess the requisiteintensity to modify, reversibly or irreversibly thephysical properties of optical materials. Such“structuring” has emerged as one of several possibleroutes for the fabrication of waveguides and otherphoto-induced structures.

  9. Advances in Research on Genetically Engineered Plants for Metal Resistance

    Institute of Scientific and Technical Information of China (English)

    Ri-Qing Zhang; Chun-Fang Tang; Shi-Zhi Wen; Yun-Guo Liu; Ke-Lin Li

    2006-01-01

    The engineering application of natural hyperaccumulators in removing or inactivating metal pollutants from soil and surface water in field trials mostly presents the insurmountable shortcoming of low efficiency owing to their little biomass and slow growth. Based on further understanding of the molecular mechanism of metal uptake, translocation, and also the separation, identification, and cloning of some related functional genes, this article highlights and summarizes in detail the advances in research on transgenic techniques, such as Agrobacterium tumefaciens-mediated transformation and particle bombardment, in breeding of plants for metal resistance and accumulation, and points out that deepening the development of transgenic plants is one of the efficient approaches to improving phytoremediation efficiency of metal-contaminated environments. From the viewpoint of sustainable development, governments should strengthen support to the development of genetic engineering for metal resistance and accumulation in plants.

  10. Two-phase plate-fin heat exchanger modeling for waste heat recovery systems in diesel engines

    NARCIS (Netherlands)

    Feru, E.; de Jager, B.; Willems, F.; Steinbuch, M.

    2014-01-01

    This paper presents the modeling and model validation for a modular two-phase heat exchanger that recovers energy in heavy-duty diesel engines. The model is developed for temperature and vapor quality prediction and for control design of the waste heat recovery system. In the studied waste heat reco

  11. Advanced Engineering Environment FY09/10 pilot project.

    Energy Technology Data Exchange (ETDEWEB)

    Lamph, Jane Ann; Kiba, Grant W.; Pomplun, Alan R.; Dutra, Edward G.; Sego, Abraham L.

    2010-06-01

    The Advanced Engineering Environment (AEE) project identifies emerging engineering environment tools and assesses their value to Sandia National Laboratories and our partners in the Nuclear Security Enterprise (NSE) by testing them in our design environment. This project accomplished several pilot activities, including: the preliminary definition of an engineering bill of materials (BOM) based product structure in the Windchill PDMLink 9.0 application; an evaluation of Mentor Graphics Data Management System (DMS) application for electrical computer-aided design (ECAD) library administration; and implementation and documentation of a Windchill 9.1 application upgrade. The project also supported the migration of legacy data from existing corporate product lifecycle management systems into new classified and unclassified Windchill PDMLink 9.0 systems. The project included two infrastructure modernization efforts: the replacement of two aging AEE development servers for reliable platforms for ongoing AEE project work; and the replacement of four critical application and license servers that support design and engineering work at the Sandia National Laboratories/California site.

  12. Requirements Development for the NASA Advanced Engineering Environment (AEE)

    Science.gov (United States)

    Rogers, Eric; Hale, Joseph P.; Zook, Keith; Gowda, Sanjay; Salas, Andrea O.

    2003-01-01

    The requirements development process for the Advanced Engineering Environment (AEE) is presented. This environment has been developed to allow NASA to perform independent analysis and design of space transportation architectures and technologies. Given the highly collaborative and distributed nature of AEE, a variety of organizations are involved in the development, operations and management of the system. Furthermore, there are additional organizations involved representing external customers and stakeholders. Thorough coordination and effective communication is essential to translate desired expectations of the system into requirements. Functional, verifiable requirements for this (and indeed any) system are necessary to fulfill several roles. Requirements serve as a contractual tool, configuration management tool, and as an engineering tool, sometimes simultaneously. The role of requirements as an engineering tool is particularly important because a stable set of requirements for a system provides a common framework of system scope and characterization among team members. Furthermore, the requirements provide the basis for checking completion of system elements and form the basis for system verification. Requirements are at the core of systems engineering. The AEE Project has undertaken a thorough process to translate the desires and expectations of external customers and stakeholders into functional system-level requirements that are captured with sufficient rigor to allow development planning, resource allocation and system-level design, development, implementation and verification. These requirements are maintained in an integrated, relational database that provides traceability to governing Program requirements and also to verification methods and subsystem-level requirements.

  13. Design for micro-combined cooling, heating and power systems stirling engines and renewable power systems

    CERN Document Server

    2015-01-01

    ‘Design for Micro-Combined Cooling, Heating & Power Systems’ provides a manual for the technical and structural design of systems for supplying decentralised energy in residential buildings. It presents the micro-combined cooling, heating & power systems Stirling engines & renewable energy sources (mCCHP-SE-RES) systems in an accessible manner both for the public at large, and for professionals who conceive, design or commercialise such systems or their components.  The high performance levels of these systems are demonstrated within the final chapter by the results of an experiment in which a house is equipped with a mCCHP-SE-RES system. The reader is also familiarized with the conceptual, technical and legal aspects of modern domestic energy systems; the components that constitute these systems; and advanced algorithms for achieving the structural and technical design of such systems. In residential buildings, satisfying demands of durable development has gradually evolved from necessity to...

  14. Comparative analysis of compact heat exchangers for application as the intermediate heat exchanger for advanced nuclear reactors

    International Nuclear Information System (INIS)

    Highlights: • Compact heat exchanger designs evaluated for advanced nuclear reactor applications. • Wavy channel PCHE compared with offset strip-fin heat exchanger (OSFHE). • 15° pitch angle wavy channel PCHE offers optimum performance characteristics. • OSFHE exhibits higher pressure drop and lower compactness than other options. • Comparison technique applicable for evaluating candidate heat exchangers designs. - Abstract: A comparative evaluation of alternative compact heat exchanger designs for use as the intermediate heat exchanger in advanced nuclear reactor systems is presented in this article. Candidate heat exchangers investigated included the Printed circuit heat exchanger (PCHE) and offset strip-fin heat exchanger (OSFHE). Both these heat exchangers offer high surface area to volume ratio (a measure of compactness [m2/m3]), high thermal effectiveness, and overall low pressure drop. Helium–helium heat exchanger designs for different heat exchanger types were developed for a 600 MW thermal advanced nuclear reactor. The wavy channel PCHE with a 15° pitch angle was found to offer optimum combination of heat transfer coefficient, compactness and pressure drop as compared to other alternatives. The principles of the comparative analysis presented here will be useful for heat exchanger evaluations in other applications as well

  15. Effect of translucence of engineering ceramics on heat transfer in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Wahiduzzaman, S.; Morel, T. (Integral Technologies, Inc., Westmont, IL (United States))

    1992-04-01

    This report describes the experimental portion of a broader study undertaken to assess the effects of translucence of ceramic materials used as thermal barrier coatings in diesel engines. In an earlier analytical work a parametric study was performed, varying several radiative properties over ranges typical of engineering ceramics, thereby identifying the most important radiative properties and their impact on in-cylinder heat transfer. In the current study these properties were experimentally determined for several specific zirconia coatings considered for thermal barrier applications in diesel engines. The methodology of this study involved formulation of a model capable of describing radiative transfer through a semitransparent medium as a function of three independent model parameters, ie, absorption coefficient, scattering coefficient and refractive index. For the zirconia-based ceramics investigated in this study, it was concluded that for usual coating thicknesses (1.5--2.5 mm) these ceramics are optically thick and hence, are effective as radiative heat transfer barriers. These ceramics possess high scattering coefficients and low absorption coefficients causing them to be highly reflective (60-80%) in the spectral region where thermal radiation is important. The performance of the investigated ceramics and the mechanism of heat transfer were found to depend on surface condition, specifically on soot deposition. Thus, to insure the optimum thermal barrier operation for either clean or heavily sooted surfaces, a ceramic material with high scattering coefficient provides the best choice.

  16. Effect of translucence of engineering ceramics on heat transfer in diesel engines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wahiduzzaman, S.; Morel, T. [Integral Technologies, Inc., Westmont, IL (United States)

    1992-04-01

    This report describes the experimental portion of a broader study undertaken to assess the effects of translucence of ceramic materials used as thermal barrier coatings in diesel engines. In an earlier analytical work a parametric study was performed, varying several radiative properties over ranges typical of engineering ceramics, thereby identifying the most important radiative properties and their impact on in-cylinder heat transfer. In the current study these properties were experimentally determined for several specific zirconia coatings considered for thermal barrier applications in diesel engines. The methodology of this study involved formulation of a model capable of describing radiative transfer through a semitransparent medium as a function of three independent model parameters, ie, absorption coefficient, scattering coefficient and refractive index. For the zirconia-based ceramics investigated in this study, it was concluded that for usual coating thicknesses (1.5--2.5 mm) these ceramics are optically thick and hence, are effective as radiative heat transfer barriers. These ceramics possess high scattering coefficients and low absorption coefficients causing them to be highly reflective (60-80%) in the spectral region where thermal radiation is important. The performance of the investigated ceramics and the mechanism of heat transfer were found to depend on surface condition, specifically on soot deposition. Thus, to insure the optimum thermal barrier operation for either clean or heavily sooted surfaces, a ceramic material with high scattering coefficient provides the best choice.

  17. Magnetic bearings: A key technology for advanced rocket engines?

    Science.gov (United States)

    Girault, J. PH.

    1992-01-01

    For several years, active magnetic bearings (AMB) have demonstrated their capabilities in many fields, from industrial compressors to control wheel suspension for spacecraft. Despite this broad area, no significant advance has been observed in rocket propulsion turbomachinery, where size, efficiency, and cost are crucial design criteria. To this respect, Societe Europeenne de Propulsion (SEP) had funded for several years significant efforts to delineate the advantages and drawbacks of AMB applied to rocket propulsion systems. Objectives of this work, relative technological basis, and improvements are described and illustrated by advanced turbopump layouts. Profiting from the advantages of compact design in cryogenic environments, the designs show considerable improvements in engine life, performances, and reliability. However, these conclusions should still be tempered by high recurrent costs, mainly due to the space-rated electronics. Development work focused on this point and evolution of electronics show the possibility to decrease production costs by an order of magnitude.

  18. Performance Analysis and Optimization of a Solar Powered Stirling Engine with Heat Transfer Considerations

    Directory of Open Access Journals (Sweden)

    Chia-En Ho

    2012-09-01

    Full Text Available This paper investigates the optimization of the performance of a solar powered Stirling engine based on finite-time thermodynamics. Heat transference in the heat exchangers between a concentrating solar collector and the Stirling engine is studied. The irreversibility of a Stirling engine is considered with the heat transfer following Newton's law. The power generated by a Stirling engine is used as an objective function for maximum power output design with the concentrating solar collector temperature and the engine thermal efficiency as the optimization parameters. The maximum output power of engine and its corresponding system parameters are determined using a genetic algorithm.

  19. Biomass and biofuels from microalgae advances in engineering and biology

    CERN Document Server

    Moheimani, Navid Reza; de Boer, Karne; Bahri, Parisa

    2015-01-01

    This comprehensive book details the most recent advances in the microalgae biological sciences and engineering technologies for biomass and biofuel production in order to meet the ongoing need for new and affordable sources of food, chemicals and energy for future generations. The chapters explore new microalgae cultivation techniques, including solid (biofilm) systems, and heterotrophic production methods, while also critically investigating topics such as combining wastewater as a source of nutrients, the effect of CO2 on growth, and converting biomass to methane through anaerobi

  20. Nanoscale biomaterial interface modification for advanced tissue engineering applications

    International Nuclear Information System (INIS)

    Recently, various stem cells, including mesenchymal stem cells (MSCs), have been found to have considerable potential for application in tissue engineering and future advanced therapies due to their biological capability to differentiate into specific lineages. Modified surface properties, such as composition, nano-roughness and wettability, affect the most important processes at the biomaterial interface. The aim of the present is work is to study the stem cells' (MSCs) adhesive potential, morphology, phenotypical characteristics in in vitro tests, and to distinguish betwen the different factors influencing the cell/biomaterial interaction, such as nano-topography, surface chemistry and surface free energy.

  1. Advancements in Afterbody Radiative Heating Simulations for Earth Entry

    Science.gov (United States)

    Johnston, Christopher O.; Panesi, Marco; Brandis, Aaron M.

    2016-01-01

    Four advancements to the simulation of backshell radiative heating for Earth entry are presented. The first of these is the development of a flow field model that treats electronic levels of the dominant backshell radiator, N, as individual species. This is shown to allow improvements in the modeling of electron-ion recombination and two-temperature modeling, which are shown to increase backshell radiative heating by 10 to 40%. By computing the electronic state populations of N within the flow field solver, instead of through the quasi-steady state approximation in the radiation code, the coupling of radiative transition rates to the species continuity equations for the levels of N, including the impact of non-local absorption, becomes feasible. Implementation of this additional level of coupling between the flow field and radiation codes represents the second advancement presented in this work, which is shown to increase the backshell radiation by another 10 to 50%. The impact of radiative transition rates due to non-local absorption indicates the importance of accurate radiation transport in the relatively complex flow geometry of the backshell. This motivates the third advancement, which is the development of a ray-tracing radiation transport approach to compute the radiative transition rates and divergence of the radiative flux at every point for coupling to the flow field, therefore allowing the accuracy of the commonly applied tangent-slab approximation to be assessed for radiative source terms. For the sphere considered at lunar-return conditions, the tangent-slab approximation is shown to provide a sufficient level of accuracy for the radiative source terms, even for backshell cases. This is in contrast to the agreement between the two approaches for computing the radiative flux to the surface, which differ by up to 40%. The final advancement presented is the development of a nonequilibrium model for NO radiation, which provides significant backshell

  2. Entropic anomaly and maximal efficiency of microscopic heat engines.

    Science.gov (United States)

    Bo, Stefano; Celani, Antonio

    2013-05-01

    The efficiency of microscopic heat engines in a thermally heterogenous environment is considered. We show that-as a consequence of the recently discovered entropic anomaly-quasistatic engines, whose efficiency is maximal in a fluid at uniform temperature, have in fact vanishing efficiency in the presence of temperature gradients. For slow cycles the efficiency falls off as the inverse of the period. The maximum efficiency is reached at a finite value of the cycle period that is inversely proportional to the square root of the gradient intensity. The relative loss in maximal efficiency with respect to the thermally homogeneous case grows as the square root of the gradient. As an illustration of these general results, we construct an explicit, analytically solvable example of a Carnot stochastic engine. In this thought experiment, a Brownian particle is confined by a harmonic trap and immersed in a fluid with a linear temperature profile. This example may serve as a template for the design of real experiments in which the effect of the entropic anomaly can be measured.

  3. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    Energy Technology Data Exchange (ETDEWEB)

    Victor Wong; Tian Tian; Luke Moughon; Rosalind Takata; Jeffrey Jocsak

    2005-09-30

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships between design parameters and friction losses. Low friction ring designs have already been recommended in a previous phase, with full-scale engine validation partially completed. Current accomplishments include the addition of several additional power cylinder design areas to the overall system analysis. These include analyses of lubricant and cylinder surface finish and a parametric study of piston design. The Waukesha engine was found to be already well optimized in the areas of lubricant, surface skewness and honing cross-hatch angle, where friction reductions of 12% for lubricant, and 5% for surface characteristics, are projected. For the piston, a friction reduction of up to 50% may be possible by controlling waviness alone, while additional friction reductions are expected when other parameters are optimized. A total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% efficiency. Key elements of the continuing work include further analysis and optimization of the engine piston design, in-engine testing of recommended lubricant and surface designs, design iteration and optimization of previously recommended technologies, and full-engine testing of a complete, optimized, low-friction power cylinder system.

  4. Applying Technology Ranking and Systems Engineering in Advanced Life Support

    Science.gov (United States)

    Jones, Harry; Luna, Bernadette (Technical Monitor)

    2000-01-01

    According to the Advanced Life Support (ALS) Program Plan, the Systems Modeling and Analysis Project (SMAP) has two important tasks: 1) prioritizing investments in ALS Research and Technology Development (R&TD), and 2) guiding the evolution of ALS systems. Investments could be prioritized simply by independently ranking different technologies, but we should also consider a technology's impact on system design. Guiding future ALS systems will require SMAP to consider many aspects of systems engineering. R&TD investments can be prioritized using familiar methods for ranking technology. The first step is gathering data on technology performance, safety, readiness level, and cost. Then the technologies are ranked using metrics or by decision analysis using net present economic value. The R&TD portfolio can be optimized to provide the maximum expected payoff in the face of uncertain future events. But more is needed. The optimum ALS system can not be designed simply by selecting the best technology for each predefined subsystem. Incorporating a new technology, such as food plants, can change the specifications of other subsystems, such as air regeneration. Systems must be designed top-down starting from system objectives, not bottom-up from selected technologies. The familiar top-down systems engineering process includes defining mission objectives, mission design, system specification, technology analysis, preliminary design, and detail design. Technology selection is only one part of systems analysis and engineering, and it is strongly related to the subsystem definitions. ALS systems should be designed using top-down systems engineering. R&TD technology selection should consider how the technology affects ALS system design. Technology ranking is useful but it is only a small part of systems engineering.

  5. Effect of combustion chamber insulation on the performance of a low heat rejection diesel engine with exhaust heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Assanis, D.N. (Illinois Univ., Urbana, IL (USA). Dept. of Mechanical and Industrial Engineering)

    1989-01-01

    A computer simulation of the turbocharged turbocompound diesel engine system is used to study the effect of combustion chamber insulation on the performance of low heat rejection system configurations with exhaust heat recovery. The analysis is carried out for zirconia coatings of various thicknesses applied on the cylinder head and piston. It is found that an intercooled turbocompound engine derives a modest thermal efficiency benefit from insulation, e.g. 4.3% improvement at a 60% reduction in heat loss. The addition of Rankine compounding can improve the thermal efficiency of the turbocompounded engine by 10-14%, depending on the level of insulation and the system configuration. Furthermore, Rankine compounding can make the otherwise inferior performance of a non-intercooled engine match the performance of an intercooled engine. Finally, use of an insulating material of low conductivity and low heat capacity can increase the thermal efficiency benefits, but at the expense of increased component thermal loading. (author).

  6. Advanced neutron source design: burnout heat flux correlation development

    International Nuclear Information System (INIS)

    In the advanced neutron source reactor (ANSR) fuel element region, heat fluxes will be elevated. Early designs corresponded to average and estimated hot-spot fluxes of 11 to 12 and 21 to 22 MW/m2, respectively. Design changes under consideration may lower these values to ∼ 9 and 17 MW/m1. In either event, the development of a satisfactory burnout heat flux correlation is an important element among the many thermal-hydraulic design issues, since the critical power ratio will depend in part on its validity. Relatively little work in the area of subcooled-flow burnout has been published over the past 12 yr. The authors have compared seven burnout correlations and modifications therefore with several sets of experimental data, of which the most relevant to the ANS core are those referenced. The best overall agreement between the correlations tested and these data is currently provided by a modification of Thorgerson et al. correlation. The variable ranges of the experimental data are outlined and the results of the correlation comparisons are summarized

  7. Efficiencies and coefficients of performance of heat engines, refrigerators, and heat pumps with friction: a universal limiting behavior.

    Science.gov (United States)

    Bizarro, João P S; Rodrigues, Paulo

    2012-11-01

    For work-producing heat engines, or work-consuming refrigerators and heat pumps, the percentage decrease caused by friction in their efficiencies, or coefficients of performance (COP's), is approximately given by the ratio W(fric)/W between the work spent against friction forces and the work performed by, or delivered to, the working fluid. This universal scaling, which applies in the limit of small friction (W(fric)/W heat-engine efficiencies), allows a simple and quick estimate of the impact that friction losses can have on the FOM's of thermal engines and plants, or of the level of those losses from the observed and predicted FOM's. In the case of refrigerators and heat pumps, if W(fric)/W heat engines), the COP percentage decrease due to friction approaches asymptotically (W(fric)/W)/(1+W(fric)/W) instead of W(fric)/W. Estimates for the level of frictional losses using the Carnot (or, for heat engines and power plants only, the Curzon-Ahlborn) predictions and observed FOM's of real power plants, heat engines, refrigerators, and heat pumps show that they usually operate in domains where these behaviors are valid.

  8. Characterization of the Advanced Stirling Radioisotope Generator Engineering Unit 2

    Science.gov (United States)

    Lewandowski, Edward J.; Oriti, Salvatore M.; Schifer, Niholas A.

    2016-01-01

    Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG) 140-W radioisotope power system. While the ASRG flight development project has ended, the hardware that was designed and built under the project is continuing to be tested to support future Stirling-based power system development. NASA Glenn Research Center recently completed the assembly of the ASRG Engineering Unit 2 (EU2). The ASRG EU2 consists of the first pair of Sunpower's Advanced Stirling Convertor E3 (ASC-E3) Stirling convertors mounted in an aluminum housing, and Lockheed Martin's Engineering Development Unit (EDU) 4 controller (a fourth-generation controller). The ASC-E3 convertors and Generator Housing Assembly (GHA) closely match the intended ASRG Qualification Unit flight design. A series of tests were conducted to characterize the EU2, its controller, and the convertors in the flight-like GHA. The GHA contained an argon cover gas for these tests. The tests included measurement of convertor, controller, and generator performance and efficiency; quantification of control authority of the controller; disturbance force measurement with varying piston phase and piston amplitude; and measurement of the effect of spacecraft direct current (DC) bus voltage on EU2 performance. The results of these tests are discussed and summarized, providing a basic understanding of EU2 characteristics and the performance and capability of the EDU 4 controller.

  9. Cost/benefit studies of advanced materials technologies for future aircraft turbine engines: Materials for advanced turbine engines

    Science.gov (United States)

    Stearns, M.; Wilbers, L.

    1982-01-01

    Cost benefit studies were conducted on six advanced materials and processes technologies applicable to commercial engines planned for production in the 1985 to 1990 time frame. These technologies consisted of thermal barrier coatings for combustor and high pressure turbine airfoils, directionally solidified eutectic high pressure turbine blades, (both cast and fabricated), and mixers, tail cones, and piping made of titanium-aluminum alloys. A fabricated titanium fan blisk, an advanced turbine disk alloy with improved low cycle fatigue life, and a long-life high pressure turbine blade abrasive tip and ceramic shroud system were also analyzed. Technologies showing considerable promise as to benefits, low development costs, and high probability of success were thermal barrier coating, directionally solidified eutectic turbine blades, and abrasive-tip blades/ceramic-shroud turbine systems.

  10. An acoustical pump capable of significantly increasing pressure ratio of thermoacoustic heat engines

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Pressure ratio is one of the important parameters for evaluating a thermoacoustic heat engine. A so-called acoustical pump, which is capable of significantly increasing pressure ratio of a thermoacoustic heat engine, is proposed. Its operating principle is given. Also, a verification experiment is done with nitrogen gas in the energy-focused thermoacoustic heat engine, showing that the pressure ratio increased from 1.25 to 1.47.

  11. A Virtual Engineering Framework for Simulating Advanced Power System

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Dave Swensen; Martin Denison; Stanislav Borodai

    2008-06-18

    In this report is described the work effort performed to provide NETL with VE-Suite based Virtual Engineering software and enhanced equipment models to support NETL's Advanced Process Engineering Co-simulation (APECS) framework for advanced power generation systems. Enhancements to the software framework facilitated an important link between APECS and the virtual engineering capabilities provided by VE-Suite (e.g., equipment and process visualization, information assimilation). Model enhancements focused on improving predictions for the performance of entrained flow coal gasifiers and important auxiliary equipment (e.g., Air Separation Units) used in coal gasification systems. In addition, a Reduced Order Model generation tool and software to provide a coupling between APECS/AspenPlus and the GE GateCycle simulation system were developed. CAPE-Open model interfaces were employed where needed. The improved simulation capability is demonstrated on selected test problems. As part of the project an Advisory Panel was formed to provide guidance on the issues on which to focus the work effort. The Advisory Panel included experts from industry and academics in gasification, CO2 capture issues, process simulation and representatives from technology developers and the electric utility industry. To optimize the benefit to NETL, REI coordinated its efforts with NETL and NETL funded projects at Iowa State University, Carnegie Mellon University and ANSYS/Fluent, Inc. The improved simulation capabilities incorporated into APECS will enable researchers and engineers to better understand the interactions of different equipment components, identify weaknesses and processes needing improvement and thereby allow more efficient, less expensive plants to be developed and brought on-line faster and in a more cost-effective manner. These enhancements to APECS represent an important step toward having a fully integrated environment for performing plant simulation and engineering

  12. Recent advances in application of biosensors in tissue engineering.

    Science.gov (United States)

    Hasan, Anwarul; Nurunnabi, Md; Morshed, Mahboob; Paul, Arghya; Polini, Alessandro; Kuila, Tapas; Al Hariri, Moustafa; Lee, Yong-kyu; Jaffa, Ayad A

    2014-01-01

    Biosensors research is a fast growing field in which tens of thousands of papers have been published over the years, and the industry is now worth billions of dollars. The biosensor products have found their applications in numerous industries including food and beverages, agricultural, environmental, medical diagnostics, and pharmaceutical industries and many more. Even though numerous biosensors have been developed for detection of proteins, peptides, enzymes, and numerous other biomolecules for diverse applications, their applications in tissue engineering have remained limited. In recent years, there has been a growing interest in application of novel biosensors in cell culture and tissue engineering, for example, real-time detection of small molecules such as glucose, lactose, and H2O2 as well as serum proteins of large molecular size, such as albumin and alpha-fetoprotein, and inflammatory cytokines, such as IFN-g and TNF-α. In this review, we provide an overview of the recent advancements in biosensors for tissue engineering applications. PMID:25165697

  13. Composite Fan Blade Design for Advanced Engine Concepts

    Science.gov (United States)

    Abumeri, Galib H.; Kuguoglu, Latife H.; Chamis, Christos C.

    2004-01-01

    The aerodynamic and structural viability of composite fan blades of the revolutionary Exo-Skeletal engine are assessed for an advanced subsonic mission using the NASA EST/BEST computational simulation system. The Exo-Skeletal Engine (ESE) calls for the elimination of the shafts and disks completely from the engine center and the attachment of the rotor blades in spanwise compression to a rotating casing. The fan rotor overall adiabatic efficiency obtained from aerodynamic analysis is estimated at 91.6 percent. The flow is supersonic near the blade leading edge but quickly transitions into a subsonic flow without any turbulent boundary layer separation on the blade. The structural evaluation of the composite fan blade indicates that the blade would buckle at a rotor speed that is 3.5 times the design speed of 2000 rpm. The progressive damage analysis of the composite fan blade shows that ply damage is initiated at a speed of 4870 rpm while blade fracture takes place at 7640 rpm. This paper describes and discusses the results for the composite blade that are obtained from aerodynamic, displacement, stress, buckling, modal, and progressive damage analyses. It will be demonstrated that a computational simulation capability is readily available to evaluate new and revolutionary technology such as the ESE.

  14. Recent Advances in Application of Biosensors in Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Anwarul Hasan

    2014-01-01

    Full Text Available Biosensors research is a fast growing field in which tens of thousands of papers have been published over the years, and the industry is now worth billions of dollars. The biosensor products have found their applications in numerous industries including food and beverages, agricultural, environmental, medical diagnostics, and pharmaceutical industries and many more. Even though numerous biosensors have been developed for detection of proteins, peptides, enzymes, and numerous other biomolecules for diverse applications, their applications in tissue engineering have remained limited. In recent years, there has been a growing interest in application of novel biosensors in cell culture and tissue engineering, for example, real-time detection of small molecules such as glucose, lactose, and H2O2 as well as serum proteins of large molecular size, such as albumin and alpha-fetoprotein, and inflammatory cytokines, such as IFN-g and TNF-α. In this review, we provide an overview of the recent advancements in biosensors for tissue engineering applications.

  15. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    Energy Technology Data Exchange (ETDEWEB)

    Victor Wong; Tian Tian; Luke Moughon; Rosalind Takata; Jeffrey Jocsak

    2006-03-31

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukesha VGF 18GL engine confirmed total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. This represents a substantial (30-40%) reduction of the ringpack friction alone. The measured FMEP reductions were in good agreement with the model predictions. Further improvements via piston, lubricant, and surface designs offer additional opportunities. Tests of low-friction lubricants are in progress and preliminary results are very promising. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Piston friction studies indicate that a flatter piston with a more flexible skirt, together with optimizing the waviness and film thickness on the piston skirt offer significant friction reduction. Combined with low-friction ring-pack, material and lubricant parameters, a total power cylinder friction

  16. Hydrogen/Oxygen Propellant Densifier Thermoacoustic Stirling Heat Engine

    Science.gov (United States)

    Nguyen, C. T.; Yeckley, A. J.; Schieb, D. J.; Haberbusch, M. S.

    2004-06-01

    A unique, patent pending, thermoacoustic propellant densifier for the simultaneous densification of hydrogen and oxygen propellants for aerospace vehicles is introduced. The densifier uses a high-pressure amplitude, low-frequency Thermoacoustic Stirling Heat Engine (TASHE) coupled with a uniquely designed half-wave-length resonator to drive a pulse tube cryocooler using a Gas Helium (GHe) working fluid. The extremely reliable TASHE has no moving parts, is water cooled, and is electrically powered. The helium-filled TASHE is designed to ASME piping codes, which enables the safe inspection of the system while in operation. The resonator is designed to eliminate higher-order harmonics with minimal acoustic losses. A system description will be presented, and experimental data on both the TASHE and the resonator will be compared with analytical results.

  17. Enhanced Energy Distribution for Quantum Information Heat Engines

    Directory of Open Access Journals (Sweden)

    Jose M. Diaz de la Cruz

    2016-09-01

    Full Text Available A new scenario for energy distribution, security and shareability is presented that assumes the availability of quantum information heat engines and a thermal bath. It is based on the convertibility between entropy and work in the presence of a thermal reservoir. Our approach to the informational content of physical systems that are distributed between users is complementary to the conventional perspective of quantum communication. The latter places the value on the unpredictable content of the transmitted quantum states, while our interest focuses on their certainty. Some well-known results in quantum communication are reused in this context. Particularly, we describe a way to securely distribute quantum states to be used for unlocking energy from thermal sources. We also consider some multi-partite entangled and classically correlated states for a collaborative multi-user sharing of work extraction possibilities. In addition, the relation between the communication and work extraction capabilities is analyzed and written as an equation.

  18. Shape memory alloy heat engines and energy harvesting systems

    Energy Technology Data Exchange (ETDEWEB)

    Browne, Alan L; Johnson, Nancy L; Shaw, John Andrew; Churchill, Christopher Burton; Keefe, Andrew C; McKnight, Geoffrey P; Alexander, Paul W; Herrera, Guillermo A; Yates, James Ryan; Brown, Jeffrey W

    2014-09-30

    A heat engine includes a first rotatable pulley and a second rotatable pulley spaced from the first rotatable pulley. A shape memory alloy (SMA) element is disposed about respective portions of the pulleys at an SMA pulley ratio. The SMA element includes a first wire, a second wire, and a matrix joining the first wire and the second wire. The first wire and the second wire are in contact with the pulleys, but the matrix is not in contact with the pulleys. A timing cable is disposed about respective portions of the pulleys at a timing pulley ratio, which is different than the SMA pulley ratio. The SMA element converts a thermal energy gradient between the hot region and the cold region into mechanical energy.

  19. High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner For Advanced Rocket Engines

    Science.gov (United States)

    Bhat, Biliyar N.; Ellis, David; Singh, Jogender

    2014-01-01

    Advanced high thermal conductivity materials research conducted at NASA Marshall Space Flight Center (MSFC) with state of the art combustion chamber liner material NARloy-Z showed that its thermal conductivity can be increased significantly by adding diamond particles and sintering it at high temperatures. For instance, NARloy-Z containing 40 vol. percent diamond particles, sintered at 975C to full density by using the Field assisted Sintering Technology (FAST) showed 69 percent higher thermal conductivity than baseline NARloy-Z. Furthermore, NARloy-Z-40vol. percent D is 30 percent lighter than NARloy-Z and hence the density normalized thermal conductivity is 140 percent better. These attributes will improve the performance and life of the advanced rocket engines significantly. By one estimate, increased thermal conductivity will directly translate into increased turbopump power up to 2X and increased chamber pressure for improved thrust and ISP, resulting in an expected 20 percent improvement in engine performance. Follow on research is now being conducted to demonstrate the benefits of this high thermal conductivity NARloy-Z-D composite for combustion chamber liner applications in advanced rocket engines. The work consists of a) Optimizing the chemistry and heat treatment for NARloy-Z-D composite, b) Developing design properties (thermal and mechanical) for the optimized NARloy-Z-D, c) Fabrication of net shape subscale combustion chamber liner, and d) Hot fire testing of the liner for performance. FAST is used for consolidating and sintering NARlo-Z-D. The subscale cylindrical liner with built in channels for coolant flow is also fabricated near net shape using the FAST process. The liner will be assembled into a test rig and hot fire tested in the MSFC test facility to determine performance. This paper describes the development of this novel high thermal conductivity NARloy-Z-D composite material, and the advanced net shape technology to fabricate the combustion

  20. The equivalence of minimum entropy production and maximum thermal efficiency in endoreversible heat engines.

    Science.gov (United States)

    Haseli, Y

    2016-05-01

    The objective of this study is to investigate the thermal efficiency and power production of typical models of endoreversible heat engines at the regime of minimum entropy generation rate. The study considers the Curzon-Ahlborn engine, the Novikov's engine, and the Carnot vapor cycle. The operational regimes at maximum thermal efficiency, maximum power output and minimum entropy production rate are compared for each of these engines. The results reveal that in an endoreversible heat engine, a reduction in entropy production corresponds to an increase in thermal efficiency. The three criteria of minimum entropy production, the maximum thermal efficiency, and the maximum power may become equivalent at the condition of fixed heat input.

  1. DOE Project: Optimization of Advanced Diesel Engine Combustion Strategies "University Research in Advanced Combustion and Emissions Control" Office of FreedomCAR and Vehicle Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    Reitz, Rolf; Foster, D.; Ghandhi, J.; Rothamer, D.; Rutland, C.; Sanders, S.; Trujillo, M.

    2012-10-26

    The goal of the present technology development was to increase the efficiency of internal combustion engines while minimizing the energy penalty of meeting emissions regulations. This objective was achieved through experimentation and the development of advanced combustion regimes and emission control strategies, coupled with advanced petroleum and non-petroleum fuel formulations. To meet the goals of the project, it was necessary to improve the efficiency of expansion work extraction, and this required optimized combustion phasing and minimized in-cylinder heat transfer losses. To minimize fuel used for diesel particulate filter (DPF) regeneration, soot emissions were also minimized. Because of the complex nature of optimizing production engines for real-world variations in fuels, temperatures and pressures, the project applied high-fidelity computing and high-resolution engine experiments synergistically to create and apply advanced tools (i.e., fast, accurate predictive models) developed for low-emission, fuel-efficient engine designs. The companion experiments were conducted using representative single- and multi-cylinder automotive and truck diesel engines.

  2. Advanced Soldier Thermoelectric Power System for Power Generation from Battlefield Heat Sources

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, Terry J.; Hogan, Tim; Case, Eldon D.; Cauchy, Charles J.

    2010-09-01

    The U.S. military uses large amounts of fuel during deployments and battlefield operations. This project sought to develop a lightweight, small form-factor, soldier-portable advanced thermoelectric (TE) system prototype to recover and convert waste heat from various deployed military equipment (i.e., diesel generators/engines, incinerators, vehicles, and potentially mobile kitchens), with the ultimate purpose of producing power for soldier battery charging, advanced capacitor charging, and other battlefield power applications. The technical approach employed microchannel technology, a unique “power panel” approach to heat exchange/TE system integration, and newly-characterized LAST (lead-antimony-silver-telluride) and LASTT (lead-antimony-silver-tin-telluride) TE materials segmented with bismuth telluride TE materials in designing a segmented-element TE power module and system. This project researched never-before-addressed system integration challenges (thermal expansion, thermal diffusion, electrical interconnection, thermal and electrical interfaces) of designing thin “power panels” consisting of alternating layers of thin, microchannel heat exchangers (hot and cold) sandwiching thin, segmented-element TE power generators. The TE properties, structurally properties, and thermal fatigue behavior of LAST and LASTT materials were developed and characterized such that the first segmented-element TE modules using LAST / LASTT materials were fabricated and tested at hot-side temperatures = 400 °C and cold-side temperatures = 40 °C. LAST / LASTT materials were successfully segmented with bismuth telluride and electrically interconnected with diffusion barrier materials and copper strapping within the module electrical circuit. A TE system design was developed to produce 1.5-1.6 kW of electrical energy using these new TE modules from the exhaust waste heat of 60-kW Tactical Quiet Generators as demonstration vehicles.

  3. Optimal configuration of a class of endoreversible heat engines for maximum efficiency with radiative heat transfer law

    Institute of Scientific and Technical Information of China (English)

    SONG HanJiang; CHEN LinGen; SUN FengRui

    2008-01-01

    Optimal configuration of a class of endoreversible heat engines with fixed duration, input energy and radiative heat transfer law (q∝△(T4)) is determined. The optimal cycle that maximizes the efficiency of the heat engine is obtained by using opti-mal-control theory, and the differential equations are solved by the Taylor series expansion. It is shown that the optimal cycle has eight branches including two isothermal branches, four maximum-efficiency branches, and two adiabatic branches. The interval of each branch is obtained, as well as the solutions of the temperatures of the heat reservoirs and the working fluid. A numerical example is given. The obtained results are compared with those obtained with the Newton's heat transfer law for the maximum efficiency objective, those with linear phe-nomenological heat transfer law for the maximum efficiency objective, and those with radiative heat transfer law for the maximum power output objective.

  4. Optimal configuration of a class of endoreversible heat engines for maximum efficiency with radiative heat transfer law

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Optimal configuration of a class of endoreversible heat engines with fixed duration,input energy and radiative heat transfer law (q∝Δ(T4)) is determined. The optimal cycle that maximizes the efficiency of the heat engine is obtained by using opti-mal-control theory,and the differential equations are solved by the Taylor series expansion. It is shown that the optimal cycle has eight branches including two isothermal branches,four maximum-efficiency branches,and two adiabatic branches. The interval of each branch is obtained,as well as the solutions of the temperatures of the heat reservoirs and the working fluid. A numerical example is given. The obtained results are compared with those obtained with the Newton’s heat transfer law for the maximum efficiency objective,those with linear phe-nomenological heat transfer law for the maximum efficiency objective,and those with radiative heat transfer law for the maximum power output objective.

  5. Modeling pressure drop of inclined flow through a heat exchanger for aero-engine applications

    Energy Technology Data Exchange (ETDEWEB)

    Missirlis, D. [Laboratory of Fluid Mechanics and Turbomachinery, Department of Mechanical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54 124 (Greece); Yakinthos, K. [Laboratory of Fluid Mechanics and Turbomachinery, Department of Mechanical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54 124 (Greece)]. E-mail: kyros@eng.auth.gr; Storm, P. [MTU Aero Engines GmbH, Dachauerstrasse 665, 80995 Muenchen (Germany); Goulas, A. [Laboratory of Fluid Mechanics and Turbomachinery, Department of Mechanical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54 124 (Greece)

    2007-06-15

    In the present work further numerical predictions for the flow field through a specific type of a heat exchanger, which is planned to be used in the exhaust nozzle of aircraft engines. In order to model the flow field through the heat exchanger, a porous medium model is used based on a simple quadratic relation, which connects the pressure drop with the inlet air velocity in the external part of the heat exchanger. The aim of this work is to check the applicability of the quadratic law in a variety of velocity inlet conditions configured by different angles of attack. The check is performed with CFD and the results are compared with new available experimental data for these inlet conditions. A detailed qualitative analysis shows that although the quadratic law has been derived for a zero angle of attack, it performs very well for alternative non-zero angles. These observations are very helpful since this simple pressure drop law can be used for advanced computations where the whole system of the exhaust nozzle together with the heat exchangers can be modeled within a holistic approach.

  6. Hypersonic Engine Leading Edge Experiments in a High Heat Flux, Supersonic Flow Environment

    Science.gov (United States)

    Gladden, Herbert J.; Melis, Matthew E.

    1994-01-01

    A major concern in advancing the state-of-the-art technologies for hypersonic vehicles is the development of an aeropropulsion system capable of withstanding the sustained high thermal loads expected during hypersonic flight. Three aerothermal load related concerns are the boundary layer transition from laminar to turbulent flow, articulating panel seals in high temperature environments, and strut (or cowl) leading edges with shock-on-shock interactions. A multidisciplinary approach is required to address these technical concerns. A hydrogen/oxygen rocket engine heat source has been developed at the NASA Lewis Research Center as one element in a series of facilities at national laboratories designed to experimentally evaluate the heat transfer and structural response of the strut (or cowl) leading edge. A recent experimental program conducted in this facility is discussed and related to cooling technology capability. The specific objective of the experiment discussed is to evaluate the erosion and oxidation characteristics of a coating on a cowl leading edge (or strut leading edge) in a supersonic, high heat flux environment. Heat transfer analyses of a similar leading edge concept cooled with gaseous hydrogen is included to demonstrate the complexity of the problem resulting from plastic deformation of the structures. Macro-photographic data from a coated leading edge model show progressive degradation over several thermal cycles at aerothermal conditions representative of high Mach number flight.

  7. Sodium Heat Engine Development Program. Phase 1, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Singh, J.P.; Kupperman, D.S.; Majumdar, S.; Dorris, S.; Gopalsami, N.; Dieckman, S.L.; Jaross, R.A.; Johnson, D.L.; Gregar, J.S.; Poeppel, R.B.; Raptis, A.C.; Valentin, R.A.

    1992-01-01

    The Sodium Heat Engine (SHE) is an efficient thermoelectric conversion device which directly generates electricity from a thermally regenerative electrochemical cell that relies on the unique conduction properties of {beta}{double_prime}-alumina solid electrolyte (BASE). Laboratory models of a variety of SHE devices have demonstrated the feasibility and efficiency of the system, engineering development of large prototype devices has been slowed by a series of materials and fabrication problems. Failure of the electrolyte tubes has been a recurring problem and a number of possible causes have been postulated. To address these issues, a two-phase engineering development program was undertaken. This report summarizes the final results of the first phase of the program, which included extensive materials characterization activities, a study of applicable nondestructive evaluation methods, an investigation of possible stress states that would contribute to fracture, and certain operational issues associated with the electromagnetic pumps used in the SHE prototype. Mechanical and microstructural evaluation of commercially obtained BASE tubes revealed that they should be adequate for SHE applications and that sodium exposure produced no appreciable deleterious strength effects. Processing activities to produce a more uniform and smaller grain size for the BASE tubes were completed using isostatic pressing, extrusion, and slip casting. Green tubes were sintered by conventional and microwave plasma methods. Of particular interest is the residual stress state in the BASE tubes, and both analysis and nondestructive evaluation methods were employed to evaluate these stresses. X-ray and neutron diffraction experiments were performed to determine the bulk residual stresses in commercially fabricated BASE tubes; however, tube-to-tube variations and variations among the various methods employed did not allow formulation of a definitive definition of the as-fabricated stress state.

  8. Advances in process intensification through multifunctional reactor engineering.

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Marcia A.; Miller, James Edward; O' Hern, Timothy John; Gill, Walter; Evans, Lindsey R.

    2011-02-01

    A multifunctional reactor is a chemical engineering device that exploits enhanced heat and mass transfer to promote production of a desired chemical, combining more than one unit operation in a single system. The main component of the reactor system under study here is a vertical column containing packing material through which liquid(s) and gas flow cocurrently downward. Under certain conditions, a range of hydrodynamic regimes can be achieved within the column that can either enhance or inhibit a desired chemical reaction. To study such reactors in a controlled laboratory environment, two experimental facilities were constructed at Sandia National Laboratories. One experiment, referred to as the Two-Phase Experiment, operates with two phases (air and water). The second experiment, referred to as the Three-Phase Experiment, operates with three phases (immiscible organic liquid and aqueous liquid, and nitrogen). This report describes the motivation, design, construction, operational hazards, and operation of the both of these experiments. Data and conclusions are included.

  9. Advanced multistage turbine blade aerodynamics, performance, cooling, and heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Fleeter, S.; Lawless, P.B. [Purdue Univ., West Lafayette, IN (United States)

    1995-10-01

    The gas turbine has the potential for power production at the highest possible efficiency. The challenge is to ensure that gas turbines operate at the optimum efficiency so as to use the least fuel and produce minimum emissions. A key component to meeting this challenge is the turbine. Turbine performance, both aerodynamics and heat transfer, is one of the barrier advanced gas turbine development technologies. This is a result of the complex, highly three-dimensional and unsteady flow phenomena in the turbine. Improved turbine aerodynamic performance has been achieved with three-dimensional highly-loaded airfoil designs, accomplished utilizing Euler or Navier-Stokes Computational Fluid Dynamics (CFD) codes. These design codes consider steady flow through isolated blade rows. Thus they do not account for unsteady flow effects. However, unsteady flow effects have a significant impact on performance. Also, CFD codes predict the complete flow field. The experimental verification of these codes has traditionally been accomplished with point data - not corresponding plane field measurements. Thus, although advanced CFD predictions of the highly complex and three-dimensional turbine flow fields are available, corresponding data are not. To improve the design capability for high temperature turbines, a detailed understanding of the highly unsteady and three-dimensional flow through multi-stage turbines is necessary. Thus, unique data are required which quantify the unsteady three-dimensional flow through multi-stage turbine blade rows, including the effect of the film coolant flow. This requires experiments in appropriate research facilities in which complete flow field data, not only point measurements, are obtained and analyzed. Also, as design CFD codes do not account for unsteady flow effects, the next logical challenge and the current thrust in CFD code development is multiple-stage analyses that account for the interactions between neighboring blade rows.

  10. Metal hydride heat pump engineering demonstration and evaluation model

    Science.gov (United States)

    Lynch, Franklin E.

    1993-01-01

    Future generations of portable life support systems (PLSS's) for space suites (extravehicular mobility units or EMU's) may require regenerable nonventing thermal sinks (RNTS's). For purposes of mobility, a PLSS must be as light and compact as possible. Previous venting PLSS's have employed water sublimators to reject metabolic and equipment heat from EMU's. It is desirable for long-duration future space missions to minimize the use of water and other consumables that need to be periodically resupplied. The emission of water vapor also interferes with some types of instrumentation that might be used in future space exploration. The test article is a type of RNTS based on a metal hydride heat pump (MHHP). The task of reservicing EMU's after use must be made less demanding in terms of time, procedures, and equipment. The capability for quick turnaround post-EVA servicing (30 minutes) is a challenging requirement for many of the RNTS options. The MHHP is a very simple option that can be regenerated in the airlock within the 30 minute limit by the application of a heating source and a cooling sink. In addition, advanced PLSS's must provide a greater degree of automatic control, relieving astronauts of the need to manually adjust temperatures in their liquid cooled ventilation garments (LCVG's). The MHHP includes automatic coolant controls with the ability to follow thermal load swings from minimum to maximum in seconds. The MHHP includes a coolant loop subsystem with pump and controls, regeneration equipment for post-EVA servicing, and a PC-based data acquisition and control system (DACS).

  11. Modeling and simulation of combined gas turbine engine and heat pipe system for waste heat recovery and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Lamfon, N.J. [Saudi Aramco Jeddah Refinery, Jeddah (Saudi Arabia); Najjar, Y.S.H.; Akyurt, M. [King Abdulaziz Univ., Mechanical Engineering Dept., Jeddah (Saudi Arabia)

    1998-12-01

    The results of a modeling and simulation study are presented for a combined system consisting of a gas turbine engine, a heat pipe recovery system and an inlet-air cooling system. The presentation covers performance data related to the gas turbine engine with precooled air intake as coupled to the water-in-copper heat pipe recovery system. This is done by matching the two mathematical models. The net power output is improved by 11% when the gas turbine engine is supplied with cold air produced by the heat-pipe recovery and utilization system. It is further concluded from the results produced by the combined mathematical model that the thermal efficiency of the gas turbine engine rises to 6% at 75% part load. It is to be anticipated that this rising trend in increases of thermal efficiency of the gas turbine engine would continue for operations at other (lower) part load conditions. (author)

  12. Technology Development Roadmap for the Advanced High Temperature Reactor Secondary Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    P. Sabharwall; M. McCllar; A. Siahpush; D. Clark; M. Patterson; J. Collins

    2012-09-01

    This Technology Development Roadmap (TDRM) presents the path forward for deploying large-scale molten salt secondary heat exchangers (MS-SHX) and recognizing the benefits of using molten salt as the heat transport medium for advanced high temperature reactors (AHTR). This TDRM will aid in the development and selection of the required heat exchanger for: power production (the first anticipated process heat application), hydrogen production, steam methane reforming, methanol to gasoline production, or ammonia production. This TDRM (a) establishes the current state of molten salt SHX technology readiness, (b) defines a path forward that systematically and effectively tests this technology to overcome areas of uncertainty, (c) demonstrates the achievement of an appropriate level of maturity prior to construction and plant operation, and (d) identifies issues and prioritizes future work for maturing the state of SHX technology. This study discusses the results of a preliminary design analysis of the SHX and explains the evaluation and selection methodology. An important engineering challenge will be to prevent the molten salt from freezing during normal and off-normal operations because of its high melting temperature (390°C for KF ZrF4). The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The need for efficiency, compactness, and safety challenge the capabilities of existing heat exchanger technology. The description of potential heat exchanger configurations or designs (such as printed circuit, spiral or helical coiled, ceramic, plate and fin, and plate type) were covered in an earlier report (Sabharwall et al. 2011). Significant future work, much of which is suggested in this report, is needed before the benefits and full potential of the AHTR can be realized. The execution of this TDRM will focuses

  13. The engineered Salmonella typhimurium inhibits tumorigenesis in advanced glioma

    Directory of Open Access Journals (Sweden)

    Chen JQ

    2015-09-01

    Full Text Available Jian-qiang Chen,1 Yue-fu Zhan,2 Wei Wang,1 Sheng-nan Jiang,2,3 Xiang-ying Li21Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China; 2Department of Radiology, Affiliated to Haikou Hospital Xiangya School of Medicine, Central South University, Haikou, People’s Republic of China; 3Department of Nuclear Medicine, Central South University Xiangya School of Medicine Affiliated HaiKou Hospital, Haikou, Hainan, People’s Republic of ChinaObjective: To explore the antitumor role of the attenuated Salmonella typhimurium ΔppGpp with inducible cytolysin A (ClyA in advanced stage of glioma.Materials and methods: The C6 rat glioma cells were orthotopically implanted by surgery into the caudate nucleus of rat brains. The rats were then randomly divided into the treatment group (SL + ClyA (n=12, negative control group (SL (n=12, and control group (phosphate-buffered saline [PBS] (n=12. In the treatment group, the attenuated S. typhimurium were transformed with the plasmid-encoded antitumor gene ClyA. The expression of ClyA was controlled by the TetR-regulated promoter in response to extracellular doxycycline. The plasmid also contained an imaging gene lux to allow illumination of the tumor infected by the bacteria. The rat glioma C6 cells were implanted into the caudate nucleus of all rats. The engineered S. typhimurium and respective controls were injected intravenously into the rats 21 days after initial tumor implantation. The pathological analysis of the glioma tumor was performed at 21 days and 28 days (7 days after doxycycline treatment postimplantation. All rats underwent MRI (magnetic resonance imaging and bioluminescence study at 21 days and 28 days postimplantation to detect tumor volume. The differences between the three groups in tumor volume and survival time were analyzed.Results: Advanced stage glioma  was detected at 21 days postimplantation. Bioluminescence showed that the

  14. Evaluation, engineering and development of advanced cyclone processes

    Energy Technology Data Exchange (ETDEWEB)

    Durney, T.E.; Cook, A. [Coal Technology Corporation, Bristol, VA (United States); Ferris, D.D. [ICF Kaiser Engineers, Inc., Pittsburgh, PA (United States)] [and others

    1995-11-01

    This research and development project is one of three seeking to develop advanced, cost-effective, coal cleaning processes to help industry comply with 1990 Clean Air Act Regulations. The specific goal for this project is to develop a cycloning technology that will beneficiate coal to a level approaching 85% pyritic sulfur rejection while retaining 85% of the parent coal`s heating value. A clean coal ash content of less than 6% and a moisture content, for both clean coal and reject, of less than 30% are targeted. The process under development is a physical, gravimetric-based cleaning system that removes ash bearing mineral matter and pyritic sulfur. Since a large portion of the Nation`s coal reserves contain significant amounts of pyrite, physical beneficiation is viewed as a potential near-term, cost effective means of producing an environmentally acceptable fuel.

  15. Optimum performance characteristics of a solar-driven Stirling heat engine system

    International Nuclear Information System (INIS)

    Graphical abstract: T–S diagram of the SHE cycle. - Highlights: • Based on Lagrange multiplier method, the optimal performance are investigated. • The energy balance between the absorber and the hot side of Stirling heat engine is considered. • The effects of major parameters on the optimal performance are investigated. - Abstract: A solar-driven Stirling heat engine system composed of a Stirling heat engine, a solar collector, and a heat sink is presented, in which the radiation and convection heat losses of the solar collector, the heat-leak between the thermal absorber and heat sink, the regenerative losses of the Stirling heat engine, and the energy balance between the thermal absorber and the high isothermal process of the Stirling heat engine are taken into consideration. Based on the irreversible thermodynamics and Lagrange multiplier method, the maximum power output and the corresponding optimal efficiency of the system are determined and the absorber temperature that maximizes the optimal system efficiency is calculated numerically. The influences of some system parameters such as the concentrating ratio, the volume ratio during the regenerative processes and irreversibilities of heat exchange processes on the optimal efficiency are analyzed in details. The results obtained here may provide a new idea to design practical solar-driven Stirling heat engine system

  16. The development of heat exchangers with advanced thermomechanical materials

    International Nuclear Information System (INIS)

    Current metallurgical limitations necessarily impose a number of restrictions on the efficiency of power plant and combustion systems. These limitations include both temperature and corrosion resistance. If significant improvements can be made in these areas, then not only will it be possible to obtain higher system efficiencies, but it will also be possible to further exploit new technologies. Consequently, there is appreciable interest in the development of ceramic tubes for heat exchangers. Such tubes would offer the potential of operation at much higher temperatures combined with a much improved resistance to chemical attack. They are unlikely to be suitable for high pressure operation, at least in the foreseeable future, and hence their use would be limited generally to gas to gas exchangers. In spite of the limitations on details and specific technological solutions imposed by industrial property conditions, this report provides an overview on the development of these components, which is in charge of all the major international industrial companies of the field, in consideration of the relevant benefits coming from their large industrialization. After an analysis of the industrial situation of the product, in terms both of possible applications and economical impacts on the market, an overview of major on-going R and D programmes is carried out. At present, these programmes are mostly within the general frame of the study of advanced thermomechanical components and the related manufacturing technologies development

  17. Engineering derivatives from biological systems for advanced aerospace applications

    Science.gov (United States)

    Winfield, Daniel L.; Hering, Dean H.; Cole, David

    1991-01-01

    The present study consisted of a literature survey, a survey of researchers, and a workshop on bionics. These tasks produced an extensive annotated bibliography of bionics research (282 citations), a directory of bionics researchers, and a workshop report on specific bionics research topics applicable to space technology. These deliverables are included as Appendix A, Appendix B, and Section 5.0, respectively. To provide organization to this highly interdisciplinary field and to serve as a guide for interested researchers, we have also prepared a taxonomy or classification of the various subelements of natural engineering systems. Finally, we have synthesized the results of the various components of this study into a discussion of the most promising opportunities for accelerated research, seeking solutions which apply engineering principles from natural systems to advanced aerospace problems. A discussion of opportunities within the areas of materials, structures, sensors, information processing, robotics, autonomous systems, life support systems, and aeronautics is given. Following the conclusions are six discipline summaries that highlight the potential benefits of research in these areas for NASA's space technology programs.

  18. Lincoln Advanced Science and Engineering Reinforcement (LASER) program

    Science.gov (United States)

    Williams, Willie E.

    1989-01-01

    Lincoln University, under the Lincoln Advanced Science and Engineering Reinforcement (LASER) Program, has identified and successfully recruited over 100 students for majors in technical fields. To date, over 70 percent of these students have completed or will complete technical degrees in engineering, physics, chemistry, and computer science. Of those completing the undergraduate degree, over 40 percent have gone on to graduate and professional schools. This success is attributable to well planned approaches to student recruitment, training, personal motivation, retention, and program staff. Very closely coupled to the above factors is a focus designed to achieve excellence in program services and student performance. Future contributions by the LASER Program to the pool of technical minority graduates will have a significant impact. This is already evident from the success of the students that began the first year of the program. With program plans to refine many of the already successful techniques, follow-on activities are expected to make even greater contributions to the availability of technically trained minorities. For example, undergraduate research exposure, broadened summer, and co-op work experiences will be enhanced.

  19. Lincoln Advanced Science and Engineering Reinforcement (LASER) program

    Science.gov (United States)

    Williams, Willie E.

    Lincoln University, under the Lincoln Advanced Science and Engineering Reinforcement (LASER) Program, has identified and successfully recruited over 100 students for majors in technical fields. To date, over 70 percent of these students have completed or will complete technical degrees in engineering, physics, chemistry, and computer science. Of those completing the undergraduate degree, over 40 percent have gone on to graduate and professional schools. This success is attributable to well planned approaches to student recruitment, training, personal motivation, retention, and program staff. Very closely coupled to the above factors is a focus designed to achieve excellence in program services and student performance. Future contributions by the LASER Program to the pool of technical minority graduates will have a significant impact. This is already evident from the success of the students that began the first year of the program. With program plans to refine many of the already successful techniques, follow-on activities are expected to make even greater contributions to the availability of technically trained minorities. For example, undergraduate research exposure, broadened summer, and co-op work experiences will be enhanced.

  20. Liquid fueled external heating system for STM4-120 Stirling engine

    Science.gov (United States)

    Meijer, R. J.; Ziph, B.; Godett, T. M.

    1985-01-01

    The STM4-120 Stirling engine, currently under development at Stirling Thermal Motors, Inc., is a 40 kW variable stroke engine with indirect heating using a sodium heat pipe. The engine is functionally separated into an application independent Energy Conversion Unit (ECU) consisting of the Stirling cycle and drive heated by condensing sodium and the application dependent External Heating System (EHS), designed to supply the ECU with sodium vapor heated by the particular energy source, connected by tubes with mechanical couplings. This paper describes an External Heating System for the STM4-120 ECU designed for the combustion of liquid fuel, comprised of a recuperative preheater, a combustion chamber, and a heat exchanger/evaporator where heat is transferred from the flue gas to the sodium causing it to evaporate. The design concept and projected performance are described and discussed.

  1. Diesel engine emissions and combustion predictions using advanced mixing models applicable to fuel sprays

    Science.gov (United States)

    Abani, Neerav; Reitz, Rolf D.

    2010-09-01

    An advanced mixing model was applied to study engine emissions and combustion with different injection strategies ranging from multiple injections, early injection and grouped-hole nozzle injection in light and heavy duty diesel engines. The model was implemented in the KIVA-CHEMKIN engine combustion code and simulations were conducted at different mesh resolutions. The model was compared with the standard KIVA spray model that uses the Lagrangian-Drop and Eulerian-Fluid (LDEF) approach, and a Gas Jet spray model that improves predictions of liquid sprays. A Vapor Particle Method (VPM) is introduced that accounts for sub-grid scale mixing of fuel vapor and more accurately and predicts the mixing of fuel-vapor over a range of mesh resolutions. The fuel vapor is transported as particles until a certain distance from nozzle is reached where the local jet half-width is adequately resolved by the local mesh scale. Within this distance the vapor particle is transported while releasing fuel vapor locally, as determined by a weighting factor. The VPM model more accurately predicts fuel-vapor penetrations for early cycle injections and flame lift-off lengths for late cycle injections. Engine combustion computations show that as compared to the standard KIVA and Gas Jet spray models, the VPM spray model improves predictions of in-cylinder pressure, heat released rate and engine emissions of NOx, CO and soot with coarse mesh resolutions. The VPM spray model is thus a good tool for efficiently investigating diesel engine combustion with practical mesh resolutions, thereby saving computer time.

  2. Bibliography of Connecticut Advanced Nuclear Engineering Laboratory reports

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1965-12-01

    This report, published in two, volumes, is a bibliography of the reports published at the Connecticut Advanced Nuclear Engineering Laboratory (CANEL). The reports cover the period 1952 through 1965 and include the Aircraft Nuclear Propulsion program, the Advanced Liquid Metal Cooled Reactor program, the Advanced Reactor Materials program and the SNAP-50 program. The bibliography contains the report number, title, author, date published, and classification. In some cases where the writing of a report was a group effort, and in some reports containing compilations of certain types of data, the author column is not applicable. This is indicated by a {open_quotes}n.a.{close_quotes} in the author column. The following types of reports are included: PWAC`s, TIM`s, CNLM`s. FXM`s and miscellaneous reports. PWAC and TIM reports conform to the requirements of AEC Manual Chapter 3202-041 and 3202-042, respectively. Most of the technical information of interest generated by this project is documented in these reports, CNLM and FXM reports were written primarily for internal distribution. However, these reports contain enough information of technical interest to warrant their inclusion. All CNLM`s and those FXM`s considered to be of interest are included in this bibliography. The MPR`s (Monthly Progress Reports) are the most important of the miscellaneous categories of reports. The other miscellaneous categories relate primarily to equipment and reactor specifications. The Division of Technical Information Extension (DTIE) at Oak Ridge, Tennessee has been designated as the primary recipient of the reports in the CANEL library. When more than one copy of a report was available, the additional copies were delivered to the Lawrence Radiation Laboratory, Livermore, California.

  3. Bibliography of Connecticut Advanced Nuclear Engineering Laboratory reports

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1965-12-01

    This report, published in two volumes, is a bibliography of the reports published at the Connecticut Advanced Nuclear Engineering Laboratory (CANEL). The reports cover the period 1952 through 1965 and include the Aircraft Nuclear Propulsion program, the Advanced Liquid Metal Cooled Reactor program, the Advanced Reactor Materials program and the SNAP-50 program. The bibliography contains the report number, title, author, date published, and classification. In some cases where the writing of a report was a group effort, and in some reports containing compilations of certain types of data, the author column is not applicable. This is indicated by a {open_quotes}n.a.{close_quotes} in the author column. The following types of reports are included: PWAC`s, TIM`s, CNLM`s, FXM`s and miscellaneous reports. PWAC and TIM reports conform to the requirements of AEC Manual Chapter 3202-041 and 3202-042, respectively. Most of the technical information of interest generated by this project is documented in these reports. CNLM and FXM reports were written primarily for internal distribution. However, these reports contain enough information of technical interest to warrant their inclusion. All CNLM`s and those FXM`s considered to be of interest are included in this bibliography. The MPR`s (Monthly Progress Reports) are the most important of the miscellaneous categories of reports. The other miscellaneous categories relate primarily to equipment and reactor specifications. The Division of Technical Information Extension (DTIE) at Oak Ridge, Tennessee has been designated as the primary recipient of the reports in the CANEL library. When more than one copy of a report was available, the additional copies were delivered to the Lawrence Radiation Laboratory, Livermore, California.

  4. Making Work: Demonstrating Thermodynamic Concepts with Solar-Powered Wax and Rubber Heat Engines

    Science.gov (United States)

    Appleyard, S. J.

    2007-01-01

    Construction details are provided for simple heat engines that use candle wax and elastomers as working substances. The engines are constructed using common household materials and can be easily constructed in a school classroom or at home. They work reliably and are useful tools for demonstrating the conversion of heat to mechanical work. They…

  5. Solar heat pipe testing of the Stirling thermal motors 4-120 Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Andraka, C.E.; Rawlinson, K.S.; Moss, T.A.; Adkins, D.R.; Moreno, J.B.; Gallup, D.R.; Cordeiro, P.G. [Sandia National Labs., Albuquerque, NM (United States); Johansson, S. [Stirling Thermal Motors, Inc., Ann Arbor, MI (United States)

    1996-07-01

    Stirling-cycle engines have been identified as a promising technology for the conversion of concentrated solar energy into usable electrical power. A 25kW electric system takes advantage of existing Stirling-cycle engines and existing parabolic concentrator designs. In previous work, the concentrated sunlight impinged directly on the heater head tubes of the Stirling Thermal Motors (STM) 4-120 engine. A Sandia-designed felt-metal-wick heat pipe receiver was fitted to the STM 4-120 engine for on-sun testing on Sandia`s Test Bed Solar Concentrator. The heat pipe uses sodium metal as an intermediate two-phase heat transfer fluid. The receiver replaces the directly-illuminated heater head previously tested. The heat pipe receiver provides heat isothermally to the engine, and the heater head tube length is reduced, both resulting in improved engine performance. The receiver also has less thermal losses than the tube receiver. The heat pipe receiver design is based on Sandia`s second-generation felt-wick heat pipe receiver. This paper presents the interface design, and compares the heat pipe/engine test results to those of the directly-illuminated receiver/engine package.

  6. Advances in the Lightweight Air-Liquid Composite Heat Exchanger Development for Space Exploration Applications

    Science.gov (United States)

    Shin, E. Eugene; Johnston, J. Chris; Haas, Daniel

    2011-01-01

    An advanced, lightweight composite modular Air/Liquid (A/L) Heat Exchanger (HX) Prototype for potential space exploration thermal management applications was successfully designed, manufactured, and tested. This full-scale Prototype consisting of 19 modules, based on recommendations from its predecessor Engineering Development unit (EDU) but with improved thermal characteristics and manufacturability, was 11.2 % lighter than the EDU and achieves potentially a 42.7% weight reduction from the existing state-of-the-art metallic HX demonstrator. However, its higher pressure drop (0.58 psid vs. 0.16 psid of the metal HX) has to be mitigated by foam material optimizations and design modifications including a more systematic air channel design. Scalability of the Prototype design was validated experimentally by comparing manufacturability and performance between the 2-module coupon and the 19-module Prototype. The Prototype utilized the thermally conductive open-cell carbon foam material but with lower density and adopted a novel high-efficiency cooling system with significantly increased heat transfer contact surface areas, improved fabricability and manufacturability compared to the EDU. Even though the Prototype was required to meet both the thermal and the structural specifications, accomplishing the thermal requirement was a higher priority goal for this first version. Overall, the Prototype outperformed both the EDU and the corresponding metal HX, particularly in terms of specific heat transfer, but achieved 93.4% of the target. The next generation Prototype to achieve the specification target, 3,450W would need 24 core modules based on the simple scaling factor. The scale-up Prototype will weigh about 14.7 Kg vs. 21.6 Kg for the metal counterpart. The advancement of this lightweight composite HX development from the original feasibility test coupons to EDU to Prototype is discussed in this paper.

  7. Preliminary study of advanced turboprop and turboshaft engines for light aircraft. [cost effectiveness

    Science.gov (United States)

    Knip, G.; Plencner, R. M.; Eisenberg, J. D.

    1980-01-01

    The effects of engine configuration, advanced component technology, compressor pressure ratio and turbine rotor-inlet temperature on such figures of merit as vehicle gross weight, mission fuel, aircraft acquisition cost, operating, cost and life cycle cost are determined for three fixed- and two rotary-wing aircraft. Compared with a current production turboprop, an advanced technology (1988) engine results in a 23 percent decrease in specific fuel consumption. Depending on the figure of merit and the mission, turbine engine cost reductions required to achieve aircraft cost parity with a current spark ignition reciprocating (SIR) engine vary from 0 to 60 percent and from 6 to 74 percent with a hypothetical advanced SIR engine. Compared with a hypothetical turboshaft using currently available technology (1978), an advanced technology (1988) engine installed in a light twin-engine helicopter results in a 16 percent reduction in mission fuel and about 11 percent in most of the other figures of merit.

  8. Low-Engine-Friction Technology for Advanced Natural-Gas Reciprocating Engines

    Energy Technology Data Exchange (ETDEWEB)

    Victor Wong; Tian Tian; G. Smedley; L. Moughon; Rosalind Takata; J. Jocsak

    2006-11-30

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis has been followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. In this program, a detailed set of piston and piston-ring dynamic and friction models have been adapted and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukesha VGF 18GL engine confirmed ring-pack friction reduction of 30-40%, which translates to total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. The study on surface textures, including roughness characteristics, cross hatch patterns, dimples and grooves have shown that even relatively small-scale changes can have a large effect on ring/liner friction, in some cases reducing FMEP by as much as 30% from a smooth surface case. The measured FMEP reductions were in good agreement with the model predictions. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Testing of low-friction lubricants showed that total engine FMEP reduced by up to {approx}16.5% from the commercial reference oil without significantly increasing oil consumption or blow-by flow. Piston friction studies

  9. Process Heat Exchanger Options for the Advanced High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-06-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  10. Impact of Dissociation and Sensible Heat Release on Pulse Detonation and Gas Turbine Engine Performance

    Science.gov (United States)

    Povinelli, Louis A.

    2001-01-01

    A thermodynamic cycle analysis of the effect of sensible heat release on the relative performance of pulse detonation and gas turbine engines is presented. Dissociation losses in the PDE (Pulse Detonation Engine) are found to cause a substantial decrease in engine performance parameters.

  11. Quantum Lubrication: Suppression of Friction in a First Principle Four Stroke Heat Engine

    CERN Document Server

    Feldmann, T; Feldmann, Tova; Kosloff, Ronnie

    2005-01-01

    A quantum model of a heat engine resembling the Otto cycle is employed to explore strategies to suppress frictional losses. These losses are caused by the inability of the engine's working medium to follow adiabatically the change in the Hamiltonian during the expansion and compression stages. By adding external noise to the engine, frictional losses can be suppressed.

  12. Integrated Computational Materials Engineering (ICME) for Third Generation Advanced High-Strength Steel Development

    Energy Technology Data Exchange (ETDEWEB)

    Savic, Vesna; Hector, Louis G.; Ezzat, Hesham; Sachdev, Anil K.; Quinn, James; Krupitzer, Ronald; Sun, Xin

    2015-06-01

    This paper presents an overview of a four-year project focused on development of an integrated computational materials engineering (ICME) toolset for third generation advanced high-strength steels (3GAHSS). Following a brief look at ICME as an emerging discipline within the Materials Genome Initiative, technical tasks in the ICME project will be discussed. Specific aims of the individual tasks are multi-scale, microstructure-based material model development using state-of-the-art computational and experimental techniques, forming, toolset assembly, design optimization, integration and technical cost modeling. The integrated approach is initially illustrated using a 980 grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching and partitioning (Q&P) heat treatment, as an example.

  13. FY2011 Annual Progress Report for Advanced Combustion Engine Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-12-01

    Annual Progress Report for the Advanced Combustion Engine Research and Development (R&D) subprogram supporting the mission of the Vehicle Technologies Program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future federal emissions regulations.

  14. Innovative tissue engineering structures through advanced manufacturing technologies.

    Science.gov (United States)

    Ciardelli, Gianluca; Chiono, Valeria; Cristallini, Caterina; Barbani, Niccoletta; Ahluwalia, Arti; Vozzi, Giovanni; Previti, Antonino; Tantussi, Giovanni; Giusti, Paolo

    2004-04-01

    Awide range of rapid prototyping (RP) techniques for the construction of three-dimensional (3-D) scaffolds for tissue engineering has been recently developed. In this study, we report and compare two methods for the fabrication of poly-(epsilon-caprolactone) and poly-(epsilon-caprolactone)-poly-(oxyethylene)-poly-(epsilon-caprolactone) copolymer scaffolds. The first technique is based on the use of a microsyringe and a computer-controlled three-axis micropositioner, which regulates motor speed and position. Polymer solutions are extruded through the needle of the microsyringe by the application of a constant pressure of 10-300 mm Hg, resulting in controlled polymer deposition of 5-600 microm lateral dimensions. The second method utilises the heating energy of a laser beam to sinter polymer microparticles according to computer-guided geometries. Materials may be fed either as dry powder or slurry of microparticles. Both powder granulometry and laser working parameters influence resolution (generally 300 microm x 700 microm), accuracy of sintering and surface and bulk properties of the final structures. The two RP methods allow the fabrication of 3-D scaffolds with a controlled architecture, providing a powerful means to study cell response to an environment similar to that found

  15. Heat Transfer Investigation of Intake Port Engine Based on Steady-State and Transient Simulation

    Directory of Open Access Journals (Sweden)

    Semin

    2008-01-01

    Full Text Available his research is presents the gas flow heat transfer investigation in the intake port of four stroke direct injection compression ignition engine using GT-Suite software for steady-state and transient simulation. To investigate and simulate the intake port gas flow heat transfer profile of compression ignition engine is using GT-Power engine model were developed in this research. GT-Power is sub-system menu from GT-Suite. The engine model is developed from the real compression ignition engine data and input to software library. In this research, the simulation of engine model is running in variations engine speeds. The simulation output data is collected from the GT-Post results plots and casesRLT in post processing. The simulation results of the intake port engine model are shown the characters in intake port heat transfer profile of engine in variations engine speeds. The detail performance intake port gas flow heat transfer is shown that in 3500 rpm engine speed is the best

  16. Review: Gigacycle fatigue data sheets for advanced engineering materials

    Directory of Open Access Journals (Sweden)

    Koji Yamaguchi, Takayuki Abe, Kazuo Kobayashi, Etsuo Takeuchi, Hisashi Hirukawa, Yoshio Maeda, Nobuo Nagashima, Masao Hayakawa, Yoshiyuki Furuya, Masuo Shimodaira and Kensuke Miyahara

    2007-01-01

    Full Text Available Gigacycle fatigue data sheets have been published since 1997 by the National Institute for Materials Science. They cover several areas such as high-cycle-number fatigue for high-strength steels and titanium alloys, the fatigue of welded joints, and high-temperature fatigue for advanced ferritic heat-resistant steels. Some unique testing machines are used to run the tests up to an extremely high number of cycles such as 1010 cycles. A characteristic of gigacycle fatigue failure is that it is initiated inside smooth specimens; the fatigue strength decreases with increasing cycle number and the fatigue limit disappears, although ordinary fatigue failure initiates from the surface of a smooth specimen and a fatigue limit appears. For welded joints, fatigue failure initiates from the notch root of the weld, because a large amount of stress is concentrated at the weld toe. The fatigue strength of welded joints has been obtained for up to 108 cycles, which is an extremely high number of cycles for large welded joints. The project of producing gigacycle fatigue data sheets is still continuing and will take a few more years to complete.

  17. Quantum Stirling heat engine and refrigerator with single and coupled spin systems

    Science.gov (United States)

    Huang, Xiao-Li; Niu, Xin-Ya; Xiu, Xiao-Ming; Yi, Xue-Xi

    2014-02-01

    We study the reversible quantum Stirling cycle with a single spin or two coupled spins as the working substance. With the single spin as the working substance, we find that under certain conditions the reversed cycle of a heat engine is NOT a refrigerator, this feature holds true for a Stirling heat engine with an ion trapped in a shallow potential as its working substance. The efficiency of quantum Stirling heat engine can be higher than the efficiency of the Carnot engine, but the performance coefficient of the quantum Stirling refrigerator is always lower than its classical counterpart. With two coupled spins as the working substance, we find that a heat engine can turn to a refrigerator due to the increasing of the coupling constant, this can be explained by the properties of the isothermal line in the magnetic field-entropy plane.

  18. Advanced heat removal system with porous media for electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Mahalle, A.M. [Sant Gadge Baba Amravati Univ., Amravati (India). Dept. of Mechanical Engineering; Jajoo, B.N. [Sant Gadge Baba Amravati Univ., Amravati (India). College of Engineering and Technology

    2007-07-01

    High porosity metal foams are primarily utilized in aerospace applications, although there use has been widened to include cooling in electronic packaging. They are good for high heat dissipation and other important applications have been found taking advantages of the thermal properties of the metal foam, including compact heat exchangers for airborne equipment; regenerative and dissipative air cooled condenser towers; and compact heat sinks for electronic power. Metal foam heat exchangers are efficient, compact and lightweight because of their low relative density, open porosity and high thermal conductivity of the cell edges, as well as the large accessible surface area per unit volume, and the ability to mix the cooling fluid. This paper presented the results of an investigation whose purpose was to prove the foam metal is a high heat dissipater using different heat inputs. The paper discussed the experimental methodology and described the metal foam sample used in the experiment. The heat transfer coefficient was increased as the velocity increased. The Reynolds number and Nusselt number was increased to increasing velocity. It was concluded that heat transfer from foam was primarily governed by total heat transfer area of the foam rather than the thermal conductivity. 16 refs., 14 figs.

  19. Development of Kinetic Mechanisms for Next-Generation Fuels and CFD Simulation of Advanced Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McNenly, Matt J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Whitesides, Russell [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mehl, Marco [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Killingsworth, Nick J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Westbrook, Charles K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-12-17

    Predictive chemical kinetic models are needed to represent next-generation fuel components and their mixtures with conventional gasoline and diesel fuels. These kinetic models will allow the prediction of the effect of alternative fuel blends in CFD simulations of advanced spark-ignition and compression-ignition engines. Enabled by kinetic models, CFD simulations can be used to optimize fuel formulations for advanced combustion engines so that maximum engine efficiency, fossil fuel displacement goals, and low pollutant emission goals can be achieved.

  20. Secondary Heat Exchanger Design and Comparison for Advanced High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Ali Siahpush; Michael McKellar; Michael Patterson; Eung Soo Kim

    2012-06-01

    The goals of next generation nuclear reactors, such as the high temperature gas-cooled reactor and advance high temperature reactor (AHTR), are to increase energy efficiency in the production of electricity and provide high temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process heat transport system. The need for efficiency, compactness, and safety challenge the boundaries of existing heat exchanger technology, giving rise to the following study. Various studies have been performed in attempts to update the secondary heat exchanger that is downstream of the primary heat exchanger, mostly because its performance is strongly tied to the ability to employ more efficient conversion cycles, such as the Rankine super critical and subcritical cycles. This study considers two different types of heat exchangers—helical coiled heat exchanger and printed circuit heat exchanger—as possible options for the AHTR secondary heat exchangers with the following three different options: (1) A single heat exchanger transfers all the heat (3,400 MW(t)) from the intermediate heat transfer loop to the power conversion system or process plants; (2) Two heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants, each exchanger transfers 1,700 MW(t) with a parallel configuration; and (3) Three heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants. Each heat exchanger transfers 1,130 MW(t) with a parallel configuration. A preliminary cost comparison will be provided for all different cases along with challenges and recommendations.

  1. In-Cylinder Heat Transfer Characteristics of Hydrogen Fueled Engine: A Steady State Approach

    Directory of Open Access Journals (Sweden)

    M. M. Rahman

    2010-01-01

    Full Text Available This study presents in-cylinder heat transfer characteristics of a single cylinder port injection Hydrogen fueled Internal Combustion Engine (H2ICE using a steady state approach. Problem statement: The differences in characteristics between hydrogen and hydrocarbon fuels are led to the difference in the behavior of physical processes during engine cycle. One of these processes is the in-cylinder heat transfer. Approach: One dimensional gas dynamic model was used to describe the heat transfer characteristics of the engine. The engine speed was varied from 2000-5000 rpm, crank angle from -40° to +100°, while Air-Fuel Ratio (AFR was changed from stoichiometric to lean limit. Results: The simulated results showed higher heat transfer rate but lower heat transfer to total fuel energy ratio with increasing the engine speed. The in-cylinder pressure and temperature were increased with decreasing AFR and increasing engine speed. The in-cylinder air flow rate was increased linearly with increasing engine speed as well as air fuel ratio. Conclusion/Recommendations: The results showed that the AFR has a vital effect on characteristics variation while the engine speed has minor effect. These results can be utilized for the study of combustion process, fuel consumption, emission production and engine performance.

  2. Heat transfer comparison between methane and hydrogen in a spark ignited engine

    Energy Technology Data Exchange (ETDEWEB)

    Sierens, Roger; Demuynck, Joachim; Paepe, Michel de; Verhelst, Sebastian [Ghent Univ. (Belgium)

    2010-07-01

    Hydrogen is one of the alternative fuels which are being investigated at Ghent University. NO{sub x} emissions will occur at high engine loads and they are a constraint for power and efficiency optimization. The formation of NO{sub x} emissions is temperature dependent. Consequently, the heat transfer from the burning gases to the cylinder walls has to be accurately modelled if precise computer calculations of the emissions are wanted. Several engine heat transfer models exist but they have been cited to be inaccurate for hydrogen. We have measured the heat flux in a spark ignited engine with a commercially available heat flux sensor. This paper investigates the difference between the heat transfer of hydrogen and a fossil fuel, in this case methane. Measurements with the same indicated power output are compared and the effect of the heat loss on the indicated efficiency is investigated. The power output of hydrogen combustion is lowered by burning lean in contrast to using a throttle in the case of methane. Although the peak in the heat flux of hydrogen is 3 times higher compared to methane for a high engine power output, the indicated efficiency is only 3% lower. The heat loss for hydrogen at a low engine load is smaller than that of methane which results in a higher indicated efficiency. The richness of the hydrogen-air mixture has a great influence on the heat transfer process in contrast to the in-cylinder mass in the case of methane. (orig.)

  3. Reconsideration of Criteria and Modeling in Order to Optimize the Efficiency of Irreversible Thermomechanical Heat Engines

    Directory of Open Access Journals (Sweden)

    Michel Feidt

    2010-12-01

    Full Text Available The purpose of this work is to precise and complete one recently proposed in the literature and relative to a general criterion to maximize the first law efficiency of irreversible heat engines. It is shown that the previous proposal seems to be a particular case. A new proposal has been developed for a Carnot irreversible thermomechanical heat engine at steady state associated to two infinite heat reservoirs (hot source, and cold sink: this constitutes the studied system. The presence of heat leak is accounted for, with the most simple form, as is done generally in the literature. Irreversibility is modeled through , created internal entropy rate in the converter (engine, and , total created entropy rate in the system. Heat transfer laws are represented as general functions of temperatures. These concepts are particularized to the most common heat transfer law (linear one. Consequences of the proposal are examined; some new analytical results are proposed for efficiencies.

  4. Vibration-induced coherence enhances the performance of a biological quantum heat engine

    CERN Document Server

    Chen, Hong-Bin; Chen, Yueh-Nan

    2016-01-01

    Photosynthesis has been the long-standing research interest due to its fundamental importance. Recently, studies on photosynthesis processes also inspire attention from thermodynamical aspect when considering photosynthetic apparatuses as biological quantum heat engines. Quantum coherence is shown to play a crucial role in enhancing the performance of these quantum heat engines. Based on the experimentally reported structure, we propose a quantum heat engine model with a non-Markovian vibrational mode. We show that one can obtain a performance enhancement easily for a wide range of parameters in the presence of the vibrational mode. Our results suggest new insights into the photosynthetic processes and a design principle mimicking natural organisms.

  5. Application of the Advanced Distillation Curve Method to Fuels for Advanced Combustion Engine Gasolines

    KAUST Repository

    Burger, Jessica L.

    2015-07-16

    © This article not subject to U.S. Copyright. Published 2015 by the American Chemical Society. Incremental but fundamental changes are currently being made to fuel composition and combustion strategies to diversify energy feedstocks, decrease pollution, and increase engine efficiency. The increase in parameter space (by having many variables in play simultaneously) makes it difficult at best to propose strategic changes to engine and fuel design by use of conventional build-and-test methodology. To make changes in the most time- and cost-effective manner, it is imperative that new computational tools and surrogate fuels are developed. Currently, sets of fuels are being characterized by industry groups, such as the Coordinating Research Council (CRC) and other entities, so that researchers in different laboratories have access to fuels with consistent properties. In this work, six gasolines (FACE A, C, F, G, I, and J) are characterized by the advanced distillation curve (ADC) method to determine the composition and enthalpy of combustion in various distillate volume fractions. Tracking the composition and enthalpy of distillate fractions provides valuable information for determining structure property relationships, and moreover, it provides the basis for the development of equations of state that can describe the thermodynamic properties of these complex mixtures and lead to development of surrogate fuels composed of major hydrocarbon classes found in target fuels.

  6. Fuel economy screening study of advanced automotive gas turbine engines

    Science.gov (United States)

    Klann, J. L.

    1980-01-01

    Fuel economy potentials were calculated and compared among ten turbomachinery configurations. All gas turbine engines were evaluated with a continuously variable transmission in a 1978 compact car. A reference fuel economy was calculated for the car with its conventional spark ignition piston engine and three speed automatic transmission. Two promising engine/transmission combinations, using gasoline, had 55 to 60 percent gains over the reference fuel economy. Fuel economy sensitivities to engine design parameter changes were also calculated for these two combinations.

  7. Natural heat transfer augmentation in passive advanced BWR plants

    International Nuclear Information System (INIS)

    In the European Simplified Boiling Water Reactor (ESBWR), the long-term post-accident containment pressure is determined by the combination of non condensable gas pressure and steam pressure in the wet well gas space. Since there are no active systems for heat removal in the wet well, energy transmitted to the wet well gas space, by a variety of means, must be removed by passive heat transfer to the walls and suppression pool (SP). The cold suppression pool located below the hotter gas space provides a stable configuration in which convection currents are suppressed thus limiting heat and mass transfer between the gas space and pool. However, heat transfer to the walls results in natural circulation currents that can augment the heat and mass transfer to the pool surface. Using a simplified model, parametric studies are carried out to show that augmentation of the order of magnitude expected can significantly impact the heat and mass transfer to the pool. Additionally a review of available literature in the area of augmentation and mixed convection of this type is presented and indicates the need for additional experimental work in order to develop adequate models for heat and mass transfer augmentation in the configuration of a BWR suppression pool. (author)

  8. Radiative properties of advanced spacecraft heat shield materials

    Science.gov (United States)

    Cunnington, G. R.; Funai, A. I.; Mcnab, T. K.

    1983-01-01

    Experimental results are presented to show the effects of simulated reentry exposure by convective heating and by radiant heating on spectral and total emittance of statically oxidized Inconel 617 and Haynes HS188 superalloys to 1260 K and a silicide coatea (R512E) columbium 752 alloy to 1590 K. Convective heating exposures were conducted in a supersonic arc plasma wind tunnel using a wedge-shaped specimen configuration. Radiant tests were conducted at a pressure of .003 atmospheres of dry air at a flow velocity of several meters per second. Convective heating specimens were subjected to 8, 20, and 38 15-min heating cycles, and radiant heating specimens were tested for 10, 20, 50, and 100 30-min heating cycles. Changes in radiative properties are explained in terms of changes in composition resulting from simulated reentry tests. The methods used to evaluate morphological, compositional and crystallographic changes include: Auger electron spectroscopy; scanning electron microscopy; X-ray diffraction analysis; and electron microprobe analysis.

  9. Design and modeling of an advanced marine machinery system including waste heat recovery and removal of sulphur oxides

    DEFF Research Database (Denmark)

    Frimann Nielsen, Rasmus; Haglind, Fredrik; Larsen, Ulrik

    2013-01-01

    consists of a two-stroke diesel engine, the wet sulphuric process for sulphur removal and an advanced waste heat recovery system including a conventional steam Rankine cycle and an organic Rankine cycle. The results are compared with those of a state-of-the-art machinery system featuring a two.......9% and the combined cycle thermal efficiency by 2.6%. The findings indicates that the technology has an energetic and environmental potential in marine applications, while still further research and development need to be done before it can be put into operation on ships....

  10. Reduction of harmful nitrogen oxide emission from low heat rejection diesel engine using carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Thulasi Gopinathan

    2016-01-01

    Full Text Available In this study, lanthanum aluminate is used as thermal barrier coating material for the first time in the internal combustion engine to convert the standard engine into low heat rejection engine. Initially, the biodiesel is prepared from sunflower oil by using trans-esterification process. The piton crown, cylinder head and valves of the engine is coated with lanthanum aluminate for a thickness of around 200 microns. However, the analysis of performance and emission characteristics of a standard diesel is carried out with diesel/biodiesel to compare with the low heat rejection engine. The lanthanum aluminate coated engine fueled with sunflower methyl ester shows better performance and emission. But the emission of NOx founds to be higher in the coated engine. Further, a small quantity of carbon nanotubes is added onto the biodiesel to carry out the experiments. Based on the results, the carbon nanotubes are added with the biodiesel to reduce the emission of NOx.

  11. Advances in Process Intensification through Multifunctional Reactor Engineering

    Energy Technology Data Exchange (ETDEWEB)

    O' Hern, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Engineering Sciences Center; Evans, Lindsay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Materials Sciences and Engineering Center; Miller, Jim [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Materials Sciences and Engineering Center; Cooper, Marcia [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Energetic Components Realization Center; Torczynski, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pena, Donovan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gill, Walt [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Engineering Sciences Center

    2011-02-01

    This project was designed to advance the art of process intensification leading to a new generation of multifunctional chemical reactors utilizing pulse flow. Experimental testing was performed in order to fully characterize the hydrodynamic operating regimes associated with pulse flow for implementation in commercial applications. Sandia National Laboratories (SNL) operated a pilot-scale multifunctional reactor experiment for operation with and investigation of pulse flow operation. Validation-quality data sets of the fluid dynamics, heat and mass transfer, and chemical kinetics were acquired and shared with Chemical Research and Licensing (CR&L). Experiments in a two-phase air-water system examined the effects of bead diameter in the packing, and viscosity. Pressure signals were used to detect pulsing. Three-phase experiments used immiscible organic and aqueous liquids, and air or nitrogen as the gas phase. Hydrodynamic studies of flow regimes and holdup were performed for different types of packing, and mass transfer measurements were performed for a woven packing. These studies substantiated the improvements in mass transfer anticipated for pulse flow in multifunctional reactors for the acid-catalyzed C4 paraffin/olefin alkylation process. CR&L developed packings for this alkylation process, utilizing their alkylation process pilot facilities in Pasadena, TX. These packings were evaluated in the pilot-scale multifunctional reactor experiments established by Sandia to develop a more fundamental understanding of their role in process intensification. Lummus utilized the alkylation technology developed by CR&L to design and optimize the full commercial process utilizing multifunctional reactors containing the packings developed by CR&L and evaluated by Sandia. This hydrodynamic information has been developed for multifunctional chemical reactors utilizing pulse flow, for the acid-catalyzed C4 paraffin/olefin alkylation process, and is now accessible for use in

  12. CMC Technology Advancements for Gas Turbine Engine Applications

    Science.gov (United States)

    Grady, Joseph E.

    2013-01-01

    CMC research at NASA Glenn is focused on aircraft propulsion applications. The objective is to enable reduced engine emissions and fuel consumption for more environmentally friendly aircraft. Engine system studies show that incorporation of ceramic composites into turbine engines will enable significant reductions in emissions and fuel burn due to increased engine efficiency resulting from reduced cooling requirements for hot section components. This presentation will describe recent progress and challenges in developing fiber and matrix constituents for 2700 F CMC turbine applications. In addition, ongoing research in the development of durable environmental barrier coatings, ceramic joining integration technologies and life prediction methods for CMC engine components will be reviewed.

  13. Orbit transfer rocket engine technology program enhanced heat transfer combustor technology

    Science.gov (United States)

    Brown, William S.

    1991-01-01

    In order to increase the performance of a high performance, advanced expander-cycle engine combustor, higher chamber pressures are required. In order to increase chamber pressure, more heat energy is required to be transferred to the combustor coolant circuit fluid which drives the turbomachinery. This requirement was fulfilled by increasing the area exposed to the hot-gas by using combustor ribs. A previous technology task conducted 2-d hot air and cold flow tests to determine an optimum rib height and configuration. In task C.5 a combustor calorimeter was fabricated with the optimum rib configuration, 0.040 in. high ribs, in order to determine their enhancing capability. A secondary objective was to determine the effects of mixture ratio changers on the enhancement during hot-fire testing. The program used the Rocketdyne Integrated Component Evaluator (ICE) reconfigured into a thrust chamber only mode. The test results were extrapolated to give a projected enhancement from the ribs for a 16 in. long cylindrical combustor at 15 Klb nominal thrust level. The hot-gas wall ribs resulted in a 58 percent increase in heat transfer. When projected to a full size 15K combustor, it becomes a 46 percent increase. The results of those tests, a comparison with previous 2-d results, the effects of mixture ratio and combustion gas flow on the ribs and the potential ramifications for expander cycle combustors are detailed.

  14. Assessment of Feasibility of the Beneficial Use of Waste Heat from the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Donna P. Guillen

    2012-07-01

    This report investigates the feasibility of using waste heat from the Advanced Test Reactor (ATR). A proposed glycol waste heat recovery system was assessed for technical and economic feasibility. The system under consideration would use waste heat from the ATR secondary coolant system to preheat air for space heating of TRA-670. A tertiary coolant stream would be extracted from the secondary coolant system loop and pumped to a new plate and frame heat exchanger, where heat would be transferred to a glycol loop for preheating outdoor air in the heating and ventilation system. Historical data from Advanced Test Reactor operations over the past 10 years indicates that heat from the reactor coolant was available (when needed for heating) for 43.5% of the year on average. Potential energy cost savings by using the waste heat to preheat intake air is $242K/yr. Technical, safety, and logistics considerations of the glycol waste heat recovery system are outlined. Other opportunities for using waste heat and reducing water usage at ATR are considered.

  15. A combined thermodynamic cycle based on methanol dissociation for IC (internal combustion) engine exhaust heat recovery

    International Nuclear Information System (INIS)

    In this paper, a novel approach for exhaust heat recovery was proposed to improve IC (internal combustion) engine fuel efficiency and also to achieve the goal for direct usage of methanol as IC engine fuel. An open organic Rankine cycle system using methanol as working medium is coupled to IC engine exhaust pipe for exhaust heat recovery. In the bottom cycle, the working medium first undergoes dissociation and expansion processes, and is then directed back to IC engine as fuel. As the external bottom cycle and the IC engine main cycle are combined together, this scheme forms a combined thermodynamic cycle. Then, this concept was applied to a turbocharged engine, and the corresponding simulation models were built for both of the external bottom cycle and the IC engine main cycle. On this basis, the energy saving potential of this combined cycle was estimated by parametric analyses. Compared to the methanol vapor engine, IC engine in-cylinder efficiency has an increase of 1.4–2.1 percentage points under full load conditions, while the external bottom cycle can increase the fuel efficiency by 3.9–5.2 percentage points at the working pressure of 30 bar. The maximum improvement to the IC engine global fuel efficiency reaches 6.8 percentage points. - Highlights: • A combined thermodynamic cycle using methanol as working medium for IC engine exhaust heat recovery is proposed. • The external bottom cycle of exhaust heat recovery and IC engine working cycle are combined together. • IC engine fuel efficiency could be improved from both in-cylinder working cycle and external bottom cycle. • The maximum improvement to the IC engine global fuel efficiency reaches 6.8 percentage points at full load

  16. Advanced turbine cooling, heat transfer, and aerodynamic studies

    Energy Technology Data Exchange (ETDEWEB)

    Je-Chin Han; Schobeiri, M.T. [Texas A& M Univ., College Station, TX (United States)

    1995-10-01

    The contractual work is in three parts: Part I - Effect of rotation on enhanced cooling passage heat transfer, Part II - Effect on Thermal Barrier Coating (TBC) spallation on surface heat transfer, and Part III - Effect of surface roughness and trailing edge ejection on turbine efficiency under unsteady flow conditions. Each section of this paper has been divided into three parts to individually accommodate each part. Part III is further divided into Parts IIIa and IIIb.

  17. Engineering with advanced materials for tailing dam designing

    OpenAIRE

    Kostadinov, Ljubisa; Krstev, Boris; Golomeov, Blagoj; Golomeova, Mirjana; Ilievski, Darko

    2012-01-01

    Tailing dam accidents hapened in the past serve as "alarm" for application of advanced methods and techniques at designing of tailing dams. The designing of advanced tailing dam nowdays is very current topic, due to the fact that designing would resolve very important issues for environmental protection. Advanced materials (geosyntetics) are used at process of construction in order the tailing dam to be constructed and to perform according to the advanced world standards. By applying the geos...

  18. Advanced sensible heat solar receiver for space power

    Science.gov (United States)

    Bennett, Timothy J.; Lacy, Dovie E.

    1988-01-01

    NASA Lewis, through in-house efforts, has begun a study to generate a conceptual design of a sensible heat solar receiver and to determine the feasibility of such a system for space power applications. The sensible heat solar receiver generated in this study uses pure lithium as the thermal storage medium and was designed for a 7 kWe Brayton (PCS) operating at 1100 K. The receiver consists of two stages interconnected via temperature sensing variable conductance sodium heat pipes. The lithium is contained within a niobium vessel and the outer shell of the receiver is constructed of third generation rigid, fibrous ceramic insulation material. Reradiation losses are controlled with niobium and aluminum shields. By nature of design, the sensible heat receiver generated in this study is comparable in both size and mass to a latent heat system of similar thermal capacitance. The heat receiver design and thermal analysis were conducted through the combined use of PATRAN, SINDA, TRASYS, and NASTRAN software packages.

  19. The Research of Simplification Of 1.9 TDI Diesel Engine Heat Release Parameters Determination

    Directory of Open Access Journals (Sweden)

    Justas Žaglinskis

    2014-12-01

    Full Text Available The investigation of modified methodology of Audi 1.9 TDI 1Z diesel engine heat release parameters’ determination is represented in the article. In this research the AVL BOOST BURN and IMPULS software was used to treat data and to simulate engine work process. The reverse task of indicated pressure determination from heat release data was solved here. T. Bulaty and W. Glanzman methodology was modified for purpose to simplify the determination of heat release parameters. The maximal cylinder pressure, which requires additional expensive equipment, was changed into the objective indicator – exhaust gas temperature. This modification allowed to simplify the experimental engine tests and also gave simulation results in an error range up to 2% of main engine operating parameters. The study results are assessed as an important point for the simplification of engine test under field conditions.

  20. Reprint of : Three-terminal heat engine and refrigerator based on superlattices

    Science.gov (United States)

    Choi, Yunjin; Jordan, Andrew N.

    2016-08-01

    We propose a three-terminal heat engine based on semiconductor superlattices for energy harvesting. The periodicity of the superlattice structure creates an energy miniband, giving an energy window for allowed electron transport. We find that this device delivers a large power, nearly twice than the heat engine based on quantum wells, with a small reduction of efficiency. This engine also works as a refrigerator in a different regime of the system's parameters. The thermoelectric performance of the refrigerator is analyzed, including the cooling power and coefficient of performance in the optimized condition. We also calculate phonon heat current through the system and explore the reduction of phonon heat current compared to the bulk material. The direct phonon heat current is negligible at low temperatures, but dominates over the electronic at room temperature and we discuss ways to reduce it.

  1. FY2009 Annual Progress Report for Advanced Combustion Engine Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-12-01

    Fiscal Year 2009 Annual Progress Report for the Advanced Combustion Engine Research and Development (R&D) subprogram. The Advanced Combustion Engine R&D subprogram supports the mission of the VTP program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future Federal emissions regulations. Dramatically improving the efficiency of ICEs and enabling their introduction in conventional as well as hybrid electric vehicles is the most promising and cost-effective approach to increasing vehicle fuel economy over the next 30 years.

  2. Parameter optimization of heat recovery steam generation for hyndai engine h25/33

    OpenAIRE

    MARCHENKO ANDRII PETROVYCH; ALI ADEL HAMZAH; OMAR ADEL HAMZAH

    2016-01-01

    Conducted experimental studies of thermodynamic parameters changes in working environments in Hyundai engine H25/33 when the engine is operating at different times of the year. Obtained regressional dependence to calculate the parameters of working environment in the range of ambient temperature changes from 0 to 40 °C. Based the possibility of use of ICE cooling water in the heat recovery steam generator in its appropriate treatment. Formed mathematical model of the heat recovery steam gener...

  3. Comparative Analysis of Thermoeconomic Evaluation Criteria for an Actual Heat Engine

    Science.gov (United States)

    Özel, Gülcan; Açıkkalp, Emin; Savaş, Ahmet Fevzi; Yamık, Hasan

    2016-07-01

    In the present study, an actual heat engine is investigated by using different thermoeconomic evaluation criteria in the literature. A criteria that has not been investigated in detail is considered and it is called as ecologico-economical criteria (F_{EC}). It is the difference of power cost and exergy destruction rate cost of the system. All four criteria are applied to an irreversible Carnot heat engine, results are presented numerically and some suggestions are made.

  4. Maximum efficiency of steady-state heat engines at arbitrary power.

    Science.gov (United States)

    Ryabov, Artem; Holubec, Viktor

    2016-05-01

    We discuss the efficiency of a heat engine operating in a nonequilibrium steady state maintained by two heat reservoirs. Within the general framework of linear irreversible thermodynamics we derive a universal upper bound on the efficiency of the engine operating at arbitrary fixed power. Furthermore, we show that a slight decrease of the power below its maximal value can lead to a significant gain in efficiency. The presented analysis yields the exact expression for this gain and the corresponding upper bound.

  5. The conference of Russian Association of Engineers for Heating, Ventilation, Air-Conditioning, Heat Supply and Building Thermal Physics (ABOK

    Directory of Open Access Journals (Sweden)

    V.M. Yakubson

    2014-04-01

    Full Text Available On April, 11th, in Lenexpo the XVI conference of Russian Association of Engineers for Heating, Ventilation, Air-Conditioning, Heat Supply and Building Thermal Physics (ABOK “Effective HVAC and Heat Supply Systems” took place. There were a lot of presentations of new equipment for building systems and networks. All these reports were dedicated to the ways to make buildings more comfortable for people, to increase the energy efficiency, to reduce expenses and to improve the production efficiency. But besides the specific equipment, there were some reports dedicated to more general problems in design, installation and maintenance of building systems and networks

  6. On the thermodynamics of waste heat recovery from internal combustion engine exhaust gas

    Science.gov (United States)

    Meisner, G. P.

    2013-03-01

    The ideal internal combustion (IC) engine (Otto Cycle) efficiency ηIC = 1-(1/r)(γ - 1) is only a function of engine compression ratio r =Vmax/Vmin and exhaust gas specific heat ratio γ = cP/cV. Typically r = 8, γ = 1.4, and ηIC = 56%. Unlike the Carnot Cycle where ηCarnot = 1-(TC/TH) for a heat engine operating between hot and cold heat reservoirs at TH and TC, respectively, ηIC is not a function of the exhaust gas temperature. Instead, the exhaust gas temperature depends only on the intake gas temperature (ambient), r, γ, cV, and the combustion energy. The ejected exhaust gas heat is thermally decoupled from the IC engine and conveyed via the exhaust system (manifold, pipe, muffler, etc.) to ambient, and the exhaust system is simply a heat engine that does no useful work. The maximum fraction of fuel energy that can be extracted from the exhaust gas stream as useful work is (1-ηIC) × ηCarnot = 32% for TH = 850 K (exhaust) and TC = 370 K (coolant). This waste heat can be recovered using a heat engine such as a thermoelectric generator (TEG) with ηTEG> 0 in the exhaust system. A combined IC engine and TEG system can generate net useful work from the exhaust gas waste heat with efficiency ηWH = (1-ηIC) × ηCarnot ×ηTEG , and this will increase the overall fuel efficiency of the total system. Recent improvements in TEGs yield ηTEG values approaching 15% giving a potential total waste heat conversion efficiency of ηWH = 4.6%, which translates into a fuel economy improvement approaching 5%. This work is supported by the US DOE under DE-EE0005432.

  7. Experimental study on waste heat recovery from an IC engine using thermoelectric technology

    Directory of Open Access Journals (Sweden)

    Kumar Ramesh C.

    2011-01-01

    Full Text Available A major part of the heat supplied in an IC engine is not realized as work output, but dumped into the atmosphere as waste heat. If this waste heat energy is tapped and converted into usable energy, the overall efficiency of the engine can be improved. The percentage of energy rejected to the environment through exhaust gas which can be potentially recovered is approximately 30-40% of the energy supplied by the fuel depending on engine load. Thermoelectric modules (TEM which are used as Thermoelectric generators (TEG are solid state devices that are used to convert thermal energy from a temperature gradient to electrical energy and it works on basic principle of Seebeck effect. This paper demonstrates the potential of thermoelectric generation. A detailed experimental work was carried to study the performance of TEG under various engine operating conditions. A heat exchanger with 18 TEG modules was designed and tested in the engine test rig. Thermoelectric modules were selected according to the temperature difference between exhaust gases side and the engine coolant side. Various designs of the heat exchangers were modeled using CAD and analysis was done using a CFD code which is commercially available to study the flow & heat transfer characteristics. From the simulated results it was found that rectangular shaped heat exchanger met our requirements and also satisfied the space and weight constraint. A rectangular heat exchanger was fabricated and the thermo electric modules were incorporated on the heat exchanger for performance analysis. The study also revealed that energy can be tapped efficiently from the engine exhaust and in near future TEG can reduce the size of the alternator or eliminate them in automobiles.

  8. Numerical investigation on a thermoacoustic heat engine unit with a displacer

    International Nuclear Information System (INIS)

    Highlights: • A new method to suppress the jet-flow in thermoacoustic heat engines is presented. • The involvement of displacer suppresses the jet flow and also eliminates the secondary ambient heat exchanger. • The unfavourable losses caused by the displacer are limited at the resonant state. • Resonant oscillation and smaller mechanical damping coefficient is preferred. - Abstract: A novel thermoacoustic heat engine – double-acting travelling wave thermoacoustic heat engine has been proposed by our research group recently. It consists of at least three symmetric engine and resonator units and has advantages on efficiency, power density and heat source flexibility. However, some computational and experimental results indicate a dramatic heat loss caused by the jet-flow in the thermal buffer tube due to the structures of the high temperature heat exchanger and the secondary ambient heat exchanger at its two ends. To solve this problem, a displacer locating in the thermal buffer tube is proposed to suppress the jet-flow. Moreover, the displacer is capable of isolating the hot region from room temperature, which provides an opportunity to eliminate the secondary ambient heat exchanger. In order to investigate such a double-acting thermoacoustic heat engine, a test rig of the engine unit has been developed by utilizing two linear motors to provide real operational conditions in the system. In this paper, a numerical simulation is performed to reveal the influences of the displacer on the system performance. According to the numerical results, the impact of displacer is very limited when the displacer is working under the resonant state. In addition, the influences of spring constant and mechanical damping coefficient of the displacer are analyzed in detail respectively

  9. Solar power generation by use of Stirling engine and heat loss analysis of its cavity receiver

    Science.gov (United States)

    Hussain, Tassawar

    Since concentrated power generation by Stirling engine has the highest efficiency therefore efficient power generation by concentrated systems using a Stirling engine was a primary motive of this research. A 1 kW Stirling engine was used to generate solar power using a Fresnel lens as a concentrator. Before operating On-Sun test, engine's performance test was conducted by combustion test. Propane gas with air was used to provide input heat to the Stirling Engine and 350W power was generated with 14% efficiency of the engine. Two kinds of receivers were used for On-Sun test, first type was the Inconel tubes with trapped helium gas and the second one was the heat pipe. Heat pipe with sodium as a working fluid is considered the best approach to transfer the uniform heat from the receiver to the helium gas in the heater head of the engine. A Number of On-Sun experiments were performed to generate the power. A minimum 1kW input power was required to generate power from the Stirling engine but it was concluded that the available Fresnel lens was not enough to provide sufficient input to the Stirling engine and hence engine was lagged to generate the solar power. Later on, for a high energy input a Beam Down system was also used to concentrate the solar light on the heater head of the Stirling engine. Beam down solar system in Masdar City UAE, constructed in 2009 is a variation of central receiver plant with cassegrainian optics. Around 1.5kW heat input was achieved from the Beam Down System and it was predicted that the engine receiver at beam down has the significant heat losses of about 900W. These high heat losses were the major hurdles to get the operating temperature (973K) of the heat pipes; hence power could not be generated even during the Beam Down test. Experiments were also performed to find the most suitable Cavity Receiver configuration for maximum solar radiation utilizations by engine receiver. Dimensionless parameter aperture ration (AR=d/D) and aperture

  10. Thermodynamics of the mesoscopic thermoelectric heat engine beyond the linear-response regime

    Science.gov (United States)

    Yamamoto, Kaoru; Hatano, Naomichi

    2015-10-01

    Mesoscopic thermoelectric heat engine is much anticipated as a device that allows us to utilize with high efficiency wasted heat inaccessible by conventional heat engines. However, the derivation of the heat current in this engine seems to be either not general or described too briefly, even inappropriately in some cases. In this paper, we give a clear-cut derivation of the heat current of the engine with suitable assumptions beyond the linear-response regime. It resolves the confusion in the definition of the heat current in the linear-response regime. After verifying that we can construct the same formalism as that of the cyclic engine, we find the following two interesting results within the Landauer-Büttiker formalism: the efficiency of the mesoscopic thermoelectric engine reaches the Carnot efficiency if and only if the transmission probability is finite at a specific energy and zero otherwise; the unitarity of the transmission probability guarantees the second law of thermodynamics, invalidating Benenti et al.'s argument in the linear-response regime that one could obtain a finite power with the Carnot efficiency under a broken time-reversal symmetry [Phys. Rev. Lett. 106, 230602 (2011), 10.1103/PhysRevLett.106.230602]. These results demonstrate how quantum mechanics constrains thermodynamics.

  11. Thermodynamics of the mesoscopic thermoelectric heat engine beyond the linear-response regime.

    Science.gov (United States)

    Yamamoto, Kaoru; Hatano, Naomichi

    2015-10-01

    Mesoscopic thermoelectric heat engine is much anticipated as a device that allows us to utilize with high efficiency wasted heat inaccessible by conventional heat engines. However, the derivation of the heat current in this engine seems to be either not general or described too briefly, even inappropriately in some cases. In this paper, we give a clear-cut derivation of the heat current of the engine with suitable assumptions beyond the linear-response regime. It resolves the confusion in the definition of the heat current in the linear-response regime. After verifying that we can construct the same formalism as that of the cyclic engine, we find the following two interesting results within the Landauer-Büttiker formalism: the efficiency of the mesoscopic thermoelectric engine reaches the Carnot efficiency if and only if the transmission probability is finite at a specific energy and zero otherwise; the unitarity of the transmission probability guarantees the second law of thermodynamics, invalidating Benenti et al.'s argument in the linear-response regime that one could obtain a finite power with the Carnot efficiency under a broken time-reversal symmetry [Phys. Rev. Lett. 106, 230602 (2011)]. These results demonstrate how quantum mechanics constrains thermodynamics. PMID:26565226

  12. Exergy, Economic and Environmental Analysis for Simple and Combined Heat and Power IC Engines

    Directory of Open Access Journals (Sweden)

    Mehdi Aliehyaei

    2015-04-01

    Full Text Available This study reports the results of exergy, economic and environmental analyses of simple and combined heat and power internal combustion engines. Values of entropy production, second law efficiency are calculated, and an objective function, including initial, operation, maintenance and fuel costs, as well as the external costs of environmental pollutants, such as CO2, CO and NOx, are presented for the flue gas of the internal combustion engine. The results show that entropy generation in the combined heat and power mode is 30% lower than that in the simple internal combustion engine. Also, by excessively increasing the air ratio, the system entropy generation decreases in both cases of simple and combined heat and power IC engines. The greatest portion of entropy generation is related to the combined heat and power internal combustion engine. The gas heat exchanger generates more entropy than the jacket heat exchanger. Lower values of electricity cost and external costs of air pollution are provided by higher values of molar air to fuel ratio. The environmental aspects depend on location of the system and time of engine operation.

  13. Heat exchanger design for hot air ericsson-brayton piston engine

    Directory of Open Access Journals (Sweden)

    Ďurčanský P.

    2014-03-01

    Full Text Available One of the solutions without negative consequences for the increasing energy consumption in the world may be use of alternative energy sources in micro-cogeneration. Currently it is looking for different solutions and there are many possible ways. Cogeneration is known for long time and is widely used. But the installations are often large and the installed output is more suitable for cities or industry companies. When we will speak about decentralization, the small machines have to be used. The article deals with the principle of hot-air engines, their use in combined heat and electricity production from biomass and with heat exchangers as primary energy transforming element. In the article is hot air engine presented as a heat engine that allows the conversion of heat into mechanical energy while heat supply can be external. In the contribution are compared cycles of hot-air engine. Then are compared suitable heat exchangers for use with hot air Ericsson-Brayton engine. In the final part is proposal of heat exchanger for use in closed Ericsson-Brayton cycle.

  14. Thermal Characterization of Nanostructures and Advanced Engineered Materials

    OpenAIRE

    Goyal, Vivek Kumar

    2011-01-01

    Continuous downscaling of Si complementary metal-oxide semiconductor (CMOS) technology and progress in high-power electronics demand more efficient heat removal techniques to handle the increasing power density and rising temperature of hot spots. For this reason, it is important to investigate thermal properties of materials at nanometer scale and identify materials with the extremely large or extremely low thermal conductivity for applications as heat spreaders or heat insulators in the nex...

  15. Comparative evaluation of three alternative power cycles for waste heat recovery from the exhaust of adiabatic diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, M.M.

    1985-07-01

    Three alternative power cycles were compared in application as an exhaust-gas heat-recovery system for use with advanced ''adiabatic'' diesel engines. The power cycle alternatives considered were steam Rankine, organic Rankine with RC-1 as the working fluid, and variations of an air Brayton cycle. The comparison was made in terms of fuel economy and economic payback potential for heavy-duty trucks operating in line-haul service. The results indicate that, in terms of engine rated specific fuel consumption, a diesel/alternative-power-cycle engine offers a significant improvement over the turbocompound diesel used as the baseline for comparison. The maximum improvement resulted from the use of a Rankine cycle heat-recovery system in series with turbocompounding. The air Brayton cycle alternatives studied, which included both simple-cycle and compression-intercooled configurations, were less effective and provided about half the fuel consumption improvement of the Rankine cycle alternatives under the same conditions. Capital and maintenance cost estimates were also developed for each of the heat-recovery power cycle systems. These costs were integrated with the fuel savings to identify the time required for net annual savings to pay back the initial capital investment. The sensitivity of capital payback time to arbitrary increases in fuel price, not accompanied by corresponding hardware cost inflation, was also examined. The results indicate that a fuel price increase is required for the alternative power cycles to pay back capital within an acceptable time period.

  16. Comparative evaluation of three alternative power cycles for waste heat recovery from the exhaust of adiabatic diesel engines

    Science.gov (United States)

    Bailey, M. M.

    1985-01-01

    Three alternative power cycles were compared in application as an exhaust-gas heat-recovery system for use with advanced adiabatic diesel engines. The power cycle alternatives considered were steam Rankine, organic Rankine with RC-1 as the working fluid, and variations of an air Brayton cycle. The comparison was made in terms of fuel economy and economic payback potential for heavy-duty trucks operating in line-haul service. The results indicate that, in terms of engine rated specific fuel consumption, a diesel/alternative-power-cycle engine offers a significant improvement over the turbocompound diesel used as the baseline for comparison. The maximum imporvement resulted from the use of a Rankine cycle heat-recovery system in series with turbocompounding. The air Brayton cycle alternatives studied, which included both simple-cycle and compression-intercooled configurations, were less effective and provided about half the fuel consumption improvement of the Rankine cycle alternatives under the same conditions. Capital and maintenance cost estimates were also developed for each of the heat-recovery power cycle systems. These costs were integrated with the fuel savings to identify the time required for net annual savings to pay back the initial capital investment. The sensitivity of capital payback time to arbitrary increases in fuel price, not accompanied by corresponding hardware cost inflation, was also examined. The results indicate that a fuel price increase is required for the alternative power cycles to pay back capital within an acceptable time period.

  17. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering

    DEFF Research Database (Denmark)

    Cho, Changhee; Choi, So Young; Luo, Zi Wei;

    2015-01-01

    The advent of various systems metabolic engineering tools and strategies has enabled more sophisticated engineering of microorganisms for the production of industrially useful fuels and chemicals. Advances in systems metabolic engineering have been made in overproducing natural chemicals and prod...

  18. Advanced Design Heat PumpRadiator for EVA Suits

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Passow, Christian; Phillips, Scott; Trevino, Luis

    2009-01-01

    Absorption cooling using a LiCl/water heat pump can enable lightweight and effective thermal control for EVA suits without venting water to the environment. The key components in the system are an absorber/radiator that rejects heat to space and a flexible evaporation cooling garment that absorbs heat from the crew member. This paper describes progress in the design, development, and testing of the absorber/radiator and evaporation cooling garment. New design concepts and fabrication approaches will significantly reduce the mass of the absorber/radiator. We have also identified materials and demonstrated fabrication approaches for production of a flexible evaporation cooling garment. Data from tests of the absorber/radiator s modular components have validated the design models and allowed predictions of the size and weight of a complete system.

  19. Advances in Structural Control in Civil Engineering in China

    Directory of Open Access Journals (Sweden)

    Hongnan Li

    2010-01-01

    Full Text Available In the recent years, much attention has been paid to the research and development of structural control techniques with particular emphasis on alleviation of wind and seismic responses of buildings and bridges in China. Structural control in civil engineering has been developed from the concept into a workable technology and applied into practical engineering structures. The aim of this paper is to review a state of the art of researches and applications of structural control in civil engineering in China. It includes the passive control, active control, hybrid controland semiactive control. Finally, the possible future directions of structural control in civil engineering in China are presented.

  20. Advanced Computational Methods for Thermal Radiative Heat Transfer.

    Energy Technology Data Exchange (ETDEWEB)

    Tencer, John; Carlberg, Kevin Thomas; Larsen, Marvin E.; Hogan, Roy E.,

    2016-10-01

    Participating media radiation (PMR) in weapon safety calculations for abnormal thermal environments are too costly to do routinely. This cost may be s ubstantially reduced by applying reduced order modeling (ROM) techniques. The application of ROM to PMR is a new and unique approach for this class of problems. This approach was investigated by the authors and shown to provide significant reductions in the computational expense associated with typical PMR simulations. Once this technology is migrated into production heat transfer analysis codes this capability will enable the routine use of PMR heat transfer in higher - fidelity simulations of weapon resp onse in fire environments.

  1. Advanced Computational Methods for Thermal Radiative Heat Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Tencer, John; Carlberg, Kevin Thomas; Larsen, Marvin E.; Hogan, Roy E.,

    2016-10-01

    Participating media radiation (PMR) in weapon safety calculations for abnormal thermal environments are too costly to do routinely. This cost may be s ubstantially reduced by applying reduced order modeling (ROM) techniques. The application of ROM to PMR is a new and unique approach for this class of problems. This approach was investigated by the authors and shown to provide significant reductions in the computational expense associated with typical PMR simulations. Once this technology is migrated into production heat transfer analysis codes this capability will enable the routine use of PMR heat transfer in higher - fidelity simulations of weapon resp onse in fire environments.

  2. Heat Transfer in Two-Stroke Diesel Engines for Large Ship Propulsion

    DEFF Research Database (Denmark)

    Christiansen, Caspar Ask

    Demands on reducing the fuel consumption and harmful emissions from the compression ignition engines (diesel engines) have been continuously increasing in recent years. To comply with this, better modeling tools for the diesel combustion process are desired from the engine developers. A very...... important aspect is determining the temperature distributions in and around the combustion chamber since they are important for determining the boundary conditions of the detailed computer models of the chemical and physical processes in the engine cylinder. Furthermore, the temperature information is very......%, 30% and 50% load) was performed on a MAN Diesel & Turbo SE test engine, which shows very promising results for further investigations of dynamic temperature and heat flux in large bore engines. Instantaneous heat flux is derived using both an analytical and a numerical model and compared. More...

  3. Spin-dependent Otto quantum heat engine based on a molecular substance

    Science.gov (United States)

    Hübner, Wolfgang; Lefkidis, Georgios; Dong, Chuanding; Chaudhuri, Debapriya; Chotorlishvili, Levan; Berakdar, Jamal

    2015-03-01

    We explore the potential of single molecules for thermodynamic cycles. To this end we propose two molecular heat engines based on the realistic Ni2 dimer: a quantum Otto engine and a modified quantum Otto engine for which laser-induced optical excitations substitute for one of the heat-exchange points. For reliable predictions and to inspect the role of spin and electronic correlations we perform fully correlated ab initio calculations of the electronic structure and the excited states. We analyze the efficiency and the word output of the derived engines and find an enhancement when the spin degree of freedom is included. We also use the von Neumann entropy to describe correlations and entanglement of the engines during the cycles. Furthermore, we link our results to previous results regarding an isobaric stroke and a magnetic quantum Diesel engine on the same substance.

  4. Heat Transfer and Fluid Dynamics Measurements in the Expansion Space of a Stirling Cycle Engine

    Science.gov (United States)

    Jiang, Nan; Simon, Terrence W.

    2006-01-01

    The heater (or acceptor) of a Stirling engine, where most of the thermal energy is accepted into the engine by heat transfer, is the hottest part of the engine. Almost as hot is the adjacent expansion space of the engine. In the expansion space, the flow is oscillatory, impinging on a two-dimensional concavely-curved surface. Knowing the heat transfer on the inside surface of the engine head is critical to the engine design for efficiency and reliability. However, the flow in this region is not well understood and support is required to develop the CFD codes needed to design modern Stirling engines of high efficiency and power output. The present project is to experimentally investigate the flow and heat transfer in the heater head region. Flow fields and heat transfer coefficients are measured to characterize the oscillatory flow as well as to supply experimental validation for the CFD Stirling engine design codes. Presented also is a discussion of how these results might be used for heater head and acceptor region design calculations.

  5. Power optimization of chemically driven heat engine based on first and second order reaction kinetic theory and probability theory

    Science.gov (United States)

    Zhang, Lei; Chen, Lingen; Sun, Fengrui

    2016-03-01

    The finite-time thermodynamic method based on probability analysis can more accurately describe various performance parameters of thermodynamic systems. Based on the relation between optimal efficiency and power output of a generalized Carnot heat engine with a finite high-temperature heat reservoir (heat source) and an infinite low-temperature heat reservoir (heat sink) and with the only irreversibility of heat transfer, this paper studies the problem of power optimization of chemically driven heat engine based on first and second order reaction kinetic theory, puts forward a model of the coupling heat engine which can be run periodically and obtains the effects of the finite-time thermodynamic characteristics of the coupling relation between chemical reaction and heat engine on the power optimization. The results show that the first order reaction kinetics model can use fuel more effectively, and can provide heat engine with higher temperature heat source to increase the power output of the heat engine. Moreover, the power fluctuation bounds of the chemically driven heat engine are obtained by using the probability analysis method. The results may provide some guidelines for the character analysis and power optimization of the chemically driven heat engines.

  6. Waste heat recovery system for recapturing energy after engine aftertreatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-06-17

    The disclosure provides a waste heat recovery (WHR) system including a Rankine cycle (RC) subsystem for converting heat of exhaust gas from an internal combustion engine, and an internal combustion engine including the same. The WHR system includes an exhaust gas heat exchanger that is fluidly coupled downstream of an exhaust aftertreatment system and is adapted to transfer heat from the exhaust gas to a working fluid of the RC subsystem. An energy conversion device is fluidly coupled to the exhaust gas heat exchanger and is adapted to receive the vaporized working fluid and convert the energy of the transferred heat. The WHR system includes a control module adapted to control at least one parameter of the RC subsystem based on a detected aftertreatment event of a predetermined thermal management strategy of the aftertreatment system.

  7. Finite-Time Thermoeconomic Optimization of a Solar-Driven Heat Engine Model

    Directory of Open Access Journals (Sweden)

    Fernando Angulo-Brown

    2011-01-01

    Full Text Available In the present paper, the thermoeconomic optimization of an irreversible solar-driven heat engine model has been carried out by using finite-time/finite-size thermodynamic theory. In our study we take into account losses due to heat transfer across finite time temperature differences, heat leakage between thermal reservoirs and internal irreversibilities in terms of a parameter which comes from the Clausius inequality. In the considered heat engine model, the heat transfer from the hot reservoir to the working fluid is assumed to be Dulong-Petit type and the heat transfer to the cold reservoir is assumed of the Newtonian type. In this work, the optimum performance and two design parameters have been investigated under two objective functions: the power output per unit total cost and the ecological function per unit total cost. The effects of the technical and economical parameters on the thermoeconomic performance have been also discussed under the aforementioned two criteria of performance.

  8. The Amount of Regenerated Heat Inside the Regenerator of a Stirling Engine

    Directory of Open Access Journals (Sweden)

    J. Škorpík

    2008-01-01

    Full Text Available The paper deals with analytical computing of the regenerated heat inside the regenerator of a Stirling engine. The total sum of the regenerated heat is constructed as a function of the crank angle in the case of Schmidt’s idealization. 

  9. Building an Understanding of Heat Transfer Concepts in Undergraduate Chemical Engineering Courses

    Science.gov (United States)

    Nottis, Katharyn E. K.; Prince, Michael J.; Vigeant, Margot A.

    2010-01-01

    Understanding the distinctions among heat, energy and temperature can be difficult for students at all levels of instruction, including those in engineering. Misconceptions about heat transfer have been found to persist, even after students successfully complete relevant coursework. New instructional methods are needed to address these…

  10. Model predictive control of a waste heat recovery system for automotive diesel engines

    NARCIS (Netherlands)

    Feru, E.; Willems, F.; De Jager, B.; Steinbuch, M.

    2014-01-01

    In this paper, a switching Model Predictive Control strategy is designed for an automotive Waste Heat Recovery system with two parallel evaporators. The objective is to maximize Waste Heat Recovery system output power, while satisfying safe operation under highly dynamic disturbances from the engine

  11. Evaluation, engineering and development of advanced cyclone processes. Quarterly technical progress report No. 4, July 1, 1991--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    ``Evaluation, Engineering and Development of Advanced Cyclone Processes`` is a research and development project for the reduction of pyritic sulfur in coal. Project goals are to remove 80 to 90% of the ash and pyritic sulfur while retaining 80 to 90% of the parent coal`s heating value. A number of media and media separator options are to be evaluated and tested, culminating with the implementation of the preferred combination in a 1,000 lb/hr bench-scale process optimization circuit.

  12. Theory of single-electron heat engines coupled to electromagnetic environments

    OpenAIRE

    Ruokola, Tomi; Ojanen, Teemu

    2012-01-01

    We introduce a new class of mesoscopic heat engines consisting of a tunnel junction coupled to a linear thermal bath. Work is produced by transporting electrons up against a voltage bias like in ordinary thermoelectrics but heat is transferred by microwave photons, allowing the heat bath to be widely separated from the electron system. A simple and generic formalism capable of treating a variety of different types of junctions and environments is presented. We identify the systems and conditi...

  13. Advanced catalytic converter system for natural gas powered diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Strots, V.O.; Bunimovich, G.A.; Matros, Y.S. [Matros Technologies Inc., Chesterfield, Missouri (United States); Zheng, M.; Mirosh, E.A. [Alternative Fuel Systems Inc., Calgary, Alberta (Canada)

    1998-12-31

    The paper discusses the development of catalytic converter for aftertreatment of exhaust gas from diesel engines powered with natural gas. The converter, operated with periodical reversals of the flow, ensures destruction of CO and hydrocarbons, including methane. Both computer simulation and engine testing results are presented. 8 refs.

  14. Engineering alumna, Defense Advanced Research Projects Agency head to speak to incoming class

    OpenAIRE

    Nystrom, Lynn A.

    2009-01-01

    Regina Dugan, the newly appointed director of the Defense Advanced Research Projects Agency (DARPA), will speak to incoming College of Engineering students at Virginia Tech, Thursday, Aug. 27, at 7 p.m. in Burruss Hall.

  15. Air Force funded researcher engineers enzymes to advance the hydrogen economy

    OpenAIRE

    Trulove, Susan

    2007-01-01

    Y. H. Percival Zhang, assistant professor of biological systems engineering at Virginia Tech, has received an Air Force Young Investigator award to advance development of an onboard process to convert a cellulosic material into hydrogen to power fuel cell vehicles.

  16. Artificial Sight Basic Research, Biomedical Engineering, and Clinical Advances

    CERN Document Server

    Humayun, Mark S; Chader, Gerald; Greenbaum, Elias

    2008-01-01

    Artificial sight is a frontier area of modern ophthalmology combining the multidisciplinary skills of surgical ophthalmology, biomedical engineering, biological physics, and psychophysical testing. Many scientific, engineering, and surgical challenges must be surmounted before widespread practical applications can be realized. The goal of Artificial Sight is to summarize the state-of-the-art research in this exciting area, and to describe some of the current approaches and initiatives that may help patients in a clinical setting. The Editors are active researchers in the fields of artificial sight, biomedical engineering and biological physics. They have received numerous professional awards and recognition for their work. The artificial sight team at the Doheny Eye Institute, led by Dr. Mark Humayun, is a world leader in this area of biomedical engineering and clinical research. Key Features Introduces and assesses the state of the art for a broad audience of biomedical engineers, biophysicists, and clinical...

  17. Free-piston Stirling engine diaphragm-coupled Heat-Actuated Heat Pump component technology program. Volume 1: Technical discussion

    Science.gov (United States)

    Ackermann, R. A.

    1988-01-01

    This report presents the results of an effort to develop and demonstrate the technical feasibility of a residential size Stirling-engine-driven diaphragm-coupled compressor for a heat pump application. The heat pump module consists of a 3-kW free-piston Stirling engine (FPSE), an efficient hydraulic transmission, and a nominal 3-ton capacity refrigerant (R-22) reciprocating compressor. During earlier Phase 1 activity, the lower end (hydraulic transmission and compressor) was designed, fabricated, mated to an existing Mechanical Technology Incorporated (MTI) FPSE, and tested. After several years of development, this heat pump module achieved a capacity of 2.5 refrigeration tons at 95 F ambient conditions. While this was below the module's rated 3.0-ton capacity, it demonstrated the potential of the FPSE heat pump (FPSE/HP) and identified a lack of engine power as the main reason for the low capacity. During a companion engine development program sponsored by the Gas Research Institute, the engine was improved by developing a new displacer drive that increased the FPSE's power capability. During Phase 2, the new engine, the Mark I, was mated to the lower end (transmission/compressor) and tested. The testing of the Mark I FPSE/HP module was very successful, with the system achieving its 3.0-ton capacity goal and all other proof-of-concepts targets. Included herein is a discussion of the Phase 2 activity, including the results of the Mark I FPSE/HP module testing, a component design effort of several key lower end components that was performed to optimize the design, and the Lennox evaluation.

  18. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology

    Energy Technology Data Exchange (ETDEWEB)

    Hopman, Ulrich,; Kruiswyk, Richard W.

    2005-07-05

    Caterpillar's Technology & Solutions Division conceived, designed, built and tested an electric turbocompound system for an on-highway heavy-duty truck engine. The heart of the system is a unique turbochargerr with an electric motor/generator mounted on the shaft between turbine and compressor wheels. When the power produced by the turbocharger turbine exceeds the power of the compressor, the excess power is converted to electrical power by the generator on the turbo shaft; that power is then used to help turn the crankshaft via an electric motor mounted in the engine flywheel housing. The net result is an improvement in engine fuel economy. The electric turbocompound system provides added control flexibility because it is capable of varying the amount of power extracted from the exhaust gases, thus allowing for control of engine boost. The system configuration and design, turbocharger features, control system development, and test results are presented.

  19. Prototype solar-heating system-engineering analysis

    Science.gov (United States)

    1978-01-01

    Space and domestic-water solar-heating prototype was tested in three phases: simulated energy function, winter normal operation, summer normal operation. Prototype was judged suitable for field installation.

  20. Born-Infeld AdS Black Holes as Heat Engines

    CERN Document Server

    Johnson, Clifford V

    2015-01-01

    We study the efficiency of heat engines that perform mechanical work via the pdV terms present in the First Law in extended gravitational thermodynamics. We use charged black holes as the working substance, for a particular choice of engine cycle. The context is Einstein gravity with negative cosmological constant and a Born-Infeld non-linear electrodynamics sector. We compare the results for these `holographic' heat engines to previous results obtained for Einstein-Maxwell black holes, and for the case where there is a Gauss-Bonnet sector.

  1. Born–Infeld AdS black holes as heat engines

    Science.gov (United States)

    Johnson, Clifford V.

    2016-07-01

    We study the efficiency of heat engines that perform mechanical work via the pdV terms present in the first law in extended gravitational thermodynamics. We use charged black holes as the working substance, for a particular choice of engine cycle. The context is Einstein gravity with negative cosmological constant and a Born–Infeld nonlinear electrodynamics sector. We compare the results for these ‘holographic’ heat engines to previous results obtained for Einstein–Maxwell black holes, and for the case where there is a Gauss–Bonnet sector.

  2. Born-Infeld AdS black holes as heat engines

    Science.gov (United States)

    Johnson, Clifford V.

    2016-07-01

    We study the efficiency of heat engines that perform mechanical work via the pdV terms present in the first law in extended gravitational thermodynamics. We use charged black holes as the working substance, for a particular choice of engine cycle. The context is Einstein gravity with negative cosmological constant and a Born-Infeld nonlinear electrodynamics sector. We compare the results for these ‘holographic’ heat engines to previous results obtained for Einstein-Maxwell black holes, and for the case where there is a Gauss-Bonnet sector.

  3. Infl uence of Low-Speed Marine Diesel Engine Settings on Waste Heat Availability

    OpenAIRE

    SENČIĆ, Tomislav; Račić, Nikola; Franković, Bernard

    2012-01-01

    The low-speed marine diesel engine is the most effective of all the ship propulsion systems. On every ship there is a need for thermal energy besides mechanical power to drive the propeller.It is possible to install a heat exchanger in the exhaust system that makes use of waste heat of the exhaust gasses of the diesel engine. Such a combined mechanical and thermal energy generation is called cogeneration. Modern engines allow the variation of the fuel injection timing and the variation of ...

  4. Electrical performances of pyroelectric bimetallic strip heat engines describing a Stirling cycle

    Science.gov (United States)

    Arnaud, A.; Boughaleb, J.; Monfray, S.; Boeuf, F.; Cugat, O.; Skotnicki, T.

    2015-12-01

    This paper deals with the analytical modeling of pyroelectric bimetallic strip heat engines. These devices are designed to exploit the snap-through of a thermo-mechanically bistable membrane to transform a part of the heat flowing through the membrane into mechanical energy and to convert it into electric energy by means of a piezoelectric layer deposited on the surface of the bistable membrane. In this paper, we describe the properties of these heat engines in the case when they complete a Stirling cycle, and we evaluate the performances (available energy, Carnot efficiency...) of these harvesters at the macro- and micro-scale.

  5. High heat flux engineering in solar energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, C.P.

    1993-07-01

    Solar thermal energy systems can produce heat fluxes in excess of 10,000 kW/m{sup 2}. This paper provides an introduction to the solar concentrators that produce high heat flux, the receivers that convert the flux into usable thermal energy, and the instrumentation systems used to measure flux in the solar environment. References are incorporated to direct the reader to detailed technical information.

  6. The influence of fuel type on the cooling system heat exchanger parameters in heavy-duty engines

    Science.gov (United States)

    Worsztynowicz, B.

    2016-09-01

    The paper discuses the problem of selection of cooling systems for heavy-duty engines fitted in city buses. Aside from diesel engines, engine manufacturers also have in their portfolio engines fueled with natural gas, whose design is based on that of a conventional diesel engine. Based on the parameters of the engines from this type-series (the same displacement and rated power) an analysis has been performed of the influence of the applied fuel on the heat flows directed to the radiators and charge air coolers, hence, their size and space necessary for their proper installation. A replacement of a diesel engine with a natural gas fueled engine of the same operating parameters results in an increased amount of heat released to the coolant and a reduced heat from the engine charging system. This forces a selection of different heat exchangers that require more space for installation. A universal cooling module for different engines is not an optimal solution.

  7. FY2010 Annual Progress Report for Advanced Combustion Engine Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Gurpreet [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2010-12-01

    The Advanced Combustion Engine R&D subprogram supports the mission of the Vehicle Technologies Program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future Federal emissions regulations. Dramatically improving the efficiency of ICEs and enabling their introduction in conventional as well as hybrid electric vehicles is the most promising and cost-effective approach to increasing vehicle fuel economy over the next 30 years.

  8. Maximum power output of a class of irreversible non-regeneration heat engines with a non-uniform working fluid and linear phenomenological heat transfer law

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Maximum power output of a class of irreversible non-regeneration heat engines with non-uniform working fluid,in which heat transfers between the working fluid and the heat reservoirs obey the linear phenomenological heat transfer law [q ∝Δ(T-1)],are studied in this paper. Optimal control theory is used to determine the upper bounds of power of the heat engine for the lumped-parameter model and the distributed-parameter model,respectively. The results show that the maximum power output of the heat engine in the distributed-parameter model is less than or equal to that in the lumped-parameter model,which could provide more realistic guidelines for real heat engines. Analytical solutions of the maximum power output are obtained for the irreversible heat engines working between constant temperature reservoirs. For the irreversible heat engine operating between variable temperature reservoirs,a numerical example for the lumped-parameter model is provided by numerical calculation. The effects of changes of reservoir’s temperature on the maximum power of the heat engine are analyzed. The obtained results are,in addition,compared with those obtained with Newtonian heat transfer law [q ∝Δ(T)].

  9. Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries

    Energy Technology Data Exchange (ETDEWEB)

    Adam Polcyn; Moe Khaleel

    2009-01-06

    The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

  10. Experimental study of gas engine driven air to water heat pump in cooling mode

    International Nuclear Information System (INIS)

    Nowadays a sustainable development for more efficient use of energy and protection of the environment is of increasing importance. Gas engine heat pumps represent one of the most practicable solutions which offer high energy efficiency and environmentally friendly for heating and cooling applications. In this paper, the performance characteristics of gas engine driven heat pump used in water cooling were investigated experimentally without engine heat recovery. The effects of several important factors (evaporator water inlet temperature, evaporator water volume flow rate, ambient air temperature, and engine speed) on the performance of gas engine driven heat pump were studied in a wide range of operating conditions. The results showed that primary energy ratio of the system increased by 22.5% as evaporator water inlet temperature increased from 13 oC to 24 oC. On the other hand, varying of engine speed from 1300 rpm to 1750 rpm led to decrease in system primary energy ratio by 13%. Maximum primary energy ratio has been estimated with a value of two over a wide range of operating conditions.

  11. Modeling of Transient Heat Flux in Spark Ignition Engine During Combustion and Comparisons with Experiment

    Directory of Open Access Journals (Sweden)

    T. F. Yusaf

    2005-01-01

    Full Text Available A quasi-one dimensional engine cycle simulation program was developed to predict the transient heat flux during combustion in a spark ignition engine. A two-zone heat release model was utilized to model the combustion process inside the combustion chamber. The fuel, air and burned gas properties throughout the engine cycle were calculated using variable specific heats. The transient heat flux inside the combustion chamber due to the change in the in-cylinder gas temperature and pressure during combustion was determined using the Woschni heat transfer model. The program was written in MATLAB together with the Graphical User Interface (GUI. Numerical results were compared with the experimental measurements and good agreement was obtained. Four thermocouples were used and positioned equi-spaced at 5mm intervals along a ray from the spark plug location on the engine head. These thermocouples were able to capture the heat flux release by the burned gas to the wall during the combustion process including the cycle-to-cycle variations. Pressure sensor was installed at the engine head to capture the pressure change throughout the cycle.

  12. Design and Performance Optimizations of Advanced Erosion-Resistant Low Conductivity Thermal Barrier Coatings for Rotorcraft Engines

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.

    2012-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future rotorcraft engine higher fuel efficiency and lower emission goals. For thermal barrier coatings designed for rotorcraft turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability, because the rotorcraft are often operated in the most severe sand erosive environments. Advanced low thermal conductivity and erosion-resistant thermal barrier coatings are being developed, with the current emphasis being placed on thermal barrier coating toughness improvements using multicomponent alloying and processing optimization approaches. The performance of the advanced thermal barrier coatings has been evaluated in a high temperature erosion burner rig and a laser heat-flux rig to simulate engine erosion and thermal gradient environments. The results have shown that the coating composition and architecture optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic oxidation durability

  13. Thermal Analysis on Plume Heating of the Main Engine on the Crew Exploration Vehicle Service Module

    Science.gov (United States)

    Wang, Xiao-Yen J.; Yuko, James R.

    2007-01-01

    The crew exploration vehicle (CEV) service module (SM) main engine plume heating is analyzed using multiple numerical tools. The chemical equilibrium compositions and applications (CEA) code is used to compute the flow field inside the engine nozzle. The plume expansion into ambient atmosphere is simulated using an axisymmetric space-time conservation element and solution element (CE/SE) Euler code, a computational fluid dynamics (CFD) software. The thermal analysis including both convection and radiation heat transfers from the hot gas inside the engine nozzle and gas radiation from the plume is performed using Thermal Desktop. Three SM configurations, Lockheed Martin (LM) designed 604, 605, and 606 configurations, are considered. Design of multilayer insulation (MLI) for the stowed solar arrays, which is subject to plume heating from the main engine, among the passive thermal control system (PTCS), are proposed and validated.

  14. Atmospheric dynamics. Constrained work output of the moist atmospheric heat engine in a warming climate.

    Science.gov (United States)

    Laliberté, F; Zika, J; Mudryk, L; Kushner, P J; Kjellsson, J; Döös, K

    2015-01-30

    Incoming and outgoing solar radiation couple with heat exchange at Earth's surface to drive weather patterns that redistribute heat and moisture around the globe, creating an atmospheric heat engine. Here, we investigate the engine's work output using thermodynamic diagrams computed from reanalyzed observations and from a climate model simulation with anthropogenic forcing. We show that the work output is always less than that of an equivalent Carnot cycle and that it is constrained by the power necessary to maintain the hydrological cycle. In the climate simulation, the hydrological cycle increases more rapidly than the equivalent Carnot cycle. We conclude that the intensification of the hydrological cycle in warmer climates might limit the heat engine's ability to generate work.

  15. Low Temperature Heat Source Utilization Current and Advanced Technology

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, James H. Jr.; Dambly, Benjamin W.

    1992-06-01

    Once a geothermal heat source has been identified as having the potential for development, and its thermal, physical, and chemical characteristics have been determined, a method of utilization must be decided upon. This compendium will touch upon some of these concerns, and hopefully will provide the reader with a better understanding of technologies being developed that will be applicable to geothermal development in East Africa, as well as other parts of the world. The appendices contain detailed reports on Down-the-Well Turbo Pump, The Vapor-Turbine Cycle for Geothermal Power Generation, Heat Exchanger Design for Geothermal Power Plants, and a Feasibility Study of Combined Power and Water Desalting Plant Using Hot Geothermal Water. [DJE-2005

  16. Integrated implosion/heating studies for advanced fast ignition

    International Nuclear Information System (INIS)

    Integrated experiments to investigate the ultrafast heating of implosions using cone/shell geometries have been performed at the Rutherford Appleton Laboratory. The experiments used the 1054 nm, nanosecond, 0.9 kJ output of the VULCAN Nd:glass laser to drive 486 μm diameter, 6 μm wall thickness Cu-doped deuterated plastic (CD) shells in 6-beam cubic symmetry. Measurements of the opacity of the compressed plasma using two-dimensional spatially resolved Ti-Kα x-ray radiography suggest that densities of 4 g cm-3 and areal densities of 40 mg cm-2 were achieved at stagnation. Upper limits on the heating with both 1 ps and 10 ps pulses were deduced from the fluorescent yield from the Cu dopant. The data suggest that control of the preformed plasma scale-length inside the cone is necessary for efficient coupling to the compressed plasma

  17. Recent advances in benefits and hazards of engineered nanoparticles.

    Science.gov (United States)

    Radad, Khaled; Al-Shraim, Mubarak; Moldzio, Rudolf; Rausch, Wolf-Dieter

    2012-11-01

    Over recent decades, engineered nanoparticles are increasingly produced as the result of the rapid development in nanotechnology. They are currently used in a wide range of industrial and public sectors including healthcare, agriculture, transport, energy, materials, and information and communication technologies. As the result, an increasing concern has been raised over the potential impacts of engineered nanoparticles to human health. In the light of this, it is the purpose of the present review to discuss: (1) novel properties of engineered nanoparticles particularly in biomedical sciences, (2) most recently reported adverse effects of manufactured nanoparticles on human health and (3) different aspects of toxicological risk assessment of these nanoparticles. PMID:22964156

  18. CRISPR/Cas9 advances engineering of microbial cell factories

    DEFF Research Database (Denmark)

    Jakociunas, Tadas; Jensen, Michael Krogh; Keasling, Jay D.

    2016-01-01

    interspaced palindromic repeats (CRISPR) and its associated proteins (Cas) have become the method of choice for precision genome engineering in many organisms due to their orthogonality, versatility and efficacy. Here we review the strategies adopted for implementation of RNA-guided CRISPR/Cas9 genome editing......-RNAs will be highlighted. Finally, this review will provide a perspective on the immediate challenges and opportunities foreseen by the use of CRISPR/Cas9 genome engineering and regulation in the context of metabolic engineering....

  19. Numerical study of heat transfer and combustion in IC engine with a porous media piston region

    International Nuclear Information System (INIS)

    Based on superadiabatic combustion in porous medium (PM), the porous medium engine as a new combustion concept is proposed to achieve high combustion efficiency and low emissions. In this paper, an axisymmetric model with detailed chemistry and two-temperature treatment is implemented into a variant of the KIVA-3V code to simulate the working process of the PM engine. Comparisons with the same engine but without PM are conducted. Temperature evolution of the PM and its effects are discussed in detail. Key factors affecting heat transfer, combustion and emissions of the PM engine, such as porosity, the initial PM temperature and equivalence ratio, are analyzed. The results show that the characteristics of heat transfer, emissions and combustion of the PM engine are superior to the engine without PM, providing valuable support for the PM engine concept. In particular, the PM engine is shown to sustain ultra lean combustion. - Graphical abstract: In the PM engine, a PM reactor is mounted on the piston head as shown in Fig. 1 which shows the schematic diagram of the computational domain. The heat exchange process between PM material and compressed air increases with upward motion of piston at compression stroke. At the TDC, almost all the air is compressed and closed to PM volume, meanwhile, the fuel is injected into PM chamber to achieve homogenization combustion. - Highlights: •Two-temperature treatment studies the working process of the PM engine. •Self-balancing temperature of the PM determines the continued and stable work. •Stronger heat exchange occurs between gas and PM with smaller porosity. •The PM engine can have lower levels of NOx, unburnt HC and CO emissions

  20. Advanced Supermarket Refrigeration/Heat Recovery Systems Vol 1 - Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-15

    Annex 26 is the first international project under the IEA Heat Pump Programme that links refrigeration and heat pump technology. Recovering heat from advanced supermarket refrigeration systems for space and water heating purposes seems obvious and is beneficial for owners and operators. Because there are world-wide a great number of supermarkets that offer frozen and chilled food under further growth of this sector may be expected, the amount of energy used for refrigeration is enormous and will likely increase substantially in the near future. This volume of the IEA Annex 26 final report contains a detailed summary of the Annex activities including principal conclusions from each participant.

  1. Thermodynamic formalism of minimum heat source temperature for driving advanced adsorption cooling device

    Science.gov (United States)

    Saha, Bidyut Baran; Chakraborty, Anutosh; Koyama, Shigeru; Srinivasan, Kandadai; Ng, Kim Choon; Kashiwagi, Takao; Dutta, Pradip

    2007-09-01

    This letter presents a thermodynamic formulation to calculate the minimum driving heat source temperature of an advanced solid sorption cooling device, and it is validated with experimental data. This formalism has been developed from the rigor of the Boltzmann distribution function and the condensation approximation of adsorptive molecules. An interesting and useful finding has been established from this formalism that it is possible to construct a solid sorption refrigeration device that operates in a cycle transferring heat from a low temperature source to a heat sink with a driving heat source at a temperature close to but above ambient.

  2. Enhancement of heat exchange by on-chip engineered heat sink structure

    Science.gov (United States)

    Chong, Yonuk; Dresselhaus, Paul D.; Benz, Samuel P.

    2007-03-01

    We report a method for improving heat exchange between cryo- cooled high power consuming devices and coolant. We fabricated a micro-machined monolithic heat sink structure on a high integration density superconducting Josephson device, and studied the effect of the heat sink on cooling of the device in detail. The monolithic heat sink structure showed a significant enhancement of cooling efficiency, which markedly improved the chip operation. The detailed mechanism of the enhancement still needs further modeling and study in order to optimize the design of the heat sink structure.

  3. Advances in Chemical Engineering — A Review of Petrochemical Industry in China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Chemical engineering has played an important role in the development of petrochemical industry. Some important advances in chemical engineering have been discussed in detail, i. e. petroleum refining, organic chemicals, synthetic resin, synthetic fibers and relevant raw materials, synthetic rubber, and process energy integration. The main business targets of China Petroleum & Chemical Corporation (SINOPEC Corp.) and the focus of further researches are also addressed.

  4. Advances In Mining Engineering Education: A Case For Learning Communities

    Directory of Open Access Journals (Sweden)

    Michael Hitch

    2015-05-01

    Full Text Available Mining engineering involves the design, planning and management of operations for the development, production and eventual rehabilitation of resource extraction. These activities draw on a diverse set of skills. University of British Columbia mining engineers have traditionally been highly regarded for their strengths in the technical aspects of mining and mineral process but also for their understanding of the application of principles of sustainability and social responsibility. The current view of the UBC Mining curriculum demands the integration of aspects of environmental and social sciences shaping the future of tertiary engineering education. The solution is developing a curriculum that is focused on key learning objectives that are a reflection of all these external pressures. This paper examines the challenge of curriculum reform and the emergence of learning communities at the Norman B. Keevil Institute of Mining Engineering at the University of British Columbia, Canada.

  5. Temperature optimisation of a diesel engine using exhaust gas heat recovery and thermal energy storage (Diesel engine with thermal energy storage)

    OpenAIRE

    Kauranen, Pertti; Elonen, Tuomo; Wikström, Lisa; Heikkinen, Jorma; Laurikko, Juhani

    2009-01-01

    Abstract Modern automotive diesel engines are so energy efficient that they are heating up slowly and tend to run rather cold at subzero temperatures. The problem is especially severe in mail delivery operations where the average speed is low and the drive cycle includes plenty of idling. The problem is typically solved by adding a diesel fuelled additional engine heater which is used for the preheating of the engine during cold start and additional heating of the engine if the coo...

  6. Maximum Power Point Characteristics of Generalized Heat Engines with Finite Time and Finite Heat Capacities

    Directory of Open Access Journals (Sweden)

    Abhishek Khanna

    2012-01-01

    Full Text Available We revisit the problem of optimal power extraction in four-step cycles (two adiabatic and two heat-transfer branches when the finite-rate heat transfer obeys a linear law and the heat reservoirs have finite heat capacities. The heat-transfer branch follows a polytropic process in which the heat capacity of the working fluid stays constant. For the case of ideal gas as working fluid and a given switching time, it is shown that maximum work is obtained at Curzon-Ahlborn efficiency. Our expressions clearly show the dependence on the relative magnitudes of heat capacities of the fluid and the reservoirs. Many previous formulae, including infinite reservoirs, infinite-time cycles, and Carnot-like and non-Carnot-like cycles, are recovered as special cases of our model.

  7. Advances in Structural Control in Civil Engineering in China

    OpenAIRE

    Hongnan Li; Linsheng Huo

    2010-01-01

    In the recent years, much attention has been paid to the research and development of structural control techniques with particular emphasis on alleviation of wind and seismic responses of buildings and bridges in China. Structural control in civil engineering has been developed from the concept into a workable technology and applied into practical engineering structures. The aim of this paper is to review a state of the art of researches and applications of structural control in civil enginee...

  8. Review on Recent Advances in Pulse Detonation Engines

    OpenAIRE

    Pandey, K. M.; Pinku Debnath

    2016-01-01

    Pulse detonation engines (PDEs) are new exciting propulsion technologies for future propulsion applications. The operating cycles of PDE consist of fuel-air mixture, combustion, blowdown, and purging. The combustion process in pulse detonation engine is the most important phenomenon as it produces reliable and repeatable detonation waves. The detonation wave initiation in detonation tube in practical system is a combination of multistage combustion phenomena. Detonation combustion causes rapi...

  9. Design space exploration and performance modelling of advanced turbofan and open-rotor engines

    OpenAIRE

    Giannakakis, Panagiotis

    2013-01-01

    This work focuses on the current civil engine design practice of increasing overall pressure ratio, turbine entry temperature and bypass ratio, and on the technologies required in order to sustain it. In this context, this thesis contributes towards clarifying the following gray aspects of future civil engine development: the connection between an aircraft application, the engine thermodynamic cycle and the advanced technologies of variable area fan nozzle and fan drive gearb...

  10. CORONA DISCHARGE IGNITION FOR ADVANCED STATIONARY NATURAL GAS ENGINES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Paul D. Ronney

    2003-09-12

    An ignition source was constructed that is capable of producing a pulsed corona discharge for the purpose of igniting mixtures in a test chamber. This corona generator is adaptable for use as the ignition source for one cylinder on a test engine. The first tests were performed in a cylindrical shaped chamber to study the characteristics of the corona and analyze various electrode geometries. Next a test chamber was constructed that closely represented the dimensions of the combustion chamber of the test engine at USC. Combustion tests were performed in this chamber and various electrode diameters and geometries were tested. The data acquisition and control system hardware for the USC engine lab was updated with new equipment. New software was also developed to perform the engine control and data acquisition functions. Work is underway to design a corona electrode that will fit in the new test engine and be capable igniting the mixture in one cylinder at first and eventually in all four cylinders. A test engine was purchased for the project that has two spark plug ports per cylinder. With this configuration it will be possible to switch between corona ignition and conventional spark plug ignition without making any mechanical modifications.

  11. Solar cell as a self-oscillating heat engine

    International Nuclear Information System (INIS)

    Solar cells are engines converting energy supplied by the photon flux into work. All known types of macroscopic engines and turbines are also self-oscillating systems which yield a periodic motion at the expense of a usually non-periodic source of energy. The very definition of work in the formalism of quantum open systems suggests the hypothesis that the oscillating ‘piston’ is a necessary ingredient of the work extraction process. This aspect of solar cell operation is absent in the existing descriptions and the main goal of this paper is to show that plasma oscillations provide the physical implementation of a piston. (paper)

  12. Analysis and assessment of a new organic Rankine based heat engine system with/without cogeneration

    International Nuclear Information System (INIS)

    A low-temperature heat driven heat engine is proposed as a cost-effective system for power and heat production for small scale applications. The external heat source allows flexibility in the design; the system may be coupled with various available renewable sources including biomass/biofuel/biogas combustion, geothermal heat, concentrated solar radiation, and industrial waste heat, by selecting appropriate off-the-shelf components from the HVAC (heating, ventilation, and air conditioning), refrigeration, and automotive industries for use in an ORC (organic Rankine cycle). A theoretical analysis and an experimental study are carried out for an ORC with R134a as the working fluid, utilizing a low-temperature heat source (Tsource < 150 °C), with focus on the expansion and boiling processes. The complete ORC model is comprised of models for the expander, working fluid pump, boiler, and condenser. Thermodynamic and heat transfer models are developed to calculate the local and averaged heat transfer coefficient of the working fluid throughout the boiling process, based on the geometry of the selected heat exchanger. Data collected for the experimental ORC test bench are used to validate the expander and boiler models. A case study is performed for the proposed ORC, for cogeneration of power and heat in a residential application. The results of the case study analysis for the proposed ORC system indicate a cycle efficiency of 0.05, exergy efficiency of 0.17, and energy and exergy cogeneration efficiency of 0.87, and 0.35, respectively. - Highlights: • Development and investigation of a scroll based Rankine heat engine operating with R134a. • Thermodynamic analyses of the system and its components. • Heat transfer analyses of boiler and condenser. • Dynamic analysis of expander. • Model validation through performed experiments on an ORC test bench

  13. Safe Affordable Fission Engine-(SAFE-) 100a Heat Exchanger Thermal and Structural Analysis

    Science.gov (United States)

    Steeve, B. E.

    2005-01-01

    A potential fission power system for in-space missions is a heat pipe-cooled reactor coupled to a Brayton cycle. In this system, a heat exchanger (HX) transfers the heat of the reactor core to the Brayton gas. The Safe Affordable Fission Engine- (SAFE-) 100a is a test program designed to thermally and hydraulically simulate a 95 Btu/s prototypic heat pipe-cooled reactor using electrical resistance heaters on the ground. This Technical Memorandum documents the thermal and structural assessment of the HX used in the SAFE-100a program.

  14. An Approach to Enhance the Efficiency of a Brownian Heat Engine

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yan-Ping; HE Ji-Zhou; XIAO Yu-Ling

    2011-01-01

    A Brownian microscopic heat engine, driven by temperature difference and consisting of a Brownian particle moving in a sawtooth potential with an external load, is investigated. The heat Hows, driven by both potential and kinetic energies, are taken into account. Based on the master equation, the expressions for efficiency and power output are derived analytically, and performance characteristic curves are plotted. It is shown that the heat How via the kinetic energy of the particle decreases. The efficiency of the engine is enhanced, but the power output reduces as the a shape parameter of the sawtooth potential increases. The influence of the a shape parameter on efficiency and power output is then analyzed in detail.%A Brownian microscopic heat engine,driven by temperature difference and consisting of a Brownian particle moving in a sawtooth potential with an external load,is investigated.The heat flows,driven by both potential and kinetic energies,are taken into account.Based on the master equation,the expressions for efficiency and power output are derived analytically,and performance characteristic curves are plotted.It is shown that the heat flow via the kinetic energy of the particle decreases.The efficiency of the engine is enhanced,but the power output reduces as the α shape parameter of the sawtooth potential increases.The influence of the α shape parameter on efficiency and power output is then analyzed in detail.Like the Carnot cycle,the Brownian heat engine can extract work from the temperature difference between heat reservoirs,where the Brownian working material operates as a transducer of thermal energy into mechanical work.In the last few decades,the study of Brownian heat engines has received considerable attention,not only for the construction of the miniaturized engine that helps us utilize energy resources at microscopic scales,but also for a better understanding of nonequilibrium statistical physics.[1-3] The thermodynamic properties of the

  15. CRISPR/Cas9 advances engineering of microbial cell factories.

    Science.gov (United States)

    Jakočiūnas, Tadas; Jensen, Michael K; Keasling, Jay D

    2016-03-01

    One of the key drivers for successful metabolic engineering in microbes is the efficacy by which genomes can be edited. As such there are many methods to choose from when aiming to modify genomes, especially those of model organisms like yeast and bacteria. In recent years, clustered regularly interspaced palindromic repeats (CRISPR) and its associated proteins (Cas) have become the method of choice for precision genome engineering in many organisms due to their orthogonality, versatility and efficacy. Here we review the strategies adopted for implementation of RNA-guided CRISPR/Cas9 genome editing with special emphasis on their application for metabolic engineering of yeast and bacteria. Also, examples of how nuclease-deficient Cas9 has been applied for RNA-guided transcriptional regulation of target genes will be reviewed, as well as tools available for computer-aided design of guide-RNAs will be highlighted. Finally, this review will provide a perspective on the immediate challenges and opportunities foreseen by the use of CRISPR/Cas9 genome engineering and regulation in the context of metabolic engineering.

  16. Influence of resonator diameter on a miniature thermoacoustic Stirling heat engine

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A small scale thermoacoustic Stirling engine (TASHE)is simulated according to the linear thermoacoustic theory.The computed results show that in a small scale thermoacoustic Stirling heat engine,the diameter of the resonance tube might have important influences on the working frequency and the performance of the engine,which are always neglected in a large scale system.Likewise,the analysis and experimental results show that in order to obtain better engine performance.the diameter of the resonance tube must be chosen appropriately according to the looped tube dimension and the input heating power.This provides an effective way to miniaturize the thermoacoustic Stirling heat engine.According to the computation and analysis,a small scale engine was built,the resonance tube length and diameter of which were about 350 mm and 20 mm,respectively,and the working frequency was about 282 Hz.When the input heating power was about 637 W,the maximaI peak to peak pressure amplitude and pressure ratio reached 0.22 MPa and 1.116,respectively,which were able to drive a thermoacoustic refrigerator or an electrical generator.

  17. Recent advances in rational approaches for enzyme engineering

    Directory of Open Access Journals (Sweden)

    Kerstin Steiner

    2012-09-01

    Full Text Available Enzymes are an attractive alternative in the asymmetric syntheses of chiral building blocks. To meet the requirements of industrial biotechnology and to introduce new functionalities, the enzymes need to be optimized by protein engineering. This article specifically reviews rational approaches for enzyme engineering and de novo enzyme design involving structure-based approaches developed in recent years for improvement of the enzymes’ performance, broadened substrate range, and creation of novel functionalities to obtain products with high added value for industrial applications.

  18. Advanced FDTD methods parallelization, acceleration, and engineering applications

    CERN Document Server

    Yu, Wenhua

    2011-01-01

    The finite-difference time-domain (FDTD) method has revolutionized antenna design and electromagnetics engineering. Here's a cutting-edge book that focuses on the performance optimization and engineering applications of FDTD simulation systems. Covering the latest developments in this area, this unique resource offer you expert advice on the FDTD method, hardware platforms, and network systems. Moreover the book offers guidance in distinguishing between the many different electromagnetics software packages on the market today. You also find a complete chapter dedicated to large multi-scale pro

  19. Advanced heat pumps and their economic aspects. The case for super heat pump

    International Nuclear Information System (INIS)

    The results of the economic evaluation of the Super Heat Pump Energy Accumulation System project in Japan are reviewed. It is reported that although the initial costs of super heat pumps are higher than those of conventional systems, the calculated operating costs of a unit thermal energy produced by a super heat pump is reduced considerably. All the various system concepts with thermal/chemical storage were evaluated economically with the exception of the high temperature thermal storage systems using salt ammonia complexes and solvation. These latter systems were not further developed as pilot plants. It is advocated to accelerate the introduction of super heat pumps by facilitating their market introduction. Actual clathrate chemical storage systems have shown that the annual costs are comparable to those of an ice storage system. Clathrate systems will find their way in the market. It is concluded that most of the super heat pump systems and clathrate storage systems will be economic in the future. A big challenge however still exists in further improving the cost effectiveness of heat storage in tanks by reducing their size dramatically (to 1/10th)

  20. Conventional and Advanced Silicagel-water Adsorption Cycles Driven by Near - environmental Temperature Heat

    Science.gov (United States)

    Boelman, Elisa; B. Saha, Bidyut; Tanaka, Aiharu; Kashiwagi, Takao

    This work aims at clarifying the possible operating temperature ranges for silica gel-water adsorption refrigeration cycles driven by near-environmental temperature heat sources (between 50°C and 85°C), with relatively small regenerating temperature lifts (10 K to 65 K). A newly developed three stage advanced silica gel-water cycle, which is operational with 50°C driving heat source and 30°C cooling source is introduced and compared with a conventional single stage cycle. The cycles are evaluated in terms of cooling capacity, COP and the viability of operation with near-environmental temperature driving heat sources. The analysis is based on experimental and cycle simulation work. The results showed the advanced three stage cycle to be particularly suited for operation with low grade waste heat driving sources, since it worked with small regenerating temperature lifts (ΔTregen)of 10K to 30K. Another significant advantage of operation with small ΔTregen is the possibility to reduce irreversible heat losses from batched cycle operation. Experiments carried out on full-size machine suggested that, even with smallΔTregen, adsorber /desorber heat exchanger improvements such as higher thermal conductance and smaller heat capacitance can contribute to reduce heat losses while improving cycle performance in terms of cooling capacity and COP.

  1. Heat exchanger modeling and identification for control of waste heat recovery systems in diesel engines

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; Rojer, C.; Jager, B. de; Steinbuch, M.

    2013-01-01

    To meet future CO2 emission targets, Waste Heat Recovery systems have recently attracted much attention for automotive applications, especially for long haul trucks. This paper focuses on the development of a dynamic counter-flow heat exchanger model for control purposes. The model captures the dyna

  2. Heat Transfer in Large Two-Stroke Marine Diesel Engines

    DEFF Research Database (Denmark)

    Jensen, Michael Vincent

    was located in the stagnation point in most of the investigated cases, and an analysis was performed of the variation of the stagnation point Nusselt number, Nu0, with the jet Reynolds number and the jet turbulence intensity at the jet inlet, TI. Based on the observed relations, a correlation between Nu0, Re...... and TI is suggested for high jet Reynolds number cases. A satisfactory validation of the correlation was not possible to perform due to insufficient available experimental data. A comparison of the correlation predictions to existing experimental data indicated however an overprediction of Nu0...... in the magnitude of 50% – 100%. The overprediction is considered to be caused primarily by incorrect numerical model predictions. Based on the performed jet impingement heat transfer investigations, an estimate is provided of the peak convective piston surface heat flux level experienced in the considered large...

  3. Sireme: the renewable heat fund, engine of renewable energy sources

    International Nuclear Information System (INIS)

    For its first issue, the international exhibition of renewable energies (Sireme) gathered 15000 visitors in Paris in mid-November. The program of conferences has permitted to take stock of the progresses made since the publication of the texts following the 'Grenelle de l'Environnement' multi-parties debate. The announcement of the national plan of renewable energies development by J.L. Borloo, French Minister of ecology, has been the starting point of these meetings. The most outstanding news of this plan concerns the creation of a renewable heat fund for a revival of district heating networks and the increase of photovoltaic conversion by a factor of 400 (6400 MW) by the year 2020. (J.S.)

  4. Recent advances in chemical engineering. Tracers and tracing methods

    International Nuclear Information System (INIS)

    The first congress on 'tracers and tracing methods' has taken place in Nancy in November 1998. It has been a successful national event with more than 100 participants and 65 presentations. The applications of radiotracers in different industries have been studied. The target participants were the researchers, engineers and technologists of various industrial and research sectors

  5. Review on Recent Advances in Pulse Detonation Engines

    Directory of Open Access Journals (Sweden)

    K. M. Pandey

    2016-01-01

    Full Text Available Pulse detonation engines (PDEs are new exciting propulsion technologies for future propulsion applications. The operating cycles of PDE consist of fuel-air mixture, combustion, blowdown, and purging. The combustion process in pulse detonation engine is the most important phenomenon as it produces reliable and repeatable detonation waves. The detonation wave initiation in detonation tube in practical system is a combination of multistage combustion phenomena. Detonation combustion causes rapid burning of fuel-air mixture, which is a thousand times faster than deflagration mode of combustion process. PDE utilizes repetitive detonation wave to produce propulsion thrust. In the present paper, detailed review of various experimental studies and computational analysis addressing the detonation mode of combustion in pulse detonation engines are discussed. The effect of different parameters on the improvement of propulsion performance of pulse detonation engine has been presented in detail in this research paper. It is observed that the design of detonation wave flow path in detonation tube, ejectors at exit section of detonation tube, and operating parameters such as Mach numbers are mainly responsible for improving the propulsion performance of PDE. In the present review work, further scope of research in this area has also been suggested.

  6. Using Advanced Search Operators on Web Search Engines.

    Science.gov (United States)

    Jansen, Bernard J.

    Studies show that the majority of Web searchers enter extremely simple queries, so a reasonable system design approach would be to build search engines to compensate for this user characteristic. One hundred representative queries were selected from the transaction log of a major Web search service. These 100 queries were then modified using the…

  7. Seal Technology Development for Advanced Component for Airbreathing Engines

    Science.gov (United States)

    Snyder, Philip H.

    2008-01-01

    Key aspects of the design of sealing systems for On Rotor Combustion/Wave Rotor (ORC/WR) systems were addressed. ORC/WR systems generally fit within a broad class of pressure gain Constant Volume Combustors (CVCs) or Pulse Detonation Combustors (PDCs) which are currently being considered for use in many classes of turbine engines for dramatic efficiency improvement. Technology readiness level of this ORC/WR approaches are presently at 2.0. The results of detailed modeling of an ORC/WR system as applied to a regional jet engine application were shown to capture a high degree of pressure gain capabilities. The results of engine cycle analysis indicated the level of specific fuel consumption (SFC) benefits to be 17 percent. The potential losses in pressure gain due to leakage were found to be closely coupled to the wave processes at the rotor endpoints of the ORC/WR system. Extensive investigation into the sealing approaches is reported. Sensitivity studies show that SFC gains of 10 percent remain available even when pressure gain levels are highly penalized. This indicates ORC/WR systems to have a high degree of tolerance to rotor leakage effects but also emphasizes their importance. An engine demonstration of an ORC/WR system is seen as key to progressing the TRL of this technology. An industrial engine was judged to be a highly advantageous platform for demonstration of a first generation ORC/WR system. Prior to such a demonstration, the existing NASA pressure exchanger wave rotor rig was identified as an opportunity to apply both expanded analytical modeling capabilities developed within this program and to identify and fix identified leakage issues existing within this rig. Extensive leakage analysis of the rig was performed and a detailed design of additional sealing strategies for this rig was generated.

  8. The Second Law of Thermodynamics in a Quantum Heat Engine Model

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The second law of thermodynamics has been proven by many facts in classical world. Is there any new property of it in quantum world? In this paper, we calculate the change of entropy in T.D. Kieu's model for quantum heat engine (QHE) and prove the broad validity of the second law of thermodynamics. It is shown that the entropy of the quantum heat engine neither decreases in a whole cycle, nor decreases in either stage of the cycle. The second law of thermodynamics still holds in this QHE model. Moreover, although the modified quantum heat engine is capable of extracting more work, its efficiency does not improve at all. It is neither beyond the efficiency of T.D. Kieu's initial model, nor greater than the reversible Carnot efficiency.

  9. The maximum efficiency of nano heat engines depends on more than temperature

    Science.gov (United States)

    Woods, Mischa; Ng, Nelly; Wehner, Stephanie

    Sadi Carnot's theorem regarding the maximum efficiency of heat engines is considered to be of fundamental importance in the theory of heat engines and thermodynamics. Here, we show that at the nano and quantum scale, this law needs to be revised in the sense that more information about the bath other than its temperature is required to decide whether maximum efficiency can be achieved. In particular, we derive new fundamental limitations of the efficiency of heat engines at the nano and quantum scale that show that the Carnot efficiency can only be achieved under special circumstances, and we derive a new maximum efficiency for others. A preprint can be found here arXiv:1506.02322 [quant-ph] Singapore's MOE Tier 3A Grant & STW, Netherlands.

  10. Thermo-economic modeling and optimization of an irreversible solar-driven heat engine

    International Nuclear Information System (INIS)

    Highlights: • An irreversible solar-driven heat engine is optimized. • Developed multi objective evolutionary approaches is used. • Power output, ecological function and thermal efficiency are optimized. - Abstract: The present paper illustrates a new thermo-economic performance analysis of an irreversible solar-driven heat engine. Moreover, aforementioned irreversible solar-driven heat engine is optimized by employing thermo-economic functions. With the help of the first and second laws of thermodynamics, an equivalent system is initially specified. To assess this goal, three objective functions that the normalized objective function associated to the power output (FP) and Normalized ecological function (FE) and thermal efficiency (ηth) are involved in optimization process simultaneously. Three objective functions are maximized at the same time. A multi objective evolutionary approaches (MOEAs) on the basis of NSGA-II method is employed in this work

  11. Identifying Student Difficulties with Entropy, Heat Engines, and the Carnot Cycle

    CERN Document Server

    Smith, Trevor I; Mountcastle, Donald B; Thompson, John R

    2015-01-01

    We report on several specific student difficulties regarding the Second Law of Thermodynamics in the context of heat engines within upper-division undergraduates thermal physics courses. Data come from ungraded written surveys, graded homework assignments, and videotaped classroom observations of tutorial activities. Written data show that students in these courses do not clearly articulate the connection between the Carnot cycle and the Second Law after lecture instruction. This result is consistent both within and across student populations. Observation data provide evidence for myriad difficulties related to entropy and heat engines, including students' struggles in reasoning about situations that are physically impossible and failures to differentiate between differential and net changes of state properties of a system. Results herein may be seen as the application of previously documented difficulties in the context of heat engines, but others are novel and emphasize the subtle and complex nature of cycl...

  12. Performance of a Turboprop Engine with Heat Recovery in Off-Design Conditions

    Science.gov (United States)

    Andriani, Roberto; Ghezzi, Umberto; Gamma, Fausto; Ingenito, Antonella; Agresta, Antonio

    2013-09-01

    The research for fuel consumption and pollution reduction in new generation aero engines has indicated intercooling and regeneration as very effective methods for this purpose. Hence, different countries have joined their efforts in common research programs, to develop new gas turbine engines able to reduce considerably the fuel consumption and the ambient impact by means of these two techniques. To study their effects on the engine performance and characteristics, a thermodynamic numerical program that simulates the behavior of a turboprop engine with intercooling and regeneration in different operating conditions has been developed. After the parametric study, and the definition of the design conditions, the off-design analysis is carried on, comparing the main characteristics of the intercooled-regenerated turboprop with those of a conventional engine. Then, once a particular mission profile was fixed, the engine performance, in particular the equivalent power, the fuel consumption and the heat exchanger weight were discussed.

  13. HEAT RECOVERY FROM A NATURAL GAS POWERED INTERNAL COMBUSTION ENGINE BY CO2 TRANSCRITICAL POWER CYCLE

    Directory of Open Access Journals (Sweden)

    Mahmood Farzaneh-Gord

    2010-01-01

    Full Text Available The present work provides details of energy accounting of a natural gas powered internal combustion engine and achievable work of a utilized CO2 power cycle. Based on experimental performance analysis of a new designed IKCO (Iran Khodro Company 1.7 litre natural gas powered engine, full energy accounting of the engine were carried out on various engine speeds and loads. Further, various CO2 transcritical power cycle configurations have been appointed to take advantages of exhaust and coolant water heat lost. Based on thermodynamic analysis, the amount of recoverable work obtainable by CO2 transcritical power cycles have been calculated on various engine conditions. The results show that as much as 18 kW power could be generated by the power cycle. This would be considerable amount of power especially if compared with the engine brake power.

  14. Korea Superconducting tokamak advanced research project - Development of heating system

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byung Ho [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-10-01

    The heating and current drive systems for KSTAR based on multiple technologies (neutral beam, ion cyclotron, lower hybrid and electron cyclotron) have been designed to provide heating and current drive capabilities as well as flexibility in the control of current density and pressure profiles needed to meet the mission and research objectives of the machine. They are designed to operate for long-pulse lengths of up to 300 s. The NBI system initially delivers 8 MW of neutral beam power to the plasma from one co-directed beam line and shall be upgraded to provide 20 MW of neutral beam power with two co-directed beam lines plus one counter-directed beam line. It will be capable of being reconfigured such that the source arrangement is changed from horizontal to vertical stacking, with 6 MW beam power to the plasmas per beam line, in order to facilitate profile control. The RF system initially delivers 6 MW of rf power to the plasma, using a single four-strap antenna mounted in a midplane port. The system will be upgraded to proved 12 MW of rf power through 2 adjacent ports. In the first phase, we completed the basic design of RF system and the system have the capabilities to be operationable for pulse length up to 300 sec and in the 25-60 MHz frequency range. Lower hybrid system initially provides 1.5 MW LH rf power to the plasma at 3.7 GHz through a horizontal port, which has a capability to be operated for pulse length up to 300 sec, and shall be upgraded to provide 4.5 MW of LH rf power to the plasma. In the first phase, we completed the basic design of LHCD system which incorporate the TPX-type launcher and independently phase-changeable transmission system for the fully phased coupler. The ECH system will deliver up to 0.5 MW of power to the plasma for up to 0.5 sec. In the first phase, we completed the basic design of ECH system which includes an 84 GHz gyrotron system, a transmission system, and a launcher. The basic design of the low loss transmission system

  15. Evaluation of Advanced Models for PAFS Condensation Heat Transfer in SPACE Code

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Byoung-Uhn; Kim, Seok; Park, Yu-Sun; Kang, Kyung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ahn, Tae-Hwan; Yun, Byong-Jo [Pusan National University, Busan (Korea, Republic of)

    2015-10-15

    The PAFS (Passive Auxiliary Feedwater System) is operated by the natural circulation to remove the core decay heat through the PCHX (Passive Condensation Heat Exchanger) which is composed of the nearly horizontal tubes. For validation of the cooling and operational performance of the PAFS, PASCAL (PAFS Condensing Heat Removal Assessment Loop) facility was constructed and the condensation heat transfer and natural convection phenomena in the PAFS was experimentally investigated at KAERI (Korea Atomic Energy Research Institute). From the PASCAL experimental result, it was found that conventional system analysis code underestimated the condensation heat transfer. In this study, advanced condensation heat transfer models which can treat the heat transfer mechanisms with the different flow regimes in the nearly horizontal heat exchanger tube were analyzed. The models were implemented in a thermal hydraulic safety analysis code, SPACE (Safety and Performance Analysis Code for Nuclear Power Plant), and it was evaluated with the PASCAL experimental data. With an aim of enhancing the prediction capability for the condensation phenomenon inside the PCHX tube of the PAFS, advanced models for the condensation heat transfer were implemented into the wall condensation model of the SPACE code, so that the PASCAL experimental result was utilized to validate the condensation models. Calculation results showed that the improved model for the condensation heat transfer coefficient enhanced the prediction capability of the SPACE code. This result confirms that the mechanistic modeling for the film condensation in the steam phase and the convection in the condensate liquid contributed to enhance the prediction capability of the wall condensation model of the SPACE code and reduce conservatism in prediction of condensation heat transfer.

  16. Engineering industrial yeast for renewable advanced biofuels applications

    Science.gov (United States)

    The industrial yeast Saccharomyces cerevisiae is a candidate for the next-generation biocatalyst development due to its unique genomic background and robust performance in fermentation-based production. In order to meet challenges of renewable and sustainable advanced biofuels conversion including ...

  17. Adapting advanced engineering design approaches to building design. Potential benefits

    NARCIS (Netherlands)

    Böhms, M.

    2006-01-01

    A number of industries continuously progress advancing their design approaches based on the changing market constraints. Examples such as car, ship and airplane manufacturing industries utilize process setups and techniques, that differ significantly from the processes and techniques used by the tra

  18. Some Recent Advances on Ice Related Problems in Offshore Engineering

    Institute of Scientific and Technical Information of China (English)

    段梦兰; 刘杰鸣; 樊晓东; 朱守铭; 赵秀菊

    2000-01-01

    This paper deals with several hot topics in ice related problems. In recent years, advances have been made on ice breaking modes, dynamic ice loads on offshore structures, ice-induced structural vibrations, fatigue and fracture by ice-structure interaction, and design of jackets in the Bohai Gulf.

  19. Adaptive individual-cylinder thermal state control using intake air heating for a GDCI engine

    Science.gov (United States)

    Roth, Gregory T.; Sellnau, Mark C.

    2016-08-09

    A system for a multi-cylinder compression ignition engine includes a plurality of heaters, at least one heater per cylinder, with each heater configured to heat air introduced into a cylinder. Independent control of the heaters is provided on a cylinder-by-cylinder basis. A combustion parameter is determined for combustion in each cylinder of the engine, and control of the heater for that cylinder is based on the value of the combustion parameter for combustion in that cylinder. A method for influencing combustion in a multi-cylinder compression ignition engine, including determining a combustion parameter for combustion taking place in a cylinder of the engine and controlling a heater configured to heat air introduced into that cylinder, is also provided.

  20. Maximum efficiency of low-dissipation heat engines at arbitrary power

    Science.gov (United States)

    Holubec, Viktor; Ryabov, Artem

    2016-07-01

    We investigate maximum efficiency at a given power for low-dissipation heat engines. Close to maximum power, the maximum gain in efficiency scales as a square root of relative loss in power and this scaling is universal for a broad class of systems. For low-dissipation engines, we calculate the maximum gain in efficiency for an arbitrary fixed power. We show that engines working close to maximum power can operate at considerably larger efficiency compared to the efficiency at maximum power. Furthermore, we introduce universal bounds on maximum efficiency at a given power for low-dissipation heat engines. These bounds represent direct generalization of the bounds on efficiency at maximum power obtained by Esposito et al (2010 Phys. Rev. Lett. 105 150603). We derive the bounds analytically in the regime close to maximum power and for small power values. For the intermediate regime we present strong numerical evidence for the validity of the bounds.

  1. Optimal paths for a light-driven engine with a linear phenomenological heat transfer law

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    An irreversible light-driven engine is described in this paper, in which the heat transfer between the working fluid and the environment obeys a linear phenomenological heat transfer law [ q ∝Δ(T -1)], with a working fluid composed of the bimolecular reacting system 2SO 3 F■S 2 O 6 F2. Piston trajectories maximizing work output and minimizing entropy generation are determined for such an engine with rate-dependent loss mechanisms of friction and heat leakage. The optimal control theory is applied to determine the optimal configurations of the piston motion trajectory and the fluid temperature. Numerical examples for the optimal configuration are provided, and the obtained results are compared with those derived with Newtonian heat transfer law [ q ∝Δ(T )].

  2. Steam generators and waste heat boilers for process and plant engineers

    CERN Document Server

    Ganapathy, V

    2014-01-01

    Incorporates Worked-Out Real-World ProblemsSteam Generators and Waste Heat Boilers: For Process and Plant Engineers focuses on the thermal design and performance aspects of steam generators, HRSGs and fire tube, water tube waste heat boilers including air heaters, and condensing economizers. Over 120 real-life problems are fully worked out which will help plant engineers in evaluating new boilers or making modifications to existing boiler components without assistance from boiler suppliers. The book examines recent trends and developments in boiler design and technology and presents novel idea

  3. Methods for Increasing Power Efficiency of Heating Furnaces Applied in Metallurgical and Mechanical Engineering Industries

    Directory of Open Access Journals (Sweden)

    M. L. German

    2011-01-01

    Full Text Available  The paper analyzes experimental data and results of balance tests of two continuous heating furnaces applied in mechanical engineering and metallurgical industries. Furnace power technological characteristics  and dependences of these characteristics on equipment productivity have been determined in the paper. The analysis has made it possible to reveal reasons of higher efficiency of a heating furnace used at BSW Rolling Mill-320 and formulate recommendations on reduction of fuel consumption in operating and designed combustion furnaces applied in mechanical engineering and metallurgical industries.

  4. Finite element analysis of welding residual stress of aero engine blisk by controlling heat input

    Institute of Scientific and Technical Information of China (English)

    Zhang Xueqiu; Yang Jianguo; Chen Xuhui; Fang Hongyuan; Qu Shen; Wang Licheng

    2009-01-01

    In order to improve aero engine performance, it is necessary to reduce the welding residual stress of aero engine blisk. In this paper, finite element method was employed to simulate electron beam welding process of blisk, in accordance with the deducing formula (p = kh) , the heat input is changed with the weld depth to control welding residual stress of blisk. The calculation results show that welding residual stress of blisk can be controlled effectively by reducing the heat input on the conditions of meeting the demand of weld penetration and guaranteeing the welding quality, a new theoretical method and some numerical data are provided for controlling welding residual stress of blisk.

  5. Rabi model as a quantum coherent heat engine: From quantum biology to superconducting circuits

    OpenAIRE

    Hardal, Ali U. C.; Müstecaplıoğlu, Özgür Esat; Altıntaş, Ferdi

    2014-01-01

    PHYSICAL REVIEW A 91, 023816 (2015) Rabi model as a quantum coherent heat engine: From quantum biology to superconducting circuits Ferdi Altintas,1 Ali U¨ . C. Hardal,2 and O¨ zgu¨r E. Mu¨stecaplıog˘lu2,* 1Department of Physics, Abant Izzet Baysal University, Bolu, 14280, Turkey 2Department of Physics, Koc¸ University, Sarıyer, ˙Istanbul, 34450, Turkey (Received 10 November 2014; published 12 February 2015) We propose a multilevel quantum heat engine with a working medium de...

  6. Advances in Computer Science and Information Engineering Volume 1

    CERN Document Server

    Lin, Sally

    2012-01-01

    CSIE2012 is an integrated conference concentrating its focus on Computer Science and Information Engineering . In the proceeding, you can learn much more knowledge about Computer Science and Information Engineering of researchers from all around the world. The main role of the proceeding is to be used as an exchange pillar for researchers who are working in the mentioned fields. In order to meet the high quality of Springer, AISC series, the organization committee has made their efforts to do the following things. Firstly, poor quality paper has been refused after reviewing course by anonymous referee experts. Secondly, periodically review meetings have been held around the reviewers about five times for exchanging reviewing suggestions. Finally, the conference organizers had several preliminary sessions before the conference. Through efforts of different people and departments, the conference will be successful and fruitful.

  7. Advances in Computer Science and Information Engineering Volume 2

    CERN Document Server

    Lin, Sally

    2012-01-01

    CSIE2012 is an integrated conference concentrating its focus on Computer Science and Information Engineering . In the proceeding, you can learn much more knowledge about Computer Science and Information Engineering of researchers from all around the world. The main role of the proceeding is to be used as an exchange pillar for researchers who are working in the mentioned fields. In order to meet the high quality of Springer, AISC series, the organization committee has made their efforts to do the following things. Firstly, poor quality paper has been refused after reviewing course by anonymous referee experts. Secondly, periodically review meetings have been held around the reviewers about five times for exchanging reviewing suggestions. Finally, the conference organizers had several preliminary sessions before the conference. Through efforts of different people and departments, the conference will be successful and fruitful.

  8. Irreversibilities and efficiency at maximum power of heat engines: the illustrative case of a thermoelectric generator.

    Science.gov (United States)

    Apertet, Y; Ouerdane, H; Goupil, C; Lecoeur, Ph

    2012-03-01

    Energy conversion efficiency at maximum output power, which embodies the essential characteristics of heat engines, is the main focus of the present work. The so-called Curzon and Ahlborn efficiency η(CA) is commonly believed to be an absolute reference for real heat engines; however, a different but general expression for the case of stochastic heat engines, η(SS), was recently found and then extended to low-dissipation engines. The discrepancy between η(CA) and η(SS) is here analyzed considering different irreversibility sources of heat engines, of both internal and external types. To this end, we choose a thermoelectric generator operating in the strong-coupling regime as a physical system to qualitatively and quantitatively study the impact of the nature of irreversibility on the efficiency at maximum output power. In the limit of pure external dissipation, we obtain η(CA), while η(SS) corresponds to the case of pure internal dissipation. A continuous transition between from one extreme to the other, which may be operated by tuning the different sources of irreversibility, also is evidenced.

  9. Development and test of combustion chamber for Stirling engine heated by natural gas

    Science.gov (United States)

    Li, Tie; Song, Xiange; Gui, Xiaohong; Tang, Dawei; Li, Zhigang; Cao, Wenyu

    2014-04-01

    The combustion chamber is an important component for the Stirling engine heated by natural gas. In the paper, we develop a combustion chamber for the Stirling engine which aims to generate 3˜5 kWe electric power. The combustion chamber includes three main components: combustion module, heat exchange cavity and thermal head. Its feature is that the structure can divide "combustion" process and "heat transfer" process into two apparent individual steps and make them happen one by one. Since natural gas can mix with air fully before burning, the combustion process can be easily completed without the second wind. The flame can avoid contacting the thermal head of Stirling engine, and the temperature fields can be easily controlled. The designed combustion chamber is manufactured and its performance is tested by an experiment which includes two steps. The experimental result of the first step proves that the mixture of air and natural gas can be easily ignited and the flame burns stably. In the second step of experiment, the combustion heat flux can reach 20 kW, and the energy utilization efficiency of thermal head has exceeded 0.5. These test results show that the thermal performance of combustion chamber has reached the design goal. The designed combustion chamber can be applied to a real Stirling engine heated by natural gas which is to generate 3˜5 kWe electric power.

  10. Auto-Ignition and Heat Release Correlations for Controlled Auto-Ignition Combustion in Gasoline Engines

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Auto-ignition and heat release correlations for controlled auto-ignition (CAI) combustion were derived from extensive in-cylinder pressure data of a four-stroke gasoline engine operating in CAI combustion mode. Abundant experiments were carried out under a wide range of air/fuel ratio,speed and residual gas fraction to ensure that the combustion correlations can be used in the entire CAI engine operation range. Furthermore, a more accurate method to compute the residual gas fraction was proposed by calculating the working fluid temperature at the exhaust valve close timing in the experiments. The heat release correlation was described in two parts, one is for the first slower heat release process at low temperature, and the other is for the second faster heat release process at high temperature. Finally the heat release correlation was evaluated on the single cylinder gasoline engine running with CAI combustion by comparing the experimental data with the 1-D engine simulation results obtained with the aid of the GT-Power simulation program. The results show that the predicted loads and ignition timings match closely with the measurements.

  11. Integration of Radioisotope Heat Source with Stirling Engine and Cooler for Venus Internal-Structure Mission

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred

    1993-10-01

    The primary mission goal is to perform long-term seismic measurements on Venus, to study its largely unknown internal structure. The principal problem is that most payload components cannot long survive Venus's harsh environment, 90 bars at 500 degrees C. To meet the mission life goal, such components must be protected by a refrigerated payload bay. JPL Investigators have proposed a mission concept employing a lander with a spherical payload bay cooled to 25 degrees C by a Stirling cooler powered by a radioisotope-heated Sitrling engine. To support JPL's mission study, NASA/Lewis and MTI have proposed a conceptual design for a hydraulically coupled Stirling engine and cooler, and Fairchild Space - with support of the Department of Energy - has proposed a design and integration scheme for a suitable radioisotope heat source. The key integration problem is to devise a simple, light-weight, and reliable scheme for forcing the radioisotope decay heat to flow through the Stirling engine during operation on Venus, but to reject that heat to the external environment when the Stirling engine and cooler are not operating (e.g., during the cruise phase, when the landers are surrounded by heat shields needed for protection during subsequent entry into the Venusian atmosphere.) A design and integration scheme for achieving these goals, together with results of detailed thermal analyses, are described in this paper. There are 7 copies in the file.

  12. Combustion and Magnetohydrodynamic Processes in Advanced Pulse Detonation Rocket Engines

    OpenAIRE

    Cole, Lord Kahil

    2012-01-01

    A number of promising alternative rocket propulsion concepts have been developed over the past two decades that take advantage of unsteady combustion waves in order to produce thrust. These concepts include the Pulse Detonation Rocket Engine (PDRE), in which repetitive ignition, propagation, and reflection of detonations and shocks can create a high pressure chamber from which gases may be exhausted in a controlled manner. The Pulse Detonation Rocket Induced Magnetohydrodynamic Ejector (PDRIM...

  13. Advanced Life Assessment Methods for Gas Turbine Engine Components

    OpenAIRE

    Cuffaro, Vincenzo; Sesana, Raffaella; Cura', Francesca Maria

    2014-01-01

    In combustion systems for aircraft applications, liners represent an interesting challenge from the engineering point of view regarding the state of stress, including high temperatures (up to 1500°C) varying over time, high thermal gradients, creep related phenomena, mechanical fatigue and vibrations. As a matter of fact, under the imposed thermo-mechanical loading conditions, some sections of the liner can creep; the consequent residual stresses at low temperatures can cause plastic deformat...

  14. Recent advances in engineering microbial rhodopsins for optogenetics.

    Science.gov (United States)

    McIsaac, R Scott; Bedbrook, Claire N; Arnold, Frances H

    2015-08-01

    Protein engineering of microbial rhodopsins has been successful in generating variants with improved properties for applications in optogenetics. Members of this membrane protein family can act as both actuators and sensors of neuronal activity. Chimeragenesis, structure-guided mutagenesis, and directed evolution have proven effective strategies for tuning absorption wavelength, altering ion specificity and increasing fluorescence. These approaches facilitate the development of useful optogenetic tools and, in some cases, have yielded insights into rhodopsin structure-function relationships.

  15. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology

    Energy Technology Data Exchange (ETDEWEB)

    Gerke, Frank G.

    2001-08-05

    This cooperative program between the DOE Office of Heavy Vehicle Technology and Caterpillar, Inc. is aimed at demonstrating electric turbocompound technology on a Class 8 truck engine. This is a lab demonstration program, with no provision for on-truck testing of the system. The goal is to demonstrate the level of fuel efficiency improvement attainable with the electric turbocompound system. Also, electric turbocompounding adds an additional level of control to the air supply which could be a component in an emissions control strategy.

  16. A new osteonecrosis animal model of the femoral head induced by microwave heating and repaired with tissue engineered bone

    OpenAIRE

    Li, Yanlin; Han, Rui; Geng, Chengkui; Wang, Yongnian; Wei, Lei

    2008-01-01

    The objective of this research was to induce a new animal model of osteonecrosis of the femoral head (ONFH) by microwave heating and then repair with tissue engineered bone. The bilateral femoral heads of 84 rabbits were heated by microwave at various temperatures. Tissue engineered bone was used to repair the osteonecrosis of femoral heads induced by microwave heating. The roentgenographic and histological examinations were used to evaluate the results. The femoral heads heated at 55°C for t...

  17. Study of SI engine fueled with methanol vapor and dissociation gas based on exhaust heat dissociating methanol

    International Nuclear Information System (INIS)

    Highlights: • The full load power decreases successively from gasoline engine, methanol vapor engine to dissociated methanol engine. • Both power and thermal efficiency of dissociated methanol engine can be improved by boosting pressure. • The conversion efficiency of recovered exhaust gas energy is largely influenced by the BMEP. • At the same BMEP, dissociated methanol engine has higher thermal efficiency than methanol vapor engine and gasoline engine. - Abstract: To improve the fuel efficiency of internal combustion (IC) engine and also achieve the goal of direct usage of methanol fuel on IC engine, an approach of exhaust heat dissociating methanol was investigated, which is a kind of method for IC engine exhaust heat recovery (EHR). A bottom cycle system is coupled with the IC engine exhaust system, which uses the exhaust heat to evaporate and dissociate methanol in its catalytic cracker. The methanol dissociation gas (including methanol vapor) is used as the fuel for IC engine. This approach was applied to both naturally aspirated (NA) engine and turbocharged engine, and the engine performance parameters were predicted by the software GT-power under various kinds of operating conditions. The improvement to IC engine performance and the conversion efficiency of recovered exhaust gas energy can be evaluated by comparing the performances of IC engine fueled with various kinds of fuels (or their compositions). Results show that, from gasoline engine, methanol vapor engine to dissociated methanol engine, the full load power decreases successively in the entire speed area due to the declining of volumetric efficiency, while it is contrary in the thermal efficiency at the same brake mean effective pressure (BMEP) level because of the improving of fuel heating value. With the increase of BMEP, the conversion efficiency of recovered exhaust gas energy is promoted. All those results indicate that the approach of exhaust heat dissociating methanol has large

  18. On the validity of representing hurricanes as Carnot heat engine

    Directory of Open Access Journals (Sweden)

    A. M. Makarieva

    2008-09-01

    Full Text Available It is argued, on the basis of detailed critique of published literature, that the existing thermodynamic theory of hurricanes, where it is assumed that the hurricane power is formed due to heat input from the ocean, is not physically consistent, as it comes in conflict with the first and second laws of thermodynamics. A quantitative perspective of describing hurricane energetics as that of an adiabatic atmospheric process occurring at the expense of condensation of water vapor that creates drop of local air pressure, is outlined.

  19. USING WASTE PRODUCTS OF HEAT-AND-POWER ENGINEERING IN ROAD BUILDING

    OpenAIRE

    Dyakonov Petr Yurevich

    2012-01-01

    A substantial amount of waste products of heat-and-power engineering has been accumulated in Russian Federation up to the present time. The waste products include ash and other waste materials. Their utilization is of particular significance in road building because this sector demonstrates a high consumption rate of thermal engineering waste. Physical and mechanical properties of the materials in question are different from the natural properties of the soil, and they are dete...

  20. Integrated energy and emission management for diesel engines with waste heat recovery using dynamic models

    OpenAIRE

    Willems Frank; Kupper Frank; Rascanu George; Feru Emanuel

    2015-01-01

    Rankine-cycle Waste Heat Recovery (WHR) systems are promising solutions to reduce fuel consumption for trucks. Due to coupling between engine and WHR system, control of these complex systems is challenging. This study presents an integrated energy and emission management strategy for an Euro-VI Diesel engine with WHR system. This Integrated Powertrain Control (IPC) strategy optimizes the CO2-NOx trade-off by minimizing online the operational costs associated with fuel and AdBlue consumption. ...