WorldWideScience

Sample records for advanced gas-cooled nuclear

  1. Gas-cooled reactors for advanced terrestrial applications

    International Nuclear Information System (INIS)

    Kesavan, K.; Lance, J.R.; Jones, A.R.; Spurrier, F.R.; Peoples, J.A.; Porter, C.A.; Bresnahan, J.D.

    1986-01-01

    Conceptual design of a power plant on an inert gas cooled nuclear coupled to an open, air Brayton power conversion cycle is presented. The power system, called the Westinghouse GCR/ATA (Gas-Cooled Reactors for Advanced Terrestrial Applications), is designed to meet modern military needs, and offers the advantages of secure, reliable and safe electrical power. The GCR/ATA concept is adaptable over a range of 1 to 10 MWe power output. Design descriptions of a compact, air-transportable forward base unit for 1 to 3 MWe output and a fixed-base, permanent installation for 3 to 10 MWe output are presented

  2. Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors

    Science.gov (United States)

    Youchison, Dennis L [Albuquerque, NM; Williams, Brian E [Pacoima, CA; Benander, Robert E [Pacoima, CA

    2011-03-01

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  3. Advanced gas cooled nuclear reactor materials evaluation and development program

    International Nuclear Information System (INIS)

    1977-01-01

    Results of work performed from January 1, 1977 through March 31, 1977 on the Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program are presented. The objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Process Heat and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (impure Helium), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in this report includes progress to date on alloy selection for VHTR Nuclear Process Heat (NPH) applications and for DCHT applications. The present status on the simulated reactor helium loop design and on designs for the testing and analysis facilities and equipment is discussed

  4. Gas-cooled nuclear reactor

    International Nuclear Information System (INIS)

    1974-01-01

    The invention aims at simplying gas-cooled nuclear reactors. For the cooling gas, the reactor is provided with a main circulation system comprising one or several energy conversion main groups such as gas turbines, and an auxiliary circulation system comprising at least one steam-generating boiler heated by the gas after its passage through the reactor core and adapted to feed a steam turbine with motive steam. The invention can be applied to reactors the main groups of which are direct-cycle gas turbines [fr

  5. IAEA'S study on advanced applications of water cooled nuclear power plants

    International Nuclear Information System (INIS)

    Cleveland, J.; McDonald, A.; Rao, A.; )

    2008-01-01

    About one-fifth of the world's energy consumption is used for electricity generation, with nuclear power contributing approximately 15.2% of this electricity. However; most of the world's energy consumption is for heat and transportation. Nuclear energy has considerable potential to penetrate these energy sectors now served by fossil fuels that are characterized by price volatility and finite supply. Advanced applications of nuclear energy include seawater desalination, district heating, and heat for industrial processes. Nuclear energy also has potential to provide a near-term, greenhouse gas free, source of energy for transportation. These applications rely on a source of heat and electricity. Nuclear energy from water-cooled reactors, of course, is not unique in this sense. Indeed, higher temperature heat can be produced by burning natural gas and coal, or through the use of other nuclear technologies such as gas-cooled or liquid-metal-cooled reactors. Water-cooled reactors, however; are being deployed today while other reactor types have had considerably less operational and regulatory experience and will take still some time to be widely accepted in the market. Both seawater desalination and district heating with nuclear energy are well proven, and new seawater desalination projects using water-cooled reactors will soon be commissioned. Provision of process heat with nuclear energy can result in less dependence on fossil fuels and contribute to reductions of greenhouse gases. Importantly, because nuclear power produces base-load electricity at stable and predictable prices, it provides a greenhouse gas free source of electricity for transportation systems (trains and subways), and for electric and plug-in hybrid vehicles, and in the longer term nuclear energy could produce hydrogen for fuel cell vehicles, as well as for other components of a hydrogen economy. These advanced applications can play an important role in enhancing public acceptance of nuclear

  6. Porous nuclear fuel element with internal skeleton for high-temperature gas-cooled nuclear reactors

    Science.gov (United States)

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2013-09-03

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  7. R and D programme on generation IV nuclear energy systems: the high temperatures gas-cooled reactors

    International Nuclear Information System (INIS)

    Carre, F.; Fiorini, G.L.; Billot, P.; Anzieu, P.; Brossard, P.

    2005-01-01

    The Generation IV Technology Roadmap selected, among others, a sequenced development of advanced high temperature gas cooled reactors as one of the main focus for R and D on future nuclear energy systems. The selection of this research objective originates both from the significance of high temperature and fast neutrons for nuclear energy to meet the needs for a sustainable development for the medium-long term (2020/2030 and beyond), and from the significant common R and D pathway that supports both medium term industrial projects and more advanced versions of gas cooled reactors. The first step of the 'Gas Technology Path' aims to support the development of a modular HTR to meet specific international market needs around 2020. The second step is a Very High Temperature Reactor - VHTR (>950 C) - to efficiently produce hydrogen through thermo-chemical or electro-chemical water splitting or to generate electricity with an efficiency above 50%, among other applications of high temperature nuclear heat. The third step of the Path is a Gas Fast Reactor - GFR - that features a fast-spectrum helium-cooled reactor and closed fuel cycle, with a direct or indirect thermodynamic cycle for electricity production and full recycle of actinides. Hydrogen production is also considered for the GFR. The paper succinctly presents the R and D program currently under definition and partially launched within the Generation IV International Forum on this consistent set of advanced gas cooled nuclear systems. (orig.)

  8. Advanced gas-cooled reactors (AGR)

    Energy Technology Data Exchange (ETDEWEB)

    Yeomans, R. M. [South of Scotland Electricity Board, Hunterston Power Station, West Kilbride, Ayshire, UK

    1981-01-15

    The paper describes the advanced gas-cooled reactor system, Hunterston ''B'' power station, which is a development of the earlier natural uranium Magnox type reactor. Data of construction, capital cost, operating performance, reactor safety and also the list of future developments are given.

  9. Experimental facilities for gas-cooled reactor safety studies. Task group on Advanced Reactor Experimental Facilities (TAREF)

    International Nuclear Information System (INIS)

    2009-01-01

    In 2007, the NEA Committee on the Safety of Nuclear Installations (CSNI) completed a study on Nuclear Safety Research in OECD Countries: Support Facilities for Existing and Advanced Reactors (SFEAR) which focused on facilities suitable for current and advanced water reactor systems. In a subsequent collective opinion on the subject, the CSNI recommended to conduct a similar exercise for Generation IV reactor designs, aiming to develop a strategy for ' better preparing the CSNI to play a role in the planned extension of safety research beyond the needs set by current operating reactors'. In that context, the CSNI established the Task Group on Advanced Reactor Experimental Facilities (TAREF) in 2008 with the objective of providing an overview of facilities suitable for performing safety research relevant to gas-cooled reactors and sodium fast reactors. This report addresses gas-cooled reactors; a similar report covering sodium fast reactors is under preparation. The findings of the TAREF are expected to trigger internationally funded CSNI projects on relevant safety issues at the key facilities identified. Such CSNI-sponsored projects constitute a means for efficiently obtaining the necessary data through internationally co-ordinated research. This report provides an overview of experimental facilities that can be used to carry out nuclear safety research for gas-cooled reactors and identifies priorities for organizing international co-operative programmes at selected facilities. The information has been collected and analysed by a Task Group on Advanced Reactor Experimental Facilities (TAREF) as part of an ongoing initiative of the NEA Committee on the Safety of Nuclear Installations (CSNI) which aims to define and to implement a strategy for the efficient utilisation of facilities and resources for Generation IV reactor systems. (author)

  10. Multi-purpose nuclear heat source for advanced gas-cooled reactor plants

    International Nuclear Information System (INIS)

    McDonald, C.F.

    1993-01-01

    Nuclear power has the potential to be the ultimate green technology in that it could eliminate the need for burning fossil fuels with their polluting combustion products and greenhouse gases. This view is shared by many technologists, but it may be a generation before the public becomes convinced, and that will involve overcoming many safety, institutional, financial, and technical impediments. This paper addresses only the latter topic; a major theme being that for nuclear power to truly be a green technology and significantly benefit society, it must meet the needs of the full energy spectrum. Specifically, it must satisfy energy needs beyond just the electricity generating sector by today's nuclear plants. By virtue of its high temperature capability, the Modular High Temperature Gas-Cooled Reactor (MHTGR) is the only type of reactor that has the potential to meet the wide range of energy needs that will emerge in the future. This paper discusses the nuclear heat source that gives the MHTGR multi-purpose capability, which is recognized today, but will not be implemented until early in the next century

  11. Advanced applications of water cooled nuclear power plants

    International Nuclear Information System (INIS)

    2008-07-01

    By August 2007, there were 438 nuclear power plants (NPPs) in operation worldwide, with a total capacity of 371.7 GW(e). Further, 31 units, totaling 24.1 GW(e), were under construction. During 2006 nuclear power produced 2659.7 billion kWh of electricity, which was 15.2% of the world's total. The vast majority of these plants use water-cooled reactors. Based on information provided by its Member States, the IAEA projects that nuclear power will grow significantly, producing between 2760 and 2810 billion kWh annually by 2010, between 3120 and 3840 billion kWh annually by 2020, and between 3325 and 5040 billion kWh annually by 2030. There are several reasons for these rising expectations for nuclear power: - Nuclear power's lengthening experience and good performance: The industry now has more than 12 000 reactor years of experience, and the global average nuclear plant availability during 2006 reached 83%; - Growing energy needs: All forecasts project increases in world energy demand, especially as population and economic productivity grow. The strategies are country dependent, but usually involve a mix of energy sources; - Interest in advanced applications of nuclear energy, such as seawater desalination, steam for heavy oil recovery and heat and electricity for hydrogen production; - Environmental concerns and constraints: The Kyoto Protocol has been in force since February 2005, and for many countries (most OECD countries, the Russian Federation, the Baltics and some countries of the Former Soviet Union and Eastern Europe) greenhouse gas emission limits are imposed; - Security of energy supply is a national priority in essentially every country; and - Nuclear power is economically competitive and provides stability of electricity price. In the near term most new nuclear plants will be evolutionary water cooled reactors (Light Water Reactors (LWRs) and Heavy Water Reactors (HWRs), often pursuing economies of scale. In the longer term, innovative designs that

  12. A three-dimensional methodology for the assessment of neutron damage and nuclear energy deposition in graphite components of advanced gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, D.O.; Robinson, A.T.; Allen, D.A.; Picton, D.J.; Thornton, D.A. [TCS, Serco, Rutherford House, Olympus Park, Quedgeley, Gloucester, Gloucestershire GL2 4NF (United Kingdom); Shaw, S.E. [EDF Energy, Barnet Way, Barnwood, Gloucester GL4 3RS (United Kingdom)

    2011-07-01

    This paper describes the development of a three-dimensional methodology for the assessment of neutron damage and nuclear energy deposition (or nuclear heating) throughout the graphite cores of the UK's Advanced Gas-cooled Reactors. Advances in the development of the Monte Carlo radiation transport code MCBEND have enabled the efficient production of detailed fully three-dimensional models that utilise three-dimensional source distributions obtained from Core Follow data supplied by the reactor physics code PANTHER. The calculational approach can be simplified to reduce both the requisite number of intensive radiation transport calculations, as well as the quantity of data output. These simplifications have been qualified by comparison with explicit calculations and they have been shown not to introduce significant systematic uncertainties. Simple calculational approaches are described that allow users of the data to address the effects on neutron damage and nuclear energy deposition predictions of the feedback resulting from the mutual dependencies of graphite weight loss and nuclear energy deposition. (authors)

  13. Gas-cooled reactors

    International Nuclear Information System (INIS)

    Schulten, R.; Trauger, D.B.

    1976-01-01

    Experience to date with operation of high-temperature gas-cooled reactors has been quite favorable. Despite problems in completion of construction and startup, three high-temperature gas-cooled reactor (HTGR) units have operated well. The Windscale Advanced Gas-Cooled Reactor (AGR) in the United Kingdom has had an excellent operating history, and initial operation of commercial AGRs shows them to be satisfactory. The latter reactors provide direct experience in scale-up from the Windscale experiment to fullscale commercial units. The Colorado Fort St. Vrain 330-MWe prototype helium-cooled HTGR is now in the approach-to-power phase while the 300-MWe Pebble Bed THTR prototype in the Federal Republic of Germany is scheduled for completion of construction by late 1978. THTR will be the first nuclear power plant which uses a dry cooling tower. Fuel reprocessing and refabrication have been developed in the laboratory and are now entering a pilot-plant scale development. Several commercial HTGR power station orders were placed in the U.S. prior to 1975 with similar plans for stations in the FRG. However, the combined effects of inflation, reduced electric power demand, regulatory uncertainties, and pricing problems led to cancellation of the 12 reactors which were in various stages of planning, design, and licensing

  14. Neutronic of heterogenous gas cooled reactors

    International Nuclear Information System (INIS)

    Maturana, Roberto Hernan

    2008-01-01

    At present, one of the main technical features of the advanced gas cooled reactor under development is its fuel element concept, which implies a neutronic homogeneous design, thus requiring higher enrichment compared with present commercial nuclear power plants.In this work a neutronic heterogeneous gas cooled reactor design is analyzed by studying the neutronic design of the Advanced Gas cooled Reactor (AGR), a low enrichment, gas cooled and graphite moderated nuclear power plant.A search of merit figures (some neutronic parameter, characteristic dimension, or a mixture of both) which are important and have been optimized during the reactor design stage is been done, to aim to comprise how a gas heterogeneous reactor is been design, given that semi-infinity arrangement criteria of rods in LWRs and clusters in HWRs can t be applied for a solid moderator and a gas refrigerator.The WIMS code for neutronic cell calculations is been utilized to model the AGR fuel cell and to calculate neutronic parameters such as the multiplication factor and the pick factor, as function of the fuel burnup.Also calculation is been done for various nucleus characteristic dimensions values (fuel pin radius, fuel channel pitch) and neutronic parameters (such as fuel enrichment), around the design established parameters values.A fuel cycle cost analysis is carried out according to the reactor in study, and the enrichment effect over it is been studied.Finally, a thermal stability analysis is been done, in subcritical condition and at power level, to study this reactor characteristic reactivity coefficients.Present results shows (considering the approximation used) a first set of neutronic design figures of merit consistent with the AGR design. [es

  15. Safety design features for current UK advanced gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Yellowlees, J. M.; Cobb, E. C. [Nuclear Power Co. (Risley) Ltd. (UK)

    1981-01-15

    The nuclear power stations planned for Heysham II and Torness will each have twin 660 MW(e) Advanced Gas-cooled Reactors (AGR) based on the design of those which have been operating at Hinkley Point 'B' and Hunterston 'B' since 1976. This paper has described the way in which the shutdown and cooling systems for the Heysham II and Torness AGRs have been selected in order to meet current UK safety requirements. Fault tree analyses have been used to identify the credible fault sequences, the probabilities of which have been calculated. By this means the relative importance of the various protective systems has been established and redundancy and reliability requirements identified. This systematic approach has led to a balanced design giving protection over the complete spectrum of fault sequences. Current safety requirements for thermal reactors in the UK and particular requirements in the design of the Heysham II and Torness reactors are discussed.

  16. Safety design features for current UK advanced gas-cooled reactors

    International Nuclear Information System (INIS)

    Yellowlees, J.M.; Cobb, E.C.

    1981-01-01

    The nuclear power stations planned for Heysham II and Torness will each have twin 660 MW(e) Advanced Gas-cooled Reactors (AGR) based on the design of those which have been operating at Hinkley Point 'B' and Hunterston 'B' since 1976. This paper has described the way in which the shutdown and cooling systems for the Heysham II and Torness AGRs have been selected in order to meet current UK safety requirements. Fault tree analyses have been used to identify the credible fault sequences, the probabilities of which have been calculated. By this means the relative importance of the various protective systems has been established and redundancy and reliability requirements identified. This systematic approach has led to a balanced design giving protection over the complete spectrum of fault sequences. Current safety requirements for thermal reactors in the UK and particular requirements in the design of the Heysham II and Torness reactors are discussed

  17. Nuclear closed-cycle gas turbine (HTGR-GT): dry cooled commercial power plant studies

    International Nuclear Information System (INIS)

    McDonald, C.F.; Boland, C.R.

    1979-11-01

    Combining the modern and proven power conversion system of the closed-cycle gas turbine (CCGT) with an advanced high-temperature gas-cooled reactor (HTGR) results in a power plant well suited to projected utility needs into the 21st century. The gas turbine HTGR (HTGR-GT) power plant benefits are consistent with national energy goals, and the high power conversion efficiency potential satisfies increasingly important resource conservation demands. Established technology bases for the HTGR-GT are outlined, together with the extensive design and development program necessary to commercialize the nuclear CCGT plant for utility service in the 1990s. This paper outlines the most recent design studies by General Atomic for a dry-cooled commercial plant of 800 to 1200 MW(e) power, based on both non-intercooled and intercooled cycles, and discusses various primary system aspects. Details are given of the reactor turbine system (RTS) and on integrating the major power conversion components in the prestressed concrete reactor vessel

  18. Removal of tritium from gas-cooled nuclear reactors

    International Nuclear Information System (INIS)

    Nieder, R.

    1976-01-01

    Tritium contained in the coolant gas in the primary circuit of a gas cooled nuclear reactor together with further tritium adsorbed on the graphite used as a moderator for the reactor is removed by introducing hydrogen or a hydrogen-containing compound, for example methane or ammonia, into the coolant gas. The addition of the hydrogen or hydrogen-containing compound to the coolant gas causes the adsorbed tritium to be released into the coolant gas and the tritium is then removed from the coolant gas by passing the mixture of coolant gas and hydrogen or hydrogen-containing compound through a gas purification plant before recirculating the coolant gas through the reactor. 14 claims, 1 drawing figure

  19. Gas-cooled reactors

    International Nuclear Information System (INIS)

    Vakilian, M.

    1977-05-01

    The present study is the second part of a general survey of Gas Cooled Reactors (GCRs). In this part, the course of development, overall performance and present development status of High Temperature Gas Cooled Reactors (HTCRs) and advances of HTGR systems are reviewed. (author)

  20. Fuel assembly for gas-cooled nuclear reactors

    International Nuclear Information System (INIS)

    Yellowlees, J.M.

    1976-01-01

    A fuel assembly is described for gas-cooled nuclear reactor which consists of a wrapper tube within which are positioned a number of spaced apart beds in a stack, with each bed containing spherical coated particles of fuel; each of the beds has a perforated top and bottom plate; gaseous coolant passes successively through each of the beds; through each of the beds also passes a bypass tube; part of the gas travels through the bed and part passes through the bypass tube; the gas coolant which passes through both the bed and the bypass tube mixes in the space on the outlet side of the bed before entering the next bed

  1. IAEA activities in technology development for advanced water-cooled nuclear power plants

    International Nuclear Information System (INIS)

    Juhn, Poong Eil; Kupitz, Juergen; Cleveland, John; Lyon, Robert; Park, Je Won

    2003-01-01

    As part of its Nuclear Power Programme, the IAEA conducts activities that support international information exchange, co-operative research and technology assessments and advancements with the goal of improving the reliability, safety and economics of advanced water-cooled nuclear power plants. These activities are conducted based on the advice, and with the support, of the IAEA Department of Nuclear Energy's Technical Working Groups on Advanced Technologies for Light Water Reactors (LWRs) and Heavy Water Reactors (HWRs). Assessments of projected electricity generation costs for new nuclear plants have shown that design organizations are challenged to develop advanced designs with lower capital costs and short construction times, and sizes, including not only large evolutionary plants but also small and medium size plants, appropriate to grid capacity and owner financial investment capability. To achieve competitive costs, both proven means and new approaches should be implemented. The IAEA conducts activities in technology development that support achievement of improved economics of water-cooled nuclear power plants (NPPs). These include fostering information sharing and cooperative research in thermo-hydraulics code validation; examination of natural circulation phenomena, modelling and the reliability of passive systems that utilize natural circulation; establishment of a thermo-physical properties data base; improved inspection and diagnostic techniques for pressure tubes of HWRs; and collection and balanced reporting from recent construction and commissioning experiences with evolutionary water-cooled NPPs. The IAEA also periodically publishes Status Reports on global development of advanced designs. (author)

  2. Measurement of sulphur-35 in the coolant gas of the Windscale Advanced Gas-Cooled Reactor

    International Nuclear Information System (INIS)

    Sandalls, F.J.

    1978-03-01

    Sulphur is an important element in some food chains and the release of radioactive sulphur to the environment must be closely controlled if the chemical form is such that it is available or potentially available for entering food chains. The presence of sulphur-35 in the coolant gas of the Windscale Advanced Gas-Cooled Reactor warranted a study to assess the quantity and chemical form of the radioactive sulphur in order to estimate the magnitude of the potential environmental hazard which might arise from the release of coolant gas from Civil Advanced Gas-Cooled Reactors. A combination of gas chromatographic and radiochemical analyses revealed carbonyl sulphide to be the only sulphur-35 compound present in the coolant gas of the Windscale Reactor. The concentration of carbonyl sulphide was found to lie in the range 40 to 100 x 10 -9 parts by volume and the sulphur-35 specific activity was about 20 mCi per gramme. The analytical techniques are described in detail. The sulphur-35 appears to be derived from the sulphur and chlorine impurities in the graphite. A method for the preparation of carbonyl sulphide labelled with sulphur-35 is described. (author)

  3. Development of a CVD silica coating for UK advanced gas-cooled nuclear reactor fuel pins

    International Nuclear Information System (INIS)

    Bennett, M.J.; Houlton, M.R.; Moore, D.A.; Foster, A.I.; Swidzinski, M.A.M.

    1983-04-01

    Vapour deposited silica coatings could extend the life of the 20% Cr/25% Ni niobium stabilised (20/25/Nb) stainless steel fuel cladding of the UK advanced gas cooled reactors. A CVD coating process developed originally to be undertaken at atmospheric pressure has now been adapted for operation at reduced pressure. Trials on the LP CVD process have been pursued to the production scale using commercial equipment. The effectiveness of the LP CVD silica coatings in providing protection to 20/25/Nb steel surfaces against oxidation and carbonaceous deposition has been evaluated. (author)

  4. Advances in nuclear science and technology

    CERN Document Server

    Greebler, Paul

    1968-01-01

    Advances in Nuclear Science and Technology Volume 4 provides information pertinent to the fundamental aspects of advanced reactor concepts. This book discusses the advances in various areas of general applicability, including modern perturbation theory, optimal control theory, and industrial application of ionizing radiations.Organized into seven chapters, this volume begins with an overview of the technology of sodium-cooled fast breeder power reactors and gas-cooled power reactors. This text then examines the key role of reactor safety in the development of fast breeder reactors. Other chapt

  5. Emergency cooling system for a gas-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Cook, R.K.; Burylo, P.S.

    1975-01-01

    The site of the gas-cooled reactor with direct-circuit gas turbine is preferably the sea coast. An emergency cooling system with safety valve and emergency feed-water addition is designed which affects at least a part of the reactor core coolant after leaving the core. The emergency cooling system includes a water emergency cooling circuit with heat exchanger for the core coolant. The safety valve releases water or steam from the emergency coolant circuit when a certain temperature is exceeded; this is, however, replaced by the emergency feed-water. If the gas turbine exhibits a high and low pressure turbine stage, which are flowed through by coolant one behind another, a part of the coolant can be removed in front of each part turbine by two valves and be added to the haet exchanger. (RW/LH) [de

  6. Axisymmetric whole pin life modelling of advanced gas-cooled reactor nuclear fuel

    International Nuclear Information System (INIS)

    Mella, R.; Wenman, M.R.

    2013-01-01

    Thermo-mechanical contributions to pellet–clad interaction (PCI) in advanced gas-cooled reactors (AGRs) are modelled in the ABAQUS finite element (FE) code. User supplied sub-routines permit the modelling of the non-linear behaviour of AGR fuel through life. Through utilisation of ABAQUS’s well-developed pre- and post-processing ability, the behaviour of the axially constrained steel clad fuel was modelled. The 2D axisymmetric model includes thermo-mechanical behaviour of the fuel with time and condition dependent material properties. Pellet cladding gap dynamics and thermal behaviour are also modelled. The model treats heat up as a fully coupled temperature-displacement study. Dwell time and direct power cycling was applied to model the impact of online refuelling, a key feature of the AGR. The model includes the visco-plastic behaviour of the fuel under the stress and irradiation conditions within an AGR core and a non-linear heat transfer model. A multiscale fission gas release model is applied to compute pin pressure; this model is coupled to the PCI gap model through an explicit fission gas inventory code. Whole pin, whole life, models are able to show the impact of the fuel on all segments of cladding including weld end caps and cladding pellet locking mechanisms (unique to AGR fuel). The development of this model in a commercial FE package shows that the development of a potentially verified and future-proof fuel performance code can be created and used

  7. Proposed Advanced Reactor Adaptation of the Standard Review Plan NUREG-0800 Chapter 4 (Reactor) for Sodium-Cooled Fast Reactors and Modular High-Temperature Gas-Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Poore, III, Willis P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Flanagan, George F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holbrook, Mark [Idaho National Lab. (INL), Idaho Falls, ID (United States); Moe, Wayne [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sofu, Tanju [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-03-01

    This report proposes adaptation of the previous regulatory gap analysis in Chapter 4 (Reactor) of NUREG 0800, Standard Review Plan (SRP) for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR [Light Water Reactor] Edition. The proposed adaptation would result in a Chapter 4 review plan applicable to certain advanced reactors. This report addresses two technologies: the sodium-cooled fast reactor (SFR) and the modular high temperature gas-cooled reactor (mHTGR). SRP Chapter 4, which addresses reactor components, was selected for adaptation because of the possible significant differences in advanced non-light water reactor (non-LWR) technologies compared with the current LWR-based description in Chapter 4. SFR and mHTGR technologies were chosen for this gap analysis because of their diverse designs and the availability of significant historical design detail.

  8. Utility industry evaluation of the Modular High-Temperature Gas-Cooled Reactor

    International Nuclear Information System (INIS)

    Burstein, S.; Bitel, J.S.; Tramm, T.R.; High, M.D.; Neils, G.H.; Tomonto, J.R.; Weinberg, C.J.

    1990-02-01

    A team of utility industry representatives evaluated the Modular High Temperature Gas-Cooled Reactor plant design, a current design created by an industrial team led by General Atomics under Department of Energy sponsorship and with support provided by utilities through Gas-Cooled Reactor Associates. The utility industry team concluded that the plant design should be considered a viable application of an advanced nuclear concept and deserves continuing development. Specific comments and recommendations are provided as a contribution toward improving a very promising plant design. 2 refs

  9. Terms for describing new, advanced nuclear power plants

    International Nuclear Information System (INIS)

    1997-04-01

    The IAEA's Division of Nuclear Power and the Fuel Cycle (then the Division of Nuclear Power) took an initiative in this field some years ago when work was initiated in the area of ''safety related terms'' by its International Working Group on Advanced Technologies for Water Cooled Reactors. This activity drew on advice from reactor design organizations, research institutes and government organizations, and aimed at helping eliminate confusion and misuse of safety related terms in widespread use, clarifying technical thinking regarding these terms, and improving nuclear power acceptability by providing precisely described technical meanings to them. After discussion also in the International Working Groups for Gas Cooled Reactors and Fast Reactors, the work resulted in the publication in September 1991 of IAEA-TECDOC-626, entitled ''Safety Related Terms for Advanced Nuclear Plants'', which has become a widely used publication. The present TECDOC has been prepared using the same approach to obtain advice from involved parties. Drafts of this report have been reviewed by the International Working Groups on Water Cooled Reactors, Fast Reactors and Gas Cooled Reactors, as well as by the IAEA's International Fusion Research Council (IFRC). The comments and suggestions received have been evaluated and utilized for producing the present TECDOC. 3 figs

  10. Materials for advanced water cooled reactors

    International Nuclear Information System (INIS)

    1992-09-01

    The current IAEA programme in advanced nuclear power technology promotes technical information exchange between Member States with major development programmes. The International Working Group on Advanced Technologies for Water Cooled Reactors recommended to organize a Technical Committee Meeting for the purpose of providing an international forum for technical specialists to review and discuss aspects regarding development trends in material application for advanced water cooled reactors. The experience gained from the operation of current water cooled reactors, and results from related research and development programmes, should be the basis for future improvements of material properties and applications. This meeting enabled specialists to exchange knowledge about structural materials application in the nuclear island for the next generation of nuclear power plants. Refs, figs, tabs

  11. Preparation for Future Defuelling and Decommissioning Works on EDF Energy's UK Fleet of Advanced Gas Cooled Reactors

    International Nuclear Information System (INIS)

    Bryers, John; Ashmead, Simon

    2016-01-01

    EDF Energy/Nuclear Generation is the owner and operator of 14 Advanced Gas cooled Reactors (AGR) and one Pressurised Water Reactor (PWR), on 8 nuclear stations in the UK. EDF Energy/Nuclear Generation is responsible for all the activities associated with the end of life of its nuclear installations: de-fuelling, decommissioning and waste management. As the first AGR is forecast to cease generation within 10 years, EDF Energy has started planning for the decommissioning. This paper covers: - broad outline of the technical strategy and arrangements for future de-fuelling and decommissioning works on the UK AGR fleet, - high level strategic drivers and alignment with wider UK nuclear policy, - overall programme of preparation and initial works, - technical approaches to be adopted during decommissioning. (authors)

  12. Nondestructive testing of welds in steam generators for advanced gas cooled reactors at Heyshamm II and Torness

    International Nuclear Information System (INIS)

    Parkin, K.; Bainbridge, A.; Carver, K.; Hammell, R.; Lack, B.J.

    1985-01-01

    The paper concerns non-destructive testing (NDT) of welds in advanced gas cooled steam generators for Heysham II and Torness nuclear power stations. A description is given of the steam generator. The selection of NDT techniques is also outlined, including the factors considered to ascertain the viability of a technique. Examples are given of applied NDT methods which match particular fabrication processes; these include: microfocus radiography, ultrasonic testing of austenitic tube butt welds, gamma-ray isotope projection system, surface crack detection, and automated radiography. Finally, future trends in this field of NDT are highlighted. (UK)

  13. Description of the advanced gas cooled type of reactor (AGR)

    Energy Technology Data Exchange (ETDEWEB)

    Nonboel, E. [Risoe National Lab., Roskilde (Denmark)

    1996-11-01

    The present report comprises a technical description of the Advanced Gas cooled Reactor (AGR), a reactor type which has only been built in Great Britain. 14 AGR reactors have been built, located at 6 different sites and each station is supplied with twin-reactors. The Torness AGR plant on the Lothian coastline of Scotland, 60 km east of Edinburgh, has been chosen as the reference plant and is described in some detail. Data on the other 6 stations, Dungeness B, Hinkely Point B, Hunterston G, Hartlepool, Heysham I and Heysham II, are given only in tables with a summary of design data. Where specific data for Torness AGR has not been available, corresponding data from other AGR plans has been used, primarily from Heysham II, which belongs to the same generation of AGR reactors. The information presented is based on the open literature. The report is written as a part of the NKS/RAK-2 subproject 3: `Reactors in Nordic Surroundings`, which comprises a description of nuclear power plants neighbouring the Nordic countries. (au) 11 refs.

  14. Description of the advanced gas cooled type of reactor (AGR)

    International Nuclear Information System (INIS)

    Nonboel, E.

    1996-11-01

    The present report comprises a technical description of the Advanced Gas cooled Reactor (AGR), a reactor type which has only been built in Great Britain. 14 AGR reactors have been built, located at 6 different sites and each station is supplied with twin-reactors. The Torness AGR plant on the Lothian coastline of Scotland, 60 km east of Edinburgh, has been chosen as the reference plant and is described in some detail. Data on the other 6 stations, Dungeness B, Hinkely Point B, Hunterston G, Hartlepool, Heysham I and Heysham II, are given only in tables with a summary of design data. Where specific data for Torness AGR has not been available, corresponding data from other AGR plans has been used, primarily from Heysham II, which belongs to the same generation of AGR reactors. The information presented is based on the open literature. The report is written as a part of the NKS/RAK-2 subproject 3: 'Reactors in Nordic Surroundings', which comprises a description of nuclear power plants neighbouring the Nordic countries. (au) 11 refs

  15. The modular high-temperature gas-cooled reactor: A cost/risk competitive nuclear option

    International Nuclear Information System (INIS)

    Gotschall, H.L.

    1994-01-01

    The business risks of nuclear plant ownership are identified as a constraint on the expanded use of nuclear power. Such risks stem from the exacting demands placed on owner/operator organizations of current plants to demonstrate ongoing compliance with safety regulations and the resulting high costs for operation and maintenance. This paper describes the Modular High-Temperature Gas-Cooled Reactor (MHTGR) design, competitive economics, and approach to reducing the business risks of nuclear plant ownership

  16. Fuel cycles and advanced core designs for the Gas-Cooled Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Simon, R.H.; Hamilton, C.J.; Hunter, R.S.

    1982-01-01

    Studies indicate that a 1200 MW(e) Gas-Cooled Fast Breeder Reactor could achieve compound system doubling times of under ten years when using advanced oxide or carbide fuels. In addition, when thorium is used in the breeding blankets, enough U-233 can be generated in each GCFR to supply several advanced converter reactors with fissionable material and this symbiotic relationship could provide energy for the world for centuries. (author)

  17. Impingement jet cooling in gas turbines

    CERN Document Server

    Amano, R S

    2014-01-01

    Due to the requirement for enhanced cooling technologies on modern gas turbine engines, advanced research and development has had to take place in field of thermal engineering. Impingement jet cooling is one of the most effective in terms of cooling, manufacturability and cost. This is the first to book to focus on impingement cooling alone.

  18. Acoustical environment of gas-cooled nuclear reactors

    International Nuclear Information System (INIS)

    Blevins, R.D.

    1986-01-01

    Methods for acoustical analysis of gas-cooled nuclear reactors in terms of the sources of sound, the propagation of sound about the coolant circuit and the response of reactor structures to sound, are described. Sources of sound that are considered are circulators, jets, vortex shedding and separated flow. Circulators are generally the dominant source of sound. At low frequency the sound propagates one dimensionally through the ducts and cavities of the reactor. At high frequency the sound excites closely spaced two- and three-dimensional acoustic modes, and the resultant sound field can be described only statistically. The sound excites plate and shell structures within the coolant circuit. Secondary steam piping can also be excited by pumps and valves. Formulations are presented for the resultant vibration. Vibration-induced damage is also reviewed. (author)

  19. High temperature gas cooled reactor technology development. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1997-12-01

    The successful introduction of an advanced nuclear power plant programme depends on many key elements. It must be economically competitive with alternative sources of energy, its technical development must assure operational dependability, the support of society requires that it be safe and environmentally acceptable, and it must meet the regulatory standards developed for its use and application. These factors interrelate with each other, and the ability to satisfy the established goals and criteria of all of these requirements is mandatory if a country or a specific industry is to proceed with a new, advanced nuclear power system. It was with the focus on commercializing the high temperature gas cooled reactor (HTGR) that the IAEA's International Working Group on Gas Cooled Reactors recommended this Technical Committee Meeting (TCM) on HTGR Technology Development. Over the past few years, many Member States have instituted a re-examination of their nuclear power policies and programmes. It has become evident that the only realistic way to introduce an advanced nuclear power programme in today's world is through international co-operation between countries. The sharing of expertise and technical facilities for the common development of the HTGR is the goal of the Member States comprising the IAEA's International Working Group on Gas Cooled Reactors. This meeting brought together key representatives and experts on the HTGR from the national organizations and industries of ten countries and the European Commission. The state electric utility of South Africa, Eskom, hosted this TCM in Johannesburg, from 13 to 15 November 1996. This TCM provided the opportunity to review the status of HTGR design and development activities, and especially to identify international co-operation which could be utilized to bring about the commercialization of the HTGR

  20. Advances in High Temperature Gas Cooled Reactor Fuel Technology

    International Nuclear Information System (INIS)

    2012-12-01

    This publication reports on the results of a coordinated research project on advances in high temperature gas cooled reactor (HTGR) fuel technology and describes the findings of research activities on coated particle developments. These comprise two specific benchmark exercises with the application of HTGR fuel performance and fission product release codes, which helped compare the quality and validity of the computer models against experimental data. The project participants also examined techniques for fuel characterization and advanced quality assessment/quality control. The key exercise included a round-robin experimental study on the measurements of fuel kernel and particle coating properties of recent Korean, South African and US coated particle productions applying the respective qualification measures of each participating Member State. The summary report documents the results and conclusions achieved by the project and underlines the added value to contemporary knowledge on HTGR fuel.

  1. Advances in High Temperature Gas Cooled Reactor Fuel Technology

    International Nuclear Information System (INIS)

    2012-06-01

    This publication reports on the results of a coordinated research project on advances in high temperature gas cooled reactor (HTGR) fuel technology and describes the findings of research activities on coated particle developments. These comprise two specific benchmark exercises with the application of HTGR fuel performance and fission product release codes, which helped compare the quality and validity of the computer models against experimental data. The project participants also examined techniques for fuel characterization and advanced quality assessment/quality control. The key exercise included a round-robin experimental study on the measurements of fuel kernel and particle coating properties of recent Korean, South African and US coated particle productions applying the respective qualification measures of each participating Member State. The summary report documents the results and conclusions achieved by the project and underlines the added value to contemporary knowledge on HTGR fuel.

  2. The modular high-temperature gas-cooled reactor (MHTGR) in the US

    International Nuclear Information System (INIS)

    Neylan, A.J.; Graf, D.F.; Millunzi, A.C.

    1987-01-01

    GA Technologies Inc. and other U.S. corporations, in a cooperative program with the U.S. Department of Energy, is developing a Modular High-Temperature Gas-Cooled Reactor (MHTGR) that will provide highly reliable, economic, nuclear power. The MHTGR system assures maximum safety to the public, the owner/operator, and the environment. The MHTGR is being designed to meet and exceed rigorous requirements established by the user industry for availability, operation and maintenance, plant investment protection, safety and licensing, siting flexibility and economics. The plant will be equally attractive for deployment and operation in the U.S., other major industrialized nations including Korea, Japan, and the Republic of China, as well as the developing nations. The High-Temperature Gas-Cooled Reactor (HTGR) is an advanced, third generation nuclear power system which incorporates distinctive technical features, including the use of pressurized helium as a coolant, graphite as the moderator and core structural material, and fuel in the form of ceramic coated uranium particles. The modular HTGR builds upon generic gas-cooled reactor experience and specific HTGR programs and projects. The MHTGR offers unique technological features and the opportunity for the cooperative international development of an advanced energy system that will help assure adaquate world energy resources for the future. Such international joint venturing of energy development can offer significant benefits to participating industries and governments and also provides a long term solution to the complex problems of the international balance of payments

  3. High temperature friction and seizure in gas cooled nuclear reactors

    International Nuclear Information System (INIS)

    Cousseran, P.; Febvre, A.; Martin, R.; Roche, R.

    1978-01-01

    One of the most delicate problems encountered in the gas cooled nuclear reactors is the friction without lubrication in a dry and hot (800 0 C /1472 0 F) helium atmosphere even at very small velocity. The research and development programs are described together with special tribometers that operate at mode than 1000 0 C (1832 0 F) in dry helium. The most interesting test conditions and results are given for gas nitrited steels and for strongly alloyed Ni-Cr steels coated with chromium carbide by plasma sprayed. The effects of parameters live velocity, travelled distance, contact pressure, roughness, temperature and prolonged stops under charge are described together with the effects of negative phenomena like attachment and chattering [fr

  4. Emergency cooling method and system for gas-cooled nuclear reactors

    International Nuclear Information System (INIS)

    Kumpf, H.

    1982-01-01

    For emergency cooling of gas-cooled fast breeder reactors (GSB), which have a core consisting of a fission zone and a breeding zone, water is sprayed out of nozzles on to the core from above in the case of an incident. The water which is not treated with boron is taken out of a reservoir in the form of a storage tank in such a maximum quantity that the cooling water gathering in the space below the core rises at most up to the lower edge of the fission zone. (orig./GL) [de

  5. Application of gas-cooled Accelerator Driven System (ADS) transmutation devices to sustainable nuclear energy development

    Energy Technology Data Exchange (ETDEWEB)

    Abanades, A., E-mail: abanades@etsii.upm.es [ETSII/Universidad Politecnica de Madrid, J.Gutierrez Abascal, 2-28006 Madrid (Spain); Garcia, C.; Garcia, L. [Instituto Superior de Tecnologia y Ciencias Aplicadas. Quinta de los, Molinos, Ave. Salvador Allende y Luaces, Ciudad de la Habana, CP 10400, Apartado Postal 6163 (Cuba); Escriva, A.; Perez-Navarro, A. [Instituto de Ingenieria Energetica, Universidad Politecnica de Valencia, C.P. 46022 Valencia (Spain); Rosales, J. [Instituto Superior de Tecnologia y Ciencias Aplicadas. Quinta de los, Molinos, Ave. Salvador Allende y Luaces, Ciudad de la Habana, CP 10400, Apartado Postal 6163 (Cuba)

    2011-06-15

    Highlights: > Utilization of Accelerator Driven System (ADS) for Hydrogen production. > Evaluation of the potential use of gas-cooled ADS for a sustainable use of Uranium resources by transmutation of nuclear wastes, electricity and Hydrogen production. > Application of the Sulfur-Iodine thermochemical process to subcritical systems. > Application of CINDER90 to calculate burn-up in subcritical systems. - Abstract: The conceptual design of a pebble bed gas-cooled transmutation device is shown with the aim to evaluate its potential for its deployment in the context of the sustainable nuclear energy development, which considers high temperature reactors for their operation in cogeneration mode, producing electricity, heat and Hydrogen. As differential characteristics our device operates in subcritical mode, driven by a neutron source activated by an accelerator that adds clear safety advantages and fuel flexibility opening the possibility to reduce the nuclear stockpile producing energy from actual LWR irradiated fuel with an efficiency of 45-46%, either in the form of Hydrogen, electricity, or both.

  6. Economic analysis of multiple-module high temperature gas-cooled reactor (MHTR) nuclear power plants

    International Nuclear Information System (INIS)

    Liu Yu; Dong Yujie

    2011-01-01

    In recent years, as the increasing demand of energy all over the world, and the pressure on greenhouse emissions, there's a new opportunity for the development of nuclear energy. Modular High Temperature Gas-cooled Reactor (MHTR) received recognition for its inherent safety feature and high outlet temperature. Whether the Modular High Temperature Gas-cooled Reactor would be accepted extensively, its economy is a key point. In this paper, the methods of qualitative analysis and the method of quantitative analysis, the economic models designed by Economic Modeling Working Group (EMWG) of the Generation IV International Forum (GIF), as well as the HTR-PM's main technical features, are used to analyze the economy of the MHTR. A prediction is made on the basis of summarizing High Temperature Gas-cooled Reactor module characteristics, construction cost, total capital cost, fuel cost and operation and maintenance (O and M) cost and so on. In the following part, comparative analysis is taken measures to the economy and cost ratio of different designs, to explore the impacts of modularization and standardization on the construction of multiple-module reactor nuclear power plant. Meanwhile, the analysis is also adopted in the research of key factors such as the learning effect and yield to find out their impacts on the large scale development of MHTR. Furthermore, some reference would be provided to its wide application based on these analysis. (author)

  7. Sensitivity analysis of an Advanced Gas-cooled Reactor control rod model

    International Nuclear Information System (INIS)

    Scott, M.; Green, P.L.; O’Driscoll, D.; Worden, K.; Sims, N.D.

    2016-01-01

    Highlights: • A model was made of the AGR control rod mechanism. • The aim was to better understand the performance when shutting down the reactor. • The model showed good agreement with test data. • Sensitivity analysis was carried out. • The results demonstrated the robustness of the system. - Abstract: A model has been made of the primary shutdown system of an Advanced Gas-cooled Reactor nuclear power station. The aim of this paper is to explore the use of sensitivity analysis techniques on this model. The two motivations for performing sensitivity analysis are to quantify how much individual uncertain parameters are responsible for the model output uncertainty, and to make predictions about what could happen if one or several parameters were to change. Global sensitivity analysis techniques were used based on Gaussian process emulation; the software package GEM-SA was used to calculate the main effects, the main effect index and the total sensitivity index for each parameter and these were compared to local sensitivity analysis results. The results suggest that the system performance is resistant to adverse changes in several parameters at once.

  8. CEA programme on gas cooled reactors

    International Nuclear Information System (INIS)

    Carre, F.; Fiorini, G.L.; Chapelot, Ph.; Gauthier, J.C.

    2002-01-01

    Future nuclear energy systems studies conducted by the CEA aim at investigating and developing promising technologies for future reactors, fuels and fuel cycles, for nuclear power to play a major part in sustainable energy policies. Reactors and fuel cycles are considered as integral parts of a nuclear system to be optimised as a whole. Major goals assigned to future nuclear energy systems are the following: reinforced economic competitiveness with other electricity generation means, with a special emphasis on reducing the investment cost; enhanced reliability and safety, through an improved management of reactor operation in normal and abnormal plant conditions; minimum production of long lived radioactive waste; resource saving through an effective and flexible use of the available resources of fissile and fertile materials; enhanced resistance to proliferation risks. The three latter goals are essential for the sustainability of nuclear energy in the long term. Additional considerations such as the potentialities for other applications than electricity generation (co-generation, production of hydrogen, sea water desalination) take on an increasing importance. Sustainability goals call for fast neutron spectra (to transmute nuclear waste and to breed fertile fuel) and for recycling actinides from the spent fuel (plutonium and minor actinides). New applications and economic competitiveness call for high temperature technologies (850 deg C), that afford high conversion efficiencies and hence less radioactive waste production and discharged heat. These orientations call for breakthroughs beyond light water reactors. Therefore, as a result of a screening review of candidate technologies, the CEA has selected an innovative concept of high temperature gas cooled reactor with a fast neutron spectrum, robust refractory fuel, direct conversion with a gas turbine, and integrated on-site fuel cycle as a promising system for a sustainable energy development. This objective

  9. Advanced nuclear reactor safety issues and research needs

    International Nuclear Information System (INIS)

    2002-01-01

    On 18-20 February 2002, the OECD Nuclear Energy Agency (NEA) organised, with the co-sponsorship of the International Atomic Energy Agency (IAEA) and in collaboration with the European Commission (EC), a Workshop on Advanced Nuclear Reactor Safety Issues and Research Needs. Currently, advanced nuclear reactor projects range from the development of evolutionary and advanced light water reactor (LWR) designs to initial work to develop even further advanced designs which go beyond LWR technology (e.g. high-temperature gas-cooled reactors and liquid metal-cooled reactors). These advanced designs include a greater use of advanced technology and safety features than those employed in currently operating plants or approved designs. The objectives of the workshop were to: - facilitate early identification and resolution of safety issues by developing a consensus among participating countries on the identification of safety issues, the scope of research needed to address these issues and a potential approach to their resolution; - promote the preservation of knowledge and expertise on advanced reactor technology; - provide input to the Generation IV International Forum Technology Road-map. In addition, the workshop tried to link advancement of knowledge and understanding of advanced designs to the regulatory process, with emphasis on building public confidence. It also helped to document current views on advanced reactor safety and technology, thereby contributing to preserving knowledge and expertise before it is lost. (author)

  10. Optimization of advanced gas-cooled reactor fuel performance by a stochastic method

    International Nuclear Information System (INIS)

    Parks, G.T.

    1987-01-01

    A brief description is presented of a model representing the in-core behaviour of a single advanced gas-cooled reactor fuel channel, developed specifically for optimization studies. The performances of the only suitable Numerical Algorithms Group (NAG) library package and a Metropolis algorithm routine on this problem are discussed and contrasted. It is concluded that, for the problem in question, the stochastic Metropolis algorithm has distinct advantages over the deterministic NAG routine. (author)

  11. High temperature gas cooled nuclear reactor

    International Nuclear Information System (INIS)

    Hosegood, S.B.; Lockett, G.E.

    1975-01-01

    For high-temperature gas cooled reactors it is considered advantageous to design the core so that the moderator blocks can be removed and replaced by some means of standpipes normally situated in the top of the reactor vessel. An arrangement is here described to facilitate these operations. The blocks have end faces shaped as irregular hexagons with three long sides of equal length and three short sides also of equal length, one short side being located between each pair of adjacent long sides, and the long sides being inclined towards one another at 60 0 . The block defines a number of coolant channels located parallel to its sides. Application of the arrangement to a high temperature gas-cooled reactor with refuelling standpipes is described. The standpipes are located in the top of the reactor vessel above the tops of the columns and are disposed coaxially above the hexagonal channels, with diameters that allow the passage of the blocks. (U.K.)

  12. Compatibility of gas turbine materials with steam cooling

    Energy Technology Data Exchange (ETDEWEB)

    Desai, V.; Tamboli, D.; Patel, Y. [Univ. of Central Florida, Orlando, FL (United States)

    1995-10-01

    Gas turbines had been traditionally used for peak load plants and remote locations as they offer advantage of low installation costs and quick start up time. Their use as a base load generator had not been feasible owing to their poor efficiency. However, with the advent of gas turbines based combined cycle plants (CCPs), continued advances in efficiency are being made. Coupled with ultra low NO{sub x} emissions, coal compatibility and higher unit output, gas turbines are now competing with conventional power plants for base load power generation. Currently, the turbines are designed with TIT of 2300{degrees}F and metal temperatures are maintained around 1700{degrees}F by using air cooling. New higher efficiency ATS turbines will have TIT as high as 2700{degrees}F. To withstand this high temperature improved materials, coatings, and advances in cooling system and design are warranted. Development of advanced materials with better capabilities specifically for land base applications are time consuming and may not be available by ATS time frame or may prove costly for the first generation ATS gas turbines. Therefore improvement in the cooling system of hot components, which can take place in a relatively shorter time frame, is important. One way to improve cooling efficiency is to use better cooling agent. Steam as an alternate cooling agent offers attractive advantages because of its higher specific heat (almost twice that of air) and lower viscosity.

  13. Advances in conceptual design of a gas-cooled accelerator driven system (ADS) transmutation devices to sustainable nuclear energy development

    International Nuclear Information System (INIS)

    Garcia, Rosales; Fajardo, Garcia; Curbelo, Perez; Oliva, Munoz; Hernandez, Garcia; Castells, Escriva; Abanades

    2011-01-01

    The possibilities of a nuclear energy development are considerably increasing with the world energetic demand increment. However, the management of nuclear waste from conventional nuclear power plants and its inventory minimization are the most important issues that should be addressed. Fast reactors and Accelerator Driven Systems (ADS) are the main options to reduce the long-lived radioactive waste inventory. Pebble Bed Very High Temperature advanced systems have great perspectives to assume the future nuclear energy development challenges. The conceptual design of a Transmutation Advanced Device for Sustainable Energy Applications (TADSEA) has been made in preliminary studies. The TADSEA is an ADS cooled by helium and moderated by graphite that uses as fuel small amounts of transuranic elements in the form of TRISO particles, confined in 3 cm radius graphite pebbles forming a pebble bed configuration. It would be used for nuclear waste transmutation and energy production. In this paper, the results of a method for calculating the number of whole pebbles fitting in a volume according to its size are showed. From these results, the packing fraction influence on the TADSEAs main work parameters is studied. In addition, a redesign of the previous configuration, according to the established conditions in the preliminary design, i.e. the exit thermal power, is made. On the other hand, the heterogeneity of the TRISO particles inside the pebbles can not be negligible. In this paper, a study of the power density distribution inside the pebbles by means of a detailed simulation of the TRISO fuel particles and using an homogeneous composition of the fuel is addressed. (author)

  14. Status of helium-cooled nuclear power systems. [Development potential

    Energy Technology Data Exchange (ETDEWEB)

    Melese-d' Hospital, G.; Simnad, M

    1977-09-01

    Helium-cooled nuclear power systems offer a great potential for electricity generation when their long-term economic, environmental, conservation and energy self-sufficiency features are examined. The high-temperature gas-cooled reactor (HTGR) has the unique capability of providing high-temperature steam for electric power and process heat uses and/or high-temperature heat for endothermic chemical reactions. A variation of the standard steam cycle HTGR is one in which the helium coolant flows directly from the core to one or more closed cycle gas turbines. The effective use of nuclear fuel resources for electric power and nuclear process heat will be greatly enhanced by the gas-cooled fast breeder reactor (GCFR) currently being developed. A GCFR using thorium in the radial blanket could generate sufficient U-233 to supply the fuel for three HTGRs, or enough plutonium from a depleted uranium blanket to fuel a breeder economy expanding at about 10% per year. The feasibility of utilizing helium to cool a fusion reactor is also discussed. The status of helium-cooled nuclear energy systems is summarized as a basis for assessing their prospects. 50 references.

  15. R + D work on gas-cooled breeder development

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Dorner, S.; Jacobs, G.; Meyer, L.; Rehme, K.; Schumacher, G.; Wilhelm, D.

    1978-01-01

    The development work for the gas-cooled breeder in the Karlsruhe Nuclear Research Center may be assigned to two different groups: a) Investigations on fuel elements. b) Studies concerning the safety of gas-cooled fast breeder reactors. To the first group there belongs the work related to the: - heat transfer between fuel elements and coolant gas, - influence of increased content of water vapor in helium or the fuel rods. The second group concerns: - establishing a computer code for transient calculations in the primary and secondary circuit of a gas-cooled fast breeder reactor, - steam reactivity coefficients, - the core destruction phase of hypothetical accidents, - the core-catcher using borax. (orig./RW) [de

  16. Nuclear heat source design for an advanced HTGR process heat plant

    International Nuclear Information System (INIS)

    McDonald, C.F.; O'Hanlon, T.W.

    1983-01-01

    A high-temperature gas-cooled reactor (HTGR) coupled with a chemical process facility could produce synthetic fuels (i.e., oil, gasoline, aviation fuel, methanol, hydrogen, etc.) in the long term using low-grade carbon sources (e.g., coal, oil shale, etc.). The ultimate high-temperature capability of an advanced HTGR variant is being studied for nuclear process heat. This paper discusses a process heat plant with a 2240-MW(t) nuclear heat source, a reactor outlet temperature of 950 0 C, and a direct reforming process. The nuclear heat source outputs principally hydrogen-rich synthesis gas that can be used as a feedstock for synthetic fuel production. This paper emphasizes the design of the nuclear heat source and discusses the major components and a deployment strategy to realize an advanced HTGR process heat plant concept

  17. Issues of high-burnup fuel for advanced nuclear reactors

    International Nuclear Information System (INIS)

    Belac, J.; Milisdoerfer, L.

    2004-12-01

    A brief description is given of nuclear fuels for Generation III+ and IV reactors, and the major steps needed for a successful implementation of new fuels in prospective types of newly designed power reactors are outlined. The following reactor types are discussed: gas cooled fast reactors, heavy metal (lead) cooled fast reactors, molten salt cooled reactors, sodium cooled fast reactors, supercritical water cooled reactors, and very high temperature reactors. The following are regarded as priority areas for future investigations: (i) spent fuel radiotoxicity; (ii) proliferation volatility; (iii) neutron physics characteristics and inherent safety element assessment; technical and economic analysis of the manufacture of advanced fuels; technical and economic analysis of the fuel cycle back end, possibilities of spent nuclear fuel reprocessing, storage and disposal. In parallel, work should be done on the validation and verification of analytical tools using existing and/or newly acquired experimental data. (P.A.)

  18. The rate of diffusion into advanced gas cooled reactor moderator bricks: an equivalent cylinder model

    International Nuclear Information System (INIS)

    Kyte, W.S.

    1980-01-01

    The graphite moderator bricks which make up the moderator of an advanced gas-cooled nuclear reactor (AGR) are of many different and complex shapes. Many physico-chemical processes that occur within these porous bricks include a diffusional step and thus to model these processes it is necessary to solve the diffusion equation (with chemical reaction) in a porous medium of complex shape. A finite element technique is applied to calculating the rate at which nitrogen diffuses into and out of the porous moderator graphite during operation of a shutdown procedure for an AGR. However, the finite element method suffers from several disadvantages that undermine its general usefulness for calculating rates of diffusion in AGR moderator cores. A model which overcomes some of these disadvantages is presented (the equivalent cylinder model) and it is shown that this gives good results for a variety of different boundary and initial conditions

  19. Design and development of gas cooled reactors with closed cycle gas turbines. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1996-08-01

    Technological advances over the past fifteen years in the design of turbomachinery, recuperators and magnetic bearings provide the potential for a quantum improvement in nuclear power generation economics through the use of the HTGR with a closed cycle gas turbine. Enhanced international co-operation among national gas cooled reactor programmes in these common technology areas could facilitate the development of this nuclear power concept thereby achieving safety, environmental and economic benefits with overall reduced development costs. This TCM and Workshop was convened to provide the opportunity to review and examine the status of design activities and technology development in national HTGR programmes with specific emphasis on the closed cycle gas turbine, and to identify pathways which take advantage of the opportunity for international co-operation in the development of this concept. Refs, figs, tabs

  20. Design and development of gas cooled reactors with closed cycle gas turbines. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    Technological advances over the past fifteen years in the design of turbomachinery, recuperators and magnetic bearings provide the potential for a quantum improvement in nuclear power generation economics through the use of the HTGR with a closed cycle gas turbine. Enhanced international co-operation among national gas cooled reactor programmes in these common technology areas could facilitate the development of this nuclear power concept thereby achieving safety, environmental and economic benefits with overall reduced development costs. This TCM and Workshop was convened to provide the opportunity to review and examine the status of design activities and technology development in national HTGR programmes with specific emphasis on the closed cycle gas turbine, and to identify pathways which take advantage of the opportunity for international co-operation in the development of this concept. Refs, figs, tabs.

  1. Global development of advanced nuclear power plants, and related IAEA activities

    International Nuclear Information System (INIS)

    2006-09-01

    Renewed interest in the potential of nuclear energy to contribute to a sustainable worldwide energy mix is underlining the IAEA's statutory role in fostering the peaceful uses of nuclear energy, in particular the need for effective exchanges of information and collaborative research and technology development among Member States on advanced nuclear power technologies deployable in the near term as well as in the longer term. For applications in the medium to longer term, with rising expectations for the role of nuclear energy in the future, technological innovation has become a strong focus of nuclear power technology developments by many Member States. To meet Member States' needs, the IAEA conducts activities to foster information exchange and collaborative research and development in the area of advanced nuclear reactor technologies. These activities include coordination of collaborative research, organization of international information exchange, and analyses of globally available technical data and results, with a focus on reducing nuclear power plant capital costs and construction periods while further improving performance, safety and proliferation resistance. In other activities, evolutionary and innovative advances are catalyzed for all reactor lines such as advanced water cooled reactors, high temperature gas cooled reactors, liquid metal cooled reactors and accelerator driven systems, including small and medium sized reactors. In addition, there are activities related to other applications of nuclear energy such as seawater desalination, hydrogen production, and other process heat applications. This brochure summarizes the worldwide status and the activities related to advanced nuclear power technology development and related IAEA activities. It includes a list of the collaborative research and development projects conducted by the IAEA, as well as of the status reports and other publications produced

  2. Assessment of missiles generated by pressure component failure and its application to recent gas-cooled nuclear plant design

    International Nuclear Information System (INIS)

    Tulacz, J.; Smith, R.E.

    1980-01-01

    Methods for establishing characteristics of missiles following pressure barrier rupture have been reviewed in order to enable evaluation of structural response to missile impact and to aid the design of barriers to protect essential plant on gas cooled nuclear plant against unacceptable damage from missile impact. Methods for determining structural response of concrete barriers to missile impact have been reviewed and some methods used for assessing the adequacy of steel barriers on gas-cooled nuclear plant have been described. The possibility of making an incredibility case for some of the worst missiles based on probability arguments is briefly discussed. It is shown that there may be scope for such arguments but there are difficulties in quantifying some of the probability factors. (U.K.)

  3. A novel nuclear combined power and cooling system integrating high temperature gas-cooled reactor with ammonia–water cycle

    International Nuclear Information System (INIS)

    Luo, Chending; Zhao, Fuqiang; Zhang, Na

    2014-01-01

    Highlights: • We propose a novel nuclear ammonia–water power and cooling cogeneration system. • The high temperature reactor is inherently safe, with exhaust heat fully recovered. • The thermal performances are improved compared with nuclear combined cycle. • The base case attains an energy efficiency of 69.9% and exergy efficiency of 72.5%. • Energy conservation and emission reduction are achieved in this cogeneration way. - Abstract: A nuclear ammonia–water power and refrigeration cogeneration system (NAPR) has been proposed and analyzed in this paper. It consists of a closed high temperature gas-cooled reactor (HTGR) topping Brayton cycle and a modified ammonia water power/refrigeration combined bottoming cycle (APR). The HTGR is an inherently safe reactor, and thus could be stable, flexible and suitable for various energy supply situation, and its exhaust heat is fully recovered by the mixture of ammonia and water in the bottoming cycle. To reduce exergy losses and enhance outputs, the ammonia concentrations of the bottoming cycle working fluid are optimized in both power and refrigeration processes. With the HTGR of 200 MW thermal capacity and 900 °C/70 bar reactor-core-outlet helium, the system achieves 88.8 MW net electrical output and 9.27 MW refrigeration capacity, and also attains an energy efficiency of 69.9% and exergy efficiency of 72.5%, which are higher by 5.3%-points and 2.6%-points as compared with the nuclear combined cycle (NCC, like a conventional gas/steam power-only combined cycle while the topping cycle is a closed HTGR Brayton cycle) with the same nuclear energy input. Compared with conventional separate power and refrigeration generation systems, the fossil fuel saving (based on CH 4 ) and CO 2 emission reduction of base-case NAPR could reach ∼9.66 × 10 4 t/y and ∼26.6 × 10 4 t/y, respectively. The system integration accomplishes the safe and high-efficiency utilization of nuclear energy by power and refrigeration

  4. The atmospheric cooling of nuclear power stations

    International Nuclear Information System (INIS)

    Leuenberger, J.M.; Mayor, J.C.; Gassmann, F.; Lieber, K.

    1978-08-01

    Four different types of nuclear reactor are considered: light water reactors, high temperature reactors with steam circulation and with direct gas turbine circulation, and fast breeder reactors. Wet and dry cooling towers are described and experimental studies carried out using cooling tower models are presented. (G.T.H.)

  5. Microscopical examination of carbon deposits formed in the Windscale advanced gas cooled reactor

    International Nuclear Information System (INIS)

    Livesey, D.J.; Chatwin, W.H.; Pearce, J.H.

    1980-12-01

    Methods are described of sampling and examining carbon deposits on fuel cladding in the Windscale advanced gas-cooled reactor. Deposition is observed on fuel cladding in both the reactor core and experimental loops in carbon dioxide coolants containing various amounts of carbon monoxide and methane. Deposit distribution over the cladding surface indicated that nucleation is dependent on local surface conditions. Microscopical examination showed that deposit thickness increases by carbon filament growth into the coolant gas stream and that the process can be markedly influenced by metallic impurities. There is evidence that nickel can play a particularly significant role in deposition in loop experiments but similar effects have not been observed in the reactor core. (author)

  6. Improving fuel cycle design and safety characteristics of a gas cooled fast reactor

    NARCIS (Netherlands)

    van Rooijen, W.F.G.

    2006-01-01

    This research concerns the fuel cycle and safety aspects of a Gas Cooled Fast Reactor, one of the so-called "Generation IV" nuclear reactor designs. The Generation IV Gas Cooled Fast Reactor uses helium as coolant at high temperature. The goal of the GCFR is to obtain a "closed nuclear fuel cycle",

  7. Optimization of the steam generator project of a gas cooled nuclear reactor

    International Nuclear Information System (INIS)

    Sakai, Massao

    1978-01-01

    The present work is concerned with the modeling of the primary and secondary circuits of a gas cooled nuclear reactor in order to obtain the relation between the parameters of the two cycles and the steam generator performance. The procedure allows the optimization of the steam generator, through the maximization of the plant net power, and the application of the optimal control theory of dynamic systems. The heat balances for the primary and secondary circuits are carried out simultaneously with the optimized - design parameters of the steam generator, obtained using an iterative technique. (author)

  8. The development of advanced gas cooled reactor iodine adsorber systems

    International Nuclear Information System (INIS)

    Meddings, P.

    1986-01-01

    Advanced Gas Cooled Reactors (AGRs) are provided with plants to process the carbon dioxide coolant prior to its discharge to atmosphere. Included in these are beds of granular activated charcoal, contained within a suitable pressure vessel, through which the high pressure carbon dioxide is passed for the purpose of retaining iodine and iodine-containing compounds. Carry-over carbon dust from the adsorption beds was identified during active in-situ commissioning testing, radio-iodine being transported with the particulate material due to gross disturbance of the adsorber carbon bed and displacement of the vessel internals. The methods used to identify the causes of the problems and find solutions are described. A development programme for the Heysham-2 and Torness reactors iodine adsorber units was set up to identify a method of de-dusting granular charcoal and develop it for full-scale use, of assess the effect under conditions of high gas density of approach velocity on charcoal fines production and to establish the pressure drop characteristics of a packed granular bed and to develop an effective design of inlet gas diffuser manifold to ensure an acceptable velocity distribution. This has involved the construction of a small scale high pressure carbon dioxide rig and development of an air flow model. This work is described. (UK)

  9. Nuclear data uncertainty analysis for the generation IV gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Pelloni, S.; Mikityuk, K.

    2012-01-01

    For the European 2400 MW Gas-cooled Fast Reactor (GoFastR), this paper summarizes a priori uncertainties, i.e. without any integral experiment assessment, of the main neutronic parameters which were obtained on the basis of the deterministic code system ERANOS (Edition 2.2-N). JEFF-3.1 cross-sections were used in conjunction with the newest ENDF/B-VII.0 based covariance library (COMMARA-2.0) resulting from a recent cooperation of the Brookhaven and Los Alamos National Laboratories within the Advanced Fuel Cycle Initiative. The basis for the analysis is the original GoFastR concept with carbide fuel pins and silicon-carbide ceramic cladding, which was developed and proposed in the first quarter of 2009 by the 'French alternative energies and Atomic Energy Commission', CEA. The main conclusions from the current study are that nuclear data uncertainties of neutronic parameters may still be too large for this Generation IV reactor, especially concerning the multiplication factor, despite the fact that the new covariance library is quite complete; These uncertainties, in relative terms, do not show the a priori expected increase with bum-up as a result of the minor actinide and fission product build-up. Indeed, they are found almost independent of the fuel depletion, since the uncertainty associated with 238 U inelastic scattering results largely dominating. This finding clearly supports the activities of Subgroup 33 of the Working Party on International Nuclear Data Evaluation Cooperation (WPEC), i.e. Methods and issues for the combined use of integral experiments and covariance data, attempting to reduce the present unbiased uncertainties on nuclear data through adjustments based on available experimental data. (authors)

  10. Advanced gas cooled reactors - Designing for safety

    International Nuclear Information System (INIS)

    Keen, Barry A.

    1990-01-01

    The Advanced Gas-Cooled Reactor Power Stations recently completed at Heysham in Lancashire, England, and Torness in East Lothian, Scotland represent the current stage of development of the commercial AGR. Each power station has two reactor turbo-generator units designed for a total station output of 2x660 MW(e) gross although powers in excess of this have been achieved and it is currently intended to uprate this as far as possible. The design of both stations has been based on the successful operating AGRs at Hinkley Point and Hunterston which have now been in-service for almost 15 years, although minor changes were made to meet new safety requirements and to make improvements suggested by operating experience. The construction of these new AGRs has been to programme and within budget. Full commercial load for the first reactor at Torness was achieved in August 1988 with the other three reactors following over the subsequent 15 months. This paper summarises the safety principles and guidelines for the design of the reactors and discusses how some of the main features of the safety case meet these safety requirements. The paper also summarises the design problems which arose during the construction period and explains how these problems were solved with the minimum delay to programme

  11. Advanced gas cooled reactors - Designing for safety

    Energy Technology Data Exchange (ETDEWEB)

    Keen, Barry A [Engineering Development Unit, NNC Limited, Booths Hall, Knutsford, Cheshire (United Kingdom)

    1990-07-01

    The Advanced Gas-Cooled Reactor Power Stations recently completed at Heysham in Lancashire, England, and Torness in East Lothian, Scotland represent the current stage of development of the commercial AGR. Each power station has two reactor turbo-generator units designed for a total station output of 2x660 MW(e) gross although powers in excess of this have been achieved and it is currently intended to uprate this as far as possible. The design of both stations has been based on the successful operating AGRs at Hinkley Point and Hunterston which have now been in-service for almost 15 years, although minor changes were made to meet new safety requirements and to make improvements suggested by operating experience. The construction of these new AGRs has been to programme and within budget. Full commercial load for the first reactor at Torness was achieved in August 1988 with the other three reactors following over the subsequent 15 months. This paper summarises the safety principles and guidelines for the design of the reactors and discusses how some of the main features of the safety case meet these safety requirements. The paper also summarises the design problems which arose during the construction period and explains how these problems were solved with the minimum delay to programme.

  12. Consideration of emergency source terms for pebble-bed high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Tao, Liu; Jun, Zhao; Jiejuan, Tong; Jianzhu, Cao

    2009-01-01

    Being the last barrier in the nuclear power plant defense-in-depth strategy, emergency planning (EP) is an integrated project. One of the key elements in this process is emergency source terms selection. Emergency Source terms for light water reactor (LWR) nuclear power plant (NPP) have been introduced in many technical documents, and advanced NPP emergency planning is attracting attention recently. Commercial practices of advanced NPP are undergoing in the world, pebble-bed high-temperature gas-cooled reactor (HTGR) power plant is under construction in China which is considered as a representative of advanced NPP. The paper tries to find some pieces of suggestion from our investigation. The discussion of advanced NPP EP will be summarized first, and then the characteristics of pebble-bed HTGR relating to EP will be described. Finally, PSA insights on emergency source terms selection and current pebble-bed HTGR emergency source terms suggestions are proposed

  13. Windscale advanced gas-cooled reactor (WAGR) decommissioning project overview

    International Nuclear Information System (INIS)

    Pattinson, A.

    2003-01-01

    The current BNFL reactor decommissioning projects are presented. The projects concern power reactor sites at Berkely, Trawsfynydd, Hunterstone, Bradwell, Hinkley Point; UKAEA Windscale Pile 1; Research reactors within UK Scottish Universities at East Kilbride and ICI (both complete); WAGR. The BNFL environmental role include contract management; effective dismantling strategy development; implementation and operation; sentencing, encapsulation and transportation of waste. In addition for the own sites it includes strategy development; baseline decommissioning planning; site management and regulator interface. The project objectives for the Windscale Advanced Gas-Cooled Reactor (WAGR) are 1) Safe and efficient decommissioning; 2) Building of good relationships with customer; 3) Completion of reactor decommissioning in 2005. The completed WAGR decommissioning campaigns are: Operational Waste; Hot Box; Loop Tubes; Neutron Shield; Graphite Core and Restrain System; Thermal Shield. The current campaign is Lower Structures and the remaining are: Pressure vessel and Insulation; Thermal Columns and Outer Vault Membrane. An overview of each campaign is presented

  14. Improvement of Cooling Technology through Atmosphere Gas Management

    Energy Technology Data Exchange (ETDEWEB)

    Renard, Michel; Dosogne, Edgaar; Crutzen, Jean Pierre; Raick, Jean Mare [DREVER INTERNATIONAL S.A., Liege (Belgium); Ji, Ma Jia; Jun, Lv; Zhi, Ma Bing [SHOUGANG Cold Rolling Mill Headquarter, Beijin (China)

    2009-12-15

    The production of advanced high strength steels requires the improvement of cooling technology. The use of high cooling rates allows relatively low levels of expensive alloying additions to ensure sufficient hardenability. In classical annealing and hot-dip galvanizing lines a mixing station is used to provide atmosphere gas containing 3-5% hydrogen and 97-95% nitrogen in the various sections of the furnace, including the rapid cooling section. Heat exchange enhancement in this cooling section can be insured by the increased hydrogen concentration. Driver international developed a patented improvement of cooling technology based on the following features: pure hydrogen gas is injected only in the rapid cooling section whereas the different sections of the furnace are supplied with pure nitrogen gas: the control of flows through atmosphere gas management allows to get high hydrogen concentration in cooling section and low hydrogen content in the other furnace zones. This cooling technology development insures higher cooling rates without additional expensive hydrogen gas consumption and without the use of complex sealing equipment between zones. In addition reduction in electrical energy consumption is obtained. This atmosphere control development can be combined with geometrical design improvements in order to get optimised cooling technology providing high cooling rates as well as reduced strip vibration amplitudes. Extensive validation of theoretical research has been conducted on industrial lines. New lines as well as existing lines, with limited modifications, can be equipped with this new development. Up to now this technology has successfully been implemented on 6 existing and 7 new lines in Europe and Asia.

  15. High-temperature gas-cooled reactor (HTGR): long term program plan

    International Nuclear Information System (INIS)

    1980-01-01

    The FY 1980 effort was to investigate four technology options identified by program participants as potentially viable candidates for near-term demonstration: the Gas Turbine system (HTGR-GT), reflecting its perceived compatibility with the dry-cooling market, two systems addressing the process heat market, the Reforming (HTGR-R) and Steam Cycle (HTGR-SC) systems, and a more developmental reactor system, The Nuclear Heat Source Demonstration Reactor (NHSDR), which was to serve as a basis for both the HTGR-GT and HTGR-R systems as well as the further potential for developing advanced applications such as steam-coal gasification and water splitting

  16. Experience of the remote dismantling of the Windscale advanced gas-cooled reactor and Windscale pile chimneys

    International Nuclear Information System (INIS)

    Wright, E.M.

    1993-01-01

    This paper gives brief descriptions of some of the remote dismantling work and equipment used on two large decommissioning projects: the BNFL Windscale Pile Chimneys Project (remote handling machine, waste packaging machine, remotely controlled excavator, remotely controlled demolition machine) and the AEA Windscale Advanced Gas-cooled Reactor Project (remote dismantling machine, operational waste, bulk removal techniques, semi-remote cutting operations)

  17. Effect of horizontal flow on the cooling of the moderator brick in the advanced gas-cooled reactor

    International Nuclear Information System (INIS)

    Ganesan, P.; He, S.; Hamad, F.; Gotts, J.

    2011-01-01

    The paper reports an investigation of the effect of the horizontal cross flow on the temperature of the moderator brick in UK Advanced Gas-cooled Reactor (AGR) using computational fluid dynamics (CFD) with a conjugate heat transfer model for the solid and fluid. The commercial software package of ANSYS Fluent is used for this purpose. The CFD model comprises the full axial length of one-half of a typical fuel channel (assuming symmetry) and part of neighbouring channels on either side. Two sets of simulations have been carried out, namely, one with cross flow and one without cross flow. The effect of cross flow has subsequently been derived by comparing the results from the two groups of simulations. The study shows that a small cross flow can have a significant effect on the cooling of the graphite brick, causing the peak temperature of the brick to reduce significantly. Two mechanisms are identified to be responsible for this. Firstly, the small cross flow causes a significant redistribution of the main axial downward flow and this leads to an enhancement of heat transfer in some of the small clearances, and an impairment in others although overall, the enhancement is dominant leading to a better cooling. Secondly, the cross flow makes effective use of the small clearances between the key/keyway connections which increases the effective heat transfer area, hence increasing the cooling. Under the conditions of no cross flow, these areas remain largely inactive in heat transfer. The study shows that the cooling of the moderator is significantly enhanced by the cross flow perpendicular to the main cooling flow. (author)

  18. The early history of high-temperature helium gas-cooled nuclear power reactors

    International Nuclear Information System (INIS)

    Simnad, M.T.; California Univ., San Diego, La Jolla, CA

    1991-01-01

    The original concepts in the proposals for high-temperature helium gas-cooled power reactors by Farrington Daniels, during the decade 1944-1955, are summarized. The early research on the development of the helium gas-cooled power reactors is reviewed, and the operational experiences with the first generation of HTGRs are discussed. (author)

  19. Control room conceptual design of nuclear power plant with multiple modular high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Jia Qianqian; Qu Ronghong; Zhang Liangju

    2014-01-01

    A conceptual design of the control room layout for the nuclear power plant with multiple modular high temperature gas-cooled reactors has been developed. The modular high temperature gas-cooled reactors may need to be grouped to produce as much energy as a utility demands to realize the economic efficiency. There are many differences between the multi-modular plant and the current NPPs in the control room. These differences may include the staffing level, the human-machine interface design, the operation mode, etc. The potential challenges of the human factor engineering (HFE) in the control room of the multi-modular plant are analyzed, including the operation workload of the multi-modular tasks, how to help the crew to keep situation awareness of all modules, and how to support team work, the control of shared system between modules, etc. A concept design of control room for the multi-modular plant is presented based on the design aspect of HTR-PM (High temperature gas-cooled reactor pebble bed module). HFE issues are considered in the conceptual design of control room for the multi-modular plant and some design strategies are presented. As a novel conceptual design, verifications and validations are needed, and focus of further work is sketch out. (author)

  20. Proceedings of the 2004 international congress on advances in nuclear power plants - ICAPP'04

    International Nuclear Information System (INIS)

    2004-01-01

    The 2004 International Congress on Advances in Nuclear Power Plants (ICAPP'04) provides a forum for the industry to exchange the latest ideas and research findings on nuclear plants from all perspectives. This conference builds on the success of last year's meeting held in Cordoba, Spain, and on the 2002 inaugural meeting held in Hollywood, Florida. Because of the hard work of many volunteers from around the world, ICAPP'04 has been successful in achieving its goal. More than 325 invited and contributed papers/presentations are part of this ICAPP. There are 5 invited plenary sessions and 70 technical sessions with contributed papers. The ICAPP'04 Proceedings contain almost 275 papers prepared by authors from 25 countries covering topics related to advances in nuclear power plant technology. The program by technical track deals with: 1 - Water-Cooled Reactor Programs and Issues (Status of All New Water-Cooled Reactor Programs; Advanced PWRs: Developmental Stage I; Advanced PWRs: Developmental Stage II; Advanced PWRs: Basic Design Stage; Advanced BWRs; Economics, Regulation, Licensing, and Construction; AP1000); 2 - High Temperature Gas Cooled Reactors (Pebble Bed Modular Reactors; Very High Temperature Reactors; HTR Fuels and Materials; Innovative HTRs and Fuel Cycles); 3 - Long Term Reactor Programs and Strategies (Supercritical Pressure Water Reactors; Lead-Alloy Fast Reactors; Sodium and Gas Fast Reactors; Status of Advanced Reactor Programs; Non-classical Reactor Concepts); 4 - Operation, Performance, and Reliability Management (Information Technology Effect on Plant Operation; Operation, Maintenance and Reliability; Improving Performance and Reducing O and M Costs; Plant Modernization and Retrofits); 5 - Plant Safety Assessment and Regulatory Issues (LOCA and non-LOCA Analysis Methodologies; LOCA and non-LOCA Plant Analyses; In-Vessel Retention; Containment Performance and Hydrogen Control; Advances in Severe Accident Analysis; Advances in Severe Accident

  1. Core of a liquid-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Wright, J.R.; McFall, A.

    1975-01-01

    The core of a liquid-cooled nuclear reactor, e.g. of a sodium-cooled fast reactor, is protected in such a way that the recoil wave resulting from loss of coolant in a cooling channel and caused by released gas is limited to a coolant inlet chamber of this cooling channel. The channels essentially consist of the coolant inlet chamber and a fuel chamber - with a fission gas storage plenum - through which the coolant flows. Between the two chambers, a locking device within a tube is provided offering a much larger flow resistance to the backflow of gas or coolant than in flow direction. The locking device may be a hydraulic countertorque control system, e.g. a valvular line. Other locking devices have got radially helical vanes running around an annular flow space. Furthermore, the locking device may consist of a number of needles running parallel to each other and forming a circular grid. Though it can be expanded by the forward flow - the needles are spreading - , it acts as a solid barrier for backflows. (TK) [de

  2. Cost-estimate guidelines for advanced nuclear power technologies

    International Nuclear Information System (INIS)

    Delene, J.G.; Hudson, C.R.

    1993-01-01

    Various advanced power plant concepts are currently under development. These include several advanced light water reactors as well as the modular high-temperature gas-cooled reactor and the advanced liquid-metal reactor. One measure-of the attractiveness of a new concept is cost. Invariably, the cost of a new type of power plant will be compared with other alternative forms of electric generation. In order to make reasonable comparative assessments of competing technologies, consistent ground rules and assumptions must be applied when developing cost estimates. This paper describes the cost-estimate guidelines developed by Oak Ridge National Laboratory for the U.S. Department of Energy (DOE) to be used in developing cost estimates for the advanced nuclear reactors and how these guidelines relate to the DOE cost verification process

  3. Thermal hydraulic analysis of gas-cooled reactors with annular fuel rods

    International Nuclear Information System (INIS)

    Han, Kyu Hyun; Chang, Soon Heung

    2005-01-01

    More than half of the world's energy is used in industrial processes and for heating applications which have hardly been touched by the nuclear industry. Nuclear power could be brought into a wide range of applications for industrial processes, provided that gas outlet temperatures of gascooled reactors are sufficiently high. The most limiting core design requirement which controls the core outlet temperature is the maximum acceptable fuel compact temperature. An innovative fuel design is required for a significant decrease in the fuel temperature. This study investigated the possibilities of implementing internally and externally cooled annular fuel rods in a gas-cooled reactor

  4. Development of gas cooled reactors and experimental setup of high temperature helium loop for in-pile operation

    Energy Technology Data Exchange (ETDEWEB)

    Miletić, Marija, E-mail: marija_miletic@live.com [Czech Technical University in Prague, Prague (Czech Republic); Fukač, Rostislav, E-mail: fuk@cvrez.cz [Research Centre Rez Ltd., Rez (Czech Republic); Pioro, Igor, E-mail: Igor.Pioro@uoit.ca [University of Ontario Institute of Technology, Oshawa (Canada); Dragunov, Alexey, E-mail: Alexey.Dragunov@uoit.ca [University of Ontario Institute of Technology, Oshawa (Canada)

    2014-09-15

    Highlights: • Gas as a coolant in Gen-IV reactors, history and development. • Main physical parameters comparison of gas coolants: carbon dioxide, helium, hydrogen with water. • Forced convection in turbulent pipe flow. • Gas cooled fast reactor concept comparisons to very high temperature reactor concept. • High temperature helium loop: concept, development, mechanism, design and constraints. - Abstract: Rapidly increasing energy and electricity demands, global concerns over the climate changes and strong dependence on foreign fossil fuel supplies are powerfully influencing greater use of nuclear power. In order to establish the viability of next-generation reactor concepts to meet tomorrow's needs for clean and reliable energy production the fundamental research and development issues need to be addressed for the Generation-IV nuclear-energy systems. Generation-IV reactor concepts are being developed to use more advanced materials, coolants and higher burn-ups fuels, while keeping a nuclear reactor safe and reliable. One of the six Generation-IV concepts is a very high temperature reactor (VHTR). The VHTR concept uses a graphite-moderated core with a once-through uranium fuel cycle, using high temperature helium as the coolant. Because helium is naturally inert and single-phase, the helium-cooled reactor can operate at much higher temperatures, leading to higher efficiency. Current VHTR concepts will use fuels such as uranium dioxide, uranium carbide, or uranium oxycarbide. Since some of these fuels are new in nuclear industry and due to their unknown properties and behavior within VHTR conditions it is very important to address these issues by investigate their characteristics within conditions close to those in VHTRs. This research can be performed in a research reactor with in-pile helium loop designed and constructed in Research Center Rez Ltd. One of the topics analyzed in this article are also physical characteristic and benefits of gas

  5. Detailed Reaction Kinetics for CFD Modeling of Nuclear Fuel Pellet Coating for High Temperature Gas-Cooled Reactors

    International Nuclear Information System (INIS)

    Battaglia, Francine

    2008-01-01

    The research project was related to the Advanced Fuel Cycle Initiative and was in direct alignment with advancing knowledge in the area of Nuclear Fuel Development related to the use of TRISO fuels for high-temperature reactors. The importance of properly coating nuclear fuel pellets received a renewed interest for the safe production of nuclear power to help meet the energy requirements of the United States. High-temperature gas-cooled nuclear reactors use fuel in the form of coated uranium particles, and it is the coating process that was of importance to this project. The coating process requires four coating layers to retain radioactive fission products from escaping into the environment. The first layer consists of porous carbon and serves as a buffer layer to attenuate the fission and accommodate the fuel kernel swelling. The second (inner) layer is of pyrocarbon and provides protection from fission products and supports the third layer, which is silicon carbide. The final (outer) layer is also pyrocarbon and provides a bonding surface and protective barrier for the entire pellet. The coating procedures for the silicon carbide and the outer pyrocarbon layers require knowledge of the detailed kinetics of the reaction processes in the gas phase and at the surfaces where the particles interact with the reactor walls. The intent of this project was to acquire detailed information on the reaction kinetics for the chemical vapor deposition (CVD) of carbon and silicon carbine on uranium fuel pellets, including the location of transition state structures, evaluation of the associated activation energies, and the use of these activation energies in the prediction of reaction rate constants. After the detailed reaction kinetics were determined, the reactions were implemented and tested in a computational fluid dynamics model, MFIX. The intention was to find a reduced mechanism set to reduce the computational time for a simulation, while still providing accurate results

  6. Absorber rod driving into a gas-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Elter, C.; Schmitt, H.; Schoening, J.

    1987-01-01

    The absorber rod consists of a hollow cylinder which has a layer of absorber material applied on its inside circumferential surface. The absorber rod is held via a guide sleeve, which is supported centrally in a hole in the side reflector. The guidance within the sleeve is provided by flanges on the hollow cylinder. The movement of the hollow cylinder is carried out hydraulically or pneumatically. A flow of cooling gas is used for cooling, which is passed through the inner central areas of the hollow cylinder and the guide sleeve. (DG) [de

  7. Multicycle Optimization of Advanced Gas-Cooled Reactor Loading Patterns Using Genetic Algorithms

    International Nuclear Information System (INIS)

    Ziver, A. Kemal; Carter, Jonathan N.; Pain, Christopher C.; Oliveira, Cassiano R.E. de; Goddard, Antony J. H.; Overton, Richard S.

    2003-01-01

    A genetic algorithm (GA)-based optimizer (GAOPT) has been developed for in-core fuel management of advanced gas-cooled reactors (AGRs) at HINKLEY B and HARTLEPOOL, which employ on-load and off-load refueling, respectively. The optimizer has been linked to the reactor analysis code PANTHER for the automated evaluation of loading patterns in a two-dimensional geometry, which is collapsed from the three-dimensional reactor model. GAOPT uses a directed stochastic (Monte Carlo) algorithm to generate initial population members, within predetermined constraints, for use in GAs, which apply the standard genetic operators: selection by tournament, crossover, and mutation. The GAOPT is able to generate and optimize loading patterns for successive reactor cycles (multicycle) within acceptable CPU times even on single-processor systems. The algorithm allows radial shuffling of fuel assemblies in a multicycle refueling optimization, which is constructed to aid long-term core management planning decisions. This paper presents the application of the GA-based optimization to two AGR stations, which apply different in-core management operational rules. Results obtained from the testing of GAOPT are discussed

  8. Study on nuclear analysis method for high temperature gas-cooled reactor and its nuclear design (Thesis)

    International Nuclear Information System (INIS)

    Goto, Minoru

    2015-03-01

    An appropriate configuration of fuel and reactivity control equipment in a nuclear reactor core, which allows the design of the nuclear reactor core for low cost and high performance, is performed by nuclear design with high accuracy. The accuracy of nuclear design depends on a nuclear data library and a nuclear analysis method. Additionally, it is one of the most important issues for the nuclear design of a High Temperature Gas-cooled Reactor (HTGR) that an insertion depth of control rods into the reactor core should be retained shallow by reducing excess reactivity with a different method to keep fuel temperature below its limitation thorough a burn-up period. In this study, using experimental data of the High Temperature engineering Test Reactor (HTTR), which is a Japan's HTGR with 30 MW of thermal power, the following issues were investigated: applicability of nuclear data libraries to nuclear analysis for HTGRs; applicability of the improved nuclear analysis method for HTGRs; and effectiveness of a rod-type burnable poison on HTGR reactivity control. A nuclear design of a small-sized HTGR with 50 MW of thermal power (HTR50S) was performed using these results. In the nuclear design of the HTR50S, we challenged to decrease the kinds of the fuel enrichments and to increase the power density compared with the HTTR. As a result, the nuclear design was completed successfully by reducing the kinds of the fuel enrichment to only three from twelve of the HTTR and increasing the power density by 1.4 times as much as that of the HTTR. (author)

  9. Long-term prospects for the gas-cooled reactor

    International Nuclear Information System (INIS)

    Tan, W.P.S.

    1982-01-01

    Towards the second half of a fifty-year time span the market for gas-cooled reactors as sources of high temperature process heat and as highly fuel efficient electricity producers should be reasonably bright, given a fair degree of technological maturity and consequent realisation of inherent economic advantages. Declining fossil resources and increasing prices, initially in oil and gas later in open-cast coal, provide the economic impetus towards substitution of nuclear for coal heat, not only in the generally accepted processes of coal conversion and steel-making but also for oil shale pyrolysis and electrothermal aluminium smelting. Around 2010, if not sooner, the need for uranium conservation should allow the market penetration of breeders and thorium-cycle reactors for which gas cooling has a potential techno-economic edge. (author)

  10. Long-term prospects for the gas-cooled reactor

    International Nuclear Information System (INIS)

    Tan, W.P.S.

    1983-01-01

    Towards the second half of a 50-year time span the market for gas-cooled reactors as sources of high-temperature process heat and as highly fuel-efficient electricity producers should be reasonably bright, given a fair degree of technological maturity and consequent realization of inherent economic advantages. Declining fossil resources and increasing prices, initially in oil and gas, later in open-cast coal, provide the economic impetus towards substitution of nuclear for coal heat, not only in the generally accepted processes of coal conversion and steel making but also for oil shale pyrolysis and electrothermal aluminium smelting. Around 2010, if not sooner, the need for uranium conservation should allow the market penetration of breeders and thorium-cycle reactors for which gas cooling has a potential techno-economic edge. (author)

  11. Variable electricity and steam from salt, helium and sodium cooled base-load reactors with gas turbines and heat storage - 15115

    International Nuclear Information System (INIS)

    Forsberg, C.; McDaniel, P.; Zohuri, B.

    2015-01-01

    Advances in utility natural-gas-fired air-Brayton combed cycle technology is creating the option of coupling salt-, helium-, and sodium-cooled nuclear reactors to Nuclear air-Brayton Combined Cycle (NACC) power systems. NACC may enable a zero-carbon electricity grid and improve nuclear power economics by enabling variable electricity output with base-load nuclear reactor operations. Variable electricity output enables selling more electricity at times of high prices that increases plant revenue. Peak power is achieved using stored heat or auxiliary fuel (natural gas, bio-fuels, hydrogen). A typical NACC cycle includes air compression, heating compressed air using nuclear heat and a heat exchanger, sending air through a turbine to produce electricity, reheating compressed air, sending air through a second turbine, and exhausting to a heat recovery steam generator (HRSG). In the HRSG, warm air produces steam that is used to produce added electricity. For peak power production, auxiliary heat (natural gas, stored heat) is added before the air enters the second turbine to raise air temperatures and power output. Like all combined cycle plants, water cooling requirements are dramatically reduced relative to other power cycles because much of the heat rejection is in the form of hot air. (authors)

  12. Nuclear power for coexistence with nature, high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Kaneko, Yoshihiko

    1996-01-01

    Until this century, it is sufficient to aim at the winner of competition in human society to obtain resources, and to entrust waste to natural cleaning action. However, the expansion of social activities has been too fast, and the scale has become too large, consequently, in the next century, the expansion of social activities will be caught by the structure of trilemma that is subjected to the strong restraint and selection from the problems of finite energy and resources and environment preservation. In 21st century, the problems change to those between mankind and nature. Energy supply and population increase, envrionment preservation and human activities, and the matters that human wisdom should bear regarding energy technology are discussed. In Japan, the construction of the high temperature engineering test reactor (HTTR) is in progress. The design of high temperature gas-cooled reactors and their features on the safety are explained. The capability of reducing CO 2 release of high temperature gas-cooled reactors is reported. In future, it is expected that the time of introducing high temperature gas-cooled reactors will come. (K.I.)

  13. Estimating the occurrence of foreign material in Advanced Gas-cooled Reactors: A Bayesian Monte Carlo approach

    International Nuclear Information System (INIS)

    Mason, Paolo

    2014-01-01

    Highlights: • The amount of a specific type of foreign material found in UK AGRs has been estimated. • The estimate is based on very few instances of detection in numerous inspections. • A Bayesian Monte Carlo approach was used. • The study supports safety case claims on coolant flow impairment. • The methodology is applicable to any inspection campaign on any plant system. - Abstract: The current occurrence of a particular sort of foreign material in eight UK Advanced Gas-cooled Reactors has been estimated by means of a parametric approach. The study includes both variability, treated in analytic fashion via the combination of standard probability distributions, and the uncertainty in the parameters of the model of choice, whose posterior distribution was inferred in Bayesian fashion by means of a Monte Carlo route consisting in the conditional acceptance of sets of model parameters drawn from a prior distribution based on engineering judgement. The model underlying the present study specifically refers to the re-loading and inspection routines of UK Advanced Gas-cooled Reactors. The approach to inference here presented, however, is of general validity and can be applied to the outcome of any inspection campaign on any plant system, and indeed to any situation in which the outcome of a stochastic process is more easily simulated than described by a probability density or mass function

  14. Complex program of advance in science and technology

    International Nuclear Information System (INIS)

    Sychev, V.V.

    1986-01-01

    A draft of the complex program of advance in science and technology of the CMEA member-countries is described in brief. The basis of the program includes five priority trends electronics development complex automatization, advanced development of nuclear energy, production of new materials and tecnologies of their production and processing, advanced developmen of biotechnologies. Development of nuclear energy will be based on WWER-440 and WWER-1000 type NPPs. Heat-only nuclear stations and power and heat nuclear stations will receive a large development effort, as well as sodium-cooled fast reactors of the BN type having 800 and 1600 MW capacity, high-temperature gas-cooled breeders of the BGR-300 type, gas-cooled reactors of the VG-400 type for high-temperature heat supply (500-1000 deg C). It is contemplated to design the TOKAMAK-15 research thermonuclear facility and a pilot thermonuclear reactor for power generation and plutonium production. The program also comprises works aimed at improving reliability and safety of the nuclear installations

  15. Advanced technology for aero gas turbine components

    Energy Technology Data Exchange (ETDEWEB)

    1987-09-01

    The Symposium is aimed at highlighting the development of advanced components for new aero gas turbine propulsion systems in order to provide engineers and scientists with a forum to discuss recent progress in these technologies and to identify requirements for future research. Axial flow compressors, the operation of gas turbine engines in dust laden atmospheres, turbine engine design, blade cooling, unsteady gas flow through the stator and rotor of a turbomachine, gear systems for advanced turboprops, transonic blade design and the development of a plenum chamber burner system for an advanced VTOL engine are among the topics discussed.

  16. Improvements to secondary coolant circuits of a liquid metal cooled nuclear reactor

    International Nuclear Information System (INIS)

    Brachet, Alain.

    1981-01-01

    This invention concerns improvements to secondary coolant-systems for sodium cooled nuclear reactors. It further concerns a protective device for a free level mechanical pump which prevents any gas bubbles due to leaks of the working gas of the pump from entering the secondary system of the nuclear reactor [fr

  17. Study on the nuclear heat application system with a high temperature gas-cooled reactor and its safety evaluation (Thesis)

    International Nuclear Information System (INIS)

    Inaba, Yoshitomo

    2008-03-01

    Aiming at the realization of the nuclear heat application system with a High Temperature Gas-cooled Reactor (HTGR), research and development on the whole evaluation of the system, the connection technology between the HTGR and a chemical plant such as the safety evaluation against the fire and explosion and the control technology, and the vessel cooling system of the HTGR were carried out. In the whole evaluation of the nuclear heat application system, an ammonia production system using nuclear heat was examined, and the technical subjects caused by the connection of the chemical plant to the HTGR were distilled. After distilling the subjects, the safety evaluation method against the fire and explosion to the reactor, the mitigation technology of thermal disturbance to the reactor, and the reactor core cooling by the vessel cooling system were discussed. These subjects are very important in terms of safety. About the fire and explosion, the safety evaluation method was established by developing the process and the numerical analysis code system. About the mitigation technology of the thermal disturbance, it was demonstrated that the steam generator, which was installed at the downstream of the chemical reactor in the chemical plant, could mitigate the thermal disturbance to the reactor. In order to enhance the safety of the reactor in accidents, the heat transfer characteristic of the passive indirect core cooling system was investigated, and the heat transfer equation considering both thermal radiation and natural convection was developed for the system design. As a result, some technical subjects related to safety in the nuclear heat application system were solved. (author)

  18. Preliminary analysis of combined cycle of modular high-temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Baogang, Z.; Xiaoyong, Y.; Jie, W.; Gang, Z.; Qian, S.

    2015-01-01

    Modular high-temperature gas cooled reactor (HTGR) is known as one of the most advanced nuclear reactors because of its inherent safety and high efficiency. The power conversion system of HTGR can be steam turbine based on Rankine cycle or gas turbine based on Brayton cycle respectively. The steam turbine system is mature and the gas turbine system has high efficiency but under development. The Brayton-Rankine combined cycle is an effective way to further promote the efficiency. This paper investigated the performance of combined cycle from the viewpoint of thermodynamics. The effect of non-dimensional parameters on combined cycle’s efficiency, such as temperature ratio, compression ratio, efficiency of compressor, efficiency of turbine, was analyzed. Furthermore, the optimal parameters to achieve highest efficiency was also given by this analysis under engineering constraints. The conclusions could be helpful to the design and development of combined cycle of HTGR. (author)

  19. Simulation of a gas cooled reactor with the system code CATHARE

    International Nuclear Information System (INIS)

    Bentivoglio, Fabrice; Ruby, Alain; Geffraye, Genevieve; Messie, Anne; Saez, Manuel; Tauveron, Nicolas; Widlund, Ola

    2006-01-01

    In recent years the CEA has commissioned a wide range of feasibility studies of future advanced nuclear reactors, in particular gas-cooled reactors (GCR). This paper presents an overview of the use of the thermohydraulics code CATHARE in these activities. Extensively validated and qualified for pressurized water reactors, CATHARE has been adapted to deal also with gas-cooled reactor applications. Rather than branching off a separate GCR version of CATHARE, new features have been integrated as independent options in the standard version of the code, respecting the same stringent procedures for documentation and maintenance. CATHARE has evolved into an efficient tool for GCR applications, with first results in good agreement with existing experimental data and other codes. The paper give an example among the studies already carried out with CATHARE with the case of the Very High Temperature Reactor (VHTR) concepts. Current and future activities for experimental validation of CATHARE for GCR applications are also discussed. Short-term validation activities are also included with the assessment of the German utility Oberhausen II. For the long term, CEA has initiated an ambitious experimental program ranging from small scale loops for physical correlations to component technology and system demonstration loops. (authors)

  20. Status and prospects for gas cooled reactor fuels. Proceedings of two IAEA meetings held in June 2004 and June 2005

    International Nuclear Information System (INIS)

    2009-04-01

    Recently, efforts to develop high temperature gas cooled reactors with an aim to building futuristic nuclear energy systems with advanced nuclear fuel cycles in the context of the Generation IV International Forum have increased significantly. In addition, several development projects are ongoing, focusing on the burning of weapons grade plutonium, including civil plutonium and other transuranic elements using the 'deep-burn concept', or 'inert matrix fuels', especially in the form of coated particles in gas cooled reactor systems. There is also considerable global interest in developing 'nuclear hydrogen' energy systems using high temperature gas cooled reactors. Apart from these developments, the value of preserving the large technology base developed in Germany, the United Kingdom and the United States of America, as well as information developed in other countries, has also been a subject of interest to the IAEA. At the second annual meeting of the 'technical working group on nuclear fuel cycles options and spent fuel management' (TWG-NFCO), held in Vienna from 28-30 May 2003, it was recommended to hold a technical meeting on Current Status and Future Prospects of Gas Cooled Reactor Fuels. The meeting should cover the technological progress that has been made in the last three years and plan future fabrication and qualification facilities for GCR/HTR fuel. TWG-NFCO considered it timely that this progress should be presented and discussed in the interested community. Recognizing the numerous activities being pursued in many Member States, the IAEA convened the technical meeting on this topic in June 2004 in Vienna. Consequently, an update meeting was held in June 2005, which was hosted by the Kharkov Institute of Physics and Technology of Ukraine to review and integrate the latest developments. This publication combines the results of the technical meeting of June 2004 and the meeting of June 2005. The proceedings presented here contain 25 in depth papers on the

  1. Nuclear powerplant with closed gas-cooling circuit

    International Nuclear Information System (INIS)

    Haferkamp, D.; Hodzic, A.; Winter, U.

    1976-01-01

    Disclosed is a nuclear power plant comprising a pressure-tight safety vessel surrounding the entire plant, an inner vessel of reinforced concrete, a high-temperature reactor contained in the inner vessel, a gas turbine assembly having a turbine and a high- and low-pressure compressor located in a horizontally oriented chamber below the reactor, a plurality of heat exchange units positioned in a plurality of vertically oriented pods spaced radially symmetrically about the reactor and suitable conduits for carrying the reactive gas between the system components. The conduits are arranged in generally horizontally and vertically oriented straight lines, and the conduits for carrying low-pressure gas comprise a horizontal system positioned beneath the turbine assembly having a plurality of coaxial connecting tubes, collectors and distributors as well as normal conduits, so that high pressure gas flows in the internal passage and low-pressure gas flows in the outer passage. 22 claims, 7 figures

  2. Gas fired advanced turbine system

    Science.gov (United States)

    Lecren, R. T.; White, D. J.

    The basic concept thus derived from the Ericsson cycle is an intercooled, recuperated, and reheated gas turbine. Theoretical performance analyses, however, showed that reheat at high turbine rotor inlet temperatures (TRIT) did not provide significant efficiency gains and that the 50 percent efficiency goal could be met without reheat. Based upon these findings, the engine concept adopted as a starting point for the gas-fired advanced turbine system is an intercooled, recuperated (ICR) gas turbine. It was found that, at inlet temperatures greater than 2450 F, the thermal efficiency could be maintained above 50%, provided that the turbine cooling flows could be reduced to 7% of the main air flow or lower. This dual and conflicting requirement of increased temperatures and reduced cooling will probably force the abandonment of traditional air cooled turbine parts. Thus, the use of either ceramic materials or non-air cooling fluids has to be considered for the turbine nozzle guide vanes and turbine blades. The use of ceramic components for the proposed engine system is generally preferred because of the potential growth to higher temperatures that is available with such materials.

  3. Gas Cooled Fast Reactors: Recent advances and prospects

    International Nuclear Information System (INIS)

    Poette, C.; Guedeney, P.; Stainsby, R.; Mikityuk, K.; Knol, S.

    2013-01-01

    Gas Cooled Fast Reactors: Conclusion - GFR: an attractive longer term option allowing to combine Fast spectrum & Helium coolant benefits; • Innovative SiC fuel cladding solutions were found; • A first design confirming the encouraging potential of the reactor system Design improvements are nevertheless recommended and interesting tracks have been identified (core & system design, DHR system); • The GFR requires large R&D needs to confirm its potential (fuel & core materials, specific Helium technology); • ALLEGRO prototype studies are the first step and are drawing the R&D priorities

  4. Efficiency and cost advantages of an advanced-technology nuclear electrolytic hydrogen-energy production facility

    Science.gov (United States)

    Donakowski, T. D.; Escher, W. J. D.; Gregory, D. P.

    1977-01-01

    The concept of an advanced-technology (viz., 1985 technology) nuclear-electrolytic water electrolysis facility was assessed for hydrogen production cost and efficiency expectations. The facility integrates (1) a high-temperature gas-cooled nuclear reactor (HTGR) operating a binary work cycle, (2) direct-current (d-c) electricity generation via acyclic generators, and (3) high-current-density, high-pressure electrolyzers using a solid polymer electrolyte (SPE). All subsystems are close-coupled and optimally interfaced for hydrogen production alone (i.e., without separate production of electrical power). Pipeline-pressure hydrogen and oxygen are produced at 6900 kPa (1000 psi). We found that this advanced facility would produce hydrogen at costs that were approximately half those associated with contemporary-technology nuclear electrolysis: $5.36 versus $10.86/million Btu, respectively. The nuclear-heat-to-hydrogen-energy conversion efficiency for the advanced system was estimated as 43%, versus 25% for the contemporary system.

  5. A modeling and control approach to advanced nuclear power plants with gas turbines

    International Nuclear Information System (INIS)

    Ablay, Günyaz

    2013-01-01

    Highlights: • Load frequency control strategies in nuclear plants are researched. • Nuclear reactor-centered control system may not be suitable for load control. • Local unit controllers improve stability and overall time constant. • Coolant loops in nuclear plants should be controlled locally. - Abstract: Advanced nuclear power plants are currently being proposed with a number of various designs. However, there is a lack of modeling and control strategies to deal with load following operations. This research investigates a possible modeling approach and load following control strategy for gas turbine nuclear power plants in order to provide an assessment way to the concept designs. A load frequency control strategy and average temperature control mechanism are studied to get load following nuclear power plants. The suitability of the control strategies and concept designs are assessed through linear stability analysis methods. Numerical results are presented on an advanced molten salt reactor concept as an example nuclear power plant system to demonstrate the validity and effectiveness of the proposed modeling and load following control strategies

  6. Medium-size high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Peinado, C.O.; Koutz, S.L.

    1980-08-01

    This report summarizes high-temperature gas-cooled reactor (HTGR) experience for the 40-MW(e) Peach Bottom Nuclear Generating Station of Philadelphia Electric Company and the 330-MW(e) Fort St. Vrain Nuclear Generating Station of the Public Service Company of Colorado. Both reactors are graphite moderated and helium cooled, operating at approx. 760 0 C (1400 0 F) and using the uranium/thorium fuel cycle. The plants have demonstrated the inherent safety characteristics, the low activation of components, and the high efficiency associated with the HTGR concept. This experience has been translated into the conceptual design of a medium-sized 1170-MW(t) HTGR for generation of 450 MW of electric power. The concept incorporates inherent HTGR safety characteristics [a multiply redundant prestressed concrete reactor vessel (PCRV), a graphite core, and an inert single-phase coolant] and engineered safety features

  7. High temperature gas-cooled reactor: gas turbine application study

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The high-temperature capability of the High-Temperature Gas-Cooled Reactor (HTGR) is a distinguishing characteristic which has long been recognized as significant both within the US and within foreign nuclear energy programs. This high-temperature capability of the HTGR concept leads to increased efficiency in conventional applications and, in addition, makes possible a number of unique applications in both electrical generation and industrial process heat. In particular, coupling the HTGR nuclear heat source to the Brayton (gas turbine) Cycle offers significant potential benefits to operating utilities. This HTGR-GT Application Study documents the effort to evaluate the appropriateness of the HTGR-GT as an HTGR Lead Project. The scope of this effort included evaluation of the HTGR-GT technology, evaluation of potential HTGR-GT markets, assessment of the economics of commercial HTGR-GT plants, and evaluation of the program and expenditures necessary to establish HTGR-GT technology through the completion of the Lead Project.

  8. High temperature gas-cooled reactor: gas turbine application study

    International Nuclear Information System (INIS)

    1980-12-01

    The high-temperature capability of the High-Temperature Gas-Cooled Reactor (HTGR) is a distinguishing characteristic which has long been recognized as significant both within the US and within foreign nuclear energy programs. This high-temperature capability of the HTGR concept leads to increased efficiency in conventional applications and, in addition, makes possible a number of unique applications in both electrical generation and industrial process heat. In particular, coupling the HTGR nuclear heat source to the Brayton (gas turbine) Cycle offers significant potential benefits to operating utilities. This HTGR-GT Application Study documents the effort to evaluate the appropriateness of the HTGR-GT as an HTGR Lead Project. The scope of this effort included evaluation of the HTGR-GT technology, evaluation of potential HTGR-GT markets, assessment of the economics of commercial HTGR-GT plants, and evaluation of the program and expenditures necessary to establish HTGR-GT technology through the completion of the Lead Project

  9. Processing of coke oven gas. Primary gas cooling

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, H [Otto (C.) und Co. G.m.b.H., Bochum (Germany, F.R.)

    1976-11-01

    The primary cooler is an indispensable part of all byproduct processing plants. Its purpose is to cool the raw gas from the coke oven battery and to remove the accompanying water vapor. The greater part of the cooling capacity is utilized for the condensation of water vapor and only a small capacity is needed for the gas cooling. Impurities in the gas, like naphthalene, tar and solid particles, necessitate a special design in view of the inclination to dirt accumulation. Standard types of direct and indirect primary gas coolers are described, with a discussion of their advantages and disadvantages.

  10. Preliminary study on helium turbomachine for high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Chen Yihua; Wang Jie; Zhang Zuoyi

    2003-01-01

    In the high temperature gas-cooled reactor (HTGR), gas turbine cycle is a new concept in the field of nuclear power. It combines two technologies of HTGR and gas turbine cycle, which represent the state-of-the-art technologies of nuclear power and fossil fuel generation respectively. This approach is expected to improve safety and economy of nuclear power plant significantly. So it is a potential scheme with competitiveness. The heat-recuperated cycle is the main stream of gas turbine cycle. In this cycle, the work medium is helium, which is very different from the air, so that the design features of the helium turbomachine and combustion gas turbomachine are different. The paper shows the basic design consideration for the heat-recuperated cycle as well as helium turbomachine and highlights its main design features compared with combustion gas turbomachine

  11. Power Conversion Study for High Temperature Gas-Cooled Reactors

    International Nuclear Information System (INIS)

    Chang Oh; Richard Moore; Robert Barner

    2005-01-01

    The Idaho National Laboratory (INL) is investigating a Brayton cycle efficiency improvement on a high temperature gas-cooled reactor (HTGR) as part of Generation-IV nuclear engineering research initiative. There are some technical issues to be resolved before the selection of the final design of the high temperature gas cooled reactor, called as a Next Generation Nuclear Plant (NGNP), which is supposed to be built at the INEEL by year 2017. The technical issues are the selection of the working fluid, direct vs. indirect cycle, power cycle type, the optimized design in terms of a number of intercoolers, and others. In this paper, we investigated a number of working fluids for the power conversion loop, direct versus indirect cycle, the effect of intercoolers, and other thermal hydraulics issues. However, in this paper, we present part of the results we have obtained. HYSYS computer code was used along with a computer model developed using Visual Basic computer language

  12. Cooling facility of nuclear power plant

    International Nuclear Information System (INIS)

    Arai, Kenji; Nagasaki, Hideo.

    1992-01-01

    In a cooling device of a nuclear power plant, an exhaust pipe for an incondensible gas is branched. One of the branched exhaust pipes is opened in a pressure suppression pool water in a suppression chamber containing pool water and the other is opened at a lower portion of a dry well incorporating a pressure vessel. In a state where the pressure in the dry well is higher than that in the suppression chamber, an off-gas is exhausted effectively by way of the exhaustion pipe in communication with the suppression chamber. In a state where there is no difference between the pressures and the opening end of the exhaustion pipe in communication with the suppression chamber is sealed with water, off-gas is exhausted by way of the exhaustion pipe in communication with the lower portion of the dry well. Then, since the incondensible gas in a heat transfer pipe is not accumulated, after-heat can be removed efficiently. Satisfactory cooling is maintained even after the coincidence of the pressures in the dry well with that in the suppression chamber, to decrease a pressure in a reactor container. (N.H.)

  13. Natural Circulation Phenomena and Modelling for Advanced Water Cooled Reactors

    International Nuclear Information System (INIS)

    2012-03-01

    The role of natural circulation in advanced water cooled reactor design has been extended with the adoption of passive safety systems. Some designs utilize natural circulation to remove core heat during normal operation. Most passive safety systems used in evolutionary and innovative water cooled reactor designs are driven by natural circulation. The use of passive systems based on natural circulation can eliminate the costs associated with the installation, maintenance and operation of active systems that require multiple pumps with independent and redundant electric power supplies. However, considering the weak driving forces of passive systems based on natural circulation, careful design and analysis methods must be employed to ensure that the systems perform their intended functions. Several IAEA Member States with advanced reactor development programmes are actively conducting investigations of natural circulation to support the development of advanced water cooled reactor designs with passive safety systems. To foster international collaboration on the enabling technology of passive systems that utilize natural circulation, in 2004 the IAEA initiated a coordinated research project (CRP) on Natural Circulation Phenomena, Modelling and Reliability of Passive Systems that Utilize Natural Circulation. Three reports were published within the framework of this CRP. The first report (IAEA-TECDOC-1474) contains the material developed for the first IAEA training course on natural circulation in water cooled nuclear power plants. The second report (IAEA-TECDOC-1624) describes passive safety systems in a wide range of advanced water cooled nuclear power plant designs, with the goal of gaining insights into system design, operation and reliability. This third, and last, report summarizes the research studies completed by participating institutes during the CRP period.

  14. Nuclear design for high temperature gas cooled reactor (GTHTR300C) using MOX fuel

    International Nuclear Information System (INIS)

    Mouri, Tomoaki; Kunitomi, Kazuhiko

    2008-01-01

    A design study of the hydrogen cogeneration high temperature gas cooled reactor (GTHTR300C) that can produce both electricity and hydrogen has been carried out in Japan Atomic Energy Agency. The GTHTR300C is the system with thermal power of 600MW and reactor outlet temperature of 950degC, which is expected to supply the hydrogen to fuel cell vehicles after 2020s. In future, the full deployment of fast reactor cycle without natural uranium will demand the use of Mixed-Oxide (MOX) fuels in the GTHTR300C. Therefore, a nuclear design was performed to confirm the feasibility of the reactor core using MOX fuels. The designed reactor core has high performance and meets safety requirements. In this paper, the outline of the GTHTR300C and the nuclear design of the reactor core using MOX fuels are described. (author)

  15. Progress in the development of tooling and dismantling methodologies for the Windscale advanced gas cooled reactor (WAGR)

    International Nuclear Information System (INIS)

    Cross, M.T.; Wareing, M.I.; Dixon, C.

    1998-01-01

    Decommissioning of the Windscale Advanced Gas-Cooled Reactor (WAGR) is a major UK reactor decommissioning project co-funded by the UK Government, the European Commission and Magnox Electric. WAGR was a CO 2 cooled, graphite moderated reactor which served as a test bed for the development of Advanced Gas-Cooled Reactor technology in the UK. It operated from 1963 until shutdown in 1981. AEA Technology plc are currently the Managing Agents on behalf of UKAEA for the WAGR decommissioning project and are responsible for the co-ordination of the project up to the point when the contents of the reactor core and associated radioactive materials are removed and either disposed of or packaged for disposal at some time in the future. Decommissioning has progressed to the point where the reactor has been dismantled down to the level of the hot gas collection manifold with the removal of the top biological shield, the refuelling standpipes and the top section of the reactor pressure vessel. The 4 heat exchangers have also been removed and committed to shallow land burial. This paper describes the work carried out by AEA Technology under separate contracts of UKAEA in developing some of the equipment and deployment methods for the next phase of active operations required in preparation for the dismantling of the core structure. Most recent work has concentrated on the development of specialist tooling for removal of items of operational waste stored within the reactor core, equipment for cutting and removal of the highly radioactive stainless steel 'loop' pressure tubes, diamond wire cutting equipment for sectioning large diameter pipework, and equipment for dismantling the reactor neutron shield. The paper emphasises the process of adaptation and extension of existing technologies for cost-effective application in the decommissioning environment, the need for adequate forward planning of decommissioning methodologies together with large-scale 'mock-up' testing of equipment to

  16. Study on the possibility of supercritical fluid extraction for reprocessing of spent nuclear fuel from high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Duan Wuhua; Zhu Liyang; Zhu Yongjun; Xu Jingming

    2011-01-01

    International interest in high temperature gas-cooled reactor (HTGR) has been increasing in recent years. It is important to study on reprocessing of spent nuclear fuel from HTGR for recovery of nuclear resource and reduction of nuclear waste. Treatment of UO 2 pellets for preparing fuel elements of the 10 MW high temperature gas-cooled reactor (HTR-10) using supercritical fluid extraction was investigated. UO 2 pellets are difficult to be directly dissolved and extracted with TBP-HNO 3 complex in supercritical CO 2 (SC-CO 2 ), and the extraction efficiency is only about 7% under experimental conditions. UO 2 pellets are also difficult to be converted completely into nitrate with N 2 O 4 . When UO 2 pellets break spontaneously into U 3 O 8 powders with particle size below 100 μm under O 2 flow and 600degc, the extraction efficiency of U 3 O 8 powders with TBP-HNO 3 complex in SC-CO 2 can reach more than 98%. U 3 O 8 powders are easy to be completely converted into nitrate with N 2 O 4 . The extraction efficiency of the nitrate product with TBP in SC-CO 2 can reach more than 99%. So it has a potential prospect that application of supercritical fluid extraction in reprocessing of spent nuclear fuel from HTGR. (author)

  17. Development of a nuclear steam generator system for gas-cooled reactors for application in oil sands extraction

    International Nuclear Information System (INIS)

    Smith, J.; Hart, R.; Lazic, L.

    2009-01-01

    Canada has vast energy reserves in the Oil Sands regions of Alberta and Saskatchewan. Present extraction technologies, such as strip mining, where oil deposits are close to the surface, and Steam Assisted Gravity Drainage (SAGD) technologies for deeper deposits consume significant amounts of energy to produce the bitumen and upgraded synthetic crude oil. Studies have been performed to assess the feasibility of using nuclear reactors as primary energy sources to produce, in particular the steam required for the SAGD deeper deposit extraction process. Presently available reactors fall short of meeting the requirements, in two areas: the steam produced in a 'standard' reactor is too low in pressure and temperature for the SAGD process. Requirements can be for steam as high as 12MPa pressure with superheat; and, 'standard' reactors are too large in total output. Ideally, reactors of output in the range of 400 to 500 MWth, in modules are better suited to Oil Sands applications. The above two requirements can be met using gas-cooled reactors. Generally, newer generation gas-cooled reactors have been designed for power generation, using Brayton Cycle gas turbines run directly from the heated reactor coolant (helium). Where secondary steam is required, heat recovery steam generators have been used. In this paper, a steam generating system is described which uses the high temperature helium from the reactor directly for steam generation purposes, with sufficient quantities of steam produced to allow for SAGD steam injection, power generation using a steam turbine-generator, and with potential secondary energy supply for other purposes such as hydrogen production for upgrading, and environmental remediation processes. It is assumed that the reactors will be in one central location, run by a utility type organization, providing process steam and electricity to surrounding Oil Sands projects, so steam produced is at very high pressure (12 MPa), with superheat, in order to

  18. Gas-cooled reactor application for a university campus

    International Nuclear Information System (INIS)

    Colak, Ue.; Kadiroghlu, O.K.; Soekmen, C.N.; Schmitt, H.

    1991-01-01

    Large urban areas with unfavourable topographic and meteorological conditions suffer severe air pollution during the winter months. Use of low grade lignites, imported higher quality coal or imported fuel oil are the sources of air pollution in the form of sulphur dioxide, fly ash and soot. Large housing complexes or old and historical locations within the city are in need of pollution free centralized district heating systems. Natural gas imported from the Soviet Union is a solution for this problem. Lack of gas distribution network for high pressure gas within the city is the main bottle-neck for the heating systems utilizing natural gas. Concern of the safety of flammable high pressure gas circulating within the city is another drawback for the natural gas heating systems. Nuclear district heating is an environmentally viable option worth looking into it. Localized urban nuclear heating is an interesting solution for large urban areas with old and historical character. The results of a feasibility study on the HGR application for the Hacettepe University presented here, summarizes the concept of gas-cooled heating reactors specially designed for urban centers. The inherently safe characteristics of the pebble bed heating reactor makes localized urban nuclear heating a viable alternative to other heat sources. An economical analysis of various heat sources with equal power levels is done for the Beytepe campus of Hacettepe University in Ankara. Under special boundary conditions, the price for heat generation can be much lower for nuclear heating with GHR 20 than for hard coal or fuel oil. It is also possible that if the price escalation rate for natural gas exceeds 3%, then nuclear heating with GHR can be more competitive. It is concluded that the nuclear heating of Beytepe campus with a GHR 20 is feasible and economical. (author) 3 figs., 5 refs

  19. Advanced nuclear reactor types and technologies

    International Nuclear Information System (INIS)

    Ignatiev, V.; Devell, L.

    1995-01-01

    The document is a comprehensive world-wide catalogue of concepts and designs of advanced fission reactor types and fuel cycle technologies. Two parts have been prepared: Part 1 Reactors for Power Production and Part 2 Heating and Other Reactor Applications. Part 3, which will cover advanced waste management technology, reprocessing and disposal for different nuclear fission options is planned for compilation during 1995. The catalogue was prepared according to a special format which briefly presents the project title, technical approach, development status, application of the technology, reactor type, power output, and organization which developed these designs. Part 1 and 2 cover water cooled reactors, liquid metal fast reactors, gas-cooled reactors and molten salt reactors. Subcritical accelerator-driven systems are also considered. Various reactor applications as power production, heat generation, ship propulsion, space power sources and transmutation of such waste are included. Each project is described within a few pages with the main features of an actual design using a table with main technical data and figure as well as references for additional information. Each chapter starts with an introduction which briefly describes main trends and approaches in this field. Explanations of terms and abbreviations are provided in a glossary

  20. Advanced nuclear reactor types and technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ignatiev, V [ed.; Feinberg, O; Morozov, A [Russian Research Centre ` Kurchatov Institute` , Moscow (Russian Federation); Devell, L [Studsvik Eco and Safety AB, Nykoeping (Sweden)

    1995-07-01

    The document is a comprehensive world-wide catalogue of concepts and designs of advanced fission reactor types and fuel cycle technologies. Two parts have been prepared: Part 1 Reactors for Power Production and Part 2 Heating and Other Reactor Applications. Part 3, which will cover advanced waste management technology, reprocessing and disposal for different nuclear fission options is planned for compilation during 1995. The catalogue was prepared according to a special format which briefly presents the project title, technical approach, development status, application of the technology, reactor type, power output, and organization which developed these designs. Part 1 and 2 cover water cooled reactors, liquid metal fast reactors, gas-cooled reactors and molten salt reactors. Subcritical accelerator-driven systems are also considered. Various reactor applications as power production, heat generation, ship propulsion, space power sources and transmutation of such waste are included. Each project is described within a few pages with the main features of an actual design using a table with main technical data and figure as well as references for additional information. Each chapter starts with an introduction which briefly describes main trends and approaches in this field. Explanations of terms and abbreviations are provided in a glossary.

  1. Advanced design nuclear power plants: Competitive, economical electricity. An analysis of the cost of electricity from coal, gas and nuclear power plants

    International Nuclear Information System (INIS)

    1992-06-01

    This report presents an updated analysis of the projected cost of electricity from new baseload power plants beginning operation around the year 2000. Included in the study are: (1) advanced-design, standardized nuclear power plants; (2) low emissions coal-fired power plants; (3) gasified coal-fired power plants; and (4) natural gas-fired power plants. This analysis shows that electricity from advanced-design, standardized nuclear power plants will be economically competitive with all other baseload electric generating system alternatives. This does not mean that any one source of electric power is always preferable to another. Rather, what this analysis indicates is that, as utilities and others begin planning for future baseload power plants, advanced-design nuclear plants should be considered an economically viable option to be included in their detailed studies of alternatives. Even with aggressive and successful conservation, efficiency and demand-side management programs, some new baseload electric supply will be needed during the 1990s and into the future. The baseload generating plants required in the 1990s are currently being designed and constructed. For those required shortly after 2000, the planning and alternatives assessment process must start now. It takes up to ten years to plan, design, license and construct a new coal-fired or nuclear fueled baseload electric generating plant and about six years for a natural gas-fired plant. This study indicates that for 600-megawatt blocks of capacity, advanced-design nuclear plants could supply electricity at an average of 4.5 cents per kilowatt-hour versus 4.8 cents per kilowatt-hour for an advanced pulverized-coal plant, 5.0 cents per kilowatt-hour for a gasified-coal combined cycle plant, and 4.3 cents per kilowatt-hour for a gas-fired combined cycle combustion turbine plant

  2. Heating up the gas cooling market

    International Nuclear Information System (INIS)

    Watt, G.

    2001-01-01

    Gas cooling is an exciting technology with a potentially bright future. It comprises the production of cooling (and heating) in buildings and industry, by substituting environmentally-friendlier natural gas or LPG over predominantly coal-fired electricity in air conditioning equipment. There are currently four established technologies using gas to provide cooling energy or conditioned air. These are: absorption, both direct gas-fired and utilising hot water or steam; gas engine driven vapour compression (GED); cogeneration, with absorption cooling driven by recovered heat; and desiccant systems. The emergence of gas cooling technologies has been, and remains, one of evolution rather than revolution. However, further development of the technology has had a revolutionary effect on the performance, reliability and consumer acceptability of gas cooling products. Developments from world-renowned manufacturers such as York, Hitachi, Robur and Thermax have produced a range of absorption equipment variously offering: the use of 100 percent environmentally-friendly refrigerants, with zero global warming potential; the ideal utilisation of waste heat from cogeneration systems; a reduction in electrical distribution and stand-by generation capacity; long product life expectancy; far less noise and vibration; performance efficiency maintained down to about 20 percent of load capacity; and highly automated and low-cost maintenance. It is expected that hybrid systems, that is a mixture of gas and electric cooling technologies, will dominate the future market, reflecting the uncertainty in the electricity market and the prospects of stable future gas prices

  3. Design codes for gas cooled reactor components

    International Nuclear Information System (INIS)

    1990-12-01

    High-temperature gas-cooled reactor (HTGR) plants have been under development for about 30 years and experimental and prototype plants have been operated. The main line of development has been electricity generation based on the steam cycle. In addition the potential for high primary coolant temperature has resulted in research and development programmes for advanced applications including the direct cycle gas turbine and process heat applications. In order to compare results of the design techniques of various countries for high temperature reactor components, the IAEA established a Co-ordinated Research Programme (CRP) on Design Codes for Gas-Cooled Reactor Components. The Federal Republic of Germany, Japan, Switzerland and the USSR participated in this Co-ordinated Research Programme. Within the frame of this CRP a benchmark problem was established for the design of the hot steam header of the steam generator of an HTGR for electricity generation. This report presents the results of that effort. The publication also contains 5 reports presented by the participants. A separate abstract was prepared for each of these reports. Refs, figs and tabs

  4. History of nuclear cooling

    International Nuclear Information System (INIS)

    Kuerti, M.

    1998-01-01

    The historical development of producing extreme low temperatures by magnetic techniques is overviewed. With electron spin methods, temperatures down to 1 mK can be achieved. With nuclear spins theoretically 10 -9 K can be produced. The idea of cooling with nuclear demagnetization is not new, it is a logical extension of the concept of electron cooling. Using nuclear demagnetization experiment with 3 T water cooled solenoids 3 mK could be produced. The cold record is held by Olli Lounasmaa in Helsinki with temperatures below 10 -9 K. (R.P.)

  5. Nuclear reactor coolant and cover gas system

    International Nuclear Information System (INIS)

    George, J.A.; Redding, A.H.; Tower, S.N.

    1976-01-01

    A core cooling system is disclosed for a nuclear reactor of the type utilizing a liquid coolant with a cover gas above free surfaces of the coolant. The disclosed system provides for a large inventory of reactor coolant and a balanced low pressure cover gas arrangement. A flow restricting device disposed within a reactor vessel achieves a pressure of the cover gas in the reactor vessel lower than the pressure of the reactor coolant in the vessel. The low gas pressure is maintained over all free surfaces of the coolant in the cooling system including a coolant reservoir tank. Reactor coolant stored in the reservoir tank allows for the large reactor coolant inventory provided by the invention

  6. Nuclear power reactors

    International Nuclear Information System (INIS)

    1982-11-01

    After an introduction and general explanation of nuclear power the following reactor types are described: magnox thermal reactor; advanced gas-cooled reactor (AGR); pressurised water reactor (PWR); fast reactors (sodium cooled); boiling water reactor (BWR); CANDU thermal reactor; steam generating heavy water reactor (SGHWR); high temperature reactor (HTR); Leningrad (RMBK) type water-cooled graphite moderated reactor. (U.K.)

  7. Periodic reviews of structural integrity of gas-cooled reactors

    International Nuclear Information System (INIS)

    Banks, P.J.; Stokoe, T.Y.; Thomas, D.L.

    1995-01-01

    Nuclear Electric operates 12 gas-cooled reactor power stations which have been in service for between 5 and 30 years. Periodically, comprehensive reviews of the safety cases are carried out for each station. The approach followed in these reviews in respect of structural integrity is outlined with the use of illustrative examples. (author)

  8. Survey on Cooled-Vessel Designs in High Temperature Gas-Cooled Reactors

    International Nuclear Information System (INIS)

    Kim, Min-Hwan; Lee, Won-Jae

    2006-01-01

    The core outlet temperature of the coolant in the high temperature gas-cooled reactors (HTGR) has been increased to improve the overall efficiency of their electricity generation by using the Brayton cycle or their nuclear hydrogen production by using thermo-chemical processes. The increase of the outlet temperature accompanies an increase of the coolant inlet temperature. A high coolant inlet temperature results in an increase of the reactor pressure vessel (RPV) operation temperature. The conventional steels, proven vessel material in light water reactors, cannot be used as materials for the RPV in the elevated temperatures which necessitate its design to account for the creep effects. Some ferritic or martensitic steels like 2 1/4Cr-1Mo and 9Cr-1Mo-V are very well established creep resistant materials for a temperature range of 400 to 550 C. Although these materials have been used in a chemical plant, there is limited experience with using these materials in nuclear reactors. Even though the 2 1/4Cr-1Mo steel was used to manufacture the RPV for HTR-10 of Japan Atomic Energy Agency(JAEA), a large RPV has not been manufactured by using this material or 9Cr-1Mo-V steel. Due to not only its difficulties in manufacturing but also its high cost, the JAEA determined that they would exclude these materials from the GTHTR design. For the above reasons, KAERI has been considering a cooled-vessel design as an option for the RPV design of a NHDD plant (Nuclear Hydrogen Development and Demonstration). In this study, we surveyed several HTGRs, which adopt the cooled-vessel concept for their RPV design, and discussed their design characteristics. The survey results in design considerations for the NHDD cooled-vessel design

  9. Heat transport and afterheat removal for gas cooled reactors under accident conditions

    International Nuclear Information System (INIS)

    2001-01-01

    The Co-ordinated Research Project (CRP) on Heat Transport and Afterheat Removal for Gas Cooled Reactors Under Accident Conditions was organized within the framework of the International Working Group on Gas Cooled Reactors (IWGGCR). This International Working Group serves as a forum for exchange of information on national programmes, provides advice to the IAEA on international co-operative activities in advanced technologies of gas cooled reactors (GCRs) and supports the conduct of these activities. Advanced GCR designs currently being developed are predicted to achieve a high degree of safety through reliance on inherent safety features. Such design features should permit the technical demonstration of exceptional public protection with significantly reduced emergency planning requirements. For advanced GCRs, this predicted high degree of safety largely derives from the ability of the ceramic coated fuel particles to retain the fission products under normal and accident conditions, the safe neutron physics behaviour of the core, the chemical stability of the core and the ability of the design to dissipate decay heat by natural heat transport mechanisms without reaching excessive temperatures. Prior to licensing and commercial deployment of advanced GCRs, these features must first be demonstrated under experimental conditions representing realistic reactor conditions, and the methods used to predict the performance of the fuel and reactor must be validated against these experimental data. Within this CRP, the participants addressed the inherent mechanisms for removal of decay heat from GCRs under accident conditions. The objective of this CRP was to establish sufficient experimental data at realistic conditions and validated analytical tools to confirm the predicted safe thermal response of advance gas cooled reactors during accidents. The scope includes experimental and analytical investigations of heat transport by natural convection conduction and thermal

  10. Experimental facility with two-phase flow and with high concentration of non-condensable gases for research and development of emergency cooling system of advanced nuclear reactors

    International Nuclear Information System (INIS)

    Macedo, Luiz Alberto; Baptista Filho, Benedito Dias

    2006-01-01

    The development of emergency cooling passive systems of advanced nuclear reactors requires the research of some relative processes to natural circulation, in two-phase flow conditions involving condensation processes in the presence of non-condensable gases. This work describes the main characteristics of the experimental facility called Bancada de Circulacao Natural (BCN), designed for natural circulation experiments in a system with a hot source, electric heater, a cold source, heat exchanger, operating with two-phase flow and with high concentration of noncondensable gas, air. The operational tests, the data acquisition system and the first experimental results in natural circulation are presented. The experiments are transitory in natural circulation considering power steps. The distribution of temperatures and the behavior of the flow and of the pressure are analyzed. The experimental facility, the instrumentation and the data acquisition system demonstrated to be adapted for the purposes of research of emergency cooling passive systems, operating with two-phase flow and with high concentration of noncondensable gases. (author)

  11. Natural gas cooling: Part of the solution

    International Nuclear Information System (INIS)

    Jones, D.R.

    1992-01-01

    This paper reviews and compares the efficiencies and performance of a number of gas cooling systems with a comparable electric cooling system. The results show that gas cooling systems compare favorably with the electric equivalents, offering a new dimension to air conditioning and refrigeration systems. The paper goes on to compare the air quality benefits of natural gas to coal or oil-burning fuel systems which are used to generate the electricity for the electric cooling systems. Finally, the paper discusses the regulatory bias that the author feels exists towards the use of natural gas and the need for modification in the existing regulations to provide a 'level-playing field' for the gas cooling industry

  12. Cooling process in separation devices of krypton gas

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, S; Sugimoto, K

    1975-06-11

    To prevent entry of impurities into purified gases and to detect leaks of heat exchanger in a separation and recovering device of krypton gas by means of liquefaction and distillation, an intermediate refrigerant having the same or slightly higher boiling point than that of gas to be cooled is used between the gas to be cooled (process gas) and refrigerant (nitrogen), and the pressure of the gas to be cooled is controlled to have a pressure higher than the intermediate refrigerant to cool the gas to be cooled.

  13. Study of the oxidation mechanisms between impurities and surfaces applied to the future gas-cooled nuclear reactors

    International Nuclear Information System (INIS)

    Duval, A.

    2010-01-01

    Inconel 617, main candidate for the heat exchangers of the gas-cooled next generation of nuclear reactors has been investigated. Two different problems occurring in the cooling system splits the study into two parts. Oxidizing impurities contained in the coolant can cause severe corrosion at 850 C. Radioactive impurities, coming from the fission reaction of the core can, in another hand contaminate the cooling loop and cause radioprotection problem for the maintenance and dismantling operations. Firstly, oxidizing gas partial pressure influence on oxidation of IN 617 at 850 C was investigated varying oxygen and water vapour partial pressure between 1.10 -5 mbar and 200 mbar. Oxide layers were characterized using XPS, SEM, EDX, GD-OES, XRD. Influence of partial pressure on layers structure and composition was determined. Effect of water vapour and partial pressure on growth mechanisms were also investigated. The second part of this study is focused on diffusion of Ag, stable isotope of Ag-110m in IN617 alloy and in the oxide layer forming at its surface at 850 C. Concentration profiles were obtained by GD-OES calibrated analysis. Diffusion coefficient could be obtained from these diffusion profiles: volume diffusion and grain boundary diffusion coefficients for the diffusion in the alloy, and an apparent diffusion coefficient for the diffusion in the oxide, due to the porosity of the structure. (author) [fr

  14. Status of advanced nuclear reactor development in Korea

    International Nuclear Information System (INIS)

    Kim, H.R.; Kim, K.K.; Kim, Y.W.; Joo, H.K.

    2014-01-01

    The Korean nuclear industry is facing new challenges to solve the spent fuel storage problem and meet the needs to diversify the application areas of nuclear energy. In order to provide solutions to these challenges, the Korea Atomic Energy Research Institute (KAERI) has been developing advanced nuclear reactors including a Sodium-cooled Fast Reactor, Very High Temperature Gas cooled Reactor (VHTR), and System-integrated Modular Advanced Reactor (SMART) with substantially improved safety, economics, and environment-friendly features. A fast reactor system is one of the most promising options for a reduction of radioactive wastes. The long-term plan for Advanced SFR development in conjunction with the pyro-process was authorized by the Korean Atomic Energy Commission in 2008. The development milestone includes specific design approval of a prototype SFR by 2020, and the construction of a prototype SFR by 2028. KAERI has been carrying out the preliminary design of a 150MWe SFR prototype plant system since 2012. The development of advanced SFR technologies and the basic key technologies necessary for the prototype SFR are also being carried out. By virtue of high-temperature heat, a VHTR has diverse applications including hydrogen production. KAERI launched a nuclear hydrogen project using a VHTR in 2006, which focused on four basic technologies: the development of design tools, very high-temperature experimental technology, TRISO fuel fabrication, and Sulfur-iodine thermo-chemical hydrogen production technology. The technology development project will be continued until 2017. A conceptual reactor design study was started in 2012 as collaboration between industry and government to enhance the early-launching of the nuclear hydrogen development and demonstration (NHDD) project. The goal of the NHDD project is to design and build a nuclear hydrogen demonstration system by 2030. KAERI has developed SMART which is a small-sized advanced integral reactor with a rated

  15. Status of and prospects for gas-cooled reactors

    International Nuclear Information System (INIS)

    1984-01-01

    The IAEA International Working Group on Gas-Cooled Reactors (IWGGCR) (see Annex I), which was established in 1978, recommended to the Agency that a report be prepared in order to provide an up-to-date summary of gas-cooled reactor technology. The present Technical Report is based mainly on submissions of Member Countries of the IWGGCR and consists of four main sections. Beside some general information about the gas-cooled reactor line, section 1 contains a description of the incentives for the development and deployment of gas-cooled reactors in various Agency Member States. These include both electricity generation and process steam and process heat production for various branches of industry. The historical development of gas-cooled reactors is reviewed in section 2. In this section information is provided on how, when and why gas-cooled reactors have been developed in various Agency Member States and, in addition, a detailed description of the different gas-cooled reactor lines is presented. Section 3 contains information about the technical status of gas-cooled reactors and their applications. Gas-cooled reactors that are under design or construction or in operation are listed and shortly described, together with an outlook for future reactor designs. In this section the various applications for gas-cooled reactors are described in detail. These include both electricity generation and process steam and process heat production. The last section (section 4) is entitled ''Special features of gas-cooled reactors'' and contains information about the technical performance, fuel utilization, safety characteristics and environmental impact, such as radiation exposure and heat rejection

  16. Nuclear combined cycle gas turbines for variable electricity and heat using firebrick heat storage and low-carbon fuels

    International Nuclear Information System (INIS)

    Forsberg, Charles; Peterson, Per F.; McDaniel, Patrick; Bindra, Hitesh

    2017-01-01

    The world is transitioning to a low-carbon energy system. Variable electricity and industrial energy demands have been met with storable fossil fuels. The low-carbon energy sources (nuclear, wind and solar) are characterized by high-capital-costs and low-operating costs. High utilization is required to produce economic energy. Wind and solar are non-dispatchable; but, nuclear is the dispatchable energy source. Advanced combined cycle gas turbines with firebrick heat storage coupled to high-temperature reactors may enable economic variable electricity and heat production with constant full-power reactor output. Such systems efficiently couple to fluoride-salt-cooled high-temperature reactors (FHRs) with solid fuel and clean salt coolants, molten salt reactors (MSRs) with fuel dissolved in the salt coolant and salt-cooled fusion machines. Open Brayton combined cycles allow the use of natural gas, hydrogen, other fuels and firebrick heat storage for peak electricity production with incremental heat-to-electricity efficiencies from 66 to 70+% efficient. There are closed Brayton cycle options that use firebrick heat storage but these have not been investigated in any detail. Many of these cycles couple to high-temperature gas-cooled reactors (HTGRs). (author)

  17. Safety aspects of the Modular High-Temperature Gas-Cooled Reactor (MHTGR)

    International Nuclear Information System (INIS)

    Silady, F.A.; Millunzi, A.C.

    1989-08-01

    The Modular High-Temperature Gas-Cooled Reactor (MHTGR) is an advanced reactor concept under development through a cooperative program involving the US Government, the nuclear industry and the utilities. The design utilizes the basic high-temperature gas-cooled reactor (HTGR) features of ceramic fuel, helium coolant, and a graphite moderator. The qualitative top-level safety requirement is that the plant's operation not disturb the normal day-to-day activities of the public. The MHTGR safety response to events challenging the functions relied on to retain radionuclides within the coated fuel particles has been evaluated. A broad range of challenges to core heat removal have been examined which include a loss of helium pressure and a simultaneous loss of forced cooling of the core. The challenges to control of heat generation have considered not only the failure to insert the reactivity control systems, but the withdrawal of control rods. Finally, challenges to control chemical attack of the ceramic coated fuel have been considered, including catastrophic failure of the steam generator allowing water ingress or of the pressure vessels allowing air ingress. The plant's response to these extreme challenges is not dependent on operator action and the events considered encompass conceivable operator errors. In the same vein, reliance on radionuclide retention within the full particle and on passive features to perform a few key functions to maintain the fuel within acceptable conditions also reduced susceptibility to external events, site-specific events, and to acts of sabotage and terrorism. 4 refs., 14 figs., 1 tab

  18. Modular High Temperature Gas-Cooled Reactor Safety Basis and Approach

    Energy Technology Data Exchange (ETDEWEB)

    David Petti; Jim Kinsey; Dave Alberstein

    2014-01-01

    Various international efforts are underway to assess the safety of advanced nuclear reactor designs. For example, the International Atomic Energy Agency has recently held its first Consultancy Meeting on a new cooperative research program on high temperature gas-cooled reactor (HTGR) safety. Furthermore, the Generation IV International Forum Reactor Safety Working Group has recently developed a methodology, called the Integrated Safety Assessment Methodology, for use in Generation IV advanced reactor technology development, design, and design review. A risk and safety assessment white paper is under development with respect to the Very High Temperature Reactor to pilot the Integrated Safety Assessment Methodology and to demonstrate its validity and feasibility. To support such efforts, this information paper on the modular HTGR safety basis and approach has been prepared. The paper provides a summary level introduction to HTGR history, public safety objectives, inherent and passive safety features, radionuclide release barriers, functional safety approach, and risk-informed safety approach. The information in this paper is intended to further the understanding of the modular HTGR safety approach. The paper gives those involved in the assessment of advanced reactor designs an opportunity to assess an advanced design that has already received extensive review by regulatory authorities and to judge the utility of recently proposed new methods for advanced reactor safety assessment such as the Integrated Safety Assessment Methodology.

  19. Fuel performance and fission product behaviour in gas cooled reactors

    International Nuclear Information System (INIS)

    1997-11-01

    The Co-ordinated Research Programme (CRP) on Validation of Predictive Methods for Fuel and Fission Product Behaviour was organized within the frame of the International Working Group on Gas Cooled Reactors. This International Working Group serves as a forum for exchange of information on national programmes, provides advice to the IAEA on international co-operative activities in advanced technologies of gas cooled reactors (GCRs), and supports the conduct of these activities. The objectives of this CRP were to review and document the status of the experimental data base and of the predictive methods for GCR fuel performance and fission product behaviour; and to verify and validate methodologies for the prediction of fuel performance and fission product transport

  20. Advanced energy system with nuclear reactors as an energy source

    International Nuclear Information System (INIS)

    Kato, Y.; Ishizuka, T.; Nikitin, K.

    2007-01-01

    recovery system is also applicable to a fast reactor (FR) with a supercritical CO 2 gas turbine that achieves higher cycle efficiency than conventional sodium cooled FRs with steam turbines. The FR will eliminate problems of conventional FRs related to safety, plant maintenance, and construction costs. The FR consumes efficiently trans-uranium elements (TRU) produced in light water reactors as fuel and reduce long-lived radioactive wastes or environmental loads of long term geological disposal. An Advanced Energy System (AES) with nuclear reactors as an energy source has been proposed which supply electricity and heat to cities. The AES has three objectives: 1. Save energy resources and reduce green house gas emissions, attaining total energy utilization efficiency higher than 85% through waste heat recovery and utilization. 2. Foster a recycling society that produces methane and methanol for fuel cells from waste products of cities and farms. 3. Consume TRU produced in LWRs as fuel for FRs, and reduce long-lived radioactive wastes or environmental loads of long term geological disposal. References 1. Y. Kato, T. Nitawaki and K. Fujima, 'Zero Waste Heat Release Nuclear Cogeneration System, 'Proc. 2003 Intl. Congress on Advanced Nuclear Power Plants (ICAPP'03), Cordoba, Spain, May 4-7, 2003, Paper 3313. 2. Y. Kato, T. Nitawaki and Y. Muto, 'Medium Temperature Carbon Dioxide Gas Turbine Reactor, 'Nucl. Eng. Design, 230, pp. 195-207 (2004). 3. H. N. Tran and Y. Kato, 'New 2 37Np Burning Strategy in a Supercritical CO 2 Cooled Fast Reactor Core Attaining Zero Burnup Reactivity Loss,' Proc. American Nuclear Society's Topical Meeting on Reactor Physics (PHYSOR 2006), Vancouver, British Columbia, Canada, September 10-14, 2006

  1. Nuclear decommissioning

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The paper on nuclear decommissioning was presented by Dr H. Lawton to a meeting of the British Nuclear Energy Society and Institution of Nuclear Engineers, 1986. The decommissioning work currently being undertaken on the Windscale advanced gas cooled reactor (WAGR) is briefly described, along with projects in other countries, development work associated with the WAGR operation and costs. (U.K.)

  2. Activities of passive cooling applications and simulation of innovative nuclear power plant design

    International Nuclear Information System (INIS)

    Aglar, F.; Tanrykut, A.

    2002-01-01

    This paper gives a general insight on activities of the Turkish Atomic Energy Authority (TAEA) concerning passive cooling applications and simulation of innovative nuclear power plant design. The condensation mode of heat transfer plays an important role for the passive heat removal application in advanced water-cooled reactor systems. But it is well understood that the presence of noncondesable (NC) gases can greatly inhibit the condensation process due to the build up of NC gas concentration at the liquid/gas interface. The isolation condenser of passive containment cooling system of the simplified boiling water reactors is a typical application area of in-tube condensation in the presence of NC. The test matrix of the experimental investigation undertaken at the METU-CTF test facility (Middle East Technical University, Ankara) covers the range of parameters; Pn (system pressure) : 2-6 bar, Rev (vapor Reynolds number): 45,000-94,000, and Xi (air mass fraction): 0-52%. This experimental study is supplemented by a theoretical investigation concerning the effect of mixture flow rate on film turbulence and air mass diffusion concepts. Recently, TAEA participated to an international standard problem (OECD ISP-42) which covers a set of simulation of PANDA test facility (Paul Scherrer Institut-Switzerland) for six different phases including different natural circulation modes. The concept of condensation in the presence of air plays an important role for performance of heat exchangers, designed for passive containment cooling, which in turn affect the natural circulation behaviour in PANDA systems. (author)

  3. Technology development for the modular high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Homan, F.J.; Turner, R.F.

    1989-01-01

    In the USA the Modular High-Temperature Gas-Cooled Reactor is in an advanced stage of design. The related HTGR program areas, the approaches to these programs along with sample results and a description of how these data are used are highlighted in the paper. (author). Figs and tabs

  4. Monte Carlo Analysis of the Battery-Type High Temperature Gas Cooled Reactor

    Science.gov (United States)

    Grodzki, Marcin; Darnowski, Piotr; Niewiński, Grzegorz

    2017-12-01

    The paper presents a neutronic analysis of the battery-type 20 MWth high-temperature gas cooled reactor. The developed reactor model is based on the publicly available data being an `early design' variant of the U-battery. The investigated core is a battery type small modular reactor, graphite moderated, uranium fueled, prismatic, helium cooled high-temperature gas cooled reactor with graphite reflector. The two core alternative designs were investigated. The first has a central reflector and 30×4 prismatic fuel blocks and the second has no central reflector and 37×4 blocks. The SERPENT Monte Carlo reactor physics computer code, with ENDF and JEFF nuclear data libraries, was applied. Several nuclear design static criticality calculations were performed and compared with available reference results. The analysis covered the single assembly models and full core simulations for two geometry models: homogenous and heterogenous (explicit). A sensitivity analysis of the reflector graphite density was performed. An acceptable agreement between calculations and reference design was obtained. All calculations were performed for the fresh core state.

  5. Monte Carlo Analysis of the Battery-Type High Temperature Gas Cooled Reactor

    Directory of Open Access Journals (Sweden)

    Grodzki Marcin

    2017-12-01

    Full Text Available The paper presents a neutronic analysis of the battery-type 20 MWth high-temperature gas cooled reactor. The developed reactor model is based on the publicly available data being an ‘early design’ variant of the U-battery. The investigated core is a battery type small modular reactor, graphite moderated, uranium fueled, prismatic, helium cooled high-temperature gas cooled reactor with graphite reflector. The two core alternative designs were investigated. The first has a central reflector and 30×4 prismatic fuel blocks and the second has no central reflector and 37×4 blocks. The SERPENT Monte Carlo reactor physics computer code, with ENDF and JEFF nuclear data libraries, was applied. Several nuclear design static criticality calculations were performed and compared with available reference results. The analysis covered the single assembly models and full core simulations for two geometry models: homogenous and heterogenous (explicit. A sensitivity analysis of the reflector graphite density was performed. An acceptable agreement between calculations and reference design was obtained. All calculations were performed for the fresh core state.

  6. Modular high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shepherd, L.R.

    1988-01-01

    The high financial risk involved in building large nuclear power reactors has been a major factor in halting investment in new plant and in bringing further technical development to a standstill. Increased public concern about the safety of nuclear plant, particularly after Chernobyl, has contributed to this stagnation. Financial and technical risk could be reduced considerably by going to small modular units, which would make it possible to build up power station capacity in small steps. Such modular plant, based on the helium-cooled high temperature reactor (HTR), offers remarkable advantages in terms of inherent safety characteristics, partly because of the relatively small size of the individual modules but more on account of the enormous thermal capacity and high temperature margins of the graphitic reactor assemblies. Assessments indicate that, in the USA, the cost of power from the modular systems would be less than that from conventional single reactor plant, up to about 600 MW(e), and only marginally greater above that level, a margin that should be offset by the shorter time required in bringing the modular units on line to earn revenue. The modular HTR would be particularly appropriate in the UK, because of the considerable British industrial background in gas-cooled reactors, and could be a suitable replacement for Magnox. The modular reactor would be particularly suited to combined heat and power schemes and would offer great potential for the eventual development of gas turbine power conversion and the production of high-temperature process heat. (author)

  7. Mechanical Properties of Advanced Gas-Cooled Reactor Stainless Steel Cladding After Irradiation

    Science.gov (United States)

    Degueldre, Claude; Fahy, James; Kolosov, Oleg; Wilbraham, Richard J.; Döbeli, Max; Renevier, Nathalie; Ball, Jonathan; Ritter, Stefan

    2018-05-01

    The production of helium bubbles in advanced gas-cooled reactor (AGR) cladding could represent a significant hazard for both the mechanical stability and long-term storage of such materials. However, the high radioactivity of AGR cladding after operation presents a significant barrier to the scientific study of the mechanical properties of helium incorporation, said cladding typically being analyzed in industrial hot cells. An alternative non-active approach is to implant He2+ into unused AGR cladding material via an accelerator. Here, a feasibility study of such a process, using sequential implantations of helium in AGR cladding steel with decreasing energy is carried out to mimic the buildup of He (e.g., 50 appm) that would occur for in-reactor AGR clad in layers of the order of 10 µm in depth, is described. The implanted sample is subsequently analyzed by scanning electron microscopy, nanoindentation, atomic force and ultrasonic force microscopies. As expected, the irradiated zones were affected by implantation damage (steel cladding is retained despite He2+ implantation.

  8. Remote handling equipment for the decommissioning of the Windscale Advanced Gas Cooled Reactor

    International Nuclear Information System (INIS)

    Barker, A.; Birss, I.R.; Fish, G.

    1984-01-01

    A decision to decommission the Windscale Advanced Gas Cooled Reactor was taken shortly after reactor shutdown in 1981. The fuel has now been discharged and the decommissioning programme will last about 10-12 years. The paper describes the programme and objectives and deals with methods of handling and disposing of the radioactive waste material. The main new facility required is a Waste Packaging Building adjacent to the existing reactor in which the waste boxes will be filled, active waste encapsulated in concrete and the boxes cleaned, swabbed and monitored to comply with IAEA transport regulations. The handling machine concept and features are described. The assaying and packaging of the waste material, the control of box movement and the process of concrete encapsulation is described. The paper concludes with a description of the development programme to support the Project. The tasks include a study of cutting techniques, production and control of dust and smoke, viewing and lighting methods, filtration, decontamination and fixing of contamination

  9. Fuel-Cycle and Nuclear Material Disposition Issues Associated with High-Temperature Gas Reactors

    International Nuclear Information System (INIS)

    Shropshire, D.E.; Herring, J.S.

    2004-01-01

    The objective of this paper is to facilitate a better understanding of the fuel-cycle and nuclear material disposition issues associated with high-temperature gas reactors (HTGRs). This paper reviews the nuclear fuel cycles supporting early and present day gas reactors, and identifies challenges for the advanced fuel cycles and waste management systems supporting the next generation of HTGRs, including the Very High Temperature Reactor, which is under development in the Generation IV Program. The earliest gas-cooled reactors were the carbon dioxide (CO2)-cooled reactors. Historical experience is available from over 1,000 reactor-years of operation from 52 electricity-generating, CO2-cooled reactor plants that were placed in operation worldwide. Following the CO2 reactor development, seven HTGR plants were built and operated. The HTGR came about from the combination of helium coolant and graphite moderator. Helium was used instead of air or CO2 as the coolant. The helium gas has a significant technical base due to the experience gained in the United States from the 40-MWe Peach Bottom and 330-MWe Fort St. Vrain reactors designed by General Atomics. Germany also built and operated the 15-MWe Arbeitsgemeinschaft Versuchsreaktor (AVR) and the 300-MWe Thorium High-Temperature Reactor (THTR) power plants. The AVR, THTR, Peach Bottom and Fort St. Vrain all used fuel containing thorium in various forms (i.e., carbides, oxides, thorium particles) and mixtures with highly enriched uranium. The operational experience gained from these early gas reactors can be applied to the next generation of nuclear power systems. HTGR systems are being developed in South Africa, China, Japan, the United States, and Russia. Elements of the HTGR system evaluated included fuel demands on uranium ore mining and milling, conversion, enrichment services, and fuel fabrication; fuel management in-core; spent fuel characteristics affecting fuel recycling and refabrication, fuel handling, interim

  10. Modeling the high-temperature gas-cooled reactor process heat plant: a nuclear to chemical conversion process

    International Nuclear Information System (INIS)

    Pfremmer, R.D.; Openshaw, F.L.

    1982-05-01

    The high-temperature heat available from the High-Temperature Gas-Cooled Reactor (HTGR) makes it suitable for many process applications. One of these applications is a large-scale energy production plant where nuclear energy is converted into chemical energy and stored for industrial or utility applications. This concept combines presently available nuclear HTGR technology and energy conversion chemical technology. The design of this complex plant involves questions of interacting plant dynamics and overall plant control. This paper discusses how these questions were answered with the aid of a hybrid computer model that was developed within the time-frame of the conceptual design studies. A brief discussion is given of the generally good operability shown for the plant and of the specific potential problems and their anticipated solution. The paper stresses the advantages of providing this information in the earliest conceptual phases of the design

  11. Fuel performance and fission product behaviour in gas cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Co-ordinated Research Programme (CRP) on Validation of Predictive Methods for Fuel and Fission Product Behaviour was organized within the frame of the International Working Group on Gas Cooled Reactors. This International Working Group serves as a forum for exchange of information on national programmes, provides advice to the IAEA on international co-operative activities in advanced technologies of gas cooled reactors (GCRs), and supports the conduct of these activities. The objectives of this CRP were to review and document the status of the experimental data base and of the predictive methods for GCR fuel performance and fission product behaviour; and to verify and validate methodologies for the prediction of fuel performance and fission product transport. Refs, figs, tabs.

  12. Steam water cycle chemistry of liquid metal cooled innovative nuclear power reactors

    International Nuclear Information System (INIS)

    Yurmanov, Victor; Lemekhov, Vadim; Smykov, Vladimir

    2012-09-01

    The Federal Target Program (FTP) of Russian Federation 'Nuclear Energy Technologies of the New Generation for 2010-2015 and for Perspective up to 2020' is aimed at development of advanced nuclear energy technologies on the basis of closed fuel cycle with fast reactors. There are advanced fast reactor technologies of the 4. generation with liquid metal cooled reactors. Development stages of maturity of fast sodium cooled reactor technology in Russia includes experimental reactors BR-5/10 (1958-2002) and BOR-60 (since 1969), nuclear power plants (NPPs) with BN-350 (1972-1999), BN-600 (since 1980), BN-800 (under construction), BN-1200 (under development). Further stage of development of fast sodium cooled reactor technology in Russia is commercialization. Lead-bismuth eutectic fast reactor technology has been proven at industrial scale for nuclear submarines in former Soviet Union. Lead based technology is currently under development and need for experimental justification. Current status and prospects of State Corporation 'Rosatom' participation in GIF activities was clarified at the 31. Meeting of Policy Group of the International Forum 'Generation-IV', Moscow, May 12-13, 2011. In June, 2010, 'Rosatom' joined the Sodium Fast Reactor Arrangement as an authorized representative of the Russian Government. It was also announced the intention of 'Rosatom' to sign the Memorandum on Lead Fast Reactor based on Russia's experience with lead-bismuth and lead cooled fast reactors. In accordance with the above FTP some innovative liquid metal cooled reactors of different design are under development in Russia. Gidropress, well known as WER designer, develops innovative lead-bismuth eutectic cooled reactor SVBR-100. NIKIET develops innovative lead cooled reactor BRESTOD-300. Some other nuclear scientific centres are also involved in this activity, e.g. Research and Development Institute for Power Engineering (RDIPE). Optimum

  13. Nuclear privatization

    International Nuclear Information System (INIS)

    Jeffs, E.

    1995-01-01

    The United Kingdom government announced in May 1995 plans to privatize the country's two nuclear generating companies, Nuclear Electric and Scottish Nuclear. Under the plan, the two companies will become operating divisions of a unified holding company, to be called British Electric, with headquarters in Scotland. Britain's nuclear plants were left out of the initial privatization in 1989 because the government believed the financial community would be unwilling to accept the open-ended liability of decommissioning the original nine stations based on the Magnox gas-cooled reactor. Six years later, the government has found a way around this by retaining these power stations in state ownership, leaving the new nuclear company with the eight Advanced Gas-cooled Reactor (AGR) stations and the recently completed Sizewell B PWR stations. The operating Magnox stations are to be transferred to BNFL, which operates two Magnox stations of their own at Calder Hall and Chapelcross

  14. Feasibility of Ericsson type isothermal expansion/compression gas turbine cycle for nuclear energy use

    International Nuclear Information System (INIS)

    Shimizu, Akihiko

    2007-01-01

    A gas turbine with potential demand for the next generation nuclear energy use such as HTGR power plants, a gas cooled FBR, a gas cooled nuclear fusion reactor uses helium as working gas and with a closed cycle. Materials constituting a cycle must be set lower than allowable temperature in terms of mechanical strength and radioactivity containment performance and so expansion inlet temperature is remarkably limited. For thermal efficiency improvement, isothermal expansion/isothermal compression Ericsson type gas turbine cycle should be developed using wet surface of an expansion/compressor casing and a duct between stators without depending on an outside heat exchanger performing multistage re-heat/multistage intermediate cooling. Feasibility of an Ericsson cycle in comparison with a Brayton cycle and multi-stage compression/expansion cycle was studied and technologies to be developed were clarified. (author)

  15. Proceedings: Cooling tower and advanced cooling systems conference

    International Nuclear Information System (INIS)

    1995-02-01

    This Cooling Tower and Advanced Cooling Systems Conference was held August 30 through September 1, 1994, in St. Petersburg, Florida. The conference was sponsored by the Electric Power Research Institute (EPRI) and hosted by Florida Power Corporation to bring together utility representatives, manufacturers, researchers, and consultants. Nineteen technical papers were presented in four sessions. These sessions were devoted to the following topics: cooling tower upgrades and retrofits, cooling tower performance, cooling tower fouling, and dry and hybrid systems. On the final day, panel discussions addressed current issues in cooling tower operation and maintenance as well as research and technology needs for power plant cooling. More than 100 people attended the conference. This report contains the technical papers presented at the conference. Of the 19 papers, five concern cooling tower upgrades and retrofits, five to cooling tower performance, four discuss cooling tower fouling, and five describe dry and hybrid cooling systems. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  16. Nuclear electricity - a progress report

    International Nuclear Information System (INIS)

    England, G.

    1980-01-01

    A survey of the progress of nuclear power over the past three years reveals three major features: (i) the continued operation of the first generation of commercial nuclear power stations, based on the Magnox gas-cooled reactor; (ii) the introduction and operation of the first of the second-generation stations, based on the advanced gas-cooled reactor (AGR); and (iii) the commitment of two successive Governments to a flexible thermal reactor strategy. Each of these features is considered and a number of related issues, including the safety record and cost savings to the electricity consumer, are discussed. (author)

  17. The world trends of high temperature gas-cooled reactors and the mode of utilization

    International Nuclear Information System (INIS)

    Ishikawa, Hiroshi; Shimokawa, Jun-ichi

    1974-01-01

    After a long period of research and development, high temperature gas-cooled reactors are going to enter the practical stage. The combination of a HTGR with a closed cycle helium gas turbine is advantageous in thermal efficiency, reduction of environmental impact and economy. In recent years, the direct utilization of nuclear heat energy in industries has been attracting interest. The multi-purpose utilization of high temperature gas-cooled reactors is thus now the world trend. Reviewing the world developments in this field, the following matters are described: (1) development of HTGRs in the U.K., West Germany, France and the United States; (2) development of He gas turbine, etc. in West Germany; and (3) multi-purpose utilization of HTGRs in West Germany and Japan. (Mori, K.)

  18. Cooling towers of nuclear power plants

    International Nuclear Information System (INIS)

    Mikyska, L.

    1986-01-01

    The specifications are given of cooling towers of foreign nuclear power plants and a comparison is made with specifications of cooling towers with natural draught in Czechoslovak nuclear power plants. Shortcomings are pointed out in the design of cooling towers of Czechoslovak nuclear power plants which have been derived from conventional power plant design. The main differences are in the adjustment of the towers for winter operation and in the designed spray intensity. The comparison of selected parameters is expressed graphically. (J.B.)

  19. Helium heater design for the helium direct cycle component test facility. [for gas-cooled nuclear reactor power plant

    Science.gov (United States)

    Larson, V. R.; Gunn, S. V.; Lee, J. C.

    1975-01-01

    The paper describes a helium heater to be used to conduct non-nuclear demonstration tests of the complete power conversion loop for a direct-cycle gas-cooled nuclear reactor power plant. Requirements for the heater include: heating the helium to a 1500 F temperature, operating at a 1000 psia helium pressure, providing a thermal response capability and helium volume similar to that of the nuclear reactor, and a total heater system helium pressure drop of not more than 15 psi. The unique compact heater system design proposed consists of 18 heater modules; air preheaters, compressors, and compressor drive systems; an integral control system; piping; and auxiliary equipment. The heater modules incorporate the dual-concentric-tube 'Variflux' heat exchanger design which provides a controlled heat flux along the entire length of the tube element. The heater design as proposed will meet all system requirements. The heater uses pressurized combustion (50 psia) to provide intensive heat transfer, and to minimize furnace volume and heat storage mass.

  20. Benchmarking of thermalhydraulic loop models for lead-alloy-cooled advanced nuclear energy systems. Phase I: Isothermal forced convection case

    International Nuclear Information System (INIS)

    2012-06-01

    Under the auspices of the NEA Nuclear Science Committee (NSC), the Working Party on Scientific Issues of the Fuel Cycle (WPFC) has been established to co-ordinate scientific activities regarding various existing and advanced nuclear fuel cycles, including advanced reactor systems, associated chemistry and flowsheets, development and performance of fuel and materials and accelerators and spallation targets. The WPFC has different expert groups to cover a wide range of scientific issues in the field of nuclear fuel cycle. The Task Force on Lead-Alloy-Cooled Advanced Nuclear Energy Systems (LACANES) was created in 2006 to study thermal-hydraulic characteristics of heavy liquid metal coolant loop. The objectives of the task force are to (1) validate thermal-hydraulic loop models for application to LACANES design analysis in participating organisations, by benchmarking with a set of well-characterised lead-alloy coolant loop test data, (2) establish guidelines for quantifying thermal-hydraulic modelling parameters related to friction and heat transfer by lead-alloy coolant and (3) identify specific issues, either in modelling and/or in loop testing, which need to be addressed via possible future work. Nine participants from seven different institutes participated in the first phase of the benchmark. This report provides details of the benchmark specifications, method and code characteristics and results of the preliminary study: pressure loss coefficient and Phase-I. A comparison and analysis of the results will be performed together with Phase-II

  1. Advances in gas-liquid flows 1990

    International Nuclear Information System (INIS)

    Kim, J.M.; Hashemi, A.

    1990-01-01

    Gas-liquid two-phase flows commonly occur in nature and industrial applications. Rain, clouds, geysers, and waterfalls are examples of natural gas-liquid flow phenomena, whereas industrial applications can be found in nuclear reactors, steam generators, boilers, condensers, evaporators, fuel atomization, heat pipes, electronic equipment cooling, petroleum engineering, chemical process engineering, and many others. The household-variety phenomena such as garden sprinklers, shower, whirlpool bath, dripping faucet, boiling tea pot, and bubbling beer provide daily experience of gas-liquid flows. The papers presented in this volume reflect the variety and richness of gas-liquid two-phase flow and the increasing role it plays in modern technology. This volume contains papers dealing with some recent development in gas-liquid flow science and technology, covering basic gas-liquid flows, measurements and instrumentation, cavitation and flashing flows, countercurrent flow and flooding, flow in various components and geometries liquid metals and thermocapillary effects, heat transfer, nonlinear phenomena, instability, and other special and general topics related to gas-liquid flows

  2. Advanced gas cooled nuclear reactor materials evaluation and development program. Selection of candidate alloys. Vol. 1. Advanced gas cooled reactor systems definition

    International Nuclear Information System (INIS)

    Marvin, M.D.

    1978-01-01

    Candidate alloys for a Very High Temperature Reactor (VHTR) Nuclear Process Heal (NPH) and Direct Cycle Helium Turbine (DCHT) applications in terms of the effect of the primary coolant exposure and thermal exposure were evaluated

  3. Overview of gas cooled reactors' applications with CATHARE

    International Nuclear Information System (INIS)

    Genevieve Geffraye; Fabrice Bentivoglio; Anne Messie; Alain Ruby; Manuel Saez; Nicolas Tauveron; Ola Widlund

    2005-01-01

    Full text of publication follows: For about four years, CEA has launched feasibility studies of future nuclear advanced systems in a consistent series of Gas Cooled Reactors (GCR) ranging from thermal reactors, as the Very High Temperature Reactor (VHTR) for the mid term, to fast reactors (GFR) for the long term. Thermal hydraulic performances are a key issue for the core design, the evaluation of the thermal stresses on the structures and the decay heat removal systems. This analysis requires a 1D code able to simulate the whole reactor, including the core, the vessel, the piping and the components (turbine, compressors, heat exchangers). CATHARE is the reference code developed and extensively validated in collaboration between CEA, EDF, IRSN and FRAMATOME-ANP for the French Pressurized Water Reactors. CATHARE has the capabilities to model a Gas Cooled Reactor using standard 0D and 1D modules with some adaptations to treat the specificities of the GCR designs. In this paper, the different adaptations are presented and discussed. The direct coupling of a Gas Cooled Reactor with a closed gas-turbine cycle leads to a specific dynamic plant behaviour and a specific turbomachinery module has been developed. The thermal reactors' core consists of hexagonal graphite blocks with an annular-fueled region surrounded by reflectors and a special attention is paid on the thermal modeling of such a core leading to a quasi-2D thermal description. First designs of the VHTR are proposed and are based on an indirect cycle concept with a primary circuit, cooled by helium, and containing the core and a circulator. The core power is transmitted to the secondary circuit via an intermediate heat exchanger (IHX). The secondary circuit contains a turbine and a compressor coupled on a single shaft. It uses a mixture of helium and nitrogen, in order to benefit from both the favourable thermal properties of helium for the heat exchanger, and from existing experience of turbomachines using

  4. Gas-cooled Fast Reactor (GFR) fuel and In-Core Fuel Management

    International Nuclear Information System (INIS)

    Weaver, K.D.; Sterbentz, J.; Meyer, M.; Lowden, R.; Hoffman, E.; Wei, T.Y.C.

    2004-01-01

    The Gas-Cooled Fast Reactor (GCFR) has been chosen as one of six candidates for development as a Generation IV nuclear reactor based on: its ability to fully utilize fuel resources; minimize or reduce its own (and other systems) actinide inventory; produce high efficiency electricity; and the possibility to utilize high temperature process heat. Current design approaches include a high temperature (2 850 C) helium cooled reactor using a direct Brayton cycle, and a moderate temperature (550 C - 650 C) helium or supercritical carbon dioxide (S-CO 2 ) cooled reactor using direct or indirect Brayton cycles. These design choices have thermal efficiencies that approach 45% to 50%, and have turbomachinery sizes that are much more compact compared to steam plants. However, there are challenges associated with the GCFR, which are the focus of current research. This includes safety system design for decay heat removal, development of high temperature/high fluence fuels and materials, and development of fuel cycle strategies. The work presented here focuses on the fuel and preliminary in-core fuel management, where advanced ceramic-ceramic (cercer) dispersion fuels are the main focus, and average burnups to 266 M Wd/kg appear achievable for the reference Si C/(U,TRU)C block/plate fuel. Solid solution (pellet) fuel in composite ceramic clad (Si C/Si C) is also being considered, but remains as a backup due to cladding fabrication challenges, and high centerline temperatures in the fuel. (Author)

  5. Gas cooled reactors

    International Nuclear Information System (INIS)

    Kojima, Masayuki.

    1985-01-01

    Purpose: To enable direct cooling of reactor cores thereby improving the cooling efficiency upon accidents. Constitution: A plurality sets of heat exchange pipe groups are disposed around the reactor core, which are connected by way of communication pipes with a feedwater recycling device comprising gas/liquid separation device, recycling pump, feedwater pump and emergency water tank. Upon occurrence of loss of primary coolants accidents, the heat exchange pipe groups directly absorb the heat from the reactor core through radiation and convection. Although the water in the heat exchange pipe groups are boiled to evaporate if the forcive circulation is interrupted by the loss of electric power source, water in the emergency tank is supplied due to the head to the heat exchange pipe groups to continue the cooling. Furthermore, since the heat exchange pipe groups surround the entire circumference of the reactor core, cooling is carried out uniformly without resulting deformation or stresses due to the thermal imbalance. (Sekiya, K.)

  6. Seismic snubber reduction on advanced gas-cooled reactor pipework

    International Nuclear Information System (INIS)

    Kennedy, P.A.; Harkin, N.J.

    1989-01-01

    Recent advances in pipework dynamic analysis procedures have enabled a more realistic approach to be taken to the design of pipework under earthquake loadings. In particular, it is proving possible to reduce the number of seismic snubbers employed to limit pipework displacements. This paper presents the background to, and outcome of, a snubber optimisation study performed for the main steam pipework system at Torness Nuclear Power Station. (author)

  7. Gas-cooled reactor safety and accident analysis

    International Nuclear Information System (INIS)

    1985-12-01

    The Specialists' Meeting on Gas-Cooled Reactor Safety and Accident Analysis was convened by the International Atomic Energy Agency in Oak Ridge on the invitation of the Department of Energy in Washington, USA. The meeting was hosted by the Oak Ridge National Laboratory. The purpose of the meeting was to provide an opportunity to compare and discuss results of safety and accident analysis of gas-cooled reactors under development, construction or in operation, to review their lay-out, design, and their operational performance, and to identify areas in which additional research and development are needed. The meeting emphasized the high safety margins of gas-cooled reactors and gave particular attention to the inherent safety features of small reactor units. The meeting was subdivided into four technical sessions: Safety and Related Experience with Operating Gas-Cooled Reactors (4 papers); Risk and Safety Analysis (11 papers); Accident Analysis (9 papers); Miscellaneous Related Topics (5 papers). A separate abstract was prepared for each of these papers

  8. Exergy analysis of a gas-hydrate cool storage system

    International Nuclear Information System (INIS)

    Bi, Yuehong; Liu, Xiao; Jiang, Minghe

    2014-01-01

    Based on exergy analysis of charging and discharging processes in a gas-hydrate cool storage system, the formulas for exergy efficiency at the sensible heat transfer stage and the phase change stage corresponding to gas-hydrate charging and discharging processes are obtained. Furthermore, the overall exergy efficiency expressions of charging, discharging processes and the thermodynamic cycle of the gas-hydrate cool storage system are obtained. By using the above expressions, the effects of number of transfer units, the inlet temperatures of the cooling medium and the heating medium on exergy efficiencies of the gas-hydrate cool storage system are emphatically analyzed. The research results can be directly used to evaluate the performance of gas-hydrate cool storage systems and design more efficient energy systems by reducing the sources of inefficiency in gas-hydrate cool storage systems. - Highlights: • Formulas for exergy efficiency at four stages are obtained. • Exergy efficiency expressions of two processes and one cycle are obtained. • Three mainly influencing factors on exergy efficiencies are analyzed. • With increasing the inlet temperature of cooling medium, exergy efficiency increases. • With decreasing the inlet temperature of heating medium, exergy efficiency increases

  9. Core catcher cooling for a gas-cooled fast breeder

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Dorner, S.; Schretzmann, K.

    1976-01-01

    Water, molten salts, and liquid metals are under discussion as coolants for the core catcher of a gas-cooled fast breeder. The authors state that there is still no technically mature method of cooling a core melt. However, the investigations carried out so far suggest that there is a solution to this problem. (RW/AK) [de

  10. Gas Mixtures for Welding with Micro-Jet Cooling

    Directory of Open Access Journals (Sweden)

    Węgrzyn T.

    2015-04-01

    Full Text Available Welding with micro-jet cooling after was tested only for MIG and MAG processes. For micro-jet gases was tested only argon, helium and nitrogen. A paper presents a piece of information about gas mixtures for micro-jet cooling after in welding. There are put down information about gas mixtures that could be chosen both for MAG welding and for micro-jet process. There were given main information about influence of various micro-jet gas mixtures on metallographic structure of steel welds. Mechanical properties of weld was presented in terms of various gas mixtures selection for micro-jet cooling.

  11. Thermohydraulic relationships for advanced water cooled reactors

    International Nuclear Information System (INIS)

    2001-04-01

    This report was prepared in the context of the IAEA's Co-ordinated Research Project (CRP) on Thermohydraulic Relationships for Advanced Water Cooled Reactors, which was started in 1995 with the overall goal of promoting information exchange and co-operation in establishing a consistent set of thermohydraulic relationships which are appropriate for use in analyzing the performance and safety of advanced water cooled reactors. For advanced water cooled reactors, some key thermohydraulic phenomena are critical heat flux (CHF) and post CHF heat transfer, pressure drop under low flow and low pressure conditions, flow and heat transport by natural circulation, condensation of steam in the presence of non-condensables, thermal stratification and mixing in large pools, gravity driven reflooding, and potential flow instabilities. The objectives of the CRP are (1) to systematically list the requirements for thermohydraulic relationships in support of advanced water cooled reactors during normal and accident conditions, and provide details of their database where possible and (2) to recommend and document a consistent set of thermohydraulic relationships for selected thermohydraulic phenomena such as CHF and post-CHF heat transfer, pressure drop, and passive cooling for advanced water cooled reactors. Chapter 1 provides a brief discussion of the background for this CRP, the CRP objectives and lists the participating institutes. Chapter 2 provides a summary of important and relevant thermohydraulic phenomena for advanced water cooled reactors on the basis of previous work by the international community. Chapter 3 provides details of the database for critical heat flux, and recommends a prediction method which has been established through international co-operation and assessed within this CRP. Chapter 4 provides details of the database for film boiling heat transfer, and presents three methods for predicting film boiling heat transfer coefficients developed by institutes

  12. Thermohydraulic relationships for advanced water cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-04-01

    This report was prepared in the context of the IAEA's Co-ordinated Research Project (CRP) on Thermohydraulic Relationships for Advanced Water Cooled Reactors, which was started in 1995 with the overall goal of promoting information exchange and co-operation in establishing a consistent set of thermohydraulic relationships which are appropriate for use in analyzing the performance and safety of advanced water cooled reactors. For advanced water cooled reactors, some key thermohydraulic phenomena are critical heat flux (CHF) and post CHF heat transfer, pressure drop under low flow and low pressure conditions, flow and heat transport by natural circulation, condensation of steam in the presence of non-condensables, thermal stratification and mixing in large pools, gravity driven reflooding, and potential flow instabilities. The objectives of the CRP are (1) to systematically list the requirements for thermohydraulic relationships in support of advanced water cooled reactors during normal and accident conditions, and provide details of their database where possible and (2) to recommend and document a consistent set of thermohydraulic relationships for selected thermohydraulic phenomena such as CHF and post-CHF heat transfer, pressure drop, and passive cooling for advanced water cooled reactors. Chapter 1 provides a brief discussion of the background for this CRP, the CRP objectives and lists the participating institutes. Chapter 2 provides a summary of important and relevant thermohydraulic phenomena for advanced water cooled reactors on the basis of previous work by the international community. Chapter 3 provides details of the database for critical heat flux, and recommends a prediction method which has been established through international co-operation and assessed within this CRP. Chapter 4 provides details of the database for film boiling heat transfer, and presents three methods for predicting film boiling heat transfer coefficients developed by institutes

  13. Utility/user requirements for the modular high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Boyer, V.S.; Kendall, J.M.; Gotschall, H.L.

    1989-01-01

    This paper describes the approach used by Gas-Cooled Reactor Associates (GCRA) in developing Utility/User Requirements for the Modular High Temperature Gas-cooled Reactor (MHTGR). As representatives of the Utility/User industry, it is GCRA's goal that the MHTGR concept be established as an attractive nuclear option offering competitive economics and limited ownership risks. Commercially deployed MHTGR systems should then compete favorably in a mixed-fuel economy with options using fossil, other nuclear and other non-fossil sources. To achieve this goal, the design of the MHTGR plant must address the problems experienced by the U.S. industrial infrastructure during deployment of the first generation of nuclear plants. Indeed, it is GCRA's intent to utilize the characteristics of MHTGR technology for the development of a nuclear alternative that poses regulatory, financial and operational demands on the Owner/Operator that are, in aggregate, comparable to those encountered with non-nuclear options. The dominant risks faced by U.S. Utilities with current nuclear plants derive from their operational complexity and the degree of regulatory involvement in virtually all aspects of utility operations. The MHTGR approach of using ceramic fuel coatings to contain fission products provides the technical basis for simplification of the plant and stabilization of licensing requirements and thus the opportunity for reducing the risks of nuclear plant ownership. The paper describes the rationale for the selection of key requirements for public safety, plant size and performance, operations and maintenance, investment protection, economics and siting in the context of a risk management philosophy. It also describes the ongoing participation of the Utility/User in interpreting requirements, conducting program and design reviews and establishing priorities from the Owner/Operator perspective. (author). 7 refs, 1 fig

  14. Construction and performance tests of a secondary hydrogen gas cooling system

    International Nuclear Information System (INIS)

    Sanokawa, K.; Hishida, M.

    1980-01-01

    With the aim of a multi-purpose use of nuclear energy, such as direct steel-making, an experimental multi-purpose high-temperature gas-cooled reactor (VHTR) is now being developed by the Japan Atomic Energy Research Institute (JAERI). In order to simulate a heat exchanging system between the primary helium gas loop and the secondary reducing gas system of the VHTR, a hydrogen gas loop as a secondary cooling system of the existing helium gas loop was completed in 1977, and was successfully operated for over 2000 hours. The objectives of constructing the H 2 secondary loop were: (1) To get basic knowledge for designing, constructing and operating a high-temperature and high-pressure gas facility; (2) To perform the following tests: (a) hydrogen permeation at the He/H 2 heat exchanger (the surfaces of the heat exchanger tubes are coated by calorizing to reduce hydrogen permeation), (b) thermal performance tests of the He/H 2 heat exchanger and the H 2 /H 2 regenerative heat exchanger, (c) performance test of internal insulation, and (d) performance tests of the components such as a H 2 gas heater and gas purifiers. These tests were carried out at He gas temperature of approximately 1000 0 C, H 2 gas temperature of approximately 900 0 C and gas pressures of approximately 40 kg/cm 2 G, which are almost the same as the operating conditions of the VHTR

  15. Safety analysis of a high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shimazu, Akira; Morimoto, Toshio

    1975-01-01

    In recent years, in order to satisfy the social requirements of environment and safety and also to cope with the current energy stringency, the installation of safe nuclear power plants is indispensable. Herein, safety analysis and evaluation to confirm quantitatively the safety design of a nuclear power plant become more and more important. The safety analysis and its methods for a high temperature gas-cooled reactor are described, with emphasis placed on the practices by Fuji Electric Manufacturing Co. Fundamental rule of securing plant safety ; safety analysis in normal operation regarding plant dynamic characteristics and radioactivity evaluation ; and safety analysis at the time of accidents regarding plant response to the accidents and radioactivity evaluation are explained. (Mori, K.)

  16. Mechanical Property and Its Comparison of Superalloys for High Temperature Gas Cooled Reactor

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Kim, D. W.; Ryu, W. S.; Han, C. H.; Yoon, J. H.; Chang, J.

    2005-01-01

    Since structural materials for high temperature gas cooled reactor are used during long period in nuclear environment up to 1000 .deg. C, it is important to have good properties at elevated temperature such as mechanical properties (tensile, creep, fatigue, creep-fatigue), microstructural stability, interaction between metal and gas, friction and wear, hydrogen and tritium permeation, irradiation behavior, corrosion by impurity in He. Thus, in order to select excellent materials for the high temperature gas cooled reactor, it is necessary to understand the material properties and to gather the data for them. In this report, the items related to material properties which are needed for designing the high temperature gas cooled reactor were presented. Mechanical properties; tensile, creep, and fatigue etc. were investigated for Haynes 230, Hastelloy-X, In 617 and Alloy 800H, which can be used as the major structural components, such as intermediate heat exchanger (IHX), hot duct and piping and internals. Effect of He and irradiation on these structural materials was investigated. Also, mechanical properties; physical properties, tensile properties, creep and creep crack growth rate were compared for them, respectively. These results of this report can be used as important data to select superior materials for high temperature gas reactor

  17. Evaluating the income and employment impacts of gas cooling technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, P.J. [Oak Ridge National Lab., TN (United States); Laitner, S.

    1995-03-01

    The purpose of this study is to estimate the potential employment and income benefits of the emerging market for gas cooling products. The emphasis here is on exports because that is the major opportunity for the U.S. heating, ventilating, and air-conditioning (HVAC) industry. But domestic markets are also important and considered here because without a significant domestic market, it is unlikely that the plant investments, jobs, and income associated with gas cooling exports would be retained within the United States. The prospects for significant gas cooling exports appear promising for a variety of reasons. There is an expanding need for cooling in the developing world, natural gas is widely available, electric infrastructures are over-stressed in many areas, and the cost of building new gas infrastructure is modest compared to the cost of new electric infrastructure. Global gas cooling competition is currently limited, with Japanese and U.S. companies, and their foreign business partners, the only product sources. U.S. manufacturers of HVAC products are well positioned to compete globally, and are already one of the faster growing goods-exporting sectors of the U.S. economy. Net HVAC exports grew by over 800 percent from 1987 to 1992 and currently exceed $2.6 billion annually (ARI 1994). Net gas cooling job and income creation are estimated using an economic input-output model to compare a reference case to a gas cooling scenario. The reference case reflects current policies, practices, and trends with respect to conventional electric cooling technologies. The gas cooling scenario examines the impact of accelerated use of natural gas cooling technologies here and abroad.

  18. Method for treating a nuclear process off-gas stream

    International Nuclear Information System (INIS)

    Pence, D.T.; Chou, C.C.

    1984-01-01

    Disclosed is a method for selectively removing and recovering the noble gas and other gaseous components typically emitted during nuclear process operations. The method is adaptable and useful for treating dissolver off-gas effluents released during reprocessing of spent nuclear fuels whereby to permit radioactive contaminant recovery prior to releasing the remaining off-gases to the atmosphere. Briefly, the method sequentially comprises treating the off-gas stream to preliminarily remove NO /SUB x/ , hydrogen and carbon-containing organic compounds, and semivolatile fission product metal oxide components therefrom; adsorbing iodine components on silver-exchanged mordenite; removing water vapor carried by said stream by means of a molecular sieve; selectively removing the carbon dioxide components of said off-gas stream by means of a molecular sieve; selectively removing xenon in gas phase by passing said stream through a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from oxygen by means of a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from the bulk nitrogen stream using a molecular sieve comprising silver-exchanged mordenite cooled to about -140 0 to -160 0 C.; concentrating the desorbed krypton upon a molecular sieve comprising silver-exchange mordenite cooled to about -140 0 to -160 0 C.; and further cryogenically concentrating, and the recovering for storage, the desorbed krypton

  19. Method for treating a nuclear process off-gas stream

    Science.gov (United States)

    Pence, Dallas T.; Chou, Chun-Chao

    1984-01-01

    Disclosed is a method for selectively removing and recovering the noble gas and other gaseous components typically emitted during nuclear process operations. The method is adaptable and useful for treating dissolver off-gas effluents released during reprocessing of spent nuclear fuels whereby to permit radioactive contaminant recovery prior to releasing the remaining off-gases to the atmosphere. Briefly, the method sequentially comprises treating the off-gas stream to preliminarily remove NO.sub.x, hydrogen and carbon-containing organic compounds, and semivolatile fission product metal oxide components therefrom; adsorbing iodine components on silver-exchanged mordenite; removing water vapor carried by said stream by means of a molecular sieve; selectively removing the carbon dioxide components of said off-gas stream by means of a molecular sieve; selectively removing xenon in gas phase by passing said stream through a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from oxygen by means of a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from the bulk nitrogen stream using a molecular sieve comprising silver-exchanged mordenite cooled to about -140.degree. to -160.degree. C.; concentrating the desorbed krypton upon a molecular sieve comprising silver-exchange mordenite cooled to about -140.degree. to -160.degree. C.; and further cryogenically concentrating, and the recovering for storage, the desorbed krypton.

  20. Condensation heat transfer with noncondensable gas for passive containment cooling of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Leonardi, Tauna [Schlumberger, 14910 Airline Rd., Rosharon, TX 77583 (United States)]. E-mail: Tleonardi@slb.com; Ishii, Mamoru [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States)]. E-mail: Ishii@ecn.purdue.edu

    2006-09-15

    Noncondensable gases that come from the containment and the interaction of cladding and steam during a severe accident deteriorate a passive containment cooling system's performance by degrading the heat transfer capabilities of the condensers in passive containment cooling systems. This work contributes to the area of modeling condensation heat transfer with noncondensable gases in integral facilities. Previously existing correlations and models are for the through-flow of the mixture of steam and the noncondensable gases and this may not be applicable to passive containment cooling systems where there is no clear passage for the steam to escape. This work presents a condensation heat transfer model for the downward cocurrent flow of a steam/air mixture through a condenser tube, taking into account the atypical characteristics of the passive containment cooling system. An empirical model is developed that depends on the inlet conditions, including the mixture Reynolds number and noncondensable gas concentration.

  1. Gas-cooled reactors: the importance of their development

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1979-06-01

    The nearest term GCR is the steam-cycle HTGR, which can be used for both power and process steam production. Use of SC-HTGRs permits timely introduction of thorium fuel cycles and of high-thermal-efficiency reactors, decreasing the need for mined U 3 O 8 before arrival of symbiotic fueling of fast-thermal reactor systems. The gas-turbine HTGR offers prospects of lower capital costs than other nuclear reactors, but it appears to require longer and more costly development than the SC-HTGR. Accelerated development of the GT-HTGR is needed to gain the advantages of timely introduction. The Gas-Cooled Fast Breeder Reactor (GCFR) offers the possibility of fast breeder reactors with lower capital costs and with higher breeding ratios from oxide fuels. The VHTR provides high-temperature heat for hydrogen production

  2. Reduction of circulation power for helium-cooled fusion reactor blanket using additive CO{sub 2} gas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yeon-Gun [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Department of Nuclear and Energy Engineering, Jeju National University, 102 Jejudaehakno, Jeju-si 690-756, Jeju (Korea, Republic of); Park, Il-Woong [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Lee, Dong Won [Nuclear Fusion Engineering Development Center, Korea Atomic Energy Research Institute, Daedeokdaero 989 beon-gil, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Park, Goon-Cherl [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Kim, Eung-Soo, E-mail: kes7741@snu.ac.kr [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of)

    2015-11-15

    Helium (He) cooling requires large circulation power to remove high heat from plasma side and nuclear heating by high energy neutron in fusion reactors due to its low density. Based on the recent findings that the heat transfer capability of the light gas can be enhanced by mixing another heavier gas, this study adds CO{sub 2} to a reference helium coolant and evaluates the cooling performance of the binary mixture for various compositions. To assess the cooling performance, computational fluid dynamic (CFD) analyses on the KO HCML (Korea Helium Cooled Molten Lithium) TBM are conducted. As a result, it is revealed that the binary mixing of helium, which has favorable thermophysical properties but the density, with a heavier noble gas or an unreactive gas significantly reduces the required circulation power by an order of magnitude with meeting the thermal design requirements. This is attributed to the fact that the density can be highly increased with small amount of a heavier gas while other gas properties are kept relatively comparable. The optimal CO{sub 2} mole fraction is estimated to be 0.4 and the circulation power, in this case, can be reduced to 13% of that of pure helium. This implies that the thermal efficiency of a He-cooled blanket system can be fairly enhanced by means of the proposed binary mixing.

  3. A combined gas cooled nuclear reactor and fuel cell cycle

    Science.gov (United States)

    Palmer, David J.

    Rising oil costs, global warming, national security concerns, economic concerns and escalating energy demands are forcing the engineering communities to explore methods to address these concerns. It is the intention of this thesis to offer a proposal for a novel design of a combined cycle, an advanced nuclear helium reactor/solid oxide fuel cell (SOFC) plant that will help to mitigate some of the above concerns. Moreover, the adoption of this proposal may help to reinvigorate the Nuclear Power industry while providing a practical method to foster the development of a hydrogen economy. Specifically, this thesis concentrates on the importance of the U.S. Nuclear Navy adopting this novel design for its nuclear electric vessels of the future with discussion on efficiency and thermodynamic performance characteristics related to the combined cycle. Thus, the goals and objectives are to develop an innovative combined cycle that provides a solution to the stated concerns and show that it provides superior performance. In order to show performance, it is necessary to develop a rigorous thermodynamic model and computer program to analyze the SOFC in relation with the overall cycle. A large increase in efficiency over the conventional pressurized water reactor cycle is realized. Both sides of the cycle achieve higher efficiencies at partial loads which is extremely important as most naval vessels operate at partial loads as well as the fact that traditional gas turbines operating alone have poor performance at reduced speeds. Furthermore, each side of the cycle provides important benefits to the other side. The high temperature exhaust from the overall exothermic reaction of the fuel cell provides heat for the reheater allowing for an overall increase in power on the nuclear side of the cycle. Likewise, the high temperature helium exiting the nuclear reactor provides a controllable method to stabilize the fuel cell at an optimal temperature band even during transients helping

  4. Graphite development for gas-cooled reactors in the USA

    International Nuclear Information System (INIS)

    Burchell, T.D.

    1991-01-01

    This document discusses Modular High-Temperature Gas-Cooled Reactor (MHTGR) graphite activities in the USA which currently include the following research and development tasks: coke examination; effects of irradiation; variability of physical properties (mechanical, thermal-physical, and fracture); fatigue behavior, oxidation behavior; NDE techniques; structural design criteria; and carbon-carbon composite control rod clad materials. These tasks support nuclear grade graphite manufacturing technology including nondestructive examination of billets and components. Moreover, data shall be furnished to support design and licensing of graphite components for the MHTGR

  5. Natural convection in closed vertical cylinders with particular reference to gas cooled reactor standpipes

    International Nuclear Information System (INIS)

    Spence, I.D.

    1975-09-01

    The access to the core for fuel assemblies and control rods of the Advanced Gas Cooled Reactor is through the top cap by means of standpipes. The standpipe is essentially a cylindrical, vertical tube with cooled side wall, closed upper end and an orifice at the lower end which is exposed to the hot core fluid. This creates confined natural convection flow in the empty standpipe and this is the subject of this thesis. The investigation is carried out using analytical and experimental methods. For the analytical work, solution of laminar and turbulent flow is attempted using finite-difference computer techniques. The laminar flow performance is evaluated using two different finite-difference procedures, and the results are compared to each other and to existing analytical and experimental results for the open thermosyphon with cool inflow and hot sidewall, i.e. the complementary problem to the present one. For turbulent flow a two equation turbulence model is employed which provides transport equations for the kinetic energy of turbulence and its dissipation rate. The experimental rig is a full scale replica of the Advanced Gas Cooled Reactor control rod mechanism standpipe. Carbon dioxide and helium are used as the working fluids for the series of tests. (author)

  6. Decay Heat Removal in GEN IV Gas-Cooled Fast Reactors

    International Nuclear Information System (INIS)

    Lap-Yan, C.; Wie, T. Y. C.

    2009-01-01

    The safety goal of the current designs of advanced high-temperature thermal gas-cooled reactors (HTRs) is that no core meltdown would occur in a depressurization event with a combination of concurrent safety system failures. This study focused on the analysis of passive decay heat removal (DHR) in a GEN IV direct-cycle gas-cooled fast reactor (GFR) which is based on the technology developments of the HTRs. Given the different criteria and design characteristics of the GFR, an approach different from that taken for the HTRs for passive DHR would have to be explored. Different design options based on maintaining core flow were evaluated by performing transient analysis of a depressurization accident using the system code RELAP5-3D. The study also reviewed the conceptual design of autonomous systems for shutdown decay heat removal and recommends that future work in this area should be focused on the potential for Brayton cycle DHRs.

  7. Gas-fired cogeneration and cooling: new study identifies major benefits

    International Nuclear Information System (INIS)

    Watt, G.

    2001-01-01

    A research paper- 'Gas Fired Cogeneration and Cooling: Markets, Technologies and Greenhouse Gas Savings'- launched at last month's Australian Gas Association 2001 Convention, reveals that gas cooling could replace 25 PJ of electricity summer demand, and reduce greenhouse gas emissions by 58 percent compared with electrical technologies. Commissioned by the AGA's Gas Cooling Task Force and supported by the Sustainable Energy Authority of Victoria and the Sustainable Energy Development Authority of NSW, the study examined market opportunities and environmental outcomes for the combined gas cogeneration and cooling technologies. It shows that the penetration of gas into the distributed cooling and power generation market is being driven by the following developments: the uncertainty and volatility of electricity costs, particularly during summer, electricity market structural changes which encourage distributed generation, high and uncertain world oil prices, the relative stability of Australian gas prices, the encouragement of demand and energy management strategies by regulators, greenhouse gas emission reduction policies, indoor air quality issues, product and productivity improvements in industry and CFC phase-out opportunities

  8. Gas release from pressurized closed pores in nuclear fuels

    International Nuclear Information System (INIS)

    Bailey, P.; Donnelly, S.E.; Armour, D.G.; Matzke, H.

    1988-01-01

    Gas release from the nuclear fuels UO 2 and UN out of pressurized closed pores produced by autoclave anneals has been studied by Thermal Desorption Spectrometry (TDS). Investigation of gas release during heating and cooling has indicated stress related mechanical effects leading to gas release. This release occurred in a narrow temperature range between about 1000 and 1500 K for UO 2 , but it continued down to ambient temperature for UN. No burst release was observed above 1500 K for UO 2 . (orig.)

  9. Modeling and Simulation of the Sulfur-Iodine Process Coupled to a Very High-Temperature Gas-Cooled Nuclear Reactor

    International Nuclear Information System (INIS)

    Shin, Youngjoon; Lee, Taehoon; Lee, Kiyoung; Kim, Minhwan

    2015-01-01

    Hydrogen produced from water using nuclear energy will avoid both the use of fossil fuel and CO 2 emission presumed to be the dominant reason for global warming. A thermo-chemical sulfur-iodine (SI) process coupled to a Very High Temperature Gas-Cooled Reactor(VHTR) is one of the most prospective hydrogen production methods that split water using nuclear energy because the SI process is suitable for large-scale hydrogen production without CO 2 emission. The dynamic simulation code to evaluate the start-up behavior of the chemical reactors placed on the secondary helium loop of the SI process has been developed and partially verified using the steady state values obtained from the Aspen Plus TM Code simulation. As the start-up dynamic simulation results of the SI process coupled to the IHX, which is one of components in the VHTR system, it is expected that the integrated secondary helium loop of the SI process can be successfully and safely approach the steady state condition

  10. A gas-cooled reactor surface power system

    International Nuclear Information System (INIS)

    Lipinski, R.J.; Wright, S.A.; Lenard, R.X.; Harms, G.A.

    1999-01-01

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life-cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitride clad in Nb1%Zr, which has been extensively tested under the SP-100 program. The fuel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fuel and stabilizing the geometry against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality can not occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars. copyright 1999 American Institute of Physics

  11. A gas-cooled reactor surface power system

    International Nuclear Information System (INIS)

    Lipinski, Ronald J.; Wright, Steven A.; Lenard, Roger X.; Harms, Gary A.

    1999-01-01

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life-cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitride clad in Nb1%Zr, which has been extensively tested under the SP-100 program. The fuel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fuel and stabilizing the geometry against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality can not occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars

  12. A Gas-Cooled Reactor Surface Power System

    Energy Technology Data Exchange (ETDEWEB)

    Harms, G.A.; Lenard, R.X.; Lipinski, R.J.; Wright, S.A.

    1998-11-09

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life- cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitide clad in Nb 1 %Zr, which has been extensively tested under the SP-I 00 program The fiel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fbel and stabilizing the geometty against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality cannot occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars.

  13. IAEA high temperature gas-cooled reactor activities

    International Nuclear Information System (INIS)

    Kendall, J.M.

    2000-01-01

    The IAEA activities on high temperature gas-cooled reactors are conducted with the review and support of the Member states, primarily through the International Working Group on Gas-Cooled Reactors (IWG-GCR). This paper summarises the results of the IAEA gas-cooled reactor project activities in recent years along with ongoing current activities through a review of Co-ordinated Research Projects (CRPs), meetings and other international efforts. A series of three recently completed CRPs have addressed the key areas of reactor physics for LEU fuel, retention of fission products and removal of post shutdown decay heat through passive heat transport mechanisms. These activities along with other completed and ongoing supporting CRPs and meetings are summarised with reference to detailed documentation of the results. (authors)

  14. IAEA high temperature gas cooled reactor activities

    International Nuclear Information System (INIS)

    Kendall, J.M.

    2001-01-01

    IAEA activities on high temperature gas cooled reactors are conducted with the review and support of Member States, primarily through the International Working Group on Gas Cooled Reactors (IWGGCR). This paper summarises the results of the IAEA gas cooled reactor project activities in recent years along with ongoing current activities through a review of Co-ordinated Research Projects (CRPs), meetings and other international efforts. A series of three recently completed CRPs have addressed the key areas of reactor physics for LEU fuel, retention of fission products, and removal of post shutdown decay heat through passive heat transport mechanisms. These activities along with other completed and ongoing supporting CRPs and meetings are summarised with reference to detailed documentation of the results. (author)

  15. THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code

    International Nuclear Information System (INIS)

    Vondy, D.R.

    1984-07-01

    The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures in the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations

  16. THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.

    1984-07-01

    The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures in the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations.

  17. Advances in Nuclear Power Process Heat Applications

    International Nuclear Information System (INIS)

    2012-05-01

    Following an IAEA coordinated research project, this publication compiles the findings of research and development activities related to practical nuclear process heat applications. An overview of current progress on high temperature gas cooled reactors coupling schemes for different process heat applications, such as hydrogen production and desalination is included. The associated safety aspects are also highlighted. The summary report documents the results and conclusions of the project.

  18. Fuel Development For Gas-Cooled Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    M. K. Meyer

    2006-06-01

    The Generation IV Gas-cooled Fast Reactor (GFR) concept is proposed to combine the advantages of high-temperature gas-cooled reactors (such as efficient direct conversion with a gas turbine and the potential for application of high-temperature process heat), with the sustainability advantages that are possible with a fast-spectrum reactor. The latter include the ability to fission all transuranics and the potential for breeding. The GFR is part of a consistent set of gas-cooled reactors that includes a medium-term Pebble Bed Modular Reactor (PBMR)-like concept, or concepts based on the Gas Turbine Modular Helium Reactor (GT-MHR), and specialized concepts such as the Very High Temperature Reactor (VHTR), as well as actinide burning concepts [ ]. To achieve the necessary high power density and the ability to retain fission gas at high temperature, the primary fuel concept proposed for testing in the United States is a dispersion coated fuel particles in a ceramic matrix. Alternative fuel concepts considered in the U.S. and internationally include coated particle beds, ceramic clad fuel pins, and novel ceramic ‘honeycomb’ structures. Both mixed carbide and mixed nitride-based solid solutions are considered as fuel phases.

  19. A nuclear gas turbine perspective: The indirect cycle (IDC) offers a practical solution

    International Nuclear Information System (INIS)

    McDonald, C.F.

    1996-01-01

    The current generation of nuclear power plants are based on light water reactors and steam cycle power conversion systems. This coupling yields a power plant efficiency of less than 30% when dry-cooled. By utilizing a higher temperature heat source, and a more efficient prime-mover, the next generation of nuclear power plants have the potential for an efficiency of close to 50%, with attendant fuel savings and reduced heat rejection to the environment. The nuclear closed Brayton cycle (NCBC) gas turbine plant involves the coupling of a high temperature reactor (HTR) and a high efficiency helium gas turbine. Studies over many years have shown the merits of an indirect cycle (IDC) approach in which an intermediate heat exchanger is used to transfer the reactor thermal energy to the prime-mover. The major advantages of this include the following: (1) multipurpose nuclear heat source; (2) gas turbine operation in a clean non-nuclear environment; (3) power conversion system simplicity; and (4) maximum utilization of existing technology. An additional factor, which may dominate the above is that the IDC approach is in concert with the only active gas-cooled reactor program remaining in the world, namely a high temperature test reactor (HTTR) under construction in Japan, the culmination of which will be the demonstration of a viable high temperature nuclear heat source. The major theme of this paper is that the IDC nuclear gas turbine offers a practical NCBC power plant concept for operation in the second or third decades of the 21st century

  20. Gas Reactor International Cooperative Program. Interim report. Construction and operating experience of selected European Gas-Cooled Reactors

    International Nuclear Information System (INIS)

    1978-09-01

    The construction and operating experience of selected European Gas-Cooled Reactors is summarized along with technical descriptions of the plants. Included in the report are the AVR Experimental Pebble Bed Reactor, the Dragon Reactor, AGR Reactors, and the Thorium High Temperature Reactor (THTR). The study demonstrates that the European experience has been favorable and forms a good foundation for the development of Advanced High Temperature Reactors

  1. Initial assessment of environmental effects on SiC/SiC composites in helium-cooled nuclear systems

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I [ORNL

    2013-09-01

    This report summarized the information available in the literature on the chemical reactivity of SiC/SiC composites and of their components in contact with the helium coolant used in HTGR, VHTR and GFR designs. In normal operation conditions, ultra-high purity helium will have chemically controlled impurities (water, oxygen, carbon dioxide, carbon monoxide, methane, hydrogen) that will create a slightly oxidizing gas environment. Little is known from direct experiments on the reactivity of third generation (nuclear grade) SiC/SiC composites in contact with low concentrations of water or oxygen in inert gas, at high temperature. However, there is ample information about the oxidation in dry and moist air of SiC/SiC composites at high temperatures. This information is reviewed first in the next chapters. The emphasis is places on the improvement in material oxidation, thermal, and mechanical properties during three stages of development of SiC fibers and at least two stages of development of the fiber/matrix interphase. The chemical stability of SiC/SiC composites in contact with oxygen or steam at temperatures that may develop in off-normal reactor conditions supports the conclusion that most advanced composites (also known as nuclear grade SiC/SiC composites) have the chemical resistance that would allow them maintain mechanical properties at temperatures up to 1200 1300 oC in the extreme conditions of an air or water ingress accident scenario. Further research is needed to assess the long-term stability of advanced SiC/SiC composites in inert gas (helium) in presence of very low concentrations (traces) of water and oxygen at the temperatures of normal operation of helium-cooled reactors. Another aspect that needs to be investigated is the effect of fast neutron irradiation on the oxidation stability of advanced SiC/SiC composites in normal operation conditions.

  2. Worldwide advanced nuclear power reactors with passive and inherent safety: What, why, how, and who

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Reich, W.J.

    1991-09-01

    The political controversy over nuclear power, the accidents at Three Mile Island (TMI) and Chernobyl, international competition, concerns about the carbon dioxide greenhouse effect and technical breakthroughs have resulted in a segment of the nuclear industry examining power reactor concepts with PRIME safety characteristics. PRIME is an acronym for Passive safety, Resilience, Inherent safety, Malevolence resistance, and Extended time after initiation of an accident for external help. The basic ideal of PRIME is to develop power reactors in which operator error, internal sabotage, or external assault do not cause a significant release of radioactivity to the environment. Several PRIME reactor concepts are being considered. In each case, an existing, proven power reactor technology is combined with radical innovations in selected plant components and in the safety philosophy. The Process Inherent Ultimate Safety (PIUS) reactor is a modified pressurized-water reactor, the Modular High Temperature Gas-Cooled Reactor (MHTGR) is a modified gas-cooled reactor, and the Advanced CANDU Project is a modified heavy-water reactor. In addition to the reactor concepts, there is parallel work on super containments. The objective is the development of a passive ''box'' that can contain radioactivity in the event of any type of accident. This report briefly examines: why a segment of the nuclear power community is taking this new direction, how it differs from earlier directions, and what technical options are being considered. A more detailed description of which countries and reactor vendors have undertaken activities follows. 41 refs

  3. Gas turbine modular helium reactor in cogeneration; Turbina de gas reactor modular con helio en cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Leon de los Santos, G. [UNAM, Facultad de Ingenieria, Division de Ingenieria Electrica, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Mexico, D. F. (Mexico)], e-mail: tesgleon@gmail.com

    2009-10-15

    This work carries out the thermal evaluation from the conversion of nuclear energy to electric power and process heat, through to implement an outline gas turbine modular helium reactor in cogeneration. Modeling and simulating with software Thermo flex of Thermo flow the performance parameters, based on a nuclear power plant constituted by an helium cooled reactor and helium gas turbine with three compression stages, two of inter cooling and one regeneration stage; more four heat recovery process, generating two pressure levels of overheat vapor, a pressure level of saturated vapor and one of hot water, with energetic characteristics to be able to give supply to a very wide gamma of industrial processes. Obtaining a relationship heat electricity of 0.52 and efficiency of net cogeneration of 54.28%, 70.2 MW net electric, 36.6 MW net thermal with 35% of condensed return to 30 C; for a supplied power by reactor of 196.7 MW; and with conditions in advanced gas turbine of 850 C and 7.06 Mpa, assembly in a shaft, inter cooling and heat recovery in cogeneration. (Author)

  4. Development of high temperature gas cooled reactor in China

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Wentao [Paul Scherrer Institute, Villigen (Switzerland). Dept. of Nuclear Energy and Safety; Schorer, Michael [Swiss Nuclear Forum, Olten (Switzerland)

    2018-02-15

    High temperature gas cooled reactor (HTGR) is one of the six Generation IV reactor types put forward by Generation IV International Forum (GIF) in 2002. This type of reactor has high outlet temperature. It uses Helium as coolant and graphite as moderator. Pebble fuel and ceramic reactor core are adopted. Inherit safety, good economy, high generating efficiency are the advantages of HTGR. According to the comprehensive evaluation from the international nuclear community, HTGR has already been given the priority to the research and development for commercial use. A demonstration project of the High Temperature Reactor-Pebble-�bed Modules (HTR-PM) in Shidao Bay nuclear power plant in China is under construction. In this paper, the development history of HTGR in China and the current situation of HTR-PM will be introduced. The experiences from China may be taken as a reference by the international nuclear community.

  5. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1972-01-01

    Advances in Nuclear Science and Technology, Volume 6 provides information pertinent to the fundamental aspects of nuclear science and technology. This book covers a variety of topics, including nuclear steam generator, oscillations, fast reactor fuel, gas centrifuge, thermal transport system, and fuel cycle.Organized into six chapters, this volume begins with an overview of the high standards of technical safety for Europe's first nuclear-propelled merchant ship. This text then examines the state of knowledge concerning qualitative results on the behavior of the solutions of the nonlinear poin

  6. Development of advanced fabrication technology for high-temperature gas-cooled reactor fuel. Reduction of coating failure fraction

    International Nuclear Information System (INIS)

    Minato, Kazuo; Kikuchi, Hironobu; Fukuda, Kousaku; Tobita, Tsutomu; Yoshimuta, Sigeharu; Suzuki, Nobuyuki; Tomimoto, Hiroshi; Nishimura, Kazuhisa; Oda, Takafumi

    1998-11-01

    The advanced fabrication technology for high-temperature gas-cooled reactor fuel has been developed to reduce the coating failure fraction of the fuel particles, which leads to an improvement of the reactor safety. The present report reviews the results of the relevant work. The mechanisms of the coating failure of the fuel particles during coating and compaction processes of the fuel fabrication were studied to determine a way to reduce the coating failure fraction of the fuel. The coating process was improved by optimizing the mode of the particle fluidization and by developing the process without unloading and loading of the particles at intermediate coating process. The compaction process was improved by optimizing the combination of the pressing temperature and the pressing speed of the overcoated particles. Through these modifications of the fabrication process, the quality of the fuel was improved outstandingly. (author)

  7. Cooling of gas turbines IX : cooling effects from use of ceramic coatings on water-cooled turbine blades

    Science.gov (United States)

    Brown, W Byron; Livingood, John N B

    1948-01-01

    The hottest part of a turbine blade is likely to be the trailing portion. When the blades are cooled and when water is used as the coolant, the cooling passages are placed as close as possible to the trailing edge in order to cool this portion. In some cases, however, the trailing portion of the blade is so narrow, for aerodynamic reasons, that water passages cannot be located very near the trailing edge. Because ceramic coatings offer the possibility of protection for the trailing part of such narrow blades, a theoretical study has been made of the cooling effect of a ceramic coating on: (1) the blade-metal temperature when the gas temperature is unchanged, and (2) the gas temperature when the metal temperature is unchanged. Comparison is also made between the changes in the blade or gas temperatures produced by ceramic coatings and the changes produced by moving the cooling passages nearer the trailing edge. This comparison was made to provide a standard for evaluating the gains obtainable with ceramic coatings as compared to those obtainable by constructing the turbine blade in such a manner that water passages could be located very near the trailing edge.

  8. Design of project management system for 10 MW high temperature gas-cooled test reactor

    International Nuclear Information System (INIS)

    Zhu Yan; Xu Yuanhui

    1998-01-01

    A framework of project management information system (MIS) for 10 MW high temperature gas-cooled test reactor is introduced. Based on it, the design of nuclear project management information system and project monitoring system (PMS) are given. Additionally, a new method of developing MIS and Decision Support System (DSS) has been tried

  9. Particle deposition and resuspension in gas-cooled reactors—Activity overview of the two European research projects THINS and ARCHER

    Energy Technology Data Exchange (ETDEWEB)

    Barth, T., E-mail: t.barth@hzdr.de [Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden (Germany); Lecrivain, G. [Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden (Germany); Jayaraju, S.T. [Nuclear Research and Consultancy Group (NRG), 1755ZG Petten (Netherlands); Hampel, U. [Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden (Germany); AREVA Endowed Chair of Imaging Techniques in Energy and Process Engineering, Technische Universität Dresden, 01062 Dresden (Germany)

    2015-08-15

    Highlights: • A summary on particle deposition and resuspension experiments is provided. • Similarities between single and multilayer particle deposits are found. • Numerical models for simulation of particle deposits are successfully developed. - Abstract: The deposition and resuspension behaviour of radio-contaminated aerosol particles is a key issue for the safety assessment of depressurization accidents of gas-cooled high temperature reactors. Within the framework of two European research projects, namely Thermal Hydraulics of Innovative Nuclear Systems (THINS) and Advanced High-Temperature Reactors for Cogeneration of Heat and Electricity R&D (ARCHER), a series of investigations was performed to investigate the transport, the deposition and the resuspension of aerosol particles in turbulent flows. The experimental and numerical tests can be subdivided into four different parts: (1) Monolayer particle deposition, (2) Monolayer particle resuspension, (3) Multilayer particle deposition and (4) Multilayer particle resuspension. The experimental results provide a new insight into the formation and removal of aerosol particle deposits in turbulent flows and are used for the development and validation of numerical procedures in gas-cooled reactors. Good agreement was found between the numerical and the experimental results.

  10. Gas hydrate cool storage system

    Science.gov (United States)

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  11. Hypothetical air ingress scenarios in advanced modular high temperature gas cooled reactors

    International Nuclear Information System (INIS)

    Kroeger, P.G.

    1988-01-01

    Considering an extremely hypothetical scenario of complete cross duct failure and unlimited air supply into the reactor vessel of a modular high temperature gas cooled ractor, it is found that the potential air inflow remains limited due to the high friction pressure drop through the active core. All incoming air will be oxidized to CO and some local external burning would be temporarily possible in such a scenario. The accident would have to continue with unlimited air supply for hundreds of hours before the core structural integrity would be jeopardized

  12. Thermal and flow design of helium-cooled reactors

    International Nuclear Information System (INIS)

    Melese, G.; Katz, R.

    1984-01-01

    This book continues the American Nuclear Society's series of monographs on nuclear science and technology. Chapters of the book include information on the first-generation gas-cooled reactors; HTGR reactor developments; reactor core heat transfer; mechanical problems related to the primary coolant circuit; HTGR design bases; core thermal design; gas turbines; process heat HTGR reactors; GCFR reactor thermal hydraulics; and gas cooling of fusion reactors

  13. Resource utilization of symbiotic high-temperature gas-cooled reactor systems

    International Nuclear Information System (INIS)

    Borgonovi, G.M.; Brogli, R.H.

    1978-01-01

    The cumulative uranium requirements of different symbiotic combinations of high-temperature gas-cooled reactor (HTGR) prebreeders have been calculated assuming an open-end nuclear economy. The results obtained indicate that the combination of prebreeders and near-breeders does not save resources over a self-generated recycle case of comparable conversion ratio, and that it may take between 40 and 50 yr before the symbiotic system containing breeders starts saving resources over an HTGR with self-generated recycle and a conversion ratio of 0.83

  14. Basic study on high temperature gas cooled reactor technology for hydrogen production

    International Nuclear Information System (INIS)

    Chang, Jong Hwa; Lee, W. J.; Lee, H. M.

    2003-01-01

    The annual production of hydrogen in the world is about 500 billion m 3 . Currently hydrogen is consumed mainly in chemical industries. However hydrogen has huge potential to be consumed in transportation sector in coming decades. Assuming that 10% of fossil energy in transportation sector is substituted by hydrogen in 2020, the hydrogen in the sector will exceed current hydrogen consumption by more than 2.5 times. Currently hydrogen is mainly produced by steam reforming of natural gas. Steam reforming process is chiefest way to produce hydrogen for mass production. In the future, hydrogen has to be produced in a way to minimize CO2 emission during its production process as well as to satisfy economic competition. One of the alternatives to produce hydrogen under such criteria is using heat source of high-temperature gas-cooled reactor. The high-temperature gas-cooled reactor represents one type of the next generation of nuclear reactors for safe and reliable operation as well as for efficient and economic generation of energy

  15. Passive safety systems and natural circulation in water cooled nuclear power plants

    International Nuclear Information System (INIS)

    2009-11-01

    Nuclear power produces 15% of the world's electricity. Many countries are planning to either introduce nuclear energy or expand their nuclear generating capacity. Design organizations are incorporating both proven means and new approaches for reducing the capital costs of their advanced designs. In the future most new nuclear plants will be of evolutionary design, often pursuing economies of scale. In the longer term, innovative designs could help to promote a new era of nuclear power. Since the mid-1980s it has been recognized that the application of passive safety systems (i.e. those whose operation takes advantage of natural forces such as convection and gravity), can contribute to simplification and potentially improve economics of new nuclear power plant designs. The IAEA Conference on The Safety of Nuclear Power: Strategy for the Future, which was convened in 1991, noted that for new plants 'the use of passive safety features is a desirable method of achieving simplification and increasing the reliability of the performance of essential safety functions, and should be used wherever appropriate'. Some new designs also utilize natural circulation as a means to remove core power during normal operation. The use of passive systems can eliminate the costs associated with the installation, maintenance, and operation of active systems that require multiple pumps with independent and redundant electric power supplies. However, considering the weak driving forces of passive systems based on natural circulation, careful design and analysis methods must be employed to ensure that the systems perform their intended functions. To support the development of advanced water cooled reactor designs with passive systems, investigations of natural circulation are conducted in several IAEA Member States with advanced reactor development programmes. To foster international collaboration on the enabling technology of passive systems that utilize natural circulation, the IAEA

  16. French activities on gas cooled reactors

    International Nuclear Information System (INIS)

    Bastien, D.

    1996-01-01

    The gas cooled reactor programme in France originally consisted of eight Natural Uranium Graphite Gas Cooled Reactors (UNGG). These eight units, which are now permanently shutdown, represented a combined net electrical power of 2,375 MW and a total operational history of 163 years. Studies related to these reactors concern monitoring and dismantling of decommissioned facilities, including the development of methods for dismantling. France has been monitoring the development of HTRs throughout the world since 1979, when it halted its own HTR R and D programme. France actively participates in three CRPs set up by the IAEA. (author). 1 tab

  17. Cooling water requirements and nuclear power plants

    International Nuclear Information System (INIS)

    Rao, T.S.

    2010-01-01

    Indian nuclear power programme is poised to scuttle the energy crisis of our time by proposing joint ventures for large power plants. Large fossil/nuclear power plants (NPPs) rely upon water for cooling and are therefore located near coastal areas. The amount of water a power station uses and consumes depends on the cooling technology used. Depending on the cooling technology utilized, per megawatt existing NPPs use and consume more water (by a factor of 1.25) than power stations using other fuel sources. In this context the distinction between 'use' and 'consume' of water is important. All power stations do consume some of the water they use; this is generally lost as evaporation. Cooling systems are basically of two types; Closed cycle and Once-through, of the two systems, the closed cycle uses about 2-3% of the water volumes used by the once-through system. Generally, water used for power plant cooling is chemically altered for purposes of extending the useful life of equipment and to ensure efficient operation. The used chemicals effluent will be added to the cooling water discharge. Thus water quality impacts on power plants vary significantly, from one electricity generating technology to another. In light of massive expansion of nuclear power programme there is a need to develop new ecofriendly cooling water technologies. Seawater cooling towers (SCT) could be a viable option for power plants. SCTs can be utilized with the proper selection of materials, coatings and can achieve long service life. Among the concerns raised about the development of a nuclear power industry, the amount of water consumed by nuclear power plants compared with other power stations is of relevance in light of the warming surface seawater temperatures. A 1000 MW power plant uses per day ∼800 ML/MW in once through cooling system; while SCT use 27 ML/MW. With the advent of new marine materials and concrete compositions SCT can be constructed for efficient operation. However, the

  18. Technology of steam generators for gas-cooled reactors. Proceedings of a specialists' meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-07-01

    The activity of the IAEA in the field of the technology of gas-cooled reactors was formalized by formation of an International Working Group on Gas-Cooled Reactors (IWGCR). The gas cooled reactor program considered by the IWGCR includes carbon-dioxide-cooled thermal reactors, helium cooled thermal high temperature reactors for power generation and for process heat applications and gas-cooled fast breeder reactors. This report covers the papers dealing with operating experience, steam generators for next generation of gas-cooled reactors, material development and corrosion problems, and thermohydraulics.

  19. Technology of steam generators for gas-cooled reactors. Proceedings of a specialists' meeting

    International Nuclear Information System (INIS)

    1988-01-01

    The activity of the IAEA in the field of the technology of gas-cooled reactors was formalized by formation of an International Working Group on Gas-Cooled Reactors (IWGCR). The gas cooled reactor program considered by the IWGCR includes carbon-dioxide-cooled thermal reactors, helium cooled thermal high temperature reactors for power generation and for process heat applications and gas-cooled fast breeder reactors. This report covers the papers dealing with operating experience, steam generators for next generation of gas-cooled reactors, material development and corrosion problems, and thermohydraulics

  20. Proceedings of the 1998 international joint power generation conference (FACT-Vol.22). Volume 1: Fuels and combustion technologies; Gas turbines; Environmental engineering; Nuclear engineering

    International Nuclear Information System (INIS)

    Gupta, A.; Natole, R.; Sanyal, A.; Veilleux, J.

    1998-01-01

    Papers are arranged under the following topical sections: Fuels and combustion technologies; Low NOx burner applications; Low cost solutions to utility NOx compliance issues; Coal combustion--Retrofit experiences, low NOx, and efficiency; Highly preheated air combustion; Combustion control and optimization; Advanced technology for gas fuel combustion; Spray combustion and mixing; Efficient power generation using gas turbines; Safety issues in power industry; Efficient and environmentally benign conversion of wastes to energy; Artificial intelligence monitoring, control, and optimization of power plants; Combustion modeling and diagnostics; Advanced combustion technologies and combustion synthesis; Aero and industrial gas turbine presentations IGTI gas turbine division; NOx/SO 2 ; Plant cooling water system problems and solutions; Issues affecting plant operations and maintenance; and Costs associated with operating and not operating a nuclear power plant. Papers within scope have been processed separately for inclusion on the database

  1. Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

    2008-04-01

    A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: • Identifies pre-conceptual design requirements • Develops test loop equipment schematics and layout • Identifies space allocations for each of the facility functions, as required • Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems • Identifies pre-conceptual utility and support system needs • Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs.

  2. Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility

    International Nuclear Information System (INIS)

    S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

    2008-01-01

    A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: (1) Identifies pre-conceptual design requirements; (2) Develops test loop equipment schematics and layout; (3) Identifies space allocations for each of the facility functions, as required; (4) Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems; (5) Identifies pre-conceptual utility and support system needs; and (6) Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs

  3. Hydrogen production by high-temperature gas-cooled reactor. Conceptual design of advanced process heat exchangers of the HTTR-IS hydrogen production system

    International Nuclear Information System (INIS)

    Sakaba, Nariaki; Ohashi, Hirofumi; Sato, Hiroyuki; Hara, Teruo; Kato, Ryoma; Kunitomi, Kazuhiko

    2008-01-01

    Nuclear hydrogen production is necessary in an anticipated hydrogen society that demands a massive quantity of hydrogen without economic disadvantage. Japan Atomic Energy Agency (JAEA) has launched the conceptual design study of a hydrogen production system with a near-term plan to connect it to Japan's first high-temperature gas-cooled reactor HTTR. The candidate hydrogen production system is based on the thermochemical water-splitting iodine sulphur (IS) process.The heat of 10 MWth at approximately 900degC, which can be provided by the secondary helium from the intermediate heat exchanger of the HTTR, is the energy input to the hydrogen production system. In this paper, we describe the recent progresses made in the conceptual design of advanced process heat exchangers of the HTTR-IS hydrogen production system. A new concept of sulphuric acid decomposer is proposed. This involves the integration of three separate functions of sulphuric acid decomposer, sulphur trioxide decomposer, and process heat exchanger. A new mixer-settler type of Bunsen reactor is also designed. This integrates three separate functions of Bunsen reactor, phase separator, and pump. The new concepts are expected to result in improved economics through construction and operation cost reductions because the number of process equipment and complicated connections between the equipment has been substantially reduced. (author)

  4. Parametric studies on different gas turbine cycles for a high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Wang Jie; Gu Yihua

    2005-01-01

    The high temperature gas-cooled reactor (HTGR) coupled with turbine cycle is considered as one of the leading candidates for future nuclear power plants. In this paper, the various types of HTGR gas turbine cycles are concluded as three typical cycles of direct cycle, closed indirect cycle and open indirect cycle. Furthermore they are theoretically converted to three Brayton cycles of helium, nitrogen and air. Those three types of Brayton cycles are thermodynamically analyzed and optimized. The results show that the variety of gas affects the cycle pressure ratio more significantly than other cycle parameters, however, the optimized cycle efficiencies of the three Brayton cycles are almost the same. In addition, the turbomachines which are required for the three optimized Brayton cycles are aerodynamically analyzed and compared and their fundamental characteristics are obtained. Helium turbocompressor has lower stage pressure ratio and more stage number than those for nitrogen and air machines, while helium and nitrogen turbocompressors have shorter blade length than that for air machine

  5. Modeling and Simulation of the Sulfur-Iodine Process Coupled to a Very High-Temperature Gas-Cooled Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Youngjoon; Lee, Taehoon; Lee, Kiyoung; Kim, Minhwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Hydrogen produced from water using nuclear energy will avoid both the use of fossil fuel and CO{sub 2} emission presumed to be the dominant reason for global warming. A thermo-chemical sulfur-iodine (SI) process coupled to a Very High Temperature Gas-Cooled Reactor(VHTR) is one of the most prospective hydrogen production methods that split water using nuclear energy because the SI process is suitable for large-scale hydrogen production without CO{sub 2} emission. The dynamic simulation code to evaluate the start-up behavior of the chemical reactors placed on the secondary helium loop of the SI process has been developed and partially verified using the steady state values obtained from the Aspen Plus{sup TM} Code simulation. As the start-up dynamic simulation results of the SI process coupled to the IHX, which is one of components in the VHTR system, it is expected that the integrated secondary helium loop of the SI process can be successfully and safely approach the steady state condition.

  6. Evaluation of High Temperature Gas Cooled Reactor Performance: Benchmark Analysis Related to the PBMR-400, PBMM, GT-MHR, HTR-10 and the ASTRA Critical Facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-04-15

    The IAEA has facilitated an extensive programme that addresses the technical development of advanced gas cooled reactor technology. Included in this programme is the coordinated research project (CRP) on Evaluation of High Temperature Gas Cooled Reactor (HTGR) Performance, which is the focus of this TECDOC. This CRP was established to foster the sharing of research and associated technical information among participating Member States in the ongoing development of the HTGR as a future source of nuclear energy. Within it, computer codes and models were verified through actual test results from operating reactor facilities. The work carried out in the CRP involved both computational and experimental analysis at various facilities in IAEA Member States with a view to verifying computer codes and methods in particular, and to evaluating the performance of HTGRs in general. The IAEA is grateful to China, the Russian Federation and South Africa for providing their facilities and benchmark programmes in support of this CRP.

  7. Evaluation of High Temperature Gas Cooled Reactor Performance: Benchmark Analysis Related to the PBMR-400, PBMM, GT-MHR, HTR-10 and the ASTRA Critical Facility

    International Nuclear Information System (INIS)

    2013-04-01

    The IAEA has facilitated an extensive programme that addresses the technical development of advanced gas cooled reactor technology. Included in this programme is the coordinated research project (CRP) on Evaluation of High Temperature Gas Cooled Reactor (HTGR) Performance, which is the focus of this TECDOC. This CRP was established to foster the sharing of research and associated technical information among participating Member States in the ongoing development of the HTGR as a future source of nuclear energy. Within it, computer codes and models were verified through actual test results from operating reactor facilities. The work carried out in the CRP involved both computational and experimental analysis at various facilities in IAEA Member States with a view to verifying computer codes and methods in particular, and to evaluating the performance of HTGRs in general. The IAEA is grateful to China, the Russian Federation and South Africa for providing their facilities and benchmark programmes in support of this CRP.

  8. Gas Mixtures for Welding with Micro-Jet Cooling

    OpenAIRE

    Węgrzyn T.

    2015-01-01

    Welding with micro-jet cooling after was tested only for MIG and MAG processes. For micro-jet gases was tested only argon, helium and nitrogen. A paper presents a piece of information about gas mixtures for micro-jet cooling after in welding. There are put down information about gas mixtures that could be chosen both for MAG welding and for micro-jet process. There were given main information about influence of various micro-jet gas mixtures on metallographic structure of steel welds. Mechani...

  9. Gas turbine modular helium reactor in cogeneration

    International Nuclear Information System (INIS)

    Leon de los Santos, G.

    2009-10-01

    This work carries out the thermal evaluation from the conversion of nuclear energy to electric power and process heat, through to implement an outline gas turbine modular helium reactor in cogeneration. Modeling and simulating with software Thermo flex of Thermo flow the performance parameters, based on a nuclear power plant constituted by an helium cooled reactor and helium gas turbine with three compression stages, two of inter cooling and one regeneration stage; more four heat recovery process, generating two pressure levels of overheat vapor, a pressure level of saturated vapor and one of hot water, with energetic characteristics to be able to give supply to a very wide gamma of industrial processes. Obtaining a relationship heat electricity of 0.52 and efficiency of net cogeneration of 54.28%, 70.2 MW net electric, 36.6 MW net thermal with 35% of condensed return to 30 C; for a supplied power by reactor of 196.7 MW; and with conditions in advanced gas turbine of 850 C and 7.06 Mpa, assembly in a shaft, inter cooling and heat recovery in cogeneration. (Author)

  10. Genetic algorithms and artificial neural networks for loading pattern optimisation of advanced gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ziver, A.K. E-mail: a.k.ziver@imperial.ac.uk; Pain, C.C; Carter, J.N.; Oliveira, C.R.E. de; Goddard, A.J.H.; Overton, R.S

    2004-03-01

    A non-generational genetic algorithm (GA) has been developed for fuel management optimisation of Advanced Gas-Cooled Reactors, which are operated by British Energy and produce around 20% of the UK's electricity requirements. An evolutionary search is coded using the genetic operators; namely selection by tournament, two-point crossover, mutation and random assessment of population for multi-cycle loading pattern (LP) optimisation. A detailed description of the chromosomes in the genetic algorithm coded is presented. Artificial Neural Networks (ANNs) have been constructed and trained to accelerate the GA-based search during the optimisation process. The whole package, called GAOPT, is linked to the reactor analysis code PANTHER, which performs fresh fuel loading, burn-up and power shaping calculations for each reactor cycle by imposing station-specific safety and operational constraints. GAOPT has been verified by performing a number of tests, which are applied to the Hinkley Point B and Hartlepool reactors. The test results giving loading pattern (LP) scenarios obtained from single and multi-cycle optimisation calculations applied to realistic reactor states of the Hartlepool and Hinkley Point B reactors are discussed. The results have shown that the GA/ANN algorithms developed can help the fuel engineer to optimise loading patterns in an efficient and more profitable way than currently available for multi-cycle refuelling of AGRs. Research leading to parallel GAs applied to LP optimisation are outlined, which can be adapted to present day LWR fuel management problems.

  11. Interotex-innovative gas equipment for heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Winnington, T.L. [Interotex Ltd. (United Kingdom); Moore, N. [British Gas plc (United Kingdom); Valle, F.; Sanz, J. I. [Gas Natural SDG S.A. (Spain); Chavarri, J.M. [Fagor Electrodomesticos S. Coop. (Spain); Uselton, R. [Lennox Industries Inc. (United States)

    1997-10-01

    Conventionally, cooling technology for the residential market is provided by electrically driven vapour re-compression systems. But lately, due to the Montreal Protocol - restricting the utilisation of ozone depleting substances - and to the high peak demand in electricity, created by electrical air conditioning systems, there is a commercial opportunity for gas fired air conditioning appliances. This paper describes the development programme for a radical new absorption technology, from the theoretical studies, through the experimental programme, to the building, commissioning and installation of demonstration machines. It also includes an analysis of the world-wide residential cooling market and the opportunities available to manufacturers and gas utilities to introduce new gas heating and cooling technology, capable of competing effectively with electrical systems. (au)

  12. High Temperature Gas Cooled Reactor Fuels and Materials

    International Nuclear Information System (INIS)

    2010-03-01

    At the third annual meeting of the technical working group on Nuclear Fuel Cycle Options and Spent Fuel Management (TWG-NFCO), held in Vienna, in 2004, it was suggested 'to develop manuals/handbooks and best practice documents for use in training and education in coated particle fuel technology' in the IAEA's Programme for the year 2006-2007. In the context of supporting interested Member States, the activity to develop a handbook for use in the 'education and training' of a new generation of scientists and engineers on coated particle fuel technology was undertaken. To make aware of the role of nuclear science education and training in all Member States to enhance their capacity to develop innovative technologies for sustainable nuclear energy is of paramount importance to the IAEA Significant efforts are underway in several Member States to develop high temperature gas cooled reactors (HTGR) based on either pebble bed or prismatic designs. All these reactors are primarily fuelled by TRISO (tri iso-structural) coated particles. The aim however is to build future nuclear fuel cycles in concert with the aim of the Generation IV International Forum and includes nuclear reactor applications for process heat, hydrogen production and electricity generation. Moreover, developmental work is ongoing and focuses on the burning of weapon-grade plutonium including civil plutonium and other transuranic elements using the 'deep-burn concept' or 'inert matrix fuels', especially in HTGR systems in the form of coated particle fuels. The document will serve as the primary resource materials for 'education and training' in the area of advanced fuels forming the building blocks for future development in the interested Member States. This document broadly covers several aspects of coated particle fuel technology, namely: manufacture of coated particles, compacts and elements; design-basis; quality assurance/quality control and characterization techniques; fuel irradiations; fuel

  13. Advanced IGCC/Hydrogen Gas Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    York, William [General Electric Company, Schenectady, NY (United States); Hughes, Michael [General Electric Company, Schenectady, NY (United States); Berry, Jonathan [General Electric Company, Schenectady, NY (United States); Russell, Tamara [General Electric Company, Schenectady, NY (United States); Lau, Y. C. [General Electric Company, Schenectady, NY (United States); Liu, Shan [General Electric Company, Schenectady, NY (United States); Arnett, Michael [General Electric Company, Schenectady, NY (United States); Peck, Arthur [General Electric Company, Schenectady, NY (United States); Tralshawala, Nilesh [General Electric Company, Schenectady, NY (United States); Weber, Joseph [General Electric Company, Schenectady, NY (United States); Benjamin, Marc [General Electric Company, Schenectady, NY (United States); Iduate, Michelle [General Electric Company, Schenectady, NY (United States); Kittleson, Jacob [General Electric Company, Schenectady, NY (United States); Garcia-Crespo, Andres [General Electric Company, Schenectady, NY (United States); Delvaux, John [General Electric Company, Schenectady, NY (United States); Casanova, Fernando [General Electric Company, Schenectady, NY (United States); Lacy, Ben [General Electric Company, Schenectady, NY (United States); Brzek, Brian [General Electric Company, Schenectady, NY (United States); Wolfe, Chris [General Electric Company, Schenectady, NY (United States); Palafox, Pepe [General Electric Company, Schenectady, NY (United States); Ding, Ben [General Electric Company, Schenectady, NY (United States); Badding, Bruce [General Electric Company, Schenectady, NY (United States); McDuffie, Dwayne [General Electric Company, Schenectady, NY (United States); Zemsky, Christine [General Electric Company, Schenectady, NY (United States)

    2015-07-30

    The objective of this program was to develop the technologies required for a fuel flexible (coal derived hydrogen or syngas) gas turbine for IGCC that met DOE turbine performance goals. The overall DOE Advanced Power System goal was to conduct the research and development (R&D) necessary to produce coal-based IGCC power systems with high efficiency, near-zero emissions, and competitive capital cost. To meet this goal, the DOE Fossil Energy Turbine Program had as an interim objective of 2 to 3 percentage points improvement in combined cycle (CC) efficiency. The final goal is 3 to 5 percentage points improvement in CC efficiency above the state of the art for CC turbines in IGCC applications at the time the program started. The efficiency goals were for NOx emissions of less than 2 ppm NOx (@15 % O2). As a result of the technologies developed under this program, the DOE goals were exceeded with a projected 8 point efficiency improvement. In addition, a new combustion technology was conceived of and developed to overcome the challenges of burning hydrogen and achieving the DOE’s NOx goal. This report also covers the developments under the ARRA-funded portion of the program that include gas turbine technology advancements for improvement in the efficiency, emissions, and cost performance of gas turbines for industrial applications with carbon capture and sequestration. Example applications could be cement plants, chemical plants, refineries, steel and aluminum plants, manufacturing facilities, etc. The DOE’s goal for more than 5 percentage point improvement in efficiency was met with cycle analyses performed for representative IGCC Steel Mill and IGCC Refinery applications. Technologies were developed in this program under the following areas: combustion, larger latter stage buckets, CMC and EBC, advanced materials and coatings, advanced configurations to reduce cooling, sealing and rotor purge flows, turbine aerodynamics, advanced sensors, advancements in first

  14. Safety assessment for electricity generation failure accident of gas cooled nuclear power plant using system dynamics (SD) method

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae Ho [Seoul National Univ. (Korea, Republic of). Dept. of Nuclear Engineering

    2013-04-15

    The power production failure happens in the loss of coolant of the nuclear power plants (NPPs). The air ingress is a serious accident in gas cooled NPPs. The quantification of the study performed by the system dynamics (SD) method which is processed by the feedback algorithms. The Vensim software package is used for the simulation, which is performed by the Monte-Carlo method. Two kinds of considerations as the economic and safety properties are important in NPPs. The result shows the stability of the operation when the power can be decided. The maximum value of risk is the 11.77 in 43rd and the minimum value is 0.0 in several years. So, the success of the circulation of coolant is simulated by the dynamical values. (orig.)

  15. Advanced nuclear fuel cycles activities in IAEA

    International Nuclear Information System (INIS)

    Nawada, H.P.; Ganguly, C.

    2007-01-01

    Full text of publication follows. Of late several developments in reprocessing areas along with advances in fuel design and robotics have led to immense interest in partitioning and transmutation (P and T). The R and D efforts in the P and T area are being paid increased attention as potential answers to ever-growing issues threatening sustainability, environmental protection and non-proliferation. Any fuel cycle studies that integrate partitioning and transmutation are also known as ''advanced fuel cycles'' (AFC), that could incinerate plutonium and minor actinide (MA) elements (namely Am, Np, Cm, etc.) which are the main contributors to long-term radiotoxicity. The R and D efforts in developing these innovative fuel cycles as well as reactors are being co-ordinated by international initiatives such as Innovative Nuclear Power Reactors and Fuel Cycles (INPRO), the Generation IV International Forum (GIF) and the Global Nuclear Energy Partnership (GENP). For these advanced nuclear fuel cycle schemes to take shape, the development of liquid-metal-cooled reactor fuel cycles would be the most essential step for implementation of P and T. Some member states are also evaluating other concepts involving the use of thorium fuel cycle or inert-matrix fuel or coated particle fuel. Advanced fuel cycle involving novel partitioning methods such as pyrochemical separation methods to recover the transuranic elements are being developed by some member states which would form a critical stage of P and T. However, methods that can achieve a very high reduction (>99.5%) of MA and long-lived fission products in the waste streams after partitioning must be achieved to realize the goal of an improved protection of the environment. In addition, the development of MA-based fuel is also an essential and crucial step for transmutation of these transuranic elements. The presentation intends to describe progress of the IAEA activities encompassing the following subject-areas: minimization of

  16. Gas cooled fast reactor research in Europe

    International Nuclear Information System (INIS)

    Stainsby, Richard; Peers, Karen; Mitchell, Colin; Poette, Christian; Mikityuk, Konstantin; Somers, Joe

    2011-01-01

    Research on the gas-cooled fast reactor system is directed towards fulfilling the ambitious long term goals of Generation IV (Gen IV), i.e., to develop a safe, sustainable, reliable, proliferation-resistant and economic nuclear energy system. In common with other fast reactors, gas-cooled fast reactors (GFRs) have exceptional potential as sustainable energy sources, for both the utilisation of fissile material and minimisation of nuclear waste through transmutation of minor actinides. The primary goal of GFR research is to develop the system primarily to be a reliable and economic electricity generator, with good safety and sustainability characteristics. However, for the longer term, GFR retains the potential for hydrogen production and other process heat applications facilitated through a high core outlet temperature which, in this case, is not limited by the characteristics of the coolant. In this respect, GFR can inherit the non-electricity applications of the thermal HTRs in a sustainable manner in a future in which natural uranium becomes scarce. GFR research within Europe is performed directly by those states who have signed the 'System Arrangement' document within the Generation IV International Forum (the GIF), specifically France and Switzerland and Euratom. Importantly, Euratom provides a route by which researchers in other European states, and other non-European affiliates, can contribute to the work of the GIF, even when these states are not signatories to the GFR System Arrangement in their own right. This paper is written from the perspective of Euratom's involvement in research on the GFR system, starting with the 5th Framework Programme (FP5) GCFR project in 2000, through the FP6 project between 2005 and 2009 and looking ahead to the proposed activities within the current 7th Framework Programme (FP7). The evolution of the GFR concept from the 1960s onwards is discussed briefly, followed by the current perceived role, objectives and progress with

  17. Nuclear Production of Hydrogen Using Thermochemical Water-Splitting Cycles

    International Nuclear Information System (INIS)

    Brown, L.C.; Besenbruch, G.E.; Schultz, K.R.; Marshall, A.C.; Showalter, S.K.; Pickard, P.S.; Funk, J.F.

    2002-01-01

    The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high-temperature heat from an advanced nuclear power station in a thermochemical water-splitting cycle. We carried out a detailed literature search to create a searchable database with 115 cycles and 822 references. We developed screening criteria to reduce the list to 25 cycles. We used detailed evaluation to select two cycles that appear most promising, the Adiabatic UT-3 cycle and the Sulfur-Iodine cycle. We have selected the Sulfur-Iodine thermochemical water-splitting cycle for further development. We then assessed the suitability of various nuclear reactor types to the production of hydrogen from water using the Sulfur-Iodine cycle. A basic requirement is to deliver heat to the process interface heat exchanger at temperatures up to 900 deg. C. We considered nine categories of reactors: pressurized water-cooled, boiling water-cooled, organic-cooled, alkali metal-cooled, heavy metal-cooled, gas-cooled, molten salt-cooled, liquid-core and gas-core reactors. We developed requirements and criteria to carry out the assessment, considering design, safety, operational, economic and development issues. This assessment process led to our choice of the helium gas-cooled reactor for coupling to the Sulfur-Iodine cycle. In continuing work, we are investigating the improvements that have been proposed to the Sulfur-Iodine cycle and will generate an integrated flowsheet describing a hydrogen production plant powered by a high-temperature helium gas-cooled nuclear reactor. This will allow us to size process equipment and calculate hydrogen production efficiency and capital cost, and to estimate the cost of the hydrogen produced as a function of nuclear reactor cost. (authors)

  18. Gas cooled traction drive inverter

    Science.gov (United States)

    Chinthavali, Madhu Sudhan

    2013-10-08

    The present invention provides a modular circuit card configuration for distributing heat among a plurality of circuit cards. Each circuit card includes a housing adapted to dissipate heat in response to gas flow over the housing. In one aspect, a gas-cooled inverter includes a plurality of inverter circuit cards, and a plurality of circuit card housings, each of which encloses one of the plurality of inverter cards.

  19. US Department of Energy Nuclear Research and Development Program

    International Nuclear Information System (INIS)

    Griffith, J.D.

    1989-01-01

    The presentation includes a discussion of nuclear power in the United States with respect to public opinion, energy consumption, economics, technology, and safety. The focus of the presentation is the advanced light water reactor strategy, liquid metal cooled reactor program, the modular high temperature gas cooled reactor program, and DOE research and test reactor facilities utilization. The discussion includes programmatic status and planning

  20. Licensing of advanced reactors: Status report and perspective

    International Nuclear Information System (INIS)

    King, T.

    1988-01-01

    In July, 1986, the U.S. Nuclear Regulatory Commission issued a Policy State on the Regulation of Advanced Nuclear Power Plants. As part of this policy, advanced reactor designers were encouraged to interact with NRC [Nuclear Regulatory Commission] early in the design process to obtain feedback regarding licensing requirements for advanced reactors. Accordingly, the staff has been interacting with the Department of Energy (DOE) and its contractors on the review of three advanced reactor conceptual designs: one modular high temperature gas-cooled reactor (MHTGR) and two liquid metal reactors (LMRs). This paper provides a status of the NRC review effort, describes the key policy and technical issues resulting from our review and provides the current status and approach to the development of licensing guidance on each

  1. Construction and commissioning experience of evolutionary water cooled nuclear power plants

    International Nuclear Information System (INIS)

    2004-04-01

    Electricity market liberalization is an established fact in several countries and there is a trend to adopt it in other countries. The essential aim of market liberalization is to improve the overall economic efficiency. In order that nuclear power remains a viable option for electricity generation, its costs should be competitive with alternative sources while, at the same time, it should have a safe and reliable operation record. The capital cost of nuclear power plants (NPPs) generally accounts for 43-70% of the total nuclear electricity generation costs, compared to 26-48% for coal plants and 13-32% for gas plants. Most of these expenditures are incurred during the construction phase of a NPP. The achievement of shorter construction periods using improved technology and construction methods has a significant benefit on the costs incurred prior to any production of electricity. This document is intended to make the recent worldwide experience on construction and commissioning of evolutionary water cooled NPPs available to Member States and especially to those with nuclear power plants under construction/planning, and to those seriously considering nuclear power projects in the future. The final aim is to assist utilities and other organizations in Member States to improve the construction of nuclear power plants and achieve shortened schedules and reduced costs without compromising quality and safety. This document aims to provide an overview of the most advanced technologies, methods and processes used in construction and commissioning of recent nuclear projects. To better achieve this objective the presentation is selectively focused more on the new developments rather than providing a full review of all issues related to construction and commissioning. The experience described in this TECDOC applies to managers, engineers, supervisors, technicians and workers in various organizations dealing with the site construction and commissioning of nuclear power plants

  2. Red alert. The worldwide dangers of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J

    1986-01-01

    The book 'Red Alert' considers the problems and hazards of nuclear power. The politics behind the nuclear power programmes in the United Kingdom and other countries are examined, along with the sequence of events in Britain which led to the building of the Magnox and Advanced Gas-Cooled nuclear reactors. Health hazards of radiation, radioactive waste management, nuclear weapons programmes, and radiation accidents including the Chernobyl accident, are also discussed. (U.K.).

  3. Gas-cooled breeder reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    Chermanne, J.; Burgsmueller, P. [Societe Belge pour l' Industrie Nucleaire, Brussels

    1981-01-15

    The European Association for the Gas-cooled Breeder Reactor (G B R A), set-up in 1969 prepared between 1972 and 1974 a 1200 MWe Gas-cooled Breeder Reactor (G B R) commercial reference design G B R 4. It was then found necessary that a sound and neutral appraisal of the G B R licenseability be carried out. The Commission of the European Communities (C E C) accepted to sponsor this exercise. At the beginning of 1974, the C E C convened a group of experts to examine on a Community level, the safety documents prepared by the G B R A. A working party was set-up for that purpose. The experts examined a ''Preliminary Safety Working Document'' on which written questions and comments were presented. A ''Supplement'' containing the answers to all the questions plus a detailed fault tree and reliability analysis was then prepared. After a final study of this document and a last series of discussions with G B R A representatives, the experts concluded that on the basis of the evidence presented to the Working Party, no fundamental reasons were identified which would prevent a Gas-cooled Breeder Reactor of the kind proposed by the G B R A achieving a satisfactory safety status. Further work carried out on ultimate accident have confirmed this conclusion. One can therefore claim that the overall safety risk associated with G B R s compares favourably with that of any other reactor system.

  4. Experimental investigation of temperature rise in bone drilling with cooling: A comparison between modes of without cooling, internal gas cooling, and external liquid cooling.

    Science.gov (United States)

    Shakouri, Ehsan; Haghighi Hassanalideh, Hossein; Gholampour, Seifollah

    2018-01-01

    Bone fracture occurs due to accident, aging, and disease. For the treatment of bone fractures, it is essential that the bones are kept fixed in the right place. In complex fractures, internal fixation or external methods are used to fix the fracture position. In order to immobilize the fracture position and connect the holder equipment to it, bone drilling is required. During the drilling of the bone, the required forces to chip formation could cause an increase in the temperature. If the resulting temperature increases to 47 °C, it causes thermal necrosis of the bone. Thermal necrosis decreases bone strength in the hole and, subsequently, due to incomplete immobilization of bone, fracture repair is not performed correctly. In this study, attempts have been made to compare local temperature increases in different processes of bone drilling. This comparison has been done between drilling without cooling, drilling with gas cooling, and liquid cooling on bovine femur. Drilling tests with gas coolant using direct injection of CO 2 and N 2 gases were carried out by internal coolant drill bit. The results showed that with the use of gas coolant, the elevation of temperature has limited to 6 °C and the thermal necrosis is prevented. Maximum temperature rise reached in drilling without cooling was 56 °C, using gas and liquid coolant, a maximum temperature elevation of 43 °C and 42 °C have been obtained, respectively. This resulted in decreased possibility of thermal necrosis of bone in drilling with gas and liquid cooling. However, the results showed that the values obtained with the drilling method with direct gas cooling are independent of the rotational speed of drill.

  5. Cooling performance of helium-gas/water coolers in HENDEL

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Takada, Shoji; Hayashi, Haruyoshi; Kobayashi, Toshiaki; Ohta, Yukimaru; Shimomura, Hiroaki; Miyamoto, Yoshiaki

    1994-01-01

    The helium engineering demonstration loop (HENDEL) has four helium-gas/water coolers where the cooling water flows in the tubes and helium gas on the shell side. Their cooling performance was studied using the operational data from 1982 to 1991. The heat transfer of helium gas on the shell was obtained for segmental and step-up baffle type coolers. Also, the change with operation time was investigated. The cooling performance was lowered by the graphite powder released from the graphite components for several thousand hours and thereafter recovered because the graphite powder from the components was reduced and the powder in the cooler shell was blown off during the operation. (orig.)

  6. Design requirements, operation and maintenance of gas-cooled reactors

    International Nuclear Information System (INIS)

    1989-06-01

    At the invitation of the Government of the USA the Technical Committee Meeting on Design Requirements, Operation and Maintenance of Gas-Cooled Reactors, was held in San Diego on September 21-23, 1988, in tandem with the GCRA Conference. Both meetings attracted a large contingent of foreign participants. Approximately 100 delegates from 18 different countries participated in the Technical Committee meeting. The meeting was divided into three sessions: Gas-cooled reactor user requirement (8 papers); Gas-cooled reactor improvements to facilitate operation and maintenance (10 papers) and Safety, environmental impacts and waste disposal (5 papers). A separate abstract was prepared for each of these 23 papers. Refs, figs and tabs

  7. Estimation, comparison, and evaluation of advanced fission power reactor generation costs

    International Nuclear Information System (INIS)

    Waddell, J.D.

    1977-01-01

    The study compares the high-temperature gas-cooled reactor (HTGR), the gas-cooled fast reactor (GCFR), the molten-salt breeder reactor (MSBR), the light water breeder reactor (LWBR), and the heavy water reactor (HWR) with proposed light water reactors (LWR) and liquid-metal fast breeder reactors (LMFBR). The relative electrical generation costs, including the effects of the introduction of advanced reactor fuel cycles into the U.S. nuclear power economy, were projected through the year 2030. The study utilized the NEEDS computer code which is a simulation of the U.S. nuclear power economy. The future potential electrical generation costs and cumulative consumption of uranium ore were developed using characterizations of the advanced systems. The reactor-fuel cycle characterizations were developed from literature reviews and personal discussions with the proponents of the various systems. The study developed a ranking of the concepts based on generation costs and uranium consumption

  8. CFD analysis of multiphase coolant flow through fuel rod bundles in advanced pressure tube nuclear reactors

    International Nuclear Information System (INIS)

    Catana, A.; Turcu, I.; Prisecaru, I.; Dupleac, D.; Danila, N.

    2010-01-01

    The key component of a pressure tube nuclear reactor core is pressure tube filled with a stream of fuel bundles. This feature makes them suitable for CFD thermal-hydraulic analysis. A methodology for CFD analysis applied to pressure tube nuclear reactors is presented in this paper, which is focused on advanced pressure tube nuclear reactors. The complex flow conditions inside pressure tube are analysed by using the Eulerian multiphase model implemented in FLUENT CFD computer code. Fuel rods in these channels are superheated but the liquid is under high pressure, so it is sub-cooled in normal operating conditions on most of pressure tube length. In the second half of pressure tube length, the onset of boiling occurs, so the flow consists of a gas liquid mixture, with the volume of gas increasing along the length of the channel in the direction of the flow. Limited computer resources enforced us to use CFD analysis for segments of pressure tube. Significant local geometries (junctions, spacers) were simulated. Main results of this work are: prediction of main thermal-hydraulic parameters along pressure tube including CHF evaluation through fuel assemblies. (authors)

  9. Study on fundamental features of helium turbomachine for high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Wang Jie; Gu Yihua

    2004-01-01

    The High temperature gas-cooled reactor (HTGR) coupled with helium turbine cycle is considered as one of the leading candidates for future nuclear power plants. The HTGR helium turbine cycle was analyzed and optimized. Then the focal point of investigation was concentrated on the fundamental thermodynamic and aerodynamic features of helium turbomachine. As a result, a helium turbomachine is different from a general combustion gas turbine in two main design features, that is a helium turbomachine has more blade stages and shorter blade length, which are caused by the helium property and the high pressure of a closed cycle, respectively. (authors)

  10. Discussion on Design Transients of Pebble-bed High Temperature Gas-cooled Reactor

    International Nuclear Information System (INIS)

    Wang Yan; Li Fu; Zheng Yanhua

    2014-01-01

    In order to assure high quality for the components and their supports in the reactor coolant system, etc., some thermal-hydraulic transient conditions will be selected and researched for equipment design evaluation to satisfy the requirements ASME code, which are based on the conservative estimates of the magnitude and frequency of the temperature and pressure transients resulting from various operating conditions in the plant. In the mature design on pressurized water reactor, five conditions are considered. For the developing advanced pebble-bed high temperature gas-cooled reactor(HTGR), its design and operation has much difference with other reactors, so the transients of the pebble-bed high temperature gas-cooled reactor have distinctive characteristics. In this paper, the possible design transients of the pebble-bed HTGR will be discussed, and the frequency of design transients for equipment fatigue analysis and stress analysis due to cyclic stresses is also studied. The results will provide support for the design and construct of the pebble-bed HTGR. (author)

  11. Preliminary design of the cooling system for a gas-cooled, high-fluence fast pulsed reactor (HFFPR)

    International Nuclear Information System (INIS)

    Monteith, H.C.

    1978-10-01

    The High-Fluence Fast Pulsed Reactor (HFFPR) is a research reactor concept currently being evaluated as a source for weapon effects experimentation and advanced reactor safety experiments. One of the designs under consideration is a gas-cooled design for testing large-scale weapon hardware or large bundles of full-length, fast reactor fuel pins. This report describes a conceptual cooling system design for such a reactor. The primary coolant would be helium and the secondary coolant would be water. The size of the helium-to-water heat exchanger and the water-to-water heat exchanger will be on the order of 0.9 metre (3 feet) in diameter and 3 metres (10 feet) in length. Analysis indicates that the entire cooling system will easily fit into the existing Sandia Engineering Reactor Facility (SERF) building. The alloy Incoloy 800H appears to be the best candidate for the tube material in the helium-to-water heat exchanger. Type 316 stainless steel has been recommended for the shell of this heat exchanger. Estimates place the cost of the helium-to-water heat exchanger at approximately $100,000, the water-to-water heat exchanger at approximately $25,000, and the helium pump at approximately $450,000. The overall cost of the cooling system will approach $2 million

  12. Heavy water moderated gas-cooled reactors

    International Nuclear Information System (INIS)

    Bailly du Bois, B.; Bernard, J.L.; Naudet, R.; Roche, R.

    1964-01-01

    France has based its main effort for the production of nuclear energy on natural Uranium Graphite-moderated gas-cooled reactors, and has a long term programme for fast reactors, but this country is also engaged in the development of heavy water moderated gas-cooled reactors which appear to present the best middle term prospects. The economy of these reactors, as in the case of Graphite, arises from the use of natural or very slightly enriched Uranium; heavy water can take the best advantages of this fuel cycle and moreover offers considerable development potential because of better reactor performances. A prototype plant EL 4 (70 MW) is under construction and is described in detail in another paper. The present one deals with the programme devoted to the development of this reactor type in France. Reasons for selecting this reactor type are given in the first part: advantages and difficulties are underlined. After reviewing the main technological problems and the Research and Development carried out, results already obtained and points still to be confirmed are reported. The construction of EL 4 is an important step of this programme: it will be a significant demonstration of reactor performances and will afford many experimentation opportunities. Now the design of large power reactors is to be considered. Extension and improvements of the mechanical structures used for EL 4 are under study, as well as alternative concepts. The paper gives some data for a large reactor in the present state of technology, as a result from optimization studies. Technical improvements, especially in the field of materials could lead to even more interesting performances. Some prospects are mentioned for the long run. Investment costs and fuel cycles are discussed in the last part. (authors) [fr

  13. Assessment of gas cooled fast reactor with indirect supercritical CO2 cycle

    International Nuclear Information System (INIS)

    Hejzlar, P.; Driscoll, M. J.; Dostal, V.; Dumaz, P.; Poullennec, G.; Alpy, N.

    2006-01-01

    Various indirect power cycle options for a helium cooled Gas cooled Fast Reactor (GFR) with particular focus on a supercritical CO 2 (SCO 2 ) indirect cycle are investigated as an alternative to a helium cooled direct cycle GFR. The Balance Of Plant (BOP) options include helium-nitrogen Brayton cycle, supercritical water Rankine cycle, and SCO 2 recompression Brayton power cycle in three versions: (1) basic design with turbine inlet temperature of 550 .deg. C, (2) advanced design with turbine inlet temperature of 650 .deg. C and (3) advanced design with the same turbine inlet temperature and reduced compressor inlet temperature. The indirect SCO 2 recompression cycle is found attractive since in addition to easier BOP maintenance it allows significant reduction of core outlet temperature, making design of the primary system easier while achieving very attractive efficiencies comparable to or slightly lower than, the efficiency of the reference GFR direct cycle design. In addition, the indirect cycle arrangement allows significant reduction of the GFR 'proximate-containment' and the BOP for the SCO 2 cycle is very compact. Both these factors will lead to reduced capital cost

  14. Hot gas path component cooling system

    Science.gov (United States)

    Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

    2014-02-18

    A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

  15. Future needs for dry or peak shaved dry/wet cooling and significance to nuclear power plants. Final report

    International Nuclear Information System (INIS)

    Clukey, H.V.; McNelly, M.J.; Mitchell, R.C.

    1976-02-01

    U.S. requirements for uncommitted nuclear installations in water scarce areas that might require dry cooling tower systems are minimal through the year 2000 (6 to 23 GWe). In these areas it appears that peak-shaved dry/wet cooling systems are more attractive than all-dry tower cooling unless water costs were to approach the high level of several cents per gallon. The differential cooling system evaluated cost of peak-shaved dry/wet cooling systems above wet towers is typically $20 to $30/kWe for steam turbines; whereas, dry towers can represent an incremental burden of as much as $80/kWe. Gas turbine (Brayton Cycle) systems show similar benefits from an evaporative heat sink to those for steam turbine cycles--lower cooling system evaluated costs for peak-shaved dry/wet cooling systems than for conventional wet towers. These cooling system cost differentials do not reflect total costs for Brayton Cycle gas turbine plants. Together these added costs and uncertainties may substantially exceed the dollar incentives available for development of the Brayton Cycle for power generation needs for water deficient sites

  16. Nuclear power newsletter Vol. 2, no. 3

    International Nuclear Information System (INIS)

    2005-09-01

    The topics presented in this newsletter are: factors contributing to increased nuclear electricity production for the period 1990-2004 ; NPP operating performance and life cycle management; improving human performance quality and technical infrastructure; and technology development and applications for advanced reactors. Three factors contributing the electricity production increase are analysed and presented - growth due to new power plants building (36%); existing NPP uprating (7%); and energy availability improvements (57%). Trends of installed capacity and available production are given. The newsletter also presents technical issues that influence decisions on operation and nuclear power infrastructure and delayed NPPs. In the last article technology advances are presented in details for water cooled reactors, fast reactors and accelerator driven systems, gas cooled reactors and desalination plants

  17. Use of thorium for high temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Guimarães, Cláudio Q., E-mail: claudio_guimaraes@usp.br [Universidade de São Paulo (USP), SP (Brazil). Instituto de Física; Stefani, Giovanni L. de, E-mail: giovanni.stefani@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Santos, Thiago A. dos, E-mail: thiago.santos@ufabc.edu.br [Universidade Federal do ABC (UFABC), Santo André, SP (Brazil)

    2017-07-01

    The HTGR ( High Temperature Gas-cooled Reactor) is a 4{sup th} generation nuclear reactor and is fuelled by a mixture of graphite and fuel-bearing microspheres. There are two competitive designs of this reactor type: The German “pebble bed” mode, which is a system that uses spherical fuel elements, containing a graphite-and-fuel mixture coated in a graphite shell; and the American version, whose fuel is loaded into precisely located graphite hexagonal prisms that interlock to create the core of the vessel. In both variants, the coolant consists of helium pressurised. The HTGR system operates most efficiently with the thorium fuel cycle, however, so relatively little development has been carried out in this country on that cycle for HTGRs. In the Nuclear Engineering Centre of IPEN (Instituto de Pesquisas Energéticas e Nucleares), a study group is being formed linked to thorium reactors, whose proposal is to investigate reactors using thorium for {sup 233}U production and rejects burning. The present work intends to show the use of thorium in HTGRs, their advantages and disadvantages and its feasibility. (author)

  18. The Next Generation Nuclear Plant/Advanced Gas Reactor Fuel Irradiation Experiments in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Grover, S. Blaine

    2009-01-01

    The United States Department of Energy's Next Generation Nuclear Plant (NGNP) Program will be irradiating eight separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy's lead laboratory for nuclear energy development. The ATR is one of the world's premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006, and the second experiment (AGR-2) is currently in the design phase. The design of test trains, as well as the support systems and fission product monitoring system that will monitor and control the experiment during irradiation will be discussed. In

  19. Modular High Temperature Gas-Cooled Reactor heat source for coal conversion

    International Nuclear Information System (INIS)

    Schleicher, R.W. Jr.; Lewis, A.C.

    1992-09-01

    In the industrial nations, transportable fuels in the form of natural gas and petroleum derivatives constitute a primary energy source nearly equivalent to that consumed for generating electric power. Nations with large coal deposits have the option of coal conversion to meet their transportable fuel demands. But these processes themselves consume huge amounts of energy and produce undesirable combustion by-products. Therefore, this represents a major opportunity to apply nuclear energy for both the environmental and energy conservation reasons. Because the most desirable coal conversion processes take place at 800 degree C or higher, only the High Temperature Gas-Cooled Reactors (HTGRs) have the potential to be adapted to coal conversion processes. This report provides a discussion of this utilization of HTGR reactors

  20. Production of synthesis gas and methane via coal gasification utilizing nuclear heat

    International Nuclear Information System (INIS)

    van Heek, K.H.; Juentgen, H.

    1982-01-01

    The steam gasificaton of coal requires a large amount of energy for endothermic gasification, as well as for production and heating of the steam and for electricity generation. In hydrogasification processes, heat is required primarily for the production of hydrogen and for preheating the reactants. Current developments in nuclear energy enable a gas cooled high temperature nuclear reactor (HTR) to be the energy source, the heat produced being withdrawn from the system by means of a helium loop. There is a prospect of converting coal, in optimal yield, into a commercial gas by employing the process heat from a gas-cooled HTR. The advantages of this process are: (1) conservation of coal reserves via more efficient gas production; (2) because of this coal conservation, there are lower emissions, especially of CO 2 , but also of dust, SO 2 , NO/sub x/, and other harmful substances; (3) process engineering advantages, such as omission of an oxygen plant and reduction in the number of gas scrubbers; (4) lower gas manufacturing costs compared to conventional processes. The main problems involved in using nuclear energy for the industrial gasification of coal are: (1) development of HTRs with helium outlet temperatures of at least 950 0 C; (2) heat transfer from the core of the reactor to the gas generator, methane reforming oven, or heater for the hydrogenation gas; (3) development of a suitable allothermal gas generator for the steam gasification; and (4) development of a helium-heated methane reforming oven and adaption of the hydrogasification process for operation in combination with the reactor. In summary, processes for gasifying coal that employ heat from an HTR have good economic and technical prospects of being realized in the future. However, time will be required for research and development before industrial application can take place. 23 figures, 4 tables. (DP)

  1. Plutonium-burn high temperature gas-cooled reactor for 3E+3S

    International Nuclear Information System (INIS)

    Okamoto, Koji

    2015-01-01

    The Nuclear Energy Development in Japan is facing a very difficult conditions after Fukushima-Daiichi NPP Accident. Nuclear Energy has strong advantages on 3E, i.e., Energy security, Economical efficiency and Environment. However, people does not believe the Safety 'S' of Nuclear Energy, now. The disadvantage of 'S' overrides the advantages of '3E'. In Nuclear Energy, 'S' is expanded into 3S, i.e., Safety, Security and Safeguards. Especially, the management of Plutonium inventory in Spent Fuel generated by the NPP operation is very important in the viewpoints of non-proliferation. The high-temperature gas cooled reactor (HTGR) is the solution of these disadvantages of '3S' in Nuclear Energy. The fuel of HTGR is composed by 1 mm spherical fuel particle, i.e., TRISO made by fuel, graphite and silicon-carbide. The silicon-carbide can confine the fission products in any conditions of fuel life cycle, i.e., during operation, accidents and disposal for 1 million years. The confinement of the radioactive materials can be confirmed by the TRISO. The HTGR core has strong negative feedback for temperature. So, the fission automatically stopped at the accidental conditions, such as loss of flow and LOCA. Also, the residual heat can be cooled by the radiation heat transfer to reactor vessel wall. The HTGR system usually has passive vessel wall cooling system. When the passive cooling system had been failed, the heat can be transferred to the land by heat conductions, and fuel does not reach the SiC broken temperature. The fission chain reaction has been stopped automatically by negative feedback, i.e., physics. The residual heat had been cooled automatically by radiation. The radioactive materials had been confined automatically by silicon-carbide. The HTGR is superior for 'S' safety. Plutonium can be burned by the HTGR. In the viewpoints of non-proliferation, the fuel should be made by YSZ-PuO 2 , stabilized buffer

  2. Nuclear reactors

    International Nuclear Information System (INIS)

    Barre, Bertrand

    2015-10-01

    After some remarks on the nuclear fuel, on the chain reaction control, on fuel loading and unloading, this article proposes descriptions of the design, principles and operations of different types of nuclear reactors as well as comments on their presence and use in different countries: pressurized water reactors (design of the primary and secondary circuits, volume and chemistry control, backup injection circuits), boiling water reactors, heavy water reactors, graphite and boiling water reactors, graphite-gas reactors, fast breeder reactors, and fourth generation reactors (definition, fast breeding). For these last ones, six concepts are presented: sodium-cooled fast reactor, lead-cooled fast reactor, gas-cooled fast reactor, high temperature gas-cooled reactor, supercritical water-cooled reactor, and molten salt reactor

  3. Thermodynamic analysis of turbine blade cooling on the performance of gas turbine cycle

    International Nuclear Information System (INIS)

    Sarabchi, K.; Shokri, M.

    2002-01-01

    Turbine inlet temperature strongly affects gas turbine performance. Today blade cooling technologies facilitate the use of higher inlet temperatures. Of course blade cooling causes some thermodynamic penalties that destroys to some extent the positive effect of higher inlet temperatures. This research aims to model and evaluate the performance of gas turbine cycle with air cooled turbine. In this study internal and transpiration cooling methods has been investigated and the penalties as the result of gas flow friction, cooling air throttling, mixing of cooling air flow with hot gas flow, and irreversible heat transfer have been considered. In addition, it is attempted to consider any factor influencing actual conditions of system in the analysis. It is concluded that penalties due to blade cooling decrease as permissible temperature of the blade surface increases. Also it is observed that transpiration method leads to better performance of gas turbine comparing to internal cooling method

  4. Fuel arrangement for high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Tobin, J.M.

    1978-01-01

    Disclosed is a fuel arrangement for a high temperature gas cooled reactor including fuel assemblies with separate directly cooled fissile and fertile fuel elements removably inserted in an elongated moderator block also having a passageway for control elements

  5. Annual report and accounts 1994/95: Scottish Nuclear

    International Nuclear Information System (INIS)

    1995-01-01

    The Annual Report and Accounts for Scottish Nuclear are presented for the year 1994/1995. Scottish Nuclear Limited produces about half of Scotland's electricity requirement in its advanced gas-cooled reactors (AGRs) at Hunterston and Torness. It also has responsibility for decommissioning the Hunterston A Magnox nuclear power station. The role of the company in the international arena and as part of the United Kingdom's electric power industry, following privatisation, are discussed. (UK)

  6. Nuclear reactor, its cooling facility, nuclear power plant, and method of operating the same

    International Nuclear Information System (INIS)

    Tate, Hitoshi; Tominaga, Kenji; Fujii, Tadashi.

    1993-01-01

    The upper surface of inner structural materials in a container is partitioned by concrete structural walls to form an upper space portion. A pressure relief plate is disposed on the concrete structural walls. If an accident occurs, the pressure relief plate is operated to form a circulation path for a gas to return to the upper space portion again from the upper space portion. The temperature of cooling water in a pressure suppression chamber, that is, a wet well liquid phase portion is elevated by after heat of a reactor core. Evaporated steams transfer from the wet well gas phase portion to the upper space portion passing through pipelines and are mixed with N 2 gas present in the upper space portion. The mixed gas is cooled by a container inner wall cooled by air passing through an air cooling duct, flows downward by way of the pressure relief plate and reaches the wet well gas phase portion again. Since the gases in the upper space circulate by a driving force caused by the after heat, reliability of cooling performance can be improved upon occurrence of an accident without using an active driving force. (I.N.)

  7. Technologies for gas cooled reactor decommissioning, fuel storage and waste disposal. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1998-09-01

    Gas cooled reactors (GCRs) and other graphite moderated reactors have been important part of the world's nuclear programme for the past four decades. The wide diversity in status of this very wide spectrum of plants from initial design to decommissioning was a major consideration of the International Working group on Gas Cooled Reactors which recommended IAEA to convene a Technical Committee Meeting dealing with GCR decommissioning, including spent fuel storage and radiological waste disposal. This Proceedings includes papers 25 papers presented at the Meeting in three sessions entitled: Status of Plant Decommissioning Programmes; Fuels Storage Status and Programmes; waste Disposal and decontamination Practices. Each paper is described here by a separate abstract

  8. Sodium-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Hammers, H.W.

    1982-01-01

    The invention concerns a sodium-cooled nuclear reactor, whose reactor tank contains the primary circuit, shielding surrounding the reactor core and a primary/secondary heat exchanger, particularly a fast breeder reactor on the module principle. In order to achieve this module principle it is proposed to have electromagnetic circulating pumps outside the reactor tank, where the heat exchanger is accomodated in an annular case above the pumps. This case has several openings at the top end to the space above the reactor core, some smaller openings in the middle to the same space and is connected at the bottom to an annular space between the tank wall and the reactor core. As a favoured variant, it is proposed that the annular electromagnetic pumps should be arranged concentrically to the reactor tank, where there is an annual duct on the inside of the reactor tank. In this way the sodium-cooled nuclear reactor is made suitable as a module with a large number of such elements. (orig.) [de

  9. Helium-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Longton, P.B.; Cowen, H.C.

    1975-01-01

    In helium cooled HTR's there is a by-pass circuit for cleaning purposes in addition to the main cooling circuit. This is to remove such impurities as hydrogen, methane, carbon monoxide and water from the coolant. In this system, part of the coolant successively flows first through an oxidation bed of copper oxide and an absorption bed of silica gel, then through activated charcoal or a molecular sieve. The hydrogen and carbon monoxide impurities are absorbed and the dry gas is returned to the main cooling circuit. To lower the hydrogen/water ratio without increasing the hydrogen fraction in the main cooling circuit, some of the hydrogen fraction converted into water is added to the cooling circuit. This is done, inter alia, by bypassing the water produced in the oxidation bed before it enters the absorption bed. The rest of the by-pass circuit, however, also includes an absorption bed with a molecular sieve. This absorbs the oxidized carbon monoxide fraction. In this way, such side effects as the formation of additional methane, carburization of the materials of the by-pass circuit or loss of graphite are avoided. (DG/RF) [de

  10. Proceedings of the 2006 international congress on advances in nuclear power plants - ICAPP'06

    International Nuclear Information System (INIS)

    2006-01-01

    Following the highly successful ICAPP'05 meeting held in Seoul Korea, the 2006 International Congress on Advances in Nuclear Power Plants brought together international experts of the nuclear industry involved in the operation, development, building, regulation and research related to Nuclear Power Plants. The program covers the full spectrum of Nuclear Power Plant issues from design, deployment and construction of plants to research and development of future designs and advanced systems. The program covers lessons learned from power, research and demonstration reactors from over 50 years of experience with operation and maintenance, structures, materials, technical specifications, human factors, system design and reliability. The program by technical track deals with: - 1. Water-Cooled Reactor Programs and Issues Evolutionary designs, innovative, passive, light and heavy water cooled reactors; issues related to meeting medium term utility needs; design and regulatory issues; business, political and economic challenges; infrastructure limitations and improved construction techniques including modularization. - 2. High Temperature Gas Cooled Reactors Design and development issues, components and materials, safety, reliability, economics, demonstration plants and environmental issues, fuel design and reliability, power conversion technology, hydrogen production and other industrial uses; advanced thermal and fast reactors. - 3. Long Term Reactor Programs and Strategies Reactor technology with enhanced fuel cycle features for improved resource utilization, waste characteristics, and power conversion capabilities. Potential reactor designs with longer development times such as, super critical water reactors, liquid metal reactors, gaseous and liquid fuel reactors, Gen IV, INPRO, EUR and other programs. - 4. Operation, Performance and Reliability Management Training, O and M costs, life cycle management, risk based maintenance, operational experiences, performance and

  11. MHD/gas turbine systems designed for low cooling water requirements

    International Nuclear Information System (INIS)

    Annen, K.D.; Eustis, R.H.

    1983-01-01

    The MHD/gas turbine combined-cycle system has been designed specifically for applications where the availability of cooling water is very limited. The base case systems which were studied consist of a coal-fired MHD plant with an air turbine bottoming plant and require no cooling water. In addition to the base case systems, systems were considered which included the addition of a vapor cycle bottoming plant to improve the thermal efficiency. These systems require a small amount of cooling water. The results show that the MHD/gas turbine systems have very good thermal and economic performances. The base case I MHD/gas turbine system (782 MW /SUB e/ ) requires no cooling water, has a heat rate which is 13% higher, and a cost of electricity which is only 7% higher than a comparable MHD/steam system (878 MW /SUB e/ ) having a cooling tower heat load of 720 MW. The case I vapor cycle bottomed systems have thermal and economic performances which approach and even exceed those of the MHD/steam system, while having substantially lower cooling water requirements. Performances of a second-generation MHD/gas turbine system and an oxygen-enriched, early commercial system are also evaluated. An analysis of nitric oxide emissions shows compliance with emission standards

  12. Trends in advanced reactor development and the role of the IAEA

    International Nuclear Information System (INIS)

    Semenov, B.; Dastidar, P.; Kupitz, J.; Cleveland, J.; Goodjohn, A.

    1992-01-01

    This report discusses advanced reactors are being developed for all principal reactor types, i.e. the light and heavy water-cooled reactors, the liquid-metal-cooled reactors and the gas-cooled reactors. Some of these developments are primarily of an evolutionary nature, i.e. they represent improvements in component and system technology, and in construction and operating practices as a result of experience gained with presently operating plants. Other developments are also evolutionary but with some incorporation of innovative features such as providing passive systems for assuring continuous cooling for removal of decay heat from the reactor core. If there is a revival of nuclear power, which may be dictated by ecological and economical factors, advanced reactors now being developed could help to meet the large demand for new plants in developed and developing countries, not only for electricity generation, but also for district heating, desalination and for process heat. The IAEA, as the only global international governmental organization dealing with nuclear power, has promoted international information exchange and international cooperation between all countries with their own advanced nuclear power programmes and has offered assistance to countries with an interest in exploratory or research programmes. In the future the IAEA could play an even more-important role

  13. Gas-Cooled Fast Reactor (GFR) FY04 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    K. D. Weaver; T. C. Totemeier; D. E. Clark; E. E. Feldman; E. A. Hoffman; R. B. Vilim; T. Y. C. Wei; J. Gan; M. K. Meyer; W. F. Gale; M. J. Driscoll; M. Golay; G. Apostolakis; K. Czerwinski

    2004-09-01

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radio toxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. Nevertheless, the GFR was chosen as one of only six Generation IV systems to be pursued based on its ability to meet the Generation IV goals in sustainability, economics, safety and reliability, proliferation resistance and physical protection.

  14. Development status on hydrogen production technology using high-temperature gas-cooled reactor at JAEA, Japan

    International Nuclear Information System (INIS)

    Shiozawa, Shusaku; Ogawa, Masuro; Hino, Ryutaro

    2006-01-01

    The high-temperature gas-cooled reactor (HTGR), which is graphite-moderated and helium-cooled, is attractive due to its unique capability of producing high temperature helium gas and its fully inherent reactor safety. In particular, hydrogen production using the nuclear heat from HTGR (up to 900 deg. C) offers one of the most promising technological solutions to curb the rising level of CO 2 emission and resulting risk of climate change. The interests in HTGR as an advanced nuclear power source for the next generation reactor, therefore, continue to rise. This is represented by the Japanese HTTR (High-Temperature Engineering Test Reactor) Project and the Chinese HTR-10 Project, followed by the international Generation IV development program, US nuclear hydrogen initiative program, EU innovative HTR technology development program, etc. To enhance nuclear energy application to heat process industries, the Japan Atomic Energy Agency (JAEA) has continued extensive efforts for development of hydrogen production system using the nuclear heat from HTGR in the framework of the HTTR Project. The HTTR Project has the objectives of establishing both HTGR technology and heat utilization technology. Using the HTTR constructed at the Oarai Research and Development Center of JAEA, reactor performance and safety demonstration tests have been conducted as planned. The reactor outlet temperature of 950 deg. C was successfully achieved in April 2004. For hydrogen production as heat utilization technology, R and D on thermo-chemical water splitting by the 'Iodine-Sulfur process' (IS process) has been conducted step by step. Proof of the basic IS process was made in 1997 on a lab-scale of hydrogen production of 1 L/h. In 2004, one-week continuous operation of the IS process was successfully demonstrated using a bench-scale apparatus with hydrogen production rate of 31 L/h. Further test using a pilot scale facility with greater hydrogen production rate of 10 - 30 m 3 /h is planned as

  15. Latest developments in prestressed concrete vessels for gas-cooled reactors

    International Nuclear Information System (INIS)

    Ople, F.S. Jr.

    1979-01-01

    This paper is an update of the design development of prestressed concrete vessels, commonly referred to as 'PCRVs' starting with the first single-cavity PCRV for the Fort St. Vrain Nuclear Generating Station to the latest multi-cavity PCRV configurations being utilized as the primary reactor vessels for both the High Temperature Gas-Cooled Reactor (HTGR) and the Gas-Cooled Fast Breeder Reactor (GCFR) in the U.S.A. The complexity of PCRV design varies not only due to the type of vessel configuration (single versus multi-cavity) but also on the application to the specific type of reactor concept. PCRV technology as applied to the Steam Cycle HTGR is fairly well established; however, some significant technical complexities are associated with PCRV design for the Gas Turbine HTGR and the GCFR. For the Gas Turbine HTGR, for instance, the fluid dynamics of the turbo-machinery cause multi-pressure conditions to exist in various portions of the power conversion loops during operation. This condition complicates the design approach and the proof test specification for the PCRV. The geometric configuration of the multi-cavity PCRV is also more complex due to the introduction of large horizontal cylindrical cavities (housing the turbo/machines for the Gas Turbine HTGR and circulators for the GCFR) in addition to the vertical cylindrical cavities for the core and heat exchangers. Because of this complex geometry, it becomes difficult to achieve an optimum prestressing arrangement for the PCRV. Other novel features of the multi-cavity PCRV resulting from the continuing design optimization effort are the incorporation of an asymmetric (offset core) configuration and the use of large vessel cavity/penetration concrete closures directly held down by prestressing tendons for both economic and safety reasons. (orig.)

  16. Challenges in licensing a sodium-cooled advanced recycling reactor

    International Nuclear Information System (INIS)

    Levin, Alan E.

    2008-01-01

    As part of the Global Nuclear Energy Partnership (GNEP), the U.S. Department of Energy (DOE) has focused on the use of sodium-cooled fast reactors (SFRs) for the destruction of minor actinides derived from used reactor fuel. This approach engenders an array of challenges with respect to the licensing of the reactor: the U.S. Nuclear Regulatory Commission (NRC) has never completed the review of an application for an operating license for a sodium-cooled reactor. Moreover, the current U.S. regulatory structure has been developed to deal almost exclusively with light-water reactor (LWR) designs. Consequently, the NRC must either (1) develop a new regulatory process for SFRs, or (2) reinterpret the existing regulations to apply them, as appropriate, to SFR designs. During the 1980s and 1990s, the NRC conducted preliminary safety assessments of the Sodium Advanced Fast Reactor (SAFR) and the Power Reactor Innovative Small Module (PRISM) designs, and in that context, began to consider how to apply LWR-based regulations to SFR designs. This paper builds on that work to consider the challenges, from the reactor designer's point of view, associated with licensing an SFR today, considering (1) the evolution of SFR designs, (2) the particular requirements of reactor designs to meet GNEP objectives, and (3) the evolution of NRC regulations since the conclusion of the SAFR and PRISM reviews. (author)

  17. Gas-Cooled Reactors: the importance of their development

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1978-01-01

    Gas-Cooled Reactors are considered to have a significant future impact on the application of fission energy. The specific types are the steam-cycle High-Temperature Gas-Cooled Reactor, the Gas-Cooled Fast Breeder Reactor, the gas-turbine HTGR, and the Very High-Temperature Process Heat Reactor. The importance of developing the above systems is discussed relative to alternative fission power systems involving Light Water Reactors, Heavy Water Reactors, Spectral Shift Controlled Reactors, and Liquid-Metal-Cooled Fast Breeder Reactors. A primary advantage of developing GCRs as a class lies in the technology and cost interrelations, permitting cost-effective development of systems having diverse applications. Further, HTGR-type systems have highly proliferation-resistant characteristics and very attractive safety features. Finally, such systems and GCFRs are mutally complementary. Overall, GCRs provide interrelated systems that serve different purposes and needs; their development can proceed in stages that provide early benefits while contributing to future needs. It is concluded that the long-term importance of the various GCRs is as follows: HTGR, providing a technology for economic GCFRs and HTGR-GTs, while providing a proliferation-resistant reactor system having early economic and fuel utilization benefits; GCFR, providing relatively low cost fissile fuel and reducing overall separative work needs at capital costs lower than those for LMFBRs; HTGR-GT (in combination with a bottoming cycle), providing a very high thermal efficiency system having low capital costs and improved fuel utilization and technology pertinent to VHTRs; HTGR-GT, providing a power system well suited for dry cooling conditions for low-temperature process heat needs; and VHTR, providing a high-temperature heat source for hydrogen production processes

  18. Thermo-hydraulic characteristics of serpentine tubing in the boilers of gas cooled reactors under condition of rapid and slow depressurization

    International Nuclear Information System (INIS)

    Abouhadra, D.S.; Byrne, J.E.

    2003-01-01

    In nuclear reactors of the magnox or advanced gas cooled type, serpentine tubing is used in some designs to generate steam in a once through arrangement. The calculation of accidents using two phase flow codes requires knowledge of the heat transfer behaviour of the boiler steam side. A series of experiments to study the blowdown characteristics of a typical serpentine boiler section was devised in order to validate the MARTHA section of the MACE code used by nuclear electric . The tests were carried out on the thermal hydraulics experimental research assembly (THERA) loop at manchester university. Depressurization from an initial pressure of 60 bar, with fluid subcooling of 5 k, 50 k, and 100 k was controlled by discharging the test section contents through suitably chosen orifices to produce blowdown to 10% of the initial pressure over a time scale of 30 s to 3600 s. pressures and temperatures in the serpentine were measured at average time intervals of approximately 1 s

  19. Gas turbine cooling modeling - Thermodynamic analysis and cycle simulations

    Energy Technology Data Exchange (ETDEWEB)

    Jordal, Kristin

    1999-02-01

    Considering that blade and vane cooling are a vital point in the studies of modern gas turbines, there are many ways to include cooling in gas turbine models. Thermodynamic methods for doing this are reviewed in this report, and, based on some of these methods, a number of model requirements are set up and a Cooled Gas Turbine Model (CGTM) for design-point calculations of cooled gas turbines is established. Thereafter, it is shown that it is possible to simulate existing gas turbines with the CGTM. Knowledge of at least one temperature in the hot part of the turbine (TET, TRIT or possibly TIT) is found to be vital for a complete heat balance over the turbine. The losses, which are caused by the mixing of coolant and main flow, are in the CGTM considered through a polytropic efficiency reduction factor S. Through the study of S, it can be demonstrated that there is more to gain from coolant reduction in a small and/or old turbine with poor aerodynamics, than there is to gain in a large, modern turbine, where the losses due to interaction between coolant and main flow are, relatively speaking, small. It is demonstrated, at the design point (TET=1360 deg C, {pi}=20) for the simple-cycle gas turbine, that heat exchanging between coolant and fuel proves to have a large positive impact on cycle efficiency, with an increase of 0.9 percentage points if all of the coolant passes through the heat exchanger. The corresponding improvement for humidified coolant is 0.8 percentage points. A design-point study for the HAT cycle shows that if all of the coolant is extracted after the humidification tower, there is a decrease in coolant requirements of 7.16 percentage points, from 19.58% to 12.52% of the compressed air, and an increase in thermal efficiency of 0.46 percentage points, from 53.46% to 53.92%. Furthermore, it is demonstrated with a TET-parameter variation, that the cooling of a simple-cycle gas turbine with humid air can have a positive effect on thermal efficiency

  20. Foundational development of an advanced nuclear reactor integrated safety code

    International Nuclear Information System (INIS)

    Clarno, Kevin; Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth; Hooper, Russell Warren; Humphries, Larry LaRon

    2010-01-01

    This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

  1. Foundational development of an advanced nuclear reactor integrated safety code.

    Energy Technology Data Exchange (ETDEWEB)

    Clarno, Kevin (Oak Ridge National Laboratory, Oak Ridge, TN); Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth (Ktech Corporation, Albuquerque, NM); Hooper, Russell Warren; Humphries, Larry LaRon

    2010-02-01

    This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

  2. Nuclear Engineering Computer Modules, Thermal-Hydraulics, TH-3: High Temperature Gas Cooled Reactor Thermal-Hydraulics.

    Science.gov (United States)

    Reihman, Thomas C.

    This learning module is concerned with the temperature field, the heat transfer rates, and the coolant pressure drop in typical high temperature gas-cooled reactor (HTGR) fuel assemblies. As in all of the modules of this series, emphasis is placed on developing the theory and demonstrating its use with a simplified model. The heart of the module…

  3. Advanced nuclear reactor and nuclear fusion power generation

    International Nuclear Information System (INIS)

    2000-04-01

    This book comprised of two issues. The first one is a advanced nuclear reactor which describes nuclear fuel cycle and advanced nuclear reactor like liquid-metal reactor, advanced converter, HTR and extra advanced nuclear reactors. The second one is nuclear fusion for generation energy, which explains practical conditions for nuclear fusion, principle of multiple magnetic field, current situation of research on nuclear fusion, conception for nuclear fusion reactor and economics on nuclear fusion reactor.

  4. The new EC FP7 MatISSE project: materials' innovations for a safe and sustainable nuclear in Europe

    International Nuclear Information System (INIS)

    Cabet, C.; Michaux, A.; Fazio, C.; Malerba, L.; Maday, M.F.; Serrano, M.; Nilsson, K.F.; )

    2015-01-01

    The European Energy Research Alliance (EERA), set-up under the European SET-Plan, has launched an initiative for a Joint Programme on Nuclear Materials (JPNM). The JNMP aims to establish key priorities in the area of advanced nuclear materials, identify funding opportunities and harmonise this scientific and technical domain at the European level by maximising complementarities and synergies with the major actors of the field. The JPNM partners submitted the MatISSE proposal which was accepted by the European Commission. The MatISSE project has the ambition to prepare the building of a European integrated research programme on materials innovation for a safe and sustainable nuclear. Emphasis is on advanced nuclear systems in particular sodium-cooled fast reactor (SFR), lead-cooled fast reactor (LFR) and gas-cooled fast reactor (GFR). The aim of the selected scientific and technical work is to make progress in the fields of conventional materials, advanced materials and predictive capabilities for fuel elements and structural components. (authors)

  5. Modeling and performance of the MHTGR [Modular High-Temperature Gas-Cooled Reactor] reactor cavity cooling system

    International Nuclear Information System (INIS)

    Conklin, J.C.

    1990-04-01

    The Reactor Cavity Cooling System (RCCS) of the Modular High- Temperature Gas-Cooled Reactor (MHTGR) proposed by the U.S. Department of Energy is designed to remove the nuclear afterheat passively in the event that neither the heat transport system nor the shutdown cooling circulator subsystem is available. A computer dynamic simulation for the physical and mathematical modeling of and RCCS is described here. Two conclusions can be made form computations performed under the assumption of a uniform reactor vessel temperature. First, the heat transferred across the annulus from the reactor vessel and then to ambient conditions is very dependent on the surface emissivities of the reactor vessel and RCCS panels. These emissivities should be periodically checked to ensure the safety function of the RCCS. Second, the heat transfer from the reactor vessel is reduced by a maximum of 10% by the presence of steam at 1 atm in the reactor cavity annulus for an assumed constant in the transmission of radiant energy across the annulus can be expected to result in an increase in the reactor vessel temperature for the MHTGR. Further investigation of participating radiation media, including small particles, in the reactor cavity annulus is warranted. 26 refs., 7 figs., 1 tab

  6. Nuclear reactor plant with a gas-cooled nuclear reactor situated in a cylindrical prestressed concrete pressure vessel

    International Nuclear Information System (INIS)

    Becker, G.; Elter, C.; Fritz, R.; Rautenberg, J.; Schoening, J.; Stracke, W.

    1986-01-01

    A simplified construction of the nuclear reactor plant with a guarantee of great safety is achieved by the auxiliary heat exhangers, which remove the post-shutdown heat in fault situations, being arranged in the wellknown way in pairs above one another in a vertical shaft. The associated auxiliary blowers are situated at the top for the upper auxiliary heat exchangers and at the bottom for the lower auxiliary heat exchangers. The cold gas is taken from the lower auxiliary blowers through a parallel gas pipe laid in concrete, which enters the vertical shaft concerned in the area of the cold gas pipe. (orig./HP) [de

  7. Role of gas cooling in tomorrow`s energy services industry

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, P.J.

    1997-04-01

    This article discusses the marketing approach and opportunities for suppliers and manufacturers of gas cooling equipment to partner with energy service companies (ESCOs). The author`s viewpoint is that in educating and partnering with ESCOs the gas cooling industry enables their technology to reach its potential in the projects that the ESCOs develop.

  8. Overview of the CEA R and D support to generation IV nuclear energy systems

    International Nuclear Information System (INIS)

    Carre, Frank; Anzieu, Pascal; Billot, Philippe; Brossard, Philippe; Fiorini, Gian-Luigi

    2004-01-01

    As a result of an early technology road-map performed at the end of 2000, the CEA selected a sequenced development of advanced gas cooled high temperature nuclear systems as main focus for its R and D programme on future nuclear energy systems. The selection of this research objectives originates both from the significance of fast neutrons and high temperature for nuclear energy to meet the needs anticipated beyond 2020/2030, and from the significant common R and D pathway that supports both medium term industrial projects and more advanced versions of gas cooled reactors. The first step of the 'Gas Technology Path' aims to support the development of a modular HTR likely to meet international market needs around 2020. The second step is a Very High Temperature Reactor (> 950 deg. C) to efficiently produce, among others, hydrogen though thermo-chemical water splitting or to generate electricity with an efficiency above 50%. The third step of the Path is a Gas Fast Reactor that features a fast-spectrum helium-cooled reactor and closed fuel cycle, with a direct-cycle helium turbine for electricity production and full recycle of actinides. The paper succinctly presents the R and D program launched in 2001 by the CEA with industrial partners on the 'Gas Technology Path', which is destined to become the contribution of France to the development of the VHTR and the GFR within the next phase of the Generation IV Forum

  9. Overview of the CEA R and D support to generation IV nuclear energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Carre, Frank; Anzieu, Pascal; Billot, Philippe; Brossard, Philippe; Fiorini, Gian-Luigi

    2004-07-01

    As a result of an early technology road-map performed at the end of 2000, the CEA selected a sequenced development of advanced gas cooled high temperature nuclear systems as main focus for its R and D programme on future nuclear energy systems. The selection of this research objectives originates both from the significance of fast neutrons and high temperature for nuclear energy to meet the needs anticipated beyond 2020/2030, and from the significant common R and D pathway that supports both medium term industrial projects and more advanced versions of gas cooled reactors. The first step of the 'Gas Technology Path' aims to support the development of a modular HTR likely to meet international market needs around 2020. The second step is a Very High Temperature Reactor (> 950 deg. C) to efficiently produce, among others, hydrogen though thermo-chemical water splitting or to generate electricity with an efficiency above 50%. The third step of the Path is a Gas Fast Reactor that features a fast-spectrum helium-cooled reactor and closed fuel cycle, with a direct-cycle helium turbine for electricity production and full recycle of actinides. The paper succinctly presents the R and D program launched in 2001 by the CEA with industrial partners on the 'Gas Technology Path', which is destined to become the contribution of France to the development of the VHTR and the GFR within the next phase of the Generation IV Forum.

  10. Passive cooling of a fixed bed nuclear reactor

    International Nuclear Information System (INIS)

    Petry, V.J.; Bortoli, A.L. de; Sefidwash, F.

    2005-01-01

    Small nuclear reactors without the need for on-site refuelling have greater simplicity, better compliance with passive safety systems, and are more adequate for countries with small electric grids and limited investment capabilities. Here the passive cooling characteristic of the fixed bed nuclear reactor (FBNR), that is being developed under the International Atomic Energy Agency (IAEA) Coordinated Research Project, is studied. A mathematical model is developed to calculate the temperature distribution in the fuel chamber of the reactor. The results demonstrate the passive cooling of this nuclear reactor concept. (authors)

  11. Gas cooled fast breeder reactors using mixed carbide fuel

    International Nuclear Information System (INIS)

    Kypreos, S.

    1976-09-01

    The fast reactors being developed at the present time use mixed oxide fuel, stainless-steel cladding and liquid sodium as coolant (LMFBR). Theoretical and experimental designing work has also been done in the field of gas-cooled fast breeder reactors. The more advanced carbide fuel offers greater potential for developing fuel systems with doubling times in the range of ten years. The thermohydraulic and physics performance of a GCFR utilising this fuel is assessed. One question to be answered is whether helium is an efficient coolant to be coupled with the carbide fuel while preserving its superior neutronic performance. Also, an assessment of the fuel cycle cost in comparison to oxide fuel is presented. (Auth.)

  12. Corrosion behaviour of high temperature alloys in the cooling gas of high temperature reactors

    International Nuclear Information System (INIS)

    Quadakkers, W.J.; Schuster, H.

    1989-01-01

    The reactive impurities in the primary cooling helium of advanced high temperature gas cooled reactors (HTGR) can cause oxidation, carburization or decarburization of the heat exchanging metallic components. By studies of the fundamental aspects of the corrosion mechanisms it became possible to define operating conditions under which the metallic construction materials show, from the viewpoint of technical application, acceptable corrosion behaviour. By extensive test programmes with exposure times of up to 30,000 hours, a data base has been obtained which allows a reliable extrapolation of the corrosion effects up to the envisaged service lives of the heat exchanging components. (author). 6 refs, 7 figs

  13. Heat removal in gas-cooled fuel rod clusters

    International Nuclear Information System (INIS)

    Rehme, K.

    1975-01-01

    For a thermo- and fluid-dynamic analysis of fuel rod cluster subchannels for gas-cooled breeder reactors, the following values must be verified: a) friction coefficient as flow parameter; b) Stanton number as heat transfer parameter; c) influence of spacers on friction coefficient and Stanton number; d) heat and mass exchange between subchannels with different temperatures. These parameters are established by combining results of single experiments and of integral experiments. Mention is made of further studies to be performed in order to determine the heat removal from gas-cooled fast breeder fuel elements. (HR) [de

  14. Radioactivities evaluation code system for high temperature gas cooled reactors during normal operation

    International Nuclear Information System (INIS)

    Ogura, Kenji; Morimoto, Toshio; Suzuki, Katsuo.

    1979-01-01

    A radioactivity evaluation code system for high temperature gas-cooled reactors during normal operation was developed to study the behavior of fission products (FP) in the plants. The system consists of a code for the calculation of diffusion of FPs in fuel (FIPERX), a code for the deposition of FPs in primary cooling system (PLATO), a code for the transfer and emission of FPs in nuclear power plants (FIPPI-2), and a code for the exposure dose due to emitted FPs (FEDOSE). The FIPERX code can calculate the changes in the course of time FP of the distribution of FP concentration, the distribution of FP flow, the distribution of FP partial pressure, and the emission rate of FP into coolant. The amount of deposition of FPs and their distribution in primary cooling system can be evaluated by the PLATO code. The FIPPI-2 code can be used for the estimation of the amount of FPs in nuclear power plants and the amount of emitted FPs from the plants. The exposure dose of residents around nuclear power plants in case of the operation of the plants is calculated by the FEDOSE code. This code evaluates the dose due to the external exposure in the normal operation and in the accident, and the internal dose by the inhalation of radioactive plume and foods. Further studies of this code system by the comparison with the experimental data are considered. (Kato, T.)

  15. Gas-Cooled Fast Reactor (GFR) FY05 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    K. D. Weaver; T. Marshall; T. Totemeier; J. Gan; E.E. Feldman; E.A Hoffman; R.F. Kulak; I.U. Therios; C. P. Tzanos; T.Y.C. Wei; L-Y. Cheng; H. Ludewig; J. Jo; R. Nanstad; W. Corwin; V. G. Krishnardula; W. F. Gale; J. W. Fergus; P. Sabharwall; T. Allen

    2005-09-01

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radio toxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. Nevertheless, the GFR was chosen as one of only six Generation IV systems to be pursued based on its ability to meet the Generation IV goals in sustainability, economics, safety and reliability, proliferation resistance and physical protection. Current research and development on the Gas-Cooled Fast Reactor (GFR) has focused on the design of safety systems that will remove the decay heat during accident conditions, ion irradiations of candidate ceramic materials, joining studies of oxide dispersion strengthened alloys; and within the Advanced Fuel Cycle Initiative (AFCI) the fabrication of carbide fuels and ceramic fuel matrix materials, development of non-halide precursor low density and high density ceramic coatings, and neutron irradiation of candidate ceramic fuel matrix and metallic materials. The vast majority of this work has focused on the reference design for the GFR: a helium-cooled, direct power conversion system that will operate with on outlet temperature of 850 C at 7 MPa. In addition to the work being performed in the United States, seven international partners under the Generation IV International Forum (GIF) have identified their interest in

  16. Materials and structural aspects of advanced gas-turbine helicopter engines

    Science.gov (United States)

    Freche, J. C.; Acurio, J.

    1979-01-01

    Advances in materials, coatings, turbine cooling technology, structural and design concepts, and component-life prediction of helicopter gas-turbine-engine components are presented. Stationary parts including the inlet particle separator, the front frame, rotor tip seals, vanes and combustors and rotating components - compressor blades, disks, and turbine blades - are discussed. Advanced composite materials are considered for the front frame and compressor blades, prealloyed powder superalloys will increase strength and reduce costs of disks, the oxide dispersion strengthened alloys will have 100C higher use temperature in combustors and vanes than conventional superalloys, ceramics will provide the highest use temperature of 1400C for stator vanes and 1370C for turbine blades, and directionally solidified eutectics will afford up to 50C temperature advantage at turbine blade operating conditions. Coatings for surface protection at higher surface temperatures and design trends in turbine cooling technology are discussed. New analytical methods of life prediction such as strain gage partitioning for high temperature prediction, fatigue life, computerized prediction of oxidation resistance, and advanced techniques for estimating coating life are described.

  17. Proceedings of the 2008 International Congress on Advances in Nuclear Power Plants - ICAPP '08

    International Nuclear Information System (INIS)

    2008-01-01

    ICAPP 2008 congress brought together international experts of the nuclear industry involved in the operation, development, building, regulation and research related to Nuclear Power Plants. The program covered the full spectrum of Nuclear Power Plant issues from design, deployment and construction of plants to research and development of future designs and advanced systems. It covered also lessons learned from power, research and demonstration reactors from over 50 years of experience with operation and maintenance, structures, materials, technical specifications, human factors, system design and reliability. The program comprised 13 technical tracks: 1. Water-Cooled Reactor Programs and Issues: Evolutionary designs, innovative, passive, light and heavy water cooled reactors; issues related to meeting near term utility needs; design issues; business, economical cost challenges; infrastructure limitations and improved construction techniques including modularization. 2. High Temperature Gas Cooled Reactors: Design and development issues, components and materials, safety, reliability, economics, demonstration plants and environmental issues, fuel design and reliability, power conversion technology, impact of non electricity applications on reactor design; advanced thermal and fast reactors. 3. LMFR and Longer Term Reactor Programs: Reactor technology with enhanced fuel cycle features for improved resource utilization, waste characteristics, and power conversion capabilities. Potential reactor designs with longer development times such as super critical water reactors and liquid fuel reactors, Gen IV, INPRO, EUR and other programs. 4. Operation, Performance and Reliability Management: Training, O and M costs, life cycle management, risk based maintenance, operational experiences, performance and reliability improvements, outage optimization, human factors, plant staffing, outage reduction features, major component reliability, repair and replacement, in

  18. Cooling of nuclear power stations with high temperature reactors and helium turbine cycles

    International Nuclear Information System (INIS)

    Foerster, S.; Hewing, G.

    1977-01-01

    On nuclear power stations with high temperature reactors and helium turbine cycles (HTR-single circuits) the residual heat from the energy conversion process in the primary and intermediate coolers is removed from cycled gas, helium. Water, which is circulated for safety reasons through a closed circuit, is used for cooling. The primary and intermediate coolers as well as other cooling equipment of the power plant are installed within the reactor building. The heat from the helium turbine cycle is removed to the environment most effectively by natural draught cooling towers. In this way a net plant efficiency of about 40% is attainable. The low quantities of residual heat thereby produced and the high (in comparison with power stations with steam turbine cycles) cooling agent pressure and cooling water reheat pressure in the circulating coolers enable an economically favourable design of the overall 'cold end' to be expected. In the so-called unit range it is possible to make do with one or two cooling towers. Known techniques and existing operating experience can be used for these dry cooling towers. After-heat removal reactor shutdown is effected by a separate, redundant cooling system with forced air dry coolers. The heat from the cooling process at such locations in the power station is removed to the environment either by a forced air dry cooling installation or by a wet cooling system. (orig.) [de

  19. ORTAP: a nuclear steam supply system simulation for the dynamic analysis of high temperature gas cooled reactor transients

    International Nuclear Information System (INIS)

    Cleveland, J.C.; Hedrick, R.A.; Ball, S.J.; Delene, J.G.

    1977-01-01

    ORTAP was developed to predict the dynamic behavior of the high temperature gas cooled reactor (HTGR) Nuclear Steam Supply System for normal operational transients and postulated accident conditions. It was developed for the Nuclear Regulatory Commission (NRC) as an independent means of obtaining conservative predictions of the transient response of HTGRs over a wide range of conditions. The approach has been to build sufficient detail into the component models so that the coupling between the primary and secondary systems can be accurately represented and so that transients which cover a wide range of conditions can be simulated. System components which are modeled in ORTAP include the reactor core, a typical reheater and steam generator module, a typical helium circulator and circulator turbine and the turbine generator plant. The major plant control systems are also modeled. Normal operational transients which can be analyzed with ORTAP include reactor start-up and shutdown, normal and rapid load changes. Upset transients which can be analyzed with ORTAP include reactor trip, turbine trip and sudden reduction in feedwater flow. ORTAP has also been used to predict plant response to emergency or faulted conditions such as primary system depressurization, loss of primary coolant flow and uncontrolled removal of control poison from the reactor core

  20. Design Study of Modular Nuclear Power Plant with Small Long Life Gas Cooled Fast Reactors Utilizing MOX Fuel

    Science.gov (United States)

    Ilham, Muhammad; Su'ud, Zaki

    2017-01-01

    Growing energy needed due to increasing of the world’s population encourages development of technology and science of nuclear power plant in its safety and security. In this research, it will be explained about design study of modular fast reactor with helium gas cooling (GCFR) small long life reactor, which can be operated over 20 years. It had been conducted about neutronic design GCFR with Mixed Oxide (UO2-PuO2) fuel in range of 100-200 MWth NPPs of power and 50-60% of fuel fraction variation with cylindrical pin cell and cylindrical balance of reactor core geometry. Calculation method used SRAC-CITATION code. The obtained results are the effective multiplication factor and density value of core reactor power (with geometry optimalization) to obtain optimum design core reactor power, whereas the obtained of optimum core reactor power is 200 MWth with 55% of fuel fraction and 9-13% of percentages.

  1. Parametric Investigation of Brayton Cycle for High Temperature Gas-Cooled Reactor

    International Nuclear Information System (INIS)

    Chang Oh

    2004-01-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is investigating a Brayton cycle efficiency improvement on a high temperature gas-cooled reactor (HTGR) as part of Generation-IV nuclear engineering research initiative. In this project, we are investigating helium Brayton cycles for the secondary side of an indirect energy conversion system. Ultimately we will investigate the improvement of the Brayton cycle using other fluids, such as supercritical carbon dioxide. Prior to the cycle improvement study, we established a number of baseline cases for the helium indirect Brayton cycle. These cases look at both single-shaft and multiple-shaft turbomachinery. The baseline cases are based on a 250 MW thermal pebble bed HTGR. The results from this study are applicable to other reactor concepts such as a very high temperature gas-cooled reactor (VHTR), fast gas-cooled reactor (FGR), supercritical water reactor (SWR), and others. In this study, we are using the HYSYS computer code for optimization of the helium Brayton cycle. Besides the HYSYS process optimization, we performed parametric study to see the effect of important parameters on the cycle efficiency. For these parametric calculations, we use a cycle efficiency model that was developed based on the Visual Basic computer language. As a part of this study we are currently investigated single-shaft vs. multiple shaft arrangement for cycle efficiency and comparison, which will be published in the next paper. The ultimate goal of this study is to use supercritical carbon dioxide for the HTGR power conversion loop in order to improve the cycle efficiency to values great than that of the helium Brayton cycle. This paper includes preliminary calculations of the steady state overall Brayton cycle efficiency based on the pebble bed reactor reference design (helium used as the working fluid) and compares those results with an initial calculation of a CO2 Brayton cycle

  2. The conceptual flowsheet of effluent treatment during total gelation of uranium process for preparing ceramic UO2 particles of high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Quan Ying; Chen Xiaotong; Wang Yang; Liu Bing; Tang Yaping; Tang Chunhe

    2014-01-01

    Today, more and more people pay attention to the environmental protection and ecological environment. Along with the development of nuclear industry, many radioactive effluents may be discharged into environment, which can lead to the pollutions of water, atmosphere and soil. So radioactive effluents including low-activity and medium-level wastes solution treatments have been becoming one of significant subjects. High temperature gas-cooled reactor (HTR) is one of advanced nuclear reactors owing to its reliability, security and broad application in which the fabrication of spherical fuel element is a key technology. During the production of spherical fuel elements, the radioactive effluent treatment is necessary. Referring to the current treatment technologies and methods, the conceptual flowsheet of low-level radioactive effluent treatment during preparing spherical fuel elements was summarized which met the 'Zero Emission' demand. (authors)

  3. Advanced nuclear plant design options to cope with external events

    International Nuclear Information System (INIS)

    2006-02-01

    With the stagnation period of nuclear power apparently coming to an end, there is a renewed interest in many Member States in the development and application of nuclear power plants (NPPs) with advanced reactors. Decisions on the construction of several NPPs with evolutionary light water reactors have been made (e.g. EPR Finland for Finland and France) and more are under consideration. There is a noticeable progress in the development and demonstration of innovative high temperature gas cooled reactors, for example, in China, South Africa and Japan. The Generation IV International Forum has defined the International Near Term Deployment programme and, for a more distant perspective, six innovative nuclear energy systems have been selected and certain R and D started by several participating countries. National efforts on design and technology development for NPPs with advanced reactors, both evolutionary and innovative, are ongoing in many Member States. Advanced NPPs have an opportunity to be built at many sites around the world, with very broad siting conditions. There are special concerns that safety of these advanced reactors may be challenged by external events following new scenarios and failure modes, different from those well known for the currently operated reactors. Therefore, the engineering community identified the need to assess the proposed design configurations in relation to external scenarios at the earliest stages of the design development. It appears that an early design optimization in relation to external events is a necessary requirement to achieve safe and economical advanced nuclear power plants. Reflecting on these developments, the IAEA has planned the preparation of a report to define design options for protection from external event impacts in NPPs with evolutionary and innovative reactors. The objective of this publication is to present the state-of-the-art in design approaches for the protection of NPPs with evolutionary and innovative

  4. Status of national gas cooled reactor programmes

    International Nuclear Information System (INIS)

    1991-08-01

    This report has been compiled as a central source of summary-level information on the present status of High Temperature Gas-Cooled Reactor (HTGR) programmes in the world and on future plans for the continued development and deployment of HTGRs. Most of the information concerns the programmes in the United States, Germany, Japan and the Soviet Union, countries that have had large programmes related to HTGR technology for several years. Summary-level information is also provided in the report on HTGR-related activities in several other countries who either have an increasing interest in the technology and/or who are performing some development efforts related to HTGR technology. The report contains a summary-level update on the MAGNOX and AGR programmes. This is the twelfth issue of the document, the first of which was issued in March, 1979. The report has been prepared in the IAEA Nuclear Power Technology Development Section. Figs and tabs

  5. A preliminary neutronic evaluation of the high temperature gas-cooled test reactor HTR-10 using the scale 6.0 code

    International Nuclear Information System (INIS)

    Sousa, Romulo V.; Fortini, Angela; Pereira, Claubia; Carvalho, Fernando R. de; Oliveira, Arno H.

    2013-01-01

    The High Temperature Gas-cooled Test Reactor HTR-10 is a 10 MW modular pebble bed type reactor, which core is filled with 27,000 spherical fuel elements, e.g. TRISO coated particles. This reactor was built by the Institute of Nuclear Energy Technology (INET), Tsinghua University, China, and its first criticality was attained on December 1, 2000. The main objectives of the HTR-10 are to verify and demonstrate the technical and safety features of the modular HTGR (High Temperature Gas-cooled Reactor) and to establish an experimental base for developing nuclear process heat applications. In this work, using the Standardized Computer Analysis for Licensing Evaluation (SCALE) 6.0, a nuclear code developed by Oak Ridge National Laboratory (ORNL), the HTR-10 first critical core is modeled by the DEN/UFMG. The K eff was obtained and compared with the reference value obtained by the Idaho National Laboratory. The result presents good agreement with experimental value. The goal is to validate the DEN/UFMG model to be applied in transmutation studies changing the fuel. (author)

  6. Coupled CFD - system-code simulation of a gas cooled reactor

    International Nuclear Information System (INIS)

    Yan, Yizhou; Rizwan-uddin

    2011-01-01

    A generic coupled CFD - system-code thermal hydraulic simulation approach was developed based on FLUENT and RELAP-3D, and applied to LWRs. The flexibility of the coupling methodology enables its application to advanced nuclear energy systems. Gas Turbine - Modular Helium Reactor (GT-MHR) is a Gen IV reactor design which can benefit from this innovative coupled simulation approach. Mixing in the lower plenum of the GT-MHR is investigated here using the CFD - system-code coupled simulation tool. Results of coupled simulations are presented and discussed. The potential of the coupled CFD - system-code approach for next generation of nuclear power plants is demonstrated. (author)

  7. State of development of high temperature gas-cooled reactors in foreign countries

    International Nuclear Information System (INIS)

    Sudo, Yukio

    1990-01-01

    Emphasis has been placed in the development of high temperature gas-cooled reactors on high thermal efficiency as power reactors and the reactor from which nuclear heat can be utilized. In U.K., as the international project 'Dragon Project', the experimental Dragon reactor for research use with 20 MWt output and exit coolant temperature 750 deg C was constructed, and operated till 1976. Coated fuel particles were developed. In West Germany, the experimental power reactor AVR with 46 MWt and 15 MWe output was operated till 1988. The prototype power reactor THTR-300 with 300 MWe output and 750 deg C exit temperature is in commercial operation. In USA, the experimental power reactor Peach Bottom reactor with 40 MWe output and 728 deg C exit temperature was operated till 1974. The prototype Fort Saint Vrain power reactor with 330 MWe output and 782 deg C exit temperature was operated till 1989. In USSR, the modular VGM with 200 MWh output is at the planning stage. Also in China, high temperature gas-cooled reactors are at the design stage. Switzerland has taken part in various international projects. (K.I.)

  8. Gas-Cooled Thorium Reactor with Fuel Block of the Unified Design

    Directory of Open Access Journals (Sweden)

    Igor Shamanin

    2015-01-01

    Full Text Available Scientific researches of new technological platform realization carried out in Russia are based on ideas of nuclear fuel breeding in closed fuel cycle and physical principles of fast neutron reactors. Innovative projects of low-power reactor systems correspond to the new technological platform. High-temperature gas-cooled thorium reactors with good transportability properties, small installation time, and operation without overloading for a long time are considered perspective. Such small modular reactor systems at good commercial, competitive level are capable of creating the basis of the regional power industry of the Russian Federation. The analysis of information about application of thorium as fuel in reactor systems and its perspective use is presented in the work. The results of the first stage of neutron-physical researches of a 3D model of the high-temperature gas-cooled thorium reactor based on the fuel block of the unified design are given. The calculation 3D model for the program code of MCU-5 series was developed. According to the comparison results of neutron-physical characteristics, several optimum reactor core compositions were chosen. The results of calculations of the reactivity margins, neutron flux distribution, and power density in the reactor core for the chosen core compositions are presented in the work.

  9. Future nuclear systems, Astrid, an option for the fourth generation: preparing the future of nuclear energy, sustainably optimising resources, defining technological options, sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Ter Minassian, Vahe

    2016-01-01

    Energy independence and security of supplies, improved safety standards, sustainably optimised material management, minimal waste production - all without greenhouse gas emissions. These are the Generation IV International Forum specifications for nuclear energy of the future. The CEA is responsible for designing Astrid, an integrated technology demonstrator for the 4. generation of sodium-cooled fast reactors, in accordance with the French Sustainable Nuclear Materials and Waste Management Act of June 28, 2006, and funded as part of the Investments for the Future programme enacted by the French parliament in 2010. Energy management - a vital need and a factor of economic growth - is a major challenge for the world of tomorrow. The nuclear industry has significant advantages in this regard, although it faces safety, resource sustainability, and waste management issues that must be met through continuing technological innovation. Fast reactors are also of interest to the nuclear industry because their recycling capability would solve a number of problems related to the stockpiles of uranium and plutonium. After the resumption of R and D work with EDF and AREVA in 2006, the Astrid design studies began in 2010. The CEA, as owner and contracting authority for this programme, is now in a position to define the broad outlines of the demonstrator 4. generation reactor that could be commissioned during the next decade. A sodium-cooled fast reactor (SFR) operates in the same way as a conventional nuclear reactor: fission reactions in the atoms of fuel in the core generate heat, which is conveyed to a turbine generator to produce electricity. In the context of 4. generation technology, SFRs represent an innovative solution for optimising the use of raw materials as well as for enhancing safety. Here are a few ideas advanced by the CEA. (authors)

  10. The first high resolution image of coronal gas in a starbursting cool core cluster

    Science.gov (United States)

    Johnson, Sean

    2017-08-01

    Galaxy clusters represent a unique laboratory for directly observing gas cooling and feedback due to their high masses and correspondingly high gas densities and temperatures. Cooling of X-ray gas observed in 1/3 of clusters, known as cool-core clusters, should fuel star formation at prodigious rates, but such high levels of star formation are rarely observed. Feedback from active galactic nuclei (AGN) is a leading explanation for the lack of star formation in most cool clusters, and AGN power is sufficient to offset gas cooling on average. Nevertheless, some cool core clusters exhibit massive starbursts indicating that our understanding of cooling and feedback is incomplete. Observations of 10^5 K coronal gas in cool core clusters through OVI emission offers a sensitive means of testing our understanding of cooling and feedback because OVI emission is a dominant coolant and sensitive tracer of shocked gas. Recently, Hayes et al. 2016 demonstrated that synthetic narrow-band imaging of OVI emission is possible through subtraction of long-pass filters with the ACS+SBC for targets at z=0.23-0.29. Here, we propose to use this exciting new technique to directly image coronal OVI emitting gas at high resolution in Abell 1835, a prototypical starbursting cool-core cluster at z=0.252. Abell 1835 hosts a strong cooling core, massive starburst, radio AGN, and at z=0.252, it offers a unique opportunity to directly image OVI at hi-res in the UV with ACS+SBC. With just 15 orbits of ACS+SBC imaging, the proposed observations will complete the existing rich multi-wavelength dataset available for Abell 1835 to provide new insights into cooling and feedback in clusters.

  11. International working group on gas-cooled reactors. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-15

    The purpose of the meeting was to provide a forum for exchange of information on safety and licensing aspects for gas-cooled reactors in order to provide comprehensive review of the present status and of directions for future applications and development. Contributions were made concerning the operating experience of the Fort St. Vrain (FSV) HTGR Power Plant in the United States of America, the experimental power station Arbeitsgemeinschaft Versuchsreaktor (AVR) in the Federal Republic of Germany, and the CO/sub 2/-cooled reactors in the United Kingdom such as Hunterson B and Hinkley Point B. The experience gained at each of these reactors has proved the high safety potential of Gas-cooled Reactor Power Plants.

  12. Disintegration of graphite matrix from the simulative high temperature gas-cooled reactor fuel element by electrochemical method

    International Nuclear Information System (INIS)

    Tian Lifang; Wen Mingfen; Li Linyan; Chen Jing

    2009-01-01

    Electrochemical method with salt as electrolyte has been studied to disintegrate the graphite matrix from the simulative high temperature gas-cooled reactor fuel elements. Ammonium nitrate was experimentally chosen as the appropriate electrolyte. The volume average diameter of disintegrated graphite fragments is about 100 μm and the maximal value is less than 900 μm. After disintegration, the weight of graphite is found to increase by about 20% without the release of a large amount of CO 2 probably owing to the partial oxidation to graphite in electrochemical process. The present work indicates that the improved electrochemical method has the potential to reduce the secondary nuclear waste and is a promising option to disintegrate graphite matrix from high temperature gas-cooled reactor spent fuel elements in the head-end of reprocessing.

  13. New deployment of high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi; Tsuchie, Yasuo; Kunitomi, Kazuhiko; Shiozawa, Shusaku; Konuki, Kaoru; Inagaki, Yoshiyuki; Hayakawa, Hitoshi

    2002-01-01

    The high temperature gas-cooled reactor (HTGR) is now under a condition difficult to know it well, because of considering not only power generation, but also diverse applications of its nuclear heat, of having extremely different safe principle from that of conventional reactors, of having two types of pebble-bed and block which are extremely different types, of promoting its construction plan in South Africa, of including its application to disposition of Russian surplus weapons plutonium of less reporting HTTR in Japan in spite of its full operation, and so on. However, HTGR is expected for an extremely important nuclear reactor aiming at the next coming one of LWR. HTGR which is late started and developed under complete private leading, is strongly conscious at environmental problem since its beginning. Before 30 years when large scale HTGR was expected to operate, it advertised a merit to reduce wasted heat because of its high temperature. As ratio occupied by electricity expands among application of energies, ratio occupied by the other energies are larger. When considering applications except electric power, high temperature thermal energy from HTGR can be thought wider applications than that from LWR and so on. (G.K.)

  14. Structural instabilities of high temperature alloys and their use in advanced high temperature gas cooled reactors

    International Nuclear Information System (INIS)

    Schuster, H.; Ennis, P.J.; Nickel, H.; Czyrska-Filemonowicz, A.

    1989-01-01

    High-temperature, iron-nickel and nickel based alloys are the candidate heat exchanger materials for advanced high temperature gas-cooled reactors supplying process heat for coal gasification, where operation temperatures can reach 850-950 deg. C and service lives of more than 100,000 h are necessary. In the present paper, typical examples of structural changes which occur in two representative alloys (Alloy 800 H, Fe-32Ni-20Cr and Alloy 617, Ni-22Cr-12Co-9Mo-1Al) during high temperature exposure will be given and the effects on the creep rupture properties discussed. At service temperatures, precipitation of carbides occurs which has a significant effect on the creep behaviour, especially in the early stages of creep when the precipitate particles are very fine. During coarsening of the carbides, carbides at grain boundaries restrict grain boundary sliding which retards the development of creep damage. In the service environments, enhanced carbide precipitation may occur due to the ingress of carbon from the environment (carburization). Although the creep rate is not adversely affected, the ductility of the carburized material at low and intermediate temperatures is very low. During simulated service exposures, the formation of surface corrosion scales, the precipitation of carbides and the formation of internal oxides below the surface leads to depletion of the matrix in the alloying elements involved in the corrosion processes. In thin-walled tubes the depletion of Cr due to Cr 2 O 3 formation on the surface can lead to a loss of creep strength. An additional depletion effect resulting from environmental-metal reactions is the loss of carbon (decarburization) which may occur in specific environments. The compositions of the cooling gases which decarburize the material have been determined; they are to be avoided during reactor operation

  15. Serpentine tube heat transfer characteristic under accident condition in gas cooled reactors

    International Nuclear Information System (INIS)

    Abouhadra, D.S.; Byrne, J.E.

    2004-01-01

    In nuclear reactors of the Magnox or advanced gas Cooled type, serpentine tubing is used in some designs to generate steam in a once through arrangement. The calculation of accident conditions using two phase flow codes requires knowledge of the heat transfer behavior of the boiler steam side. A series of experiments to study the blowdown characteristics of a typical serpentine boiler section was devised in order to validate the MARTHA section of the MACE code used by nuclear Electric. The tests were carried out on the Thermal Hydraulics Experimental Research Assembly (THERA) loop at Manchester University. The Thermal Hydraulic Experimental Research Assembly was designed to operate with pressures up to 180 bar and temperatures of 450degC. The geometry and dimensions of this test section were similar to part of a gas cooled reactor boiler of the Hinkley Point design. Blowdown from a pressure of 60 bar with subcoolings of 5degC, 50degC, 100degC formed the main part of the programme. A set of tests was conducted using discharge orifices of different sizes to produce depressurization times from 30 s to 10 mins, and in a few cases, the duration of blowdown approached 1 hour. These times were defined using the criterion of blowdown end as a final pressure of 10% of the initial pressure. Pressures, wall and fluid temperatures were all measured at average time intervals of 1.1s during the excursion and an inventory of the remaining water content in the serpentine was taken when the blowdown ended. Some tests were also conducted at an initial pressure of 30 bar. The results obtained show interesting stratification effects for the relatively fast discharge, with substantial wall circumferential temperature variations. For these tests, a relatively small water inventory remained after blowdown. The discharge characteristics of the serpentine in terms of orifice size have been mapped, and tests at 30 bar show the equivalence in terms of orifice size have been mapped

  16. Development of Advanced Nuclear Materials for Extreme Applications

    International Nuclear Information System (INIS)

    Jang, Jinsung; Rhee, Chang Kyu; Kim, Dae Hwan

    2011-09-01

    One of the critical paths to develop and deploy the Generation IV nuclear systems is to procure the materials necessary to the key components of the systems. Very high temperature gas-cooled reactor, which is anticipated to run at the reactor out-let temperature of about 900 .deg. C. Therefore high temperature materials that can sustain the system at that high temperature region for long design life such as tens of years is pre-requisite. Commercial high temperature materials could be a first consideration, but some improvement by modification is essential for the development of the system, and development of advanced new materials is anticipated to be eventually required. Materials development, however, need a long lead time compared with other research and development areas. In this project NC (nano cluster) strengthened Ni-base alloys are attempted for the development for the very high temperature applications. Three commercial Ni-base high temperature alloys were used as the matrix phase, and nano-sized yttria particles are dispersed by mechanical alloying. Alternative methods to prepare the nano-sized composite powders were investigated. Ni-base nano composite powders, which were characterized by one of the methods, were characterized and confirmed to be useful

  17. A three-dimensional thermal and fluid dynamics analysis of a gas cooled subcritical fast reactor driven by a D-T fusion neutron source

    International Nuclear Information System (INIS)

    Angelo, G.; Andrade, D.A.; Angelo, E.; Carluccio, T.; Rossi, P.C.R.; Talamo, A.

    2011-01-01

    Highlights: → A thermal fluid dynamics numerical model was created for a gas cooled subcritical fast reactor. → Standard k-ε model, Eddy Viscosity Transport Equation model underestimates the fuel temperature. → For a conservative assumption, SSG Reynolds stress model was chosen. → Creep strength is the most important parameter in fuel design. - Abstract: The entire nuclear fuel cycle involves partitioning classification and transmutation recycling. The usage of a tokamak as neutron sources to burn spent fuel in a gas cooled subcritical fast reactor (GCSFR) reduces the amount of long-lived radionuclide, thus increasing the repository capacity. This paper presents numerical thermal and fluid dynamics analysis for a gas cooled subcritical fast reactor. The analysis aim to determine the operational flow condition for this reactor, and to compare three distinct turbulence models (Eddy Viscosity Transport Equation, standard k-ε and SSG Reynolds stress) for this application. The model results are presented and discussed. The methodology used in this paper was developed to predict the coolant mass flow rate. It can be applied to any other gas cooled reactor.

  18. Hydrogen production system based on high temperature gas cooled reactor energy using the sulfur-iodine (SI) thermochemical water splitting cycle

    International Nuclear Information System (INIS)

    Garcia, L.; Gonzalez, D.

    2011-01-01

    Hydrogen production from water using nuclear energy offers one of the most attractive zero-emission energy strategies and the only one that is practical on a substantial scale. Recently, strong interest is seen in hydrogen production using heat of a high-temperature gas-cooled reactor. The high-temperature characteristics of the modular helium reactor (MHR) make it a strong candidate for producing hydrogen using thermochemical or high-temperature electrolysis (HTE) processes. Eventually it could be also employ a high-temperature gas-cooled reactor (HTGR), which is particularly attractive because it has unique capability, among potential future generation nuclear power options, to produce high-temperature heat ideally suited for nuclear-heated hydrogen production. Using heat from nuclear reactors to drive a sulfur-iodine (SI) thermochemical hydrogen production process has been interest of many laboratories in the world. One of the promising approaches to produce large quantity of hydrogen in an efficient way using the nuclear energy is the sulfur-iodine (SI) thermochemical water splitting cycle. Among the thermochemical cycles, the sulfur iodine process remains a very promising solution in matter of efficiency and cost. This work provides a pre-conceptual design description of a SI-Based H2-Nuclear Reactor plant. Software based on chemical process simulation (CPS) was used to simulate the thermochemical water splitting cycle Sulfur-Iodine for hydrogen production. (Author)

  19. Performance and economic enhancement of cogeneration gas turbines through compressor inlet air cooling

    Science.gov (United States)

    Delucia, M.; Bronconi, R.; Carnevale, E.

    1994-04-01

    Gas turbine air cooling systems serve to raise performance to peak power levels during the hot months when high atmospheric temperatures cause reductions in net power output. This work describes the technical and economic advantages of providing a compressor inlet air cooling system to increase the gas turbine's power rating and reduce its heat rate. The pros and cons of state-of-the-art cooling technologies, i.e., absorption and compression refrigeration, with and without thermal energy storage, were examined in order to select the most suitable cooling solution. Heavy-duty gas turbine cogeneration systems with and without absorption units were modeled, as well as various industrial sectors, i.e., paper and pulp, pharmaceuticals, food processing, textiles, tanning, and building materials. The ambient temperature variations were modeled so the effects of climate could be accounted for in the simulation. The results validated the advantages of gas turbine cogeneration with absorption air cooling as compared to other systems without air cooling.

  20. Advanced ceramic materials for next-generation nuclear applications

    Science.gov (United States)

    Marra, John

    2011-10-01

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high

  1. Advanced ceramic materials for next-generation nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Marra, John [Savannah River National Laboratory Aiken, SC 29802 (United States)

    2011-10-29

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme

  2. Gas-cooled reactor technology: a bibliography

    International Nuclear Information System (INIS)

    Raleigh, H.D.

    1981-09-01

    Included are 3358 citations on gas-cooled reactor technology contained in the DOE Energy Data Base for the period January 1978 through June 1981. The citations include reports, journal articles, books, conference papers, patents, and monographs. Corporate, Personal Author, Subject, Contract Number, and Report Number Indexes are provided

  3. The research activities on in-tube condensation in the presence of noncondensables for passive cooling applications

    Energy Technology Data Exchange (ETDEWEB)

    Tanrikut, A [Turkish Atomic Energy Authority, Ankara (Turkey)

    1996-12-01

    The introduction of nuclear power becomes an attractive solution to the problem of increasing demand for electricity power capacity in Turkey. Thus, Turkey is willing to follow the technological development trends in advanced reactor systems and to participate in joint research studies. The primary objectives of the passive design features are to simplify the design, which assures the minimized demand on operator, and to improve plant safety. To accomplish these features the operating principles of passive safety systems should be well understood by an experimental validation program. Such a validation program is also important for the assessment of advanced computer codes which are currently used for design and licensing procedures. The condensation mode of heat transfer plays an important role for the passive heat removal applications in the current nuclear power plants (e.g. decay heat removal via steam generators in case of loss of heat removal system) and advanced water-cooled reactor systems. But is well established that the presence of noncondensable gases can greatly inhibit the condensation process due to the build-up of noncondensable gas concentration at the liquid/gas interface. The isolation condenser of passive containment cooling system of the simplified boiling water reactors is a typical application area of in-tube condensation in the presence of noncondensable. This paper describes the research activities at the Turkish Atomic Energy Authority concerning condensation in the presence of air, as a noncondensable gas. (author). 9 refs, 6 figs.

  4. The research activities on in-tube condensation in the presence of noncondensables for passive cooling applications

    International Nuclear Information System (INIS)

    Tanrikut, A.

    1996-01-01

    The introduction of nuclear power becomes an attractive solution to the problem of increasing demand for electricity power capacity in Turkey. Thus, Turkey is willing to follow the technological development trends in advanced reactor systems and to participate in joint research studies. The primary objectives of the passive design features are to simplify the design, which assures the minimized demand on operator, and to improve plant safety. To accomplish these features the operating principles of passive safety systems should be well understood by an experimental validation program. Such a validation program is also important for the assessment of advanced computer codes which are currently used for design and licensing procedures. The condensation mode of heat transfer plays an important role for the passive heat removal applications in the current nuclear power plants (e.g. decay heat removal via steam generators in case of loss of heat removal system) and advanced water-cooled reactor systems. But is well established that the presence of noncondensable gases can greatly inhibit the condensation process due to the build-up of noncondensable gas concentration at the liquid/gas interface. The isolation condenser of passive containment cooling system of the simplified boiling water reactors is a typical application area of in-tube condensation in the presence of noncondensable. This paper describes the research activities at the Turkish Atomic Energy Authority concerning condensation in the presence of air, as a noncondensable gas. (author). 9 refs, 6 figs

  5. Testing aspects of advanced coherent electron cooling technique

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.; Jing, Y.; Pinayev, I.; Wang, G.; Samulyak, R.; Ratner, D.

    2015-05-03

    An advanced version of the Coherent-electron Cooling (CeC) based on the micro-bunching instability was proposed. This approach promises significant increase in the bandwidth of the CeC system and, therefore, significant shortening of cooling time in high-energy hadron colliders. In this paper we present our plans of simulating and testing the key aspects of this proposed technique using the set-up of the coherent-electron-cooling proof-of-principle experiment at BNL.

  6. Influence of precooling cooling air on the performance of a gas turbine combined cycle

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Ik Hwan; Kang, Do Won; Kang, Soo Young; Kim, Tong Seop [Inha Univ., Incheon (Korea, Republic of)

    2012-02-15

    Cooling of hot sections, especially the turbine nozzle and rotor blades, has a significant impact on gas turbine performance. In this study, the influence of precooling of the cooling air on the performance of gas turbines and their combined cycle plants was investigated. A state of the art F class gas turbine was selected, and its design performance was deliberately simulated using detailed component models including turbine blade cooling. Off design analysis was used to simulate changes in the operating conditions and performance of the gas turbines due to precooling of the cooling air. Thermodynamic and aerodynamic models were used to simulate the performance of the cooled nozzle and rotor blade. In the combined cycle plant, the heat rejected from the cooling air was recovered at the bottoming steam cycle to optimize the overall plant performance. With a 200K decrease of all cooling air stream, an almost 1.78% power upgrade due to increase in main gas flow and a 0.70 percent point efficiency decrease due to the fuel flow increase to maintain design turbine inlet temperature were predicted.

  7. COOLING WATER ISSUES AND OPPORTUNITIES AT U.S. NUCLEAR POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Gary Vine

    2010-12-01

    This report has been prepared for the Department of Energy, Office of Nuclear Energy (DOE-NE), for the purpose of providing a status report on the challenges and opportunities facing the U.S. commercial nuclear energy industry in the area of plant cooling water supply. The report was prompted in part by recent Second Circuit and Supreme Court decisions regarding cooling water system designs at existing thermo-electric power generating facilities in the U.S. (primarily fossil and nuclear plants). At issue in the courts have been Environmental Protection Agency regulations that define what constitutes “Best Technology Available” for intake structures that withdraw cooling water that is used to transfer and reject heat from the plant’s steam turbine via cooling water systems, while minimizing environmental impacts on aquatic life in nearby water bodies used to supply that cooling water. The report was also prompted by a growing recognition that cooling water availability and societal use conflicts are emerging as strategic energy and environmental issues, and that research and development (R&D) solutions to emerging water shortage issues are needed. In particular, cooling water availability is an important consideration in siting decisions for new nuclear power plants, and is an under-acknowledged issue in evaluating the pros and cons of retrofitting cooling towers at existing nuclear plants. Because of the significant ongoing research on water issues already being performed by industry, the national laboratories and other entities, this report relies heavily on ongoing work. In particular, this report has relied on collaboration with the Electric Power Research Institute (EPRI), including its recent work in the area of EPA regulations governing intake structures in thermoelectric cooling water systems.

  8. COOLING WATER ISSUES AND OPPORTUNITIES AT U.S. NUCLEAR POWER PLANTS

    International Nuclear Information System (INIS)

    Vine, Gary

    2010-01-01

    This report has been prepared for the Department of Energy, Office of Nuclear Energy (DOE-NE), for the purpose of providing a status report on the challenges and opportunities facing the U.S. commercial nuclear energy industry in the area of plant cooling water supply. The report was prompted in part by recent Second Circuit and Supreme Court decisions regarding cooling water system designs at existing thermo-electric power generating facilities in the U.S. (primarily fossil and nuclear plants). At issue in the courts have been Environmental Protection Agency regulations that define what constitutes 'Best Technology Available' for intake structures that withdraw cooling water that is used to transfer and reject heat from the plant's steam turbine via cooling water systems, while minimizing environmental impacts on aquatic life in nearby water bodies used to supply that cooling water. The report was also prompted by a growing recognition that cooling water availability and societal use conflicts are emerging as strategic energy and environmental issues, and that research and development (R and D) solutions to emerging water shortage issues are needed. In particular, cooling water availability is an important consideration in siting decisions for new nuclear power plants, and is an under-acknowledged issue in evaluating the pros and cons of retrofitting cooling towers at existing nuclear plants. Because of the significant ongoing research on water issues already being performed by industry, the national laboratories and other entities, this report relies heavily on ongoing work. In particular, this report has relied on collaboration with the Electric Power Research Institute (EPRI), including its recent work in the area of EPA regulations governing intake structures in thermoelectric cooling water systems.

  9. Use of a temperature-initiated passive cooling system (TIPACS) for the modular high-temperature gas-cooled reactor cavity cooling system (RCCS)

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Conklin, J.; Reich, W.J.

    1994-04-01

    A new type of passive cooling system has been invented (Forsberg 1993): the Temperature-Initiated Passive Cooling System (TIPACS). The characteristics of the TIPACS potentially match requirements for an improved reactor-cavity-cooling system (RCCS) for the modular high-temperature gas-cooled reactor (MHTGR). This report is an initial evaluation of the TIPACS for the MHTGR with a Rankines (steam) power conversion cycle. Limited evaluations were made of applying the TIPACS to MHTGRs with reactor pressure vessel temperatures up to 450 C. These temperatures may occur in designs of Brayton cycle (gas turbine) and process heat MHTGRs. The report is structured as follows. Section 2 describes the containment cooling issues associated with the MHTGR and the requirements for such a cooling system. Section 3 describes TIPACS in nonmathematical terms. Section 4 describes TIPACS's heat-removal capabilities. Section 5 analyzes the operation of the temperature-control mechanism that determines under what conditions the TIPACS rejects heat to the environment. Section 6 addresses other design and operational issues. Section 7 identifies uncertainties, and Section 8 provides conclusions. The appendixes provide the detailed data and models used in the analysis

  10. Use of a temperature-initiated passive cooling system (TIPACS) for the modular high-temperature gas-cooled reactor cavity cooling system (RCCS)

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.; Conklin, J.; Reich, W.J.

    1994-04-01

    A new type of passive cooling system has been invented (Forsberg 1993): the Temperature-Initiated Passive Cooling System (TIPACS). The characteristics of the TIPACS potentially match requirements for an improved reactor-cavity-cooling system (RCCS) for the modular high-temperature gas-cooled reactor (MHTGR). This report is an initial evaluation of the TIPACS for the MHTGR with a Rankines (steam) power conversion cycle. Limited evaluations were made of applying the TIPACS to MHTGRs with reactor pressure vessel temperatures up to 450 C. These temperatures may occur in designs of Brayton cycle (gas turbine) and process heat MHTGRs. The report is structured as follows. Section 2 describes the containment cooling issues associated with the MHTGR and the requirements for such a cooling system. Section 3 describes TIPACS in nonmathematical terms. Section 4 describes TIPACS`s heat-removal capabilities. Section 5 analyzes the operation of the temperature-control mechanism that determines under what conditions the TIPACS rejects heat to the environment. Section 6 addresses other design and operational issues. Section 7 identifies uncertainties, and Section 8 provides conclusions. The appendixes provide the detailed data and models used in the analysis.

  11. Organohalogen products from chlorination of cooling water at nuclear power stations

    International Nuclear Information System (INIS)

    Bean, R.M.

    1983-10-01

    Eight nuclear power units at seven locations in the US were studied to determine the effects of chlorine, added as a biocide, on the composition of cooling water discharge. Water, sediment and biota samples from the sites were analyzed for total organic halogen and for a variety of organohalogen compounds. Haloforms were discharged from all plants studied, at concentrations of a few μg/L (parts-per-billion). Evidence was obtained that power plants with cooling towers discharge a significant portion of the haloforms formed during chlorination to the atmosphere. A complex mixture of halogenated phenols was found in the cooling water discharges of the power units. Cooling towers can act to concentrate halogenated phenols to levels approaching those of the haloforms. Examination of samples by capillary gas chromatography/mass spectrometry did not result in identification of any significant concentrations of lipophilic base-neutral compounds that could be shown to be formed by the chlorination process. Total concentrations of lipophilic (Bioabsorbable) and volatile organohalogen material discharged ranged from about 2 to 4 μg/L. Analysis of sediment samples for organohalogen material suggests that certain chlorination products may accumulate in sediments, although no tissue bioaccumulation could be demonstrated from analysis of a limited number of samples. 58 references, 25 figures, 31 tables

  12. Evaluation of advanced cooling therapy's esophageal cooling device for core temperature control.

    Science.gov (United States)

    Naiman, Melissa; Shanley, Patrick; Garrett, Frank; Kulstad, Erik

    2016-05-01

    Managing core temperature is critical to patient outcomes in a wide range of clinical scenarios. Previous devices designed to perform temperature management required a trade-off between invasiveness and temperature modulation efficiency. The Esophageal Cooling Device, made by Advanced Cooling Therapy (Chicago, IL), was developed to optimize warming and cooling efficiency through an easy and low risk procedure that leverages heat transfer through convection and conduction. Clinical data from cardiac arrest, fever, and critical burn patients indicate that the Esophageal Cooling Device performs very well both in terms of temperature modulation (cooling rates of approximately 1.3°C/hour, warming of up to 0.5°C/hour) and maintaining temperature stability (variation around goal temperature ± 0.3°C). Physicians have reported that device performance is comparable to the performance of intravascular temperature management techniques and superior to the performance of surface devices, while avoiding the downsides associated with both.

  13. The Gas Turbine - Modular Helium Reactor: A Promising Option for Near Term Deployment

    International Nuclear Information System (INIS)

    LaBar, Malcolm P.

    2002-01-01

    The Gas Turbine - Modular Helium Reactor (GT-MHR) is an advanced nuclear power system that offers unparalleled safety, high thermal efficiency, environmental advantages, and competitive electricity generation costs. The GT-MHR module couples a gas-cooled modular helium reactor (MHR) with a high efficiency modular Brayton cycle gas turbine (GT) energy conversion system. The reactor and power conversion systems are located in a below grade concrete silo that provides protection against sabotage. The GT-MHR safety is achieved through a combination of inherent safety characteristics and design selections that take maximum advantage of the gas-cooled reactor coated particle fuel, helium coolant and graphite moderator. The GT-MHR is projected to be economically competitive with alternative electricity generation technologies due to the high operating temperature of the gas-cooled reactor, high thermal efficiency of the Brayton cycle power conversion system, high fuel burnup (>100,000 MWd/MT), and low operation and maintenance requirements. (author)

  14. Status of advanced technology and design for water cooled reactors: Light water reactors

    International Nuclear Information System (INIS)

    1988-10-01

    Water reactors represent a high level of performance and safety. They are mature technology and they will undoubtedly continue to be the main stream of nuclear power. There are substantial technological development programmes in Member States for further improving the technology and for the development of new concepts in water reactors. Therefore the establishment of an international forum for the exchange of information and stimulation of international co-operation in this field has emerged. In 1987 the IAEA established the International Working Group on Advanced Technologies for Water-Cooled Reactors (IWGATWR). Within the framework of IWGATWR the IAEA Technical Report on Status of Advanced Technology and Design for Water Cooled Reactors, Part I: Light Water Reactors and Part II: Heavy Water Reactors has been undertaken to document the major current activities and different trends of technological improvements and developments for future water reactors. Part I of the report dealing with LWRs has now been prepared and is based mainly on submissions from Member States. It is hoped that this part of the report, containing the status of advanced light water reactor design and technology of the year 1987 and early 1988 will be useful for disseminating information to Agency Member States and for stimulating international cooperation in this subject area. 93 refs, figs and tabs

  15. Nuclear electricity in the U.S.A. - A status report

    Energy Technology Data Exchange (ETDEWEB)

    Loewenstein, W B [American Nuclear Society, Hinsdale, IL (United States)

    1990-06-01

    The status of nuclear electricity programs in the USA is reviewed. About 20% of the electricity in the USA comes from nuclear generating stations. The potential impact of greenhouse concerns is prominent in plans for the future. Advanced reactor programs for water, liquid metal and gas cooled systems is reviewed. Safety and plant economics feature prominently in future considerations. The increasing average availability of nuclear stations in the USA provides some insights on lessons to be learned for the future. (author)

  16. Nuclear electricity in the U.S.A. - A status report

    International Nuclear Information System (INIS)

    Loewenstein, W.B.

    1990-01-01

    The status of nuclear electricity programs in the USA is reviewed. About 20% of the electricity in the USA comes from nuclear generating stations. The potential impact of greenhouse concerns is prominent in plans for the future. Advanced reactor programs for water, liquid metal and gas cooled systems is reviewed. Safety and plant economics feature prominently in future considerations. The increasing average availability of nuclear stations in the USA provides some insights on lessons to be learned for the future. (author)

  17. Present state and future prospect of development of high temperature gas-cooled reactors in Japan

    International Nuclear Information System (INIS)

    Sanokawa, Konomo

    1994-01-01

    High temperature gas-cooled reactors can supply the heat of about 1000degC, and the high efficiency and the high rate of heat utilization can be attained. Also they have the features of excellent inherent safety, the easiness of operation, the high burnup of fuel and so on. The heat utilization of atomic energy in addition to electric power generation is very important in view of the protection of global environment and the diversification of energy supply. Japan Atomic Energy Research Institute has advanced the construction of the high temperature engineering test and research reactor (HTTR) of 30 MW thermal output, aiming at attaining the criticality in 1998. The progress of the development of a high temperature gas-cooled reactor is described. For 18 years, the design study of the reactor was advanced together with the research and development of the reactor physics, fuel and materials, high temperature machinery and equipment and others, and the decision of the design standard and the development of computation codes. The main specification and the construction schedule are shown. The reactor building was almost completed, and the reactor containment vessel was installed. The plan of the research and development by using the HTTR is investigated. (K.I.)

  18. 77 FR 73056 - Initial Test Programs for Water-Cooled Nuclear Power Plants

    Science.gov (United States)

    2012-12-07

    ... Plants AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide; request for comment... (DG), DG-1259, ``Initial Test Programs for Water-Cooled Nuclear Power Plants.'' This guide describes... (ITPs) for light water cooled nuclear power plants. DATES: Submit comments by January 31, 2013. Comments...

  19. Melting of contaminated steel scrap from the dismantling of the CO2 systems of gas cooled, graphite moderated nuclear reactors

    International Nuclear Information System (INIS)

    Feaugas, J.; Jeanjacques, M.; Peulve, J.

    1994-01-01

    G2 and G3 are the natural Uranium cooled reactors Graphite/Gas. The two reactors were designed for both plutonium and electricity production (45 MWe). The dismantling of the reactors at stage 2 has produced more than 4 000 tonnes of contaminated scrap. Because of their large mass and low residual contamination level, the French Atomic Energy Commission (CEA) considered various possibilities for the processing of these metallic products in order to reduce the volume of waste going to be stored. After different studies and tests of several processes and the evaluation of their results, the choice to melt the dismantled pipeworks was taken. It was decided to build the Nuclear Steel Melting Facility known as INFANTE, in cooperation with a steelmaker (AHL). The realization time schedule for the INFANTE lasted 20 months. It included studies, construction and the licensing procedure. (authors). 2 tabs., 3 figs

  20. Critical evaluation of high-temperature gas-cooled reactors applicable to coal conversion

    International Nuclear Information System (INIS)

    Spiewak, I.; Jones, J.E. Jr.; Rittenhouse, P.L.; DeStefano, J.R.; Delene, J.G.

    1975-12-01

    A critical review is presented of the technology and costs of very high-temperature gas-cooled reactors (VHTRs) applicable to nuclear coal conversion. Coal conversion processes suitable for coupling to reactors are described. Vendor concepts of the VHTR are summarized. The materials requirements as a function of process temperature in the range 1400 to 2000 0 F are analyzed. Components, environmental and safety factors, economics and nuclear fuel cycles are reviewed. It is concluded that process heat supply in the range 1400 to 1500 0 F could be developed with a high degree of assurance. Process heat at 1600 0 F would require considerably more materials development. While temperatures up to 2000 0 F appear to be attainable, considerably more research and risk were involved. A demonstration plant would be required as a step in the commercialization of the VHTR

  1. A UKAEA review of gas-cooled reactors in the United Kingdom

    International Nuclear Information System (INIS)

    Heath, E.C.; Knowles, A.N.

    1983-01-01

    The commercial use of nuclear power for electrical generation commenced in the UK in the 1950s with the Calder Hall reactors. Based on this concept, eighteen commercial reactor units, with two further units outside the UK, were constructed and have been in operation for periods ranging from 10 to 19 years. The paper reviews this experience mainly from the aspects of safety and the achieved costs, which compare favourably with current figures for fossil fired generation. The further development of the gas-cooled system in the UK commenced with the construction of the Windscale AGR, which came into operation in 1962. This led to the ordering of 14 large commercial AGR units, 4 of which have been in service since 1976, 6 are at an advanced stage of construction and 4 are at an early stage of construction. The paper reviews the main safety features of the AGR and considers the costs, taking achieved costs for the units which are in service and a combination of historical costs and projected costs for the units under construction. Again a clear advantage over fossil fuelled stations is shown. The paper also includes a preliminary account of the use of the prototype AGR at Windscale for the series of experiments concerning plateout, over-temperature in the fuel and simulated fault transients in the core which were carried out earlier in 1981. (author)

  2. Risk Based Inspection of Gas-Cooling Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Dwi Priyanta

    2017-09-01

    Full Text Available On October 2013, Pertamina Hulu Energi Offshore North West Java (PHE – ONWJ platform personnel found 93 leaking tubes locations in the finfan coolers/ gas-cooling heat exchanger. After analysis had been performed, the crack in the tube strongly indicate that stress corrosion cracking was occurred by chloride. Chloride stress corrosion cracking (CLSCC is the cracking occurred by the combined influence of tensile stress and a corrosive environment. CLSCC is the one of the most common reasons why austenitic stainless steel pipework or tube and vessels deteriorate in the chemical processing, petrochemical industries and maritime industries. In this thesis purpose to determine the appropriate inspection planning for two main items (tubes and header box in the gas-cooling heat exchanger using risk based inspection (RBI method. The result, inspection of the tubes must be performed on July 6, 2024 and for the header box inspection must be performed on July 6, 2025. In the end, RBI method can be applicated to gas-cooling heat exchanger. Because, risk on the tubes can be reduced from 4.537 m2/year to 0.453 m2/year. And inspection planning for header box can be reduced from 4.528 m2/year to 0.563 m2/year.

  3. Reanalysis of the gas-cooled fast reactor experiments at the zero power facility proteus - Spectral indices

    Energy Technology Data Exchange (ETDEWEB)

    Perret, G.; Pattupara, R. M. [Paul Scherrer Inst., 5232 Villigen (Switzerland); Girardin, G. [Ecole Polytechnique Federale de Lausanne, 1015 Lausanne (Switzerland); Chawla, R. [Paul Scherrer Inst., 5232 Villigen (Switzerland); Ecole Polytechnique Federale de Lausanne, 1015 Lausanne (Switzerland)

    2012-07-01

    The gas-cooled fast reactor (GCFR) concept was investigated experimentally in the PROTEUS zero power facility at the Paul Scherrer Inst. during the 1970's. The experimental program was aimed at neutronics studies specific to the GCFR and at the validation of nuclear data in fast spectra. A significant part of the program used thorium oxide and thorium metal fuel either distributed quasi-homogeneously in the reference PuO{sub 2}/UO{sub 2} lattice or introduced in the form of radial and axial blanket zones. Experimental results obtained at the time are still of high relevance in view of the current consideration of the Gas-cooled Fast Reactor (GFR) as a Generation-IV nuclear system, as also of the renewed interest in the thorium cycle. In this context, some of the experiments have been modeled with modern Monte Carlo codes to better account for the complex PROTEUS whole-reactor geometry and to allow validating recent continuous neutron cross-section libraries. As a first step, the MCNPX model was used to test the JEFF-3.1, JEFF-3.1.1, ENDF/B-VII.0 and JENDL-3.3 libraries against spectral indices, notably involving fission and capture of {sup 232}Th and {sup 237}Np, measured in GFR-like lattices. (authors)

  4. Nuclear decommissioning

    International Nuclear Information System (INIS)

    Lawton, H.

    1987-01-01

    Sufficient work has now been done, on a world-wide basis, to justify confidence that full decommissioning of nuclear installations, both plant and reactors, can be carried out safely and efficiently. Projects in several countries should confirm this in the next few years. In the United Kingdom, good progress has been made with the Windscale Advanced Gas-cooled Reactor and supporting development work is finding solutions to resolve uncertainties. Estimates from several sources suggest that decommissioning costs can be kept to an acceptable level. (author)

  5. System for cooling the containment vessel of a nuclear reactor

    International Nuclear Information System (INIS)

    Costes, Didier.

    1982-01-01

    The invention concerns a post-accidental cooling system for a nuclear reactor containment vessel. This system includes in series a turbine fed by the moist air contained in the vessel, a condenser in which the air is dried and cooled, a compressor actuated by the turbine and a cooling exchanger. The cold water flowing through the condenser and in the exchanger is taken from a tank outside the vessel and injected by a pump actuated by the turbine. The application is for nuclear reactors under pressure [fr

  6. Superconducting cable cooling system by helium gas at two pressures

    International Nuclear Information System (INIS)

    Dean, J.W.

    1977-01-01

    Thermally contacting, oppositely streaming, cryogenic fluid streams in the same enclosure in a closed cycle changes the fluid from a cool high pressure helium gas to a cooler reduced pressure helium gas in an expander so as to be at different temperature ranges and pressures respectively in go and return legs that are in thermal contact with each other and in thermal contact with a longitudinally extending superconducting transmission line enclosed in the same cable enclosure that insulates the line from the ambient at a temperature T 1 . By first circulating the fluid from a refrigerator at one end of the line as a cool gas at a temperature range T 2 to T 3 in the go leg, then circulating the gas through an expander at the other end of the line where the gas becomes a cooler gas at a reduced pressure and at a reduced temperature T 4 and finally by circulating the cooler gas back again to the refrigerator in a return leg at a temperature range T 4 to T 5 , while in thermal contact with the gas in the go leg, and in the same enclosure therewith for compression into a higher pressure gas at T 2 in a closed cycle, where T 2 greater than T 3 and T 5 greater than T 4 , the fluid leaves the enclosure in the go leg as a gas at its coldest point in the go leg, and the temperature distribution is such that the line temperature decreases along its length from the refrigerator due to the cooling from the gas in the return leg

  7. Specialists' meeting on gas-cooled reactor core and high temperature instrumentation, Windermere, UK, 15-17 June 1982. Summary report

    International Nuclear Information System (INIS)

    1982-09-01

    The Specialists' Meeting on ''Gas-Cooled Reactor Core and High Temperature Instrumentation'' was held at the Beech Hill Hotel, Windermere in England on June 15-17 1982. The meeting was sponsored by the IAEA on the recommendation of the International Working Group on Gas Cooled Reactors and was hosted by the Windscale Nuclear Power Development Laboratories of the UKAEA. The meeting was attended by 43 participants from Belgium, France, Federal Republic of Germany, Japan, United Kingdom of Great Britain and Northern Ireland and the United States of America. The objective of the meeting was to provide a forum, both formal and informal, for the exchange and discussion of technical information relating to instrumentation being used or under development for the measurement of core parameters, neutron flux, temperature, coolant flow etc. in gas cooled reactors. The technical part of the meeting was divided into five subject sessions: (A) Temperature Measurement (B) Neutron Detection Instrumentation (C) HTR Instrumentation - General (D) Gas Analysis and Failed Fuel Detection (E) Coolant Mass Flow and Leak Detection. A total of twenty-five papers were presented by the participants on behalf of their organizations during the meeting. A programme of the meeting and list of participants are given in appendices to this report

  8. Advances in zirconium technology for nuclear reactor application

    International Nuclear Information System (INIS)

    Ganguly, C.

    2002-01-01

    Zirconium alloys are extensively used as a material for cladding nuclear fuels and for making core structurals of water-cooled nuclear power reactors all over the world for generation of nearly 16 percent of the worlds electricity. Only four countries in the world, namely France, USA, Russia and India, have large zirconium industry and capability to manufacture reactor grade zirconium sponge, a number of zirconium alloys and a wide variety of structural components for water cooled nuclear reactor. The present paper summarises the status of zirconium technology and highlights the achievement of Nuclear Fuel Complex during the last ten years in developing a wide variety of zirconium alloys and components for water-cooled nuclear power programme

  9. Small high temperature gas-cooled reactors with innovative nuclear burning

    International Nuclear Information System (INIS)

    Liem, Peng Hong; Ismail; Sekimoto, Hiroshi

    2008-01-01

    Since the innovative concept of CANDLE (Constant Axial shape of Neutron Flux, nuclide densities and power shape During Life of Energy producing reactor) burning strategy was proposed, intensive research works have been continuously conducted to evaluate the feasibility and the performance of the burning strategy on both fast and thermal reactors. We learned that one potential application of the burning strategy for thermal reactors is for the High Temperature Gas-Cooled Reactors (HTGR) with prismatic/block-type fuel elements. Several characteristics of CANDLE burning strategy such as constant reactor characteristics during burn-up, no need for burn-up reactivity control mechanism, proportionality of core height with core lifetime, sub-criticality of fresh fuel elements, etc. enable us to design small sized HTGR with a high degree of safety easiness of operation and maintenance, and long core lifetime which are required for introducing the reactors into remote areas or developing countries with limited infrastructures and resources. In the present work, we report our evaluation results on small sized block-type HTGR designs with CANDLE burning strategy and compared with other existing small HTGR designs including the ones with pebble fuel elements, under both uranium and thorium fuel cycles. (author)

  10. The nuclear fuel cycle: (2) fuel element manufacture

    International Nuclear Information System (INIS)

    Doran, J.

    1976-01-01

    Large-scale production of nuclear fuel in the United Kingdom is carried out at Springfields Works of British Nuclear Fuels Ltd., a company formed from the United Kingdom Atomic Energy Authority in 1971. The paper describes in some detail the Springfields Works processes for the conversion of uranium ore concentrate to uranium tetrafluoride, then conversion of the tetrafluoride to either uranium metal for cladding in Magnox to form fuel for the British Mk I gas-cooled reactors, or to uranium hexafluoride for enrichment of the fissile 235 U isotope content at the Capenhurst Works of BNFL. Details are given of the reconversion at Springfields Works of this enriched uranium hexafluoride to uranium dioxide, which is pelleted and then clad in either stainless steel or zircaloy containers to form the fuel assemblies for the British Mk II AGR or advanced gas-cooled reactors or for the water reactor fuels. (author)

  11. Cooling system for auxiliary systems of a nuclear power plant

    International Nuclear Information System (INIS)

    Maerker, W.; Mueller, K.; Roller, W.

    1981-01-01

    From the reactor auxiliary and ancillary systems of a nuclear facility heat has to be removed without the hazard arising that radioactive liquids or gases may escape from the safe area of the nuclear facility. A cooling system is described allowing at every moment to make available cooling fluid at a temperature sufficiently low for heat exchangers to be able to remove the heat from such auxiliary systems without needing fresh water supply or water reservoirs. For this purpose a dry cooling tower is connected in series with a heat exchanger that is cooled on the secondary side by means of a refrigerating machine. The cooling pipes are filled with a nonfreezable fluid. By means of a bypass a minimum temperature is guaranteed at cold weather. (orig.) [de

  12. Utilization of multi-purpose high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Kawada, Osamu; Onuki, Yoshiaki; Wasaoka, Takeshi.

    1974-01-01

    Concerning the utilization of multi-purpose high temperature gas-cooled reactors, the electric power generation with gas turbines is described: features of HTR-He gas turbine power plants; the state of development of He gas turbines; and combined cycle with gas turbines and steam turbines. The features of gas turbines concern heat dissipation into the environment and the mode of load operation. Outstanding work in the development of He gas turbines is that in Hochtemperatur Helium-Turbine Project in West Germany. The power generation with combined gas turbines and steam turbines appears to be superior to that with gas turbines alone. (Mori, K.)

  13. Concept of an inherently-safe high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Sato, Hiroyuki; Tachibana, Yukio; Kunitomi, Kazuhiko; Ogawa, Masuro

    2012-01-01

    As the challenge to ensure no harmful release of radioactive materials at the accidents by deterministic approach instead to satisfy acceptance criteria or safety goal for risk by probabilistic approach, new concept of advanced reactor, an inherently-safe high temperature gas-cooled reactor, is proposed based on the experience of the operation of the actual High Temperature Gas-cooled Reactor (HTGR) in Japan, High Temperature Engineering Test Reactor (HTTR), and the design of the commercial plant (GTHTR300), utilizing the inherent safety features of the HTGR (i.e., safety features based on physical phenomena). The safety design philosophy of the inherently-safe HTGR for the safety analysis of the radiological consequences is determined as the confinement of radioactive materials is assured by only inherent safety features without engineered safety features, AC power or prompt actions by plant personnel if the design extension conditions occur. Inherent safety features to prevent the loss or degradation of the confinement function are identified. It is proposed not to apply the probabilistic approach for the evaluation of the radiological consequences of the accidents in the safety analysis because no inherent safety features fail for the mitigation of the consequences of the accidents. Consequently, there are no event sequences to harmful release of radioactive materials if the design extension conditions occur in the inherently-safe HTGR concept. The concept and future R and D items for the inherently-safe HTGR are described in this paper.

  14. Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, July 1, 1980-September 30, 1980

    International Nuclear Information System (INIS)

    1980-01-01

    Objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in this report includes the activities associated with the status of the simulated reactor helium supply system, testing equipment and gas chemistry analysis instrumentation and equipment. The progress in the screening test program is described: screening creep results and metallographic analysis for materials thermally exposed or tested at 750, 850, 950 and 1050 0 C. Initiation of controlled purity helium creep-rupture testing in the intensive screening test program is discussed. In addition, the results of 1000-hour exposures at 750 and 850 0 C on several experimental alloys are discussed

  15. Advanced control and instrumentation systems in nuclear power plants. Design, verification and validation

    International Nuclear Information System (INIS)

    Haapanen, P.

    1995-01-01

    The Technical Committee Meeting on design, verification and validation of advanced control and instrumentation systems in nuclear power plants was held in Espoo, Finland on 20 - 23 June 1994. The meeting was organized by the International Atomic Energy Agency's (IAEA) International Working Group's (IWG) on Nuclear Power Plant Control and Instrumentation (NPPCI) and on Advanced Technologies for Water Cooled Reactors (ATWR). VTT Automation together with Imatran Voima Oy and Teollisuuden Voima Oy responded about the practical arrangements of the meeting. In total 96 participants from 21 countries and the Agency took part in the meeting and 34 full papers and 8 posters were presented. Following topics were covered in the papers: (1) experience with advanced and digital systems, (2) safety and reliability analysis, (3) advanced digital systems under development and implementation, (4) verification and validation methods and practices, (5) future development trends. (orig.)

  16. Gas cooled fast reactor benchmarks for JNC and Cea neutronic tools assessment

    International Nuclear Information System (INIS)

    Rimpault, G.; Sugino, K.; Hayashi, H.

    2005-01-01

    In order to verify the adequacy of JNC and Cea computational tools for the definition of GCFR (gas cooled fast reactor) core characteristics, GCFR neutronic benchmarks have been performed. The benchmarks have been carried out on two different cores: 1) a conventional Gas-Cooled fast Reactor (EGCR) core with pin-type fuel, and 2) an innovative He-cooled Coated-Particle Fuel (CPF) core. Core characteristics being studied include: -) Criticality (Effective multiplication factor or K-effective), -) Instantaneous breeding gain (BG), -) Core Doppler effect, and -) Coolant depressurization reactivity. K-effective and coolant depressurization reactivity at EOEC (End Of Equilibrium Cycle) state were calculated since these values are the most critical characteristics in the core design. In order to check the influence due to the difference of depletion calculation systems, a simple depletion calculation benchmark was performed. Values such as: -) burnup reactivity loss, -) mass balance of heavy metals and fission products (FP) were calculated. Results of the core design characteristics calculated by both JNC and Cea sides agree quite satisfactorily in terms of core conceptual design study. Potential features for improving the GCFR computational tools have been discovered during the course of this benchmark such as the way to calculate accurately the breeding gain. Different ways to improve the accuracy of the calculations have also been identified. In particular, investigation on nuclear data for steel is important for EGCR and for lumped fission products in both cores. The outcome of this benchmark is already satisfactory and will help to design more precisely GCFR cores. (authors)

  17. The role of the IAEA in advanced technologies for water-cooled reactors

    International Nuclear Information System (INIS)

    Cleveland, J.

    1996-01-01

    The role of the IAEA in advanced technologies for water-cooled reactors is described, including the following issues: international collaboration ways through international working group activities; IAEA coordinated research programmes; cooperative research in advanced water-cooled reactor technology

  18. Thermodynamic assessment of impact of inlet air cooling techniques on gas turbine and combined cycle performance

    International Nuclear Information System (INIS)

    Mohapatra, Alok Ku; Sanjay

    2014-01-01

    The article is focused on the comparison of impact of two different methods of inlet air cooling (vapor compression and vapor absorption cooling) integrated to a cooled gas turbine based combined cycle plant. Air-film cooling has been adopted as the cooling technique for gas turbine blades. A parametric study of the effect of compressor pressure ratio, compressor inlet temperature (T i , C ), turbine inlet temperature (T i , T ), ambient relative humidity and ambient temperature on performance parameters of plant has been carried out. Optimum T i , T corresponding to maximum plant efficiency of combined cycle increases by 100 °C due to the integration of inlet air cooling. It has been observed that vapor compression cooling improves the efficiency of gas turbine cycle by 4.88% and work output by 14.77%. In case of vapor absorption cooling an improvement of 17.2% in gas cycle work output and 9.47% in gas cycle efficiency has been observed. For combined cycle configuration, however, vapor compression cooling should be preferred over absorption cooling in terms of higher plant performance. The optimum value of compressor inlet temperature has been observed to be 20 °C for the chosen set of conditions for both the inlet air cooling schemes. - Highlights: • Inlet air cooling improves performance of cooled gas turbine based combined cycle. • Vapor compression inlet air cooling is superior to vapor absorption inlet cooling. • For every turbine inlet temperature, there exists an optimum pressure ratio. • The optimum compressor inlet temperature is found to be 293 K

  19. Kaon condensates, nuclear symmetry energy and cooling of neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, S. E-mail: kubis@alf.ifj.edu.pl; Kutschera, M

    2003-06-02

    The cooling of neutron stars by URCA processes in the kaon-condensed neutron star matter for various forms of nuclear symmetry energy is investigated. The kaon-nucleon interactions are described by a chiral Lagrangian. Nuclear matter energy is parametrized in terms of the isoscalar contribution and the nuclear symmetry energy in the isovector sector. High density behaviour of nuclear symmetry energy plays an essential role in determining the composition of the kaon-condensed neutron star matter which in turn affects the cooling properties. We find that the symmetry energy which decreases at higher densities makes the kaon-condensed neutron star matter fully protonized. This effect inhibits strongly direct URCA processes resulting in slower cooling of neutron stars as only kaon-induced URCA cycles are present. In contrast, for increasing symmetry energy direct URCA processes are allowed in the almost whole density range where the kaon condensation exists.

  20. Kaon condensates, nuclear symmetry energy and cooling of neutron stars

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.

    2003-01-01

    The cooling of neutron stars by URCA processes in the kaon-condensed neutron star matter for various forms of nuclear symmetry energy is investigated. The kaon-nucleon interactions are described by a chiral Lagrangian. Nuclear matter energy is parametrized in terms of the isoscalar contribution and the nuclear symmetry energy in the isovector sector. High density behaviour of nuclear symmetry energy plays an essential role in determining the composition of the kaon-condensed neutron star matter which in turn affects the cooling properties. We find that the symmetry energy which decreases at higher densities makes the kaon-condensed neutron star matter fully protonized. This effect inhibits strongly direct URCA processes resulting in slower cooling of neutron stars as only kaon-induced URCA cycles are present. In contrast, for increasing symmetry energy direct URCA processes are allowed in the almost whole density range where the kaon condensation exists

  1. Advanced light-water reactors

    International Nuclear Information System (INIS)

    Golay, M.W.; Todreas, N.E.

    1990-01-01

    Environmental concerns, economics and the earth's finite store of fossil fuels argue for a resuscitation of nuclear power. The authors think improved light-water reactors incorporating passive safety features can be both safe and profitable, but only if attention is paid to economics, effective management and rigorous training methods. The experience of nearly four decades has winnowed out designs for four basic types of reactor: the heavy-water reactor (HWR), the gas-cooled rector (GCR), the liquid-metal-cooled reactor (LMR) and the light-water reactor (LWR). Each design is briefly described before the paper discusses the passive safety features of the AP-600 rector, so-called because it employs an advanced pressurized water design and generates 600 MW of power

  2. Preliminary Sensitivity Study on Gas-Cooled Reactor for NHDD System Using MARS-GCR

    International Nuclear Information System (INIS)

    Lee, Seung Wook; Jeong, Jae Jun; Lee, Won Jae

    2005-01-01

    A Gas-Cooled Reactor (GCR) is considered as one of the most outstanding tools for a massive hydrogen production without CO 2 emission. Till now, two types of GCR are regarded as a viable nuclear reactor for a hydrogen production: Prismatic Modular Reactor (PMR), Pebble Bed Reactor (PBR). In this paper, a preliminary sensitivity study on two types of GCR is carried out by using MARS-GCR to find out the effect on the peak fuel and reactor pressure vessel (RPV) temperature, with varying the condition of a reactor inlet, outlet temperature, and system pressure for both PMR and PBR

  3. Water cooled reactor technology: Safety research abstracts no. 1

    International Nuclear Information System (INIS)

    1990-01-01

    The Commission of the European Communities, the International Atomic Energy Agency and the Nuclear Energy Agency of the OECD publish these Nuclear Safety Research Abstracts within the framework of their efforts to enhance the safety of nuclear power plants and to promote the exchange of research information. The abstracts are of nuclear safety related research projects for: pressurized light water cooled and moderated reactors (PWRs); boiling light water cooled and moderated reactors (BWRs); light water cooled and graphite moderated reactors (LWGRs); pressurized heavy water cooled and moderated reactors (PHWRs); gas cooled graphite moderated reactors (GCRs). Abstracts of nuclear safety research projects for fast breeder reactors are published independently by the Nuclear Energy Agency of the OECD and are not included in this joint publication. The intention of the collaborating international organizations is to publish such a document biannually. Work has been undertaken to develop a common computerized system with on-line access to the stored information

  4. Design measures for prevention and mitigation of severe accidents at advanced water cooled reactors. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1998-06-01

    Over 8500 reactor-years of operating experience have been accumulated with the current nuclear energy systems. New generations of nuclear power plants are being developed, building upon this background of experience. During the last decade, requirements for equipment specifically intended to minimize releases of radioactive material to the environment in the event of a core melt accident have been introduced, and designs for new plants include measures for preventing and mitigating a range of severe accident scenarios. The IAEA Technical Committee Meeting on Impact of Severe Accidents on Plant Design and Layout of Advanced Water Cooled Reactors was jointly organized by the Department of Nuclear Energy and the Department of Nuclear Safety to review measures which are being incorporated into advanced water cooled reactor designs for preventing and mitigating severe accidents, the status of experimental and analytical investigations of severe accident phenomena and challenges which support design decisions and accident management procedures, and to understand the impact of explicitly addressing severe accidents on the cost of nuclear power plants. This publication is intended to provide an objective source of information on this topic. It includes 14 papers presented at the Technical Committee meeting held in Vienna between 21-25 October 1996. It also includes a Summary and Findings of the Working Groups. The papers were grouped in three sections. A separate abstract was prepared for each paper

  5. Estimation of gas turbine blades cooling efficiency

    NARCIS (Netherlands)

    Moskalenko, A.B.; Kozhevnikov, A.

    2016-01-01

    This paper outlines the results of the evaluation of the most thermally stressed gas turbine elements, first stage power turbine blades, cooling efficiency. The calculations were implemented using a numerical simulation based on the Finite Element Method. The volume average temperature of the blade

  6. Sensitivity analysis of the kinetic behaviour of a Gas Cooled Fast Reactor to variations of the delayed neutron parameters

    International Nuclear Information System (INIS)

    Van Rooijen, W. F. G.; Lathouwers, D.

    2007-01-01

    In advanced Generation IV (fast) reactors an integral fuel cycle is envisaged, where all Heavy Metal is recycled in the reactor. This leads to a nuclear fuel with a considerable content of Minor Actinides. For many of these isotopes the nuclear data is not very well known. In this paper the sensitivity of the kinetic behaviour of the reactor to the dynamic parameters λ k , β k and the delayed spectrum χ d,k is studied using first order perturbation theory. In the current study, feedback due to Doppler and/or thermohydraulic effects are not treated. The theoretical framework is applied to a Generation IV Gas Cooled Fast Reactor. The results indicate that the first-order approach is satisfactory for small variations of the data. Sensitivities to delayed neutron data are similar for increasing and decreasing transients. Sensitivities generally increase with reactivity for increasing transients. For decreasing transients, there are less clearly defined trends, although the sensitivity to the delayed neutron spectrum decreases with larger sub-criticality, as expected. For this research, an adjoint capable version of the time-dependent diffusion code DALTON is under development. (authors)

  7. Performance comparison of liquid metal and gas cooled ATW system point designs

    International Nuclear Information System (INIS)

    Yang, W.S.; Taiwo, T.A.; Hill, R.N.; Khalil, H.S.; Wade, D.C.

    2001-01-01

    As part of the Advanced Accelerator Application (AAA) program in the U.S., preliminary design studies have been performed at Argonne National Laboratory (ANL) and Los Alamos National Laboratory (LANL) to define and compare candidate Accelerator Transmutation of Waste (ATW) systems. The studies at ANL have focused primarily on the transmutation blanket component of the overall system. Lead-bismuth eutectic (LBE), sodium, and gas cooled systems are among the blanket technology options currently under consideration. This paper summarizes the results from neutronics trade studies performed at ANL. Core designs have been developed for LBE and sodium cooled 840 MWt fast spectrum accelerator driven systems employing re-cycle. Additionally, neutronics analyses have been performed for a helium-cooled 600 MWt hybrid thermal and fast spectrum system proposed by General Atomics (GA), which is operated in the critical mode for three cycles and in a subcritical accelerator driven mode for a subsequent single cycle. For these three point designs, isotopic inventories, consumption rates, and annual burnup rates are compared. The mass flows and the ultimate loss of transuranic (TRU) isotopes to the waste stream per unit of heat generated during transmutation are also compared on a consistent basis. (author)

  8. Scaling analysis of the coupled heat transfer process in the high-temperature gas-cooled reactor core

    International Nuclear Information System (INIS)

    Conklin, J.C.

    1986-08-01

    The differential equations representing the coupled heat transfer from the solid nuclear core components to the helium in the coolant channels are scaled in terms of representative quantities. This scaling process identifies the relative importance of the various terms of the coupled differential equations. The relative importance of these terms is then used to simplify the numerical solution of the coupled heat transfer for two bounding cases of full-power operation and depressurization from full-system operating pressure for the Fort St. Vrain High-Temperature Gas-Cooled Reactor. This analysis rigorously justifies the simplified system of equations used in the nuclear safety analysis effort at Oak Ridge National Laboratory

  9. Preliminary design analysis of hot gas ducts and a intermediate heat exchanger for the nuclear hydrogen reactor

    International Nuclear Information System (INIS)

    Song, K. N.; Kim, Y. W.

    2008-01-01

    Korea Atomic Energy Research Institute (KAERI) is in the process of carrying out a nuclear hydrogen system by considering the indirect cycle gas cooled reactors that produce heat at temperatures in the order of 950 .deg. C. Primary and secondary hot gas ducts with coaxial double tubes and are key components connecting a reactor pressure vessel and a intermediate heat exchanger for the nuclear hydrogen system. In this study, preliminary design analyses on the hot gas ducts and the intermediate heat exchanger were carried out. These preliminary design activities include a preliminary design on the geometric dimensions, a preliminary strength evaluation, thermal sizing, and an appropriate material selection

  10. The influence of liquid-gas velocity ratio on the noise of the cooling tower

    Science.gov (United States)

    Yang, Bin; Liu, Xuanzuo; Chen, Chi; Zhao, Zhouli; Song, Jinchun

    2018-05-01

    The noise from the cooling tower has a great influence on psychological performance of human beings. The cooling tower noise mainly consists of fan noise, falling water noise and mechanical noise. This thesis used DES turbulence model with FH-W model to simulate the flow and sound pressure field in cooling tower based on CFD software FLUENT and analyzed the influence of different kinds noise, which affected by diverse factors, on the cooling tower noise. It can be concluded that the addition of cooling water can reduce the turbulence and vortex noise of the rotor fluid field in the cooling tower at some extent, but increase the impact noise of the liquid-gas two phase. In general, the cooling tower noise decreases with the velocity ratio of liquid to gas increasing, and reaches the lowest when the velocity ratio of liquid to gas is close to l.

  11. Emergency cooling apparatus for reactor

    International Nuclear Information System (INIS)

    Sakaguchi, S.

    1975-01-01

    A nuclear reactor is described which has the core surrounded by coolant and an inert cover gas all sealed within a container, an emergency cooling apparatus employing a detector that will detect cover gas or coolant, particularly liquid sodium, leaking from the container of the reactor, to release a heat exchange material that is inert to the coolant, which heat exchange material is cooled during operation of the reactor. The heat exchange material may be liquid niitrogen or a combination of spheres and liquid nitrogen, for example, and is introduced so as to contact the coolant that has leaked from the container quickly so as to rapidly cool the coolant to prevent or extinguish combustion. (Official Gazette)

  12. Selection of design basis event for modular high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Nakagawa, Shigeaki; Ohashi, Hirofumi

    2016-06-01

    Japan Atomic Energy Agency (JAEA) has been investigating safety requirements and basic approach of safety guidelines for modular High Temperature Gas-cooled Reactor (HTGR) aiming to increase internarial contribution for nuclear safety by developing an international HTGR safety standard under International Atomic Energy Agency. In this study, we investigate a deterministic approach to select design basis events utilizing information obtained from probabilistic approach. In addition, selections of design basis events are conducted for commercial HTGR designed by JAEA. As a result, an approach for selecting design basis event considering multiple failures of safety systems is established which has not been considered as design basis in the safety guideline for existing nuclear facility. Furthermore, selection of design basis events for commercial HTGR has completed. This report provides an approach and procedure for selecting design basis events of modular HTGR as well as selected events for the commercial HTGR, GTHTR300. (author)

  13. Passive cooling system for nuclear reactor containment structure

    Science.gov (United States)

    Gou, Perng-Fei; Wade, Gentry E.

    1989-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  14. Validation of CATHARE for gas-cooled reactors

    International Nuclear Information System (INIS)

    Fabrice Bentivoglio; Ola Widlund; Manuel Saez

    2005-01-01

    Full text of publication follows: Extensively validated and qualified for light-water reactor safety studies, the thermo-hydraulics code CATHARE has been adapted to deal also with gas-cooled reactor applications. In order to validate the code for these novel applications, CEA (Commissariat a l'Energie Atomique) has initiated an ambitious long-term experimental program. The foreseen experimental facilities range from small-scale loops for physical correlations, to component technology and system demonstration loops. In the short-term perspective, CATHARE is being validated against existing experimental data, in particular from the German power plant Oberhausen II and the South African Pebble-Bed Micro Model (PBMM). Oberhausen II, operated by the German utility EVO, is a 50 MW(e) direct-cycle Helium turbine plant. The power source is a gas burner rather than a nuclear reactor core, but the power conversion system resembles those of the GFR (Gas-cooled Fast Reactor) and other high-temperature reactor concepts. Oberhausen II was operated for more than 100 000 hours between 1974 and 1988. Design specifications, drawings and experimental data have been obtained through the European HTR project, offering a unique opportunity to validate CATHARE on a large-scale Brayton cycle. Available measurements of temperatures, pressures and mass flows throughout the circuit have allowed a very comprehensive thermohydraulic description of the plant, in steady-state conditions as well as during transients. The Pebble-Bed Micro Model (PBMM) is a small-scale model conceived to demonstrate the operability and control strategies of the South African PBMR concept. The model uses Nitrogen instead of Helium, and an electrical heater with a maximum rating of 420 kW. As the full-scale PBMR, the PBMM loop features three turbines and two compressors on the primary circuit, located on three separate shafts. The generator, however, is modelled by a third compressor on a separate circuit, with a

  15. Nuclear power and safety

    International Nuclear Information System (INIS)

    Saunders, P.; Tasker, A.

    1991-01-01

    Nuclear power currently provides about a fifth of both Britain's and the world's electricity. It is the largest single source of electricity in Western Europe; in France three quarters of electricity is generated by nuclear power stations. This booklet is about the safety of those plants. It approaches the subject by outlining the basic principles and approaches behind nuclear safety, describing the protective barriers and safety systems that are designed to prevent the escape of radioactive material, and summarising the regulations that govern the construction and operation of nuclear power stations. The aim is to provide a general understanding of the subject by explaining the general principles of the Advanced Gas Cooled Reactor and setting out the UKAEA strategy for nuclear safety, the objective being always to minimize risk. (author)

  16. Liquid metal cooled nuclear reactor

    International Nuclear Information System (INIS)

    Leigh, K.M.

    1980-01-01

    A liquid metal cooled nuclear reactor is described, wherein coolant is arranged to be flowed upwardly through a fuel assembly and having one or more baffles located above the coolant exit of the fuel assembly, the baffles being arranged so as to convert the upwardly directed motion of liquid metal coolant leaving the fuel assembly into a substantially horizontal motion. (author)

  17. Demonstration of Enabling Spar-Shell Cooling Technology in Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Downs, James [Florida Turbine Technologies Inc., Jupiter, FL (United States)

    2014-12-29

    In this Advanced Turbine Program-funded Phase III project, Florida Turbine Technologies, Inc. (FTT) has developed and tested, at a pre-commercial prototypescale, spar-shell turbine airfoils in a commercial gas turbine. The airfoil development is based upon FTT’s research and development to date in Phases I and II of Small Business Innovative Research (SBIR) grants. During this program, FTT has partnered with an Original Equipment Manufacturer (OEM), Siemens Energy, to produce sparshell turbine components for the first pre-commercial prototype test in an F-Class industrial gas turbine engine and has successfully completed validation testing. This project will further the commercialization of this new technology in F-frame and other highly cooled turbine airfoil applications. FTT, in cooperation with Siemens, intends to offer the spar-shell vane as a first-tier supplier for retrofit applications and new large frame industrial gas turbines. The market for the spar-shell vane for these machines is huge. According to Forecast International, 3,211 new gas turbines units (in the >50MW capacity size range) will be ordered in ten years from 2007 to 2016. FTT intends to enter the market in a low rate initial production. After one year of successful extended use, FTT will quickly ramp up production and sales, with a target to capture 1% of the market within the first year and 10% within 5 years (2020).

  18. Draft pre-application safety evaluation report for the modular high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Williams, P.M.; King, T.L.; Wilson, J.N.

    1989-03-01

    This draft safety evaluation report (SER) presents the preliminary results of a pre-application design review for the standard modular high-temperature gas-cooled reactor (MHTGR) (Project 672). The MHTGR conceptual design was submitted by the U.S. Department of Energy (DOE) in accordance with the U.S. Nuclear Regulatory Commission(NRC) 'Statement of Policy for the Regulation of Advanced Nuclear Power Plants' (51 FR 24643), which provides for early Commission review and interaction. The standard MHTGR consists of four identical reactor modules, each with a thermal output of 350 MWt, coupled with two steam turbine-generator sets to produce a total plant electrical output of 540 MWe. The reactors are helium cooled and graphite moderated and utilize ceramically coated particle-type nuclear fuel. The design includes passive reactor-shutdown and decay-heat-removal features. The staff and its contractors at the Oak Ridge National Laboratory and the Brookhaven National Laboratory have reviewed this design with emphasis on those unique provisions in the design that accomplish the key safety functions of reactor shutdown, decay-heat removal, and containment of radioactive material. This report presents the NRC staff's technical evaluation of those features in the MHTGR design important to safety, including their proposed research and testing needs. In addition this report presents the criteria proposed by the NRC staff to judge the acceptability of the MHTGR design and, where possible, includes statements on the potential of the MHTGR to meet these criteria. However, it should be recognized that final conclusions in all matters discussed in this report require approval by the Commission. Final determination on the acceptability of the MHTGR standard design is contingent on receipt and evaluation of additional information requested from DOE pertaining to the adequacy of the containment design and on the following: (1) satisfactory resolution of open safety issues identified

  19. Development of Safety Analysis Codes and Experimental Validation for a Very High Temperature Gas-Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chang, H. Oh, PhD; Cliff Davis; Richard Moore

    2004-11-01

    The very high temperature gas-cooled reactors (VHTGRs) are those concepts that have average coolant temperatures above 900 degrees C or operational fuel temperatures above 1250 degrees C. These concepts provide the potential for increased energy conversion efficiency and for high-temperature process heat application in addition to power generation and nuclear hydrogen generation. While all the High Temperature Gas Cooled Reactor (HTGR) concepts have sufficiently high temperatures to support process heat applications, such as desalination and cogeneration, the VHTGR's higher temperatures are suitable for particular applications such as thermochemical hydrogen production. However, the high temperature operation can be detrimental to safety following a loss-of-coolant accident (LOCA) initiated by pipe breaks caused by seismic or other events. Following the loss of coolant through the break and coolant depressurization, air from the containment will enter the core by molecular diffusion and ultimately by natural convection, leading to oxidation of the in-core graphite structures and fuel. The oxidation will release heat and accelerate the heatup of the reactor core. Thus, without any effective countermeasures, a pipe break may lead to significant fuel damage and fission product release. The Idaho National Engineering and Environmental Laboratory (INEEL) has investigated this event for the past three years for the HTGR. However, the computer codes used, and in fact none of the world's computer codes, have been sufficiently developed and validated to reliably predict this event. New code development, improvement of the existing codes, and experimental validation are imperative to narrow the uncertaninty in the predictions of this type of accident. The objectives of this Korean/United States collaboration are to develop advanced computational methods for VHTGR safety analysis codes and to validate these computer codes.

  20. Gas separation techniques in nuclear facilities

    International Nuclear Information System (INIS)

    Hioki, Hideaki; Morisue, Tetsuo; Ohno, Masayoshi

    1983-01-01

    The literatures concerning the gas separation techniques which are applied to the waste gases generated from nuclear power plants and nuclear fuel reprocessing plants, uranium enrichment and the instrumentation of nuclear facilities are reviewed. The gas permeability and gas separation performance of membranes are discussed in terms of rare gas separation. The investigation into the change of the gas permeability and mechanical properties of membranes with exposure to radiation is reported. The theoretical investigation of the separating cells used for the separation of rare gas and the development of various separating cells are described, and the theoretical and experimental investigations concerning rare gas separation using cascades are described. The application of membrane method to nuclear facilities is explained showing the examples of uranium enrichment, the treatment of waste gases from nuclear reactor buildings and nuclear fuel reprocessing plants, the monitoring of low level β-emitters in stacks, the detection of failed fuels and the detection of water leak in fast breeder reactors. (Yoshitake, I.)

  1. Gas Centrifuges and Nuclear Proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Albright, David

    2004-09-15

    Gas centrifuges have been an ideal enrichment method for a wide variety of countries. Many countries have built gas centrifuges to make enriched uranium for peaceful nuclear purposes. Other countries have secretly sought centrifuges to make highly enriched uranium for nuclear weapons. In more recent times, several countries have secretly sought or built gas centrifuges in regions of tension. The main countries that have been of interest in the last two decades have been Pakistan, Iraq, Iran, and North Korea. Currently, most attention is focused on Iran, Pakistan, and North Korea. These states did not have the indigenous abilities to make gas centrifuges, focusing instead on illicit and questionable foreign procurement. The presentation covered the following main sections: Spread of centrifuges through illicit procurement; Role of export controls in stopping proliferation; Increasing the transparency of gas centrifuge programs in non-nuclear weapon states; and, Verified dismantlement of gas centrifuge programs. Gas centrifuges are important providers of low enriched uranium for civil nuclear power reactors. They also pose special nuclear proliferation risks. We all have special responsibilities to prevent the spread of gas centrifuges into regions of tension and to mitigate the consequences of their spread into the Middle East, South Asia, and North Asia.

  2. Assessment and status report High-Temperature Gas-Cooled Reactor gas-turbine technology

    International Nuclear Information System (INIS)

    1981-01-01

    Purpose of this report is to present a brief summary assessment of the High Temperature Gas-Cooled Reactor - Gas Turbine (HTGR-GT) technology. The focal point for the study was a potential 2000 MW(t)/800 MW(e) HTGR-GT commercial plant. Principal findings of the study were that: the HTGR-GT is feasible, but with significantly greater development risk than the HTGR-SC (Steam Cycle). At the level of performance corresponding to the reference design, no incremental economic incentive can be identified for the HTGR-GT to offset the increased development costs and risk relative to the HTGR-SC. The relative economics of the HTGR-GT and HTGR-SC are not significantly impacted by dry cooling considerations. While reduced cycel complexity may ultimately result in a reliability advantage for the HTGR-GT, the value of that potential advantage was not quantified

  3. Improving Fuel Cycle Design and Safety Characteristics of a Gas Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Rooijen, W.F.G. van

    2006-01-01

    The Gas Cooled Fast Reactor (GCFR)is one of the Generation IV reactor concepts. This concept specifically targets sustainability of nuclear power generation. In nuclear reactors fertile material is converted to fissile fuel. If the neutrons inducing fission are highly energetic, the opportunity exists to convert more than one fertile nucleus per fission, thereby effectively breeding new nuclear fuel. Reactors operating on this principle are called ‘Fast Breeder Reactor’. Since natural uranium contains 99.3%of the fertile isotope 238 U, breeding increases the energy harvested from the nuclear fuel. If nuclear energy is to play an important role as a source of energy in the future, fast breeder reactors are essential for breeding nuclear fuel. Fast neutrons are also more efficient to destruct heavy (Minor Actinide, MA) isotopes, such as Np, Am and Cm isotopes, which dominate the long-term radioactivity of nuclear waste. So the waste life-time can be shortened if the MA nuclei are destroyed. An important prerequisite of sustainable nuclear energy is the closed fuel cycle, where only fission products are discharged to a final repository, and all Heavy Metal (HM) are recycled. The reactor should breed just enough fissile material to allow refueling of the same reactor, adding only fertile material to the recycled material. Other key design choices are highly efficient power conversion using a direct cycle gas turbine, and better safety through the use of helium, a chemically inert coolant which cannot have phase changes in the reactor core. Because the envisaged core temperatures and operating conditions are similar to thermal-spectrum High Temperature Reactor (HTR) concepts, the research for this thesis initially focused on a design based on existing HTR fuel technology: coated particle fuel, assembled into fuel assemblies. It was found that such a fuel concept could not meet the Generation IV criteria set for GCFR: self-breeding is difficult, the temperature

  4. Advanced Nuclear Reactor Concepts for China

    International Nuclear Information System (INIS)

    Knoche, D.; Sassen, F.; Tietsch, W.; Yujie, Dong; Li, Cao

    2008-01-01

    China is one of the fastest growing economies in the world. With 1.3 billion people China also has the largest population worldwide. The growing economy, the migration of people from rural areas to cities and the augmentation in living standard will drive the energy demand of China in the coming decades. At present the installed electrical power is about 500 GW. In the years 2004 and 2005 the added electrical capacity was around 60 GW per year. Chinas primary energy demand is covered mainly by the use of coal. Coal also will remain the main energy source in the coming decades in China. Nevertheless taking into account more and more environmental aspects and the goal to reduce dependencies on energy imports a better energy mix strategy is planed to change including at an increasing level the renewable and nuclear option. Present the nuclear park is characterised by a large variety of different types of reactors. With the AP-1000, EPR and the gas-cooled High Temperature Reactor (HTR) the spectrum of different reactor types will be further enlarged. (authors)

  5. Advanced Nuclear Reactor Concepts for China

    Energy Technology Data Exchange (ETDEWEB)

    Knoche, D.; Sassen, F.; Tietsch, W. [Westinghouse Electric Germany, Postfach 10 05 63, 68140 Mannheim (Germany); Yujie, Dong; Li, Cao [INET, Tsinghua University, 100084 Beijing (China)

    2008-07-01

    China is one of the fastest growing economies in the world. With 1.3 billion people China also has the largest population worldwide. The growing economy, the migration of people from rural areas to cities and the augmentation in living standard will drive the energy demand of China in the coming decades. At present the installed electrical power is about 500 GW. In the years 2004 and 2005 the added electrical capacity was around 60 GW per year. Chinas primary energy demand is covered mainly by the use of coal. Coal also will remain the main energy source in the coming decades in China. Nevertheless taking into account more and more environmental aspects and the goal to reduce dependencies on energy imports a better energy mix strategy is planed to change including at an increasing level the renewable and nuclear option. Present the nuclear park is characterised by a large variety of different types of reactors. With the AP-1000, EPR and the gas-cooled High Temperature Reactor (HTR) the spectrum of different reactor types will be further enlarged. (authors)

  6. Dynamics and inherent safety features of small modular high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Harrington, R.M.; Ball, S.J.; Cleveland, J.C.

    1986-01-01

    Investigations were made at Oak Ridge National Laboratory to characterize the dynamics and inherent safety features of various modular high temperature gas-cooled reactor (HTGR) designs. This work was sponsored by the US Nuclear Regulatory Commission's HTGR Safety Research program. The US Department of Energy (DOE) and the Gas Cooled Reactor Associates (GCRA) have sponsored studies of several modular HTGR concepts, each having it own unique advantageous economic and inherent safety features. The DOE design team has recently choses a 350-MW(t) annular core with prismatic, graphite matrix fuel for its reference plant. The various safety features of this plant and of the pebble-bed core designs similar to those currently being developed and operated in the Federal Republic of Germany (FRG) are described. A varity of postulated accident sequences involving combinations of loss of forced circulation of the helium primary coolant, loss of primary coolant pressurization, and loss of normal and backup heat sinks were studied and are discussed. Results demonstrate that each concept can withstand an uncontrolled heatup accident without reaching excessive peak fuel temperatures. Comparisons of calculated and measured response for a loss of forced circulation test on the FRG reactor, AVR, are also presented. 10 refs

  7. Scram device for gas-cooled reactor

    International Nuclear Information System (INIS)

    Murakami, Atsushi; Takahashi, Suehiro.

    1989-01-01

    A scram device for gas-cooled reactors has a hopper disposed below a stand pipe standing upright passing through a reactor container and electromagnets disposed therein. It further comprises neutron absorbing steel balls maintained between the electromagnets and the hopper upon energization of the electromagnets. Upon emergency reactor shutdown, energization for the electromagnets is interrupted to drop the neutron absorption stainless steel balls into the reactor core. It is an object of the present invention to keep the mechanical strength of the electromagnets in a high temperature gas atmosphere and not to reduce the insulation performance. That is, coils for the electromagnets are constituted with a small oxide-insulated metal sheath cable (MI cable). As the feature of the MI cable, it can maintain the mechanical strength even when exposed to high temperature gas coolant and the insulation performance thereof does not reduce by virture of its gas sealing property. Accordingly, a scram device of stable reliability can be obtained. (K.M.)

  8. Scottish Nuclear, the company

    International Nuclear Information System (INIS)

    Yeomans, R.M.

    1991-01-01

    A former chief executive of Scottish Nuclear, formed when United Kingdom electricity generation was privatized, describes the financial viability of the company and considers the future of nuclear power. Scottish Nuclear owns and operates the Advanced Gas Cooled (AGR) and Magnox reactors at Hunterston and the AGR reactor at Torness and is a separate company from those dealing with hydro-electric and non-nuclear generation of electricity. Costs of running the reactors is identified as a proportion of the whole for certain key issues such as station costs, depreciation, decommissioning and insurance. While nuclear power generation using outmoded Magnox reactors is costly, the ecological cost of global warming is seen as more of a problem. Future policy for nuclear power in Scotland must include new plant, probably pressurized water reactors and a clear policy of safety enhancement. (UK)

  9. Improving economics and safety of water cooled reactors. Proven means and new approaches

    International Nuclear Information System (INIS)

    2002-05-01

    Nuclear power plants (NPPs) with water cooled reactors [either light water reactors (LWRs) or heavy water reactors (HWRs)] constitute the large majority of the currently operating plants. Water cooled reactors can make a significant contribution to meeting future energy needs, to reducing greenhouse gas emissions, and to energy security if they can compete economically with fossil alternatives, while continuing to achieve a very high level of safety. It is generally agreed that the largest commercial barrier to the addition of new nuclear power capacity is the high capital cost of nuclear plants relative to other electricity generating alternatives. If nuclear plants are to form part of the future generating mix in competitive electricity markets, capital cost reduction through simplified designs must be an important focus. Reductions in operating, maintenance and fuel costs should also be pursued. The Department of Nuclear Energy of the IAEA is examining the competitiveness of nuclear power and the means for improving its economics. The objective of this TECDOC is to emphasize the need, and to identify approaches, for new nuclear plants with water cooled reactors to achieve competitiveness while maintaining high levels of safety. The cost reduction methods discussed herein can be implemented into plant designs that are currently under development as well as into designs that may be developed in the longer term. Many of the approaches discussed also generally apply to other reactor types (e.g. gas cooled and liquid metal cooled reactors). To achieve the largest possible cost reductions, proven means for reducing costs must be fully implemented, and new approaches described in this document should be developed and implemented. These new approaches include development of advanced technologies, increased use of risk-informed methods for evaluating the safety benefit of design features, and international consensus regarding commonly acceptable safety requirements that

  10. Improving economics and safety of water cooled reactors. Proven means and new approaches

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-05-01

    Nuclear power plants (NPPs) with water cooled reactors [either light water reactors (LWRs) or heavy water reactors (HWRs)] constitute the large majority of the currently operating plants. Water cooled reactors can make a significant contribution to meeting future energy needs, to reducing greenhouse gas emissions, and to energy security if they can compete economically with fossil alternatives, while continuing to achieve a very high level of safety. It is generally agreed that the largest commercial barrier to the addition of new nuclear power capacity is the high capital cost of nuclear plants relative to other electricity generating alternatives. If nuclear plants are to form part of the future generating mix in competitive electricity markets, capital cost reduction through simplified designs must be an important focus. Reductions in operating, maintenance and fuel costs should also be pursued. The Department of Nuclear Energy of the IAEA is examining the competitiveness of nuclear power and the means for improving its economics. The objective of this TECDOC is to emphasize the need, and to identify approaches, for new nuclear plants with water cooled reactors to achieve competitiveness while maintaining high levels of safety. The cost reduction methods discussed herein can be implemented into plant designs that are currently under development as well as into designs that may be developed in the longer term. Many of the approaches discussed also generally apply to other reactor types (e.g. gas cooled and liquid metal cooled reactors). To achieve the largest possible cost reductions, proven means for reducing costs must be fully implemented, and new approaches described in this document should be developed and implemented. These new approaches include development of advanced technologies, increased use of risk-informed methods for evaluating the safety benefit of design features, and international consensus regarding commonly acceptable safety requirements that

  11. Development status and operational features of the high temperature gas-cooled reactor. Final report

    International Nuclear Information System (INIS)

    Winkleblack, R.K.

    1976-04-01

    The objective of this study is to investigate the maturity of HTR-technology and to look out for possible technical problems, concerning introduction of large HTR power plants into the market. Further state and problems of introducing and closing the thorium fuel cycle is presented and judged. Finally, the state of development of advanced HTR-concepts for electricity production, the direct cycle HTR with helium turbine, and the gas-cooled fast breeder is discussed. In preparing the study, both HTR concepts with spherical and block-type fuel elements have been considered

  12. Plant maintenance and advanced reactors, 2006

    Energy Technology Data Exchange (ETDEWEB)

    Agnihotri, Newal (ed.)

    2006-09-15

    The focus of the September-October issue is on plant maintenance and advanced reactors. Major articles/reports in this issue include: Advanced plants to meet rising expectations, by John Cleveland, International Atomic Energy Agency, Vienna; A flexible and economic small reactor, by Mario D. Carelli and Bojan Petrovic, Westinghouse Electric Company; A simple and passively safe reactor, by Yury N. Kuznetsov, Research and Development Institute of Power Engineering (NIKIET), Russia; Gas-cooled reactors, by Jeffrey S. Merrifield, U.S. Nuclear Regulatory Commission; ISI project managment in the PRC, by Chen Chanbing, RINPO, China; and, Fort Calhoun refurbishment, by Sudesh Cambhir, Omaha Public Power District.

  13. Preliminary study of nuclear power cogeneration system using gas turbine process

    International Nuclear Information System (INIS)

    Fumizawa, Motoo; Inaba, Yoshitomo; Hishida, Makoto; Ogawa, Masuro; Ogata, Kann; Yamada, Seiya.

    1995-12-01

    The Nuclear power generation plant (NPGP) releases smaller amount of carbon dioxide than the fossil power plant for the generation of the unit electrical power. Thus, the NPGP is expected to contribute resolving the ecological problems. It is important to investigate the nuclear power cogeneration system using gas turbine process from the view point that it is better to produce electricity in high thermal efficiency from the high temperature energy. We carried out, in the current preliminary study, the survey and selection of the candidate cycles, then conducted the evaluation of cycle efficiency, the selection of R and D items to be solved for the decision of the optimum cycle. Following this, we evaluated nuclear heat application for intermediate and low temperature level released from gas turbine process and overall efficiency of cogeneration system. As a result, it was clarified that overall efficiency of the direct regenerative cycle was the highest in low temperature region below 200degC, and that of the direct regenerative inter cooling cycle was the highest in middle and high temperature region. (author)

  14. Preliminary study of nuclear power cogeneration system using gas turbine process

    Energy Technology Data Exchange (ETDEWEB)

    Fumizawa, Motoo; Inaba, Yoshitomo; Hishida, Makoto [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ogawa, Masuro; Ogata, Kann; Yamada, Seiya

    1995-12-01

    The Nuclear power generation plant (NPGP) releases smaller amount of carbon dioxide than the fossil power plant for the generation of the unit electrical power. Thus, the NPGP is expected to contribute resolving the ecological problems. It is important to investigate the nuclear power cogeneration system using gas turbine process from the view point that it is better to produce electricity in high thermal efficiency from the high temperature energy. We carried out, in the current preliminary study, the survey and selection of the candidate cycles, then conducted the evaluation of cycle efficiency, the selection of R and D items to be solved for the decision of the optimum cycle. Following this, we evaluated nuclear heat application for intermediate and low temperature level released from gas turbine process and overall efficiency of cogeneration system. As a result, it was clarified that overall efficiency of the direct regenerative cycle was the highest in low temperature region below 200degC, and that of the direct regenerative inter cooling cycle was the highest in middle and high temperature region. (author).

  15. Nuclear reactor development in China for non-electrical applications

    International Nuclear Information System (INIS)

    Sun Yuliang; Zhong Daxin; Dong Duo; Xu Yuanhui

    1998-01-01

    In parallel to its vigorous program of nuclear power generation, China has attached great importance to the development of nuclear reactors for non-electrical applications. The Institute of Nuclear Energy Technology (INET) in Beijing has been developing technologies of the water-cooled heating reactor and the modular high temperature gas-cooled reactor. In 1989, a 5 MW water cooled test reactor was erected. Currently, an industrial demonstration nuclear heating plant is being projected. Feasibility studies are being made of sea-water desalination using the INET developed nuclear heating reactor as heat source. Also, a 10 MW high temperature gas-cooled test reactor is being constructed at INET in the framework of China's national high-tech program. The paper gives an overview of China's energy market situation. With respect to China's technology development of high temperature gas-cooled reactors and water cooled heating reactors, the paper describes some general requirements on the technical development, reviews the national programs and activities, describes briefly the design and safety features of the reactor concepts, discusses aspects of application potentials. (author)

  16. Thermal hydraulic studies for passive heat transport systems relevant to advanced reactors

    International Nuclear Information System (INIS)

    Vijayan, P.K.; Sharma, M.; Borgohain, A.; Srivastava, A.K.; Pilkhwal, D.S.; Maheshwari, N.K.

    2014-01-01

    Nuclear is the only non-green house gas generating power source that can replace fossil fuels and can be commercially deployed in large scale. However, the enormous developmental efforts and safety upgrades during the past six decades have somewhat eroded the economic competitiveness of water-cooled reactors which form the mainstay of the current nuclear power programme. Further, the introduction of the supercritical Rankine cycle and the gas turbine based advanced fuel cycles have enhanced the efficiency of fossil fired power plants (FPP) thereby reducing its greenhouse gas emissions. The ongoing development of ultra-supercritical and advanced ultra-supercritical turbines aims to further reduce the greenhouse gas emissions and economic competitiveness of FPPs. In the backdrop of these developments, the nuclear industry also initiated development of advanced nuclear power plants (NPP) with improved efficiency, sustainability and enhanced safety as the main goals. A review of the advanced reactor concepts being investigated currently reveals that excepting the SCWR, all other concepts use coolants other than water. The coolants used are lead, lead bismuth eutectic, liquid sodium, molten salts, helium and supercritical water. Besides, some of these are employing passive systems to transport heat from the core under normal operating conditions. In view of this, a study is in progress at BARC to examine the performance of simple passive systems using SC CO 2 , SCW, LBE and molten salts as the coolant. This paper deals with some of the recent results of these studies. The study focuses on the steady state, transient and stability behaviour of the passive systems with these coolants. (author)

  17. Optimal design of gas adsorption refrigerators for cryogenic cooling

    Science.gov (United States)

    Chan, C. K.

    1983-01-01

    The design of gas adsorption refrigerators used for cryogenic cooling in the temperature range of 4K to 120K was examined. The functional relationships among the power requirement for the refrigerator, the system mass, the cycle time and the operating conditions were derived. It was found that the precool temperature, the temperature dependent heat capacities and thermal conductivities, and pressure and temperature variations in the compressors have important impacts on the cooling performance. Optimal designs based on a minimum power criterion were performed for four different gas adsorption refrigerators and a multistage system. It is concluded that the estimates of the power required and the system mass are within manageable limits in various spacecraft environments.

  18. Component design considerations for gas turbine HTGR waste-heat power plant

    International Nuclear Information System (INIS)

    McDonald, C.F.; Vrable, D.L.

    1976-01-01

    Component design considerations are described for the ammonia waste-heat power conversion system of a large helium gas-turbine nuclear power plant under development by General Atomic Company. Initial component design work was done for a reference plant with a 3000-MW(t) High-Temperature Gas-Cooled Reactor (HTGR), and this is discussed. Advanced designs now being evaluated include higher core outlet temperature, higher peak system pressures, improved loop configurations, and twin 4000-MW(t) reactor units. Presented are the design considerations of the major components (turbine, condenser, heat input exchanger, and pump) for a supercritical ammonia Rankine waste heat power plant. The combined cycle (nuclear gas turbine and waste-heated plant) has a projected net plant efficiency of over 50 percent. While specifically directed towards a nuclear closed-cycle helium gas-turbine power plant (GT-HTGR), it is postulated that the bottoming waste-heat cycle component design considerations presented could apply to other low-grade-temperature power conversion systems such as geothermal plants

  19. RCCS Experiments and Validation for High Temperature Gas-Cooled Reactor

    International Nuclear Information System (INIS)

    Chang Oh; Cliff Davis; Goon C. Park

    2007-01-01

    A reactor cavity cooling system (RCCS), an air-cooled helical coil RCCS unit immersed in the water pool, was proposed to overcome the disadvantages of the weak cooling ability of air-cooled RCCS and the complex structure of water-cooled RCCS for the high temperature gas-cooled reactor (HTGR). An experimental apparatus was constructed to investigate the various heat transfer phenomena in the water pool type RCCS, such as the natural convection of air inside the cavity, radiation in the cavity, the natural convection of water in the water pool and the forced convection of air in the cooling pipe. The RCCS experimental results were compared with published correlations. The CFX code was validated using data from the air-cooled portion of the RCCS. The RELAP5 code was validated using measured temperatures from the reactor vessel and cavity walls

  20. Gas-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Yoshida, Hiroyuki

    1982-07-01

    Almost all the R D works of gas-cooled fast breeder reactor in the world were terminated at the end of the year 1980. In order to show that the R D termination was not due to technical difficulties of the reactor itself, the present paper describes the reactor plant concept, reactor performances, safety, economics and fuel cycle characteristics of the reactor, and also describes the reactor technologies developed so far, technological problems remained to be solved and planned development schedules of the reactor. (author)

  1. Gas cooled reactor assessment. Volume II. Final report, February 9, 1976--June 30, 1976

    International Nuclear Information System (INIS)

    1976-08-01

    This report was prepared to document the estimated power plant capital and operating costs, and the safety and environmental assessments used in support of the Gas Cooled Reactor Assessment performed by Arthur D. Little, Inc. (ADL), for the U.S. Energy Research and Development Administration. The gas-cooled reactor technologies investigated include: the High Temperature Gas Reactor Steam Cycle (HTGR-SC), the HTGR Direct Cycle (HTGR-DC), the Very High Temperature Reactor (VHTR) and the Gas Cooled Fast Reactor (GCFR). Reference technologies used for comparison include: Light Water Reactors (LWR), the Liquid Metal Fast Breeder Reactor (LMFBR), conventional coal-fired steam plants, and coal combustion for process heat

  2. CFD Analysis of the Fuel Temperature in High Temperature Gas-Cooled Reactors

    International Nuclear Information System (INIS)

    In, W. K.; Chun, T. H.; Lee, W. J.; Chang, J. H.

    2005-01-01

    High temperature gas-cooled reactors (HTGR) have received a renewed interest as potential sources for future energy needs, particularly for a hydrogen production. Among the HTGRs, the pebble bed reactor (PBR) and a prismatic modular reactor (PMR) are considered as the nuclear heat source in Korea's nuclear hydrogen development and demonstration project. PBR uses coated fuel particles embedded in spherical graphite fuel pebbles. The fuel pebbles flow down through the core during an operation. PMR uses graphite fuel blocks which contain cylindrical fuel compacts consisting of the fuel particles. The fuel blocks also contain coolant passages and locations for absorber and control material. The maximum fuel temperature in the core hot spot is one of the important design parameters for both PBR and PMR. The objective of this study is to predict the fuel temperature distributions in PBR and PMR using a computational fluid dynamics(CFD) code, CFX-5. The reference reactor designs used in this analysis are PBMR400 and GT-MHR600

  3. Gas-cooled reactor for space power systems

    International Nuclear Information System (INIS)

    Walter, C.E.; Pearson, J.S.

    1987-05-01

    Reactor characteristics based on extensive development work on the 500-MWt reactor for the Pluto nuclear ramjet are described for space power systems useful in the range of 2 to 20 MWe for operating times of 1 y. The modest pressure drop through the prismatic ceramic core is supported at the outlet end by a ceramic dome which also serves as a neutron reflector. Three core materials are considered which are useful at temperatures up to about 2000 K. Most of the calculations are based on a beryllium oxide with uranium dioxide core. Reactor control is accomplished by use of a burnable poison, a variable-leakage reflector, and internal control rods. Reactivity swings of 20% are obtained with a dozen internal boron-10 rods for the size cores studied. Criticality calculations were performed using the ALICE Monte Carlo code. The inherent high-temperature capability of the reactor design removes the reactor as a limiting condition on system performance. The low fuel inventories required, particularly for beryllium oxide reactors, make space power systems based on gas-cooled near-thermal reactors a lesser safeguard risk than those based on fast reactors

  4. Thermohydraulic relationships for advanced water cooled reactors and the role of the IAEA

    International Nuclear Information System (INIS)

    Badulescu, A.; Groeneveld, D.C.

    2000-01-01

    Under the auspices of the International Atomic Energy Agency (IAEA) a Coordinated Research Program (CRP) on Thermohydraulic Relationships for Advanced Water-Cooled Reactors was carried out from 1995-1998. It was included into the IAEA's Programme following endorsement in 1995 by the International Working Group on Advanced Technologies for Water Cooled Reactors. The overall goal was to promote International Information exchange and cooperation in establishing a consistent set of thermohydraulic relationships that are appropriate for use in analyzing the performance and safety of advanced water-cooled reactors. (authors)

  5. Click - nuclear energy

    International Nuclear Information System (INIS)

    1986-01-01

    The activities of British Nuclear Fuels are listed, explained and illustrated. It offers a complete cycle from uranium enrichment, fuel manufacture and transport, to fuel reprocessing and radioactive waste management. The uranium fission process is explained as are the basic principles of Magnox and Advanced Gas Cooled Reactors. BNFL's head office is at Risley in Cheshire and it has sites at Capenhurst (uranium enrichment plant), Springfields (fuel manufacturing plant) and Sellafield (fuel reprocessing plant). It owns Calder Hall and Chapelcross nuclear power stations. Safety is a major consideration and strict safety regulations are observed at all sites. BNFL also encourages public interest in its activities. This booklet is part of its public information effort. (U.K.)

  6. Questions for the nuclear installations inspectorate

    International Nuclear Information System (INIS)

    Conroy, C.; Flood, M.; MacRory, R.; Patterson, W.C.

    1976-01-01

    The responsibilities of the Nuclear Installations Inspectorate are considered, and the responsibilities of other bodies for (a) reprocessing and enrichment, and (b) security. Questions for the Nuclear Installations Inspectorate are then set out under the following heads: general (on such topics as vandalism, sabotage, threats, security, reactor incidents); magnox reactors; corrosion; advanced gas-cooled reactor; steam generating heavy water reactor; fast breeder reactor; reproces-sing and waste. Most of the questions are concerned with technical problems that have been reported or might possibly arise during construction or operation, affecting the safety of the reactor or process. (U.K.)

  7. Recombining processes in a cooling plasma by mixing of initially heated gas

    International Nuclear Information System (INIS)

    Furukane, Utaro; Sato, Kuninori; Takiyama, Ken; Oda, Toshiatsu.

    1992-03-01

    A numerical investigation of recombining process in a high temperature plasma in a quasi-steady state is made in a gas contact cooling, in which the initial temperature effect of contact gas heated up by the hot plasma is considered as well as the gas cooling due to the surrounding neutral particles freely coming into the plasma. The calculation has shown that the electron temperature relaxes in accord with experimental results and that the occurrence of recombining region and the inverted populations almost agree with the experimental ones. (author)

  8. Static and dynamic modelling of gas turbines in advanced cycles

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Jan-Olof

    1998-12-01

    Gas turbines have been in operation for at least 50 years. The engine is used for propulsion of aircraft and high speed ships. It is used for power production in remote locations and for peak load and emergency situations. Gas turbines have been used in combined cycles for 20 to 30 years. Highly efficient power plants based on gas turbines are a competitive option for the power industry today. The thermal efficiency of the simple cycle gas turbine has increased due to higher turbine inlet temperatures and improved compressor and expander designs. Equally important are the improved cycles in which the gas turbine operates. One example is the combined cycle that uses steam for turbine cooling. Steam is extracted from the bottoming cycle, then used as airfoil coolant in a closed loop and returned to the bottoming cycle. The Evaporative Gas Turbine (EvGT), also known as the Humid Air Turbine (HAT), is another advanced cycle. A mixture of air and water vapour is used as working media. Air from the compressor outlet is humidified and then preheated in a recuperator prior to combustion. The static and dynamic performance is changed when the gas turbine is introduced in an evaporative cycle. The cycle is gaining in popularity, but so far it has not been demonstrated. A Swedish joint program to develop the cycle has been in operation since 1993. As part of the program, a small pilot plant is being erected at the Lund Institute of Technology (LTH). The plant is based on a 600 kW gas turbine, and demonstration of the EvGT cycle started autumn 1998 and will continue, in the present phase, for one year. This thesis presents static and dynamic models for traditional gas turbine components, such as, the compressor, combustor, expander and recuperator. A static model for the humidifier is presented, based on common knowledge for atmospheric humidification. All models were developed for the pilot plant at LTH with the objective to support evaluation of the process and individual

  9. Method of operating a water-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Lysell, G.

    1975-01-01

    When operating a water-cooled nuclear reactor, in which the fuel rods consist of zirconium alloy tubes containing an oxidic nuclear fuel, stress corrosion in the tubes can be reduced or avoided if the power of the reactor is temporarily increased so much that the thermal expansion of the nuclear fuel produces a flow of the material in the tube. After that temporary power increase the power output is reduced to the normal power

  10. Economic evaluation of the steam-cycle high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    1983-07-01

    The High Temperature Gas-Cooled Reactor is unique among current nuclear technologies in its ability to generate energy in temperature regimes previously limited to fossil fuels. As a result, it can offer commercial benefits in the production of electricity, and at the same time, expand the role of nuclear energy to the production of process heat. This report provides an evaluation of the HTGR-Steam Cycle (SC) system for the production of baseloaded electricity, as well as cogenerated electricity and process steam. In each case the HTGR-SC system has been evaluated against appropriate competing technologies. The computer code which was developed for this evaluation can be used to present the analyses on a cost of production or cash flow basis; thereby, presenting consistent results to a utility, interested in production costs, or an industrial steam user or third party investor, interested in returns on equity. Basically, there are two economic evaluation methodologies which can be used in the analysis of a project: (1) minimum revenue requirements, and (2) discounted cash flow

  11. Reliability Analysis of RSG-GAS Primary Cooling System to Support Aging Management Program

    Science.gov (United States)

    Deswandri; Subekti, M.; Sunaryo, Geni Rina

    2018-02-01

    Multipurpose Research Reactor G.A. Siwabessy (RSG-GAS) which has been operating since 1987 is one of the main facilities on supporting research, development and application of nuclear energy programs in BATAN. Until now, the RSG-GAS research reactor has been successfully operated safely and securely. However, because it has been operating for nearly 30 years, the structures, systems and components (SSCs) from the reactor would have started experiencing an aging phase. The process of aging certainly causes a decrease in reliability and safe performances of the reactor, therefore the aging management program is needed to resolve the issues. One of the programs in the aging management is to evaluate the safety and reliability of the system and also screening the critical components to be managed.One method that can be used for such purposes is the Fault Tree Analysis (FTA). In this papers FTA method is used to screening the critical components in the RSG-GAS Primary Cooling System. The evaluation results showed that the primary isolation valves are the basic events which are dominant against the system failure.

  12. Single-jet gas cooling of in-beam foils or specimens: Prediction of the convective heat-transfer coefficient

    Science.gov (United States)

    Steyn, Gideon; Vermeulen, Christiaan

    2018-05-01

    An experiment was designed to study the effect of the jet direction on convective heat-transfer coefficients in single-jet gas cooling of a small heated surface, such as typically induced by an accelerated ion beam on a thin foil or specimen. The hot spot was provided using a small electrically heated plate. Heat-transfer calculations were performed using simple empirical methods based on dimensional analysis as well as by means of an advanced computational fluid dynamics (CFD) code. The results provide an explanation for the observed turbulent cooling of a double-foil, Havar beam window with fast-flowing helium, located on a target station for radionuclide production with a 66 MeV proton beam at a cyclotron facility.

  13. Nuclear demagnetisation cooling of a nanoelectronic device

    Science.gov (United States)

    Jones, Alex; Bradley, Ian; Guénault, Tony; Gunnarsson, David; Haley, Richard; Holt, Stephen; Pashkin, Yuri; Penttilä, Jari; Prance, Jonathan; Prunnila, Mika; Roschier, Leif

    We present a new technique for on-chip cooling of electrons in a nanostructure: nuclear demagnetisation of on-chip, thin-film copper refrigerant. We are motivated by the potential improvement in the operation of nanoelectronic devices below 10 mK . At these temperatures, weak electron-phonon coupling hinders traditional cooling, yet here gives the advantage of thermal isolation between the environment and the on-chip electrons, enabling cooling significantly below the base temperature of the host lattice. To demonstrate this we electroplate copper onto the metallic islands of a Coulomb blockade thermometer (CBT), and hence provide a direct thermal link between the cooled copper nuclei and the device electrons. The CBT provides primary thermometry of its internal electron temperature, and we use this to monitor the cooling. Using an optimised demagnetisation profile we observe the electrons being cooled from 9 mK to 4 . 5 mK , and remaining below 5 mK for an experimentally useful time of 1200 seconds. We also suggest how this technique can be used to achieve sub- 1 mK electron temperatures without the use of elaborate bulk demagnetisation stages.

  14. Graphites and composites irradiations for gas cooled reactor core structures

    International Nuclear Information System (INIS)

    Van der Laan, J.G.; Vreeling, J.A.; Buckthorpe, D.E.; Reed, J.

    2008-01-01

    Full text of publication follows. Material investigations are undertaken as part of the European Commission 6. Framework Programme for helium-cooled fission reactors under development like HTR, VHTR, GCFR. The work comprises a range of activities, from (pre-)qualification to screening of newly designed materials. The High Flux Reactor at Petten is the main test bed for the irradiation test programmes of the HTRM/M1, RAPHAEL and ExtreMat Integrated Projects. These projects are supported by the European Commission 5. and 6. Framework Programmes. To a large extent they form the European contribution to the Generation-IV International Forum. NRG is also performing a Materials Test Reactor project to support British Energy in preparing extended operation of their Advanced Gas-cooled Reactors (AGR). Irradiations of commercial and developmental graphite grades for HTR core structures are undertaken in the range of 650 to 950 deg C, with a view to get data on physical and mechanical properties that enable engineering design. Various C- and SiC-based composite materials are considered for support structures or specific components like control rods. Irradiation test matrices are chosen to cover commercial materials, and to provide insight on the behaviour of various fibre and matrix types, and the effects of architecture and manufacturing process. The programme is connected with modelling activities to support data trending, and improve understanding of the material behaviour and micro-structural evolution. The irradiation programme involves products from a large variety of industrial and research partners, and there is strong interaction with other high technology areas with extreme environments like space, electronics and fusion. The project on AGR core structures graphite focuses on the effects of high dose neutron irradiation and simultaneous radiolytic oxidation in a range of 350 to 450 deg C. It is aimed to provide data on graphite properties into the parameter space

  15. Gas-cooled reactor thermal-hydraulics using CAST3M and CRONOS2 codes

    International Nuclear Information System (INIS)

    Studer, E.; Coulon, N.; Stietel, A.; Damian, F.; Golfier, H.; Raepsaet, X.

    2003-01-01

    The CEA R and D program on advanced Gas Cooled Reactors (GCR) relies on different concepts: modular High Temperature Reactor (HTR), its evolution dedicated to hydrogen production (Very High Temperature Reactor) and Gas Cooled Fast Reactors (GCFR). Some key safety questions are related to decay heat removal during potential accident. This is strongly connected to passive natural convection (including gas injection of Helium, CO 2 , Nitrogen or Argon) or forced convection using active safety systems (gas blowers, heat exchangers). To support this effort, thermal-hydraulics computer codes will be necessary tools to design, enhance the performance and ensure a high safety level of the different reactors. Accurate and efficient modeling of heat transfer by conduction, convection or thermal radiation as well as energy storage are necessary requirements to obtain a high level of confidence in the thermal-hydraulic simulations. To achieve that goal a thorough validation process has to ve conducted. CEA's CAST3M code dedicated to GCR thermal-hydraulics has been validated against different test cases: academic interaction between natural convection and thermal radiation, small scale in-house THERCE experiments and large scale High Temperature Test Reactor benchmarks such as HTTR-VC benchmark. Coupling with neutronics is also an important modeling aspect for the determination of neutronic parameters such as neutronic coefficient (Doppler, moderator,...), critical position of control rods...CEA's CAST3M and CRONOS2 computer codes allow this coupling and a first example of coupled thermal-hydraulics/neutronics calculations has been performed. Comparison with experimental data will be the next step with High Temperature Test Reactor experimental results at nominal power

  16. Gas-Cooled Fast Reactor (GFR) Decay Heat Removal Concepts

    International Nuclear Information System (INIS)

    K. D. Weaver; L-Y. Cheng; H. Ludewig; J. Jo

    2005-01-01

    Current research and development on the Gas-Cooled Fast Reactor (GFR) has focused on the design of safety systems that will remove the decay heat during accident conditions, ion irradiations of candidate ceramic materials, joining studies of oxide dispersion strengthened alloys; and within the Advanced Fuel Cycle Initiative (AFCI) the fabrication of carbide fuels and ceramic fuel matrix materials, development of non-halide precursor low density and high density ceramic coatings, and neutron irradiation of candidate ceramic fuel matrix and metallic materials. The vast majority of this work has focused on the reference design for the GFR: a helium-cooled, direct power conversion system that will operate with an outlet temperature of 850 C at 7 MPa. In addition to the work being performed in the United States, seven international partners under the Generation IV International Forum (GIF) have identified their interest in participating in research related to the development of the GFR. These are Euratom (European Commission), France, Japan, South Africa, South Korea, Switzerland, and the United Kingdom. Of these, Euratom (including the United Kingdom), France, and Japan have active research activities with respect to the GFR. The research includes GFR design and safety, and fuels/in-core materials/fuel cycle projects. This report is a compilation of work performed on decay heat removal systems for a 2400 MWt GFR during this fiscal year (FY05)

  17. CARR-CNS with crescent-shape moderator cell and sub-cooling helium jacket surrounding cell

    International Nuclear Information System (INIS)

    Yu, Qingfeng; Feng, Quanke; Kawai, Takeshi; Shen, Feng; Yuan, Luzheng

    2005-01-01

    The new type of the moderator cell was developed for the Cold Neutron Source (CNS) of the China Advanced Research Reactor (CARR) which is now constructing at the China Institute of Atomic Energy in Beijing. A crescent-shape moderator cell covered by the sub-cooling helium jacket is adopted. A crescent-shape would help to increase the volume of the moderator cell for corresponding it to the 4 cold neutron guide tubes, even if liquid hydrogen not liquid deuterium were used as a cold moderator. The sub-cooling helium jacket covering the moderator cell removes the nuclear heating of the outer shell wall of the cell. It contributes to reduce the void fraction of liquid hydrogen in the inner shell. Such a type of a moderator cell is suitable for the CNS with higher nuclear heating. The cold helium gas flows down firstly into the sub-cooling helium jacket and then flows up to the condenser. Therefore, the theory of the self-regulation for the thermo-siphon type of the CNS is also applicable

  18. CARR-CNS with crescent-shape moderator cell and sub-cooling helium jacket around cell

    International Nuclear Information System (INIS)

    Yu, Qingfeng; Feng, Quanke; Kawai, Takeshi; Cheng, Liang; Shen, Feng; Yuan, Luzheng

    2005-01-01

    The new type of the moderator cell was developed for the Cold Neutron Source (CNS) of the China Advanced Research Reactor (CARR) which is now constructing at the China Institute of Atomic Energy in Beijing. A crescent-shape moderator cell covered by the sub-cooling helium jacket is adopted. A crescent-shape would help to increase the volume of the moderator cell for corresponding it to the 4 cold neutron guide tubes, even if liquid hydrogen not liquid deuterium were used as a cold moderator. The sub-cooling helium jacket covering the moderator cell removes the nuclear heating of the outer shell wall of the cell. It contributes to reduce the void fraction of liquid hydrogen in the inner shell. Such a type of a moderator cell is suitable for the CNS with higher nuclear heating. The cold helium gas flows down firstly into the sub-cooling helium jacket and then flows up to the condenser. Therefore, the theory of the self-regulation for the thermo-siphon type of the CNS is also applicable

  19. Core design studies on various forms of coolants and fuel materials. 2. Studies on liquid heavy metal and gas cooled cores, small cores and evaluation of 4-type cores

    International Nuclear Information System (INIS)

    Hayashi, Hideyuki; Sakashita, Yoshiyuki; Naganuma, Masayuki; Takaki, Naoyuki; Mizuno, Tomoyasu; Ikegami, Tetsuo

    2001-01-01

    Alternative concepts to sodium cooled fast reactors, such as heavy metal liquid cooled reactors and gas cooled fast reactors were studied in Phase-1 of the feasibility studies, aiming at simplification of the system, high thermal efficiency and enhancing safety. Fuel and core specifications and nuclear characteristics were surveyed to meet the targets for commercialization of fast reactor cycle. Nuclear characteristics of small fast reactor cores were also surveyed from the perspective of the possibility of multi-purpose use and dispersed power stations. The key points of the design study for each concept in Phase-2 were summarized from the aspect of the screening of the candidates for FR commercialization. (author)

  20. Metaphysics methods development for high temperature gas cooled reactor analysis

    International Nuclear Information System (INIS)

    Seker, V.; Downar, T. J.

    2007-01-01

    Gas cooled reactors have been characterized as one of the most promising nuclear reactor concepts in the Generation-IV technology road map. Considerable research has been performed on the design and safety analysis of these reactors. However, the calculational tools being used to perform these analyses are not state-of-the-art and are not capable of performing detailed three-dimensional analyses. This paper presents the results of an effort to develop an improved thermal-hydraulic solver for the pebble bed type high temperature gas cooled reactors. The solution method is based on the porous medium approach and the momentum equation including the modified Ergun's resistance model for pebble bed is solved in three-dimensional geometry. The heat transfer in the pebble bed is modeled considering the local thermal non-equilibrium between the solid and gas, which results in two separate energy equations for each medium. The effective thermal conductivity of the pebble-bed can be calculated both from Zehner-Schluender and Robold correlations. Both the fluid flow and the heat transfer are modeled in three dimensional cylindrical coordinates and can be solved in steady-state and time dependent. The spatial discretization is performed using the finite volume method and the theta-method is used in the temporal discretization. A preliminary verification was performed by comparing the results with the experiments conducted at the SANA test facility. This facility is located at the Institute for Safety Research and Reactor Technology (ISR), Julich, Germany. Various experimental cases are modeled and good agreement in the gas and solid temperatures is observed. An on-going effort is to model the control rod ejection scenarios as described in the OECD/NEA/NSC PBMR-400 benchmark problem. In order to perform these analyses PARCS reactor simulator code will be coupled with the new thermal-hydraulic solver. Furthermore, some of the other anticipated accident scenarios in the benchmark

  1. Uranium requirements for advanced fuel cycles in expanding nuclear power systems

    International Nuclear Information System (INIS)

    Banerjee, S.; Tamm, H.

    1978-01-01

    When considering advanced fuel cycle strategies in rapidly expanding nuclear power systems, equilibrium analyses do not apply. A computer simulation that accounts for system delay times and fissile inventories has been used to study the effects of different fuel cycles and different power growth rates on uranium consumption. The results show that for a given expansion rate of installed capacity, the main factors that affect resource requirements are the fissile inventory needed to introduce the advanced fuel cycle and the conversion (or breeding) ratio. In rapidly expanding systems, the effect of fissile inventory dominates, whereas in slowly expanding systems, conversion or breeding ratio dominates. Heavy-water-moderated and -cooled reactors, with their high conversion ratios, appear to be adaptable vehicles for accommodating fuel cycles covering a wide range of initial fissile inventories. They are therefore particularly suitable for conserving uranium over a wide range of nuclear power system expansion rates

  2. Economics of nuclear gas stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Frank, G W [Austral Oil Company Incorporated, Houston, TX (United States); Coffer, H F; Luetkehans, G R [CER Geonuclear Corporation, Las Vegas, NV (United States)

    1970-05-01

    Nuclear stimulation of the Mesaverde Formation in the Piceance Basin appears to be the only available method that can release the contained gas economically. In the Rulison Field alone estimates show six to eight trillion cubic feet of gas may be made available by nuclear means, and possibly one hundred trillion cubic feet could be released in the Piceance Basin. Several problems remain to be solved before this tremendous gas reserve can be tapped. Among these are (1) rates of production following nuclear stimulation; (2) costs of nuclear stimulation; (3) radioactivity of the chimney gas; and (4) development of the ideal type of device to carry out the stimulations. Each of these problems is discussed in detail with possible solutions suggested. First and foremost is the rate at which gas can be delivered following nuclear stimulation. Calculations have been made for expected production behavior following a 5-kiloton device and a 40-kiloton device with different permeabilities. These are shown, along with conventional production history. The calculations show that rates of production will be sufficient if costs can be controlled. Costs of nuclear stimulation must be drastically reduced for a commercial process. Project Rulison will cost approximately $3.7 million, excluding lease costs, preliminary tests, and well costs. At such prices, nothing can possibly be commercial; however, these costs can come down in a logical step-wise fashion. Radiation contamination of the gas remains a problem. Three possible solutions to this problem are included. (author)

  3. Economics of nuclear gas stimulation

    International Nuclear Information System (INIS)

    Frank, G.W.; Coffer, H.F.; Luetkehans, G.R.

    1970-01-01

    Nuclear stimulation of the Mesaverde Formation in the Piceance Basin appears to be the only available method that can release the contained gas economically. In the Rulison Field alone estimates show six to eight trillion cubic feet of gas may be made available by nuclear means, and possibly one hundred trillion cubic feet could be released in the Piceance Basin. Several problems remain to be solved before this tremendous gas reserve can be tapped. Among these are (1) rates of production following nuclear stimulation; (2) costs of nuclear stimulation; (3) radioactivity of the chimney gas; and (4) development of the ideal type of device to carry out the stimulations. Each of these problems is discussed in detail with possible solutions suggested. First and foremost is the rate at which gas can be delivered following nuclear stimulation. Calculations have been made for expected production behavior following a 5-kiloton device and a 40-kiloton device with different permeabilities. These are shown, along with conventional production history. The calculations show that rates of production will be sufficient if costs can be controlled. Costs of nuclear stimulation must be drastically reduced for a commercial process. Project Rulison will cost approximately $3.7 million, excluding lease costs, preliminary tests, and well costs. At such prices, nothing can possibly be commercial; however, these costs can come down in a logical step-wise fashion. Radiation contamination of the gas remains a problem. Three possible solutions to this problem are included. (author)

  4. Radioactivity analyses and detection limit problems of environmental surveillance at a gas-cooled reactor

    International Nuclear Information System (INIS)

    Johnson, J.E.; Johnson, J.A.

    1988-01-01

    The lower limit of detection (LLD) values required by the USNRC for nuclear power facilities are often difficult to attain even using state of the art detection systems, e.g. the required LLD for I-131 in air is 70 fCi/m 3 . For a gas-cooled reactor where I-131 has never been observed in effluents, occasional false positive values occur due to: Counting statistics using high resolution Ge(Li) detectors, contamination from nuclear medicine releases and spectrum analysis systematic error. Statistically negative concentration values are often observed. These measurements must be included in the estimation of true mean values. For this and other reasons, the frequency distributions of this and other reasons, the frequency distributions of measured values appear to be log-normal. Difficulties in stating the true means and standard deviations are discussed for these situations

  5. Simulation for temperature changing investigation at RSG-GAS cooling system

    International Nuclear Information System (INIS)

    Utaja

    2002-01-01

    The RSG-GAS cooling system considers of primary and secondary system, is used for heat rejection from reactor core to the atmosphere. For temperature changing investigation cause by atmospherics condition changing or coolant flow rate changing, is more safe done by simulation. This paper describes the simulation for determine the RSG-GAS coolant temperature changing base on heat exchange and cooling tower characteristic. The simulation is done by computer programme running under WINDOWS 95 or higher. The temperature changing is based on heat transfer process on heat exchanger and cooling tower. The simulation will show the water tank temperature changing caused by the temperature and humidity of the atmosphere or by coolant flow rate changing. For example the humidity changing from 60% to 80% atmospherics temperature 30 oC and 32400 k Watt power will change the tank temperature from 37,97 oC to 40,03 oC

  6. Decay heat removal and heat transfer under normal and accident conditions in gas cooled reactors

    International Nuclear Information System (INIS)

    1994-08-01

    The meeting was convened by the International Atomic Energy Agency on the recommendation of the IAEA's International Working Group on Gas Cooled Reactors. It was attended by participants from China, France, Germany, Japan, Poland, the Russian Federation, Switzerland, the United Kingdom and the United States of America. The meeting was chaired by Prof. Dr. K. Kugeler and Prof. Dr. E. Hicken, Directors of the Institute for Safety Research Technology of the KFA Research Center, and covered the following: Design and licensing requirements for gas cooled reactors; concepts for decay heat removal in modern gas cooled reactors; analytical methods for predictions of thermal response, accuracy of predictions; experimental data for validation of predictive methods - operational experience from gas cooled reactors and experimental data from test facilities. Refs, figs and tabs

  7. Behaviour of gas cooled reactor fuel under accident conditions

    International Nuclear Information System (INIS)

    1991-11-01

    The Specialists Meeting on Behaviour of Gas Cooled Reactor Fuel under Accident Conditions was convened by the International Atomic Energy Agency on the recommendation of the International Working Group on Gas Cooled Reactors. The purpose of the meeting was to provide an international forum for the review of the development status and for the discussion on the behaviour of gas cooled reactor fuel under accident conditions and to identify areas in which additional research and development are still needed and where international co-operation would be beneficial for all involved parties. The meeting was attended by 45 participants from France, Germany, Japan, Switzerland, the Union of Soviet Socialists Republics, the United Kingdom, the United States of America, CEC and the IAEA. The meeting was subdivided into five technical sessions: Summary of Current Research and Development Programmes for Fuel; Fuel Manufacture and Quality Control; Safety Requirements; Modelling of Fission Product Release - Part I and Part II; Irradiation Testing/Operational Experience with Fuel Elements; Behaviour at Depressurization, Core Heat-up, Power Transients; Water/Steam Ingress - Part I and Part II. 22 papers were presented. A separate abstract was prepared for each of these papers. At the end of the meeting a round table discussion was held on Directions for Future R and D Work and International Co-operation. Refs, figs and tabs

  8. CFD-DEM simulation of a conceptual gas-cooled fluidized bed nuclear reactor

    International Nuclear Information System (INIS)

    Almeida, Lucilla C.; Su, Jian

    2015-01-01

    Several conceptual designs of the fluidized-bed nuclear reactor have been proposed due to its many advantages over conventional nuclear reactors such as PWRs and BWRs. Amongst their characteristics, the enhanced heat transfer and mixing enables a more uniform temperature distribution, reducing the risk of hot-spot and excessive fuel temperature, in addition to resulting in a higher burnup of the fuel. Furthermore, the relationship between the bed height and reactor neutronics turns the coolant flow rate control into a power production mechanism. Moreover, the possibility of removing the fuel by gravity from the movable core in case of a loss-of-cooling accident increases its safety. High-accuracy modeling of particles and coolant flow in fluidized bed reactors is needed to evaluate reliably the thermal-hydraulic efficiency and safety margin. The two-way coupling between solid and fluid can account for high-fidelity solid-solid interaction and reasonable accuracy in fluid calculation and fluid-solid interaction. In the CFD-DEM model, the particles are modeled as a discrete phase, following the DEM approach, whereas the fluid flow is treated as a continuous phase, described by the averaged Navier-Stokes equations on a computational cell scale. In this work, the coupling methodology between Fluent and Rocky is described. The numerical approach was applied to the simulation of a bubbling fluidized bed and the results were compared to experimental data and showed good agreement. (author)

  9. Adaptive polynomial chaos techniques for uncertainty quantification of a gas cooled fast reactor transient

    International Nuclear Information System (INIS)

    Perko, Z.; Gilli, L.; Lathouwers, D.; Kloosterman, J. L.

    2013-01-01

    Uncertainty quantification plays an increasingly important role in the nuclear community, especially with the rise of Best Estimate Plus Uncertainty methodologies. Sensitivity analysis, surrogate models, Monte Carlo sampling and several other techniques can be used to propagate input uncertainties. In recent years however polynomial chaos expansion has become a popular alternative providing high accuracy at affordable computational cost. This paper presents such polynomial chaos (PC) methods using adaptive sparse grids and adaptive basis set construction, together with an application to a Gas Cooled Fast Reactor transient. Comparison is made between a new sparse grid algorithm and the traditionally used technique proposed by Gerstner. An adaptive basis construction method is also introduced and is proved to be advantageous both from an accuracy and a computational point of view. As a demonstration the uncertainty quantification of a 50% loss of flow transient in the GFR2400 Gas Cooled Fast Reactor design was performed using the CATHARE code system. The results are compared to direct Monte Carlo sampling and show the superior convergence and high accuracy of the polynomial chaos expansion. Since PC techniques are easy to implement, they can offer an attractive alternative to traditional techniques for the uncertainty quantification of large scale problems. (authors)

  10. Test case specifications for coupled neutronics-thermal hydraulics calculation of Gas-cooled Fast Reactor

    Science.gov (United States)

    Osuský, F.; Bahdanovich, R.; Farkas, G.; Haščík, J.; Tikhomirov, G. V.

    2017-01-01

    The paper is focused on development of the coupled neutronics-thermal hydraulics model for the Gas-cooled Fast Reactor. It is necessary to carefully investigate coupled calculations of new concepts to avoid recriticality scenarios, as it is not possible to ensure sub-critical state for a fast reactor core under core disruptive accident conditions. Above mentioned calculations are also very suitable for development of new passive or inherent safety systems that can mitigate the occurrence of the recriticality scenarios. In the paper, the most promising fuel material compositions together with a geometry model are described for the Gas-cooled fast reactor. Seven fuel pin and fuel assembly geometry is proposed as a test case for coupled calculation with three different enrichments of fissile material in the form of Pu-UC. The reflective boundary condition is used in radial directions of the test case and vacuum boundary condition is used in axial directions. During these condition, the nuclear system is in super-critical state and to achieve a stable state (which is numerical representation of operational conditions) it is necessary to decrease the reactivity of the system. The iteration scheme is proposed, where SCALE code system is used for collapsing of a macroscopic cross-section into few group representation as input for coupled code NESTLE.

  11. A comparative study on recycling spent fuels in gas-cooled fast reactors

    International Nuclear Information System (INIS)

    Choi, Hangbok; Baxter, Alan

    2010-01-01

    This study evaluates advanced Gas-cooled Fast Reactor (GFR) fuel cycle scenarios which are based on recycling spent nuclear fuel for the sustainability of nuclear energy. A 600 MWth GFR was used for the fuel cycle analysis, and the equilibrium core was searched with different fuel-to-matrix volume ratios such as 70/30 and 60/40. Two fuel cycle scenarios, i.e., a one-tier case combining a Light Water Reactor (LWR) and a GFR, and a two-tier case using an LWR, a Very High Temperature Reactor (VHTR), and a GFR, were evaluated for mass flow and fuel cycle cost, and the results were compared to those of LWR once-through fuel cycle. The mass flow calculations showed that the natural uranium consumption can be reduced by more than 57% and 27% for the one-tier and two-tier cycles, respectively, when compared to the once-through fuel cycle. The transuranics (TRU) which pose a long-term problem in a high-level waste repository, can be significantly reduced in the multiple recycle operation of these options, resulting in more than 110 and 220 times reduction of TRU inventory to be geologically disposed for the one-tier and two-tier fuel cycles, respectively. The fuel cycle costs were estimated to be 9.4 and 8.6 USD/MWh for the one-tier fuel cycle when the GFR fuel-to-matrix volume ratio was 70/30 and 60/40, respectively. However the fuel cycle cost is reduced to 7.3 and 7.1 USD/MWh for the two-tier fuel cycle, which is even smaller than that of the once-through fuel cycle. In conclusion the GFR can provide alternative fuel cycle options to the once-through and other fast reactor fuel cycle options, by increasing the natural uranium utilization and reducing the fuel cycle cost.

  12. Heat transfer problems in gas-cooled solid blankets

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.

    1976-01-01

    In all fusion reactors using the deuterium-tritium fuel cycle, a large fraction approximately 80 percent of the fusion energy will be released as approximately 14 MeV neutrons which must be slowed down in a relatively thick blanket surrounding the plasma, thereby, converting their kinetic energy to high temperature heat which can be continuously removed by a coolant stream and converted in part to electricity in a conventional power turbine. Because of the primary goal of achieving minimum radioactivity, to date Brookhaven blanket concepts have been restricted to the use of some form of solid lithium, with inert gas-cooling and in some design cases, water-cooling of the shell structure. Aluminum and graphite have been identified as very promising structural materials for fusion blankets, and conceptual designs based on these materials have been made. Depending on the thermal loading on the ''first'' wall which surrounds the plasma as well as blanket design, heat transfer problems may be noticeably different in gas-cooled solid blankets. Approaches to solution of heat removal problems as well as explanation of: (a) the after-heat problems in blankets; (b) tritium breeding in solids; and (c) materials selection for radiation shields relative to the minimum activity blanket efforts at Brookhaven are discussed

  13. Model of cooling nuclear fuel rod in the nuclear reactor

    International Nuclear Information System (INIS)

    Lavicka, David; Polansky, Jiri

    2010-01-01

    The following topics are described: Some basic requirements for nuclear fuel rods; The VVER 1000 fuel rod; Classification of the two-phase flow in the vertical tube; Type of heat transfer crisis in the vertical tube; Experimental apparatus; Model of the nuclear fuel rod and spacers; Potential of the experimental apparatus (velocity profile measurement via PIV; thermal flow field measurement by the PLIF method; cooling graph in dependence on the fuel rod temperature; comparison of the hydrodynamic properties with respect to the design features of the spacers). (P.A.)

  14. Transient thermal-hydraulic simulations of direct cycle gas cooled reactors

    International Nuclear Information System (INIS)

    Tauveron, Nicolas; Saez, Manuel; Marchand, Muriel; Chataing, Thierry; Geffraye, Genevieve; Bassi, Christophe

    2005-01-01

    This work concerns the design and safety analysis of gas cooled reactors. The CATHARE code is used to test the design and safety of two different concepts, a High Temperature Gas Reactor concept (HTGR) and a Gas Fast Reactor concept (GFR). Relative to the HTGR concept, three transient simulations are performed and described in this paper: loss of electrical load without turbo-machine trip, 10 in. cold duct break, 10 in. break in cold duct combined with a tube rupture of a cooling exchanger. A second step consists in modelling a GFR concept. A nominal steady state situation at a power of 600 MW is obtained and first transient simulations are carried out to study decay heat removal situations after primary loop depressurisation. The turbo-machine contribution is discussed and can offer a help or an alternative to 'active' heat extraction systems

  15. Gas cooled fast reactor research and development program

    International Nuclear Information System (INIS)

    Markoczy, G.; Hudina, M.; Richmond, R.; Wydler, P.; Stratton, R.W.; Burgsmueller, P.

    1980-03-01

    The research and development work in the field of core thermal-hydraulics, steam generator research and development, experimental and analytical physics and carbide fuel development carried out 1979 for the Gas Cooled Fast Breeder Reactor at the Swiss Federal Institute for Reactor Research is described. (Auth.)

  16. Implementation of gas district cooling and cogeneration systems in Malaysia; Mise en oeuvre de systemes de gas district cooling et de cogeneration en Malaisie

    Energy Technology Data Exchange (ETDEWEB)

    Haron, S. [Gas District Cooling, M, Sdn Bhd (Malaysia)

    2000-07-01

    With its energy demand in the early 1990's growing at a high rate due to the country's strong economic growth, Malaysia studied various options to improve the efficiency of its energy use. Since its natural gas reserves are almost four times that of its crude oil reserves, efforts were therefore centered on seeking ways to boost the use of natural gas to mitigate the growing domestic energy need. PETRONAS, the national oil company, subsequently studied and chose the District Cooling System using natural gas as the primary source of fuel. The Kuala Lumpur City Center development, which houses the PETRONAS Twin Towers, was subsequently chosen as the first project to use the Gas District Cooling (GDC) System. To acquire the technology and implement this project, PETRONAS created a new subsidiary, Gas District Cooling (Malaysia) Sendirian Berhad (GDC(M)). In the process of improving the plant's efficiency, GDC(M) discovered that the GDC system's efficiency and project economics would be significantly enhanced if its is coupled to a Cogeneration system. Having proven the success of the GDC/Cogeneration system, GDC(M) embarked on a campaign to aggressively promote and seek new opportunities to implement the system, both in Malaysia-and abroad. Apart from enhancing efficiency of energy use, and providing better project economics, the GDC/Cogeneration system also is environment friendly. Today, the GDC/Cogeneration systems is the system of choice for several important developments in Malaysia, which also includes the country's prestigious projects such as the Kuala Lumpur International Airport and the New Federal Government Administrative Center in Putrajaya. (author)

  17. Evaluation of the RSG-GAS cooling tower performance

    International Nuclear Information System (INIS)

    Suroso

    2003-01-01

    Utilization of RSG-GAS reactor should be operated as efficiently as possible, so that reactor operation planning using one line primary coolant can be anticipated. To analyze the performance of the RSG-GAS cooling tower with one line primary coolant doing by using same data from 10 MW thermal reactor operation. The result were then compare to those achieved using CATHENA code. The results indicated that, for design condition the ratio of water flowrate to air is (L/G) 1.52 and number transfer unit (NTU) is 0.348. For operation condition, the average of L/G and NTU are respectively 1.37 and 0,348. Moreover the results achieved by the code showed that L/G and NTU are respectively 1.35 and 0,302. The performance of cooling tower achieved operation condition and the code results are respectively 91% and 72%. This means that the calculated results are lower than measurement results

  18. The design, safety and project development status of the modular high temperature gas-cooled reactor in the United States

    International Nuclear Information System (INIS)

    Mears, L.D.; Dean, R.A.

    1987-01-01

    The cooperative government and industry Modular High Temperature Gas-Cooled Reactor (MHTGR) Program in the United States has advanced a 350 MW(t) plant design through the conceptual development stage. The system incorporates an annular core of prismatic fuel elements within a steel pressure vessel connected, in a side-by-side arrangement, by a concentric duct to a second steel vessel containing a steam generator and helium coolant circulator. The reference plant design consists of four reactor modules installed in separate below-grade silos, providing steam to two conventional turbine generators. The nominal net plant output is 540 MW(e). The small reactor system takes unique advantage of the high temperature capability of the refractory coated fuel and the large thermal inertia of the graphite moderator to provide a design capable of withstanding a complete loss of active core cooling without causing excessive core heatup and significant release of fission products from the fuel. Present program activities are concentrated on interactions with the Nuclear Regulatory Commission aimed at obtaining a Licensability Statement. A project initiative to build a prototype plant which would demonstrate the MHTGR-unique licensing process, plant performance, costs and schedule plus establish an industrial infrastructure to proceed with follow-on commercial MHTGR plants by the turn of the century, is being undertaken by the utility/vendor participants (author)

  19. Design activity of IHI on the experimental multipurpose high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    1978-01-01

    With conspicuous interest and attention paid by iron and steel manufacturing industries, the development of the multipurpose high temperature gas-cooled reactor, namely the process heat reactor has been energetically discussed in Japan. The experimental multipurpose high temperature gas-cooled reactor, planned by JAERI (the Japan Atomic Energy Research Institute), is now at the end of the adjustment design stage and about to enter the system synthesizing design stage. The design of the JAERI reactor as a pilot plant for process heat reactors that make possible the direct use of the heat, produced in the reactor, for other industrial uses was started in 1969, and has undergone several revisions up to now. The criticality of the JAERI reactor is expected to be realized before 1985 according to the presently published program. IHI has engaged in the developing work of HTGR (high temperature gas-cooled reactor) including VHTR (very high temperature gas-cooled reactor) for over seven years, producing several achievements. IHI has also participated in the JAERI project since 1973 with some other companies concerned in this field. The design activity of IHI in the development of the JAERI reactor is briefly presented in this paper. (auth.)

  20. The design status of the United States Department of Energy modular high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Mills, Raymond R. Jr.

    1990-01-01

    The U.S. Department of Energy's Modular High Temperature Gas Cooled Reactor (MHTGR) is being designed using a systems engineering approach referred to as the integrated approach. The top level requirement for the plant is that it provides safe, reliable, economical energy. The safety requirements are established by the U.S. Licensing Authorities, principally the Nuclear Regulatory Commission. The reliability and economic requirements associated with the top level functions have been established in close coordination and cooperation with the electrical utilities and other potential users, and the nuclear supply industry. The integrated approach uses functional analysis to define the functions and sub-functions for the plant and to identify quantitatively how the various functions must be fulfilled. The top four functions associated with the MHTGR are: maintain safe plant operation; maintain plant protection; maintain control of radionuclide release; maintain emergency preparedness. In addition to meeting all U.S. Regulatory Requirements this advanced reactor concept is being designed to meet the following requirements: do not require sheltering or evacuating of anyone outside the plant boundary of 425 meters as a result of normal or abnormal plant operation; do not require operator action in order to accomplish the above sheltering and evacuation objectives and the design must be insensitive to operator errors; utilize inherent characteristics of materials to develop passive safety features; provide very long times for corrective actions following the initiation of an abnormal event before plant damage would be incurred

  1. Thermodynamic analysis of cooling systems for nuclear power stations condenser

    International Nuclear Information System (INIS)

    Beck, A.

    1985-06-01

    This work is an attempt to concentrate on the thermodynamic theory, the engineering solution and the quantities of water needed for the operation of a wet as well as a wet/dry cooling towers coupled to a nuclear turbine condenser,. About two hundred variables are needed for the design of a condenser - cooling tower system. In order to make the solution fast and handy, a computer model was developed. The amount of water evaporation from cooling towers is a function of the climate conditions prevailing around the site. To achieve an authentic analysis, the meteorological data of the northern Negev was used. The total amount of water necessary to add to the system in a year time of operation is large and is a function of both the blow-down rate and the evaporation. First estimations show that the use of a combined system, wet/dry cooling tower, is beneficial in the northern Negev area. Such a system can reduce significantly the amount of wasted fresh water. Lack of international experience is the major problem in the acceptability of wet/dry cooling towers. The technology of a wet cooling tower using sea water is also discussed where no technical or engineering limitations were found. This work is an attempt to give some handy tools for making the choice of cooling systems for nuclear power plants easier

  2. HTGR [High Temperature Gas-Cooled Reactor] ingress analysis using MINET

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.; Yang, J.W.; Kroeger, P.G.; Mallen, A.N.; Aronson, A.L.

    1989-04-01

    Modeling of water/steam ingress into the primary (helium) cooling circuit of a High Temperature Gas-Cooled Reactor (HTGR) is described. This modeling was implemented in the MINET Code, which is a program for analyzing transients in intricate fluid flow and heat transfer networks. Results from the simulation of a water ingress event postulated for the Modular HTGR are discussed. 27 refs., 6 figs., 6 tabs

  3. A review of helium gas turbine technology for high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    No, Hee Cheon; Kim, Ji Hwan; Kim, Hyeun Min

    2007-01-01

    Current High-Temperature Gas-cooled Reactors (HTGRs) are based on a closed brayton cycle with helium gas as the working fluid. Thermodynamic performance of the axial-flow helium gas turbines is of critical concern as it considerably affects the overall cycle efficiency. Helium gas turbines pose some design challenges compared to steam or air turbomachinery because of the physical properties of helium and the uniqueness of the operating conditions at high pressure with low pressure ratio. This report present a review of the helium Brayton cycle experiences in Germany and in Japan. The design and availability of helium gas turbines for HTGR are also presented in this study. We have developed a new throughflow calculation code to calculate the design-point performance of helium gas turbines. Use of the method has been illustrated by applying it to the GTHTR300 reference

  4. Natural circulation in water cooled nuclear power plants: Phenomena, models, and methodology for system reliability assessments

    International Nuclear Information System (INIS)

    2005-11-01

    In recent years it has been recognized that the application of passive safety systems (i.e. those whose operation takes advantage of natural forces such as convection and gravity), can contribute to simplification and potentially to improved economics of new nuclear power plant designs. Further, the IAEA Conference on The Safety of Nuclear Power: Strategy for the Future which was convened in 1991 noted that for new plants 'the use of passive safety features is a desirable method of achieving simplification and increasing the reliability of the performance of essential safety functions, and should be used wherever appropriate'. Considering the weak driving forces of passive systems based on natural circulation, careful design and analysis methods must be employed to assure that the systems perform their intended functions. To support the development of advanced water cooled reactor designs with passive systems, investigations of natural circulation are an ongoing activity in several IAEA Member States. Some new designs also utilize natural circulation as a means to remove core power during normal operation. In response to the motivating factors discussed above, and to foster international collaboration on the enabling technology of passive systems that utilize natural circulation, an IAEA Coordinated Research Project (CRP) on Natural Circulation Phenomena, Modelling and Reliability of Passive Systems that Utilize Natural Circulation was started in early 2004. Building on the shared expertise within the CRP, this publication presents extensive information on natural circulation phenomena, models, predictive tools and experiments that currently support design and analyses of natural circulation systems and highlights areas where additional research is needed. Therefore, this publication serves both to provide a description of the present state of knowledge on natural circulation in water cooled nuclear power plants and to guide the planning and conduct of the CRP in

  5. High Temperature Gas-Cooled Reactors Lessons Learned Applicable to the Next Generation Nuclear Plant

    International Nuclear Information System (INIS)

    Beck, J.M.; Collins, J.W.; Garcia, C.B.; Pincock, L.F.

    2010-01-01

    High Temperature Gas Reactors (HTGR) have been designed and operated throughout the world over the past five decades. These seven HTGRs are varied in size, outlet temperature, primary fluid, and purpose. However, there is much the Next Generation Nuclear Plant (NGNP) has learned and can learn from these experiences. This report captures these various experiences and documents the lessons learned according to the physical NGNP hardware (i.e., systems, subsystems, and components) affected thereby.

  6. Novel Processing of Unique Ceramic-Based Nuclear Materials and Fuels

    International Nuclear Information System (INIS)

    Zhang, Hui; Singh, Raman P.

    2008-01-01

    Advances in nuclear reactor technology and the use of gas-cooled fast reactors require the development of new materials that can operate at the higher temperatures expected in these systems. These include refractory alloys base on Nb, Zr, Ta, Mo, W, and Re; ceramics and composites such as those based on silicon carbide (SiCf-SiC); carbon-carbon composites; and advanced coatings. Besides the ability to handle higher expected temperatures, effective heat transfer between reactor components is necessary for improved efficiency. Improving thermal conductivity of the materials used in nuclear fuels and other temperature critical components can lower the center-line fuel temperature and thereby enhance durability and reduce the risk of premature failure.

  7. Novel Processing of Unique Ceramic-Based Nuclear Materials and Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hui Zhang; Raman P. Singh

    2008-11-30

    Advances in nuclear reactor technology and the use of gas-cooled fast reactors require the development of new materials that can operate at the higher temperatures expected in these systems. These include refractory alloys base on Nb, Zr, Ta, Mo, W, and Re; ceramics and composites such as those based on silicon carbide (SiCf-SiC); carbon-carbon composites; and advanced coatings. Besides the ability to handle higher expected temperatures, effective heat transfer between reactor componets is necessary for improved efficiency. Improving thermal conductivity of the materials used in nuclear fuels and other temperature critical components can lower the center-line fuel temperature and thereby enhance durability and reduce the risk of premature failure.

  8. Flow-induced and acoustically induced vibration experience in operating gas-cooled reactors

    International Nuclear Information System (INIS)

    Halvers, L.J.

    1977-03-01

    An overview has been presented of flow-induced and acoustically induced vibration failures that occurred in the past in gas-cooled graphite-moderated reactors, and the importance of this experience for the Gas-Cooled Fast-Breeder Reactor (GCFR) project has been assessed. Until now only failures in CO 2 -cooled reactors have been found. No problems with helium-cooled reactors have been encountered so far. It is shown that most of the failures occurred because flow-induced and acoustically induced dynamic loads were underestimated, while at the same time not enough was known about the influence of environmental parameters on material behavior. All problems encountered were solved. The comparison of the influence of the gas properties on acoustically induced and flow-induced vibration phenomena shows that the interaction between reactor design and the thermodynamic properties of the primary coolant precludes a general preference for either carbon dioxide or helium. The acoustic characteristics of CO 2 and He systems are different, but the difference in dynamic loadings due to the use of one rather than the other remains difficult to predict. A slight preference for helium seems, however, to be justified

  9. Design Concept of Advanced Sodium-Cooled Fast Reactor and Related R&D in Korea

    Directory of Open Access Journals (Sweden)

    Yeong-il Kim

    2013-01-01

    Full Text Available Korea imports about 97% of its energy resources due to a lack of available energy resources. In this status, the role of nuclear power in electricity generation is expected to become more important in future years. In particular, a fast reactor system is one of the most promising reactor types for electricity generation, because it can utilize efficiently uranium resources and reduce radioactive waste. Acknowledging the importance of a fast reactor in a future energy policy, the long-term advanced SFR development plan was authorized by KAEC in 2008 and updated in 2011 which will be carried out toward the construction of an advanced SFR prototype plant by 2028. Based upon the experiences gained during the development of the conceptual designs for KALIMER, KAERI recently developed advanced sodium-cooled fast reactor (SFR design concepts of TRU burner that can better meet the generation IV technology goals. The current status of nuclear power and SFR design technology development program in Korea will be discussed. The developments of design concepts including core, fuel, fluid system, mechanical structure, and safety evaluation have been performed. In addition, the advanced SFR technologies necessary for its commercialization and the basic key technologies have been developed including a large-scale sodium thermal-hydraulic test facility, super-critical Brayton cycle system, under-sodium viewing techniques, metal fuel development, and developments of codes, and validations are described as R&D activities.

  10. Nuclear power: An overview in the context of alleviating greenhouse gas emissions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The document gives a brief overview of the current development of nuclear power worldwide, covering essentially technical, economic and environmental aspects. Policy issues related to implementation instruments and potential barriers to nuclear power deployment are also touched upon. Views are given on the possible medium and long term development of nuclear power, as a means for alleviating greenhouse gas emissions from the electricity sector. Advanced technologies for the reactors and their associated fuel cycles are described, including advanced fission reactors and fusion energy. Direct cost and externalities are given for the present generation of nuclear power plants as well as for power plants to be commissioned in the coming decades. Environmental burdens and risks are analysed with emphasis on potential risks of accident, radioactive waste, and atmospheric emission in routine operation, focusing on greenhouse gases. 77 refs, 1 fig., 4 tabs.

  11. Nuclear power: An overview in the context of alleviating greenhouse gas emissions

    International Nuclear Information System (INIS)

    1995-04-01

    The document gives a brief overview of the current development of nuclear power worldwide, covering essentially technical, economic and environmental aspects. Policy issues related to implementation instruments and potential barriers to nuclear power deployment are also touched upon. Views are given on the possible medium and long term development of nuclear power, as a means for alleviating greenhouse gas emissions from the electricity sector. Advanced technologies for the reactors and their associated fuel cycles are described, including advanced fission reactors and fusion energy. Direct cost and externalities are given for the present generation of nuclear power plants as well as for power plants to be commissioned in the coming decades. Environmental burdens and risks are analysed with emphasis on potential risks of accident, radioactive waste, and atmospheric emission in routine operation, focusing on greenhouse gases. 77 refs, 1 fig., 4 tabs

  12. IAEA activities in gas-cooled reactor technology development

    International Nuclear Information System (INIS)

    Cleveland, J.; Kupitz, J.

    1992-01-01

    The International Atomic Energy Agency (IAEA) has the charter to ''foster the exchange of scientific and technical information'', and ''encourage and assist research on, and development and practical application of, atomic energy for peaceful uses throughout the world''. This paper describes the Agency's activities in Gas-cooled Reactor (GCR) technology development

  13. Real time thermal hydraulic model for high temperature gas-cooled reactor core

    International Nuclear Information System (INIS)

    Sui Zhe; Sun Jun; Ma Yuanle; Zhang Ruipeng

    2013-01-01

    A real-time thermal hydraulic model of the reactor core was described and integrated into the simulation system for the high temperature gas-cooled pebble bed reactor nuclear power plant, which was developed in the vPower platform, a new simulation environment for nuclear and fossil power plants. In the thermal hydraulic model, the helium flow paths were established by the flow network tools in order to obtain the flow rates and pressure distributions. Meanwhile, the heat structures, representing all the solid heat transfer elements in the pebble bed, graphite reflectors and carbon bricks, were connected by the heat transfer network in order to solve the temperature distributions in the reactor core. The flow network and heat transfer network were coupled and calculated in real time. Two steady states (100% and 50% full power) and two transients (inlet temperature step and flow step) were tested that the quantitative comparisons of the steady results with design data and qualitative analysis of the transients showed the good applicability of the present thermal hydraulic model. (authors)

  14. Application of the High Temperature Gas Cooled Reactor to oil shale recovery

    International Nuclear Information System (INIS)

    Wadekamper, D.C.; Arcilla, N.T.; Impellezzeri, J.R.; Taylor, I.N.

    1983-01-01

    Current oil shale recovery processes combust some portion of the products to provide energy for the recovery process. In an attempt to maximize the petroleum products produced during recovery, the potentials for substituting nuclear process heat for energy generated by combustion of petroleum were evaluated. Twelve oil shale recovery processes were reviewed and their potentials for application of nuclear process heat assessed. The High Temperature Gas Cooled Reactor-Reformer/Thermochemical Pipeline (HTGR-R/TCP) was selected for interfacing process heat technology with selected oil shale recovery processes. Utilization of these coupling concepts increases the shale oil product output of a conventional recovery facility from 6 to 30 percent with the same raw shale feed rate. An additional benefit of the HTGR-R/TCP system was up to an 80 percent decrease in emission levels. A detailed coupling design for a typical counter gravity feed indirect heated retorting and upgrading process were described. Economic comparisons prepared by Bechtel Group Incorporated for both the conventional and HTGR-R/TCP recovery facility were summarized

  15. Thermal-hydraulic R and D infrastructure for water cooled reactors of the Indian nuclear power program

    International Nuclear Information System (INIS)

    Vijayan, P.K.; Jain, V.; Saha, D.; Sinha, R.K.

    2009-01-01

    R and D has been the critical ingredient of Indian Nuclear Power Program from the very inception. Approach to R and D infrastructure has been closely associated with the three-stage nuclear power program that was crafted on the basis of available resources and technology in the short-term and energy security in the long-term. Early R and D efforts were directed at technologies relevant to Pressurized Heavy Water Reactors (PHWRs) which are currently the mainstay of Indian nuclear power program. Lately, the R and D program has been steered towards the design and development of advanced and innovative reactors with the twin objective of utilization of abundant thorium and to meet the future challenges to nuclear power such as enhanced safety and reliability, better economy, proliferation resistance etc. Advanced Heavy Water Reactor (AHWR) is an Indian innovative reactor currently being developed to realize the above objectives. Extensive R and D infrastructure has been created to validate the system design and various passive concepts being incorporated in the AHWR. This paper provides a brief review of R and D infrastructure that has been developed at Bhabha Atomic Research Centre for thermal-hydraulic investigations for water-cooled reactors of Indian nuclear power program. (author)

  16. Nuclear reactor design

    CERN Document Server

    2014-01-01

    This book focuses on core design and methods for design and analysis. It is based on advances made in nuclear power utilization and computational methods over the past 40 years, covering core design of boiling water reactors and pressurized water reactors, as well as fast reactors and high-temperature gas-cooled reactors. The objectives of this book are to help graduate and advanced undergraduate students to understand core design and analysis, and to serve as a background reference for engineers actively working in light water reactors. Methodologies for core design and analysis, together with physical descriptions, are emphasized. The book also covers coupled thermal hydraulic core calculations, plant dynamics, and safety analysis, allowing readers to understand core design in relation to plant control and safety.

  17. A study of the cool gas in the Large Magellanic Cloud. I. Properties of the cool atomic phase - a third H i absorption survey

    Science.gov (United States)

    Marx-Zimmer, M.; Herbstmeier, U.; Dickey, J. M.; Zimmer, F.; Staveley-Smith, L.; Mebold, U.

    2000-02-01

    The cool atomic interstellar medium of the Large Magellanic Cloud (LMC) seems to be quite different from that in the Milky Way. In a series of three papers we study the properties of the cool atomic hydrogen in the LMC (Paper I), its relation to molecular clouds using SEST-CO-observations (Paper II) and the cooling mechanism of the atomic gas based on ISO-[\\CII]-investigations (Paper III). In this paper we present the results of a third 21 cm absorption line survey toward the LMC carried out with the Australia Telescope Compact Array (ATCA). 20 compact continuum sources, which are mainly in the direction of the supergiant shell LMC 4, toward the surroundings of 30 Doradus and toward the eastern steep \\HI\\ boundary, have been chosen from the 1.4 GHz snapshot continuum survey of Marx et al. We have identified 20 absorption features toward nine of the 20 sources. The properties of the cool \\HI\\ clouds are investigated and are compared for the different regions of the LMC taking the results of Dickey et al. (survey 2) into account. We find that the cool \\HI\\ gas in the LMC is either unusually abundant compared to the cool atomic phase of the Milky Way or the gas is clearly colder (\\Tc\\ ~ 30 K) than that in our Galaxy (\\Tc\\ ~ 60 K). The properties of atomic clouds toward 30 Doradus and LMC 4 suggest a higher cooling rate in these regions compared to other parts of the LMC, probably due to an enhanced pressure near the shock fronts of LMC 4 and 30 Doradus. The detected cool atomic gas toward the eastern steep \\HI\\ boundary might be the result of a high compression of gas at the leading edge. The Australia Telescope is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO.

  18. Liquid metal cooled nuclear reactor constructions

    International Nuclear Information System (INIS)

    Aspden, G.J.; Allbeson, K.F.

    1984-01-01

    In a liquid metal cooled nuclear reactor with a nuclear fuel assembly in a coolant-containing primary vessel housed within a concrete containment vault, there is thermal insulation to protect the concrete, the insulation being disposed between vessel and concrete and being hung from metal structure secured to and projecting from the concrete, the insulation consisting of a plurality of adjoining units each unit incorporating a pack of thermal insulating material and defining a contained void co-extensive with said pack and situated between pack and concrete, the void of each unit being connected to the voids of adjoining units so as to form continuous ducting for a fluid coolant. (author)

  19. Evaluation of materials' corrosion and chemistry issues for advanced gas cooled reactor steam generators using full scale plant simulations

    International Nuclear Information System (INIS)

    Woolsey, I.S.; Rudge, A.J.; Vincent, D.J.

    1998-01-01

    Advanced Gas Cooled Reactors (AGRS) employ once-through steam Generators of unique design to provide steam at approximately 530 degrees C and 155 bar to steam turbines of similar design to those of fossil plants. The steam generators are highly compact, and have either a serpentine or helical tube geometry. The tubes are heated on the outside by hot C0 2 gas, and steam is generated on the inside of the tubes. Each individual steam generator tube consists of a carbon steel feed and primary economiser section, a 9%Cr steel secondary economiser, evaporator and primary superheater, and a Type 316L austenitic stainless steel secondary superheater, all within a single tube pass. The multi-material nature of the individual tube passes, the need to maintain specific thermohydraulic conditions within the different material sections, and the difficulties of steam generator inspection and repair, have required extensive corrosion-chemistry test programmes to ensure waterside corrosion does not present a challenge to their integrity. A major part of these programmes has been the use of a full scale steam generator test facility capable of simulating all aspects of the waterside conditions which exist in the plant. This facility has been used to address a wide variety of possible plant drainage/degradation processes. These include; single- and two-phase flow accelerated corrosion of carbon steel, superheat margins requirements and the stress-corrosion behaviour of the austenitic superheaters, on-load corrosion of the evaporator materials, and iron transport and oxide deposition behaviour. The paper outlines a number of these, and indicates how they have been of value in helping to maintain reliable operation of the plant. (author)

  20. Advanced Accelerator Applications University Participation Program

    International Nuclear Information System (INIS)

    Chen, Y.; Hechanova, A.

    2007-01-01

    Our research tasks span the range of technology areas for transmutation, gas-cooled reactor technology, and high temperature heat exchangers, including separation of actinides from spent nuclear fuel, methods of fuel fabrication, reactor-accelerator coupled experiments, corrosion of materials exposed to lead-bismuth eutectic, and special nuclear materials protection and accountability. In the six years of this program, we saw the evolution of the national transmutation concepts go from the use of accelerators to fast reactors. We also saw an emphasis on gas-cooled reactors for both high temperature heat and deep burn of nuclear fuel. At the local level, we saw a great birth at UNLV of two new academic programs Fall term of 2004 and the addition of 10 academic and research faculty. The Ph.D. program in Radiochemistry has turned into one of the nation's most visible and successful programs; and, the M.S. program in Materials and Nuclear Engineering initiated Nuclear Engineering academic opportunities which took a long time to come. Our research tasks span the range of technology areas for transmutation, gas-cooled reactor technology, and high temperature heat exchangers, including separation of actinides from spent nuclear fuel, methods of fuel fabrication, reactor-accelerator coupled experiments, corrosion of materials exposed to lead-bismuth eutectic, and special nuclear materials protection and accountability

  1. Ambient air cooling arrangement having a pre-swirler for gas turbine engine blade cooling

    Science.gov (United States)

    Lee, Ching-Pang; Tham, Kok-Mun; Schroeder, Eric; Meeroff, Jamie; Miller, Jr., Samuel R; Marra, John J

    2015-01-06

    A gas turbine engine including: an ambient-air cooling circuit (10) having a cooling channel (26) disposed in a turbine blade (22) and in fluid communication with a source (12) of ambient air: and an pre-swirler (18), the pre-swirler having: an inner shroud (38); an outer shroud (56); and a plurality of guide vanes (42), each spanning from the inner shroud to the outer shroud. Circumferentially adjacent guide vanes (46, 48) define respective nozzles (44) there between. Forces created by a rotation of the turbine blade motivate ambient air through the cooling circuit. The pre-swirler is configured to impart swirl to ambient air drawn through the nozzles and to direct the swirled ambient air toward a base of the turbine blade. The end walls (50, 54) of the pre-swirler may be contoured.

  2. Test results from a helium gas-cooled porous metal heat exchanger

    International Nuclear Information System (INIS)

    North, M.T.; Rosenfeld, J.H.; Youchison, D.L.

    1996-01-01

    A helium-cooled porous metal heat exchanger was built and tested, which successfully absorbed heat fluxes exceeding all previously tested gas-cooled designs. Helium-cooled plasma-facing components are being evaluated for fusion applications. Helium is a favorable coolant for fusion devices because it is not a plasma contaminant, it is not easily activated, and it is easily removed from the device in the event of a leak. The main drawback of gas coolants is their relatively poor thermal transport properties. This limitation can be removed through use of a highly efficient heat exchanger design. A low flow resistance porous metal heat exchanger design was developed, based on the requirements for the Faraday shield for the International Thermonuclear Experimental Reactor (ITER) device. High heat flux tests were conducted on two representative test articles at the Plasma Materials Test Facility (PMTF) at Sandia National Laboratories. Absorbed heat fluxes as high as 40 MW/m 2 were successfully removed during these tests without failure of the devices. Commercial applications for electronics cooling and other high heat flux applications are being identified

  3. Analysis on blow-down transient in water ingress accident of high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Wang, Yan; Zheng, Yanhua; Li, Fu; Shi, Lei

    2014-01-01

    Water ingress into the primary circuit is generally recognized as one of the severe accidents with potential hazard to the modular high temperature gas-cooled reactor, which will cause a positive reactivity introduction with the increase of steam density in reactor core to enhance neutron slowing-down, also the chemical corrosion of graphite fuel elements and the damage of reflector structure material. The increase of the primary pressure may result in the opening of the safety valves, consequently leading the release of radioactive isotopes and flammable water gas. The research on water ingress transient is significant for the verification of inherent safety characteristics of high temperature gas-cooled reactor. The 200 MWe high temperature gas-cooled reactor (HTR-PM), designed by the Institute of Nuclear and New Energy Technology of Tsinghua University, is exampled to be analyzed in this paper. The design basis accident (DBA) scenarios of double-ended guillotine break of single heat-exchange tube (steam generator heat-exchange tube rupture) are simulated by the thermal-hydraulic analysis code, and some key concerns which are relative to the amount of water into the reactor core during the blow-down transient are analyzed in detail. The results show that both of water mass and steam ratio of the fluid spouting from the broken heat-exchange tube are affected by break location, which will increase obviously with the broken location closing to the outlet of the heat-exchange tube. The double-ended guillotine rupture at the outlet of the heat-exchange will result more steam penetrates into the reactor core in the design basis accident of water ingress. The mass of water ingress will also be affected by the draining system. It is concluded that, with reasonable optimization on design to balance safety and economy, the total mass of water ingress into the primary circuit of reactor could be limited effectively to meet the safety requirements, and the pollution of

  4. Description of the magnox type of gas cooled reactor (MAGNOX)

    International Nuclear Information System (INIS)

    Jensen, S.E.; Nonboel, E.

    1999-05-01

    The present report comprises a technical description of the MAGNOX type of reactor as it has been build in Great Britain. The Magnox reactor is gas cooled (CO 2 ) with graphite moderators. The fuels is natural uranium in metallic form, canned with a magnesium alloy called 'Magnox'. The Calder Hall Magnox plant on the Lothian coastline of Scotland, 60 km east of Edinburgh, has been chosen as the reference plant and is described in some detail. Data on the other stations are given in tables with a summary of design data. Special design features are also shortly described. Where specific data for Calder Hall Magnox has not been available, corresponding data from other Magnox plants has been used. The information presented is based on the open literature. The report is written as a part of the NKS/RAK-2 sub-project 3: 'Reactors in Nordic Surroundings', which comprises a description of nuclear power plants neighbouring the Nordic countries. (au)

  5. SSTAR: The US lead-cooled fast reactor (LFR)

    International Nuclear Information System (INIS)

    Smith, Craig F.; Halsey, William G.; Brown, Neil W.; Sienicki, James J.; Moisseytsev, Anton; Wade, David C.

    2008-01-01

    It is widely recognized that the developing world is the next area for major energy demand growth, including demand for new and advanced nuclear energy systems. With limited existing industrial and grid infrastructures, there will be an important need for future nuclear energy systems that can provide small or moderate increments of electric power (10-700 MWe) on small or immature grids in developing nations. Most recently, the global nuclear energy partnership (GNEP) has identified, as one of its key objectives, the development and demonstration of concepts for small and medium-sized reactors (SMRs) that can be globally deployed while assuring a high level of proliferation resistance. Lead-cooled systems offer several key advantages in meeting these goals. The small lead-cooled fast reactor concept known as the small secure transportable autonomous reactor (SSTAR) has been under ongoing development as part of the US advanced nuclear energy systems programs. It is a system designed to provide energy security to developing nations while incorporating features to achieve nonproliferation goals, anticipating GNEP objectives. This paper presents the motivation for development of internationally deployable nuclear energy systems as well as a summary of one such system, SSTAR, which is the US Generation IV lead-cooled fast reactor system

  6. Internally gas-cooled radiofrequency applicators as an alternative to conventional radiofrequency and microwave ablation devices: An in vivo comparison

    Energy Technology Data Exchange (ETDEWEB)

    Rempp, Hansjörg, E-mail: Hansjoerg.rempp@med.uni-tuebingen.de [Eberhard Karls University of Tübingen, Tübingen University Hospital, Department of Diagnostic and Interventional Radiology, Hoppe-Seyler-Straße 3, Tübingen, 72076 (Germany); Voigtländer, Matthias [ERBE Elektromedizin GmbH, Waldhörnlestraße 17, 72072 Tübingen (Germany); Schenk, Martin [Eberhard Karls University of Tuebingen, Tübingen University Hospital, Department of General, Visceral and Transplant Surgery, Hoppe-Seyler-Straße 3, 72076 Tübingen (Germany); Enderle, Markus D. [ERBE Elektromedizin GmbH, Waldhörnlestraße 17, 72072 Tübingen (Germany); Scharpf, Marcus [Eberhard Karls University of Tuebingen, Insitute of Pathology, Department on General Pathology and Pathological Anatomy, Liebermeisterstraße 8, 72076 Tübingen (Germany); Greiner, Tim O. [Eberhard Karls University of Tuebingen, Tübingen University Hospital, Department of General, Visceral and Transplant Surgery, Hoppe-Seyler-Straße 3, 72076 Tübingen (Germany); Neugebauer, Alexander [ERBE Elektromedizin GmbH, Waldhörnlestraße 17, 72072 Tübingen (Germany); and others

    2013-08-15

    Purpose: To test the efficacy of internally CO{sub 2}-cooled radiofrequency (RF) ablation in vivo and to compare its effectiveness to a standard water-cooled RF probe and to a gas-cooled microwave (MW) device. Method and materials: 49 ablations were performed on 15 pigs under general anesthesia using 15G monopolar CO{sub 2}-cooled RF applicators, 17G monopolar water-cooled RF applicators and 15G internally CO{sub 2}-cooled microwave devices. The power of the MW device was 45 W, the current of the gas-cooled RF device was 1200–1600 mA. At the water-cooled RF probe, maximum power of 200 W was set. Ablation time was 15 min. The short and long axes of the ablation zone were measured. Histological analyses and NADH-staining were performed. The diameters and the ablation volumes were compared using an analysis of variance. Results: No spots of untreated tissue were observed close to the cooled needle track in any of the ablation zones. The largest short axis diameter was 3.4 ± 0.5 cm achieved with the gas-cooled monopolar applicator. With the water-cooled applicators, short axis diameter was significantly smaller, reaching 2.5 ± 0.4 cm. Gas-cooled MW probes achieved 2.9 ± 1.0 cm. The largest ablation volume was 31.5 ± 12 ml (gas-cooled RF), and the smallest was 12.7 ± 4 ml (water-cooled RF). Short/long axis ratio was largest for gas-cooled RF probes with 0.73 ± 0.08 versus 0.64 ± 0.04 for the water-cooled probes and 0.49 ± 0.25 for the microwave applicator. Conclusion: Gas-cooled RF applicators may have a higher potential for effective destruction of liver lesions than comparable water-cooled RF systems, and may be an alternative to standard RF and MW ablation devices.

  7. A review on the development of the advanced fuel fabrication technology

    International Nuclear Information System (INIS)

    Lee, Jung Won; Lee, Yung Woo; Sohn, Dong Sung; Yang, Myung Seung; Bae, Kee Kwang; Nah, Sang Hoh; Kim, Han Soo; Kim, Bong Koo; Song, Keun Woo; Kim, See Hyung

    1995-07-01

    In this state-of art report, the development status of the advanced nuclear fuel was investigated. The current fabrication technology for coated particle fuel and non-oxide fuel such as sol-gel technology, coating technology, and carbothermic reduction reaction has also been examined. In the view point of inherent safety and efficiency in the operation of power plant, the coated particle fuel will keep going on its reputation as nuclear fuel for a high temperature gas cooled reactor, and the nitride fuel is very prospective for the next liquid metal fast breeder reactor. 43 figs., 17 tabs., 96 refs. (Author)

  8. A review on the development of the advanced fuel fabrication technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Won; Lee, Yung Woo; Sohn, Dong Sung; Yang, Myung Seung; Bae, Kee Kwang; Nah, Sang Hoh; Kim, Han Soo; Kim, Bong Koo; Song, Keun Woo; Kim, See Hyung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    In this state-of art report, the development status of the advanced nuclear fuel was investigated. The current fabrication technology for coated particle fuel and non-oxide fuel such as sol-gel technology, coating technology, and carbothermic reduction reaction has also been examined. In the view point of inherent safety and efficiency in the operation of power plant, the coated particle fuel will keep going on its reputation as nuclear fuel for a high temperature gas cooled reactor, and the nitride fuel is very prospective for the next liquid metal fast breeder reactor. 43 figs., 17 tabs., 96 refs. (Author).

  9. French gas cooled reactor experience with moisture ingress

    International Nuclear Information System (INIS)

    Bastien, D.; Brie, M.

    1995-01-01

    During the history of operation of six gas cooled reactors in France, some experience has been gained with accidental water ingress into the primary system. This occurred as a result of leaks in steam generators. This paper describes the cause of the leaks, and the resulting consequences. (author). 2 refs, 8 figs

  10. Progress in development and design aspects of advanced water cooled reactors

    International Nuclear Information System (INIS)

    1992-12-01

    The objective of the Technical Committee Meeting (TCM) was to provide an international forum for technical specialists to review and discuss technology developments and design work for advanced water cooled reactors, safety approaches and features of current water cooled reactors and to identify, understand and describe advanced features for safety and operational improvements. The TCM was attended by 92 participants representing 18 countries and two international organizations and included 40 presentations by authors of 14 countries and one international organization. A separate abstract was prepared for each of these presentations. Refs, figs, tabs

  11. The advanced controls program at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Knee, H.E.; White, J.D.

    1990-01-01

    The Oak Ridge National Laboratory (ORNL), under sponsorship of the US Department of Energy (DOE), is conducting research that will lead to advanced, automated control of new liquid-metal-reactor (LMR) nuclear power plants. Although this program of research (entitled the ''Advanced Controls Program'') is focused on LMR technology, it will be capable of providing control design, test, and qualification capability for other advanced reactor designs (e.g., the advanced light water reactor [ALWR] and high temperature gas-cooled reactor [HTGR] designs), while also benefiting existing nuclear plants. The Program will also have applicability to complex, non-nuclear process control environments (e.g., petrochemical, aerospace, etc.). The Advanced Controls Program will support capabilities throughout the entire plant design life cycle, i.e., from the initial interactive first-principle dynamic model development for the process, systems, components, and instruments through advanced control room qualification. The current program involves five principal areas of research activities: (1) demonstrations of advanced control system designs, (2) development of an advanced controls design environment, (3) development of advanced control strategies, (4) research and development (R ampersand D) in human-system integration for advanced control system designs, and (5) testing and validation of advanced control system designs. Discussion of the research in these five areas forms the basis of this paper. Also included is a description of the research directions of the program. 8 refs

  12. Emergency core cooling systems in CANDU nuclear power plants

    International Nuclear Information System (INIS)

    1981-12-01

    This report contains the responses by the Advisory Committee on Nuclear Safety to three questions posed by the Atomic Energy Control Board concerning the need for Emergency Core Cooling Systems (ECCS) in CANDU nuclear power plants, the effectiveness requirement for such systems, and the extent to which experimental evidence should be available to demonstrate compliance with effectiveness standards

  13. Analytical Modelling of the Effects of Different Gas Turbine Cooling Techniques on Engine Performance =

    Science.gov (United States)

    Uysal, Selcuk Can

    In this research, MATLAB SimulinkRTM was used to develop a cooled engine model for industrial gas turbines and aero-engines. The model consists of uncooled on-design, mean-line turbomachinery design and a cooled off-design analysis in order to evaluate the engine performance parameters by using operating conditions, polytropic efficiencies, material information and cooling system details. The cooling analysis algorithm involves a 2nd law analysis to calculate losses from the cooling technique applied. The model is used in a sensitivity analysis that evaluates the impacts of variations in metal Biot number, thermal barrier coating Biot number, film cooling effectiveness, internal cooling effectiveness and maximum allowable blade temperature on main engine performance parameters of aero and industrial gas turbine engines. The model is subsequently used to analyze the relative performance impact of employing Anti-Vortex Film Cooling holes (AVH) by means of data obtained for these holes by Detached Eddy Simulation-CFD Techniques that are valid for engine-like turbulence intensity conditions. Cooled blade configurations with AVH and other different external cooling techniques were used in a performance comparison study. (Abstract shortened by ProQuest.).

  14. Closed-cycle cooling systems for nuclear power plants

    International Nuclear Information System (INIS)

    Santini, Lorenzo

    2006-01-01

    The long experience in the field of closed-cycle cooling systems and high technological level of turbo machines and heat exchangers concurs to believe in the industrial realizability of nuclear systems of high thermodynamic efficiency and intrinsic safety [it

  15. Indian advanced nuclear reactors

    International Nuclear Information System (INIS)

    Saha, D.; Sinha, R.K.

    2005-01-01

    For sustainable development of nuclear energy, a number of important issues like safety, waste management, economics etc. are to be addressed. To do this, a number of advanced reactor designs as well as fuel cycle technologies are being pursued worldwide. The advanced reactors being developed in India are the AHWR and the CHTR. Both the reactors use thorium based fuel and have many passive features. This paper describes the Indian advanced reactors and gives a brief account of the international initiatives for the sustainable development of nuclear energy. (author)

  16. Nuclear power newsletter, Vol. 6, no. 2, June 2009

    International Nuclear Information System (INIS)

    2009-06-01

    The main topics in the current issue are: Construction technology for new nuclear power plants; I and C system technologies; VERLIFE -The Lifetime Assessment Procedure for WWER NPPs; Significance of Pressurized Thermal Shock to Reactor Pressure Vessel Integrity; Erosion-Corrosion in Nuclear Power Plants; Supporting Latin American and Caribbean Countries Contemplating New Nuclear Programmes; Guidance for Nuclear Facility Personnel Training; INIR: The New IAEA Peer Review Service; INPRO information; Developing Methodologies to Assess Passive Safety System Performance in Advanced Reactors; 21st Meeting of the Technical Working Group on Gas-Cooled Reactors (TWG-GCR-21); Technical Meeting on Performance of Test Reactors and Use of Data for Benchmarking; International Topical Meeting on Nuclear Research Applications and Utilization of Accelerators; Technical Working Group on Fast Reactors (TWG-FR)

  17. High-temperature gas-cooled reactors and process heat

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1980-01-01

    High-Temperature Gas-Cooled Reactors (HTGRs) are fueled with ceramic-coated microspheres of uranium and thorium oxides/carbides embedded in graphite blocks which are cooled with helium. Promising areas of HTGR application are in cogeneration, energy transport using Heat Transfer Salt, recovery of oils from oil shale, steam reforming of methane for chemical production, coal gasification, and in energy transfer using chemical heat jpipes in the long term. Further, HTGRs could be used as the energy source for hydrogen production through thermochemical water splitting in the long term. The potential market for Process Heat HTGRs is 100-200 large units by about the year 2020

  18. Kaiseraugst nuclear power station: meteorological effects of the cooling towers

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Considerations of water conservation persuaded the German Government in 1971 not to allow the use of the Aar and Rhine for direct cooling of nuclear power stations. The criticism is often made that the Kaiseraugst cooling towers were built without full consideration of the resulting meteorological effects. The criticism is considered unjustified because the Federal Cooling Tower Commission considered all the relevant aspects before making its recommendations in 1972. Test results and other considerations show that the effect of the kaiseraugst cooling towers on meteorological and climatic conditions is indeed minimal and details are given. (P.G.R.)

  19. Nuclear reactor lid cooling which can work by natural circulation

    International Nuclear Information System (INIS)

    Wagner, J.

    1985-01-01

    The well-known air cooling of the lid of liquid metal cooled nuclear reactors is improved by the start of natural convection flow ensuring removal of heat in a sufficiently short time, if the blower fails. Go and return branches of the individual cooling circuits are arranged at different heights for this purpose. The circulation is supported by opening valves, which provide a direct path into the reactor building for the cooling air. The draught can be increased by setting up special chimneys. The start of circulation is aided by the temporary opening of another valve. (orig.) [de

  20. Development and validation of a full-range performance analysis model for a three-spool gas turbine with turbine cooling

    International Nuclear Information System (INIS)

    Song, Yin; Gu, Chun-wei; Ji, Xing-xing

    2015-01-01

    The performance analysis of a gas turbine is important for both its design and its operation. For modern gas turbines, the cooling flow introduces a noteworthy thermodynamic loss; thus, the determination of the cooling flow rate will clearly influence the accuracy of performance calculations. In this paper, a full-range performance analysis model is established for a three-spool gas turbine with an open-circuit convective blade cooling system. A hybrid turbine cooling model is embedded in the analysis to predict the amount of cooling air accurately and thus to remove the errors induced by the relatively arbitrary value of cooling air requirements in the previous research. The model is subsequently used to calculate the gas turbine performance; the calculation results are validated with detailed test data. Furthermore, multistage conjugate heat transfer analysis is performed for the turbine section. The results indicate that with the same coolant condition and flow rate as those in the performance analysis, the blade metal has been effectively cooled; in addition, the maximum temperature predicted by conjugate heat transfer analysis is close to the corresponding value in the cooling model. Hence, the present model provides an effective tool for analyzing the performance of a gas turbine with cooling. - Highlights: • We established a performance model for a gas turbine with convective cooling. • A hybrid turbine cooling model is embedded in the performance analysis. • The accuracy of the model is validated with detailed test data of the gas turbine. • Conjugate heat transfer analysis is performed for the turbine for verification

  1. Emergency cooling system for a nuclear reactor in a closed gas turbine plant

    International Nuclear Information System (INIS)

    Frutschi, H.U.

    1974-01-01

    In undisturbed operation of the closed gas turbine plant with compressor stages, reactor, and turbine, a compressor stage driven by a separate motor is following with reduced power. The power input this way is so small that the working medium is just blown through without pressure increase. The compressor stage is connected with the reactor by means of a reactor feedback pipe with an additional cooler and with the other compressor stages by means of a recuperator in the pipe between these and the turbine. In case of emergency cooling, e.g. after the rupture of a pipe with decreasing pressure of the working medium, the feedback pipe is closed short and the additional compressor stage is brought to higher power. It serves as a coolant blower and transfers the necessary amount of working medium to the reactor. The compressor stage is controlled at a constant torque, so that the heat removal from the reactor is adapted to the conditions of the accident. (DG) [de

  2. Current design efforts for the gas-cooled fast reactor (GFR)

    International Nuclear Information System (INIS)

    Weaver, K.D.

    2005-01-01

    Current research and development on the Gas-Cooled Fast Reactor (GCFR) has focused on the design of safety systems that will remove the decay heat during accident conditions, ion irradiations of candidate ceramic materials, joining studies of oxide dispersion strengthened alloys; and within the Advanced Fuel Cycle Initiative (AFC I) the fabrication of carbide fuels and ceramic fuel matrix materials, development of non-halide precursor low density and high density ceramic coatings, and neutron irradiation of candidate ceramic fuel matrix and metallic materials. The vast majority of this work has focused on the reference design for the GCFR: a helium-cooled, direct Brayton cycle power conversion system that will operate with an outlet temperature of 850 C at 7 MPa. In addition to the work being performed in the United States, seven international partners under the Generation IV International Forum (GIF) have identified their interest in participating in research related to the development of the GCFR. These are EURATOM (European Commission), France, Japan, South Africa, South Korea, Switzerland, and the United Kingdom. Of these, EURATOM (including the United Kingdom), France, Japan, and Switzerland have active research activities with respect to the GCFR. The research includes GCFR design and safety, and fuels/in-core materials/fuel cycle projects. This paper outlines the current design status of the GCFR, and includes work done in the areas mentioned above. (Author)

  3. Adaptation of a robot and tools for dismantling of a gas-cooled reactor

    International Nuclear Information System (INIS)

    Lewis, C.J.A.; Vibert, C.J.T.

    1989-01-01

    This report details the progress on a research programme to develop the techniques and design necessary to facilitate the use of commercially available industrial manipulator systems and cutting tools in nuclear environments, particularly that envisaged whilst decommissioning a gas-cooled reactor. The technology for the type of control and the machines to perform it already exist in the form of industrial-type robots. Development of the techniques for using these machines in a more operator-sensitive environment, together with the requirements of decontamination and radiation tolerance will enable them to be used in place of expensive purpose-built machines at a considerable cost saving. From this work it was possible to highlight the viability and associated costs of modifying a standard manipulator for use in decommissioning operations

  4. Specialists' meeting on fission product release and transport in gas-cooled reactors. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-07-01

    The purpose of the Meeting on Fission Product Release and Transport in Gas-Cooled Reactors was to compare and discuss experimental and theoretical results of fission product behaviour in gas-cooled reactors under normal and accidental conditions and to give direction for future development. The technical part of the meeting covered operational experience and laboratory research, activity release, and behaviour of released activity.

  5. Specialists' meeting on fission product release and transport in gas-cooled reactors. Summary report

    International Nuclear Information System (INIS)

    1985-01-01

    The purpose of the Meeting on Fission Product Release and Transport in Gas-Cooled Reactors was to compare and discuss experimental and theoretical results of fission product behaviour in gas-cooled reactors under normal and accidental conditions and to give direction for future development. The technical part of the meeting covered operational experience and laboratory research, activity release, and behaviour of released activity

  6. A charge regulating system for turbo-generator gas-cooled high-temperature reactor power stations

    International Nuclear Information System (INIS)

    Braytenbah, A.S.; Jaegtnes, K.O.

    1975-01-01

    The invention relates to a regulating system for gas-cooled high-temperature reactors power stations (helium coolant), equipped with several steam-boilers, each of which deriving heat from a corresponding cooling-gas flow circulating in the reactor, so as to feed superheated steam into a main common steam-manifold and re-superheated steam into a re-superheated hot common manifold [fr

  7. Improving Safety, Economic, Substantiality, and Security of Nuclear Energy with Canadian Super-Critical Water-cooled Reactor Concept

    International Nuclear Information System (INIS)

    Hamilton, Holly; Pencer, Jeremy; Yetisir, Metin; Leung, Laurence

    2012-01-01

    Super-Critical Water-cooled Reactor is one of the six design concepts being developed under the Generation IV International Forum. It is the only concept evolving from the water-cooled reactors and taking advantages of the balance-of-plant design and operation experience of the fossil-power plants. Canada is developing the SCR concept from the well-established pressure-tube reactor technology. The Canadian SCWR maintains modular design approach using relative small fuel channels with the separation of coolant and moderator. It is equipped with an advanced fuel channel design that is capable to transfer decay heat from the fuel to the moderator under the long-term cooling stage. Coupled with the advanced passive-moderator cooling system, cooling of fuel and fuel channel is continuous even without external power or operator intervention. The Canadian SCWR is operating at a pressure of 25 MPa with a core outlet temperature of 625 deg. C. This has led to a drastic increase in thermal efficiency to 48% from 34% of the current fleet of reactors (a 40% rise in relative efficiency). With the high core outlet temperature, a direct thermal cycle has been adopted and has led to simplification in plant design attributing to the cost reduction compared to the current reactor designs. The Canadian SCWR adopts the advanced Thorium fuel cycle to enhance the substantiality, economic, and security. than uranium in the world (estimated to be three times more). This provides the long-term fuel supply. Thorium's price is stable compared to uranium and is consistently lower than uranium. This would maintain the predictability and economic of fuel supply. Thorium itself is a non-fissile material and once irradiated requires special handling. This improves proliferative resistance. The objective of this paper is to highlight these improvements in generating nuclear energy with the Canadian SCWR

  8. Experimental and numerical investigation of heat transfer and pressure drop for innovative gas cooled systems

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, R., E-mail: rodrigo.leija@kit.edu [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz No. 1, 76344 Eggenstein-Leopoldshafen (Germany); Buchholz, S. [Gesellschaft für Anlagen- und Reaktorsicherheit GRS mbH, Boltzmannstraße 2, 85748 Garching (Germany); Suikkanen, H. [Lappeenranta University of Technology, LUT Energy, PO Box 20, FI-53851 Lappeenranta (Finland)

    2015-08-15

    Highlights: • Experimental results of the L-STAR within the first stage of THINS project. • CFD validation for the heat transfer and pressure losses in innovative gas cooled systems. • The results indicate a strong dependency Turbulent Prandtl at the rod wall temperature distribution. • Gas loop facility suitable for the investigation of thermohydraulic issues of GFR, however there might be flow instabilities when flow is very low. - Abstract: Heat transfer enhancement through turbulence augmentation is recognized as a key factor for improving the safety and economic conditions in the development of both critical and subcritical innovative advanced gas cooled fast reactors (GFR) and transmutation systems. The L-STAR facility has been designed and erected at the Karlsruhe Institute of Technology (KIT) to study turbulent flow behavior and its heat transfer enhancement characteristics in gas cooled annular channels under a wide range of conditions. The test section consists of an annular hexagonal cross section channel with an inner electrical heater rod element, placed concentrically within the test section, which seeks to simulate the flow area of a fuel rod element in a GFR. The long term objective of the experimental study is to investigate and improve the understanding of complex turbulent convective enhancement mechanisms as well as the friction loss penalties of roughened fuel rods compared to smooth ones and to generate an accurate database for further development of physical models. In the first step, experimental results of the fluid flow with uniform heat release conditions for the smooth heater rod are presented. The pressure drops, as well as the axial temperature profiles along the heater rod surface have been measured at Reynolds numbers in the range from 4000 to 35,000. The experimental results of the first stage were compared with independently conducted CFD analyses performed at Lappeenranta University of Technology (LUT) with the code ANSYS

  9. Natural circulating passive cooling system for nuclear reactor containment structure

    Science.gov (United States)

    Gou, Perng-Fei; Wade, Gentry E.

    1990-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  10. Optimizing parameters of GTU cycle and design values of air-gas channel in a gas turbine with cooled nozzle and rotor blades

    Science.gov (United States)

    Kler, A. M.; Zakharov, Yu. B.

    2012-09-01

    The authors have formulated the problem of joint optimization of pressure and temperature of combustion products before gas turbine, profiles of nozzle and rotor blades of gas turbine, and cooling air flow rates through nozzle and rotor blades. The article offers an original approach to optimization of profiles of gas turbine blades where the optimized profiles are presented as linear combinations of preliminarily formed basic profiles. The given examples relate to optimization of the gas turbine unit on the criterion of power efficiency at preliminary heat removal from air flows supplied for the air-gas channel cooling and without such removal.

  11. Hot gas path component cooling system having a particle collection chamber

    Science.gov (United States)

    Miranda, Carlos Miguel; Lacy, Benjamin Paul

    2018-02-20

    A cooling system for a hot gas path component includes a substrate having an outer surface and an inner surface. The inner surface defines at least one interior space. A passage is formed in the substrate between the outer surface and the inner surface. An access passage is formed in the substrate and extends from the outer surface to the inner space. The access passage is formed at a first acute angle to the passage and includes a particle collection chamber. The access passage is configured to channel a cooling fluid to the passage. Furthermore, the passage is configured to channel the cooling fluid therethrough to cool the substrate.

  12. Digital Information Platform Design of Fuel Element Engineering For High Temperature Gas-cooled Reactor

    International Nuclear Information System (INIS)

    Du Yuwei

    2014-01-01

    This product line provide fuel element for high temperature gas-cooled reactor nuclear power plant which is being constructed in Shidao bay in Shandong province. Its annual productive capacity is thirty ten thousands fuel elements whose shape is spherical . Compared with pressurized water fuel , this line has the feature of high radiation .In order to reduce harm to operators, the comprehensive information platform is designed , which can realize integration of automation and management for plant. This platform include two nets, automation net using field bus technique and information net using Ethernet technique ,which realize collection ,control, storage and publish of information.By means of construction, automatization and informatization of product line can reach high level. (author)

  13. In-Service Inspection Approaches for Lead-Cooled Nuclear Reactors

    Science.gov (United States)

    2017-06-01

    heavily regulated and mature. For example, the Illinois Emergency Management Agency (IEMA) conducted 805 soil samples testing for radionuclides around... radiation , and lead-cooled reactors are expected to have economic advantages compared to other nuclear coolant/moderator systems due to design...their six nuclear reactors in 22 2015 (IEMA, 2016, 3). In addition, they currently have 1649 environmental dosimeters testing for gamm