WorldWideScience

Sample records for advanced energy design

  1. 50% Advanced Energy Design Guides: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Bonnema, E.; Leach, M.; Pless, S.; Liu, B.; Wang, W.; Thornton, B.; Williams, J.

    2012-07-01

    This paper presents the process, methodology, and assumptions for the development of the 50% Energy Savings Advanced Energy Design Guides (AEDGs), a design guidance document that provides specific recommendations for achieving 50% energy savings above the requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004 in four building types: (1) Small to medium office buildings, (2) K-12 school buildings, (3) Medium to big box retail buildings, (4) Large hospital buildings.

  2. Advanced Energy Design Guide K-12: Next Generation of School Design and Operation

    Energy Technology Data Exchange (ETDEWEB)

    Torcellini, Paul A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pless, Shanti [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-01

    Driven by energy efficiency advances and renewable energy cost reductions, zero energy buildings are popping up all around the country. Although zero energy represents a bold paradigm shift - from buildings that consume energy to buildings that produce enough energy to meet their energy needs on an annual basis - it isn't a sudden shift. Zero energy buildings are the result of steady, incremental progress by researchers and building professionals working together to improve building energy performance. ASHRAE is taking the lead by publishing - in partnership with the American Institute of Architects (AIA), the Illuminating Engineering Society (IES), the U.S. Green Building Council (USGBC), and the U.S. Department of Energy (DOE) - a new series of advanced energy design guides (AEDGs) focused on zero energy buildings. The recently completed Advanced Energy Design Guide for K-12 School Buildings: Achieving Zero Energy (K-12 ZE AEDG) is the first in this series.

  3. Requirements of Integrated Design Teams While Evaluating Advanced Energy Retrofit Design Options in Immersive Virtual Environments

    Directory of Open Access Journals (Sweden)

    Xue Yang

    2015-12-01

    Full Text Available One of the significant ways to save energy use in buildings is to implement advanced energy retrofits in existing buildings. Improving energy performance of buildings through advanced energy retrofitting requires a clear understanding of the cost and energy implications of design alternatives from various engineering disciplines when different retrofit options are considered. The communication of retrofit design alternatives and their energy implications is essential in the decision-making process, as it affects the final retrofit selections and hence the energy efficiency of the retrofitted buildings. The objective of the research presented here was to identify a generic list of information requirements that are needed to be shared and collectively analyzed by integrated design teams during advanced energy retrofit design review meetings held in immersive settings. While identifying such requirements, the authors used an immersive environment based iterative requirements elicitation approach. The technology was used as a means to better identify the information requirements of integrated design teams to be analyzed as a group. This paper provides findings on information requirements of integrated design teams when evaluating retrofit options in immersive virtual environments. The information requirements were identified through interactions with sixteen experts in design and energy modeling domain, and validated with another group of participants consisting of six design experts who were experienced in integrated design processes. Industry practitioners can use the findings in deciding on what information to share with integrated design team members during design review meetings that utilize immersive virtual environments.

  4. Achieving 50% Energy Savings in New Schools, Advanced Energy Design Guides: K-12 Schools (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-09-01

    This fact sheet summarizes recommendations for designing elementary, middle, and high school buildings that will result in 50% less energy use than conventional new schools built to minimum code requirements. The recommendations are drawn from the Advanced Energy Design Guide for K-12 School Buildings, an ASHRAE publication that provides comprehensive recommendations for designing low-energy-use school buildings (see sidebar). Designed as a stand-alone document, this fact sheet provides key principles and a set of prescriptive design recommendations appropriate for smaller schools with insufficient budgets to fully implement best practices for integrated design and optimized performance. The recommendations have undergone a thorough analysis and review process through ASHRAE, and have been deemed the best combination of measures to achieve 50% savings in the greatest number of schools.

  5. Technical Support Document: Development of the Advanced Energy Design Guide for K-12 Schools--30% Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    Pless, S.; Torcellini, P.; Long, N.

    2007-09-01

    This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for K-12 School Buildings (K-12 AEDG), a design guidance document intended to provide recommendations for achieving 30% energy savings in K-12 Schools over levels contained in ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings. The 30% energy savings target is the first step toward achieving net-zero energy schools; schools that, on an annual basis, draw from outside sources less or equal energy than they generate on site from renewable energy sources.

  6. Open-Source Integrated Design-Analysis Environment For Nuclear Energy Advanced Modeling & Simulation Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    O' Leary, Patrick [Kitware, Inc., Clifton Park, NY (United States)

    2017-01-30

    The framework created through the Open-Source Integrated Design-Analysis Environment (IDAE) for Nuclear Energy Advanced Modeling & Simulation grant has simplify and democratize advanced modeling and simulation in the nuclear energy industry that works on a range of nuclear engineering applications. It leverages millions of investment dollars from the Department of Energy's Office of Nuclear Energy for modeling and simulation of light water reactors and the Office of Nuclear Energy's research and development. The IDEA framework enhanced Kitware’s Computational Model Builder (CMB) while leveraging existing open-source toolkits and creating a graphical end-to-end umbrella guiding end-users and developers through the nuclear energy advanced modeling and simulation lifecycle. In addition, the work deliver strategic advancements in meshing and visualization for ensembles.

  7. Development of the Advanced Energy Design Guide for K-12 Schools -- 50% Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    Bonnema, E.; Leach, M.; Pless, S.; Torcellini, P.

    2013-02-01

    This Technical Support Document (TSD) describes the process and methodology for the development of the Advanced Energy Design Guide for K-12 School Buildings: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-K12) (ASHRAE et al. 2011a). The AEDG-K12 provides recommendations for achieving 50% whole-building energy savings in K-12 schools over levels achieved by following ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings (Standard 90.1-2004) (ASHRAE 2004b). The AEDG-K12 was developed in collaboration with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IES), the U.S. Green Building Council (USGBC), and the U.S. Department of Energy (DOE).

  8. Advanced energy design and operation technologies research: Recommendations for a US Department of Energy multiyear program plan

    Energy Technology Data Exchange (ETDEWEB)

    Brambley, M.R.; Crawley, D.B.; Hostetler, D.D.; Stratton, R.C.; Addision, M.S.; Deringer, J.J.; Hall, J.D.; Selkowitz, S.E.

    1988-12-01

    This document describes recommendations for a multiyear plan developed for the US Department of Energy (DOE) as part of the Advanced Energy Design and Operation Technologies (AEDOT) project. The plan is an outgrowth of earlier planning activities conducted for DOE as part of design process research under the Building System Integration Program (BSIP). The proposed research will produce intelligent computer-based design and operation technologies for commercial buildings. In this document, the concept is explained, the need for these new computer-based environments is discussed, the benefits are described, and a plan for developing the AEDOT technologies is presented for the 9-year period beginning FY 1989. 45 refs., 37 figs., 9 tabs.

  9. Advanced energy materials

    CERN Document Server

    Tiwari, Ashutosh

    2014-01-01

    An essential resource for scientists designing new energy materials for the vast landscape of solar energy conversion as well as materials processing and characterization Based on the new and fundamental research on novel energy materials with tailor-made photonic properties, the role of materials engineering has been to provide much needed support in the development of photovoltaic devices. Advanced Energy Materials offers a unique, state-of-the-art look at the new world of novel energy materials science, shedding light on the subject's vast multi-disciplinary approach The book focuses p

  10. Technical Support Document: The Development of the Advanced Energy Design Guide for Small Retail Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bing; Jarnagin, Ronald E.; Winiarski, David W.; Jiang, Wei; McBride, Merle F.; Crall, C.

    2006-09-30

    The Advanced Energy Design Guide for Small Retail Buildings (AEDG-SR) was developed by a partnership of organizations, including the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IESNA), the United States Green Buildings Council (USGBC), and the Department of Energy (DOE). The guide is intended to offer recommendations to achieve 30% energy savings and thus to encourage steady progress towards net-zero energy buildings. The baseline level energy use was set at buildings built at the turn of the millennium, which are assumed to be based on ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings (refer to as the ?Standard? in this report). ASHRAE and its partners are engaged in the development of a series of guides for small commercial buildings, with the AEDG-SR being the second in the series. Previously the partnership developed the Advanced Energy Design Guide for Small Office Buildings: Achieving 30% Energy Savings Over ANSI/ASHRAE/IESNA Standard 90.1-1999, which was published in late 2004. The technical support document prepared by PNNL details how the energy analysis performed in support of the Guide and documents development of recommendation criteria.

  11. Advanced Performance Hydraulic Wind Energy

    Science.gov (United States)

    Jones, Jack A.; Bruce, Allan; Lam, Adrienne S.

    2013-01-01

    The Jet Propulsion Laboratory, California Institute of Technology, has developed a novel advanced hydraulic wind energy design, which has up to 23% performance improvement over conventional wind turbine and conventional hydraulic wind energy systems with 5 m/sec winds. It also has significant cost advantages with levelized costs equal to coal (after carbon tax rebate). The design is equally applicable to tidal energy systems and has passed preliminary laboratory proof-of-performance tests, as funded by the Department of Energy.

  12. Advanced materials for energy storage.

    Science.gov (United States)

    Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming

    2010-02-23

    Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted.

  13. Technical Support Document: Development of the Advanced Energy Design Guide for Large Hospitals - 50% Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    Bonnema, E.; Leach, M.; Pless, S.

    2013-06-01

    This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for Large Hospitals: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-LH) ASHRAE et al. (2011b). The AEDG-LH is intended to provide recommendations for achieving 50% whole-building energy savings in large hospitals over levels achieved by following Standard 90.1-2004. The AEDG-LH was created for a 'standard' mid- to large-size hospital, typically at least 100,000 ft2, but the strategies apply to all sizes and classifications of new construction hospital buildings. Its primary focus is new construction, but recommendations may be applicable to facilities undergoing total renovation, and in part to many other hospital renovation, addition, remodeling, and modernization projects (including changes to one or more systems in existing buildings).

  14. Technical Support Document: Development of the Advanced Energy Design Guide for Small Office Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Jarnagin, Ronald E.; Liu, Bing; Winiarski, David W.; McBride, Merle F.; Suharli, L.; Walden, D.

    2006-11-30

    This Technical Support Document (TSD) describes the process and methodology for the development of the Advanced Energy Design Guide for Small Office Buildings (AEDG-SO), a design guidance document intended to provide recommendations for achieving 30% energy savings in small office buildings over levels contained in ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings. The AEDG-SO is the first in a series of guides being developed by a partnership of organizations, including the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IESNA), the New Buildings Institute (NBI), and the U.S. Department of Energy (DOE). Each of the guides in the AEDG series will provide recommendations and user-friendly design assistance to designers, developers and owners of small commercial buildings that will encourage steady progress towards net-zero energy buildings. The guides will provide prescriptive recommendation packages that are capable of reaching the energy savings target for each climate zone in order to ease the burden of the design and construction of energy-efficient small commercial buildings The AEDG-SO was developed by an ASHRAE Special Project committee (SP-102) made up of representatives of each of the partner organizations in eight months. This TSD describes the charge given to the committee in developing the office guide and outlines the schedule of the development effort. The project committee developed two prototype office buildings (5,000 ft2 frame building and 20,000 ft2 two-story mass building) to represent the class of small office buildings and performed an energy simulation scoping study to determine the preliminary levels of efficiency necessary to meet the energy savings target. The simulation approach used by the project committee is documented in this TSD along with

  15. Advanced materials for energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming [Shenyang National Laboratory for Materials Science Institute of Metal Research, Chinese Academy of Sciences 72 Wenhua Road, Shenyang 110016 (China)

    2010-02-23

    Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  16. Technical Support Document: The Development of the Advanced Energy Design Guide for Highway Lodging Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Wei; Jarnagin, Ronald E.; Gowri, Krishnan; McBride, M.; Liu, Bing

    2008-09-30

    This Technical Support Document (TSD) describes the process and methodology for development of the Advanced Energy Design Guide for Highway Lodgings (AEDG-HL or the Guide), a design guidance document intended to provide recommendations for achieving 30% energy savings in highway lodging properties over levels contained in ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings. The AEDG-HL is the fifth in a series of guides being developed by a partnership of organizations, including the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IESNA), the United States Green Buildings Council (USGBC), and the U.S. Department of Energy (DOE).

  17. Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design

    Science.gov (United States)

    Liu, Jilei; Wang, Jin; Xu, Chaohe; Li, Chunzhong; Lin, Jianyi

    2017-01-01

    Abstract Tremendous efforts have been dedicated into the development of high‐performance energy storage devices with nanoscale design and hybrid approaches. The boundary between the electrochemical capacitors and batteries becomes less distinctive. The same material may display capacitive or battery‐like behavior depending on the electrode design and the charge storage guest ions. Therefore, the underlying mechanisms and the electrochemical processes occurring upon charge storage may be confusing for researchers who are new to the field as well as some of the chemists and material scientists already in the field. This review provides fundamentals of the similarities and differences between electrochemical capacitors and batteries from kinetic and material point of view. Basic techniques and analysis methods to distinguish the capacitive and battery‐like behavior are discussed. Furthermore, guidelines for material selection, the state‐of‐the‐art materials, and the electrode design rules to advanced electrode are proposed. PMID:29375964

  18. Ohio Advanced Energy Manufacturing Center

    Energy Technology Data Exchange (ETDEWEB)

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible

  19. Renewable energy systems advanced conversion technologies and applications

    CERN Document Server

    Luo, Fang Lin

    2012-01-01

    Energy conversion techniques are key in power electronics and even more so in renewable energy source systems, which require a large number of converters. Renewable Energy Systems: Advanced Conversion Technologies and Applications describes advanced conversion technologies and provides design examples of converters and inverters for renewable energy systems-including wind turbine and solar panel energy systems. Learn Cutting-Edge Techniques for Converters and Inverters Setting the scene, the book begins with a review of the basics of astronomy and Earth physics. It then systematically introduc

  20. Technical Support Document: Development of the Advanced Energy Design Guide for Medium to Big Box Retail Buildings - 50% Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    Bonnema, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Leach, Matt [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pless, Shanti [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-06-05

    This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for Medium to Big Box Retail Buildings: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-MBBR) ASHRAE et al. (2011b). The AEDG-MBBR is intended to provide recommendations for achieving 50% whole-building energy savings in retail stores over levels achieved by following ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings (Standard 90.1-2004) (ASHRAE 2004b). The AEDG-MBBR was developed in collaboration with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IES), the U.S. Green Building Council (USGBC), and the U.S. Department of Energy.

  1. Technical Support Document: Development of the Advanced Energy Design Guide for Medium to Big Box Retail Buildings - 50% Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    Bonnema, E.; Leach, M.; Pless, S.

    2013-06-01

    This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for Medium to Big Box Retail Buildings: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-MBBR) ASHRAE et al. (2011b). The AEDG-MBBR is intended to provide recommendations for achieving 50% whole-building energy savings in retail stores over levels achieved by following ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings (Standard 90.1-2004) (ASHRAE 2004b). The AEDG-MBBR was developed in collaboration with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IES), the U.S. Green Building Council (USGBC), and the U.S. Department of Energy.

  2. BASELINE DESIGN/ECONOMICS FOR ADVANCED FISCHER-TROPSCH TECHNOLOGY; FINAL

    International Nuclear Information System (INIS)

    None

    1998-01-01

    Bechtel, along with Amoco as the main subcontractor, developed a Baseline design, two alternative designs, and computer process simulation models for indirect coal liquefaction based on advanced Fischer-Tropsch (F-T) technology for the U. S. Department of Energy's (DOE's) Federal Energy Technology Center (FETC)

  3. Advanced nanomaterials and their applications in renewable energy

    CERN Document Server

    Liu, Jingbo Louise

    2015-01-01

    Advanced Nanomaterials and Their Applications in Renewable Energy presents timely topics related to nanomaterials' feasible synthesis and characterization, and their application in the energy fields. In addition, the book provides insights and scientific discoveries in toxicity study, with information that is easily understood by a wide audience. Advanced energy materials are important in designing materials that have greater physical, electronic, and optical properties. This book emphasizes the fundamental physics and chemistry underlying the techniques used to develop solar and fuel cell

  4. Next generation advanced nuclear reactor designs

    International Nuclear Information System (INIS)

    Turgut, M. H.

    2009-01-01

    Growing energy demand by technological developments and the increase of the world population and gradually diminishing energy resources made nuclear power an indispensable option. The renewable energy sources like solar, wind and geothermal may be suited to meet some local needs. Environment friendly nuclear energy which is a suitable solution to large scale demands tends to develop highly economical, advanced next generation reactors by incorporating technological developments and years of operating experience. The enhancement of safety and reliability, facilitation of maintainability, impeccable compatibility with the environment are the goals of the new generation reactors. The protection of the investment and property is considered as well as the protection of the environment and mankind. They became economically attractive compared to fossil-fired units by the use of standard designs, replacing some active systems by passive, reducing construction time and increasing the operation lifetime. The evolutionary designs were introduced at first by ameliorating the conventional plants, than revolutionary systems which are denoted as generation IV were verged to meet future needs. The investigations on the advanced, proliferation resistant fuel cycle technologies were initiated to minimize the radioactive waste burden by using new generation fast reactors and ADS transmuters.

  5. Advanced Energy Efficiency Design Strategies In Retail Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Hayter, S.; Torcellini, P.

    2000-08-17

    This paper presents two US retail building projects that were designed and constructed using the energy design process. These buildings, the BigHorn Center in Silverthorne, Colorado, and the Zion National Park Visitor Center in Springdale, Utah, were both completed and occupied during the spring of 2000.

  6. Microelectronic circuit design for energy harvesting systems

    CERN Document Server

    Di Paolo Emilio, Maurizio

    2017-01-01

    This book describes the design of microelectronic circuits for energy harvesting, broadband energy conversion, new methods and technologies for energy conversion. The author also discusses the design of power management circuits and the implementation of voltage regulators. Coverage includes advanced methods in low and high power electronics, as well as principles of micro-scale design based on piezoelectric, electromagnetic and thermoelectric technologies with control and conditioning circuit design. Provides a single-source reference to energy harvesting and its applications; Serves as a practical guide to microelectronics design for energy harvesting, with application to mobile power supplies; Enables readers to develop energy harvesting systems for wearable/mobile electronics.

  7. Advanced Beamline Design for Fermilab's Advanced Superconducting Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Prokop, Christopher [Northern Illinois Univ., DeKalb, IL (United States)

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) at Fermilab is a new electron accelerator currently in the commissioning stage. In addition to testing superconducting accelerating cavities for future accelerators, it is foreseen to support a variety of Advanced Accelerator R&D (AARD) experiments. Producing the required electron bunches with the expected flexibility is challenging. The goal of this dissertation is to explore via numerical simulations new accelerator beamlines that can enable the advanced manipulation of electron bunches. The work especially includes the design of a low-energy bunch compressor and a study of transverse-to-longitudinal phase space exchangers.

  8. Multifunctional Carbon Nanostructures for Advanced Energy Storage Applications

    Directory of Open Access Journals (Sweden)

    Yiran Wang

    2015-05-01

    Full Text Available Carbon nanostructures—including graphene, fullerenes, etc.—have found applications in a number of areas synergistically with a number of other materials. These multifunctional carbon nanostructures have recently attracted tremendous interest for energy storage applications due to their large aspect ratios, specific surface areas, and electrical conductivity. This succinct review aims to report on the recent advances in energy storage applications involving these multifunctional carbon nanostructures. The advanced design and testing of multifunctional carbon nanostructures for energy storage applications—specifically, electrochemical capacitors, lithium ion batteries, and fuel cells—are emphasized with comprehensive examples.

  9. Waste-to-energy advanced cycles and new design concepts for efficient power plants

    CERN Document Server

    Branchini, Lisa

    2015-01-01

    This book provides an overview of state-of-the-art technologies for energy conversion from waste, as well as a much-needed guide to new and advanced strategies to increase Waste-to-Energy (WTE) plant efficiency. Beginning with an overview of municipal solid waste production and disposal, basic concepts related to Waste-To-Energy conversion processes are described, highlighting the most relevant aspects impacting the thermodynamic efficiency of WTE power plants. The pervasive influences of main steam cycle parameters and plant configurations on WTE efficiency are detailed and quantified. Advanc

  10. Alternative Design Study Report: WindPACT Advanced Wind Turbine Drive Train Designs Study; November 1, 2000 -- February 28, 2002

    Energy Technology Data Exchange (ETDEWEB)

    Poore, R.; Lettenmaier, T.

    2003-08-01

    This report presents the Phase I results of the National Renewable Energy Laboratory's (NREL's) WindPACT (Wind Partnership for Advanced Component Technologies) Advanced Wind Turbine Drive Train Designs Study. Global Energy Concepts, LLC performed this work under a subcontract with NREL. The purpose of the WindPACT project is to identify technology improvements that will enable the cost of energy (COE) from wind turbines to be reduced. Other parts of the WindPACT project have examined blade and logistics scaling, balance-of-station costs, and rotor design. This study was designed to investigate innovative drive train designs.

  11. Preliminary design of the advanced quantum beam source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol; Lee, Jong Min; Jeong, Young Uk; Cho, Sung Oh; Yoo, Jae Gwon; Park, Seong Hee

    2000-07-01

    The preliminary design of the advanced quantum beam source based on a superconducting electron accelerator is presented. The advanced quantum beams include: high power free electron lasers, monochromatic X-rays and {gamma}-rays, high-power medium-energy electrons, high-flux pulsed neutrons, and high-flux monochromatic slow positron beam. The AQBS system is being re-designed, assuming that the SPS superconducting RF cavities used for LEP at CERN will revived as a main accelerator of the AQBS system at KAERI, after the decommissioning of LEP at the end of 2000. Technical issues of using the SPS superconducting RF cavities for the AQBS project are discussed in this report. The advanced quantum beams will be used for advanced researches in science and industries.

  12. Preliminary design of the advanced quantum beam source

    International Nuclear Information System (INIS)

    Lee, Byung Cheol; Lee, Jong Min; Jeong, Young Uk; Cho, Sung Oh; Yoo, Jae Gwon; Park, Seong Hee

    2000-07-01

    The preliminary design of the advanced quantum beam source based on a superconducting electron accelerator is presented. The advanced quantum beams include: high power free electron lasers, monochromatic X-rays and γ-rays, high-power medium-energy electrons, high-flux pulsed neutrons, and high-flux monochromatic slow positron beam. The AQBS system is being re-designed, assuming that the SPS superconducting RF cavities used for LEP at CERN will revived as a main accelerator of the AQBS system at KAERI, after the decommissioning of LEP at the end of 2000. Technical issues of using the SPS superconducting RF cavities for the AQBS project are discussed in this report. The advanced quantum beams will be used for advanced researches in science and industries

  13. GE's advanced nuclear reactor designs

    International Nuclear Information System (INIS)

    Berglund, R.C.

    1993-01-01

    The excess of US electrical generating capacity which has existed for the past 15 years is coming to an end as we enter the 1990s. Environmental and energy security issues associated with fossil fuels are kindling renewed interest in the nuclear option. The importance of these issues are underscored by the National Energy Strategy (NES) which calls for actions which open-quotes are designed to ensure that the nuclear power option is available to utilities.close quotes Utilities, utility associations, and nuclear suppliers, under the leadership of the Nuclear Power Oversight Committee (NPOC), have jointly developed a 14-point strategic plan aimed at establishing a predictable regulatory environment, standardized and pre-licensed Advanced Light Water Reactor (ALWR) nuclear plants, resolving the long-term waste management issue, and other open-quotes enabling conditions.close quotes GE is participating in this national effort and GE's family of advanced nuclear power plants feature two reactor designs, developed on a common technology base, aimed at providing a new generation of nuclear plants to provide safe, clean, economical electricity to the world's utilities in the 1990s and beyond. Together, the large-size (1300 MWe) Advanced Boiling Water Reactor (ABWR) and the small-size (600 MWe) Simplified Boiling Water Reactor (SBWR) are innovative, near-term candidates for expanding electrical generating capacity in the US and worldwide. Both possess the features necessary to do so safety, reliably, and economically

  14. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Baffes, C.; Church, M.; Leibfritz, J.; Oplt, S.; Rakhno, I.; /Fermilab

    2012-05-10

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type SRF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. The potential for radiation-induced degradation of the graphite is discussed.

  15. WRAP 2A advanced conceptual design report comments

    International Nuclear Information System (INIS)

    Lamberd, D.L.

    1994-01-01

    This report contains the compilation of the 393 comments that were submitted during the review of the Advanced Conceptual Design Report for the Waste Receiving and Processing Facility Module 2A. The report was prepared by Raytheon Engineers and Constructors, Inc. of Englewood, Colorado for the United States Department of Energy. The review was performed by a variety of organizations identified in the report. The comments were addressed first by the Westinghouse cognizant engineers and then by the Raytheon cognizant engineers, and incorporated into the final issue of the Advanced Conceptual Design Report

  16. Design and fabrication of advanced hybrid circuits for high energy physics

    International Nuclear Information System (INIS)

    Haller, G.M.; Moss, J.; Freytag, D.R.; Nelson, D.; Yim, A.; Lo, C.C.

    1987-10-01

    Current design and fabrication techniques of hybrid devices are explained for the Drift Chamber and the Liquid Argon Calorimeter for the Stanford Linear Collider Large Detector (SLD) at SLAC. Methods of developing layouts, ranging from hand-cut templates to advanced designs utilizing CAD tools with special hybrid design software were applied. Physical and electrical design rules for good yield and performance are discussed. Fabrication and assembly of the SLD hybrids are described. 7 refs., 10 figs

  17. Advances in wind turbine blade design and materials

    DEFF Research Database (Denmark)

    Wind energy is gaining critical ground in the area of renewable energy, with wind energy being predicted to provide up to 8% of the world’s consumption of electricity by 2021. Advances in wind turbine blade design and materials reviews the design and functionality of wind turbine rotor blades...... as well as the requirements and challenges for composite materials used in both current and future designs of wind turbine blades. Part one outlines the challenges and developments in wind turbine blade design, including aerodynamic and aeroelastic design features, fatigue loads on wind turbine blades......, and characteristics of wind turbine blade airfoils. Part two discusses the fatigue behavior of composite wind turbine blades, including the micromechanical modelling and fatigue life prediction of wind turbine blade composite materials, and the effects of resin and reinforcement variations on the fatigue resistance...

  18. Air Evaporation closed cycle water recovery technology - Advanced energy saving designs

    Science.gov (United States)

    Morasko, Gwyndolyn; Putnam, David F.; Bagdigian, Robert

    1986-01-01

    The Air Evaporation water recovery system is a visible candidate for Space Station application. A four-man Air Evaporation open cycle system has been successfully demonstrated for waste water recovery in manned chamber tests. The design improvements described in this paper greatly enhance the system operation and energy efficiency of the air evaporation process. A state-of-the-art wick feed design which results in reduced logistics requirements is presented. In addition, several design concepts that incorporate regenerative features to minimize the energy input to the system are discussed. These include a recuperative heat exchanger, a heat pump for energy transfer to the air heater, and solar collectors for evaporative heat. The addition of the energy recovery devices will result in an energy reduction of more than 80 percent over the systems used in earlier manned chamber tests.

  19. Nanoporous metals for advanced energy technologies

    CERN Document Server

    Ding, Yi

    2016-01-01

    This book covers the state-of-the-art research in nanoporous metals for potential applications in advanced energy fields, including proton exchange membrane fuel cells, Li batteries (Li ion, Li-S, and Li-O2), and supercapacitors. The related structural design and performance of nanoporous metals as well as possible mechanisms and challenges are fully addressed. The formation mechanisms of nanoporous metals during dealloying, the microstructures of nanoporous metals and characterization methods, as well as miscrostructural regulation of nanoporous metals through alloy design of precursors and surface diffusion control are also covered in detail. This is an ideal book for researchers, engineers, graduate students, and government/industry officers who are in charge of R&D investments and strategy related to energy technologies.

  20. Optimal design of advanced distillation configuration for enhanced energy efficiency of waste solvent recovery process in semiconductor industry

    International Nuclear Information System (INIS)

    Chaniago, Yus Donald; Minh, Le Quang; Khan, Mohd Shariq; Koo, Kee-Kahb; Bahadori, Alireza; Lee, Moonyong

    2015-01-01

    Highlights: • Thermally coupled distillation process is proposed for waste solvent recovery. • A systematic optimization procedure is used to optimize distillation columns. • Response surface methodology is applied to optimal design of distillation column. • Proposed advanced distillation allows energy efficient waste solvent recovery. - Abstract: The semiconductor industry is one of the largest industries in the world. On the other hand, the huge amount of solvent used in the industry results in high production cost and potential environmental damage because most of the valuable chemicals discharged from the process are incinerated at high temperatures. A distillation process is used to recover waste solvent, reduce the production-related costs and protect the environment from the semiconductor industrial waste. Therefore, in this study, a distillation process was used to recover the valuable chemicals from semiconductor industry discharge, which otherwise would have been lost to the environment. The conventional sequence of distillation columns, which was optimized using the Box and sequential quadratic programming method for minimum energy objectives, was used. The energy demands of a distillation problem may have a substantial influence on the profitability of a process. A thermally coupled distillation and heat pump-assisted distillation sequence was implemented to further improve the distillation performance. Finally, a comparison was made between the conventional and advanced distillation sequences, and the optimal conditions for enhancing recovery were determined. The proposed advanced distillation configuration achieved a significant energy saving of 40.5% compared to the conventional column sequence

  1. Advanced Reactor Technology/Energy Conversion Project FY17 Accomplishments.

    Energy Technology Data Exchange (ETDEWEB)

    Rochau, Gary E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    The purpose of the ART Energy Conversion (EC) Project is to provide solutions to convert the heat from an advanced reactor to useful products that support commercial application of the reactor designs.

  2. Performance and safety design of the advanced liquid metal reactor

    International Nuclear Information System (INIS)

    Berglund, R.C.; Magee, P.M.; Boardman, C.E.; Gyorey, G.L.

    1991-01-01

    The Advanced Liquid Metal Reactor (ALMR) program led by General Electric is developing, under U.S. Department of Energy sponsorship, a conceptual design for an advanced sodium-cooled liquid metal reactor plant. This design is intended to improve the already excellent level of plant safety achieved by the nuclear power industry while at the same time providing significant reductions in plant construction and operating costs. In this paper, the plant design and performance are reviewed, with emphasis on the ALMR's unique passive design safety features and its capability to utilize as fuel the actinides in LWR spent fuel

  3. Advanced concepts, analysis approaches and criteria for nuclear piping system design

    International Nuclear Information System (INIS)

    Tang, H.T.; Tagart, S.W. Jr.; Tang, Y.K.

    1992-01-01

    Recent research in piping system design and analysis has resulted in advancements on damping values, independent support motion (ISM), static coefficient method, simplified inelastic method and ASME code criteria changes. In the support area, passive type of supports such as energy-absorbing device and gap stopper have been developed. These advancements provide bases for improved and cost-effective design of future nuclear piping systems. (author)

  4. Advanced burner test reactor preconceptual design report.

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

    2008-12-16

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. Implementation of the GNEP requires development and demonstration of three major technologies: (1) Light water reactor (LWR) spent fuel separations technologies that will recover transuranics to be recycled for fuel but not separate plutonium from other transuranics, thereby providing proliferation-resistance; (2) Advanced Burner Reactors (ABRs) based on a fast spectrum that transmute the recycled transuranics to produce energy while also reducing the long term radiotoxicity and decay heat loading in the repository; and (3) Fast reactor fuel recycling technologies to recover and refabricate the transuranics for repeated recycling in the fast reactor system. The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat. The Advanced Burner Test Reactor (ABTR) is the first step in demonstrating the transmutation technologies. It directly supports development of a prototype full-scale Advanced Burner Reactor, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR are: (1) To demonstrate reactor-based transmutation of transuranics as part of an

  5. Status of advanced light water reactor designs 2004

    International Nuclear Information System (INIS)

    2004-05-01

    The report is intended to be a source of reference information for interested organizations and individuals. Among them are decision makers of countries considering implementation of nuclear power programmes. Further, the report is addressed to government officials with an appropriate technical background and to research institutes of countries with existing nuclear programmes that wish to be informed on the global status in order to plan their nuclear power programmes including both research and development efforts and means for meeting future. The future utilization of nuclear power worldwide depends primarily on the ability of the nuclear community to further improve the economic competitiveness of nuclear power plants while meeting stringent safety requirements. The IAEA's activities in nuclear power technology development include the preparation of status reports on advanced reactor designs to provide all interested IAEA Member States with balanced and objective information on advances in nuclear plant technology. In the field of light water reactors, the last status report published by the IAEA was 'Status of Advanced Light Water Cooled Reactor Designs: 1996' (IAEA-TECDOC-968). Since its publication, quite a lot has happened: some designs have been taken into commercial operation, others have achieved significant steps toward becoming commercial products, including certification from regulatory authorities, some are in a design optimization phase to reduce capital costs, development for other designs began after 1996, and a few designs are no longer pursued by their promoters. With this general progress in mind, on the advice and with the support of the IAEA Department of Nuclear Energy's Technical Working Group on Advanced Technologies for Light Water Reactors (LWRs), the IAEA has prepared this new status report on advanced LWR designs that updates IAEA-TECDOC-968, presenting the various advanced LWR designs in a balanced way according to a common outline

  6. Design, analysis, operation, and advanced control of hybrid renewable energy systems

    Science.gov (United States)

    Whiteman, Zachary S.

    Because using non-renewable energy systems (e.g., coal-powered co-generation power plants) to generate electricity is an unsustainable, environmentally hazardous practice, it is important to develop cost-effective and reliable renewable energy systems, such as photovoltaics (PVs), wind turbines (WTs), and fuel cells (FCs). Non-renewable energy systems, however, are currently less expensive than individual renewable energy systems (IRESs). Furthermore, IRESs based on intermittent natural resources (e.g., solar irradiance and wind) are incapable of meeting continuous energy demands. Such shortcomings can be mitigated by judiciously combining two or more complementary IRESs to form a hybrid renewable energy system (HRES). Although previous research efforts focused on the design, operation, and control of HRESs has proven useful, no prior HRES research endeavor has taken a systematic and comprehensive approach towards establishing guidelines by which HRESs should be designed, operated, and controlled. The overall goal of this dissertation, therefore, is to establish the principles governing the design, operation, and control of HRESs resulting in cost-effective and reliable energy solutions for stationary and mobile applications. To achieve this goal, we developed and demonstrated four separate HRES principles. Rational selection of HRES type: HRES components and their sizes should be rationally selected using knowledge of component costs, availability of renewable energy resources, and expected power demands of the application. HRES design: by default, the components of a HRES should be arranged in parallel for increased efficiency and reliability. However, a series HRES design may be preferred depending on the operational considerations of the HRES components. HRES control strategy selection: the choice of HRES control strategy depends on the dynamics of HRES components, their operational considerations, and the practical limitations of the HRES end-use. HRES data

  7. Trends in the design of advanced nuclear reactors

    International Nuclear Information System (INIS)

    Poong-Eil Juhn; Kupitz, Juergen

    1996-01-01

    Nuclear energy is an essentially unlimited energy source with the potential to provide energy in the form of electricity, district heat and process heat environmentally acceptable conditions. However, this potential will be realized only if nuclear power plants can meet the challenges of national safety requirements, economic competitiveness and public acceptance. Worldwide, a tremendous amount of experience has been accumulated during the development, licensing, construction and operation of nuclear power plants. This experience forms a sound basis for further improvements. Nuclear programmes in the IAEA Member States are addressing the development of advanced reactors, which are intended to have better economics, higher reliability and improved safety. The IAEA, as a global international governmental organization dealing with nuclear power, promotes international information exchange and international co-operation between all countries with their own advanced power programmes and offers assistance to countries with an interest in exploratory or research programmes. The paper gives an overview of global trends in the design of advanced nuclear reactors for electricity generation and heat production along with the role of IAEA. (author)

  8. Architectural design of an advanced naturally ventilated building form

    Energy Technology Data Exchange (ETDEWEB)

    Lomas, K.J. [De Montfort University, Leicester (United Kingdom). Institute of Energy and Sustainable Development

    2007-02-15

    Advanced stack-ventilated buildings have the potential to consume much less energy for space conditioning than typical mechanically ventilated or air-conditioned buildings. This paper describes how environmental design considerations in general, and ventilation considerations in particular, shape the architecture of advanced naturally ventilated (ANV) buildings. The attributes of simple and advanced naturally ventilated buildings are described and a taxonomy of ANV buildings presented. Simple equations for use at the preliminary design stage are presented. These produce target structural cross section areas for the key components of ANV systems. The equations have been developed through practice-based research to design three large educational buildings: the Frederick Lanchester Library, Coventry, UK; the School of Slavonic and East European Studies, London, UK; the Harm A. Weber Library, Elgin, near Chicago, USA. These buildings are briefly described and the sizes of the as-built ANV features compared with the target values for use in preliminary design. The three buildings represent successive evolutionary stages: from advanced natural ventilation, to ANV with passive downdraught cooling, and finally ANV with HVAC support. Hopefully the guidance, simple calculation tools and case study examples will give architects and environmental design consultants confidence to embark on the design of ANV buildings. (author)

  9. Nanocarbons for advanced energy storage

    CERN Document Server

    Feng, Xinliang

    2015-01-01

    This first volume in the series on nanocarbons for advanced applications presents the latest achievements in the design, synthesis, characterization, and applications of these materials for electrochemical energy storage. The highly renowned series and volume editor, Xinliang Feng, has put together an internationally acclaimed expert team who covers nanocarbons such as carbon nanotubes, fullerenes, graphenes, and porous carbons. The first two parts focus on nanocarbon-based anode and cathode materials for lithium ion batteries, while the third part deals with carbon material-based supercapacit

  10. Advanced technologies and atomic energy

    International Nuclear Information System (INIS)

    1995-01-01

    The expert committee on the research 'Application of advanced technologies to nuclear power' started the activities in fiscal year 1994 as one of the expert research committees of Atomic Energy Society of Japan. The objective of its foundation is to investigate the information on the advanced technologies related to atomic energy and to promote their practice. In this fiscal year, the advanced technologies in the fields of system and safety, materials and measurement were taken up. The second committee meeting was held in March, 1995. In this report, the contents of the lectures at the committee meeting and the symposium are compiled. The topics in the symposium were the meaning of advanced technologies, the advanced technologies and atomic energy, human factors and control and safety systems, robot technology and microtechnology, and functionally gradient materials. Lectures were given at two committee meetings on the development of atomic energy that has come to the turning point, the development of advanced technologies centering around ULSI, the present problems of structural fine ceramics and countermeasures of JFCC, the material analysis using laser plasma soft X-ray, and the fullerene research of advanced technology development in Power Reactor and Nuclear Fuel Development Corporation. (K.I.)

  11. Advanced Energy Industries, Inc. SEGIS developments.

    Energy Technology Data Exchange (ETDEWEB)

    Scharf, Mesa P. (Advanced Energy Industries, Inc., Bend, OR); Bower, Ward Isaac; Mills-Price, Michael A. (Advanced Energy Industries, Inc., Bend, OR); Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali; Kuszmaul, Scott S.; Gonzalez, Sigifredo

    2012-03-01

    The Solar Energy Grid Integration Systems (SEGIS) initiative is a three-year, three-stage project that includes conceptual design and market analysis (Stage 1), prototype development/testing (Stage 2), and commercialization (Stage 3). Projects focus on system development of solar technologies, expansion of intelligent renewable energy applications, and connecting large-scale photovoltaic (PV) installations into the electric grid. As documented in this report, Advanced Energy Industries, Inc. (AE), its partners, and Sandia National Laboratories (SNL) successfully collaborated to complete the final stage of the SEGIS initiative, which has guided new technology development and development of methodologies for unification of PV and smart-grid technologies. The combined team met all deliverables throughout the three-year program and commercialized a broad set of the developed technologies.

  12. Energy-landscape Nexus: Advancing a conceptual framework for the design of sustainable energy landscapes

    NARCIS (Netherlands)

    Stremke, S.

    2013-01-01

    For some time now, the concept of “energy landscape” is discussed in academia while more and more practising landscape architects contribute to the siting, designing, and assessment of renewable energy technologies (see Stremke et al. 2012). Yet, there remains some ambiguity what exactly is meant

  13. Advances in conceptual design of a gas-cooled accelerator driven system (ADS) transmutation devices to sustainable nuclear energy development

    International Nuclear Information System (INIS)

    Garcia, Rosales; Fajardo, Garcia; Curbelo, Perez; Oliva, Munoz; Hernandez, Garcia; Castells, Escriva; Abanades

    2011-01-01

    The possibilities of a nuclear energy development are considerably increasing with the world energetic demand increment. However, the management of nuclear waste from conventional nuclear power plants and its inventory minimization are the most important issues that should be addressed. Fast reactors and Accelerator Driven Systems (ADS) are the main options to reduce the long-lived radioactive waste inventory. Pebble Bed Very High Temperature advanced systems have great perspectives to assume the future nuclear energy development challenges. The conceptual design of a Transmutation Advanced Device for Sustainable Energy Applications (TADSEA) has been made in preliminary studies. The TADSEA is an ADS cooled by helium and moderated by graphite that uses as fuel small amounts of transuranic elements in the form of TRISO particles, confined in 3 cm radius graphite pebbles forming a pebble bed configuration. It would be used for nuclear waste transmutation and energy production. In this paper, the results of a method for calculating the number of whole pebbles fitting in a volume according to its size are showed. From these results, the packing fraction influence on the TADSEAs main work parameters is studied. In addition, a redesign of the previous configuration, according to the established conditions in the preliminary design, i.e. the exit thermal power, is made. On the other hand, the heterogeneity of the TRISO particles inside the pebbles can not be negligible. In this paper, a study of the power density distribution inside the pebbles by means of a detailed simulation of the TRISO fuel particles and using an homogeneous composition of the fuel is addressed. (author)

  14. Designing sustainable energy landscapes : concepts, principles and procedures

    NARCIS (Netherlands)

    Stremke, S.

    2010-01-01

    The depletion of fossil fuels, in combination with climate change, necessitates a transition to sustainable energy systems. Such systems are characterized by a decreased energy demand and an increase in the use of renewables. The objective of this dissertation is to advance the planning and design

  15. Interregional technology transfer on advanced materials and renewable energy systems

    International Nuclear Information System (INIS)

    Agrianidis, P.; David, C.; Anthymidis, K.; Ekhrawat, M.

    2008-01-01

    Advanced materials are used in most industrial sectors and human activities and all developing and developed countries as well as international organizations eg. United Nations have established work groups, which survey the national and global state and developments in the area of advanced materials trying to establish strategies on that crucial technology sector. These strategies are focused on research and technology activities including education and vocation training, as well as stimulus for the starting up of new industrial applications. To introduce such a concept in Greece and especially in Northern Greece, the Technological Education Institute of Serres has initiated an Interregional technology transfer project in this scientific field. This project includes mod topics of advanced materials technology with emphasison specific industrial applications (renewable energy systems). The project demonstrates the development of a prototype photovoltaic thermal system in terms of a new industrial product. The product development procedure consists of steps such as initial product design, materials selection and processing, prototype design and manufacturing, quality control, performance optimization, but also control of materials ecocompatibility according to the national trends of life cycle design and recycling techniques. Keywords: Interregional technology transfer, materials, renewable energy systems

  16. Interregional technology transfer on advanced materials and renewable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Agrianidis, P.; David, C.; Anthymidis, K.; Ekhrawat, M. [Department of Mechanical Engineering, Technological Educational Institute of Serres, Serres (Greece)

    2008-07-01

    Advanced materials are used in most industrial sectors and human activities and all developing and developed countries as well as international organizations eg. United Nations have established work groups, which survey the national and global state and developments in the area of advanced materials trying to establish strategies on that crucial technology sector. These strategies are focused on research and technology activities including education and vocation training, as well as stimulus for the starting up of new industrial applications. To introduce such a concept in Greece and especially in Northern Greece, the Technological Education Institute of Serres has initiated an Interregional technology transfer project in this scientific field. This project includes mod topics of advanced materials technology with emphasison specific industrial applications (renewable energy systems). The project demonstrates the development of a prototype photovoltaic thermal system in terms of a new industrial product. The product development procedure consists of steps such as initial product design, materials selection and processing, prototype design and manufacturing, quality control, performance optimization, but also control of materials ecocompatibility according to the national trends of life cycle design and recycling techniques. Keywords: Interregional technology transfer, materials, renewable energy systems.

  17. Core Thermal-Hydraulic Conceptual Design for the Advanced SFR Design Concepts

    International Nuclear Information System (INIS)

    Cho, Chung Ho; Chang, Jin Wook; Yoo, Jae Woon; Song, Hoon; Choi, Sun Rock; Park, Won Seok; Kim, Sang Ji

    2010-01-01

    The Korea Atomic Energy Research Institute (KAERI) has developed the advanced SFR design concepts from 2007 to 2009 under the National longterm Nuclear R and D Program. Two types of core designs, 1,200 MWe breakeven and 600 MWe TRU burner core have been proposed and evaluated whether they meet the design requirements for the Gen IV technology goals of sustainability, safety and reliability, economics, proliferation resistance, and physical protection. In generally, the core thermal hydraulic design is performed during the conceptual design phase to efficiently extract the core thermal power by distributing the appropriate sodium coolant flow according to the power of each assembly because the conventional SFR core is composed of hundreds of ducted assemblies with hundreds of fuel rods. In carrying out the thermal and hydraulic design, special attention has to be paid to several performance parameters in order to assure proper performance and safety of fuel and core; the coolant boiling, fuel melting, structural integrity of the components, fuel-cladding eutectic melting, etc. The overall conceptual design procedure for core thermal and hydraulic conceptual design, i.e., flow grouping and peak pin temperature calculations, pressure drop calculations, steady-state and detailed sub-channel analysis is shown Figure 1. In the conceptual design phase, results of core thermal-hydraulic design for advanced design concepts, the core flow grouping, peak pin cladding mid-wall temperature, and pressure drop calculations, are summarized in this study

  18. 25th workshop on Advances in Analog Circuit Design

    CERN Document Server

    Harpe, Pieter; Makinwa, Kofi

    2017-01-01

    This book is based on the 18 tutorials presented during the 25th workshop on Advances in Analog Circuit Design. Expert designers present readers with information about a variety of topics at the frontier of analog circuit design, including low-power and energy-efficient analog electronics, with specific contributions focusing on the design of continuous-time sigma-delta modulators, automotive electronics, and power management. This book serves as a valuable reference to the state-of-the-art, for anyone involved in analog circuit research and development.

  19. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage.

    Science.gov (United States)

    Jiang, Jian; Li, Yuanyuan; Liu, Jinping; Huang, Xintang; Yuan, Changzhou; Lou, Xiong Wen David

    2012-10-02

    Metal oxide nanostructures are promising electrode materials for lithium-ion batteries and supercapacitors because of their high specific capacity/capacitance, typically 2-3 times higher than that of the carbon/graphite-based materials. However, their cycling stability and rate performance still can not meet the requirements of practical applications. It is therefore urgent to improve their overall device performance, which depends on not only the development of advanced electrode materials but also in a large part "how to design superior electrode architectures". In the article, we will review recent advances in strategies for advanced metal oxide-based hybrid nanostructure design, with the focus on the binder-free film/array electrodes. These binder-free electrodes, with the integration of unique merits of each component, can provide larger electrochemically active surface area, faster electron transport and superior ion diffusion, thus leading to substantially improved cycling and rate performance. Several recently emerged concepts of using ordered nanostructure arrays, synergetic core-shell structures, nanostructured current collectors, and flexible paper/textile electrodes will be highlighted, pointing out advantages and challenges where appropriate. Some future electrode design trends and directions are also discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Advances in Analog Circuit Design 2015

    CERN Document Server

    Baschirotto, Andrea; Harpe, Pieter

    2016-01-01

    This book is based on the 18 tutorials presented during the 24th workshop on Advances in Analog Circuit Design. Expert designers present readers with information about a variety of topics at the frontier of analog circuit design, including low-power and energy-efficient analog electronics, with specific contributions focusing on the design of efficient sensor interfaces and low-power RF systems. This book serves as a valuable reference to the state-of-the-art, for anyone involved in analog circuit research and development. ·         Provides a state-of-the-art reference in analog circuit design, written by experts from industry and academia; ·         Presents material in a tutorial-based format; ·         Includes coverage of high-performance analog-to-digital and digital to analog converters, integrated circuit design in scaled technologies, and time-domain signal processing.

  1. Advanced Energy Validated Photovoltaic Inverter Technology at NREL | Energy

    Science.gov (United States)

    Inverter Technology at NREL Advanced Energy Industries-NREL's first partner at the Energy Systems Integration Facility (ESIF)-validated its advanced photovoltaic (PV) inverter technology using the ESIF's computer screen in a laboratory, with power inverter hardware in the background Photo by Dennis Schroeder

  2. Towards energy efficient operation of Heating, Ventilation and Air Conditioning systems via advanced supervisory control design

    Science.gov (United States)

    Oswiecinska, A.; Hibbs, J.; Zajic, I.; Burnham, K. J.

    2015-11-01

    This paper presents conceptual control solution for reliable and energy efficient operation of heating, ventilation and air conditioning (HVAC) systems used in large volume building applications, e.g. warehouse facilities or exhibition centres. Advanced two-level scalable control solution, designed to extend capabilities of the existing low-level control strategies via remote internet connection, is presented. The high-level, supervisory controller is based on Model Predictive Control (MPC) architecture, which is the state-of-the-art for indoor climate control systems. The innovative approach benefits from using passive heating and cooling control strategies for reducing the HVAC system operational costs, while ensuring that required environmental conditions are met.

  3. Advanced Materials and Nano technology for Sustainable Energy Development

    International Nuclear Information System (INIS)

    Huo, Z.; Wu, Ch.H.; Zhu, Z.; Zhao, Y.

    2015-01-01

    Energy is the material foundation of human activities and also the single most valuable resource for the production activities of human society. Materials play a pivotal role in advancing technologies that can offer efficient renewable energy solutions for the future. This special issue has been established as an international foremost interdisciplinary forum that aims to publish high quality and original full research articles on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The special issue covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable energy production. It brings together stake holders from universities, industries, government agents, and businesses that are involved in the invention, design, development, and implementation of sustainable technologies. The research work has already been published in this special issue which discusses comprehensive technologies for wastewater treatment, strategies for controlling gaseous pollutant releases within chemical plant, evaluation of FCC catalysis poisoning mechanism, clean technologies for fossil fuel use, new-type photo catalysis material design with controllable morphology for solar energy conversion, and so forth. These studies describe important, intriguing, and systematic investigations on advanced materials and technologies for dealing with the key technologies and important issues that continue to haunt the global energy industry. They also tie together many aspects of current energy transportation science and technology, exhibiting outstanding industrial insights that have the potential to encourage and stimulate fresh perspectives on challenges, opportunities, and solutions to energy and environmental sustainability

  4. A design guide for energy-efficient research laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Wishner, N.; Chen, A.; Cook, L. [eds.; Bell, G.C.; Mills, E.; Sartor, D.; Avery, D.; Siminovitch, M.; Piette, M.A.

    1996-09-24

    This document--A Design Guide for Energy-Efficient Research Laboratories--provides a detailed and holistic framework to assist designers and energy managers in identifying and applying advanced energy-efficiency features in laboratory-type environments. The Guide fills an important void in the general literature and compliments existing in-depth technical manuals. Considerable information is available pertaining to overall laboratory design issues, but no single document focuses comprehensively on energy issues in these highly specialized environments. Furthermore, practitioners may utilize many antiquated rules of thumb, which often inadvertently cause energy inefficiency. The Guide helps its user to: introduce energy decision-making into the earliest phases of the design process, access the literature of pertinent issues, and become aware of debates and issues on related topics. The Guide does focus on individual technologies, as well as control systems, and important operational factors such as building commissioning. However, most importantly, the Guide is intended to foster a systems perspective (e.g. right sizing) and to present current leading-edge, energy-efficient design practices and principles.

  5. Carbon exergy tax (CET): its impact on conventional energy system design and its contribution to advanced systems utilisation

    International Nuclear Information System (INIS)

    Massardo, A.F.; Santarelli, M.; Borchiellini, R.

    2003-01-01

    A proposed analytical procedure for a charge on CO 2 emissions is used to determine its impact on the design process of different conventional energy systems. The charge on CO 2 emissions is defined as a Carbon Exergy Tax (CET). The CET utilises the concept of Efficiency Penalty of the energy system coupled with the Index of CO 2 Emissions, which connects the amount of the CO 2 emitted by the plant with the Second Law efficiency of the plant itself. The aim is to reward the efficient use of energy resources, both from a resource and environmental standpoint, and to penalise plants inefficient in this respect. The CET and the conventional Carbon Tax (CT, based on energy policy considerations and imposed on the mass of emitted CO 2 ) are applied to different conventional energy systems (a gas turbine simple cycle; a regenerative cogeneration gas turbine; a three pressure levels combined cycle) in order to determine their impact on the design of the plants. The effects of the CET and CT are investigated for different scenarios (pressure ratio, fuel cost, etc.). The results are presented using useful representations: the cost of electricity vs. efficiency, the cost of electricity vs. specific work, and the cost of electricity vs. plant design parameters (e.g., pressure ratio). Finally, ways that the use of the CET can contribute to the widespread utilization of advanced energy systems, which are more efficient and less polluting, is discussed. In particular, the CET and CT influence is presented and discussed for a solid oxide fuel cell (SOFC) and gas turbine combined cycle

  6. Recent Advances in Porous Carbon Materials for Electrochemical Energy Storage.

    Science.gov (United States)

    Wang, Libin; Hu, Xianluo

    2018-06-18

    Climate change and the energy crisis have promoted the rapid development of electrochemical energy-storage devices. Owing to many intriguing physicochemical properties, such as excellent chemical stability, high electronic conductivity, and a large specific surface area, porous carbon materials have always been considering as a promising candidate for electrochemical energy storage. To date, a wide variety of porous carbon materials based upon molecular design, pore control, and compositional tailoring have been proposed for energy-storage applications. This focus review summarizes recent advances in the synthesis of various porous carbon materials from the view of energy storage, particularly in the past three years. Their applications in representative electrochemical energy-storage devices, such as lithium-ion batteries, supercapacitors, and lithium-ion hybrid capacitors, are discussed in this review, with a look forward to offer some inspiration and guidelines for the exploitation of advanced carbon-based energy-storage materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Advanced compiler design and implementation

    CERN Document Server

    Muchnick, Steven S

    1997-01-01

    From the Foreword by Susan L. Graham: This book takes on the challenges of contemporary languages and architectures, and prepares the reader for the new compiling problems that will inevitably arise in the future. The definitive book on advanced compiler design This comprehensive, up-to-date work examines advanced issues in the design and implementation of compilers for modern processors. Written for professionals and graduate students, the book guides readers in designing and implementing efficient structures for highly optimizing compilers for real-world languages. Covering advanced issues in fundamental areas of compiler design, this book discusses a wide array of possible code optimizations, determining the relative importance of optimizations, and selecting the most effective methods of implementation. * Lays the foundation for understanding the major issues of advanced compiler design * Treats optimization in-depth * Uses four case studies of commercial compiling suites to illustrate different approache...

  8. Passive Solar still: Recent advancement in design and related Performance.

    Science.gov (United States)

    Awasthi, Anuradha; Kumari, Kanchan; Panchal, Hitesh; Sathyamurthy, Ravishankar

    2018-05-31

    Present review paper mainly focuses on different varieties of solar stills and highlights mostly the passive solar still with advanced modifications in the design and development of material, single and multi-effect solar still with augmentation of different materials, energy absorbing, insulators, mechanisms of heat and mass transfer to improve the loss of heat and enhance the productivity of solar still. The cost-benefit analysis along with the progressive advancement for solar stills is the major highlights of this review. To increase the output of solar still nowadays, applications of advance modifications is one of the promising tools, and it is anticipated that shortly more vigor will be added in this area with the modifications in designs of solar stills.

  9. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jian; Liu, Jinping; Huang, Xintang [Institute of Nanoscience and Nanotechnology, Department of Physics, Central China Normal University, Wuhan, Hubei (China); Li, Yuanyuan [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan (China); Yuan, Changzhou; Lou, Xiong Wen [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore (China)

    2012-10-02

    Metal oxide nanostructures are promising electrode materials for lithium-ion batteries and supercapacitors because of their high specific capacity/capacitance, typically 2-3 times higher than that of the carbon/graphite-based materials. However, their cycling stability and rate performance still can not meet the requirements of practical applications. It is therefore urgent to improve their overall device performance, which depends on not only the development of advanced electrode materials but also in a large part ''how to design superior electrode architectures''. In the article, we will review recent advances in strategies for advanced metal oxide-based hybrid nanostructure design, with the focus on the binder-free film/array electrodes. These binder-free electrodes, with the integration of unique merits of each component, can provide larger electrochemically active surface area, faster electron transport and superior ion diffusion, thus leading to substantially improved cycling and rate performance. Several recently emerged concepts of using ordered nanostructure arrays, synergetic core-shell structures, nanostructured current collectors, and flexible paper/textile electrodes will be highlighted, pointing out advantages and challenges where appropriate. Some future electrode design trends and directions are also discussed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Advancing Drug Discovery through Enhanced Free Energy Calculations.

    Science.gov (United States)

    Abel, Robert; Wang, Lingle; Harder, Edward D; Berne, B J; Friesner, Richard A

    2017-07-18

    A principal goal of drug discovery project is to design molecules that can tightly and selectively bind to the target protein receptor. Accurate prediction of protein-ligand binding free energies is therefore of central importance in computational chemistry and computer aided drug design. Multiple recent improvements in computing power, classical force field accuracy, enhanced sampling methods, and simulation setup have enabled accurate and reliable calculations of protein-ligands binding free energies, and position free energy calculations to play a guiding role in small molecule drug discovery. In this Account, we outline the relevant methodological advances, including the REST2 (Replica Exchange with Solute Temperting) enhanced sampling, the incorporation of REST2 sampling with convential FEP (Free Energy Perturbation) through FEP/REST, the OPLS3 force field, and the advanced simulation setup that constitute our FEP+ approach, followed by the presentation of extensive comparisons with experiment, demonstrating sufficient accuracy in potency prediction (better than 1 kcal/mol) to substantially impact lead optimization campaigns. The limitations of the current FEP+ implementation and best practices in drug discovery applications are also discussed followed by the future methodology development plans to address those limitations. We then report results from a recent drug discovery project, in which several thousand FEP+ calculations were successfully deployed to simultaneously optimize potency, selectivity, and solubility, illustrating the power of the approach to solve challenging drug design problems. The capabilities of free energy calculations to accurately predict potency and selectivity have led to the advance of ongoing drug discovery projects, in challenging situations where alternative approaches would have great difficulties. The ability to effectively carry out projects evaluating tens of thousands, or hundreds of thousands, of proposed drug candidates

  11. Licensing and advanced fuel designs

    International Nuclear Information System (INIS)

    Davidson, S.L.; Novendstern, E.H.

    1991-01-01

    For the past 15 years, Westinghouse has been actively involved in the development and licensing of fuel designs that contain major advanced features. These designs include the optimized fuel assembly, The VANTAGE 5 fuel assembly, the VANTAGE 5H, and most recently the VANTAGE+ fuel assembly. Each of these designs was supported by extensive experimental data, safety evaluations, and design efforts and required intensive interaction with the US Nuclear Regulatory Commission (NRC) during the review and approval process. This paper presents a description of the licensing approach and how it was utilized by the utilities to facilitate the licensing applications of the advanced fuel designs for their plants. The licensing approach described in this paper has been successfully applied to four major advanced fuel design changes ∼40 plant-specific applications, and >350 cycle-specific reloads in the past 15 years

  12. Basic requirements for a preliminary conceptual design of the Korea advanced pyroprocess facility (KAPF)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Hee; Ko, Won Il; Chang, Hong Lae; Song, Dae Yong; Kwon, Eun Ha; Lee, Jung Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-12-15

    Korea Atomic Energy Research Institute (KAERI) has been developing technologies for pyroprocessing for spent PWR fuels. This study is part of a long term R and D program in Korea to develop an advanced recycle system that has the potential to meet and exceed the proliferation resistance, waste minimization, resource minimization, safety and economic goals of approved Korean Government energy policy, as well as the Generation IV International Forum (GIF) program. To support this R and D program, KAERI requires that an independent estimate be made of the conceptual design and cost for construction and operation of a 'Korea Advanced Pyroprocessing Facility', This document describes the basic requirements for preliminary conceptual design of the Korea Advanced Pyroprocess Facility (KAPF). The presented requirements will be modified to be more effective and feasible on an engineering basis during the subsequent design process.

  13. Basic requirements for a preliminary conceptual design of the Korea advanced pyroprocess facility (KAPF)

    International Nuclear Information System (INIS)

    Lee, Ho Hee; Ko, Won Il; Chang, Hong Lae; Song, Dae Yong; Kwon, Eun Ha; Lee, Jung Won

    2008-12-01

    Korea Atomic Energy Research Institute (KAERI) has been developing technologies for pyroprocessing for spent PWR fuels. This study is part of a long term R and D program in Korea to develop an advanced recycle system that has the potential to meet and exceed the proliferation resistance, waste minimization, resource minimization, safety and economic goals of approved Korean Government energy policy, as well as the Generation IV International Forum (GIF) program. To support this R and D program, KAERI requires that an independent estimate be made of the conceptual design and cost for construction and operation of a 'Korea Advanced Pyroprocessing Facility', This document describes the basic requirements for preliminary conceptual design of the Korea Advanced Pyroprocess Facility (KAPF). The presented requirements will be modified to be more effective and feasible on an engineering basis during the subsequent design process

  14. Advanced Neutron Source: The designer's perspective

    International Nuclear Information System (INIS)

    Peretz, F.J.

    1990-01-01

    The Advanced Neutron Source (ANS) is a research facility based on a 350 MW beam reactor, to be brought into service at the Oak Ridge National Laboratory at the end of the century. The primary objective is to provide high-flux neutron beams and guides, with cold, thermal, hot, and ultra-cold neutrons, for research in many fields of science. Secondary objectives include isotopes production, materials irradiation and activation analysis. The design of the ANS is strongly influenced by the historical development of research and power reactor concepts, and of the regulatory infrastructure of the Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC). Current trends in reactor safety also impact the climate for the design of such a reactor

  15. ADVANCES IN YUCCA MOUNTAIN DESIGN

    International Nuclear Information System (INIS)

    Harrington, P.G.; Gardiner, J.T.; Russell, P.R.Z.; Lachman, K.D.; McDaniel, P.W.; Boutin, R.J.; Brown, N.R.; Trautner, L.J.

    2003-01-01

    Since site designation of the Yucca Mountain Project by the President, the U.S. Department of Energy (DOE) has begun the transition from the site characterization phase of the project to preparation of the license application. As part of this transition, an increased focus has been applied to the repository design. Several evolution studies were performed to evaluate the repository design and to determine if improvements in the design were possible considering advances in the technology for handling and packaging nuclear materials. The studies' main focus was to reduce and/or eliminate uncertainties in both the pre-closure and post-closure performance of the repository and to optimize operations. The scope and recommendations from these studies are the subjects of this paper and include the following topics: (1) a more phased approach for the surface facility that utilize handling and packaging of the commercial spent nuclear fuel in a dry environment rather than in pools as was presented in the site recommendation; (2) slight adjustment of the repository footprint and a phased approach for construction and emplacement of the repository subsurface; and (3) simplification of the construction, fabrication and installation of the waste package and drip shield

  16. Intermediate/Advanced Research Design and Statistics

    Science.gov (United States)

    Ploutz-Snyder, Robert

    2009-01-01

    The purpose of this module is To provide Institutional Researchers (IRs) with an understanding of the principles of advanced research design and the intermediate/advanced statistical procedures consistent with such designs

  17. ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT. ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY

    International Nuclear Information System (INIS)

    PROJECT STAFF

    2001-01-01

    OAK A271 ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY. The General Atomics (GA) Advanced Fusion Technology Program seeks to advance the knowledge base needed for next-generation fusion experiments, and ultimately for an economical and environmentally attractive fusion energy source. To achieve this objective, they carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and they conduct research to develop basic and applied knowledge about these technologies. GA's Advanced Fusion Technology program derives from, and draws on, the physics and engineering expertise built up by many years of experience in designing, building, and operating plasma physics experiments. The technology development activities take full advantage of the GA DIII-D program, the DIII-D facility and the Inertial Confinement Fusion (ICF) program and the ICF Target Fabrication facility

  18. A Model for Infusing Energy Concepts into Vocational Education Programs. Advanced Solar Systems.

    Science.gov (United States)

    Delta Vocational Technical School, Marked Tree, AR.

    This instructional unit consists of materials designed to help students understand terms associated with solar energy; identify components of advanced solar systems; and identify applications of solar energy in business, industry, agriculture, and photovoltaics. Included in the unit are the following materials: suggested activities, instructional…

  19. Advanced Energy Retrofit Guide Office Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guopeng; Liu, Bing; Wang, Weimin; Zhang, Jian; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

    2011-09-27

    The Advanced Energy Retrofit Guide for Office Buildings is a component of the Department of Energy’s Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

  20. Advanced Energy Retrofit Guide Retail Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guopeng; Liu, Bing; Zhang, Jian; Wang, Weimin; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

    2011-09-19

    The Advanced Energy Retrofit Guide for Retail Buildings is a component of the Department of Energy’s Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

  1. Advanced air distribution: Improving health and comfort while reducing energy use

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor

    2015-01-01

    -quality indoor environments at the same time as low-energy consumption. Advanced air distribution, designed to supply clean air where, when, and as much as needed, makes it possible to efficiently achieve thermal comfort, control exposure to contaminants, provide high-quality air for breathing and minimizing......Indoor environment affects the health, comfort, and performance of building occupants. The energy used for heating, cooling, ventilating, and air conditioning of buildings is substantial. Ventilation based on total volume air distribution in spaces is not always an efficient way to provide high...... the risk of airborne cross-infection while reducing energy use. This study justifies the need for improving the present air distribution design in occupied spaces, and in general the need for a paradigm shift from the design of collective environments to the design of individually controlled environments...

  2. Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary and Crystalline Formations

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Mike S. [Terralog Technologies USA, Inc., Calgary (Canada); Detwiler, Russell L. [Terralog Technologies USA, Inc., Calgary (Canada); Lao, Kang [Terralog Technologies USA, Inc., Calgary (Canada); Serajian, Vahid [Terralog Technologies USA, Inc., Calgary (Canada); Elkhoury, Jean [Terralog Technologies USA, Inc., Calgary (Canada); Diessl, Julia [Terralog Technologies USA, Inc., Calgary (Canada); White, Nicky [Terralog Technologies USA, Inc., Calgary (Canada)

    2012-12-13

    There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. The primary objectives of this DOE research effort are to develop and document optimum design configurations and operating practices to produce geothermal power from hot permeable sedimentary and crystalline formations using advanced horizontal well recirculation systems. During Phase I of this research project Terralog Technologies USA and The University of California, Irvine (UCI), have completed preliminary investigations and documentation of advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. We have also identified significant geologic resources appropriate for application of such technology. The main challenge for such recirculation systems is to optimize both the design configuration and the operating practices for cost-effective geothermal energy recovery. These will be strongly influenced by sedimentary formation properties, including thickness and dip, temperature, thermal conductivity, heat capacity, permeability, and porosity; and by working fluid properties.

  3. Design Concept of Advanced Sodium-Cooled Fast Reactor and Related R&D in Korea

    Directory of Open Access Journals (Sweden)

    Yeong-il Kim

    2013-01-01

    Full Text Available Korea imports about 97% of its energy resources due to a lack of available energy resources. In this status, the role of nuclear power in electricity generation is expected to become more important in future years. In particular, a fast reactor system is one of the most promising reactor types for electricity generation, because it can utilize efficiently uranium resources and reduce radioactive waste. Acknowledging the importance of a fast reactor in a future energy policy, the long-term advanced SFR development plan was authorized by KAEC in 2008 and updated in 2011 which will be carried out toward the construction of an advanced SFR prototype plant by 2028. Based upon the experiences gained during the development of the conceptual designs for KALIMER, KAERI recently developed advanced sodium-cooled fast reactor (SFR design concepts of TRU burner that can better meet the generation IV technology goals. The current status of nuclear power and SFR design technology development program in Korea will be discussed. The developments of design concepts including core, fuel, fluid system, mechanical structure, and safety evaluation have been performed. In addition, the advanced SFR technologies necessary for its commercialization and the basic key technologies have been developed including a large-scale sodium thermal-hydraulic test facility, super-critical Brayton cycle system, under-sodium viewing techniques, metal fuel development, and developments of codes, and validations are described as R&D activities.

  4. Wind energy systems control engineering design

    CERN Document Server

    Garcia-Sanz, Mario

    2012-01-01

    IntroductionBroad Context and MotivationConcurrent Engineering: A Road Map for EnergyQuantitative Robust ControlNovel CAD Toolbox for QFT Controller DesignOutline Part I: Advanced Robust Control Techniques: QFT and Nonlinear SwitchingIntroduction to QFTQuantitative Feedback TheoryWhy Feedback? QFT OverviewInsight into the QFT TechniqueBenefits of QFTMISO Analog QFT Control SystemIntroductionQFT Method (Single-Loop MISO System)Design Procedure OutlineMinimum-Phase System Performance SpecificationsJ LTI Plant ModelsPlant Templates of P?(s), P( j_i )Nominal PlantU-Contour (Stability Bound)Trackin

  5. New stage in the design of a Transmutation Advanced Device for Sustainable Energy Applications (TADSEA))

    International Nuclear Information System (INIS)

    Rojas, Leorlen Y.; Rosales, Jesus; Castro, Landy Y.; Gamez, Abel; Gonzalez, Daniel; Garcia, Carlos; Oliveira, Carlos Brayner de; Dominguez, Dany S.; Silva, Alexandro S.

    2015-01-01

    Transmutation Advanced Device for Sustainable Energy Applications (TADSEA) is a pebble-bed Accelerator Driven System (ADS) with a graphite-gas configuration, designed for nuclear waste transmutation and obtaining heat at very high temperatures to produce hydrogen. In this new stage in the design of TADSEA, it was proposed and modelled a new burn-up strategy, simulating a multi-pass scheme of the pebbles through the core. In order to obtain the axial density power distribution more uniform, for more realistic thermal-hydraulic calculations. In the neutronic calculations it was considered the double heterogeneity of the fuel, by means of a detailed geometry modelling. In previous thermal-hydraulic studies of the TADSEA using CFD code, the pebble-bed nuclear core was considered as a porous medium. In this paper, the heat transfer from the fuel elements to the coolant was analysed using a realistic approach in ANSYS CFX 14. The maximum heat transfer inside the spherical fuel elements with a body centered cubic (BCC) cell and the entire height of core was studied. During the steady state, critical elements don't reached the limit temperature value for this type of fuel. (author)

  6. New stage in the design of a Transmutation Advanced Device for Sustainable Energy Applications (TADSEA))

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, Leorlen Y.; Rosales, Jesus; Castro, Landy Y.; Gamez, Abel; Gonzalez, Daniel; Garcia, Carlos, E-mail: leored1984@gmail.com, E-mail: jrosales@instec.cu, E-mail: lcastro@instec.cu, E-mail: agamezgmf@gmail.com, E-mail: danielgonro@gmail.com, E-mail: cgh@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Oliveira, Carlos Brayner de, E-mail: abol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Dominguez, Dany S.; Silva, Alexandro S., E-mail: dsdominguez@gmail.com, E-mail: alexandrossilva@gmail.com [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil). Pos-Graduacao em Modelagem Computacional

    2015-07-01

    Transmutation Advanced Device for Sustainable Energy Applications (TADSEA) is a pebble-bed Accelerator Driven System (ADS) with a graphite-gas configuration, designed for nuclear waste transmutation and obtaining heat at very high temperatures to produce hydrogen. In this new stage in the design of TADSEA, it was proposed and modelled a new burn-up strategy, simulating a multi-pass scheme of the pebbles through the core. In order to obtain the axial density power distribution more uniform, for more realistic thermal-hydraulic calculations. In the neutronic calculations it was considered the double heterogeneity of the fuel, by means of a detailed geometry modelling. In previous thermal-hydraulic studies of the TADSEA using CFD code, the pebble-bed nuclear core was considered as a porous medium. In this paper, the heat transfer from the fuel elements to the coolant was analysed using a realistic approach in ANSYS CFX 14. The maximum heat transfer inside the spherical fuel elements with a body centered cubic (BCC) cell and the entire height of core was studied. During the steady state, critical elements don't reached the limit temperature value for this type of fuel. (author)

  7. Nanostructured materials for advanced energy conversion and storage devices

    Science.gov (United States)

    Aricò, Antonino Salvatore; Bruce, Peter; Scrosati, Bruno; Tarascon, Jean-Marie; van Schalkwijk, Walter

    2005-05-01

    New materials hold the key to fundamental advances in energy conversion and storage, both of which are vital in order to meet the challenge of global warming and the finite nature of fossil fuels. Nanomaterials in particular offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. This review describes some recent developments in the discovery of nanoelectrolytes and nanoelectrodes for lithium batteries, fuel cells and supercapacitors. The advantages and disadvantages of the nanoscale in materials design for such devices are highlighted.

  8. Simplified nuclear plant design for tomorrow's energy needs

    International Nuclear Information System (INIS)

    Slember, R.

    1989-09-01

    Commercial nuclear powered plants play an important role in the strategic energy plans of many countries throughout the world. Many energy planners agree that nuclear plants will have to supply an increasing amount of electrical energy in the 1990s and beyond. Just as other major industries are continually taking steps to update and improve existing products, the United States' nuclear industry has embarked on a program to simplify plant systems, shorten construction time and improve economics for new plant models. One of the models being developed by Westinghouse Electric Corporation and Burns and Roe Company is the Advanced Passive 600 MWe design which incorporates safety features that passively protect the reactor during assumed abnormal operating events. These passive safety systems utilize natural circulation/cooling for mitigating abnormal events and simplify plant design and operation. This type of system eliminates the need for costly active safety grade components, results in a reduction of ancillary equipment and assists in shortening construction time. The use of passive safety systems also permits design simplification of the auxiliary systems effectively reducing operating and maintenance requirements. Collectively, the AP600 design features result in a safe plant that addresses and alleviates the critical industry issues that developed in the 1980s. Further, the design addresses utility and regulatory requirements for safety, reliability, maintainability, operations and economics. Program results to date give confidence that the objectives of the Advanced Passive 600 design are achievable through overall plant simplification. The report will include timely results from the work being performed on the salient technical features of the design, plant construction and operation. Other required institutional changes, such as the prerequisite for a design which is complete and licensed prior to start of construction, will also be presented

  9. Energy and Economic Trade Offs for Advanced Technology Subsonic Aircraft

    Science.gov (United States)

    Maddalon, D. V.; Wagner, R. D.

    1976-01-01

    Changes in future aircraft technology which conserve energy are studied, along with the effect of these changes on economic performance. Among the new technologies considered are laminar-flow control, composite materials with and without laminar-flow control, and advanced airfoils. Aircraft design features studied include high-aspect-ratio wings, thickness ratio, and range. Engine technology is held constant at the JT9D level. It is concluded that wing aspect ratios of future aircraft are likely to significantly increase as a result of new technology and the push of higher fuel prices. Composite materials may raise aspect radio to about 11 to 12 and practical laminar flow-control systems may further increase aspect ratio to 14 or more. Advanced technology provides significant reductions in aircraft take-off gross weight, energy consumption, and direct operating cost.

  10. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    Energy Technology Data Exchange (ETDEWEB)

    Mekhiche, Mike [Principal Investigator; Dufera, Hiz [Project Manager; Montagna, Deb [Business Point of Contact

    2012-10-29

    The project conducted under DOE contract DE‐EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven‐stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy technology to deliver a device with much increased power delivery. Scaling‐up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke‐ unlimited Power Take‐Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  11. Advanced Dark Energy Physics Telescope (ADEPT)

    Energy Technology Data Exchange (ETDEWEB)

    Charles L. Bennett

    2009-03-26

    In 2006, we proposed to NASA a detailed concept study of ADEPT (the Advanced Dark Energy Physics Telescope), a potential space mission to reliably measure the time-evolution of dark energy by conducting the largest effective volume survey of the universe ever done. A peer-review panel of scientific, management, and technical experts reported back the highest possible 'excellent' rating for ADEPT. We have since made substantial advances in the scientific and technical maturity of the mission design. With this Department of Energy (DOE) award we were granted supplemental funding to support specific extended research items that were not included in the NASA proposal, many of which were intended to broadly advance future dark energy research, as laid out by the Dark Energy Task Force (DETF). The proposed work had three targets: (1) the adaptation of large-format infrared arrays to a 2 micron cut-off; (2) analytical research to improve the understanding of the dark energy figure-of- merit; and (3) extended studies of baryon acoustic oscillation systematic uncertainties. Since the actual award was only for {approx}10% of the proposed amount item (1) was dropped and item (2) work was severely restricted, consistent with the referee reviews of the proposal, although there was considerable contradictions between reviewer comments and several comments that displayed a lack of familiarity with the research. None the less, item (3) was the focus of the work. To characterize the nature of the dark energy, ADEPT is designed to observe baryon acoustic oscillations (BAO) in a large galaxy redshift survey and to obtain substantial numbers of high-redshift Type Ia supernovae (SNe Ia). The 2003 Wilkinson Microwave Anisotropy Probe (WMAP) made a precise determination of the BAO 'standard ruler' scale, as it was imprinted on the cosmic microwave background (CMB) at z {approx} 1090. The standard ruler was also imprinted on the pattern of galaxies, and was first

  12. Nanoscale Advances in Catalysis and Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yimin; Somorjai, Gabor A.

    2010-05-12

    In this perspective, we present an overview of nanoscience applications in catalysis, energy conversion, and energy conservation technologies. We discuss how novel physical and chemical properties of nanomaterials can be applied and engineered to meet the advanced material requirements in the new generation of chemical and energy conversion devices. We highlight some of the latest advances in these nanotechnologies and provide an outlook at the major challenges for further developments.

  13. Durability and damage tolerance of advanced wind energy turbines

    Energy Technology Data Exchange (ETDEWEB)

    Blom, A F; Gustavsson, A I

    1986-01-01

    This paper contains a critical review of the state of the art fatigue design and analysis of advanced wind energy conversion systems (WECS). Special emphasis is placed on the work in progress and carried out within the past few years in Sweden. However, the treatment is general in character and aims to identify areas where more work is needed in order to ensure a safe fatigue life assessment of WECS.

  14. Advances in energy and environment. Vol. 1: Energy

    International Nuclear Information System (INIS)

    El-Sharkawy, A.L.; Kummler, R.H.

    1996-01-01

    The 5th conference of energy and environment was held on 3-6 June 1996 in Cairo. The specialists discussed the effects of advances in energy and environment. The applications of solar energy, heat transfer, thermal application, storage and bio-conversion, fuels, energy and development. Studies were discussed at the meeting and more than 1000 papers were presented. This first volume covers papers presented on the following topics: solar thermal, heat transfer and thermal applications, storage and bio-conversion, refrigeration and iar conditioning, combustion, fuels and engines, energy and development. tabs., figs

  15. Technical Support Document: 50% Energy Savings Design Technology Packages for Medium Office Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Brian A.; Wang, Weimin; Lane, Michael D.; Rosenberg, Michael I.; Liu, Bing

    2009-09-01

    This Technical Support Document (TSD) describes the process and methodology for development of the Advanced Energy Design Guide for Medium Offices (AEDG-MO or the Guide), a design guidance document which intends to provide recommendations for achieving 50% energy savings in medium office buildings that just meet the requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings.

  16. Advanced nuclear plant design options to cope with external events

    International Nuclear Information System (INIS)

    2006-02-01

    With the stagnation period of nuclear power apparently coming to an end, there is a renewed interest in many Member States in the development and application of nuclear power plants (NPPs) with advanced reactors. Decisions on the construction of several NPPs with evolutionary light water reactors have been made (e.g. EPR Finland for Finland and France) and more are under consideration. There is a noticeable progress in the development and demonstration of innovative high temperature gas cooled reactors, for example, in China, South Africa and Japan. The Generation IV International Forum has defined the International Near Term Deployment programme and, for a more distant perspective, six innovative nuclear energy systems have been selected and certain R and D started by several participating countries. National efforts on design and technology development for NPPs with advanced reactors, both evolutionary and innovative, are ongoing in many Member States. Advanced NPPs have an opportunity to be built at many sites around the world, with very broad siting conditions. There are special concerns that safety of these advanced reactors may be challenged by external events following new scenarios and failure modes, different from those well known for the currently operated reactors. Therefore, the engineering community identified the need to assess the proposed design configurations in relation to external scenarios at the earliest stages of the design development. It appears that an early design optimization in relation to external events is a necessary requirement to achieve safe and economical advanced nuclear power plants. Reflecting on these developments, the IAEA has planned the preparation of a report to define design options for protection from external event impacts in NPPs with evolutionary and innovative reactors. The objective of this publication is to present the state-of-the-art in design approaches for the protection of NPPs with evolutionary and innovative

  17. Advanced DC/AC inverters applications in renewable energy

    CERN Document Server

    Luo, Fang Lin

    2013-01-01

    DC/AC inversion technology is of vital importance for industrial applications, including electrical vehicles and renewable energy systems, which require a large number of inverters. In recent years, inversion technology has developed rapidly, with new topologies improving the power factor and increasing power efficiency. Proposing many novel approaches, Advanced DC/AC Inverters: Applications in Renewable Energy describes advanced DC/AC inverters that can be used for renewable energy systems. The book introduces more than 100 topologies of advanced inverters originally developed by the authors,

  18. Westinghouse AP600 advanced nuclear plant design

    International Nuclear Information System (INIS)

    Gangloff, W.

    1999-01-01

    As part of the cooperative US Department of Energy (DOE) Advanced Light Water Reactor (ALWR) Program and the Electric Power Research Institute (EPRI), the Westinghouse AP600 team has developed a simplified, safe, and economic 600-megawatt plant to enter into a new era of nuclear power generation. Designed to satisfy the standards set by DOE and defined in the ALWR Utility Requirements Document (URD), the Westinghouse AP600 is an elegant combination of innovative safety systems that rely on dependable natural forces and proven technologies. The Westinghouse AP600 design simplifies plant systems and significant operation, inspections, maintenance, and quality assurance requirements by greatly reducing the amount of valves, pumps, piping, HVAC ducting, and other complex components. The AP600 safety systems are predominantly passive, depending on the reliable natural forces of gravity, circulation, convection, evaporation, and condensation, instead of AC power supplies and motor-driven components. The AP600 provides a high degree of public safety and licensing certainty. It draws upon 40 years of experience in light water reactor components and technology, so no demonstration plant is required. During the AP600 design program, a comprehensive test program was carried out to verify plant components, passive safety systems components, and containment behavior. When the test program was completed at the end of 1994, the AP600 became the most thoroughly tested advanced reactor design ever reviewed by the US Nuclear Regulatory Commission (NRC). The test results confirmed the exceptional behavior of the passive systems and have been instrumental in facilitating code validations. Westinghouse received Final Design Approval from the NRC in September 1998. (author)

  19. Technical Support Document: Development of the Advanced Energy Design Guide for Grocery Stores--50% Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    Hale, E. T.; Macumber, D. L.; Long, N. L.; Griffith, B. T.; Benne, K. S.; Pless, S. D.; Torcellini, P. A.

    2008-09-01

    This report provides recommendations that architects, designers, contractors, developers, owners, and lessees of grocery store buildings can use to achieve whole-building energy savings of at least 50% over ASHRAE Standard 90.1-2004.

  20. Advanced energy projects FY 1992 research summaries

    International Nuclear Information System (INIS)

    1992-09-01

    The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are beyond the scope of ongoing applied research or technology development programs. The Division provides a mechanism for converting basic research findings to applications that eventually could impact the Nation's energy economy. Technical topics include physical, chemical, materials, engineering, and biotechnologies. Projects can involve interdisciplinary approaches to solve energy-related problems. Projects are supported for a finite period of time, which is typically three years. Annual funding levels for projects are usually about $300,000 but can vary from approximately $50,000 to $500,000. It is expected that, following AEP support, each concept will be sufficiently developed and promising to attract further funding from other sources in order to realize its full potential. There were 39 research projects in the Division of Advanced Energy Projects during Fiscal Year 1992 (October 1, 1991 -- September 30, 1992). The abstracts of those projects are provided to introduce the overall program in Advanced Energy Projects. Further information on a specific project may be obtained by contacting the principal investigator, who is listed below the project title. Projects completed during FY 1992 are indicated

  1. Sustaining high energy efficiency in existing processes with advanced process integration technology

    International Nuclear Information System (INIS)

    Zhang, Nan; Smith, Robin; Bulatov, Igor; Klemeš, Jiří Jaromír

    2013-01-01

    Highlights: ► Process integration with better modelling and more advanced solution methods. ► Operational changes for better environmental performance through optimisation. ► Identification of process integration technology for operational optimisation. ► Systematic implementation procedure of process integration technology. ► A case study with crude oil distillation to demonstrate the operational flexibility. -- Abstract: To reduce emissions in the process industry, much emphasis has been put on making step changes in emission reduction, by developing new process technology and making renewable energy more affordable. However, the energy saving potential of existing systems cannot be simply ignored. In recent years, there have been significant advances in process integration technology with better modelling techniques and more advanced solution methods. These methods have been applied to the new design and retrofit studies in the process industry. Here attempts are made to apply these technologies to improve the environmental performance of existing facilities with operational changes. An industrial project was carried out to demonstrate the importance and effectiveness of exploiting the operational flexibility for energy conservation. By applying advanced optimisation technique to integrate the operation of distillation and heat recovery in a crude oil distillation unit, the energy consumption was reduced by 8% without capital expenditure. It shows that with correctly identified technology and the proper execution procedure, significant energy savings and emission reduction can be achieved very quickly without major capital expenditure. This allows the industry to improve its economic and environment performance at the same time.

  2. Energy efficient design

    International Nuclear Information System (INIS)

    1991-01-01

    Solar Applications and Energy Efficiency in Building Design and Town Planning (RER/87/006) is a United Nations Development Programme (UNDP) project of the Governments of Albania, Bulgaria, Cyprus, The Czech and Slovak Federal Republic, France, Hungary, Malta, Poland, Turkey, United Kingdom and Yugoslavia. The project began in 1988 and comes to a conclusion at the end of 1991. It is to enhance the professional skills of practicing architects, engineers and town planners in European countries to design energy efficient buildings which reduce energy consumption and make greater use of passive solar heating and natural cooling techniques. The United Nations Economic Commission for Europe (ECE) is the Executing Agency of the project which is implemented under the auspices of the Committee on Energy, General Energy Programme of Work for 1990-1994, sub-programme 5 Energy Conservation and Efficiency (ECE/ENERGY/15). The project has five main outputs or results: an international network of institutions for low energy building design; a state-of-the-art survey of energy use in the built environment of European IPF countries; a simple computer program for energy efficient building design; a design guide and computer program operators' manual; and a series of international training courses in participating European IPF countries. Energy Efficient Design is the fourth output of the project. It comprises the design guide for practicing architects and engineers, for use mainly in mid-career training courses, and the operators' manual for the project's computer program

  3. The impacts of wind technology advancement on future global energy

    International Nuclear Information System (INIS)

    Zhang, Xiaochun; Ma, Chun; Song, Xia; Zhou, Yuyu; Chen, Weiping

    2016-01-01

    Highlights: • Integrated assessment model perform a series of scenarios of technology advances. • Explore the potential roles of wind energy technology advance in global energy. • Technology advance impacts on energy consumption and global low carbon market. • Technology advance influences on global energy security and stability. - Abstract: To avoid additional global warming and environmental damage, energy systems need to rely on the use of low carbon technologies like wind energy. However, supply uncertainties, production costs, and energy security are the main factors considered by the global economies when reshaping their energy systems. Here, we explore the potential roles of wind energy technology advancement in future global electricity generations, costs, and energy security. We use an integrated assessment model performing a series of technology advancement scenarios. The results show that double of the capital cost reduction causes 40% of generation increase and 10% of cost ​decrease on average in the long-term global wind electricity market. Today’s technology advancement could bring us the benefit of increasing electricity production in the future 40–50 years, and decreasing electricity cost in the future 90–100 years. The technology advancement of wind energy can help to keep global energy security and stability. An aggressive development and deployment of wind energy could in the long-term avoid 1/3 of gas and 1/28 of coal burned, and keep 1/2 biomass and 1/20 nuclear fuel saved from the global electricity system. The key is that wind resources are free and carbon-free. The results of this study are useful in broad coverage ranges from innovative technologies and systems of renewable energy to the economic industrial and domestic use of energy with no or minor impact on the environment.

  4. Exploring the energy benefits of advanced water metering

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Michael A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hans, Liesel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Piscopo, Kate [Univ. of California, Berkeley, CA (United States); Sohn, Michael D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-08-01

    Recent improvements to advanced water metering and communications technologies have the potential to improve the management of water resources and utility infrastructure, benefiting both utilities and ratepayers. The highly granular, near-real-time data and opportunity for automated control provided by these advanced systems may yield operational benefits similar to those afforded by similar technologies in the energy sector. While significant progress has been made in quantifying the water-related benefits of these technologies, the research on quantifying the energy benefits of improved water metering is underdeveloped. Some studies have quantified the embedded energy in water in California, however these findings are based on data more than a decade old, and unanimously assert that more research is needed to further explore how topography, climate, water source, and other factors impact their findings. In this report, we show how water-related advanced metering systems may present a broader and more significant set of energy-related benefits. We review the open literature of water-related advanced metering technologies and their applications, discuss common themes with a series of water and energy experts, and perform a preliminary scoping analysis of advanced water metering deployment and use in California. We find that the open literature provides very little discussion of the energy savings potential of advanced water metering, despite the substantial energy necessary for water’s extraction, conveyance, treatment, distribution, and eventual end use. We also find that water AMI has the potential to provide water-energy co-efficiencies through improved water systems management, with benefits including improved customer education, automated leak detection, water measurement and verification, optimized system operation, and inherent water and energy conservation. Our findings also suggest that the adoption of these technologies in the water sector has been slow

  5. Advanced dependent pressure vessel (DPV) nickel-hydrogen spacecraft battery design

    Energy Technology Data Exchange (ETDEWEB)

    Coates, D.K.; Grindstaff, B.; Swaim, O.; Fox, C. [Eagle-Picher Industries, Inc., Joplin, MO (United States). Advanced Systems Operation

    1995-12-31

    The dependent pressure vessel (DPV) nickel-hydrogen (NiH{sub 2}) battery is being developed as a potential spacecraft battery design for both military and commercial satellites. The limitations of standard NiH{sub 2} individual pressure vessel (IPV) flight battery technology are primarily related to the internal cell design and the battery packaging issues associated with grouping multiple cylindrical cells. The DPV cell design offers higher energy density and reduced cost, while retaining the established IPV technology flight heritage and database. The advanced cell design offers a more efficient mechanical, electrical and thermal cell configuration and a reduced parts count. The geometry of the DPV cell promotes compact, minimum volume packaging and weight efficiency. The DPV battery design offers significant cost and weight savings advantages while providing minimal design risks.

  6. Preliminary design concepts for the advanced neutron source reactor systems

    International Nuclear Information System (INIS)

    Peretz, F.J.

    1988-01-01

    This paper describes the initial design work to develop the reactor systems hardware concepts for the advanced neutron source (ANS) reactor. This project has not yet entered the conceptual design phase; thus, design efforts are quite preliminary. This paper presents the collective work of members of the Oak Ridge National Laboratory, Martin Marietta Energy Systems, Inc., Engineering Division, and other participating organizations. The primary purpose of this effort is to show that the ANS reactor concept is realistic from a hardware standpoint and to show that project objectives can be met. It also serves to generate physical models for use in neutronic and thermal-hydraulic core design efforts and defines the constraints and objectives for the design. Finally, this effort will develop the criteria for use in the conceptual design of the reactor

  7. Advances in fuel cell vehicle design

    Science.gov (United States)

    Bauman, Jennifer

    Factors such as global warming, dwindling fossil fuel reserves, and energy security concerns combine to indicate that a replacement for the internal combustion engine (ICE) vehicle is needed. Fuel cell vehicles have the potential to address the problems surrounding the ICE vehicle without imposing any significant restrictions on vehicle performance, driving range, or refuelling time. Though there are currently some obstacles to overcome before attaining the widespread commercialization of fuel cell vehicles, such as improvements in fuel cell and battery durability, development of a hydrogen infrastructure, and reduction of high costs, the fundamental concept of the fuel cell vehicle is strong: it is efficient, emits zero harmful emissions, and the hydrogen fuel can be produced from various renewable sources. Therefore, research on fuel cell vehicle design is imperative in order to improve vehicle performance and durability, increase efficiency, and reduce costs. This thesis makes a number of key contributions to the advancement of fuel cell vehicle design within two main research areas: powertrain design and DC/DC converters. With regards to powertrain design, this research first analyzes various powertrain topologies and energy storage system types. Then, a novel fuel cell-battery-ultracapacitor topology is presented which shows reduced mass and cost, and increased efficiency, over other promising topologies found in the literature. A detailed vehicle simulator is created in MATLAB/Simulink in order to simulate and compare the novel topology with other fuel cell vehicle powertrain options. A parametric study is performed to optimize each powertrain and general conclusions for optimal topologies, as well as component types and sizes, for fuel cell vehicles are presented. Next, an analytical method to optimize the novel battery-ultracapacitor energy storage system based on maximizing efficiency, and minimizing cost and mass, is developed. This method can be applied

  8. Recent Development of Advanced Electrode Materials by Atomic Layer Deposition for Electrochemical Energy Storage.

    Science.gov (United States)

    Guan, Cao; Wang, John

    2016-10-01

    Electrode materials play a decisive role in almost all electrochemical energy storage devices, determining their overall performance. Proper selection, design and fabrication of electrode materials have thus been regarded as one of the most critical steps in achieving high electrochemical energy storage performance. As an advanced nanotechnology for thin films and surfaces with conformal interfacial features and well controllable deposition thickness, atomic layer deposition (ALD) has been successfully developed for deposition and surface modification of electrode materials, where there are considerable issues of interfacial and surface chemistry at atomic and nanometer scale. In addition, ALD has shown great potential in construction of novel nanostructured active materials that otherwise can be hardly obtained by other processing techniques, such as those solution-based processing and chemical vapor deposition (CVD) techniques. This review focuses on the recent development of ALD for the design and delivery of advanced electrode materials in electrochemical energy storage devices, where typical examples will be highlighted and analyzed, and the merits and challenges of ALD for applications in energy storage will also be discussed.

  9. Graphitic design: prospects of graphene-based nanocomposites for solar energy conversion, storage, and sensing.

    Science.gov (United States)

    Lightcap, Ian V; Kamat, Prashant V

    2013-10-15

    Graphene not only possesses interesting electrochemical behavior but also has a remarkable surface area and mechanical strength and is naturally abundant, all advantageous properties for the design of tailored composite materials. Graphene-semiconductor or -metal nanoparticle composites have the potential to function as efficient, multifunctional materials for energy conversion and storage. These next-generation composite systems could possess the capability to integrate conversion and storage of solar energy, detection, and selective destruction of trace environmental contaminants or achieve single-substrate, multistep heterogeneous catalysis. These advanced materials may soon become a reality, based on encouraging results in the key areas of energy conversion and sensing using graphene oxide as a support structure. Through recent advances, chemists can now integrate such processes on a single substrate while using synthetic designs that combine simplicity with a high degree of structural and composition selectivity. This progress represents the beginning of a transformative movement leveraging the advancements of single-purpose chemistry toward the creation of composites designed to address whole-process applications. The promising field of graphene nanocomposites for sensing and energy applications is based on fundamental studies that explain the electronic interactions between semiconductor or metal nanoparticles and graphene. In particular, reduced graphene oxide is a suitable composite substrate because of its two-dimensional structure, outstanding surface area, and electrical conductivity. In this Account, we describe common assembly methods for graphene composite materials and examine key studies that characterize its excited state interactions. We also discuss strategies to develop graphene composites and control electron capture and transport through the 2D carbon network. In addition, we provide a brief overview of advances in sensing, energy conversion

  10. Benchmarking of the PHOENIX-P/ANC [Advanced Nodal Code] advanced nuclear design system

    International Nuclear Information System (INIS)

    Nguyen, T.Q.; Liu, Y.S.; Durston, C.; Casadei, A.L.

    1988-01-01

    At Westinghouse, an advanced neutronic methods program was designed to improve the quality of the predictions, enhance flexibility in designing advanced fuel and related products, and improve design lead time. Extensive benchmarking data is presented to demonstrate the accuracy of the Advanced Nodal Code (ANC) and the PHOENIX-P advanced lattice code. Qualification data to demonstrate the accuracy of ANC include comparison of key physics parameters against a fine-mesh diffusion theory code, TORTISE. Benchmarking data to demonstrate the validity of the PHOENIX-P methodologies include comparison of physics predictions against critical experiments, isotopics measurements and measured power distributions from spatial criticals. The accuracy of the PHOENIX-P/ANC Advanced Design System is demonstrated by comparing predictions of hot zero power physics parameters and hot full power core follow against measured data from operating reactors. The excellent performance of this system for a broad range of comparisons establishes the basis for implementation of these tools for core design, licensing and operational follow of PWR [pressurized water reactor] cores at Westinghouse

  11. A new piezoelectric energy harvesting design concept: multimodal energy harvesting skin.

    Science.gov (United States)

    Lee, Soobum; Youn, Byeng D

    2011-03-01

    This paper presents an advanced design concept for a piezoelectric energy harvesting (EH), referred to as multimodal EH skin. This EH design facilitates the use of multimodal vibration and enhances power harvesting efficiency. The multimodal EH skin is an extension of our previous work, EH skin, which was an innovative design paradigm for a piezoelectric energy harvester: a vibrating skin structure and an additional thin piezoelectric layer in one device. A computational (finite element) model of the multilayered assembly - the vibrating skin structure and piezoelectric layer - is constructed and the optimal topology and/or shape of the piezoelectric layer is found for maximum power generation from multiple vibration modes. A design rationale for the multimodal EH skin was proposed: designing a piezoelectric material distribution and external resistors. In the material design step, the piezoelectric material is segmented by inflection lines from multiple vibration modes of interests to minimize voltage cancellation. The inflection lines are detected using the voltage phase. In the external resistor design step, the resistor values are found for each segment to maximize power output. The presented design concept, which can be applied to any engineering system with multimodal harmonic-vibrating skins, was applied to two case studies: an aircraft skin and a power transformer panel. The excellent performance of multimodal EH skin was demonstrated, showing larger power generation than EH skin without segmentation or unimodal EH skin.

  12. Design of Energy Aware Adder Circuits Considering Random Intra-Die Process Variations

    Directory of Open Access Journals (Sweden)

    Marco Lanuzza

    2011-04-01

    Full Text Available Energy consumption is one of the main barriers to current high-performance designs. Moreover, the increased variability experienced in advanced process technologies implies further timing yield concerns and therefore intensifies this obstacle. Thus, proper techniques to achieve robust designs are a critical requirement for integrated circuit success. In this paper, the influence of intra-die random process variations is analyzed considering the particular case of the design of energy aware adder circuits. Five well known adder circuits were designed exploiting an industrial 45 nm static complementary metal-oxide semiconductor (CMOS standard cell library. The designed adders were comparatively evaluated under different energy constraints. As a main result, the performed analysis demonstrates that, for a given energy budget, simpler circuits (which are conventionally identified as low-energy slow architectures operating at higher power supply voltages can achieve a timing yield significantly better than more complex faster adders when used in low-power design with supply voltages lower than nominal.

  13. Center for Advanced Energy Studies Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Kostelnik

    2005-09-01

    The world is facing critical energy-related challenges regarding world and national energy demands, advanced science and energy technology delivery, nuclear engineering educational shortfalls, and adequately trained technical staff. Resolution of these issues is important for the United States to ensure a secure and affordable energy supply, which is essential for maintaining U.S. national security, continued economic prosperity, and future sustainable development. One way that the U.S. Department of Energy (DOE) is addressing these challenges is by tasking the Battelle Energy Alliance, LLC (BEA) with developing the Center for Advanced Energy Studies (CAES) at the Idaho National Laboratory (INL). By 2015, CAES will be a self-sustaining, world-class, academic and research institution where the INL; DOE; Idaho, regional, and other national universities; and the international community will cooperate to conduct critical energy-related research, classroom instruction, technical training, policy conceptualization, public dialogue, and other events.

  14. Advanced design of positive-ion sources for neutral-beam applications

    International Nuclear Information System (INIS)

    Marguerat, E.F.; Haselton, H.H.; Menon, M.M.; Schechter, D.E.; Stirling, W.L.; Tsai, C.C.

    1982-01-01

    The APIS ion source is being developed to meet a goal of producing ion beams of less than or equal to 200 keV, 100 A, with 10-30-s pulse lengths. In a continuing effort to advance the state of the art and to produce long pulse ion beams, APIS ion sources with grid dimensions of 10 x 25 cm, 13 x 43 cm, and 16 x 48 cm are being developed. In the past year, the 10- x 25-cm ion source has been operated to produce ion beams in excess of 100 keV for many seconds pulse length. An advanced design concept is being pursued with the primary objectives to improve radiation protection, reduce fabrication costs, and simplify maintenance. The source magnetic sheild will be designed as a vacuum enclosure to house all source components. The electrical insulation requirements of energy recovery are also considered. Because of the frequent maintenance requirements, the electron emitter assembly will be designed with a remote handling capability. A new accelerator design which incorporates the necessary neutron shielding and associated steering gimbal system is also described

  15. High temperature electrical energy storage: advances, challenges, and frontiers.

    Science.gov (United States)

    Lin, Xinrong; Salari, Maryam; Arava, Leela Mohana Reddy; Ajayan, Pulickel M; Grinstaff, Mark W

    2016-10-24

    With the ongoing global effort to reduce greenhouse gas emission and dependence on oil, electrical energy storage (EES) devices such as Li-ion batteries and supercapacitors have become ubiquitous. Today, EES devices are entering the broader energy use arena and playing key roles in energy storage, transfer, and delivery within, for example, electric vehicles, large-scale grid storage, and sensors located in harsh environmental conditions, where performance at temperatures greater than 25 °C are required. The safety and high temperature durability are as critical or more so than other essential characteristics (e.g., capacity, energy and power density) for safe power output and long lifespan. Consequently, significant efforts are underway to design, fabricate, and evaluate EES devices along with characterization of device performance limitations such as thermal runaway and aging. Energy storage under extreme conditions is limited by the material properties of electrolytes, electrodes, and their synergetic interactions, and thus significant opportunities exist for chemical advancements and technological improvements. In this review, we present a comprehensive analysis of different applications associated with high temperature use (40-200 °C), recent advances in the development of reformulated or novel materials (including ionic liquids, solid polymer electrolytes, ceramics, and Si, LiFePO 4 , and LiMn 2 O 4 electrodes) with high thermal stability, and their demonstrative use in EES devices. Finally, we present a critical overview of the limitations of current high temperature systems and evaluate the future outlook of high temperature batteries with well-controlled safety, high energy/power density, and operation over a wide temperature range.

  16. Advanced Energy Projects FY 1990 research summaries

    International Nuclear Information System (INIS)

    1990-09-01

    This report serves as a guide to prepare proposals and provides summaries of the research projects active in FY 1990, sponsored by the Office of Basic Energy Sciences Division of Advanced Energy Projects, Department of Energy. (JF)

  17. Integrated Circuit Design in US High-Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Geronimo, G. D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Christian, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bebek, C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Garcia-Sciveres, M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lippe, H. V. D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Haller, G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Grillo, AA [Univ. of California, Santa Cruz, CA (United States); Newcomer, M [Univ. of Pennsylvania, Philadelphia, PA (United States)

    2013-07-10

    This whitepaper summarizes the status, plans, and challenges in the area of integrated circuit design in the United States for future High Energy Physics (HEP) experiments. It has been submitted to CPAD (Coordinating Panel for Advanced Detectors) and the HEP Community Summer Study 2013(Snowmass on the Mississippi) held in Minnesota July 29 to August 6, 2013. A workshop titled: US Workshop on IC Design for High Energy Physics, HEPIC2013 was held May 30 to June 1, 2013 at Lawrence Berkeley National Laboratory (LBNL). A draft of the whitepaper was distributed to the attendees before the workshop, the content was discussed at the meeting, and this document is the resulting final product. The scope of the whitepaper includes the following topics: Needs for IC technologies to enable future experiments in the three HEP frontiers Energy, Cosmic and Intensity Frontiers; Challenges in the different technology and circuit design areas and the related R&D needs; Motivation for using different fabrication technologies; Outlook of future technologies including 2.5D and 3D; Survey of ICs used in current experiments and ICs targeted for approved or proposed experiments; IC design at US institutes and recommendations for collaboration in the future.

  18. Advanced Chemical Propulsion

    Science.gov (United States)

    Bai, S. Don

    2000-01-01

    Design, propellant selection, and launch assistance for advanced chemical propulsion system is discussed. Topics discussed include: rocket design, advance fuel and high energy density materials, launch assist, and criteria for fuel selection.

  19. BWR 90: The ABB advanced BWR design

    International Nuclear Information System (INIS)

    Haukeland, S.; Ivung, B.; Pedersen, T.

    1999-01-01

    ABB has two evolutionary advanced fight water reactors available today - the BWR 90 boiling water reactor and the System 80+ pressurised water reactor. The BWR 90 is based on the design, construction, commissioning and operation of the BWR 75 plants. The operation experience of the six plants of this advanced design has been very good. The average annual energy availability is above 90%, and the total power generation costs have been low. In the development of BWR 90 specific changes were introduced to the reference design, to adapt to technological progress, new safety requirements and to achieve cost savings. The thermal power rating of BWR 90 is 3800 MWth (providing a nominal 1374 MWe net), slightly higher dim that of the reference plant ABB Atom has taken advantage of margins gained using a new generation of its SVEA fuel to attain this power rating without major design modifications. The BWR 90 design was completed and offered to the TVO utility in Finland in 1991, as one of the contenders for the fifth Finnish nuclear power plant project. Thus, the design is available today for deployment in new plant projects. Utility views were incorporated through co-operation with the Finnish utility TVO, owner and operator of the two Olkiluoto plants of BWR 75 design. A review against the European Utility Requirement (EUR) set of requirements has been performed, since the design, in 1997, was selected by the EUR Steering Committee to be the first BWR to be evaluated against the EUR documents. The work is scheduled for completion in 1998. It will be the subject of an 'EUR Volume 3 Subset for BWR 90' document. ABB is continuing its BWR development work with the 'evolutionary' design BWR 90+. The primary design goal is to develop the BWR as a competitive option for the anticipated revival of the market for new nuclear plants beyond the turn of the century, as well as feeding ideas and inputs to the continuous modernisation efforts at operating plants. The development is

  20. 10 CFR 434.508 - Determination of the design energy consumption and design energy cost.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Determination of the design energy consumption and design... Alternative § 434.508 Determination of the design energy consumption and design energy cost. 508.1The Design Energy Consumption shall be calculated by modeling the Proposed Design using the same methods...

  1. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Liby, Alan L [ORNL; Rogers, Hiram [ORNL

    2013-10-01

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

  2. Wideband continuous-time ΣΔ ADCs, automotive electronics, and power management : advances in analog circuit design 2016

    NARCIS (Netherlands)

    Baschirotto, A.; Harpe, P.J.A.; Makinwa, K.A.A.

    2017-01-01

    This book is based on the 18 tutorials presented during the 25th workshop on Advances in Analog Circuit Design. Expert designers present readers with information about a variety of topics at the frontier of analog circuit design, including low-power and energy-efficient analog electronics, with

  3. SRAM Design for Wireless Sensor Networks Energy Efficient and Variability Resilient Techniques

    CERN Document Server

    Sharma, Vibhu; Dehaene, Wim

    2013-01-01

    This book features various, ultra low energy, variability resilient SRAM circuit design techniques for wireless sensor network applications. Conventional SRAM design targets area efficiency and high performance at the increased cost of energy consumption, making it unsuitable for computation-intensive sensor node applications.  This book, therefore, guides the reader through different techniques at the circuit level for reducing   energy consumption and increasing the variability resilience. It includes a detailed review of the most efficient circuit design techniques and trade-offs, introduces new memory architecture techniques, sense amplifier circuits and voltage optimization methods for reducing the impact of variability for the advanced technology nodes.    Discusses fundamentals of energy reduction for SRAM circuits and applies them to energy limitation challenges associated with wireless sensor  nodes; Explains impact of variability resilience in reducing the energy consumption; Describes various...

  4. Design for manufacturability with advanced lithography

    CERN Document Server

    Yu, Bei

    2016-01-01

    This book introduces readers to the most advanced research results on Design for Manufacturability (DFM) with multiple patterning lithography (MPL) and electron beam lithography (EBL).  The authors describe in detail a set of algorithms/methodologies to resolve issues in modern design for manufacturability problems with advanced lithography.  Unlike books that discuss DFM from the product level, or physical manufacturing level, this book describes DFM solutions from a circuit design level, such that most of the critical problems can be formulated and solved through combinatorial algorithms. Enables readers to tackle the challenge of layout decompositions for different patterning techniques; Presents a coherent framework, including standard cell compliance and detailed placement, to enable Triple Patterning Lithography (TPL) friendly design; Includes coverage of the design for manufacturability with E-Beam lithography.

  5. The aerodynamic design of an advanced rotor airfoil

    Science.gov (United States)

    Blackwell, J. A., Jr.; Hinson, B. L.

    1978-01-01

    An advanced rotor airfoil, designed utilizing supercritical airfoil technology and advanced design and analysis methodology is described. The airfoil was designed subject to stringent aerodynamic design criteria for improving the performance over the entire rotor operating regime. The design criteria are discussed. The design was accomplished using a physical plane, viscous, transonic inverse design procedure, and a constrained function minimization technique for optimizing the airfoil leading edge shape. The aerodynamic performance objectives of the airfoil are discussed.

  6. Masters Study in Advanced Energy and Fuels Management

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Kanchan [Southern Illinois Univ., Carbondale, IL (United States)

    2014-12-08

    There are currently three key drivers for the US energy sector a) increasing energy demand and b) environmental stewardship in energy production for sustainability and c) general public and governmental desire for domestic resources. These drivers are also true for energy nation globally. As a result, this sector is rapidly diversifying to alternate sources that would supplement or replace fossil fuels. These changes have created a need for a highly trained workforce with a the understanding of both conventional and emerging energy resources and technology to lead and facilitate the reinvention of the US energy production, rational deployment of alternate energy technologies based on scientific and business criteria while invigorating the overall economy. In addition, the current trends focus on the the need of Science, Technology, Engineering and Math (STEM) graduate education to move beyond academia and be more responsive to the workforce needs of businesses and the industry. The SIUC PSM in Advanced Energy and Fuels Management (AEFM) program was developed in response to the industries stated need for employees who combine technical competencies and workforce skills similar to all PSM degree programs. The SIUC AEFM program was designed to provide the STEM graduates with advanced technical training in energy resources and technology while simultaneously equipping them with the business management skills required by professional employers in the energy sector. Technical training include core skills in energy resources, technology and management for both conventional and emerging energy technologies. Business skills training include financial, personnel and project management. A capstone internship is also built into the program to train students such that they are acclimatized to the real world scenarios in research laboratories, in energy companies and in government agencies. The current curriculum in the SIUC AEFM will help fill the need for training both recent

  7. Design of radio-frequency cavities and Tera-Hertz electron injectors for advanced applications

    International Nuclear Information System (INIS)

    Seyedfakhari, Seyedmoein

    2016-06-01

    Design of three accelerator components including a buncher cavity for REGAE, a normal conducting cavity for arrival time stabilization at FLASH and ultra-fast guns for the AXSIS project is presented in this thesis. Using RF cavities caused a revolution in accelerators and made it possible to generate high energy particle beams. In advanced accelerators, cavities are not only used to increase the particle energy but they are also widely used to improve the beam quality and additionally for beam diagnostic purposes. In the present dissertation, such applications are discussed. First, design of a buncher cavity which compresses the bunch at the REGAE facility is presented. The design pursues improving the mode separation of the cavity. The simulation result illustrates that the difference between the operating mode and its adjacent mode has been increased from 2 MHz for the existing cavity to 9.5 MHz for the new design. In the second part, a normal conducting cavity is discussed, which will be used to regulate the arrival time ofthe bunches at FLASH and at the European XFEL. The designed cavity is able to correct the arrival time jitter of ± 150 fs in order to provide femtosecond precision synchronization between the electron beam and the external laser pulses. Thermal, wakefield and multipacting simulations have also been performed for the designed cavity in order to evaluate its operation efficiency. In advanced accelerators however RF cavities should be replaced by novel structures to accelerate the particles in shorter distances using higher operating frequency. To this end, ultra-fast guns are designed which will be discussed in the last part of this work. The designed guns accelerate the electrons from their rest mass up to 2 MeV using a single cycle THz signal with a total energy of 2 mJ.

  8. Design of radio-frequency cavities and Tera-Hertz electron injectors for advanced applications

    Energy Technology Data Exchange (ETDEWEB)

    Seyedfakhari, Seyedmoein

    2016-06-15

    Design of three accelerator components including a buncher cavity for REGAE, a normal conducting cavity for arrival time stabilization at FLASH and ultra-fast guns for the AXSIS project is presented in this thesis. Using RF cavities caused a revolution in accelerators and made it possible to generate high energy particle beams. In advanced accelerators, cavities are not only used to increase the particle energy but they are also widely used to improve the beam quality and additionally for beam diagnostic purposes. In the present dissertation, such applications are discussed. First, design of a buncher cavity which compresses the bunch at the REGAE facility is presented. The design pursues improving the mode separation of the cavity. The simulation result illustrates that the difference between the operating mode and its adjacent mode has been increased from 2 MHz for the existing cavity to 9.5 MHz for the new design. In the second part, a normal conducting cavity is discussed, which will be used to regulate the arrival time ofthe bunches at FLASH and at the European XFEL. The designed cavity is able to correct the arrival time jitter of ± 150 fs in order to provide femtosecond precision synchronization between the electron beam and the external laser pulses. Thermal, wakefield and multipacting simulations have also been performed for the designed cavity in order to evaluate its operation efficiency. In advanced accelerators however RF cavities should be replaced by novel structures to accelerate the particles in shorter distances using higher operating frequency. To this end, ultra-fast guns are designed which will be discussed in the last part of this work. The designed guns accelerate the electrons from their rest mass up to 2 MeV using a single cycle THz signal with a total energy of 2 mJ.

  9. Development of advanced retrofit FGD designs

    International Nuclear Information System (INIS)

    Dene, C.E.; Boward, W.L.; Noblett, J.G.; Keeth, R.J.

    1992-01-01

    The 1990 Clean Air Act Amendment is a dramatic departure from previous legislation in that it affords the electric utility industry the flexibility to achieve their portion of the sulfur dioxide reduction in a myriad of ways. Each utility must look at its system overall. One strategy which may prove beneficial is to remove as much SO 2 as possible at facilities where there is an existing flue gas desulfurization (FGD) system or where one is planned. In response to this need EPRI is developing a family of advanced retrofit FGD designs that incorporate recent advances in FGD technology. A range of design options are being investigated to determine both the SO 2 collection capability and the relative cost impacts of each option. Some of the design options considered include the use of trays, packing, additional liquid flow rate, and additives to boost the removal efficiency. These options are being investigated for limestone, and magnesium-enhanced lime systems. The sensitivity of these designs to changes in coal sulfur content, chloride content, unit size, gas velocity, and other factors are being investigated to determine how the performance of a designs is changed and the ability to meet compliance. This paper illustrates the type of analysis used to develop the advanced designs and presents the sensitivity of a Countercurrent spray tower design using limestone and forced oxidation to changes in specific design input parameters such as boiler load, tower height, and gas velocity

  10. Safety aspects of the US advanced LMR [liquid metal reactor] design

    International Nuclear Information System (INIS)

    Pedersen, D.R.; Gyorey, G.L.; Marchaterre, J.F.; Rosen, S.

    1989-01-01

    The cornerstones of the United States Advanced Liquid Metal Cooled Reactor (ALMR) program sponsored by the Department of Energy are: the plant design program at General Electric based on the PRISM (Power Reactor Innovative Small Module) concept, and the Integral Fast Reactor program (IFR) at Argonne National Laboratory (ANL). The goal of the US program is to produce a standard, commercial ALMR, including the associated fuel cycle. This paper discusses the US regulatory framework for design of an ALMR, safety aspects of the IFR program at ANL, the IFR fuel cycle and actinide recycle, and the ALMR plant design program at GE. 6 refs., 5 figs

  11. Application of advanced methods for the prognosis of production energy consumption

    International Nuclear Information System (INIS)

    Stetter, R; Witczak, P; Spindler, C; Hertel, J; Staiger, B

    2014-01-01

    This paper, based on a current research project, describes the application of advanced methods that are frequently used in fault-tolerance control and addresses the issue of the prognosis of energy efficiency. Today, the energy a product requires during its operation is the subject of many activities in research and development. However, the energy necessary for the production of goods is very often not analysed in comparable depth. In the field of electronics, studies come to the conclusion that about 80% of the total energy used by a product is from its production [1]. The energy consumption in production is determined very early in the product development process by designers and engineers, for example through selection of raw materials, explicit and implicit requirements concerning the manufacturing and assembly processes, or through decisions concerning the product architecture. Today, developers and engineers have at their disposal manifold design and simulation tools which can help to predict the energy consumption during operation relatively accurately. In contrast, tools with the objective to predict the energy consumption in production and disposal are not available. This paper aims to present an explorative study of the use of methods such as Fuzzy Logic to predict the production energy consumption early in the product development process

  12. Advances in laser solenoid fusion reactor design

    International Nuclear Information System (INIS)

    Steinhauer, L.C.; Quimby, D.C.

    1978-01-01

    The laser solenoid is an alternate fusion concept based on a laser-heated magnetically-confined plasma column. The reactor concept has evolved in several systems studies over the last five years. We describe recent advances in the plasma physics and technology of laser-plasma coupling. The technology advances include progress on first walls, inner magnet design, confinement module design, and reactor maintenance. We also describe a new generation of laser solenoid fusion and fusion-fission reactor designs

  13. An advanced real time energy management system for microgrids

    International Nuclear Information System (INIS)

    Elsied, Moataz; Oukaour, Amrane; Youssef, Tarek; Gualous, Hamid; Mohammed, Osama

    2016-01-01

    This paper presents an advanced Real-Time Energy Management System (RT-EMS) for Microgrid (MG) systems. The proposed strategy of RT-EMS capitalizes on the power of Genetic Algorithms (GAs) to minimize the energy cost and carbon dioxide emissions while maximizing the power of the available renewable energy resources. MATLAB-dSPACE Real-Time Interface Libraries (MLIB/MTRACE) are used as new tools to run the optimization code in Real-Time Operation (RTO). The communication system is developed based on ZigBee communication network which is designed to work in harsh radio environment where the control system is developed based on Advanced Lead-Lag Compensator (ALLC) which its parameters are tuned online to achieve fast convergence and good tracking response. The proposed RT-EMS along with its control and communication systems is experimentally tested to validate the results obtained from the optimization algorithm in a real MG testbed. The simulation and experimental results using real-world data highlight the effectiveness of the proposed RT-EMS for MGs applications. - Highlights: • Real-time energy management system of a typical MG is developed, and analyzed. • RT-EMS considered the nonlinear cost function and emission constraints. • MLIB/MTRACE libraries in dSPACE are used as new tools to run the optimization code. • The communication system is developed based on a Zigbee communication network. • Control system parameters are tuned online to achieve good tracking response.

  14. Cooperative technology development: An approach to advancing energy technology

    International Nuclear Information System (INIS)

    Stern, T.

    1989-09-01

    Technology development requires an enormous financial investment over a long period of time. Scarce national and corporate resources, the result of highly competitive markets, decreased profit margins, wide currency fluctuations, and growing debt, often preclude continuous development of energy technology by single entities, i.e., corporations, institutions, or nations. Although the energy needs of the developed world are generally being met by existing institutions, it is becoming increasingly clear that existing capital formation and technology transfer structures have failed to aid developing nations in meeting their growing electricity needs. This paper will describe a method for meeting the electricity needs of the developing world through technology transfer and international cooperative technology development. The role of nuclear power and the advanced passive plant design will be discussed. (author)

  15. Systemization of Design and Analysis Technology for Advanced Reactor

    International Nuclear Information System (INIS)

    Kim, Keung Koo; Lee, J.; Zee, S. K.

    2009-01-01

    The present study is performed to establish the base for the license application of the original technology by systemization and enhancement of the technology that is indispensable for the design and analysis of the advanced reactors including integral reactors. Technical reports and topical reports are prepared for this purpose on some important design/analysis methodology; design and analysis computer programs, structural integrity evaluation of main components and structures, digital I and C systems and man-machine interface design. PPS design concept is complemented reflecting typical safety analysis results. And test plans and requirements are developed for the verification of the advanced reactor technology. Moreover, studies are performed to draw up plans to apply to current or advanced power reactors the original technologies or base technologies such as patents, computer programs, test results, design concepts of the systems and components of the advanced reactors. Finally, pending issues are studied of the advanced reactors to improve the economics and technology realization

  16. Advanced energy projects FY 1994 research summaries

    International Nuclear Information System (INIS)

    1994-09-01

    The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are premature for consideration by applied research or technology development programs. The AEP also supports high-risk, exploratory concepts that do not readily fit into a program area but could have several applications that may span scientific disciplines or technical areas. Projects supported by the Division arise from unsolicited ideas and concepts submitted by researchers. The portfolio of projects is dynamic and reflects the broad role of the Department in supporting research and development for improving the Nation's energy outlook. FY 1994 projects include the following topical areas: novel materials for energy technology; renewable and biodegradable materials; exploring uses of new scientific discoveries; alternate pathways to energy efficiency; alternative energy sources; and innovative approaches to waste treatment and reduction. Summaries are given for 66 projects

  17. Quadruple suspension design for Advanced LIGO

    International Nuclear Information System (INIS)

    Robertson, N A; Cagnoli, G; Crooks, D R M; Elliffe, E; Faller, J E; Fritschel, P; Gossler, S; Grant, A; Heptonstall, A; Hough, J; Lueck, H; Mittleman, R; Perreur-Lloyd, M; Plissi, M V; Rowan, S; Shoemaker, D H; Sneddon, P H; Strain, K A; Torrie, C I; Ward, H; Willems, P

    2002-01-01

    In this paper, we describe the conceptual design for the suspension system for the test masses for Advanced LIGO, the planned upgrade to LIGO, the US laser interferometric gravitational-wave observatory. The design is based on the triple pendulum design developed for GEO 600 - the German/UK interferometric gravitational wave detector. The GEO design incorporates fused silica fibres of circular cross-section attached to the fused silica mirror (test mass) in the lowest pendulum stage, in order to minimize the thermal noise from the pendulum modes. The damping of the low-frequency modes of the triple pendulum is achieved by using co-located sensors and actuators at the highest mass of the triple pendulum. Another feature of the design is that global control forces acting on the mirrors, used to maintain the output of the interferometer on a dark fringe, are applied via a triple reaction pendulum, so that these forces can be implemented via a seismically isolated platform. These techniques have been extended to meet the more stringent noise levels planned for in Advanced LIGO. In particular, the Advanced LIGO baseline design requires a quadruple pendulum with a final stage consisting of a 40 kg sapphire mirror, suspended on fused silica ribbons or fibres. The design is chosen to aim to reach a target noise contribution from the suspension corresponding to a displacement sensitivity of 10 -19 m Hz -1/2 at 10 Hz at each of the test masses

  18. Safety design analyses of Korea Advanced Liquid Metal Reactor

    International Nuclear Information System (INIS)

    Suk, S.D.; Park, C.K.

    2000-01-01

    The national long-term R and D program updated in 1997 requires Korea Atomic Energy Research Institute (KAERI) to complete by the year 2006 the basic design of Korea Advanced Liquid Metal Reactor (KALIMER), along with supporting R and D work, with the capability of resolving the issue of spent fuel storage as well as with significantly enhanced safety. KALIMER is a 150 MWe pool-type sodium cooled prototype reactor that uses metallic fuel. The conceptual design is currently under way to establish a self consistent design meeting a set of the major safety design requirements for accident prevention. Some of current emphasis include those for inherent and passive means of negative reactivity insertion and decay heat removal, high shutdown reliability, prevention of and protection from sodium chemical reaction, and high seismic margin, among others. All of these requirements affect the reactor design significantly and involve supporting R and D programs of substance. This paper summarizes some of the results of engineering and design analyses performed for the safety of KALIMER. (author)

  19. Advanced Concept Architecture Design and Integrated Analysis (ACADIA)

    Science.gov (United States)

    2017-11-03

    1 Advanced Concept Architecture Design and Integrated Analysis (ACADIA) Submitted to the National Institute of Aerospace (NIA) on...Research Report 20161001 - 20161030 Advanced Concept Architecture Design and Integrated Analysis (ACADIA) W911NF-16-2-0229 8504Cedric Justin, Youngjun

  20. Advanced Neutron Source radiological design criteria

    International Nuclear Information System (INIS)

    Westbrook, J.L.

    1995-08-01

    The operation of the proposed Advanced Neutron Source (ANS) facility will present a variety of radiological protection problems. Because it is desired to design and operate the ANS according to the applicable licensing standards of the Nuclear Regulatory Commission (NRC), it must be demonstrated that the ANS radiological design basis is consistent not only with state and Department of Energy (DOE) and other usual federal regulations, but also, so far as is practicable, with NRC regulations and with recommendations of such organizations as the Institute of Nuclear Power Operations (INPO) and the Electric Power Research Institute (EPRI). Also, the ANS radiological design basis is in general to be consistent with the recommendations of authoritative professional and scientific organizations, specifically the National Council on Radiation Protection and Measurements (NCRP) and the International Commission on Radiological Protection (ICRP). As regards radiological protection, the principal goals of DOE regulations and guidance are to keep occupational doses ALARA [as low as (is) reasonably achievable], given the current state of technology, costs, and operations requirements; to control and monitor contained and released radioactivity during normal operation to keep public doses and releases to the environment ALARA; and to limit doses to workers and the public during accident conditions. Meeting these general design objectives requires that principles of dose reduction and of radioactivity control by employed in the design, operation, modification, and decommissioning of the ANS. The purpose of this document is to provide basic radiological criteria for incorporating these principles into the design of the ANS. Operations, modification, and decommissioning will be covered only as they are affected by design

  1. Biomass energy conversion: conventional and advanced technologies

    Energy Technology Data Exchange (ETDEWEB)

    Young, B C; Hauserman, W B [Energy and Environmental Research Center, University of North Dakota, Grand Forks, ND (United States)

    1995-12-01

    Increasing interest in biomass energy conversion in recent years has focused attention on enhancing the efficiency of technologies converting biomass fuels into heat and power, their capital and operating costs and their environmental emissions. Conventional combustion systems, such as fixed-bed or grate units and entrainment units, deliver lower efficiencies (<25%) than modem coal-fired combustors (30-35%). The gasification of biomass will improve energy conversion efficiency and yield products useful for heat and power generation and chemical synthesis. Advanced biomass gasification technologies using pressurized fluidized-bed systems, including those incorporating hot-gas clean-up for feeding gas turbines or fuel cells, are being demonstrated. However, many biomass gasification processes are derivatives of coal gasification technologies and do not exploit the unique properties of biomass. This paper examines some existing and upcoming technologies for converting biomass into electric power or heat. Small-scale 1-30 MWe units are emphasized, but brief reference is made to larger and smaller systems, including those that bum coal-biomass mixtures and gasifiers that feed pilot-fuelled diesel engines. Promising advanced systems, such as a biomass integrated gasifier/gas turbine (BIG/GT) with combined-cycle operation and a biomass gasifier coupled to a fuel cell, giving cycle efficiencies approaching 50% are also described. These advanced gasifiers, typically fluid-bed designs, may be pressurized and can use a wide variety of biomass materials to generate electricity, process steam and chemical products such as methanol. Low-cost, disposable catalysts are becoming available for hot-gas clean-up (enhanced gas composition) for turbine and fuel cell systems. The advantages, limitations and relative costs of various biomass gasifier systems are briefly discussed. The paper identifies the best known biomass power projects and includes some information on proposed and

  2. Biomass energy conversion: conventional and advanced technologies

    International Nuclear Information System (INIS)

    Young, B.C.; Hauserman, W.B.

    1995-01-01

    Increasing interest in biomass energy conversion in recent years has focused attention on enhancing the efficiency of technologies converting biomass fuels into heat and power, their capital and operating costs and their environmental emissions. Conventional combustion systems, such as fixed-bed or grate units and entrainment units, deliver lower efficiencies (<25%) than modem coal-fired combustors (30-35%). The gasification of biomass will improve energy conversion efficiency and yield products useful for heat and power generation and chemical synthesis. Advanced biomass gasification technologies using pressurized fluidized-bed systems, including those incorporating hot-gas clean-up for feeding gas turbines or fuel cells, are being demonstrated. However, many biomass gasification processes are derivatives of coal gasification technologies and do not exploit the unique properties of biomass. This paper examines some existing and upcoming technologies for converting biomass into electric power or heat. Small-scale 1-30 MWe units are emphasized, but brief reference is made to larger and smaller systems, including those that bum coal-biomass mixtures and gasifiers that feed pilot-fuelled diesel engines. Promising advanced systems, such as a biomass integrated gasifier/gas turbine (BIG/GT) with combined-cycle operation and a biomass gasifier coupled to a fuel cell, giving cycle efficiencies approaching 50% are also described. These advanced gasifiers, typically fluid-bed designs, may be pressurized and can use a wide variety of biomass materials to generate electricity, process steam and chemical products such as methanol. Low-cost, disposable catalysts are becoming available for hot-gas clean-up (enhanced gas composition) for turbine and fuel cell systems. The advantages, limitations and relative costs of various biomass gasifier systems are briefly discussed. The paper identifies the best known biomass power projects and includes some information on proposed and

  3. Annex to 7-GeV Advanced Photon Source Conceptual Design Report

    International Nuclear Information System (INIS)

    1988-05-01

    The Annex to the 7-GeV Advanced Photon Source Conceptual Design Report updates the Conceptual Design Report of 1987 (CDR-87) to include the results of further optimization and changes of the design during the past year. The design changes can be summarized as affecting three areas: the accelerator system, conventional facilities, and experimental systems. Most of the changes in the accelerator system result from inclusion of a positron accumulator ring (PAR), which was added at the suggestion of the 1987 DOE Review Committee, to speed up the filling rate of the storage ring. The addition of the PAR necessitates many minor changes in the linac system, the injector synchrotron, and the low-energy beam transport lines. 63 figs., 18 tabs

  4. Advances in energy deposition theory

    International Nuclear Information System (INIS)

    Paretzke, H.G.

    1980-01-01

    In light of the fields of radiation protection and dosimetric problems in medicine, advances in the area of microscopic target related studies are discussed. Energy deposition is discussed with emphasis upon track structures of electrons and heavy charged particles and track computer calculations

  5. Advances in fusion reactor design

    International Nuclear Information System (INIS)

    Baker, C.C.

    1987-01-01

    The author addresses the tokamak as a power reactor. Contrary to popular opinion, there are still a few people that think a tokamak might make a good fusion power reactor. In thinking about advances in fusion reactor design, in the U.S., at least, that generally means advances relevant to the Starfire design. He reviews some of the features of Starfire. Starfire is the last major study done of the tokamak as a reactor in this country. It is now over eight years old in the sense that eight years ago was really the time in which major decisions were made as to its features. Starfire was a tokamak with a major radius of seven meters, about twice the linear dimensions of a machine like TIBER

  6. Electrospinning for advanced energy and environmental applications

    CERN Document Server

    Cavaliere, Sara

    2015-01-01

    Electrospinning for Advanced Energy and Environmental Applications delivers a state-of-the-art overview of the use of electrospun fibers in energy conversion and storage, as well as in environmental sensing and remediation. Featuring contributions from leading experts in electrospinning and its specific applications, this book: Introduces the electrospinning technique and its origins, outlining achievable one-dimensional (1D) nanoscaled materials and their various applications Discusses the use of electrospun materials in energy devices, including low- and high-temperature fuel cells, hydrogen storage, dye-sensitized solar cells, lithium-ion batteries, and supercapacitors Explores environmental applications of electrospun fibers, such as the use of electrospinning-issued materials in membranes for water and air purification, as well as in sensors and biosensors for pollution control Beneficial to both academic and industrial audiences, Electrospinning for Advanced Energy and Environmental Applications present...

  7. Advanced fusion technology research and development. Annual report to the U.S. Department of Energy

    International Nuclear Information System (INIS)

    2001-01-01

    OAK-B135 The General Atomics (GA) Advanced Fusion Technology program seeks to advance the knowledge base needed for next-generation fusion experiments, and ultimately for an economical and environmentally attractive fusion energy source. To achieve this objective, they carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and they conduct research to develop basic and applied knowledge about these technologies. GA's Advanced Fusion Technology program derives from, and draws on, the physics and engineering expertise built up by many years of experience in designing, building, and operating plasma physics experiments. The technology development activities take full advantage of the GA DIII-D program, the DIII-D facility, the Inertial Confinement Fusion (ICF) program and the ICF Target Fabrication facility. The report summarizes GA's FY00 work in the areas of Fusion Power Plant Studies, Next Step Options, Advanced Liquid Plasma Facing Surfaces, Advanced Power Extraction Study, Plasma Interactive Materials, Radiation Testing of Magnetic Coil, Vanadium Component Demonstration, RF Technology, Inertial Fusion Energy Target Supply System, ARIES Integrated System Studies, and Spin-offs Brochure. The work in these areas continues to address many of the issues that must be resolved for the successful construction and operation of next-generation experiments and, ultimately, the development of safe, reliable, economic fusion power plants

  8. Policies for advancing energy efficiency and renewable energy use in Brazil

    International Nuclear Information System (INIS)

    Geller, Howard; Schaeffer, Roberto; Szklo, Alexandre; Tolmasquim, Mauricio

    2004-01-01

    This article first reviews energy trends and energy policy objectives in Brazil. It then proposes and analyzes 12 policy options for advancing energy efficiency and renewable energy use. The policies are analyzed as a group with respect to their impacts on total energy supply and demand as well as CO 2 emissions. It is determined that the policies would provide a broad range of benefits for Brazil including reducing investment requirements in the energy sector, cutting energy imports, lowering CO 2 emissions, and providing social benefits. (Author)

  9. Systems analysis and futuristic designs of advanced biofuel factory concepts.

    Energy Technology Data Exchange (ETDEWEB)

    Chianelli, Russ; Leathers, James; Thoma, Steven George; Celina, Mathias C.; Gupta, Vipin P.

    2007-10-01

    The U.S. is addicted to petroleum--a dependency that periodically shocks the economy, compromises national security, and adversely affects the environment. If liquid fuels remain the main energy source for U.S. transportation for the foreseeable future, the system solution is the production of new liquid fuels that can directly displace diesel and gasoline. This study focuses on advanced concepts for biofuel factory production, describing three design concepts: biopetroleum, biodiesel, and higher alcohols. A general schematic is illustrated for each concept with technical description and analysis for each factory design. Looking beyond current biofuel pursuits by industry, this study explores unconventional feedstocks (e.g., extremophiles), out-of-favor reaction processes (e.g., radiation-induced catalytic cracking), and production of new fuel sources traditionally deemed undesirable (e.g., fusel oils). These concepts lay the foundation and path for future basic science and applied engineering to displace petroleum as a transportation energy source for good.

  10. 2017 Publications Demonstrate Advancements in Wind Energy Research

    Energy Technology Data Exchange (ETDEWEB)

    2018-01-17

    In 2017, wind energy experts at the National Renewable Energy Laboratory (NREL) made significant strides to advance wind energy. Many of these achievements were presented in articles published in scientific and engineering journals and technical reports that detailed research accomplishments in new and progressing wind energy technologies. During fiscal year 2017, NREL wind energy thought leaders shared knowledge and insights through 45 journal articles and 25 technical reports, benefiting academic and national-lab research communities; industry stakeholders; and local, state, and federal decision makers. Such publications serve as important outreach, informing the public of how NREL wind research, analysis, and deployment activities complement advanced energy growth in the United States and around the world. The publications also illustrate some of the noteworthy outcomes of U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and Laboratory Directed Research and Development funding, as well as funding and facilities leveraged through strategic partnerships and other collaborations.

  11. Energy Efficiency and Universal Design in Home Renovations - A Comparative Review.

    Science.gov (United States)

    Kapedani, Ermal; Herssens, Jasmien; Verbeeck, Griet

    2016-01-01

    Policy and societal objectives indicate a large need for housing renovations that both accommodate lifelong living and significantly increase energy efficiency. However, these two areas of research are not yet examined in conjunction and this paper hypothesizes this as a missed opportunity to create better renovation concepts. The paper outlines a comparative review on research in Energy Efficiency and Universal Design in order to find the similarities and differences in both depth and breadth of knowledge. Scientific literature in the two fields reveals a disparate depth of knowledge in areas of theory, research approach, and degree of implementation in society. Universal Design and Energy Efficiency are part of a trajectory of expanding scope towards greater sustainability and, although social urgency has been a driver of the research intensity and approach in both fields, in energy efficiency there is an engineering, problem solving approach while Universal Design has a more sociological, user-focused one. These different approaches are reflected in the way home owners in Energy Efficiency research are viewed as consumers and decision makers whose drivers are studied, while Universal Design treats home owners as informants in the design process and studies their needs. There is an inherent difficulty in directly merging Universal Design and Energy Efficiency at a conceptual level because Energy Efficiency is understood as a set of measures, i.e. a product, while Universal Design is part of a (design) process. The conceptual difference is apparent in their implementation as well. Internationally energy efficiency in housing has been largely imposed through legislation, while legislation directly mandating Universal Design is either non-existent or it has an explicit focus on accessibility. However, Energy Efficiency and Universal Design can be complementary concepts and, even though it is more complex than expected, the combination offers possibilities to advance

  12. High Level Requirements for the Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)

    Energy Technology Data Exchange (ETDEWEB)

    Rich Johnson; Hyung Lee; Kimberlyn C. Mousseau

    2011-09-01

    The US Department of Energy, Office of Nuclear Energy (DOE-NE), has been tasked with the important mission of ensuring that nuclear energy remains a compelling and viable energy source in the U.S. The motivations behind this mission include cost-effectively meeting the expected increases in the power needs of the country, reducing carbon emissions and reducing dependence on foreign energy sources. In the near term, to ensure that nuclear power remains a key element of U.S. energy strategy and portfolio, the DOE-NE will be working with the nuclear industry to support safe and efficient operations of existing nuclear power plants. In the long term, to meet the increasing energy needs of the U.S., the DOE-NE will be investing in research and development (R&D) and working in concert with the nuclear industry to build and deploy new, safer and more efficient nuclear power plants. The safe and efficient operations of existing nuclear power plants and designing, licensing and deploying new reactor designs, however, will require focused R&D programs as well as the extensive use and leveraging of advanced modeling and simulation (M&S). M&S will play a key role in ensuring safe and efficient operations of existing and new nuclear reactors. The DOE-NE has been actively developing and promoting the use of advanced M&S in reactor design and analysis through its R&D programs, e.g., the Nuclear Energy Advanced Modeling and Simulation (NEAMS) and Consortium for Advanced Simulation of Light Water Reactors (CASL) programs. Also, nuclear reactor vendors are already using CFD and CSM, for design, analysis, and licensing. However, these M&S tools cannot be used with confidence for nuclear reactor applications unless accompanied and supported by verification and validation (V&V) and uncertainty quantification (UQ) processes and procedures which provide quantitative measures of uncertainty for specific applications. The Nuclear Energy Knowledge base for Advanced Modeling and Simulation

  13. Technical Support Document: Development of the Advanced Energy Design Guide for Medium Box Retail -- 50% Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    Hale, E. T.; Macumber, D. L.; Long, N. L.; Griffith, B. T.; Benne, K. S.; Pless, S. D.; Torcellini, P. A.

    2008-09-01

    This report provides recommendations that architects, designers, contractors, developers, owners, and lessees of medium box retail buildings can use to achieve whole-building energy savings of at least 50% over ASHRAE Standard 90.1-2004. The recommendations are given by climate zone and address building envelope, fenestration, lighting systems, HVAC systems, building automation and controls, outside air treatment, service water heating, plug loads, and photovoltaic systems. The report presents several paths to 50% savings, which correspond to different levels of integrated design. These are recommendations only, and are not part of a code or standard. The recommendations are not exhaustive, but we do try to emphasize the benefits of integrated building design, that is, a design approach that analyzes a building as a whole system, rather than as a disconnected collection of individually engineered subsystems.

  14. Conceptual design report on advanced marine reactor MRX of Japan

    International Nuclear Information System (INIS)

    Wang Shengguo

    1995-01-01

    Design studies on the advanced marine reactors have been done continuously since 1983 at Japan Atomic Energy Institute (JAERI) in order to develop attractive marine reactors for the next generation. At present, two concepts of marine reactor are being formulated. One is 100 MWt MRX (marine Reactor X) for the marine reactor and the other is 150 kWe DRX (Deep Sea-Reactor X) for a deep-sea research vessel. They are characterized by an integral type PWR, built-type control rod drive mechanisms, a water-filled container and a passive decay heat removal system, which realize highly passive safe and compact reactors. The paper is a report about all major results of the MRX design study

  15. Advanced Dark Energy Physics Telescope (ADEPT). Final Report

    International Nuclear Information System (INIS)

    Bennett, Charles L.

    2009-01-01

    In 2006, we proposed to NASA a detailed concept study of ADEPT (the Advanced Dark Energy Physics Telescope), a potential space mission to reliably measure the time-evolution of dark energy by conducting the largest effective volume survey of the universe ever done. A peer-review panel of scientific, management, and technical experts reported back the highest possible 'excellent' rating for ADEPT. We have since made substantial advances in the scientific and technical maturity of the mission design. With this Department of Energy (DOE) award we were granted supplemental funding to support specific extended research items that were not included in the NASA proposal, many of which were intended to broadly advance future dark energy research, as laid out by the Dark Energy Task Force (DETF). The proposed work had three targets: (1) the adaptation of large-format infrared arrays to a 2 micron cut-off; (2) analytical research to improve the understanding of the dark energy figure-of- merit; and (3) extended studies of baryon acoustic oscillation systematic uncertainties. Since the actual award was only for ∼10% of the proposed amount item (1) was dropped and item (2) work was severely restricted, consistent with the referee reviews of the proposal, although there was considerable contradictions between reviewer comments and several comments that displayed a lack of familiarity with the research. None the less, item (3) was the focus of the work. To characterize the nature of the dark energy, ADEPT is designed to observe baryon acoustic oscillations (BAO) in a large galaxy redshift survey and to obtain substantial numbers of high-redshift Type Ia supernovae (SNe Ia). The 2003 Wilkinson Microwave Anisotropy Probe (WMAP) made a precise determination of the BAO 'standard ruler' scale, as it was imprinted on the cosmic microwave background (CMB) at z ∼ 1090. The standard ruler was also imprinted on the pattern of galaxies, and was first detected in 2005 in Sloan Digital

  16. Performance advancement of solar air-conditioning through integrated system design for building

    International Nuclear Information System (INIS)

    Fong, K.F.; Lee, C.K.

    2014-01-01

    This study is to advance the energy performance of solar air-conditioning system through appropriate component integration from the absorption refrigeration cycle and proper high-temperature cooling. In the previous studies, the solar absorption air-conditioning using the working pair of water – lithium bromide (H 2 O–LiBr) is found to have prominent primary energy saving than the conventional compression air-conditioning for buildings in the hot-humid climate. In this study, three integration strategies have been generated for solar cooling, namely integrated absorption air-conditioning; integrated absorption-desiccant air-conditioning; and integrated absorption-desiccant air-conditioning for radiant cooling. To realize these ideas, the working pair of ammonia – water (NH 3 –H 2 O) was used in the absorption cycle, rather than H 2 O–LiBr. As such, the evaporator and the condenser can be separate from the absorption refrigeration cycle for the new configuration of various integrated design alternatives. Through dynamic simulation, the year-round primary energy saving of the proposed integration strategies for solar NH 3 –H 2 O absorption air-conditioning systems could be up to 50.6% and 25.5%, as compared to the conventional compression air-conditioning and the basic solar H 2 O–LiBr absorption air-conditioning respectively. Consequently, carbon reduction of building air-conditioning can be achieved more effectively through the integrated system design in the hot and humid cities. - Highlights: • Three integration strategies, IAAU, IADAU and IADAU-RC, are proposed to advance solar air-conditioning. • NH 3 –H 2 O is adopted for absorption refrigeration instead of H 2 O–LiBr. • Separate evaporator and condenser, desiccant cooling and radiant cooling are designed for IADAU-RC. • IADAU-RC can have 50.6% primary energy saving against the conventional air-conditioning

  17. Advanced energy utilization MHD power generation

    International Nuclear Information System (INIS)

    2008-01-01

    The 'Technical Committee on Advanced Energy Utilization MHD Power Generation' was started to establish advanced energy utilization technologies in Japan, and has been working for three years from June 2004 to May 2007. This committee investigated closed cycle MHD, open cycle MHD, and liquid metal MHD power generation as high-efficiency power generation systems on the earth. Then, aero-space application and deep space exploration technologies were investigated as applications of MHD technology. The spin-off from research and development on MHD power generation such as acceleration and deceleration of supersonic flows was expected to solve unstart phenomena in scramjet engine and also to solve abnormal heating of aircrafts by shock wave. In addition, this committee investigated researches on fuel cells, on secondary batteries, on connection of wind power system to power grid, and on direct energy conversion system from nuclear fusion reactor for future. The present technical report described results of investigations by the committee. (author)

  18. Flip-flop design in nanometer CMOS from high speed to low energy

    CERN Document Server

    Alioto, Massimo; Palumbo, Gaetano

    2015-01-01

    This book provides a unified treatment of Flip-Flop design and selection in nanometer CMOS VLSI systems. The design aspects related to the energy-delay tradeoff in Flip-Flops are discussed, including their energy-optimal selection according to the targeted application, and the detailed circuit design in nanometer CMOS VLSI systems. Design strategies are derived in a coherent framework that includes explicitly nanometer effects, including leakage, layout parasitics and process/voltage/temperature variations, as main advances over the existing body of work in the field. The related design tradeoffs are explored in a wide range of applications and the related energy-performance targets. A wide range of existing and recently proposed Flip-Flop topologies are discussed. Theoretical foundations are provided to set the stage for the derivation of design guidelines, and emphasis is given on practical aspects and consequences of the presented results. Analytical models and derivations are introduced when needed to gai...

  19. Design of advanced materials for linear and nonlinear dynamics

    DEFF Research Database (Denmark)

    Frandsen, Niels Morten Marslev

    to reveal the fundamental dynamic characteristics and thus the relevant design parameters.The thesis is built around the characterization of two one-dimensional, periodic material systems. The first is a nonlinear mass-spring chain with periodically varying material properties, representing a simple......The primary catalyst of this PhD project has been an ambition to design advanced materials and structural systems including, and possibly even exploiting, nonlinear phenomena such as nonlinear modal interaction leading to energy conversion between modes. An important prerequisite for efficient...... but general model of inhomogeneous structural materials with nonlinear material characteristics. The second material system is an “engineered” material in the sense that a classical structural element, a linear elastic and homogeneous rod, is “enhanced” by applying a mechanism on its surface, amplifying...

  20. Secondary heat exchanger design and comparison for advanced high temperature reactor

    International Nuclear Information System (INIS)

    Sabharwall, P.; Kim, E. S.; Siahpush, A.; McKellar, M.; Patterson, M.

    2012-01-01

    Next generation nuclear reactors such as the advanced high temperature reactor (AHTR) are designed to increase energy efficiency in the production of electricity and provide high temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process heat transport system. This study considers two different types of heat exchangers - helical coiled heat exchanger and printed circuit heat exchanger - as possible options for the AHTR secondary heat exchangers with distributed load analysis and comparison. Comparison is provided for all different cases along with challenges and recommendations. (authors)

  1. Advanced hardware design for error correcting codes

    CERN Document Server

    Coussy, Philippe

    2015-01-01

    This book provides thorough coverage of error correcting techniques. It includes essential basic concepts and the latest advances on key topics in design, implementation, and optimization of hardware/software systems for error correction. The book’s chapters are written by internationally recognized experts in this field. Topics include evolution of error correction techniques, industrial user needs, architectures, and design approaches for the most advanced error correcting codes (Polar Codes, Non-Binary LDPC, Product Codes, etc). This book provides access to recent results, and is suitable for graduate students and researchers of mathematics, computer science, and engineering. • Examines how to optimize the architecture of hardware design for error correcting codes; • Presents error correction codes from theory to optimized architecture for the current and the next generation standards; • Provides coverage of industrial user needs advanced error correcting techniques.

  2. The conceptual design of the standard and the reduced fuel assemblies for an advanced research reactor

    International Nuclear Information System (INIS)

    Ryu, Jeong Soo; Cho, Yeong Garp; Yoon, Doo Byung; Dan, Ho Jin; Chae, Hee Tack; Park, Cheol

    2005-01-01

    HANARO (Hi-flux Advanced Neutron Application Reactor), is an open-tank-in-pool type research reactor with a thermal power of 30MW. The HANARO has been operating at Korea Atomic Energy Research Institute since 1995. Based on the technical experiences in design and operation for the HANARO, the design of an Advanced Research Reactor (ARR) was launched by KAERI in 2002. The final goal of the project is to develop a new and advanced research reactor model which is superior in safety and economical aspects. This paper summarizes the design improvements of the conceptually designed standard fuel assembly based on the analysis results for the nuclear physics. It includes also the design of the reduced fuel assembly in conjunction with the flow tube as the fuel channel and the guide of the absorber rod. In the near future, the feasibility of the conceptually designed fuel assemblies of the ARR will be verified by investigating the dynamic and the thermal behaviors of the fuel assembly submerged in coolant

  3. Design and Experimental Evaluation on an Advanced Multisource Energy Harvesting System for Wireless Sensor Nodes

    Directory of Open Access Journals (Sweden)

    Hao Li

    2014-01-01

    Full Text Available An effective multisource energy harvesting system is presented as power supply for wireless sensor nodes (WSNs. The advanced system contains not only an expandable power management module including control of the charging and discharging process of the lithium polymer battery but also an energy harvesting system using the maximum power point tracking (MPPT circuit with analog driving scheme for the collection of both solar and vibration energy sources. Since the MPPT and the power management module are utilized, the system is able to effectively achieve a low power consumption. Furthermore, a super capacitor is integrated in the system so that current fluctuations of the lithium polymer battery during the charging and discharging processes can be properly reduced. In addition, through a simple analog switch circuit with low power consumption, the proposed system can successfully switch the power supply path according to the ambient energy sources and load power automatically. A practical WSNs platform shows that efficiency of the energy harvesting system can reach about 75–85% through the 24-hour environmental test, which confirms that the proposed system can be used as a long-term continuous power supply for WSNs.

  4. Distributed sensor coordination for advanced energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Tumer, Kagan [Oregon State Univ., Corvallis, OR (United States). School of Mechanical, Industrial and Manufacturing Engineering

    2015-03-12

    Motivation: The ability to collect key system level information is critical to the safe, efficient and reliable operation of advanced power systems. Recent advances in sensor technology have enabled some level of decision making directly at the sensor level. However, coordinating large numbers of sensors, particularly heterogeneous sensors, to achieve system level objectives such as predicting plant efficiency, reducing downtime or predicting outages requires sophisticated coordination algorithms. Indeed, a critical issue in such systems is how to ensure the interaction of a large number of heterogenous system components do not interfere with one another and lead to undesirable behavior. Objectives and Contributions: The long-term objective of this work is to provide sensor deployment, coordination and networking algorithms for large numbers of sensors to ensure the safe, reliable, and robust operation of advanced energy systems. Our two specific objectives are to: 1. Derive sensor performance metrics for heterogeneous sensor networks. 2. Demonstrate effectiveness, scalability and reconfigurability of heterogeneous sensor network in advanced power systems. The key technical contribution of this work is to push the coordination step to the design of the objective functions of the sensors, allowing networks of heterogeneous sensors to be controlled. By ensuring that the control and coordination is not specific to particular sensor hardware, this approach enables the design and operation of large heterogeneous sensor networks. In addition to the coordination coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Impact: The impact of this work extends to a large class of problems relevant to the National Energy Technology Laboratory including sensor placement, heterogeneous sensor

  5. Conceptual design of a municipal energy and environmental system as an efficient basis for advanced energy planning

    International Nuclear Information System (INIS)

    Kostevšek, Anja; Petek, Janez; Čuček, Lidija; Pivec, Aleksandra

    2013-01-01

    Effectively implementing various energy and environmental policies contributes to the acceleration of energy performance, a reduction in negative environmental impacts, and increased deployment of renewable resources. The MEEMS (municipal energy and environmental management system) performs the almost inconceivable role of accomplishing prerequisite targets at the national level and, consequently, the European and World levels also. Therefore, a proper infrastructure for MEEMS needs to be effectively applied in order to implement policy initiatives. A novel organisational framework of MEEMS is proposed and is constituted upon three pillars: integration of the municipal metabolism approach, the KBS (knowledge-based system), and the MTIS (municipal technology innovation system). By properly addressing the dynamics of the MEES (municipal energy and environmental system), and the new conceptual organisation of MEEMS, a need for the inclusion of innovative elements can be defined regarding support mechanisms. Integration of the end-user approach defines the fundamental orientation of modern MEEMS. This new concept paves a pathway towards an intelligent energy and environmental system. This paper describes an implementation of the new conceptual design of MEEMS within the urban municipality energy system of Ptuj, Slovenia. - Highlights: • Combination of energy and environmental management system (MEEMS) within municipalities is proposed. • Novel MEEMS structure to accomplish more effective functioning of the system. • Accelerated energy policy implementation process is enabled with proposed MEEMS. • Key ingredients to transform present energy systems to more innovative ones are discussed

  6. Measured performance of 12 demonstation projects - IEA Task 13 "advanced solar low energy buildings"

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund; Schultz, Jørgen Munthe; Poel, Bart

    2005-01-01

    This paper presents the results obtained from measurements and experiences gained from interviews on 12 advanced solar low energy houses designed and built as part of the IEA Solar Heating and Cooling Programme – Task 13. Three years after the IEA Task 13 formally ended, the results were collected...... climate conditions are compared and differences explained. Special innovative installations and systems are de-scribed and evaluated. In general the measured energy consumption was higher than the expected values due to user influence and unforeseen technical problems but still an energy saving of 60...

  7. Design and analysis challenges for advanced nuclear fuel

    International Nuclear Information System (INIS)

    Klepfer, H.; Abdollahian, D.; Dias, A.; Durston, C.; Eisenhart, L.; Engel, R.; Gilmore, P.; Rank, P.; Kjaer-Pedersen, N.; Sorensen, J.; Yang, R.; Agee, L.

    2004-01-01

    Significant changes have been incorporated in the light water reactor (LWR) fuel designs now being offered, and advanced fuel designs are currently being developed for the existing and the next generation of reactor designs. These advanced fuel design configurations are intended to offer utilities major economic gains, including: (1) improved fuel characteristics through optimized hydrogen to uranium ratio within the core; (2) increased capacity factor by allowing longer operating cycles, which is implemented by increasing the fuel enrichment and the amount and distribution of burnable poison, gadolinia, boron, or erbium within the fuel assembly to achieve higher discharge burnup; and (3) increased plant power output, if it can be accommodated by the balance of plant, by increasing the power density of the fuel assembly. The authors report here work being done to identify emerging technical issues in support of utility industry evaluations of advanced fuel designs. (author)

  8. Recent Advances in Designing and Fabricating Self-Supported Nanoelectrodes for Supercapacitors.

    Science.gov (United States)

    Zhao, Huaping; Liu, Long; Vellacheri, Ranjith; Lei, Yong

    2017-10-01

    Owing to the outstanding advantages as electrical energy storage system, supercapacitors have attracted tremendous research interests over the past decade. Current research efforts are being devoted to improve the energy storage capabilities of supercapacitors through either discovering novel electroactive materials or nanostructuring existing electroactive materials. From the device point of view, the energy storage performance of supercapacitor not only depends on the electroactive materials themselves, but importantly, relies on the structure of electrode whether it allows the electroactive materials to reach their full potentials for energy storage. With respect to utilizing nanostructured electroactive materials, the key issue is to retain all advantages of the nanoscale features for supercapacitors when being assembled into electrodes and the following devices. Rational design and fabrication of self-supported nanoelectrodes is therefore considered as the most promising strategy to address this challenge. In this review, we summarize the recent advances in designing and fabricating self-supported nanoelectrodes for supercapacitors towards high energy storage capability. Self-supported homogeneous and heterogeneous nanoelectrodes in the forms of one-dimensional (1D) nanoarrays, two-dimensional (2D) nanoarrays, and three-dimensional (3D) nanoporous architectures are introduced with their representative results presented. The challenges and perspectives in this field are also discussed.

  9. Recent Advances in Designing and Fabricating Self‐Supported Nanoelectrodes for Supercapacitors

    Science.gov (United States)

    Zhao, Huaping; Liu, Long; Vellacheri, Ranjith

    2017-01-01

    Abstract Owing to the outstanding advantages as electrical energy storage system, supercapacitors have attracted tremendous research interests over the past decade. Current research efforts are being devoted to improve the energy storage capabilities of supercapacitors through either discovering novel electroactive materials or nanostructuring existing electroactive materials. From the device point of view, the energy storage performance of supercapacitor not only depends on the electroactive materials themselves, but importantly, relies on the structure of electrode whether it allows the electroactive materials to reach their full potentials for energy storage. With respect to utilizing nanostructured electroactive materials, the key issue is to retain all advantages of the nanoscale features for supercapacitors when being assembled into electrodes and the following devices. Rational design and fabrication of self‐supported nanoelectrodes is therefore considered as the most promising strategy to address this challenge. In this review, we summarize the recent advances in designing and fabricating self‐supported nanoelectrodes for supercapacitors towards high energy storage capability. Self‐supported homogeneous and heterogeneous nanoelectrodes in the forms of one‐dimensional (1D) nanoarrays, two‐dimensional (2D) nanoarrays, and three‐dimensional (3D) nanoporous architectures are introduced with their representative results presented. The challenges and perspectives in this field are also discussed. PMID:29051862

  10. New technology and possible advances in energy storage

    International Nuclear Information System (INIS)

    Baker, John

    2008-01-01

    Energy storage technologies may be electrical or thermal. Electrical energy stores have an electrical input and output to connect them to the system of which they form part, while thermal stores have a thermal input and output. The principal electrical energy storage technologies described are electrochemical systems (batteries and flow cells), kinetic energy storage (flywheels) and potential energy storage, in the form of pumped hydro and compressed air. Complementary thermal storage technologies include those based on the sensible and latent heat capacity of materials, which include bulk and smaller-capacity hot and cold water storage systems, ice storage, phase change materials and specific bespoke thermal storage media. For the majority of the storage technologies considered here, the potential for fundamental step changes in performance is limited. For electrochemical systems, basic chemistry suggests that lithium-based technologies represent the pinnacle of cell development. This means that the greatest potential for technological advances probably lies in the incremental development of existing technologies, facilitated by advances in materials science, engineering, processing and fabrication. These considerations are applicable to both electrical and thermal storage. Such incremental developments in the core storage technologies are likely to be complemented and supported by advances in systems integration and engineering. Future energy storage technologies may be expected to offer improved energy and power densities, although, in practice, gains in reliability, longevity, cycle life expectancy and cost may be more significant than increases in energy/powerdensity per se

  11. Strategic Plan for Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)

    Energy Technology Data Exchange (ETDEWEB)

    Kimberlyn C. Mousseau

    2011-10-01

    The Nuclear Energy Computational Fluid Dynamics Advanced Modeling and Simulation (NE-CAMS) system is being developed at the Idaho National Laboratory (INL) in collaboration with Bettis Laboratory, Sandia National Laboratory (SNL), Argonne National Laboratory (ANL), Utah State University (USU), and other interested parties with the objective of developing and implementing a comprehensive and readily accessible data and information management system for computational fluid dynamics (CFD) verification and validation (V&V) in support of nuclear energy systems design and safety analysis. The two key objectives of the NE-CAMS effort are to identify, collect, assess, store and maintain high resolution and high quality experimental data and related expert knowledge (metadata) for use in CFD V&V assessments specific to the nuclear energy field and to establish a working relationship with the U.S. Nuclear Regulatory Commission (NRC) to develop a CFD V&V database, including benchmark cases, that addresses and supports the associated NRC regulations and policies on the use of CFD analysis. In particular, the NE-CAMS system will support the Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program, which aims to develop and deploy advanced modeling and simulation methods and computational tools for reliable numerical simulation of nuclear reactor systems for design and safety analysis. Primary NE-CAMS Elements There are four primary elements of the NE-CAMS knowledge base designed to support computer modeling and simulation in the nuclear energy arena as listed below. Element 1. The database will contain experimental data that can be used for CFD validation that is relevant to nuclear reactor and plant processes, particularly those important to the nuclear industry and the NRC. Element 2. Qualification standards for data evaluation and classification will be incorporated and applied such that validation data sets will result in well

  12. Integral design concepts of advanced water cooled reactors. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1997-11-01

    Under the sub-programme on non-electrical applications of advanced reactors, the International Atomic Energy Agency has been providing a worldwide forum for exchange of information on integral reactor concepts. Two Technical Committee meetings were held in 1994 and 1995 on the subject where state-of-the-art developments were presented. Efforts are continuing for the development of advanced nuclear reactors of both evolutionary and innovative design, for electricity, co-generation and heat applications. While single purpose reactors for electricity generation may require small and medium sizes under certain conditions, reactors for heat applications and co-generation would be necessary in the small and medium range and need to be located closer to the load centres. The integral design approach to the development of advanced light water reactors has received special attention over the past few years. Several designs are in the detailed design stage, some are under construction, one prototype is in operation. A need has been felt for guidance on a number of issues, ranging from design objectives to the assessment methodology needed to show how integral designs can meet these objectives, and also to identify their advantages and problem areas. The technical document addresses the current status of the design, safety and operational issues of integral reactors and recommends areas for future development

  13. Advances of energy drivers at Osaka

    International Nuclear Information System (INIS)

    Kato, Yoshiaki; Nakai, Sadao; Yamanaka, Chiyoe.

    1979-01-01

    The energy driver development at the Institute of Laser Engineering (ILE), Osaka University, comprises three fields; glass, laser, carbon dioxide laser, and relativistic electron beam. The development of reliable glass lasers has been the main program at ILE. The GEKKO 12 module program was carried out in the fiscal years from 1977 to 1979 in order to develop various laser components and subsystems which are necessary to construct a 20 kJ GEKKO 12 glass laser. The measured gain coefficient of the 200 mm disk amplifier was 0.10/cm corresponding to the αD product of 4.0. The expected peak output power of the system was 2 TW at 0.1 ns and 0.9 kJ at 1 ns. The recent advances in coating techniques will enable to operate this system over 1.3 kJ per beam at 3 ns. Carbon dioxide lasers have been developed as efficient high energy lasers to study the wave length scaling of implosion process. The design and construction of the 10 kJ LEKKO 8 laser system are in progress. Relativistic electron beam machines, being the most cost-effective driver, have been studied to control pulsed power and to investigate electron beam plasma interaction. As the future plans of ILE, the construction of a 100 kJ energy driver from 1958 to 1987 for scientific break-even experiments is considered. (Kato, T.)

  14. Designing Design into an Advanced Desktop Publishing Course (A Teaching Tip).

    Science.gov (United States)

    Guthrie, Jim

    1995-01-01

    Describes an advanced desktop publishing course that combines instruction in a few advanced techniques for using software with extensive discussion of such design principles as consistency, proportion, asymmetry, appropriateness, contrast, and color. Describes computer hardware and software, class assignments, problems, and the rationale for such…

  15. Advanced control and instrumentation systems in nuclear power plants. Design, verification and validation

    International Nuclear Information System (INIS)

    Haapanen, P.

    1995-01-01

    The Technical Committee Meeting on design, verification and validation of advanced control and instrumentation systems in nuclear power plants was held in Espoo, Finland on 20 - 23 June 1994. The meeting was organized by the International Atomic Energy Agency's (IAEA) International Working Group's (IWG) on Nuclear Power Plant Control and Instrumentation (NPPCI) and on Advanced Technologies for Water Cooled Reactors (ATWR). VTT Automation together with Imatran Voima Oy and Teollisuuden Voima Oy responded about the practical arrangements of the meeting. In total 96 participants from 21 countries and the Agency took part in the meeting and 34 full papers and 8 posters were presented. Following topics were covered in the papers: (1) experience with advanced and digital systems, (2) safety and reliability analysis, (3) advanced digital systems under development and implementation, (4) verification and validation methods and practices, (5) future development trends. (orig.)

  16. Guidance for Developing Principal Design Criteria for Advanced (Non-Light Water) Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Holbrook, Mark [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinsey, Jim [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    In July 2013, the US Department of Energy (DOE) and US Nuclear Regulatory Commission (NRC) established a joint initiative to address a key portion of the licensing framework essential to advanced (non-light water) reactor technologies. The initiative addressed the “General Design Criteria for Nuclear Power Plants,” Appendix A to10 Code of Federal Regulations (CFR) 50, which were developed primarily for light water reactors (LWRs), specific to the needs of advanced reactor design and licensing. The need for General Design Criteria (GDC) clarifications in non-LWR applications has been consistently identified as a concern by the industry and varied stakeholders and was acknowledged by the NRC staff in their 2012 Report to Congress1 as an area for enhancement. The initiative to adapt GDC requirements for non-light water advanced reactor applications is being accomplished in two phases. Phase 1, managed by DOE, consisted of reviews, analyses and evaluations resulting in recommendations and deliverables to NRC as input for NRC staff development of regulatory guidance. Idaho National Laboratory (INL) developed this technical report using technical and reactor technology stakeholder inputs coupled with analysis and evaluations provided by a team of knowledgeable DOE national laboratory personnel with input from individual industry licensing consultants. The DOE national laboratory team reviewed six different classes of emerging commercial reactor technologies against 10 CFR 50 Appendix A GDC requirements and proposed guidance for their adapted use in non-LWR applications. The results of the Phase 1 analysis are contained in this report. A set of draft Advanced Reactor Design Criteria (ARDC) has been proposed for consideration by the NRC in the establishment of guidance for use by non-LWR designers and NRC staff. The proposed criteria were developed to preserve the underlying safety bases expressed by the original GDC, and recognizing that advanced reactors may take

  17. Advanced energy materials (Preface)

    Science.gov (United States)

    Titus, Elby; Ventura, João; Araújo, João Pedro; Campos Gil, João

    2017-12-01

    Advances in material science make it possible to fabricate the building blocks of an entirely new generation of hierarchical energy materials. Recent developments were focused on functionality and areas connecting macroscopic to atomic and nanoscale properties, where surfaces, defects, interfaces and metastable state of the materials played crucial roles. The idea is to combine both, the top-down and bottom-up approach as well as shape future materials with a blend of both the paradigms.

  18. Advanced human-system interface design review guidelines

    International Nuclear Information System (INIS)

    O'Hara, J.M.

    1990-01-01

    Advanced, computer-based, human-system interface designs are emerging in nuclear power plant (NPP) control rooms. These developments may have significant implications for plant safety in that they will greatly affect the ways in which operators interact with systems. At present, however, the only guidance available to the US Nuclear Regulatory Commission (NRC) for the review of control room-operator interfaces, NUREG-0700, was written prior to these technological changes and is thus not designed to address them. The objective of the project reported in this paper is to develop an Advanced Control Room Design Review Guideline for use in performing human factors reviews of advanced operator interfaces. This guideline will be implemented, in part, as a portable, computer-based, interactive document for field use. The paper describes the overall guideline development methodology, the present status of the document, and the plans for further guideline testing and development. 21 refs., 3 figs

  19. Designing Energy Conversion Systems for the Next Decade

    Directory of Open Access Journals (Sweden)

    Slobodan N. Vukosavić

    2012-12-01

    Full Text Available Sustainable growth in energy consumption requires transition to clean and green energy sources and energy systems. Environment friendly and renewable energy systems deal with electrical energy and rely on efficient electrical power converters. High power electronics is the key technology to deal with the next generation of electrical energy systems. The door to future breakthroughs in high power electronics is opened by major improvement in semiconductor power devices and their packaging technologies. New materials allow for much higher junction temperatures and higher operating voltages. Most importantly, advanced power semiconductor devices and novel converter topology open the possibility to increase the energy efficiency of power conversion and reduce the amount of heat. Although the waste heat created by high power converters can be put to use by adding on to heating systems, this option is not always available and the conversion losses are mostly wasted. At the same time, wasted heat is a form of pollution that threatens the environment. Another task for high power converters is efficient harvesting of renewable energy sources, such as the wind energy and the sun. Intermittent in nature, they pose a difficult task to power converter topology and controls. Eventually, high power converters are entering power distribution and transmission networks. With their quick reaction, with fast communication between the grid nodes and with advanced controllability of high power converters, a number of innovations can be introduced, facilitating the power system control and allowing for optimizations and loss reduction. Coined smart grid, this solution comprises two key elements, and these are intelligent controls and large static power converters. At virtually no cost, smart grids allow for a better utilization of available resources and it enlarges the stable operating range of the transmission systems. Therefore, it is of interest to review the

  20. Trends in Energy Management Technology - Part 4: Review ofAdvanced Applications in Energy Management, Control, and InformationSystems

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Gaymond; Webster, Tom

    2003-08-01

    In this article, the fourth in a series, we provide a review of advanced applications in Energy Management, Control, and Information Systems (EMCIS). The available features for these products are summarized and analyzed with regard to emerging trends in EMCIS and potential benefits to the Federal sector. The first article [1] covered enabling technologies for emerging energy management systems. The second article [2] serves as a basic reference for building control system (BCS) networking fundamentals and includes an assessment of current approaches to open communications. The third article [3] evaluated several products that exemplify the current state of practice in EMCIS. It is important for energy managers in the Federal sector to have a high level of knowledge and understanding of these complex energy management systems. This series of articles provides energy practitioners with some basic informational and educational tools to help make decisions relative to energy management systems design, specification, procurement, and energy savings potential.

  1. Advanced reactors and future energy market needs

    International Nuclear Information System (INIS)

    Paillere, Henri; )

    2017-01-01

    Based on the results of a very well-attended international workshop on 'Advanced Reactor Systems and Future Energy Market Needs' that took place in April 2017, the NEA has embarked on a two-year study with the objective of analysing evolving energy market needs and requirements, as well as examining how well reactor technologies under development today will fit into tomorrow's low-carbon world. The NEA Expert Group on Advanced Reactor Systems and Future Energy Market Needs (ARFEM) held its first meeting on 5-6 July 2017 with experts from Canada, France, Italy, Japan, Korea, Poland, Romania, Russia and the United Kingdom. The outcome of the study will provide much needed insight into how well nuclear can fulfil its role as a key low-carbon technology, and help identify challenges related to new operational, regulatory or market requirements

  2. Optimal synthesis and operation of advanced energy supply systems for standard and domotic home

    International Nuclear Information System (INIS)

    Buoro, Dario; Casisi, Melchiorre; Pinamonti, Piero; Reini, Mauro

    2012-01-01

    Highlights: ► Definition of an optimization model for a home energy supply system. ► Optimization of the energy supply system for standard and domotic home. ► Strong improvement can be achieved adopting the optimal system in standard and domotic home. ► The improvements are consistent if supply side and demand side strategies are applied together. ► Solutions with internal combustion engines are less sensible to market price of electricity and gas. - Abstract: The paper deals with the optimization of an advanced energy supply systems for two dwellings: a standard home and an advanced domotic home, where some demand side energy saving strategies have been implemented. In both cases the optimal synthesis, design and operation of the whole energy supply system have been obtained and a sensitivity analysis has been performed, by introducing different economic constraints. The optimization model is based on a Mixed Integer Linear Program (MILP) and includes different kinds of small-scale cogenerators, geothermal heat pumps, boilers, heat storages, solar thermal and photovoltaic panels. In addition, absorption machines, supplied with cogenerated heat, can be used instead of conventional electrical chiller to face the cooling demand. The aim of the analysis is to address the question if advanced demand strategies and supply strategies have to be regarded as alternatives, or if they have to be simultaneously applied, in order to obtain the maximum energy and economic benefit.

  3. Design and Implementation of a Microgrid Energy Management System

    Directory of Open Access Journals (Sweden)

    Eun-Kyu Lee

    2016-11-01

    Full Text Available A microgrid is characterized by the integration of distributed energy resources and controllable loads in a power distribution network. Such integration introduces new, unique challenges to microgrid management that have never been exposed to traditional power systems. To accommodate these challenges, it is necessary to redesign a conventional Energy Management System (EMS so that it can cope with intrinsic characteristics of microgrids. While many projects have shown excellent research outcomes, they have either tackled portions of the characteristics or validated their EMSs only via simulations. This paper proposes a Microgrid Platform (MP, an advanced EMS for efficient microgrid operations. We design the MP by taking into consideration (i all the functional requirements of a microgrid EMS (i.e., optimization, forecast, human–machine interface, and data analysis and (ii engineering challenges (i.e., interoperability, extensibility, and flexibility. Moreover, a prototype system is developed and deployed in two smart grid testbeds: UCLA Smart Grid Energy Research Center and Korea Institute of Energy Research. We then conduct experiments to verify the feasibility of the MP design in real-world settings. Our testbeds and experiments demonstrate that the MP is able to communicate with various energy devices and to perform an energy management task efficiently.

  4. On the safety performance of the advanced nuclear energy systems

    International Nuclear Information System (INIS)

    Li Shounan

    1999-01-01

    Some features on the safety performances of the Advanced Nuclear Energy Systems are discussed. The advantages and some peculiar problems on the safety of Advanced Nuclear Energy Systems with subcritical nuclear reactor driven by external neutron sources are also pointed out in comparison with conventional nuclear reactors

  5. Relevant thermal hydraulic aspects of advanced reactors design: status report

    International Nuclear Information System (INIS)

    1996-11-01

    This status report provides an overview on the relevant thermalhydraulic aspects of advanced reactor designs (e.g. ABWR, AP600, SBWR, EPR, ABB 80+, PIUS, etc.). Since all of the advanced reactor concepts are at the design stage, the information and data available in the open literature are still very limited. Some characteristics of advanced reactor designs are provided together with selected phenomena identification and ranking tables. Specific needs for thermalhydraulic codes together with the list of relevant and important thermalhydraulic phenomena for advanced reactor designs are summarized with the purpose of providing some guidance in development of research plans for considering further code development and assessment needs and for the planning of experimental programs

  6. Kalaeloa Energy System Redevelopment Options Including Advanced Microgrids.

    Energy Technology Data Exchange (ETDEWEB)

    Hightower, Marion Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Baca, Michael J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); VanderMey, Carissa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    In June 2016, the Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy (EERE) in collaboration with the Renewable Energy Branch for the Hawaii State Energy Office (HSEO), the Hawaii Community Development Authority (HCDA), the United States Navy (Navy), and Sandia National Laboratories (Sandia) established a project to 1) assess the current functionality of the energy infrastructure at the Kalaeloa Community Development District, and 2) evaluate options to use both existing and new distributed and renewable energy generation and storage resources within advanced microgrid frameworks to cost-effectively enhance energy security and reliability for critical stakeholder needs during both short-term and extended electric power outages. This report discusses the results of a stakeholder workshop and associated site visits conducted by Sandia in October 2016 to identify major Kalaeloa stakeholder and tenant energy issues, concerns, and priorities. The report also documents information on the performance and cost benefits of a range of possible energy system improvement options including traditional electric grid upgrade approaches, advanced microgrid upgrades, and combined grid/microgrid improvements. The costs and benefits of the different improvement options are presented, comparing options to see how well they address the energy system reliability, sustainability, and resiliency priorities identified by the Kalaeloa stakeholders.

  7. Advanced human-system interface design review guidelines

    International Nuclear Information System (INIS)

    O'Hara, J.M.

    1990-01-01

    Advanced, computer-based, human-system interface designs are emerging in nuclear power plant control rooms as a result of several factors. These include: (1) incorporation of new systems such as safety parameter display systems, (2) backfitting of current control rooms with new technologies when existing hardware is no longer supported by equipment vendors, and (3) development of advanced control room concepts. Control rooms of the future will be developed almost exclusively with advanced instrumentation and controls based upon digital technology. In addition, the control room operator will be interfacing with more intelligent systems which will be capable of providing information processing support to the operator. These developments may have significant implications for plant safety in that they will greatly affect the operator's role in the system as well as the ways in which he interacts with it. At present, however, the only guidance available to the Nuclear Regulatory Commission (NRC) for the review of control room-operator interfaces is NUREG-0700. It is a document which was written prior to these technological changes and is, therefore, tailored to the technologies used in traditional control rooms. Thus, the present guidance needs to be updated since it is inadequate to serve as the basis for NRC staff review of such advanced or hybrid control room designs. The objective of the project reported in this paper is to develop an Advanced Control Room Design Review Guideline suitable for use in performing human factors reviews of advanced operator interfaces. This guideline will take the form of a portable, interactive, computer-based document that may be conveniently used by an inspector in the field, as well as a text-based document

  8. Advanced energy projects: FY 1987 research summaries

    International Nuclear Information System (INIS)

    1987-09-01

    This report contains brief summaries of all projects active in the Division of Advanced Energy Projects during Fiscal Year 1987 (October 1, 1986-September 30, 1987). The intent of this compilation is to provide a convenient means for quickly acquainting an interested reader with the program in Advanced Energy Projects. More detailed information on research activities in a particular project may be obtained by contacting directly the principal investigator. Some projects will have reached the end of their contract periods by the time this book appears, and will, therefore, no longer be active. Those cases in which work was completed in FY '87 are indicated by the footnote: Project completed. The annual funding level of each project is shown

  9. Structural and piping issues in the design certification of advanced reactors

    International Nuclear Information System (INIS)

    Ali, S.A.; Terao, D.; Bagchi, G.

    1996-01-01

    The purpose of this paper is to discuss the design certification of structures and piping for evolutionary and passive advanced light water reactors. Advanced reactor designs are based on a set of assumed site-related parameters that are selected to envelop a majority of potential nuclear power plant sites. Multiple time histories are used as the seismic design basis in order to cover the majority of potential sites in the US. Additionally, design are established to ensure that surface motions at a particular site will not exceed the enveloped standard design surface motions. State-of-the-art soil-structure interaction (SSI) analyses have been performed for the advanced reactors, which include structure-to-structure interaction for all seismic Category 1 structures. Advanced technology has been utilized to exclude the dynamic effects of pipe rupture from structural design by demonstrating that the probability of pipe rupture is extremely low. For piping design, the advanced reactor vendors have developed design acceptance criteria (DAC) which provides the piping design analysis methods, design procedures, and acceptance criteria. In SECY-93-087 the NRC staff recommended that the Commission approve the approach to eliminate the OBE from the design of structures and piping in advanced reactors and provided guidance which identifies the necessary changes to existing seismic design criteria. The supplemental criteria address fatigue, seismic anchor motion, and piping stress limits when the OBE is eliminated

  10. Energy design for architects

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, A. (ed.)

    1989-01-01

    This book contains techniques for energy efficiency in architectural design. Many aspects are covered including: cost; comfort and health; energy use; the design process; and analytical techniques. 202 figs. (JF)

  11. Advanced Solar Panel Designs

    Science.gov (United States)

    Ralph, E. L.; Linder, E. B.

    1995-01-01

    Solar panel designs that utilize new high-efficiency solar cells and lightweight rigid panel technologies are described. The resulting designs increase the specific power (W/kg) achievable in the near-term and are well suited to meet the demands of higher performance small satellites (smallsats). Advanced solar panel designs have been developed and demonstrated on two NASA SBIR contracts at Applied Solar. The first used 19% efficient, large area (5.5 cm x 6.5 cm) GaAs/Ge solar cells with a lightweight rigid graphite epoxy isogrid substrate configuration. A 1,445 sq cm coupon was fabricated and tested to demonstrate 60 W/kg with a high potential of achieving 80 W/kg. The second panel design used new 22% efficiency, dual-junction GaInP2/GaAs/Ge solar cells combined with a lightweight aluminum core/graphite fiber mesh facesheet substrate. A 1,445 sq cm coupon was fabricated and tested to demonstrate 105 W/kg with the potential of achieving 115 W/kg.

  12. Recent advances in centrifugal contactors design

    International Nuclear Information System (INIS)

    Leonard, R.A.

    1987-10-01

    Advances in thedesign of the Argonne centrifugal contactor for solvent extaction are being realized as these contactors are built, tested, and used to implement the TRUEX process for the cleanup of nuclear waste liquids. These advances include (1) using off-the-shelf, face-mounted motors, (2) modifying the contractor so that relatively volatile solvents can be used, (3) adding a high-level liquid detector that can be used to alert the plant operator of process upsets, (4) providing secondary feed ports, (5) optimizing support frame design, (6) maintaining a linear design with external interstage lines so the stages can be allocated as needed for extraction, scrub, strip, and solvent cleanup operations, and (7) developing features that facilitate contractor operation in remote facilities. 11 refs., 8 figs

  13. Advances in passive cooling design and performance analysis

    International Nuclear Information System (INIS)

    Woodcock, J.

    1994-01-01

    The Third International Conference on Containment Design and Operation continues the trend of rapidly extending the state of the art in containment methodology, joining other conferences, OECD-sponsored International Standard Problem exercises, and vendor licensing submittals. Methodology developed for use on plants with passive features is under increasing scrutiny for advanced designs, since the passive features are often the only deviation from existing operating base of the past 30 years of commercial nuclear power. This session, 'Containment Passive Safety Systems Design and Operation,' offers papers on a wide range of topics, with authors from six organizations from around the world, dealing with general passive containments, Westinghouse AP600, large (>1400 MWe) passive plants, and the AECL advanced CANDU reactor. This level and variety of participation underscores the high interest and accelerated methods development associated with advanced passive containment heat removal. The papers presented in this session demonstrate that significant contributions are being made to the advancement of technology necessary for building a new generation of safer, more economical nuclear plants. (author)

  14. Advancement of DOE's EnergyPlus Building Energy Simulation Payment

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Lixing [Florida Solar Energy Center, Cocoa, FL (United States); Shirey, Don [Florida Solar Energy Center, Cocoa, FL (United States); Raustad, Richard [Florida Solar Energy Center, Cocoa, FL (United States); Nigusse, Bereket [Florida Solar Energy Center, Cocoa, FL (United States); Sharma, Chandan [Florida Solar Energy Center, Cocoa, FL (United States); Lawrie, Linda [DHL Consulting, Bonn (Germany); Strand, Rick [Univ. of Illinois, Champaign, IL (United States); Pedersen, Curt [COPA, Panama City (Panama); Fisher, Dan [Oklahoma State Univ., Stillwater, OK (United States); Lee, Edwin [Oklahoma State Univ., Stillwater, OK (United States); Witte, Mike [GARD Analytics, Arlington Heights, IL (United States); Glazer, Jason [GARD Analytics, Arlington Heights, IL (United States); Barnaby, Chip [Wrightsoft, Lexington, MA (United States)

    2011-09-30

    EnergyPlus{sup TM} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOE's Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. The 5-year project was managed by the National Energy Technology Laboratory and was divided into 5 budget period between 2006 and 2011. During the project period, 11 versions of EnergyPlus were released. This report summarizes work performed by an EnergyPlus development team led by the University of Central Florida's Florida Solar Energy Center (UCF/FSEC). The team members consist of DHL Consulting, C. O. Pedersen Associates, University of Illinois at Urbana-Champaign, Oklahoma State University, GARD Analytics, Inc., and WrightSoft Corporation. The project tasks involved new feature development, testing and validation, user support and training, and general EnergyPlus support. The team developed 146 new features during the 5-year period to advance the EnergyPlus capabilities. Annual contributions of new features are 7 in budget period 1, 19 in period 2, 36 in period 3, 41 in period 4, and 43 in period 5, respectively. The testing and validation task focused on running test suite and publishing report, developing new IEA test suite cases, testing and validating new source code, addressing change requests, and creating and testing installation package. The user support and training task provided support for users and interface developers, and organized and taught workshops. The general support task involved upgrading StarTeam (team sharing) software and updating existing utility software. The project met the DOE objectives and completed all tasks successfully. Although the EnergyPlus software was enhanced

  15. The Consortium of Advanced Residential Buildings (CARB) - A Building America Energy Efficient Housing Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Robb Aldrich; Lois Arena; Dianne Griffiths; Srikanth Puttagunta; David Springer

    2010-12-31

    This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis by 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at

  16. Compilation of Energy Efficient Concepts in Advanced Aircraft Design and Operations. Volume 1. Technical report

    National Research Council Canada - National Science Library

    Clyman, Milton

    1980-01-01

    .... The search addressed the technologies necessary to support next generation (IOC 1990+) air vehicle design and operation concepts that will reduce the requirement for natural petroleum-derived energy...

  17. Economic aspects of advanced energy technologies

    International Nuclear Information System (INIS)

    Ramakumar, R.; Rodriguez, A.P.; Venkata, S.S.

    1993-01-01

    Advanced energy technologies span a wide variety of resources, techniques, and end-user requirements. Economic considerations are major factors that shape their harnessing and utilization. A discussion of the basic factors in the economic arena is presented, with particular emphasis on renewable energy technologies--photovoltaics, solar-thermal, wind-electric conversion, biomass utilization, hydro, and tidal and wave energy systems. The following are essential to determine appropriate energy system topologies: proper resource-need matching with an eye on the quality of energy requirements, integrated use of several resources and technologies, and a comprehensive consideration which includes prospecting, collection, conversion, transportation, distribution, storage and reconversion, end use, and subsequent waste management aspects. A few case studies are included to apprise the reader of the status of some of the key technologies and systems

  18. Analysis and design of energy systems

    International Nuclear Information System (INIS)

    Bajura, R.A.; Marston, C.H.; Tstsaronis, G.

    1989-01-01

    The 1980s saw growing public awareness of environmental issues. Events such as an unusually hot and dry summer in parts of the world, contamination of community drinking water supplies by leakage from abandoned waste disposal sites, and the discovery of a hole in the ozone layer in the upper stratosphere over Antarctica made headlines in the popular press. The long-range impact of these events on the environment or on human health is still being debated by the scientific and technical communities. In the interim, however, it is prudent to mitigate any possible environmental problems by continuing to develop high-efficiency energy utilization systems that are also cost effective and environmentally sound. High-efficiency fossil energy systems have a number of environmental benefits: carbon dioxide production is reduced and this, in turn, reduces the potential environmental insult which may occur during resource extraction or shipping. Thermodynamic analysis coupled with economic analysis is a useful tool to identify practical, high-efficiency systems. The Symposium on the Analysis and Design of Energy Systems is intended to provide a forum to present both advances in analytical techniques for this type of system and case studies applying these techniques

  19. Advanced nuclear energy systems and the need of accurate nuclear data: the n_TOF project at CERN

    CERN Document Server

    Colonna, N; Praena, J; Lederer, C; Karadimos, D; Sarmento, R; Domingo-Pardo, C; Plag, R; Massimi, C; Calviani, M; Guerrero, C; Paradela, C; Belloni, F

    2010-01-01

    To satisfy the world's constantly increasing demand for energy, a suitable mix of different energy sources has to be devised. In this scenario, an important role could be played by nuclear energy, provided that major safety, waste and proliferation issues affecting current nuclear reactors are satisfactorily addressed. To this purpose, a large effort has been under way for a few years towards the development of advanced nuclear systems with the aim of closing the fuel cycle. Generation IV reactors, with full or partial waste recycling capability, accelerator driven systems, as well as new fuel cycles are the main options being investigated. The design of advanced systems requires improvements in basic nuclear data, such as cross-sections for neutron-induced reactions on actinides. In this paper, the main concepts of advanced reactor systems are described, together with the related needs of new and accurate nuclear data. The present activity in this field at the neutron facility n\\_TOF at CERN is discussed.

  20. Conceptual safety design analysis of Korea advanced liquid metal reactor

    International Nuclear Information System (INIS)

    Suk, S. D.; Park, C. K.

    1999-01-01

    The national long-term R and D program, updated in 1977, requires Korea Atomic Energy Research Institute (KAERI) to complete by the year 2006 the basic design of Korea Advanced Liquid Metal Reactor (KALIMER), along with supporting R and D work, with the capability of resolving the issue of spent fuel storage as well as with significantly enhanced safety. KALIMER is a 150 Mwe pool-type sodium cooled prototype reactor that uses metallic fuel. The conceptual design is currently under way to establish a self-consistent design meeting a set of major safety design requirements for accident prevention. Some of the current emphasis includes those for inherent and passive means of negative reactivity insertion and decay heat removal, high shutdown reliability, prevention of and protection from sodium chemical reaction, and high seismic margin, among others. All of these requirements affect the reactor design significantly and involve extensive supporting R and D programs. This paper summarizes some of the results of conceptual engineering and design analyses performed for the safety of KALIMER in the area of inherent safety, passive decay heat removal, sodium water reaction, and seismic isolation. (author)

  1. Regional characteristics relevant to advanced technology cogeneration development. [industrial energy

    Science.gov (United States)

    Manvi, R.

    1981-01-01

    To assist DOE in establishing research and development funding priorities in the area of advanced energy conversion technoloy, researchers at the Jet Propulsion Laboratory studied those specific factors within various regions of the country that may influence cogeneration with advanced energy conversion systems. Regional characteristics of advanced technology cogeneration possibilities are discussed, with primary emphasis given to coal derived fuels. Factors considered for the study were regional industry concentration, purchased fuel and electricity prices, environmental constraints, and other data of interest to industrial cogeneration.

  2. Basic design decisions for advanced AST-type NHRs

    International Nuclear Information System (INIS)

    Gureyeva, L.V.; Egorov, V.V.; Malamud, V.A.

    1997-01-01

    On the basis of the AST-500 reference design decisions and of the experience gained in the RF during the pilot NDHPs development and construction, the advanced NHR AST-500M has been developed recently by OKB Mechanical Engineering, as well as a whole series of heating and co-generation reactor plants of various unit power. All the designs represent enhanced safety reactor plants meeting the contemporary national requirements and international recommendations for nuclear plants of the new generation. The main objectives for the advanced NHR development are considered. New design decisions and engineering improvements are described briefly. (author). 3 refs, 4 figs

  3. Basic design decisions for advanced AST-type NHRs

    Energy Technology Data Exchange (ETDEWEB)

    Gureyeva, L V; Egorov, V V; Malamud, V A [OKBM, Nizhny Novgorod (Russian Federation)

    1997-09-01

    On the basis of the AST-500 reference design decisions and of the experience gained in the RF during the pilot NDHPs development and construction, the advanced NHR AST-500M has been developed recently by OKB Mechanical Engineering, as well as a whole series of heating and co-generation reactor plants of various unit power. All the designs represent enhanced safety reactor plants meeting the contemporary national requirements and international recommendations for nuclear plants of the new generation. The main objectives for the advanced NHR development are considered. New design decisions and engineering improvements are described briefly. (author). 3 refs, 4 figs.

  4. Plant maintenance and advanced reactors issue, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Agnihotri, Newal [ed.

    2009-09-15

    The focus of the September-October issue is on plant maintenance and advanced reactors. Major articles/reports in this issue include: Technologies of national importance, by Tsutomu Ohkubo, Japan Atomic Energy Agency, Japan; Modeling and simulation advances brighten future nuclear power, by Hussein Khalil, Argonne National Laboratory, Energy and desalination projects, by Ratan Kumar Sinha, Bhabha Atomic Research Centre, India; A plant with simplified design, by John Higgins, GE Hitachi Nuclear Energy; A forward thinking design, by Ray Ganthner, AREVA; A passively safe design, by Ed Cummins, Westinghouse Electric Company; A market-ready design, by Ken Petrunik, Atomic Energy of Canada Limited, Canada; Generation IV Advanced Nuclear Energy Systems, by Jacques Bouchard, French Commissariat a l'Energie Atomique, France, and Ralph Bennett, Idaho National Laboratory; Innovative reactor designs, a report by IAEA, Vienna, Austria; Guidance for new vendors, by John Nakoski, U.S. Nuclear Regulatory Commission; Road map for future energy, by John Cleveland, International Atomic Energy Agency, Vienna, Austria; and, Vermont's largest source of electricity, by Tyler Lamberts, Entergy Nuclear Operations, Inc. The Industry Innovation article is titled Intelligent monitoring technology, by Chris Demars, Exelon Nuclear.

  5. Observation on optimal transition from conventional energy with resource constraints to advanced energy with virtually unlimited resource, (2)

    International Nuclear Information System (INIS)

    Ohkubo, Hiroo; Suzuki, Atsuyuki; Kiyose, Ryohei

    1983-01-01

    This is an extension of the Suzuki model (base model) on optimal transition from resource-limited energy (oil) to advanced energy with virtually unlimited resource. The finite length of plant life, fuel cost, technological progress factor of advanced energy and the upper limit upon annual consumption rate of oil are taken into account for such an extension. The difference in optimal solutions obtained from extended and base models is shown by an application of the maximum principle. The implication of advanced energy R and D andenergy conservation effort is also discussed. (author)

  6. Advanced LP turbine blade design

    International Nuclear Information System (INIS)

    Jansen, M.; Pfeiffer, R.; Termuehlen, H.

    1990-01-01

    In the 1960's and early 1970's, the development of steam turbines for the utility industry was mainly influenced by the demand for increasing unit sizes. Nuclear plants in particular, required the design of LP turbines with large annulus areas for substantial mass and volumetric steam flows. Since then the development of more efficient LP turbines became an ongoing challenge. Extensive R and D work was performed in order to build efficient and reliable LP turbines often exposed to severe corrosion, erosion and dynamic excitation conditions. This task led to the introduction of an advanced disk-type rotor design for 1800 rpm LP turbines and the application of a more efficient, reaction-type blading for all steam turbine sections including the first stages of LP turbines. The most recent developments have resulted in an advanced design of large LP turbine blading, typically used in the last three stages of each LP turbine flow section. Development of such blading required detailed knowledge of the three dimensional, largely transonic, flow conditions of saturated steam. Also the precise assessment of blade stressing from dynamic conditions, such as speed and torsional resonance, as well as stochastic and aerodynamic excitation is of extreme importance

  7. Conceptual design study advanced concepts test (ACT) facility

    Energy Technology Data Exchange (ETDEWEB)

    Zaloudek, F.R.

    1978-09-01

    The Advanced Concepts Test (ACT) Project is part of program for developing improved power plant dry cooling systems in which ammonia is used as a heat transfer fluid between the power plant and the heat rejection tower. The test facility will be designed to condense 60,000 lb/hr of exhaust steam from the No. 1 turbine in the Kern Power Plant at Bakersfield, CA, transport the heat of condensation from the condenser to the cooling tower by an ammonia phase-change heat transport system, and dissipate this heat to the environs by a dry/wet deluge tower. The design and construction of the test facility will be the responsibility of the Electric Power Research Institute. The DOE, UCC/Linde, and the Pacific Northwest Laboratories will be involved in other phases of the project. The planned test facilities, its structures, mechanical and electrical equipment, control systems, codes and standards, decommissioning requirements, safety and environmental aspects, and energy impact are described. Six appendices of related information are included. (LCL)

  8. A double-multilayer monochromator using a modular design for the Advanced Photon Source

    International Nuclear Information System (INIS)

    Shu, D.; Yun, W.; Lai, B.; Barraza, J.; Kuzay, T.M.

    1994-01-01

    A novel double-multilayer monochromator has been designed for the Advanced Photon Source X-ray undulator beamline at Argonne National Laboratory. The monochromator consists of two ultra high-vacuum (UHV) compatible modular vessels, each with a sine-bar driving structure and a water-cooled multilayer holder. A high precision Y-Z stage is used to provide compensating motion for the second multilayer from outside the vacuum chamber so that the monochromator can fix the output monochromatic beam direction and angle during the energy scan in a narrow range. The design details for this monochromator are presented in this paper

  9. Design criteria for advanced reactors

    International Nuclear Information System (INIS)

    Dennielou, Y.

    1991-01-01

    Design criteria for advanced reactors are discussed, including safety aspects, site selection, problems related to maintenance and possibility of repairing or replacing structures or components of a nuclear power plant, the human factor considerations. Bearing in mind that some of these criteria are the subject of consensus at international level, the author suggests to establish a table of different operator requirements, to prepare a dossier on the comparison of input data for probabilistic risk analysis, to take into consideration the means to control a severe accident from the very start of the design

  10. Advanced nuclear reactor safety design technology research in NPIC

    International Nuclear Information System (INIS)

    Yu, H.

    2014-01-01

    After the Fukushima accident happen, Nuclear Power Plants (NPPs) construction has been suspended in China for a time. Now the new regulatory rule has been proposed that the most advanced safety standard must be adopted for the new NPPs and practical elimination of large fission product release by design during the next five plans period. So the advanced reactor research is developing in China. NPIC is engaging on the ACP1000 and ACP100 (Small Module Reactor) design. The main design character will be introduced in this paper. The Passive Combined with Active (PCWA) design was adopted during the ACP1000 design to reduce the core damage frequency (CDF); the Cavity Injection System (CIS) is design to mitigation the consequence of the severe accident. Advance passive safety system was designed to ensure the long term residual heat removal during the Small Module Reactor (SMR). The SMR will be utilized to be the floating reactors, district heating reactor and so on. Besides, the Science and Technology on Reactor System Design Technology Laboratory (LRSDT) also engaged on the fundamental thermal-hydraulic characteristic research in support of the system validation. (author)

  11. Ceramic Integration Technologies for Advanced Energy Systems: Critical Needs, Technical Challenges, and Opportunities

    Science.gov (United States)

    Singh, Mrityunjay

    2010-01-01

    Advanced ceramic integration technologies dramatically impact the energy landscape due to wide scale application of ceramics in all aspects of alternative energy production, storage, distribution, conservation, and efficiency. Examples include fuel cells, thermoelectrics, photovoltaics, gas turbine propulsion systems, distribution and transmission systems based on superconductors, nuclear power generation and waste disposal. Ceramic integration technologies play a key role in fabrication and manufacturing of large and complex shaped parts with multifunctional properties. However, the development of robust and reliable integrated systems with optimum performance requires the understanding of many thermochemical and thermomechanical factors, particularly for high temperature applications. In this presentation, various needs, challenges, and opportunities in design, fabrication, and testing of integrated similar (ceramic ceramic) and dissimilar (ceramic metal) material www.nasa.gov 45 ceramic-ceramic-systems have been discussed. Experimental results for bonding and integration of SiC based Micro-Electro-Mechanical-Systems (MEMS) LDI fuel injector and advanced ceramics and composites for gas turbine applications are presented.

  12. Energy Efficient Engine program advanced turbofan nacelle definition study

    Science.gov (United States)

    Howe, David C.; Wynosky, T. A.

    1985-01-01

    Advanced, low drag, nacelle configurations were defined for some of the more promising propulsion systems identified in the earlier Benefit/Cost Study, to assess the benefits associated with these advanced technology nacelles and formulate programs for developing these nacelles and low volume thrust reversers/spoilers to a state of technology readiness in the early 1990's. The study results established the design feasibility of advanced technology, slim line nacelles applicable to advanced technology, high bypass ratio turbofan engines. Design feasibility was also established for two low volume thrust reverse/spoiler concepts that meet or exceed the required effectiveness for these engines. These nacelle and thrust reverse/spoiler designs were shown to be applicable in engines with takeoff thrust sizes ranging from 24,000 to 60,000 pounds. The reduced weight, drag, and cost of the advanced technology nacelle installations relative to current technology nacelles offer a mission fuel burn savings ranging from 3.0 to 4.5 percent and direct operating cost plus interest improvements from 1.6 to 2.2 percent.

  13. Advanced Energy Harvesting Control Schemes for Marine Renewable Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    McEntee, Jarlath [Ocean Renewable Power Company, Portland, ME (United States); Polagye, Brian [Ocean Renewable Power Company, Portland, ME (United States); Fabien, Brian [Ocean Renewable Power Company, Portland, ME (United States); Thomson, Jim [Ocean Renewable Power Company, Portland, ME (United States); Kilcher, Levi [Ocean Renewable Power Company, Portland, ME (United States); Marnagh, Cian [Ocean Renewable Power Company, Portland, ME (United States); Donegan, James [Ocean Renewable Power Company, Portland, ME (United States)

    2016-03-31

    The Advanced Energy Harvesting Control Schemes for Marine Renewable Energy Devices (Project) investigated, analyzed and modeled advanced turbine control schemes with the objective of increasing the energy harvested by hydrokinetic turbines in turbulent flow. Ocean Renewable Power Company (ORPC) implemented and validated a feedforward controller to increase power capture; and applied and tested the controls on ORPC’s RivGen® Power Systems in Igiugig, Alaska. Assessments of performance improvements were made for the RivGen® in the Igiugig environment and for ORPC’s TidGen® Power System in a reference tidal environment. Annualized Energy Production (AEP) and Levelized Cost of Energy (LCOE) improvements associated with implementation of the recommended control methodology were made for the TidGen® Power System in the DOE reference tidal environment. System Performance Advancement (SPA) goals were selected for the project. SPA targets were to improve Power to Weight Ratio (PWR) and system Availability, with the intention of reducing Levelized Cost of Electricity (LCOE). This project focused primarily reducing in PWR. Reductions in PWR of 25.5% were achieved. Reductions of 20.3% in LCOE were achieved. This project evaluated four types of controllers which were tested in simulation, emulation, a laboratory flume, and the field. The adaptive Kω2 controller performs similarly to the non-adaptive version of the same controller and may be useful in tidal channels where the mean velocity is continually evolving. Trends in simulation were largely verified through experiments, which also provided the opportunity to test assumptions about turbine responsiveness and control resilience to varying scales of turbulence. Laboratory experiments provided an essential stepping stone between simulation and implementation on a field-scale turbine. Experiments also demonstrated that using “energy loss” as a metric to differentiate between well-designed controllers operating at

  14. To MARS and Beyond with Nuclear Power - Design Concept of Korea Advanced Nuclear Thermal Engine Rocket

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Hyun; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    The President Park of ROK has also expressed support for space program promotion, praising the success of NARO as evidence of a positive outlook. These events hint a strong signal that ROK's space program will be accelerated by the national eager desire. In this national eager desire for space program, the policymakers and the aerospace engineers need to pay attention to the advanced nuclear technology of ROK that is set to a major world nuclear energy country, even exporting the technology. The space nuclear application is a very much attractive option because its energy density is the most enormous among available energy sources in space. This paper presents the design concept of Korea Advanced Nuclear Thermal Engine Rocket (KANuTER) that is one of the advanced nuclear thermal rocket engine developing in Korea Advanced Institute of Science and Technology (KAIST) for space application. Solar system exploration relying on CRs suffers from long trip time and high cost. In this regard, nuclear propulsion is a very attractive option for that because of higher performance and already demonstrated technology. Although ROK was a late entrant into elite global space club, its prospect as a space racer is very bright because of the national eager desire and its advanced technology. Especially it is greatly meaningful that ROK has potential capability to launch its nuclear technology into space as a global nuclear energy leader and a soaring space adventurer. In this regard, KANuTER will be a kind of bridgehead for Korean space nuclear application.

  15. To MARS and Beyond with Nuclear Power - Design Concept of Korea Advanced Nuclear Thermal Engine Rocket

    International Nuclear Information System (INIS)

    Nam, Seung Hyun; Chang, Soon Heung

    2013-01-01

    The President Park of ROK has also expressed support for space program promotion, praising the success of NARO as evidence of a positive outlook. These events hint a strong signal that ROK's space program will be accelerated by the national eager desire. In this national eager desire for space program, the policymakers and the aerospace engineers need to pay attention to the advanced nuclear technology of ROK that is set to a major world nuclear energy country, even exporting the technology. The space nuclear application is a very much attractive option because its energy density is the most enormous among available energy sources in space. This paper presents the design concept of Korea Advanced Nuclear Thermal Engine Rocket (KANuTER) that is one of the advanced nuclear thermal rocket engine developing in Korea Advanced Institute of Science and Technology (KAIST) for space application. Solar system exploration relying on CRs suffers from long trip time and high cost. In this regard, nuclear propulsion is a very attractive option for that because of higher performance and already demonstrated technology. Although ROK was a late entrant into elite global space club, its prospect as a space racer is very bright because of the national eager desire and its advanced technology. Especially it is greatly meaningful that ROK has potential capability to launch its nuclear technology into space as a global nuclear energy leader and a soaring space adventurer. In this regard, KANuTER will be a kind of bridgehead for Korean space nuclear application

  16. Energy efficient neural stimulation: coupling circuit design and membrane biophysics.

    Science.gov (United States)

    Foutz, Thomas J; Ackermann, D Michael; Kilgore, Kevin L; McIntyre, Cameron C

    2012-01-01

    The delivery of therapeutic levels of electrical current to neural tissue is a well-established treatment for numerous indications such as Parkinson's disease and chronic pain. While the neuromodulation medical device industry has experienced steady clinical growth over the last two decades, much of the core technology underlying implanted pulse generators remain unchanged. In this study we propose some new methods for achieving increased energy-efficiency during neural stimulation. The first method exploits the biophysical features of excitable tissue through the use of a centered-triangular stimulation waveform. Neural activation with this waveform is achieved with a statistically significant reduction in energy compared to traditional rectangular waveforms. The second method demonstrates energy savings that could be achieved by advanced circuitry design. We show that the traditional practice of using a fixed compliance voltage for constant-current stimulation results in substantial energy loss. A portion of this energy can be recuperated by adjusting the compliance voltage to real-time requirements. Lastly, we demonstrate the potential impact of axon fiber diameter on defining the energy-optimal pulse-width for stimulation. When designing implantable pulse generators for energy efficiency, we propose that the future combination of a variable compliance system, a centered-triangular stimulus waveform, and an axon diameter specific stimulation pulse-width has great potential to reduce energy consumption and prolong battery life in neuromodulation devices.

  17. Energy efficient neural stimulation: coupling circuit design and membrane biophysics.

    Directory of Open Access Journals (Sweden)

    Thomas J Foutz

    Full Text Available The delivery of therapeutic levels of electrical current to neural tissue is a well-established treatment for numerous indications such as Parkinson's disease and chronic pain. While the neuromodulation medical device industry has experienced steady clinical growth over the last two decades, much of the core technology underlying implanted pulse generators remain unchanged. In this study we propose some new methods for achieving increased energy-efficiency during neural stimulation. The first method exploits the biophysical features of excitable tissue through the use of a centered-triangular stimulation waveform. Neural activation with this waveform is achieved with a statistically significant reduction in energy compared to traditional rectangular waveforms. The second method demonstrates energy savings that could be achieved by advanced circuitry design. We show that the traditional practice of using a fixed compliance voltage for constant-current stimulation results in substantial energy loss. A portion of this energy can be recuperated by adjusting the compliance voltage to real-time requirements. Lastly, we demonstrate the potential impact of axon fiber diameter on defining the energy-optimal pulse-width for stimulation. When designing implantable pulse generators for energy efficiency, we propose that the future combination of a variable compliance system, a centered-triangular stimulus waveform, and an axon diameter specific stimulation pulse-width has great potential to reduce energy consumption and prolong battery life in neuromodulation devices.

  18. Application of the advanced engineering environment for optimization energy consumption in designed vehicles

    Science.gov (United States)

    Monica, Z.; Sękala, A.; Gwiazda, A.; Banaś, W.

    2016-08-01

    Nowadays a key issue is to reduce the energy consumption of road vehicles. In particular solution one could find different strategies of energy optimization. The most popular but not sophisticated is so called eco-driving. In this strategy emphasized is particular behavior of drivers. In more sophisticated solution behavior of drivers is supported by control system measuring driving parameters and suggesting proper operation of the driver. The other strategy is concerned with application of different engineering solutions that aid optimization the process of energy consumption. Such systems take into consideration different parameters measured in real time and next take proper action according to procedures loaded to the control computer of a vehicle. The third strategy bases on optimization of the designed vehicle taking into account especially main sub-systems of a technical mean. In this approach the optimal level of energy consumption by a vehicle is obtained by synergetic results of individual optimization of particular constructional sub-systems of a vehicle. It is possible to distinguish three main sub-systems: the structural one the drive one and the control one. In the case of the structural sub-system optimization of the energy consumption level is related with the optimization or the weight parameter and optimization the aerodynamic parameter. The result is optimized body of a vehicle. Regarding the drive sub-system the optimization of the energy consumption level is related with the fuel or power consumption using the previously elaborated physical models. Finally the optimization of the control sub-system consists in determining optimal control parameters.

  19. Antarctica's Princess Elisabeth research station setting new standards in renewable energy design

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    The first zero emission research platform that was recently inaugurated in Antarctica. The Princess Elisabeth research station, which is operated by the International Polar Foundation (IPF), is the only polar base to operate entirely on renewable energy. It was commissioned by the Belgian government to better understand the mechanism of climate change. The research station sets new standards in advanced design methodology. It demonstrates that the techniques and technology being used in extreme conditions could be a model for both commercial and domestic applications in more temperate areas around the world. Renewable energy sources are used along with passive housing techniques, optimization of energy consumption and best waste management practices. Solar energy provides about 30 per cent of the station's electricity supply through PV solar panels. Solar energy also provides hot water through solar thermal panels. Newly developed vacuum tube thermal panels reduce conducted heat loss and convert 70 per cent of the solar energy into useable thermal energy. The station's water treatment unit will recycle 100 per cent of its water and reuse 75 per cent of it using technology developed for future spaceships. After purification and neutralization, the recycled water is allocated to a second use for showers, toilets and washing machines. The research station uses passive building techniques. Its insulation, shape, orientation and window disposition allow comfortable ambient temperature to be maintained inside the building with little energy input. Wind power is responsible for about 70 per cent of the station's total electricity requirement. This is provided by 9 wind turbines that are designed to withstand the harsh conditions in Antarctica. This article also described the advanced power management system at the station, with particular reference to its SCADA human interface, the three-phase AC, the battery grid, evacuation of surplus energy and wiring system. 4 figs

  20. Advanced heat pump for the recovery of volatile organic compounds. Phase 1, Conceptual design of an advanced Brayton cycle heat pump for the recovery of volatile organic compounds: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    Emissions of Volatile Organic Compounds (VOC) from stationary industrial and commercial sources represent a substantial portion of the total US VOC emissions. The ``Toxic-Release Inventory`` of The US Environmental Protection Agency estimates this to be at about 3 billion pounds per year (1987 estimates). The majority of these VOC emissions are from coating processes, cleaning processes, polymer production, fuel production and distribution, foam blowing,refrigerant production, and wood products production. The US Department of Energy`s (DOE) interest in the recovery of VOC stems from the energy embodied in the recovered solvents and the energy required to dispose of them in an environmentally acceptable manner. This Phase I report documents 3M`s work in close working relationship with its subcontractor Nuclear Consulting Services (Nucon) for the preliminary conceptual design of an advanced Brayton cycle heat pump for the recovery of VOC. Nucon designed Brayton cycle heat pump for the recovery of methyl ethyl ketone and toluene from coating operations at 3M Weatherford, OK, was used as a base line for the work under cooperative agreement between 3M and ODE. See appendix A and reference (4) by Kovach of Nucon. This cooperative agreement report evaluates and compares an advanced Brayton cycle heat pump for solvent recovery with other competing technologies for solvent recovery and reuse. This advanced Brayton cycle heat pump is simple (very few components), highly reliable (off the shelf components), energy efficient and economically priced.

  1. Advanced customization in architectural design and construction

    CERN Document Server

    Naboni, Roberto

    2015-01-01

    This book presents the state of the art in advanced customization within the sector of architectural design and construction, explaining important new technologies that are boosting design, product and process innovation and identifying the challenges to be confronted as we move toward a mass customization construction industry. Advanced machinery and software integration are discussed, as well as an overview of the manufacturing techniques offered through digital methods that are acquiring particular significance within the field of digital architecture. CNC machining, Robotic Fabrication, and Additive Manufacturing processes are all clearly explained, highlighting their ability to produce personalized architectural forms and unique construction components. Cutting-edge case studies in digitally fabricated architectural realizations are described and, looking towards the future, a new model of 100% customized architecture for design and construction is presented. The book is an excellent guide to the profoun...

  2. Effect of LEO cycling on 125 Ah advanced design IPV nickel-hydrogen battery cells

    Science.gov (United States)

    Smithrick, John J.; Hall, Stephen W.

    1990-01-01

    An advanced 125 Ah individual pressure vessel (IPV) nickel-hydrogen cell was designed. The primary function of the advanced cell is to store and deliver energy for long-term, low earth-orbit (LEO) spacecraft missions. The new features of this design are: (1) use of 26 percent rather than 31 percent potassium hydroxide (KOH) electrolyte, (2) use of a patented catalyzed wall wick, (3) use of serrated-edge separators to facilitate gaseous oxygen and hydrogen flow within the cell, while still maintaining physical contact with the wall wick for electrolyte management, and (4) use of a floating rather than a fixed stack (state-of-the-art) to accommodate nickel electrode expansion. Six 125-Ah flight cells based on this design were fabricated by Eagle-Picher. Three of the cells contain all of the advanced features (test cells) and three are the same as the test cells except they don't have catalyst on the wall wick (control cells). All six cells are in the process of being evaluated in a LEO cycle life test. The cells have accumulated about 4700 LEO cycles (60 percent DOD 10 C). There have been no cell failures; the catalyzed wall wick cells, however, are performing better.

  3. Advanced Reactor Systems and Future Energy Market Needs

    International Nuclear Information System (INIS)

    Magwood, W.; Keppler, J.H.; Paillere, Henri; ); Gogan, K.; Ben Naceur, K.; Baritaud, M.; ); Shropshire, D.; ); Wilmshurst, N.; Janssens, A.; Janes, J.; Urdal, H.; Finan, A.; Cubbage, A.; Stoltz, M.; Toni, J. de; Wasylyk, A.; Ivens, R.; Paramonov, D.; Franceschini, F.; Mundy, Th.; Kuran, S.; Edwards, L.; Kamide, H.; Hwang, I.; Hittner, D.; ); Levesque, C.; LeBlanc, D.; Redmond, E.; Rayment, F.; Faudon, V.; Finan, A.; Gauche, F.

    2017-04-01

    It is clear that future nuclear systems will operate in an environment that will be very different from the electricity systems that accompanied the fast deployment of nuclear power plants in the 1970's and 1980's. As countries fulfil their commitment to de-carbonise their energy systems, low-carbon sources of electricity and in particular variable renewables, will take large shares of the overall generation capacities. This is challenging since in most cases, the timescale for nuclear technology development is far greater than the speed at which markets and policy/regulation frameworks can change. Nuclear energy, which in OECD countries is still the largest source of low-carbon electricity, has a major role to play as a low-carbon dispatchable technology. In its 2 degree scenarios, the International Energy Agency (IEA) projects that nuclear capacity globally could reach over 900 GW by 2050, with a share of electricity generation rising from less than 11% today to about 16%. Nuclear energy could also play a role in the decarbonization of the heat sector, by targeting non-electric applications. The workshop discussed how energy systems are evolving towards low-carbon systems, what the future of energy market needs are, the changing regulatory framework from both the point of view of safety requirements and environmental constraints, and how reactor developers are taking these into account in their designs. In terms of technology, the scope covered all advanced reactor systems under development today, including evolutionary light water reactors (LWRs), small modular reactors (SMRs) - whether LWR technology-based or not, and Generation IV (Gen IV) systems. This document brings together the available presentations (slides) of the workshop

  4. Explosive bonding and its application in the Advanced Photon Source front-end and beamline components design

    International Nuclear Information System (INIS)

    Shu, D.; Li, Y.; Ryding, D.; Kuzay, T.M.

    1994-01-01

    Explosive bonding is a bonding method in which the controlled energy of a detonating explosive is used to create a metallurgical bonding between two or more similar or dissimilar materials. Since 1991, a number of explosive-bonding joints have been designed for high-thermal-load ultrahigh-vacuum (UHV) compatible components in the Advanced Photon Source. A series of standardized explosive bonded joint units has also been designed and tested, such as: oxygen-free copper (OFHC) to stainless-steel vacuum joints for slits and shutters, GlidCop to stainless-steel vacuum joints for fixed masks, and GlidCop to OFHC thermal and mechanical joints for shutter face-plates, etc. The design and test results for the explosive bonding units to be used in the Advanced Photon Source front ends and beamlines will be discussed in this paper

  5. Observation on optimal transition from conventional energy with resource constraints to advanced energy with virtually unlimited resource

    International Nuclear Information System (INIS)

    Suzuki, Atsuyuki

    1980-01-01

    The paper is aimed at making a theoretical analysis on optimal shift from finite energy resources like presently used oil toward advanced energy sources like nuclear and solar. First, the value of conventional energy as a finite resource is derived based on the variational principle. Second, a simplified model on macroeconomy is used to obtain and optimal relationship between energy production and consumption and thereby the optimality on energy price is provided. Third, the meaning of research and development of advanced energy is shown by taking into account resource constraints and technological progress. Finally, an optimal timing of the shift from conventional to advanced energies is determined by making use of the maximum principle. The methematical model employed there is much simplified but can be used to conclude that in order to make an optimal shift some policy-oriented decision must be made prior to when an economically competitive condition comes and that, even with that decision made, some recession of energy demand is inevitable during the transitional phase. (author)

  6. Advanced Graphene-Based Binder-Free Electrodes for High-Performance Energy Storage.

    Science.gov (United States)

    Ji, Junyi; Li, Yang; Peng, Wenchao; Zhang, Guoliang; Zhang, Fengbao; Fan, Xiaobin

    2015-09-23

    The increasing demand for energy has triggered tremendous research effort for the development of high-performance and durable energy-storage devices. Advanced graphene-based electrodes with high electrical conductivity and ion accessibility can exhibit superior electrochemical performance in energy-storage devices. Among them, binder-free configurations can enhance the electron conductivity of the electrode, which leads to a higher capacity by avoiding the addition of non-conductive and inactive binders. Graphene, a 2D material, can be fabricated into a porous and flexible structure with an interconnected conductive network. Such a conductive structure is favorable for both electron and ion transport to the entire electrode surface. In this review, the main processes used to prepare binder-free graphene-based hybrids with high porosity and well-designed electron conductive networks are summarized. Then, the applications of free-standing binder-free graphene-based electrodes in energy-storage devices are discussed. Future research aspects with regard to overcoming the technological bottlenecks are also proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Advanced Power Batteries for Renewable Energy Applications 3.09

    Energy Technology Data Exchange (ETDEWEB)

    Shane, Rodney [East Penn Manufacturing Company, Inc., Lyon Station, PA (United States)

    2011-12-01

    This report describes the research that was completed under project title Advanced Power Batteries for Renewable Energy Applications 3.09, Award Number DE-EE0001112. The report details all tasks described in the Statement of Project Objectives (SOPO). The SOPO includes purchasing of test equipment, designing tooling, building cells and batteries, testing all variables and final evaluation of results. The SOPO is included. There were various types of tests performed during the project, such as; gas collection, float current monitoring, initial capacity, high rate partial state of charge (HRPSoC), hybrid pulse power characterization (HPPC), high rate capacity, corrosion, software modeling and solar life cycle tests. The grant covered a period of two years starting October 1, 2009 and ending September 30, 2011.

  8. Results of modeling advanced BWR fuel designs using CASMO-4

    International Nuclear Information System (INIS)

    Knott, D.; Edenius, M.

    1996-01-01

    Advanced BWR fuel designs from General Electric, Siemens and ABB-Atom have been analyzed using CASMO-4 and compared against fission rate distributions and control rod worths from MCNP. Included in the analysis were fuel storage rack configurations and proposed mixed oxide (MOX) designs. Results are also presented from several cycles of SIMULATE-3 core follow analysis, using nodal data generated by CASMO-4, for cycles in transition from 8x8 designs to advanced fuel designs. (author)

  9. Advanced materials and coatings for energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    St Pierre, George R. [Ohio State Univ., Materials Science and Engineering Dept., Columbus, OH (United States)

    1997-12-31

    Following an historical review of the development of high-temperature alloys for energy conversion systems including turbine engines, some of the current advances in single crystal materials, intermetallics, metal-matrix composites, and ceramic-matrix composites are discussed. Particular attention is directed at creep phenomena, fatigue properties and oxidation resistance. Included within the discussions is the current status of carbon/carbon composites as potential high-temperature engineering materials and the development of coating systems for thermal barrier and oxidation protection. The specific influences of combustion gas compositions, i.e., oxidation potential, sulfur, halides, etc. are discussed. A current list of eligible advanced materials and coatings systems is presented and assessed. Finally, the critical failure mechanism and life-prediction parameters for some of the new classes of advanced structural materials are elaborated with the view to achieving affordability and extended life with a high degree of reliability. Examples are drawn from a variety of energy conversion systems. (Author)

  10. Adapting advanced engineering design approaches to building design - potential benefits

    NARCIS (Netherlands)

    Hopfe, C.J.; Struck, C.; Hensen, J.L.M.; Böhms, M.

    2006-01-01

    A number of industries continuously progress advancing their design approaches based on the changing market constraints. Examples such as car, ship and airplane manufacturing industries utilize process setups and techniques, that differ significantly from the processes and techniques used by the

  11. Adapting advanced engineering design approaches to building design. Potential benefits

    NARCIS (Netherlands)

    Böhms, M.

    2006-01-01

    A number of industries continuously progress advancing their design approaches based on the changing market constraints. Examples such as car, ship and airplane manufacturing industries utilize process setups and techniques, that differ significantly from the processes and techniques used by the

  12. Multi objective decision making in hybrid energy system design

    Science.gov (United States)

    Merino, Gabriel Guillermo

    The design of grid-connected photovoltaic wind generator system supplying a farmstead in Nebraska has been undertaken in this dissertation. The design process took into account competing criteria that motivate the use of different sources of energy for electric generation. The criteria considered were 'Financial', 'Environmental', and 'User/System compatibility'. A distance based multi-objective decision making methodology was developed to rank design alternatives. The method is based upon a precedence order imposed upon the design objectives and a distance metric describing the performance of each alternative. This methodology advances previous work by combining ambiguous information about the alternatives with a decision-maker imposed precedence order in the objectives. Design alternatives, defined by the photovoltaic array and wind generator installed capacities, were analyzed using the multi-objective decision making approach. The performance of the design alternatives was determined by simulating the system using hourly data for an electric load for a farmstead and hourly averages of solar irradiation, temperature and wind speed from eight wind-solar energy monitoring sites in Nebraska. The spatial variability of the solar energy resource within the region was assessed by determining semivariogram models to krige hourly and daily solar radiation data. No significant difference was found in the predicted performance of the system when using kriged solar radiation data, with the models generated vs. using actual data. The spatial variability of the combined wind and solar energy resources was included in the design analysis by using fuzzy numbers and arithmetic. The best alternative was dependent upon the precedence order assumed for the main criteria. Alternatives with no PV array or wind generator dominated when the 'Financial' criteria preceded the others. In contrast, alternatives with a nil component of PV array but a high wind generator component

  13. Energy Consumption Management in Design

    NARCIS (Netherlands)

    Smit, Jaap

    1997-01-01

    A survey of the basic issues in low power design is presented, including techniques for the analysis of energy consumption in the early design phase of analog and digital circuits. The concept of energy complexity will be introduced in conjunction with techniques for parameterized energy management.

  14. Advanced Energy Retrofit Guide (AERG): Practical Ways to Improve Energy Performance; Healthcare Facilities (Book)

    Energy Technology Data Exchange (ETDEWEB)

    Hendron, R.; Leach, M.; Bonnema, E.; Shekhar, D.; Pless, S.

    2013-09-01

    The Advanced Energy Retrofit Guide for Healthcare Facilities is part of a series of retrofit guides commissioned by the U.S. Department of Energy. By presenting general project planning guidance as well as detailed descriptions and financial payback metrics for the most important and relevant energy efficiency measures (EEMs), the guides provide a practical roadmap for effectively planning and implementing performance improvements in existing buildings. The Advanced Energy Retrofit Guides (AERGs) are intended to address key segments of the U.S. commercial building stock: retail stores, office buildings, K-12 schools, grocery stores, and healthcare facilities. The guides' general project planning considerations are applicable nationwide; the energy and cost savings estimates for recommended EEMs were developed based on energy simulations and cost estimates for an example hospital tailored to five distinct climate regions. These results can be extrapolated to other U.S. climate zones. Analysis is presented for individual EEMs, and for packages of recommended EEMs for two project types: existing building commissioning projects that apply low-cost and no-cost measures, and whole-building retrofits involving more capital-intensive measures.

  15. Conceptual design of ICF reactor SENRI, Part II. Advances in design and pellet gain scaling

    International Nuclear Information System (INIS)

    Ido, S.; Mima, K.; Nakai, S.; Tsuji, R.; Yamanaka, C.

    1984-01-01

    This chapter reviews the recent design studies on reactor concepts with magnetically guided lithium flow, SENRI-I, SENRI-IA and SENRI-II. The routes from the present status to power reactors and an advanced fuel pellet concept is also discussed. Topics covered include pellet design, magnetohydrodynamic design of liquid lithium flow; reactor cavity concepts with magnetically guided lithium flow, a thermo-hydraulic analysis, a tritium recovery system; and an advanced fuel pellet concept for an inertial confinement fusion (ICF) reactor without a tritium breeding blanket. An advanced fuel pellet for an ICF reactor without a T breeder was studied in the model calculations, which showed sufficiently high values of pellet gain. Includes a table and 8 diagrams

  16. Advances in thermal-hydraulic studies of a transmutation advanced device for sustainable energy applications

    International Nuclear Information System (INIS)

    Fajardo, Laura Garcia; Castells, Facundo Alberto Escriva; Lira, Carlos Brayner de Olivera

    2013-01-01

    The Transmutation Advanced Device for Sustainable Energy Applications (TADSEA) is a pebble-bed Accelerator Driven System (ADS) with a graphite-gas configuration, designed for nuclear waste trans- mutation and for obtaining heat at very high temperatures to produce hydrogen. In previous work, the TADSEA's nuclear core was considered as a porous medium performed with a CFD code and thermal-hydraulic studies of the nuclear core were presented. In this paper, the heat transfer from the fuel to the coolant was analyzed for three core states during normal operation. The heat transfer inside the spherical fuel elements was also studied. Three critical fuel elements groups were defined regarding their position inside the core. Results were compared with a realistic CFD model of the critical fuel elements groups. During the steady state, no critical elements reached the limit temperature of this type of fuel. (author)

  17. Energy-aware design of digital systems

    Energy Technology Data Exchange (ETDEWEB)

    Gruian, F.

    2000-02-01

    Power and energy consumption are important issues in many digital applications, for reasons such as packaging cost and battery life-span. With the development of portable computing and communication, an increasing number of research groups are addressing power and energy related issues at various stages during the design process. Most of the work done in this area focuses on lower abstraction levels, such as gate or transistor level. Ideally, a power and energy-efficient design flow should consider the power and energy issues at every stage in the design process. Therefore, power and energy aware methods, applicable early in the design process are required. In this trend, the thesis presents two high-level design methods addressing power and energy consumption minimization. The first of the two approaches we describe, targets power consumption minimization during behavioral synthesis. This is carried out by minimizing the switching activity, while taking the correlations between signals into account. The second approach performs energy consumption minimization during system-level design, by choosing the most energy-efficient schedule and configuration of resources. Both methods make use of the constraint programming paradigm to model the problems in an elegant manner. The experimental results presented in this thesis show the impact of addressing the power and energy related issues early in the design process.

  18. Core and Refueling Design Studies for the Advanced High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Ilas, Dan [ORNL; Varma, Venugopal Koikal [ORNL; Cisneros, Anselmo T [ORNL; Kelly, Ryan P [ORNL; Gehin, Jess C [ORNL

    2011-09-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a central generating station type [3400 MW(t)] fluoride-salt-cooled high-temperature reactor (FHR). The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. This report presents the current status of ongoing design studies of the core, in-vessel structures, and refueling options for the AHTR. The AHTR design remains at the notional level of maturity as important material, structural, neutronic, and hydraulic issues remain to be addressed. The present design space exploration, however, indicates that reasonable options exist for the AHTR core, primary heat transport path, and fuel cycle provided that materials and systems technologies develop as anticipated. An illustration of the current AHTR core, reactor vessel, and nearby structures is shown in Fig. ES1. The AHTR core design concept is based upon 252 hexagonal, plate fuel assemblies configured to form a roughly cylindrical core. The core has a fueled height of 5.5 m with 25 cm of reflector above and below the core. The fuel assembly hexagons are {approx}45 cm across the flats. Each fuel assembly contains 18 plates that are 23.9 cm wide and 2.55 cm thick. The reactor vessel has an exterior diameter of 10.48 m and a height of 17.7 m. A row of replaceable graphite reflector prismatic blocks surrounds the core radially. A more complete reactor configuration description is provided in Section 2 of this report. The AHTR core design space exploration was performed under a set of constraints. Only low enrichment (<20%) uranium fuel was considered. The coated particle fuel and matrix materials were derived from those being developed and demonstrated under the Department of Energy Office of Nuclear Energy (DOE-NE) advanced gas reactor program. The coated particle volumetric packing fraction was restricted to at most 40%. The pressure

  19. Advanced Detectors for Nuclear, High Energy and Astroparticle Physics

    CERN Document Server

    Das, Supriya; Ghosh, Sanjay

    2018-01-01

    The book presents high-quality papers presented at a national conference on ‘Advanced Detectors for Nuclear, High Energy and Astroparticle Physics’. The conference was organized to commemorate 100 years of Bose Institute. The book is based on the theme of the conference and provides a clear picture of basics and advancement of detectors for nuclear physics, high-energy physics and astroparticle physics together. The topics covered in the book include detectors for accelerator-based high energy physics; detectors for non-accelerator particle physics; nuclear physics detectors; detection techniques in astroparticle physics and dark matter; and applications and simulations. The book will be a good reference for researchers and industrial personnel working in the area of nuclear and astroparticle physics.

  20. Control system design specification of advanced spent fuel management process units

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, S. H.; Kim, S. H.; Yoon, J. S

    2003-06-01

    In this study, the design specifications of instrumentation and control system for advanced spent fuel management process units are presented. The advanced spent fuel management process consists of several process units such as slitting device, dry pulverizing/mixing device, metallizer, etc. In this study, the control and operation characteristics of the advanced spent fuel management mockup process devices and the process devices developed in 2001 and 2002 are analysed. Also, a integral processing system of the unit process control signals is proposed, which the operation efficiency is improved. And a redundant PLC control system is constructed which the reliability is improved. A control scheme is proposed for the time delayed systems compensating the control performance degradation caused by time delay. The control system design specification is presented for the advanced spent fuel management process units. This design specifications can be effectively used for the detail design of the advanced spent fuel management process.

  1. Design of advanced solar homes aimed at net-zero annual energy consumption in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Athienitis, Andreas

    2010-09-15

    This paper overviews the design of three sustainable low or net-zero energy solar homes in Canada. The major features of the houses are: 1. direct gain passive solar design that emphasizes utilization of distributed thermal mass in the equatorial-facing part of the ground floor; 2. a building-integrated photovoltaic-thermal system (BIPV/T); 3. a two-stage ground-source heat pump used to heat/cool air in the house or an air source heat pump using BIPV/T air as the source to heat a storage tank; 4. a floor heating system integrated in the floor mass of the direct gain zone; 5. a multizone programmable thermostat.

  2. Final design of a free-piston hydraulic advanced Stirling conversion system

    Science.gov (United States)

    Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    1991-01-01

    Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.

  3. Final design of a free-piston hydraulic advanced Stirling conversion system

    Science.gov (United States)

    Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.

  4. Core design methods for advanced LMFBRs

    International Nuclear Information System (INIS)

    Chandler, J.C.; Marr, D.R.; McCurry, D.C.; Cantley, D.A.

    1977-05-01

    The multidiscipline approach to advanced LMFBR core design requires an iterative design procedure to obtain a closely-coupled design. HEDL's philosophy requires that the designs should be coupled to the extent that the design limiting fuel pin, the design limiting duct and the core reactivity lifetime should all be equal and should equal the fuel residence time. The design procedure consists of an iterative loop involving three stages of the design sequence. Stage 1 consists of general mechanical design and reactor physics scoping calculations to arrive at an initial core layout. Stage 2 consists of detailed reactor physics calculations for the core configuration arrived at in Stage 1. Based upon the detailed reactor physics results, a decision is made either to alter the design (Stage 1) or go to Stage 3. Stage 3 consists of core orificing and detailed component mechanical design calculations. At this point, an assessment is made regarding design adequacy. If the design is inadequate the entire procedure is repeated until the design is acceptable

  5. Rechargeable dual-metal-ion batteries for advanced energy storage.

    Science.gov (United States)

    Yao, Hu-Rong; You, Ya; Yin, Ya-Xia; Wan, Li-Jun; Guo, Yu-Guo

    2016-04-14

    Energy storage devices are more important today than any time before in human history due to the increasing demand for clean and sustainable energy. Rechargeable batteries are emerging as the most efficient energy storage technology for a wide range of portable devices, grids and electronic vehicles. Future generations of batteries are required to have high gravimetric and volumetric energy, high power density, low price, long cycle life, high safety and low self-discharge properties. However, it is quite challenging to achieve the above properties simultaneously in state-of-the-art single metal ion batteries (e.g. Li-ion batteries, Na-ion batteries and Mg-ion batteries). In this contribution, hybrid-ion batteries in which various metal ions simultaneously engage to store energy are shown to provide a new perspective towards advanced energy storage: by connecting the respective advantages of different metal ion batteries they have recently attracted widespread attention due to their novel performances. The properties of hybrid-ion batteries are not simply the superposition of the performances of single ion batteries. To enable a distinct description, we only focus on dual-metal-ion batteries in this article, for which the design and the benefits are briefly discussed. We enumerate some new results about dual-metal-ion batteries and demonstrate the mechanism for improving performance based on knowledge from the literature and experiments. Although the search for hybrid-ion batteries is still at an early age, we believe that this strategy would be an excellent choice for breaking the inherent disadvantages of single ion batteries in the near future.

  6. Advanced photon source low-energy undulator test line

    International Nuclear Information System (INIS)

    Milton, S.V.

    1997-01-01

    The injector system of the Advanced Photon Source (APS) consists of a linac capable of producing 450-MeV positrons or > 650-MeV electrons, a positron accumulator ring (PAR), and a booster synchrotron designed to accelerate particles to 7 GeV. There are long periods of time when these machines are not required for filling the main storage ring and instead can be used for synchrotron radiation research. We describe here an extension of the linac beam transport called the Low-Energy Undulator Test Line (LEUTL). The LEUTL will have a twofold purpose. The first is to fully characterize innovative, future generation undulators, some of which may prove difficult or impossible to measure by traditional techniques. These might include small-gap and superconducting undulators, very long undulators, undulators with designed-in internal focusing, and helical undulators. This technique also holds the promise of extending the magnetic measurement sensitivity beyond that presently attainable. This line will provide the capability to directly test undulators before their possible insertion into operating storage rings. A second use for the test line will be to investigate the generation of coherent radiation at wavelengths down to a few tens of nanometers

  7. An Advanced IoT-based System for Intelligent Energy Management in Buildings

    Directory of Open Access Journals (Sweden)

    Vangelis Marinakis

    2018-02-01

    Full Text Available The energy sector is closely interconnected with the building sector and integrated Information and Communication Technologies (ICT solutions for effective energy management supporting decision-making at building, district and city level are key fundamental elements for making a city Smart. The available systems are designed and intended exclusively for a predefined number of cases and systems without allowing for expansion and interoperability with other applications that is partially due to the lack of semantics. This paper presents an advanced Internet of Things (IoT based system for intelligent energy management in buildings. A semantic framework is introduced aiming at the unified and standardised modelling of the entities that constitute the building environment. Suitable rules are formed, aiming at the intelligent energy management and the general modus operandi of Smart Building. In this context, an IoT-based system was implemented, which enhances the interactivity of the buildings’ energy management systems. The results from its pilot application are presented and discussed. The proposed system extends existing approaches and integrates cross-domain data, such as the building’s data (e.g., energy management systems, energy production, energy prices, weather data and end-users’ behaviour, in order to produce daily and weekly action plans for the energy end-users with actionable personalised information.

  8. An Advanced IoT-based System for Intelligent Energy Management in Buildings.

    Science.gov (United States)

    Marinakis, Vangelis; Doukas, Haris

    2018-02-16

    The energy sector is closely interconnected with the building sector and integrated Information and Communication Technologies (ICT) solutions for effective energy management supporting decision-making at building, district and city level are key fundamental elements for making a city Smart. The available systems are designed and intended exclusively for a predefined number of cases and systems without allowing for expansion and interoperability with other applications that is partially due to the lack of semantics. This paper presents an advanced Internet of Things (IoT) based system for intelligent energy management in buildings. A semantic framework is introduced aiming at the unified and standardised modelling of the entities that constitute the building environment. Suitable rules are formed, aiming at the intelligent energy management and the general modus operandi of Smart Building. In this context, an IoT-based system was implemented, which enhances the interactivity of the buildings' energy management systems. The results from its pilot application are presented and discussed. The proposed system extends existing approaches and integrates cross-domain data, such as the building's data (e.g., energy management systems), energy production, energy prices, weather data and end-users' behaviour, in order to produce daily and weekly action plans for the energy end-users with actionable personalised information.

  9. An Advanced IoT-based System for Intelligent Energy Management in Buildings

    Science.gov (United States)

    Doukas, Haris

    2018-01-01

    The energy sector is closely interconnected with the building sector and integrated Information and Communication Technologies (ICT) solutions for effective energy management supporting decision-making at building, district and city level are key fundamental elements for making a city Smart. The available systems are designed and intended exclusively for a predefined number of cases and systems without allowing for expansion and interoperability with other applications that is partially due to the lack of semantics. This paper presents an advanced Internet of Things (IoT) based system for intelligent energy management in buildings. A semantic framework is introduced aiming at the unified and standardised modelling of the entities that constitute the building environment. Suitable rules are formed, aiming at the intelligent energy management and the general modus operandi of Smart Building. In this context, an IoT-based system was implemented, which enhances the interactivity of the buildings’ energy management systems. The results from its pilot application are presented and discussed. The proposed system extends existing approaches and integrates cross-domain data, such as the building’s data (e.g., energy management systems), energy production, energy prices, weather data and end-users’ behaviour, in order to produce daily and weekly action plans for the energy end-users with actionable personalised information. PMID:29462957

  10. Advanced materials for clean energy

    CERN Document Server

    Xu (Kyo Jo), Qiang

    2015-01-01

    Arylamine-Based Photosensitizing Metal Complexes for Dye-Sensitized Solar CellsCheuk-Lam Ho and Wai-Yeung Wongp-Type Small Electron-Donating Molecules for Organic Heterojunction Solar CellsZhijun Ning and He TianInorganic Materials for Solar Cell ApplicationsYasutake ToyoshimaDevelopment of Thermoelectric Technology from Materials to GeneratorsRyoji Funahashi, Chunlei Wan, Feng Dang, Hiroaki Anno, Ryosuke O. Suzuki, Takeyuki Fujisaka, and Kunihito KoumotoPiezoelectric Materials for Energy HarvestingDeepam Maurya, Yongke Yan, and Shashank PriyaAdvanced Electrode Materials for Electrochemical Ca

  11. International Joint Conference on Mechanics, Design Engineering & Advanced Manufacturing

    CERN Document Server

    Nigrelli, Vincenzo; Oliveri, Salvatore; Peris-Fajarnes, Guillermo; Rizzuti, Sergio

    2017-01-01

    This book gathers papers presented at the International Joint Conference on Mechanics, Design Engineering and Advanced Manufacturing (JCM 2016), held on 14-16 September, 2016, in Catania, Italy. It reports on cutting-edge topics in product design and manufacturing, such as industrial methods for integrated product and process design; innovative design; and computer-aided design. Further topics covered include virtual simulation and reverse engineering; additive manufacturing; product manufacturing; engineering methods in medicine and education; representation techniques; and nautical, aeronautics and aerospace design and modeling. The book is divided into eight main sections, reflecting the focus and primary themes of the conference. The contributions presented here will not only provide researchers, engineers and experts in a range of industrial engineering subfields with extensive information to support their daily work; they are also intended to stimulate new research directions, advanced applications of t...

  12. Role of the process designer in the evolution of a technology oriented toward energy conservation

    Energy Technology Data Exchange (ETDEWEB)

    Cassarino, S [CONSER, Rome; Riccardi, R

    1975-01-01

    The increase in energy costs has introduced new stringent boundaries to process engineering, involving the need for more and more advanced calculation techniques and a greater accountability on the part of the process designer for the purposes of a financially effective engineering work. The designing and optimization approaches tending to favor minimum investment decisions for the past are now subjected to a careful critical revision under the pressures of this new reality. The process designer can--through such revision process--bring a substantial contribution of his own to the development of a technology oriented toward energy conservation. In view of these considerations and on the basis of newly emerging trends, some examples are introduced to illustrate certain development opportunities in oil-refining and petrochemical industrial processes. Conventional designs covering a refining plant and an oil fractionating unit are compared in details in this review with alternative patterns to which new designing approaches are applied for the purposes of an optimized energy consumption.

  13. Advanced model for fast assessment of piezoelectric micro energy harvesters

    Directory of Open Access Journals (Sweden)

    Raffaele eArdito

    2016-04-01

    Full Text Available The purpose of this work is to present recent advances in modelling and design of piezoelectric energy harvesters, in the framework of Micro-Electro-Mechanical Systems (MEMS. More specifically, the case of inertial energy harvesting is considered, in the sense that the kinetic energy due to environmental vibration is transformed into electrical energy by means of piezoelectric transduction. The execution of numerical analyses is greatly important in order to predict the actual behaviour of MEMS devices and to carry out the optimization process. In the common practice, the results are obtained by means of burdensome 3D Finite Element Analyses (FEA.The case of beams could be treated by applying 1D models, which can enormously reduce the computational burden with obvious benefits in the case of repeated analyses. Unfortunately, the presence of piezoelectric coupling may entail some serious issues in view of its intrinsically three-dimensional behaviour. In this paper, a refined, yet simple, model is proposed with the objective of retaining the Euler-Bernoulli beam model, with the inclusion of effects connected to the actual three-dimensional shape of the device. The proposed model is adopted to evaluate the performances of realistic harvesters, both in the case of harmonic excitation and for impulsive loads.

  14. Advanced solar panel designs

    Science.gov (United States)

    Ralph, E. L.; Linder, E.

    1995-01-01

    This paper describes solar cell panel designs that utilize new hgih efficiency solar cells along with lightweight rigid panel technology. The resulting designs push the W/kg and W/sq m parameters to new high levels. These new designs are well suited to meet the demand for higher performance small satellites. This paper reports on progress made on two SBIR Phase 1 contracts. One panel design involved the use of large area (5.5 cm x 6.5 cm) GaAs/Ge solar cells of 19% efficiency combined with a lightweight rigid graphite fiber epoxy isogrid substrate configuration. A coupon (38 cm x 38 cm) was fabricated and tested which demonstrated an array specific power level of 60 W/kg with a potential of reaching 80 W/kg. The second panel design involved the use of newly developed high efficiency (22%) dual junction GaInP2/GaAs/Ge solar cells combined with an advanced lightweight rigid substrate using aluminum honeycomb core with high strength graphite fiber mesh facesheets. A coupon (38 cm x 38 cm) was fabricated and tested which demonstrated an array specific power of 105 W/kg and 230 W/sq m. This paper will address the construction details of the panels and an a analysis of the component weights. A strawman array design suitable for a typical small-sat mission is described for each of the two panel design technologies being studied. Benefits in respect to weight reduction, area reduction, and system cost reduction are analyzed and compared to conventional arrays.

  15. Containment design, performance criteria and research needs for advanced reactor designs

    International Nuclear Information System (INIS)

    Bagdi, G.; Ali, S.; Costello, J

    2004-01-01

    This paper points out some important shifts in the basic expectations in the performance requirements for containment structures and discusses the areas where the containment structure design requirements and acceptance criteria can be integrated with ultimate test based insights. Although there has not been any new reactor construction in the United States for over thirty years, several designs of evolutionary and advanced reactors have already been certified. Performance requirements for containment structures under design basis and severe accident conditions and explicit consideration of seismic margins have been used in the design certification process. In the United States, the containment structure design code is the American Society of Mechanical Engineers, Boiler and Pressure Vessel Code, Section III, Division 1, Subsection NE-Class MC for the steel containment and Section III, Division 2 for reinforced and prestressed concrete reactor vessels and containments. This containment design code was based on the early concept of applying design basis internal pressure and associated load combinations that included the operating basis and safe shutdown earthquake ground motion. These early design criteria served the nuclear industry and the regulatory authorities in maintaining public health and safety. However, these early design criteria do not incorporate the performance criteria related to containment function in an integrated fashion. Research in large scale model testing of containment structures to failure from over pressurization and shake table testing using simulated ground motion, have produced insights related to failure modes and material behavior at failure. The results of this research provide the opportunity to integrate these observations into design and acceptance criteria. This integration process would identify 'gaps' in the present knowledge and future research needs. This knowledge base is important for gleaning risk-informed insights into

  16. Advanced Telescope for High Energy Nuclear Astrophysics (ATHENA)

    National Research Council Canada - National Science Library

    Johnson, W. N; Dermer, C; Kroeger, R. A; Kurfess, J. D; Gehrels, N; Grindlay, J; Leising, M. D; Prince, T; Purcell, W; Ryan, J; Tumer, T

    1995-01-01

    We present a space mission concept for a low energy gamma-ray telescope, ATHENA, which is under investigation as the next major advance in gamma-ray spectroscopy following the current COMPTON Gamma...

  17. Recent designs for advanced fusion reactor blankets

    International Nuclear Information System (INIS)

    Sze, D.K.

    1994-01-01

    A series of reactor design studies based on the Tokamak configuration have been carried out under the direction of Professor Robert Conn of UCLA. They are called ARIES-I through IV. The key mission of these studies is to evaluate the attractiveness of fusion assuming different degrees of advancement in either physics or engineering development. This paper discusses the directions and conclusions of the blanket and related engineering systems for those design studies. ARIES-1 investigated the use of SiC composite as the structural material to increase the blanket temperature and reduce the blanket activation. Li 2 ZrO 3 was used as the breeding material due to its high temperature stability and good tritium recovery characteristics. The ARIES-IV is a modification of ARIES-1. The plasma was in the second stability regime. Li 2 O was used as the breeding material to remove Zr. A gaseous divertor was used to replace the conventional divertor so that high Z divertor target is not required. The physics of ARIES-II was the same as ARIES-IV. The engineering design of the ARIES-II was based on a self-cooled lithium blanket with a V-alloy as the structural material. Even though it was assumed that the plasma was in the second stability regime, the plasma beta was still rather low (3.4%). The ARIES-III is an advanced fuel (D- 3 He) tokamak reactor. The reactor design assumed major advancement on the physics, with a plasma beta of 23.9%. A conventional structural material is acceptable due to the low neutron wall loading. From the radiation damage point of view, the first wall can last the life of the reactor, which is expected to be a major advantage from the engineering design and waste disposal point of view

  18. Handbook on advanced design and manufacturing technologies for biomedical devices

    CERN Document Server

    2013-01-01

    The last decades have seen remarkable advances in computer-aided design, engineering and manufacturing technologies, multi-variable simulation tools, medical imaging, biomimetic design, rapid prototyping, micro and nanomanufacturing methods and information management resources, all of which provide new horizons for the Biomedical Engineering fields and the Medical Device Industry. Handbook on Advanced Design and Manufacturing Technologies for Biomedical Devices covers such topics in depth, with an applied perspective and providing several case studies that help to analyze and understand the key factors of the different stages linked to the development of a novel biomedical device, from the conceptual and design steps, to the prototyping and industrialization phases. Main research challenges and future potentials are also discussed, taking into account relevant social demands and a growing market already exceeding billions of dollars. In time, advanced biomedical devices will decisively change methods and resu...

  19. High-energy diffraction microscopy at the advanced photon source

    DEFF Research Database (Denmark)

    Lienert, U.; Li, S. F.; Hefferan, C. M.

    2011-01-01

    The status of the High Energy Diffraction Microscopy (HEDM) program at the 1-ID beam line of the Advanced Photon Source is reported. HEDM applies high energy synchrotron radiation for the grain and sub-grain scale structural and mechanical characterization of polycrystalline bulk materials in situ...

  20. Design and Implementation of Geothermal Energy Systems at West Chester University

    Energy Technology Data Exchange (ETDEWEB)

    Cuprak, Greg [West Chester Univ. of Pennsylvania, PA (United States)

    2016-11-02

    West Chester University has launched a comprehensive transformation of its campus heating and cooling systems from traditional fossil fuels (coal, oil and natural gas) to geothermal. This change will significantly decrease the institution’s carbon footprint and serve as a national model for green campus efforts. The institution has designed a phased series of projects to build a district geo-exchange system with shared well fields, central pumping station and distribution piping to provide the geo-exchange water to campus buildings as their internal building HVAC systems is changed to be able to use the geo-exchange water. This project addresses the US Department of Energy Office of Energy Efficiency and Renewable Energy (EERE) goal to invest in clean energy technologies that strengthen the economy, protect the environment, and reduce dependence on foreign oil. In addition, this project advances EERE’s efforts to establish geothermal energy as an economically competitive contributor to the US energy supply.

  1. Design and Implementation of Geothermal Energy Systems at West Chester University

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, James [West Chester Univ., West Chester (PA)

    2016-08-05

    West Chester University has launched a comprehensive transformation of its campus heating and cooling systems from traditional fossil fuels to geothermal. This change will significantly decrease the institution's carbon footprint and serve as a national model for green campus efforts. The institution has designed a phased series of projects to build a district geo-exchange system with shared well fields, central pumping station and distribution piping to provide the geo-exchange water to campus buildings as their internal building HVAC systems are changed to be able to use the geo-exchange water. This project addresses the US Department of Energy Office of Energy Efficiency and Renewable Energy (EERE) goal to invest in clean energy technologies that strengthen the economy, protect the environment, and reduce dependence on foreign oil. In addition, this project advances EERE's efforts to establish geothermal energy as an economically competitive contributor to the US energy supply.

  2. Electrochemical conversion technologies for optimal design of decentralized multi-energy systems : Modeling framework and technology assessment

    NARCIS (Netherlands)

    Gabrielli, Paolo; Gazzani, Matteo; Mazzotti, Marco

    2018-01-01

    The design and operation of integrated multi-energy systems require models that adequately describe the behavior of conversion and storage technologies. Typically, linear conversion performance or fixed data from technology manufacturers are employed, especially for new or advanced technologies.

  3. Probabilistic Design of Wave Energy Devices

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Kofoed, Jens Peter; Ferreira, C.B.

    2011-01-01

    Wave energy has a large potential for contributing significantly to production of renewable energy. However, the wave energy sector is still not able to deliver cost competitive and reliable solutions. But the sector has already demonstrated several proofs of concepts. The design of wave energy...... devices is a new and expanding technical area where there is no tradition for probabilistic design—in fact very little full scale devices has been build to date, so it can be said that no design tradition really exists in this area. For this reason it is considered to be of great importance to develop...... and advocate for a probabilistic design approach, as it is assumed (in other areas this has been demonstrated) that this leads to more economical designs compared to designs based on deterministic methods. In the present paper a general framework for probabilistic design and reliability analysis of wave energy...

  4. Design of Waste Gasification Energy Systems with Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2017-01-01

    Energy saving is an open point in most European countries where energy policies are oriented to reduce the use of fossil fuels, greenhouses emissions and energy independence, and to increase the use of renewable energies. In the last several years, new technologies have been developed and some...... of them received subsidies to increase installation and reduce cost. This article presents a new sustainable trigeneration system (power, heat and cool) based on a solid oxide fuel cell (SOFC) system integrated with an absorption chiller for special applications such as hotels, resorts, hospitals, etc....... with a focus on plant design and performance. The proposal system is based on the idea of gasifying the municipal waste, producing syngas serving as fuel for the trigeneration system. Such advanced system when improved is thus self-sustainable without dependency on net grid, district heating and district...

  5. Low-Energy Building Design Guidelines: Energy-Efficient Design for New Federal Facilities

    International Nuclear Information System (INIS)

    Zachman, W.; Carlisle, N.

    2001-01-01

    This guidebook has been prepared primarily for Federal energy managers to provide practical information for applying the principles of low-energy, whole-building design in new Federal buildings. An important objective of this guidebook is to teach energy managers how to be advocates for renewable energy and energy-efficient technologies, and how to apply specific strategies during each phase of a given project's time line. These key action items are broken out by phase and appear in abbreviated form in this guidebook

  6. Update on quadruple suspension design for Advanced LIGO

    International Nuclear Information System (INIS)

    Aston, S M; Carbone, L; Cutler, R M; Hoyland, D; Barton, M A; Bland, B; Bell, A S; Beveridge, N; Cagnoli, G; Cantley, C A; Cumming, A V; Cunningham, L; Hammond, G D; Haughian, K; Hough, J; Brummitt, A J; Greenhalgh, R J S; Hayler, T M; Heptonstall, A; Heefner, J

    2012-01-01

    We describe the design of the suspension systems for the major optics for Advanced LIGO, the upgrade to LIGO—the Laser Interferometric Gravitational-Wave Observatory. The design is based on that used in GEO600—the German/UK interferometric gravitational wave detector, with further development to meet the more stringent noise requirements for Advanced LIGO. The test mass suspensions consist of a four-stage or quadruple pendulum for enhanced seismic isolation. To minimize suspension thermal noise, the final stage consists of a silica mirror, 40 kg in mass, suspended from another silica mass by four silica fibres welded to silica ears attached to the sides of the masses using hydroxide-catalysis bonding. The design is chosen to achieve a displacement noise level for each of the seismic and thermal noise contributions of 10 −19 m/√Hz at 10 Hz, for each test mass. We discuss features of the design which has been developed as a result of experience with prototypes and associated investigations. (paper)

  7. A study of some recent advances in the concept and design of MHD generators

    International Nuclear Information System (INIS)

    Vakilian, M.

    1976-02-01

    Direct conversion of energy and high temperature working fluid making Magnetohydrodynamics (MHD) power plants potentially much more efficient than steam power stations. The study indicates an overall efficiency of 50% to 60%. This compares with most modern fossil-fuel plants at 40% efficiency. Advances in design and construction of experimental and commercial MHD plants developed in various countries are presented. Environmental effects and advantages of the MHD power plants over the more conventional fossil and nuclear plants are discussed

  8. Indian advanced nuclear reactors

    International Nuclear Information System (INIS)

    Saha, D.; Sinha, R.K.

    2005-01-01

    For sustainable development of nuclear energy, a number of important issues like safety, waste management, economics etc. are to be addressed. To do this, a number of advanced reactor designs as well as fuel cycle technologies are being pursued worldwide. The advanced reactors being developed in India are the AHWR and the CHTR. Both the reactors use thorium based fuel and have many passive features. This paper describes the Indian advanced reactors and gives a brief account of the international initiatives for the sustainable development of nuclear energy. (author)

  9. The Advanced Telescope for High Energy Astrophysics

    Science.gov (United States)

    Guainazzi, Matteo

    2017-08-01

    Athena (the Advanced Telescope for High Energy Astrophysics) is a next generation X-ray observatory currently under study by ESA for launch in 2028. Athena is designed to address the Hot and Energetic Universe science theme, which addresses two key questions: 1) How did ordinary matter evolve into the large scale structures we see today? 2) How do black holes grow and shape the Universe. To address these topics Athena employs an innovative X-ray telescope based on Silicon Pore Optics technology to deliver extremely light weight and high throughput, while retaining excellent angular resolution. The mirror can be adjusted to focus onto one of two focal place instruments: the X-ray Integral Field Unit (X-IFU) which provides spatially-resolved, high resolution spectroscopy, and the Wide Field Imager (WFI) which provides spectral imaging over a large field of view, as well as high time resolution and count rate tolerance. Athena is currently in Phase A and the study status will be reviewed, along with the scientific motivations behind the mission.

  10. TNO-ADVANCE: a modular power train simulation and design tool

    NARCIS (Netherlands)

    Venne, J.W.C. van de; Hendriksen, P.; Smokers, R.T.M.; Verkiel, M.

    1998-01-01

    To support its activities in the field of conventional and hybrid vehicles, TNO has developed ADVANCE, a modular simulation tool for the design and evaluation of advanced power trains. In this paper the various features and the potential of ADVANCE are described and illustrated by means of two case

  11. Design of DIII-D advanced divertor

    International Nuclear Information System (INIS)

    Smith, J.P.; Baxi, C.B.; Reis, E.; Schaffer, M.; Thruston, G.

    1989-01-01

    The Advanced Divertor is a modification being designed for the plasma chamber of the DIII-D tokamak in order to optimize the divertor configuration and allow a broader range of experiments to be carried out. The Advanced Divertor will enable two classes of physics experiments to be run in DIII-D: Divertor biasing and Divertor baffing. The Advanced Divertor has two principal components: ( 1) a toroidally symmetric baffle; and (2) a continuous ring electrode. The tokamak can be run in baffle, bias, or standard DIII-D divertor modes by accurate positioning of the outer divertor strike point through the use of the DIII-D plasma control system. The baffle will contain approximately 50,000 l/s pumping for particle removal in the outer bottom corner of the vacuum vessel. The strike point will be positioned at the entrance aperture for the baffle mode. The aperture geometry is designed to facilitate a large particle influx plus a high probability that backstreaming particles will be reionized and redirected to the aperture. Where the baffling plates meet, gas sealing is required to prevent recycling of neutrals back into the plasma. The electrode is a continuous water-cooled ring, armored with graphite. The ring is electrically isolated from the vessel wall and is biasable to 1 kV and 20 kA. The outer leg of the divertor will be positioned on the graphite covered ring during biasing experiments. The supports for the ring are radially flexible to handle the differential thermal growth between the ring and the vessel wall but stiff in the vertical direction to restrain the ring against large disruption forces. The coolant and electrical feeds are designed in a similar manner. 2 refs., 4 figs

  12. Design of DIII-D Advanced Divertor

    International Nuclear Information System (INIS)

    Smith, J.P.; Baxi, C.B.; Reis, E.; Schaffer, M.; Thurston, G.

    1989-11-01

    The Advanced Divertor is a modification being designed for the plasma chamber of the DIII-D tokamak in order to optimize the divertor configuration and allow a broader range of experiments to be carried out. The Advanced Divertor will enable two classes of physics experiments to be run in DIII-D: Divertor biasing and Divertor baffling. The Advanced Divertor has two principal components: a toroidally symmetric baffle; and a continuous ring electrode. The tokamak can be run in baffle, bias, or standard DIII-D divertor modes by accurate positioning of the outer divertor strike point through the use of the DIII-D plasma control system. The baffle will contain approximately 50,000 l/s pumping for particle removal in the outer bottom corner of the vacuum vessel. The strike point will be positioned at the entrance aperture for the baffle mode. The aperture geometry is designed to facilitate a large particle influx plus a high probability that backstreaming particles will be reionized and redirected to the aperture. Where the baffling plates meet, gas sealing is required to prevent recycling of neutrals back into the plasma. The electrode is a continuous water-cooled ring, armored with graphite. The ring is electrically isolated from the vessel wall and is biasable to 1 kV and 20 kA. The outer leg of the divertor will be positioned on the graphite covered ring during biasing experiments. The supports for the ring are radially flexible to handle the differential thermal growth between the ring and the vessel wall but stiff in the vertical direction to restrain the ring against large disruption forces. The coolant and electrical feeds are designed in a similar manner. All the feeds are supported from and maintain a 5 kV isolation to the vessel wall. 2 refs., 4 figs

  13. Photon energy tunability of advanced photon source undulators

    International Nuclear Information System (INIS)

    Viccaro, P.J.; Shenoy, G.K.

    1987-08-01

    At a fixed storage ring energy, the energy of the harmonics of an undulator can be shifted or ''tuned'' by changing the magnet gap of the device. The possible photon energy interval spanned in this way depends on the undulator period, minimum closed gap, minimum acceptable photon intensity and storage ring energy. The minimum magnet gap depends directly on the stay clear particle beam aperture required for storage ring operation. The tunability of undulators planned for the Advanced Photon Source with first harmonic photon energies in the range of 5 to 20 keV are discussed. The results of an analysis used to optimize the APS ring energy is presented and tunability contours and intensity parameters are presented for two typical classes of devices

  14. Advanced power plant materials, design and technology

    Energy Technology Data Exchange (ETDEWEB)

    Roddy, D. (ed.) [Newcastle University (United Kingdom). Sir Joseph Swan Institute

    2010-07-01

    The book is a comprehensive reference on the state of the art of gas-fired and coal-fired power plants, their major components and performance improvement options. Selected chapters are: Integrated gasification combined cycle (IGCC) power plant design and technology by Y. Zhu, and H. C. Frey; Improving thermal cycle efficiency in advanced power plants: water and steam chemistry and materials performance by B. Dooley; Advanced carbon dioxide (CO{sub 2}) gas separation membrane development for power plants by A. Basile, F. Gallucci, and P. Morrone; Advanced flue gas cleaning systems for sulphur oxides (SOx), nitrogen oxides (NOx) and mercury emissions control in power plants by S. Miller and B.G. Miller; Advanced flue gas dedusting systems and filters for ash and particulate emissions control in power plants by B.G. Miller; Advanced sensors for combustion monitoring in power plants: towards smart high-density sensor networks by M. Yu and A.K. Gupta; Advanced monitoring and process control technology for coal-fired power plants by Y. Yan; Low-rank coal properties, upgrading and utilisation for improving the fuel flexibility of advanced power plants by T. Dlouhy; Development and integration of underground coal gasification (UCG) for improving the environmental impact of advanced power plants by M. Green; Development and application of carbon dioxide (CO{sub 2}) storage for improving the environmental impact of advanced power plants by B. McPherson; and Advanced technologies for syngas and hydrogen (H{sub 2}) production from fossil-fuel feedstocks in power plants by P. Chiesa.

  15. Low-Energy Building Design Guidelines: Energy-Efficient Design for New Federal Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Zachman, W.; Carlisle, N.

    2001-07-19

    This guidebook has been prepared primarily for Federal energy managers to provide practical information for applying the principles of low-energy, whole-building design in new Federal buildings. An important objective of this guidebook is to teach energy managers how to be advocates for renewable energy and energy-efficient technologies, and how to apply specific strategies during each phase of a given project's time line. These key action items are broken out by phase and appear in abbreviated form in this guidebook.

  16. Advanced Control Considerations for Turbofan Engine Design

    Science.gov (United States)

    Connolly, Joseph W.; Csank, Jeffrey T.; Chicatelli, Amy

    2016-01-01

    This paper covers the application of a model-based engine control (MBEC) methodology featuring a self tuning on-board model for an aircraft turbofan engine simulation. The nonlinear engine model is capable of modeling realistic engine performance, allowing for a verification of the advanced control methodology over a wide range of operating points and life cycle conditions. The on-board model is a piece-wise linear model derived from the nonlinear engine model and updated using an optimal tuner Kalman Filter estimation routine, which enables the on-board model to self-tune to account for engine performance variations. MBEC is used here to show how advanced control architectures can improve efficiency during the design phase of a turbofan engine by reducing conservative operability margins. The operability margins that can be reduced, such as stall margin, can expand the engine design space and offer potential for efficiency improvements. Application of MBEC architecture to a nonlinear engine simulation is shown to reduce the thrust specific fuel consumption by approximately 1% over the baseline design, while maintaining safe operation of the engine across the flight envelope.

  17. 2014 Joint Conference on Mechanical Design Engineering and Advanced Manufacturing

    CERN Document Server

    Daidie, Alain; Eynard, Benoit; Paredes, Manuel

    2016-01-01

    Covering key topics in the field such as technological innovation, human-centered sustainable engineering and manufacturing, and manufacture at a global scale in a virtual world, this book addresses both advanced techniques and industrial applications of key research in interactive design and manufacturing. Featuring the full papers presented at the 2014 Joint Conference on Mechanical Design Engineering and Advanced Manufacturing, which took place in June 2014 in Toulouse, France, it presents recent research and industrial success stories related to implementing interactive design and manufacturing solutions.

  18. Various advanced design projects promoting engineering education

    Science.gov (United States)

    1994-01-01

    The Universities Space Research Association (USRA) Advanced Design Program (ADP) program promotes engineering education in the field of design by presenting students with challenging design projects drawn from actual NASA interests. In doing so, the program yields two very positive results. Firstly, the students gain a valuable experience that will prepare them for design problems with which they will be faced in their professional careers. Secondly, NASA is able to use the work done by students as an additional resource in meeting its own design objectives. The 1994 projects include: Universal Test Facility; Automated Protein Crystal Growth Facility; Stiffening of the ACES Deployable Space Boom; Launch System Design for Access to Space; LH2 Fuel Tank Design for SSTO Vehicle; and Feed System Design for a Reduced Pressure Tank.

  19. Advanced stratified charge rotary aircraft engine design study

    Science.gov (United States)

    Badgley, P.; Berkowitz, M.; Jones, C.; Myers, D.; Norwood, E.; Pratt, W. B.; Ellis, D. R.; Huggins, G.; Mueller, A.; Hembrey, J. H.

    1982-01-01

    A technology base of new developments which offered potential benefits to a general aviation engine was compiled and ranked. Using design approaches selected from the ranked list, conceptual design studies were performed of an advanced and a highly advanced engine sized to provide 186/250 shaft Kw/HP under cruise conditions at 7620/25,000 m/ft altitude. These are turbocharged, direct-injected stratified charge engines intended for commercial introduction in the early 1990's. The engine descriptive data includes tables, curves, and drawings depicting configuration, performance, weights and sizes, heat rejection, ignition and fuel injection system descriptions, maintenance requirements, and scaling data for varying power. An engine-airframe integration study of the resulting engines in advanced airframes was performed on a comparative basis with current production type engines. The results show airplane performance, costs, noise & installation factors. The rotary-engined airplanes display substantial improvements over the baseline, including 30 to 35% lower fuel usage.

  20. Advanced design cultures long-term perspective and continuous innovation

    CERN Document Server

    2015-01-01

    This book describes new thinking and practice in Advanced Design (ADD) – design that is not merely highly developed but anticipates the future by envisioning novel products and processes. The focus is especially on the front end of innovation and the search for solutions in complex pioneering processes using design-related tools and practices. The book opens by describing these tools, the approaches that characterize ADD, and its historical dimension. Specific fields in which ADD has flourished are then examined, exploring the dynamics between research and design. The coverage ranges from transportation, lighting, and electrical appliances through to business networks, technology parks, and the development of ground-breaking materials. AdvanceDesign is the name of the research group at the Politecnico di Milano (Italy’s largest technical university) of which the authors are members. It was chosen to reflect both the “advanced”, tangible dimension of design in terms of modern product development, mater...

  1. Advanced, Integrated Control for Building Operations to Achieve 40% Energy Saving

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yan; Song, Zhen; Loftness, Vivian; Ji, Kun; Zheng, Sam; Lasternas, Bertrand; Marion, Flore; Yuebin, Yu

    2012-10-15

    We developed and demonstrated a software based integrated advanced building control platform called Smart Energy Box (SEB), which can coordinate building subsystem controls, integrate variety of energy optimization algorithms and provide proactive and collaborative energy management and control for building operations using weather and occupancy information. The integrated control system is a low cost solution and also features: Scalable component based architecture allows to build a solution for different building control system configurations with needed components; Open Architecture with a central data repository for data exchange among runtime components; Extendible to accommodate variety of communication protocols. Optimal building control for central loads, distributed loads and onsite energy resource; uses web server as a loosely coupled way to engage both building operators and building occupants in collaboration for energy conservation. Based on the open platform of SEB, we have investigated and evaluated a variety of operation and energy saving control strategies on Carnegie Mellon University Intelligent Work place which is equipped with alternative cooling/heating/ventilation/lighting methods, including radiant mullions, radiant cooling/heating ceiling panels, cool waves, dedicated ventilation unit, motorized window and blinds, and external louvers. Based on the validation results of these control strategies, they were integrated in SEB in a collaborative and dynamic way. This advanced control system was programmed and computer tested with a model of the Intelligent Workplace's northern section (IWn). The advanced control program was then installed in the IWn control system; the performance was measured and compared with that of the state of the art control system to verify the overall energy savings great than 40%. In addition advanced human machine interfaces (HMI's) were developed to communicate both with building

  2. Thermal energy systems design and analysis

    CERN Document Server

    Penoncello, Steven G

    2015-01-01

    IntroductionThermal Energy Systems Design and AnalysisSoftwareThermal Energy System TopicsUnits and Unit SystemsThermophysical PropertiesEngineering DesignEngineering EconomicsIntroductionCommon Engineering Economics NomenclatureEconomic Analysis Tool: The Cash Flow DiagramTime Value of MoneyTime Value of Money ExamplesUsing Software to Calculate Interest FactorsEconomic Decision MakingDepreciation and TaxesProblemsAnalysis of Thermal Energy SystemsIntroductionNomenclatureThermophysical Properties of SubstancesSuggested Thermal Energy Systems Analysis ProcedureConserved and Balanced QuantitiesConservation of MassConservation of Energy (The First Law of Thermodynamics)Entropy Balance (The Second Law of Thermodynamics)Exergy Balance: The Combined LawEnergy and Exergy Analysis of Thermal Energy CyclesDetailed Analysis of Thermal Energy CyclesProblemsFluid Transport in Thermal Energy SystemsIntroductionPiping and Tubing StandardsFluid Flow FundamentalsValves and FittingsDesign and Analysis of Pipe NetworksEconomi...

  3. Advanced Design Tools for the Lifetime of Power Electronics – Study Case on Motor Drive Application

    DEFF Research Database (Denmark)

    Ma, Ke; Vernica, Ionut; Blaabjerg, Frede

    2016-01-01

    assessment of reliability performance for the power electronics is a crucial and emerging need, because it is the essential information for the reliability improvements, and thus reduction of the cost-of-energy. Unfortunately, there is still lack of suitable tools for the reliability assessment in power...... electronics. In this paper, an advanced design tool structure, which can acquire various reliability metrics of the power electronics, is proposed. The proposed design tool is based on the failure mechanisms in the critical components of the power electronics, and the mission profiles in the converter...

  4. Energy Conservation and Solar Retrofitting for Existing Buildings in Oregon: An Architectural Design Class Project.

    Science.gov (United States)

    Oregon Univ., Eugene. School of Architecture and Allied Arts.

    Five privately owned homes and two university owned homes were examined by architecture students in order to formulate design alternatives to fit the houses with solar collection, storage, and control devices for supplementing domestic space and/or water heating. General principles advanced include why energy conservation and solar retrofitting…

  5. Low Energy Reaction cell for advanced space power applications

    International Nuclear Information System (INIS)

    Miley, George H.; Rice, Eric

    2001-01-01

    Power units using Low Energy Reactions (LENRs) are under study as a radical new approach to power units that could potentially replace nuclear and chemical power sources for a number of space applications. These cells employ thin metallic films (order of 500 deg., using variously Ni, Pd and Ti) as cathodes with various electrolytes such as 0.5-1 molar lithium sulfate in light water. Power densities exceeding 10 W/cm3 in the thin-films have been achieved. An ultimate goal is to incorporate this thin-film technology into a 'tightly packed' cell design where the film material occupies ∼20% of the total cell volume. If this is achieved, overall power densities of ∼20 W/cm3 appear feasible, opening the way to a number of potential applications ranging from distributed power units in spacecraft to advanced propulsion

  6. Evaluation of technical design of advanced information display(III)

    International Nuclear Information System (INIS)

    Cha, Woo Chang; Jung, Sung Hae; Park, Joon Yong; Kim, Nam Cheol; Park, Soon Hyuk

    2005-02-01

    As the computer technology is highly developed, the mental model of computer users including NPP operators has been changed from analogue display type-based stereotype to digitalized one. Therefore, it is necessary and confident to consider the issues to evaluate system suitability of advanced information display on visual display terminal. This document is intended for providing an updated and expanded set of user-interface guidelines that meet the needs of designing digitalized information display by finding the generic guidelines involving information display design issues, and the relationship among the guidelines. The design issues and resolutions from the finding may provide the cues for the designers and evaluators of the specific man machine interfaces of digitalized devices. The Design Review Supporting System for Advanced Information Display(DReSS-AID) was developed for the practical usage of evaluators-in-field, which was implemented with Hangul version guidelines

  7. Evaluation of technical design of advanced information display(III)

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Woo Chang; Jung, Sung Hae; Park, Joon Yong; Kim, Nam Cheol [Kumoh National Institute of Technology, Gumi (Korea, Republic of); Park, Soon Hyuk [DNT Inc., Daejeon (Korea, Republic of)

    2005-02-15

    As the computer technology is highly developed, the mental model of computer users including NPP operators has been changed from analogue display type-based stereotype to digitalized one. Therefore, it is necessary and confident to consider the issues to evaluate system suitability of advanced information display on visual display terminal. This document is intended for providing an updated and expanded set of user-interface guidelines that meet the needs of designing digitalized information display by finding the generic guidelines involving information display design issues, and the relationship among the guidelines. The design issues and resolutions from the finding may provide the cues for the designers and evaluators of the specific man machine interfaces of digitalized devices. The Design Review Supporting System for Advanced Information Display(DReSS-AID) was developed for the practical usage of evaluators-in-field, which was implemented with Hangul version guidelines.

  8. Advanced energy system with nuclear reactors as an energy source

    International Nuclear Information System (INIS)

    Kato, Y.; Ishizuka, T.; Nikitin, K.

    2007-01-01

    recovery system is also applicable to a fast reactor (FR) with a supercritical CO 2 gas turbine that achieves higher cycle efficiency than conventional sodium cooled FRs with steam turbines. The FR will eliminate problems of conventional FRs related to safety, plant maintenance, and construction costs. The FR consumes efficiently trans-uranium elements (TRU) produced in light water reactors as fuel and reduce long-lived radioactive wastes or environmental loads of long term geological disposal. An Advanced Energy System (AES) with nuclear reactors as an energy source has been proposed which supply electricity and heat to cities. The AES has three objectives: 1. Save energy resources and reduce green house gas emissions, attaining total energy utilization efficiency higher than 85% through waste heat recovery and utilization. 2. Foster a recycling society that produces methane and methanol for fuel cells from waste products of cities and farms. 3. Consume TRU produced in LWRs as fuel for FRs, and reduce long-lived radioactive wastes or environmental loads of long term geological disposal. References 1. Y. Kato, T. Nitawaki and K. Fujima, 'Zero Waste Heat Release Nuclear Cogeneration System, 'Proc. 2003 Intl. Congress on Advanced Nuclear Power Plants (ICAPP'03), Cordoba, Spain, May 4-7, 2003, Paper 3313. 2. Y. Kato, T. Nitawaki and Y. Muto, 'Medium Temperature Carbon Dioxide Gas Turbine Reactor, 'Nucl. Eng. Design, 230, pp. 195-207 (2004). 3. H. N. Tran and Y. Kato, 'New 2 37Np Burning Strategy in a Supercritical CO 2 Cooled Fast Reactor Core Attaining Zero Burnup Reactivity Loss,' Proc. American Nuclear Society's Topical Meeting on Reactor Physics (PHYSOR 2006), Vancouver, British Columbia, Canada, September 10-14, 2006

  9. 78 FR 9446 - Advance Nanotech, Inc., Advanced ID Corp., Aeon Holdings, Inc. (n/k/a BCM Energy Partners, Inc...

    Science.gov (United States)

    2013-02-08

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Advance Nanotech, Inc., Advanced ID Corp., Aeon Holdings, Inc. (n/k/a BCM Energy Partners, Inc.), ANTS Software, Inc., Beauty Brands Group, Inc... current and accurate information concerning the securities of Advanced Nanotech, Inc. because it has not...

  10. Design of the Advanced Virgo non-degenerate recycling cavities

    International Nuclear Information System (INIS)

    Granata, M; Barsuglia, M; Flaminio, R; Freise, A; Hild, S; Marque, J

    2010-01-01

    Advanced Virgo is the project to upgrade the interferometric gravitational wave detector Virgo, and it foresees the implementation of power and signal non-degenerate recycling cavities. Such cavities suppress the build-up of high order modes of the resonating sidebands, with some advantage for the commissioning of the detector and the build-up of the gravitational signal. Here we present the baseline design of the Advanced Virgo non-degenerate recycling cavities, giving some preliminary results of simulations about the tolerances of this design to astigmatism, mirror figure errors and thermal lensing.

  11. The Advanced Neutron Source design: A status report

    International Nuclear Information System (INIS)

    West, C.D.

    1992-01-01

    The Advanced Nuetron Source (ANS) facility is being designed as a user laboratory for all types of neutron-based research, centered around a nuclear fission reactor (D 2 O cooled, moderated, and reflected), operating at approximately 300 MW th . Safety, and especially passive safety features, have been emphasized throughout the design process

  12. Development of environmentally advanced hydropower turbine system design concepts

    Energy Technology Data Exchange (ETDEWEB)

    Franke, G.F.; Webb, D.R.; Fisher, R.K. Jr. [Voith Hydro, Inc. (United States)] [and others

    1997-08-01

    A team worked together on the development of environmentally advanced hydro turbine design concepts to reduce hydropower`s impact on the environment, and to improve the understanding of the technical and environmental issues involved, in particular, with fish survival as a result of their passage through hydro power sites. This approach brought together a turbine design and manufacturing company, biologists, a utility, a consulting engineering firm and a university research facility, in order to benefit from the synergy of diverse disciplines. Through a combination of advanced technology and engineering analyses, innovative design concepts adaptable to both new and existing hydro facilities were developed and are presented. The project was divided into 4 tasks. Task 1 investigated a broad range of environmental issues and how the issues differed throughout the country. Task 2 addressed fish physiology and turbine physics. Task 3 investigated individual design elements needed for the refinement of the three concept families defined in Task 1. Advanced numerical tools for flow simulation in turbines are used to quantify characteristics of flow and pressure fields within turbine water passageways. The issues associated with dissolved oxygen enhancement using turbine aeration are presented. The state of the art and recent advancements of this technology are reviewed. Key elements for applying turbine aeration to improve aquatic habitat are discussed and a review of the procedures for testing of aerating turbines is presented. In Task 4, the results of the Tasks were assembled into three families of design concepts to address the most significant issues defined in Task 1. The results of the work conclude that significant improvements in fish passage survival are achievable.

  13. Development of environmentally advanced hydropower turbine system design concepts

    International Nuclear Information System (INIS)

    Franke, G.F.; Webb, D.R.; Fisher, R.K. Jr.

    1997-08-01

    A team worked together on the development of environmentally advanced hydro turbine design concepts to reduce hydropower''s impact on the environment, and to improve the understanding of the technical and environmental issues involved, in particular, with fish survival as a result of their passage through hydro power sites. This approach brought together a turbine design and manufacturing company, biologists, a utility, a consulting engineering firm and a university research facility, in order to benefit from the synergy of diverse disciplines. Through a combination of advanced technology and engineering analyses, innovative design concepts adaptable to both new and existing hydro facilities were developed and are presented. The project was divided into 4 tasks. Task 1 investigated a broad range of environmental issues and how the issues differed throughout the country. Task 2 addressed fish physiology and turbine physics. Task 3 investigated individual design elements needed for the refinement of the three concept families defined in Task 1. Advanced numerical tools for flow simulation in turbines are used to quantify characteristics of flow and pressure fields within turbine water passageways. The issues associated with dissolved oxygen enhancement using turbine aeration are presented. The state of the art and recent advancements of this technology are reviewed. Key elements for applying turbine aeration to improve aquatic habitat are discussed and a review of the procedures for testing of aerating turbines is presented. In Task 4, the results of the Tasks were assembled into three families of design concepts to address the most significant issues defined in Task 1. The results of the work conclude that significant improvements in fish passage survival are achievable

  14. Antarctica's Princess Elisabeth research station setting new standards in renewable energy design

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2009-07-15

    The first zero emission research platform that was recently inaugurated in Antarctica. The Princess Elisabeth research station, which is operated by the International Polar Foundation (IPF), is the only polar base to operate entirely on renewable energy. It was commissioned by the Belgian government to better understand the mechanism of climate change. The research station sets new standards in advanced design methodology. It demonstrates that the techniques and technology being used in extreme conditions could be a model for both commercial and domestic applications in more temperate areas around the world. Renewable energy sources are used along with passive housing techniques, optimization of energy consumption and best waste management practices. Solar energy provides about 30 per cent of the station's electricity supply through PV solar panels. Solar energy also provides hot water through solar thermal panels. Newly developed vacuum tube thermal panels reduce conducted heat loss and convert 70 per cent of the solar energy into useable thermal energy. The station's water treatment unit will recycle 100 per cent of its water and reuse 75 per cent of it using technology developed for future spaceships. After purification and neutralization, the recycled water is allocated to a second use for showers, toilets and washing machines. The research station uses passive building techniques. Its insulation, shape, orientation and window disposition allow comfortable ambient temperature to be maintained inside the building with little energy input. Wind power is responsible for about 70 per cent of the station's total electricity requirement. This is provided by 9 wind turbines that are designed to withstand the harsh conditions in Antarctica. This article also described the advanced power management system at the station, with particular reference to its SCADA human interface, the three-phase AC, the battery grid, evacuation of surplus energy and wiring

  15. Advanced nuclear reactor safety issues and research needs

    International Nuclear Information System (INIS)

    2002-01-01

    On 18-20 February 2002, the OECD Nuclear Energy Agency (NEA) organised, with the co-sponsorship of the International Atomic Energy Agency (IAEA) and in collaboration with the European Commission (EC), a Workshop on Advanced Nuclear Reactor Safety Issues and Research Needs. Currently, advanced nuclear reactor projects range from the development of evolutionary and advanced light water reactor (LWR) designs to initial work to develop even further advanced designs which go beyond LWR technology (e.g. high-temperature gas-cooled reactors and liquid metal-cooled reactors). These advanced designs include a greater use of advanced technology and safety features than those employed in currently operating plants or approved designs. The objectives of the workshop were to: - facilitate early identification and resolution of safety issues by developing a consensus among participating countries on the identification of safety issues, the scope of research needed to address these issues and a potential approach to their resolution; - promote the preservation of knowledge and expertise on advanced reactor technology; - provide input to the Generation IV International Forum Technology Road-map. In addition, the workshop tried to link advancement of knowledge and understanding of advanced designs to the regulatory process, with emphasis on building public confidence. It also helped to document current views on advanced reactor safety and technology, thereby contributing to preserving knowledge and expertise before it is lost. (author)

  16. Advanced fluoride-based materials for energy conversion

    CERN Document Server

    Nakajima, Tsuyoshi

    2015-01-01

    Advanced Fluoride-Based Materials for Energy Conversion provides thorough and applied information on new fluorinated materials for chemical energy devices, exploring the electrochemical properties and behavior of fluorinated materials in lithium ion and sodium ion batteries, fluoropolymers in fuel cells, and fluorinated carbon in capacitors, while also exploring synthesis applications, and both safety and stability issues. As electronic devices, from cell phones to hybrid and electric vehicles, are increasingly common and prevalent in modern lives and require dependable, stable chemical energy devices with high-level functions are becoming increasingly important. As research and development in this area progresses rapidly, fluorine compounds play a critical role in this rapid progression. Fluorine, with its small size and the highest electronegativity, yields stable compounds under various conditions for utilization as electrodes, electrolytes, and membranes in energy devices. The book is an ideal reference f...

  17. Advanced lighting guidelines: 1993. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Eley, C.; Tolen, T.M. [Eley Associates, San Francisco, CA (United States); Benya, J.R. [Luminae Souter Lighting Design, San Francisco, CA (United States); Rubinstein, F.; Verderber, R. [Lawrence Berkeley Lab., CA (United States)

    1993-12-31

    The 1993 Advanced Lighting Guidelines document consists of twelve guidelines that provide an overview of specific lighting technologies and design application techniques utilizing energy-efficient lighting practice. Lighting Design Practice assesses energy-efficient lighting strategies, discusses lighting issues, and explains how to obtain quality lighting design and consulting services. Luminaires and Lighting Systems surveys luminaire equipment designed to take advantage of advanced technology lamp products and includes performance tables that allow for accurate estimation of luminaire light output and power input. The additional ten guidelines -- Computer-Aided Lighting Design, Energy-Efficient Fluorescent Ballasts, Full-Size Fluorescent Lamps, Compact Fluorescent Lamps, Tungsten-Halogen Lamps, Metal Halide and HPS Lamps, Daylighting and Lumen Maintenance, Occupant Sensors, Time Scheduling Systems, and Retrofit Control Technologies -- each provide a product technology overview, discuss current products on the lighting equipment market, and provide application techniques. This document is intended for use by electric utility personnel involved in lighting programs, lighting designers, electrical engineers, architects, lighting manufacturers` representatives, and other lighting professionals.

  18. ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT. ANNUAL REPORT TO THE U.S. DEPARTMENT OF ENERGY OCTOBER 1, 2001 THROUGH SEPTEMBER 30, 2002

    International Nuclear Information System (INIS)

    PROJECT STAFF

    2003-01-01

    OAK-B135 The General Atomics (GA) Advanced Fusion Technology program seeks to advance the knowledge base needed for next-generation fusion experiments and, ultimately, for an economical and environmentally attractive fusion energy source. To achieve this objective, we carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and we conduct research to develop basic and applied knowledge about these technologies. GA's Advanced Fusion Technology program derives from, and draws on, the physics and engineering expertise built up by many years of experience in designing, building, and operating plasma physics experiments. Our technology development activities take full advantage of the GA DIII-D program, the DIII-D facility and the Inertial Confinement Fusion (ICF) program and the ICF Target Fabrication facility. The following sections summarize GA's FY02 work in the areas of Fusion Power Plant Studies (ARIES, Section 2), Inertial Fusion Energy (IFE) Chamber Analysis (Section 3), IFE Target Supply System Development (Section 4), Next Step Fusion Design (Section 5), Advanced Liquid Plasma Facing Surfaces (ALPS, Section 6), Advanced Power Extraction Study (APEX, Section 7), Plasma Interactive Materials (DiMES, Section 8) and RF Technology (Section 9). Our work in these areas continues to address many of the issues that must be resolved for the successful construction and operation of next-generation experiments and, ultimately, the development of safe, reliable, economic fusion power plants

  19. US Department of Energy Nuclear Energy University program in robotics for advanced reactors: Program plan, FY 1987-1991

    International Nuclear Information System (INIS)

    Mann, R.C.; Gonzalez, R.C.; Tulenko, J.S.; Tesar, D.; Wehe, D.K.

    1987-07-01

    The US Department of Energy has provided support to four universities and the Oak Ridge National Laboratory in order to pursue research leading to the development and deployment of an advanced robotic system capable of performing tasks that are hazardous to humans, that generate significant occupational radiation exposure, and/or whose execution times can be reduced if performed by an automated system. The goal is to develop a generation of advanced robotic systems capable of performing surveillance, maintenance, and repair tasks in nuclear facilities and other hazardous environments. This goal will be achieved through a team effort among the Universities of Florida, Michigan, Tennessee, Texas, and the Oak Ridge National Laboratory, and their industrial partners, Combustion Engineering, Martin Marietta Baltimore Aerospace, Odetics, Remotec, and Telerobotics International. Each of the universities and ORNL have ongoing activities and corresponding facilities in areas of R and D related to robotics. This program is designed to take full advantage of these existing resources at the participating institutions

  20. Applicability of HRA to support advanced MMI design review

    International Nuclear Information System (INIS)

    Kim, Inn Seock

    2000-01-01

    More than half of all incidents in large complex technological systems, particularly in nuclear power or aviation industries, were attributable in some way to human erroneous actions. These incidents were largely due to the human engineering deficiencies of man-machine interface (MMI). In nuclear industry, advanced computer-based MMI designs are emerging as part of new reactor designs. The impact of advanced MMI technology on the operator performance, and as a result, on plant safety should be thoroughly evaluated before such technology is actually adopted in nuclear power plants. This paper discusses the applicability of human reliability analysis (HRA) to support the design review process. Both the first-generation and the second-generation HRA methods are considered focusing on a couple of promising HRA methods, i.e., ATHEANA and CREAM, with the potential to assist the design review process. (author)

  1. Design and management of energy-efficient hybrid electrical energy storage systems

    CERN Document Server

    Kim, Younghyun

    2014-01-01

    This book covers system-level design optimization and implementation of hybrid energy storage systems. The author introduces various techniques to improve the performance of hybrid energy storage systems, in the context of design optimization and automation. Various energy storage techniques are discussed, each with its own advantages and drawbacks, offering viable, hybrid approaches to building a high performance, low cost energy storage system. Novel design optimization techniques and energy-efficient operation schemes are introduced. The author also describes the technical details of an act

  2. Advanced Energy Retrofit Guide: Practical Ways to Improve Energy Performance; Grocery Stores (Revised) (Book)

    Energy Technology Data Exchange (ETDEWEB)

    Hendron, B.

    2013-07-01

    The U.S. Department of Energy developed the Advanced Energy Retrofit Guides (AERGs) to provide specific methodologies, information, and guidance to help energy managers and other stakeholders successfully plan and execute energy efficiency improvements. Detailed technical discussion is fairly limited in these guides. Instead, we emphasize actionable information, practical methodologies, diverse case studies, and unbiased evaluations of the most promising retrofit measures for each building type. A series of AERGs is under development, addressing key segments of the commercial building stock. Grocery stores were selected as one of the highest priority sectors, because they represent one of the most energy-intensive market segments.

  3. Application of an advanced cost model in the different design phases of an offshore wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Hendriks, H.B.; Lindenburg, C.; Kooijman, H.J.T.; Bulder, B.H. [ECN Wind, Petten (Netherlands); Bozelie, J.; Madsen, J.B. [NEG Micon Holland, Rhenen (Netherlands); Halfschepel, R. [Van Oord ACZ, Gorinchem (Netherlands); Molenaar, W. [Ballast Nedam, Amstelveen (Netherlands); Van den Berg, R. [LM Glasfiber Holland, Heerhugowaard (Netherlands); Zaaijer, M. [TU-Delft, Delft (Netherlands)

    2001-09-01

    The goal of the Dutch Offshore Wind Energy Converter (DOWEC) consortium is to develop concepts and technology in order to make large scale offshore wind energy economically feasible. The overall DOWEC development comprises of the design, the construction, and the prototype testing. Onshore testing of a 3 MW research and development prototype is scheduled for the end of 2002. The DOWEC Concept Study aims at the choice of the optimal wind turbine concept. The wind turbine will not be treated as an isolated system. Designs of different wind turbine concepts will be evaluated as an integral part of the complete large-scale offshore wind farm. All significant properties like the structural loads, the power performance, the system reliability, the costs of the electric infrastructure, maintenance costs and installation costs is determined for the optimised designs. A quantitative ranking is then based on the cost of energy generated. Furthermore qualitative criteria like development risk and market potential will be taken into consideration when finalising the choice of concept. An advanced cost model is being developed to facilitate the above evaluation on basis of estimated energy generating costs for each concept. The same methodology will also be used in the system and detail design phase. This paper describes the DOWEC project in general, focusing at the cost modelling aspects including some preliminary results. 4 refs.

  4. Development of advanced-RCCA in PWR (2). Design of advanced-RCCA and verification test

    Energy Technology Data Exchange (ETDEWEB)

    Kitagawa, T.; Naitou, T.; Suzuki, S.; Kawahara, H. [Mitsubishi Heavy Industries Ltd., Kobe (Japan); Tanaka, T. [Kansai Electric Power Co., Inc. (Japan); Kuriyama, H. [Hokkaido Electric Power Co., Inc., Sapporo (Japan); Fujii, S. [Shikoku Electric Power Co., Inc., Takamatsu (Japan); Murakami, S. [Kyusyu Electric Power Co., Inc. (Japan); Murota, M. [Japan Atomic Power Co., Tokyo (Japan)

    2001-07-01

    Advanced-RCCA enhances control rod worth by adopting boron carbide (B{sub 4}C) with enriched {sup 10}B (hybrid structure B{sub 4}C/Ag-In-Cd). In APWR, advanced-RCCA result in the reduction of the number of RCCA. In conventional PWR, large MOX or high burn-up fuel loading could be introduced without the additional RCCAs. The duplex cladding structure with Cr plating on each outside surface increases the reliability against the RCCA-wear and results in reduction of inspection cost (inspection-equipment, and inspection-interval). Design of advanced-RCCA and verification are also discussed. (author)

  5. Radionuclide Emission Estimation for the Center for Advanced Energy Studies (CAES)

    International Nuclear Information System (INIS)

    Schrader, Bradley J.

    2010-01-01

    An Radiological Safety Analysis Computer Program (RSAC)-7 model dose assessment was performed to evaluate maximum Center for Advanced Energy Studies (CAES) boundary effective dose equivalent (EDE, in mrem/yr) for potential individual releases of radionuclides from the facility. The CAES is a public/private partnership between the State of Idaho and its academic research institutions, the federal government through the U.S. Department of Energy (DOE), and the Idaho National Laboratory (INL) managed by the Battelle Energy Alliance (BEA). CAES serves to advance energy security for our nation by expanding educational opportunities at Idaho universities in energy-related areas, creating new capabilities within its member institutions, and delivering technological innovations leading to technology-based economic development for the intermountain region. CAES has developed a strategic plan (INL/EXT-07-12950) based on the balanced scorecard approach. At the present time it is unknown exactly what processes will be used in the facility in support of this strategic plan. What is known is that the Idaho State University (ISU) Radioactive Materials License (Nuclear Regulatory Commission (NRC) license 11-27380-01) is the basis for handling radioactive material in the facility. The material in this license is shared between the ISU campus and the CAES facility. There currently are no agreements in place to limit the amount of radioactive material at the CAES facility or what is done to the material in the facility. The scope of this analysis is a summary look at the basis dose for each radionuclide included under the license at a distance of 100, 500, and 1,000 m. Inhalation, ingestion and ground surface dose was evaluated using the NRC design basis guidelines. The results can be used to determine a sum of the fractions approach to facility safety. This sum of the fractions allows a facility threshold value (TV) to be established and potential activities to be evaluated against

  6. Project margins of advanced reactor design WWER-500

    International Nuclear Information System (INIS)

    Rogov, M.F.; Birukov, G.I.; Ershov, V.G.; Volkov, B.E.

    1994-01-01

    Project criteria for design of advanced WWER-500 reactor within design conditions are compared to the requirements of the Russian regulatory guides. Normal operation limits, safe operation limits for main anticipated operational occurrences and design limits accepted for design basis accidents are considered as in preliminary safety report. It is shown that the basic design criteria in the design of WWER-500 for the anticipated operational occurrences and for design basis accidents are more severe than required in the following regulatory guides General Safety Regulations for Nuclear Power Plants and Nuclear Safety Rules for Reactors of Nuclear Power Plants. This provides certain margins from safety point of view

  7. Proceedings of the 2. invitational conference on advancing energy literacy in Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J. [Centre for Environment-Economy Learning Foundation, Edmonton, AB (Canada)

    2010-07-01

    This conference provided a forum to discuss and define necessary short-term actions to advance energy literacy in Alberta. The goals of the conference were to clearly define the conditions needed to move forward on energy literacy; provide input to the Strategic Framework for Advancing Energy Literacy in Alberta (AELA); and describe objectives for the next two years of cooperative work on advancing energy literacy in the province. Four sectors were recognized at the conference, notably government; electricity and other utilities; oil and gas industry; and community, which included educators, landowners, environmental and conservation group representatives, and private media. The 2010 conference intended to build on the interest of the energy community and focus on action. Alberta's Minister of Energy emphasized the need for Albertans to understand energy as it relates to the economic well being of the province. Participants were encouraged to find ways to work together, as a collective to develop and deliver education programs that help the public to understand that resources can be developed in an environmentally sustainable manner. Electronic polling of all conference participants produced a prioritized list of actions for launching an energy literacy program as well as an initial indication of commitment to those actions. tabs.

  8. Design for reliability in power electronics in renewable energy systems – status and future

    DEFF Research Database (Denmark)

    Wang, Huai; Blaabjerg, Frede; Ma, Ke

    2013-01-01

    Advances in power electronics enable efficient and flexible interconnection of renewable sources, loads and electric grids. While targets concerning efficiency of power converters are within reach, recent research endeavors to predict and improve their reliability to ensure high availability, low...... maintenance costs, and herefore, low Levelized-Cost-of-Energy (LCOE) of renewable energy systems. This paper presents the prior-art Design for Reliability (DFR) process for power converters and addresses the paradigm shift to Physics-of-Failure (PoF) approach and mission profile based analysis. Moreover...

  9. Recent designs for advanced fusion reactor blankets

    International Nuclear Information System (INIS)

    Sze, D.K.

    1994-06-01

    A series of reactor design studies based on the Tokamak configuration have been carried out under the direction of Professor Robert Conn of UCLA. They are called ARIES-1 through 4 and PULSAR 1 and 2. The key mission of these studies is to evaluate the attractiveness of fusion assuming different degrees of advancement in either physics or engineering development. Also, the requirements of engineering and physics systems for a pulsed reactor were evaluated by the PULSAR design studies. This paper discusses the directions and conclusions of the blanket and related engineering systems for those design studies

  10. Evaluation of design variants for improved inherent regulation of advanced small modular reactors - 15325

    International Nuclear Information System (INIS)

    Vilim, R.B.; Passerini, S.

    2015-01-01

    This paper examines design variants that can improve inherent regulation in Advanced Small Modular Reactors (ASMR). It looks at the nature of unprotected upsets and then develops appropriate design measures to ensure that no upset can override a capability for safe self-regulation. This work adopts a reference sodium fast reactor (SFR) design to serve as a baseline for operational and safety performance and for comparison with variants on this design. The effect of design measures on plant stability is then examined. It is found that compared to full-power operation, the stability margin is reduced under islanded-operation. Islanded-operation is more likely for an ASMR deployed in a small regional electric grid with high penetration of renewable energy sources. The stability of core power production is a function of the inlet temperature coefficient, coolant transport times, and temperature-front attenuation in heat exchangers. The interaction of these phenomena with the control system is described

  11. Development and applications of Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y., E-mail: yican.wu@fds.org.cn [Inst. of Nuclear Energy Safety Technology, Hefei, Anhui (China)

    2015-07-01

    'Full text:' Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems (SuperMC) is a CAD-based Monte Carlo (MC) program for integrated simulation of nuclear system by making use of hybrid MC-deterministic method and advanced computer technologies. The main usability features are automatic modeling of geometry and physics, visualization and virtual simulation and cloud computing service. SuperMC 2.3, the latest version, can perform coupled neutron and photon transport calculation. SuperMC has been verified by more than 2000 benchmark models and experiments, and has been applied in tens of major nuclear projects, such as the nuclear design and analysis of International Thermonuclear Experimental Reactor (ITER) and China Lead-based reactor (CLEAR). Development and applications of SuperMC are introduced in this presentation. (author)

  12. Development and applications of Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems

    International Nuclear Information System (INIS)

    Wu, Y.

    2015-01-01

    'Full text:' Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems (SuperMC) is a CAD-based Monte Carlo (MC) program for integrated simulation of nuclear system by making use of hybrid MC-deterministic method and advanced computer technologies. The main usability features are automatic modeling of geometry and physics, visualization and virtual simulation and cloud computing service. SuperMC 2.3, the latest version, can perform coupled neutron and photon transport calculation. SuperMC has been verified by more than 2000 benchmark models and experiments, and has been applied in tens of major nuclear projects, such as the nuclear design and analysis of International Thermonuclear Experimental Reactor (ITER) and China Lead-based reactor (CLEAR). Development and applications of SuperMC are introduced in this presentation. (author)

  13. Advanced Combustion and Fuels; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Zigler, Brad

    2015-06-08

    Presented at the U.S. Department of Energy Vehicle Technologies Office 2015 Annual Merit Review and Peer Evaluation Meeting, held June 8-12, 2015, in Arlington, Virginia. It addresses technical barriers of inadequate data and predictive tools for fuel and lubricant effects on advanced combustion engines, with the strategy being through collaboration, develop techniques, tools, and data to quantify critical fuel physico-chemical effects to enable development of advanced combustion engines that use alternative fuels.

  14. Research and development on the application of advanced control technologies to advanced nuclear reactor systems: A US national perspective

    International Nuclear Information System (INIS)

    White, J.D.; Monson, L.R.; Carrol, D.G.; Dayal, Y.

    1989-01-01

    Control system designs for nuclear power plants are becoming more advanced through the use of digital technology and automation. This evolution is taking place because of: (1) the limitations in analog based control system performance and maintenance and availability and (2) the promise of significant improvement in plant operation and availability due to advances in digital and other control technologies. Digital retrofits of control systems in US nuclear plants are occurring now. Designs of control and protection systems for advanced LWRs are based on digital technology. The use of small inexpensive, fast, large-capacity computers in these designs is the first step of an evolutionary process described in this paper. Under the sponsorship of the US Department of Energy (DOE), Oak Ridge National Laboratory, Argonne National Laboratory, GE Nuclear Energy and several universities are performing research and development in the application of advances in control theory, software engineering, advanced computer architectures, artificial intelligence, and man-machine interface analysis to control system design. The target plant concept for the work described in this paper is the Power Reactor Inherently Safe Module reactor (PRISM), an advanced modular liquid metal reactor concept. This and other reactor designs which provide strong passive responses to operational upsets or accidents afford good opportunities to apply these advances in control technology. 18 refs., 5 figs

  15. The advanced neutron source design - A status report

    International Nuclear Information System (INIS)

    West, C.D.

    1992-01-01

    The Advanced Neutron Source (ANS) facility is being designed as a user laboratory for all types of neutron-based research, centered around a nuclear fission reactor (D 2 O cooled, moderated, and reflected), operating at approximately 300 MWth. Safety, and especially passive safety features, have been emphasized throughout the design process. The design also provides experimental facilities for neutron scattering and nuclear and fundamental physics research, transuranic and other isotope production, radiation effects research, and materials analysis. (author)

  16. Applied & Computational MathematicsChallenges for the Design and Control of Dynamic Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D L; Burns, J A; Collis, S; Grosh, J; Jacobson, C A; Johansen, H; Mezic, I; Narayanan, S; Wetter, M

    2011-03-10

    consumption. In addition the finding was that there are tools and technologies that can be assembled and deployed in the short term - the next 3-5 years - that can be used to significantly reduce the cost and time effective delivery of moderate energy savings in the U.S. building stock. Simulation tools, which are a core strength of current DOE computational research programs, provide only a part of the answer by providing a basis for simulation enabled design. New investments will be required within a broad dynamics and control research agenda which must focus on dynamics, control, optimization and simulation of multi-scale energy systems during design and operation. U.S. investments in high performance and high productivity computing (HP2C) should be leveraged and coupled with advances in dynamics and control to impact both the existing building stock through retrofits and also new construction. The essential R&D areas requiring investment are: (1) Characterizing the Dynamics of Multi-scale Energy Systems; (2) Control and Optimization Methodologies of Multi-scale Energy Systems Under Uncertainty; and (3) Multiscale Modeling and Simulation Enabled Design and Operation. The concept of using design and control specific computational tools is a new idea for the building industry. The potential payoffs in terms of accelerated design cycle times, performance optimization and optimal supervisory control to obtain and maintain energy savings are huge. Recent advances in computational power, computer science, and mathematical algorithms offer the foundations to address the control problems presented by the complex dynamics of whole building systems. The key areas for focus and associated metrics with targets for establishing competitiveness in energy efficient building design and operation are: (1) Scalability - Current methodology and tools can provide design guidance for very low energy buildings in weeks to months; what is needed is hours to days. A 50X improvement is needed. (2

  17. Human factors design review guidelines for advanced nuclear control room technologies

    International Nuclear Information System (INIS)

    O'Hara, J.; Brown, W.; Granda, T.; Baker, C.

    1991-01-01

    Advanced control rooms (ACRs) for future nuclear power plants are being designed utilizing computer-based technologies. The US Nuclear Regulatory Commission reviews the human engineering aspects of such control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported in order to protect public health and safety. This paper describes the rationale, general approach, and initial development of an NRC Advanced Control Room Design Review Guideline. 20 refs., 1 fig

  18. Advanced Photonic Processes for Photovoltaic and Energy Storage Systems.

    Science.gov (United States)

    Sygletou, Maria; Petridis, Constantinos; Kymakis, Emmanuel; Stratakis, Emmanuel

    2017-10-01

    Solar-energy harvesting through photovoltaic (PV) conversion is the most promising technology for long-term renewable energy production. At the same time, significant progress has been made in the development of energy-storage (ES) systems, which are essential components within the cycle of energy generation, transmission, and usage. Toward commercial applications, the enhancement of the performance and competitiveness of PV and ES systems requires the adoption of precise, but simple and low-cost manufacturing solutions, compatible with large-scale and high-throughput production lines. Photonic processes enable cost-efficient, noncontact, highly precise, and selective engineering of materials via photothermal, photochemical, or photophysical routes. Laser-based processes, in particular, provide access to a plethora of processing parameters that can be tuned with a remarkably high degree of precision to enable innovative processing routes that cannot be attained by conventional approaches. The focus here is on the application of advanced light-driven approaches for the fabrication, as well as the synthesis, of materials and components relevant to PV and ES systems. Besides presenting recent advances on recent achievements, the existing limitations are outlined and future possibilities and emerging prospects discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Mechanical Design Optimization Using Advanced Optimization Techniques

    CERN Document Server

    Rao, R Venkata

    2012-01-01

    Mechanical design includes an optimization process in which designers always consider objectives such as strength, deflection, weight, wear, corrosion, etc. depending on the requirements. However, design optimization for a complete mechanical assembly leads to a complicated objective function with a large number of design variables. It is a good practice to apply optimization techniques for individual components or intermediate assemblies than a complete assembly. Analytical or numerical methods for calculating the extreme values of a function may perform well in many practical cases, but may fail in more complex design situations. In real design problems, the number of design parameters can be very large and their influence on the value to be optimized (the goal function) can be very complicated, having nonlinear character. In these complex cases, advanced optimization algorithms offer solutions to the problems, because they find a solution near to the global optimum within reasonable time and computational ...

  20. High thermal efficiency x-ray energy conversion scheme for advanced fusion reactors

    International Nuclear Information System (INIS)

    Quimby, D.C.; Taussig, R.T.; Hertzberg, A.

    1977-01-01

    This paper reports on a new radiation energy conversion scheme which appears to be capable of producing electricity from the high quality x-ray energy with efficiencies of 60 to 70 percent. This new reactor concept incorporates a novel x-ray radiation boiler and a new thermal conversion device known as an energy exchanger. The low-Z first walls of the radiation boiler are semi-transparent to x-rays, and are kept cool by incoming working fluid, which is subsequently heated to temperatures of 2000 to 3000 0 K in the interior of the boiler by volumetric x-ray absorption. The radiation boiler may be a compact part of the reactor shell since x-rays are readily absorbed in high-Z materials. The energy exchanger transfers the high-temperature working fluid energy to a lower temperature gas which drives a conventional turbine. The overall efficiency of the cycle is characterized by the high temperature of the working fluid. The high thermal efficiencies which appear achievable with this cycle would make an otherwise marginal advanced fusion reactor into an attractive net power producer. The operating principles, initial conceptual design, and engineering problems of the radiation boiler and thermal cycle are presented

  1. Advances in product family and product platform design methods & applications

    CERN Document Server

    Jiao, Jianxin; Siddique, Zahed; Hölttä-Otto, Katja

    2014-01-01

    Advances in Product Family and Product Platform Design: Methods & Applications highlights recent advances that have been made to support product family and product platform design and successful applications in industry. This book provides not only motivation for product family and product platform design—the “why” and “when” of platforming—but also methods and tools to support the design and development of families of products based on shared platforms—the “what”, “how”, and “where” of platforming. It begins with an overview of recent product family design research to introduce readers to the breadth of the topic and progresses to more detailed topics and design theory to help designers, engineers, and project managers plan, architect, and implement platform-based product development strategies in their companies. This book also: Presents state-of-the-art methods and tools for product family and product platform design Adopts an integrated, systems view on product family and pro...

  2. 2011 NDIA Advanced Research Projects Agency - Energy/DoD Workshop

    Science.gov (United States)

    2011-09-12

    for Handoffs Advanced Research Projects Agency • Energy Portfolio of Projects UNIVERSITY/ LAB SMALL BUSINESS CORPORATION Fuel-Free Isothermal...2011 Present Programs • Agile Delivery of Electrical Power Technology (ADEPT) • Batteries for Electrical Energy Storage in Transportation ( BEEST ...Technologies for Energy (REACT) • Solar Agile Delivery of Electrical Power Technology (Solar – ADEPT) The BEEST : An Overview of ARPA-E’s Program in Ultra-High

  3. Advanced energy technologies and climate change: An analysis using the Global Change Assessment Model (GCAM)

    International Nuclear Information System (INIS)

    Edmonds, J.; Wise, M.; MacCracken, C.

    1994-01-01

    The authors report results from a ''top down'' energy-economy model employing ''bottom up'' assumptions and embedded in an integrated assessment framework, GCAM. The analysis shows that, from the perspective of long-term energy system development, differences in results from the ''top down'' and ''bottom up'' research communities would appear to be more closely linked to differences in assumptions regarding the economic cost associated with advanced technologies than to differences in modeling approach. The adoption of assumptions regarding advanced energy technologies were shown to have a profound effect on the future rate of anthropogenic climate change. The cumulative effect of the five sets of advanced energy technologies is to reduce annual emissions from fossil fuel use to levels which stabilize atmospheric concentrations below 550 ppmv, the point at which atmospheric concentrations are double those that existed in the middle of the eighteenth century. The consideration of all greenhouse gases, and in particular sulfur, leads to some extremely interesting results that the rapid deployment of advanced energy technologies leads to higher temperatures prior to 2050 than in the reference case. This is due to the fact that the advanced energy technologies reduce sulfur emissions as well as those of carbon. The short-term cooling impact of sulfur dominates the long-term warming impact of CO 2 and CH 4 . While all energy technologies play roles, the introduction of advanced biomass energy production technology plays a particularly important role. 16 refs., 12 figs., 3 tabs

  4. Advances in Residential Design Related to the Influence of Geomagnetism

    Science.gov (United States)

    Arnedo, Israel; Sánchez-Ostiz, Ana

    2018-01-01

    Since the origin of the Modern Movement, there has been a basic commitment to improving housing conditions and the well-being of occupants, especially given the prediction that 2/3 of humanity will reside in cities by 2050. Moreover, a compact model of the city with tall buildings and urban densification at this scale will be generated. Continuous constructive and technological advances have developed solid foundations on safety, energy efficiency, habitability, and sustainability in housing design. However, studies on improving the quality of life in these areas continue to be a challenge for architects and engineers. This paper seeks to contribute health-related information to the study of residential design, specifically the influence of the geomagnetic field on its occupants. After compiling information on the effects of geomagnetic fields from different medical studies over 23 years, a case study of a 16-story high-rise building is presented, with the goal of proposing architectural design recommendations for long-term occupation in the same place. The purpose of the present work is three-fold: first, to characterize the geomagnetic field variability of buildings; second, to identify the causes and possible related mechanisms; and third, to define architectural criteria on the arrangement of uses and constructive elements for housing. PMID:29473902

  5. Advances in Residential Design Related to the Influence of Geomagnetism

    Directory of Open Access Journals (Sweden)

    Francisco Glaria

    2018-02-01

    Full Text Available Since the origin of the Modern Movement, there has been a basic commitment to improving housing conditions and the well-being of occupants, especially given the prediction that 2/3 of humanity will reside in cities by 2050. Moreover, a compact model of the city with tall buildings and urban densification at this scale will be generated. Continuous constructive and technological advances have developed solid foundations on safety, energy efficiency, habitability, and sustainability in housing design. However, studies on improving the quality of life in these areas continue to be a challenge for architects and engineers. This paper seeks to contribute health-related information to the study of residential design, specifically the influence of the geomagnetic field on its occupants. After compiling information on the effects of geomagnetic fields from different medical studies over 23 years, a case study of a 16-story high-rise building is presented, with the goal of proposing architectural design recommendations for long-term occupation in the same place. The purpose of the present work is three-fold: first, to characterize the geomagnetic field variability of buildings; second, to identify the causes and possible related mechanisms; and third, to define architectural criteria on the arrangement of uses and constructive elements for housing.

  6. Advanced Neutron Sources: Plant Design Requirements

    International Nuclear Information System (INIS)

    1990-07-01

    The Advanced Neutron Source (ANS) is a new, world class facility for research using hot, thermal, cold, and ultra-cold neutrons. At the heart of the facility is a 350-MW th , heavy water cooled and moderated reactor. The reactor is housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides fans out into a large guide hall, housing about 30 neutron research stations. Office, laboratory, and shop facilities are included to provide a complete users facility. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory at the end of the decade. This Plant Design Requirements document defines the plant-level requirements for the design, construction, and operation of the ANS. This document also defines and provides input to the individual System Design Description (SDD) documents. Together, this Plant Design Requirements document and the set of SDD documents will define and control the baseline configuration of the ANS

  7. Advanced Power Electronics Interfaces for Distributed Energy Workshop Summary: August 24, 2006, Sacramento, California

    Energy Technology Data Exchange (ETDEWEB)

    Treanton, B.; Palomo, J.; Kroposki, B.; Thomas, H.

    2006-10-01

    The Advanced Power Electronics Interfaces for Distributed Energy Workshop, sponsored by the California Energy Commission Public Interest Energy Research program and organized by the National Renewable Energy Laboratory, was held Aug. 24, 2006, in Sacramento, Calif. The workshop provided a forum for industry stakeholders to share their knowledge and experience about technologies, manufacturing approaches, markets, and issues in power electronics for a range of distributed energy resources. It focused on the development of advanced power electronic interfaces for distributed energy applications and included discussions of modular power electronics, component manufacturing, and power electronic applications.

  8. ADVANCED TURBINE SYSTEM CONCEPTUAL DESIGN AND PRODUCT DEVELOPMENT; FINAL

    International Nuclear Information System (INIS)

    Albrecht H. Mayer

    2000-01-01

    Asea Brown Boveri (ABB) has completed its technology based program. The results developed under Work Breakdown Structure (WBS) 8, concentrated on technology development and demonstration have been partially implemented in newer turbine designs. A significant improvement in heat rate and power output has been demonstrated. ABB will use the knowledge gained to further improve the efficiency of its Advanced Cycle System, which has been developed and introduced into the marked out side ABB's Advanced Turbine System (ATS) activities. The technology will lead to a power plant design that meets the ATS performance goals of over 60% plant efficiency, decreased electricity costs to consumers and lowest emissions

  9. LHC Collimators with Embedded Beam Position Monitors: A New Advanced Mechanical Design

    CERN Document Server

    Dallocchio, A; Boccard, C; Carra, F; Gasior, M; Gentini, L; Timmins, M A

    2011-01-01

    The LHC collimation system, ensuring both functions of beam cleaning and machine protection, is potentially submitted to high-energy beam impacts. Currently the collimators setup is performed by monitoring beam losses generated by the collimator jaws when approaching the particle beam. This procedure is applied to all LHC collimators (almost one hundred), taking several hours, and needs to be repeated if beam settings change significantly. Furthermore, during the beam-based alignment, the LHC tertiary collimators are potentially exposed to abnormal losses entailing possible damage to their tungsten jaws. To improve the efficiency of the machine operation and better control the particle beam a new advanced design embedding Beam Position Monitors (BPM) into the movable collimator jaws has been developed. This paper describes the mechanical design of various types of future collimators with embedded BPMs. Experimental measurements performed on a simplified functional prototype installed in the CERN SPS showed th...

  10. Test Hardware Design for Flight-Like Operation of Advanced Stirling Convertors

    Science.gov (United States)

    Oriti, Salvatore M.

    2012-01-01

    NASA Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). For this purpose, the Thermal Energy Conversion branch at GRC has been conducting extended operation of a multitude of free-piston Stirling convertors. The goal of this effort is to generate long-term performance data (tens of thousands of hours) simultaneously on multiple units to build a life and reliability database. The test hardware for operation of these convertors was designed to permit in-air investigative testing, such as performance mapping over a range of environmental conditions. With this, there was no requirement to accurately emulate the flight hardware. For the upcoming ASC-E3 units, the decision has been made to assemble the convertors into a flight-like configuration. This means the convertors will be arranged in the dual-opposed configuration in a housing that represents the fit, form, and thermal function of the ASRG. The goal of this effort is to enable system level tests that could not be performed with the traditional test hardware at GRC. This offers the opportunity to perform these system-level tests much earlier in the ASRG flight development, as they would normally not be performed until fabrication of the qualification unit. This paper discusses the requirements, process, and results of this flight-like hardware design activity.

  11. Design of a Facility to Test the Advanced Stirling Radioisotope Generator Engineering Unit

    Science.gov (United States)

    Lewandowski, Edward J.; Schreiber, Jeffrey G.; Oriti, Salvatore M.; Meer, David W.; Brace, Michael H.; Dugala, Gina

    2009-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) is being considered to power deep space missions. An engineering unit, the ASRG-EU, was designed and fabricated by Lockheed Martin under contract to the Department of Energy. This unit is currently on an extended operation test at NASA Glenn Research Center to generate performance data and validate the life and reliability predictions for the generator and the Stirling convertors. A special test facility was designed and built for testing the ASRG-EU. Details of the test facility design are discussed. The facility can operate the convertors under AC bus control or with the ASRG-EU controller. It can regulate input thermal power in either a fixed temperature or fixed power mode. An enclosure circulates cooled air around the ASRG-EU to remove heat rejected from the ASRG-EU by convection. A custom monitoring and data acquisition system supports the test. Various safety features, which allow 2417 unattended operation, are discussed.

  12. Overview of advanced LMR design in the US

    International Nuclear Information System (INIS)

    Wade, D.C.

    1988-01-01

    The current generation of US advanced LMR conceptual designs have resulted from a goal to address the economic and institutional issues facing the US nuclear industry in the late 70's and early 80's. They are focused technically on achieving passive safety characteristics and favorable capital and operating costs. The design strategies which have been taken were motivated as well by the coal to favorably impact the institutional and public perception regimes regarding safety, diversion, nonproliferation, and waste. The rationales and tradeoffs influencing the resulting design decisions are discussed in this paper, with a focus on core design issues. 1 fig

  13. NASA universities advanced space design program, focus on nuclear engineering

    International Nuclear Information System (INIS)

    Lyon, W.F. III; George, J.A.; Alred, J.W.; Peddicord, K.L.

    1987-01-01

    In January 1985, the National Aeronautics and Space Administration (NASA), in affiliation with the Universities Space Research Association (USRA), inaugurated the NASA Universities Advanced Space Design Program. The purpose of the program was to encourage participating universities to utilize design projects for the senior and graduate level design courses that would focus on topics relevant to the nation's space program. The activities and projects being carried out under the NASA Universities Advanced Space Design Program are excellent experiences for the participants. This program is a well-conceived, well-planned effort to achieve the maximum benefit out of not only the university design experience but also of the subsequent summer programs. The students in the university design classes have the opportunity to investigate dramatic and new concepts, which at the same time have a place in a program of national importance. This program could serve as a very useful model for the development of university interaction with other federal agencies

  14. Advanced Topology Optimization Methods for Conceptual Architectural Design

    DEFF Research Database (Denmark)

    Aage, Niels; Amir, Oded; Clausen, Anders

    2015-01-01

    This paper presents a series of new, advanced topology optimization methods, developed specifically for conceptual architectural design of structures. The proposed computational procedures are implemented as components in the framework of a Grasshopper plugin, providing novel capacities...

  15. Advanced Topology Optimization Methods for Conceptual Architectural Design

    DEFF Research Database (Denmark)

    Aage, Niels; Amir, Oded; Clausen, Anders

    2014-01-01

    This paper presents a series of new, advanced topology optimization methods, developed specifically for conceptual architectural design of structures. The proposed computational procedures are implemented as components in the framework of a Grasshopper plugin, providing novel capacities...

  16. Reactor and process design in sustainable energy technology

    CERN Document Server

    Shi, Fan

    2014-01-01

    Reactor Process Design in Sustainable Energy Technology compiles and explains current developments in reactor and process design in sustainable energy technologies, including optimization and scale-up methodologies and numerical methods. Sustainable energy technologies that require more efficient means of converting and utilizing energy can help provide for burgeoning global energy demand while reducing anthropogenic carbon dioxide emissions associated with energy production. The book, contributed by an international team of academic and industry experts in the field, brings numerous reactor design cases to readers based on their valuable experience from lab R&D scale to industry levels. It is the first to emphasize reactor engineering in sustainable energy technology discussing design. It provides comprehensive tools and information to help engineers and energy professionals learn, design, and specify chemical reactors and processes confidently. Emphasis on reactor engineering in sustainable energy techn...

  17. Mirror Advanced Reactor Study interim design report

    Energy Technology Data Exchange (ETDEWEB)

    1983-04-01

    The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design.

  18. Mirror Advanced Reactor Study interim design report

    International Nuclear Information System (INIS)

    1983-04-01

    The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design

  19. Design and installation of advanced computer safety related instrumentation

    International Nuclear Information System (INIS)

    Koch, S.; Andolina, K.; Ruether, J.

    1993-01-01

    The rapidly developing area of computer systems creates new opportunities for commercial utilities operating nuclear reactors to improve plant operation and efficiency. Two of the main obstacles to utilizing the new technology in safety-related applications is the current policy of the licensing agencies and the fear of decision making managers to introduce new technologies. Once these obstacles are overcome, advanced diagnostic systems, CRT-based displays, and advanced communication channels can improve plant operation considerably. The article discusses outstanding issues in the area of designing, qualifying, and licensing of computer-based instrumentation and control systems. The authors describe the experience gained in designing three safety-related systems, that include a Programmable Logic Controller (PLC) based Safeguard Load Sequencer for NSP Prairie Island, a digital Containment Isolation monitoring system for TVA Browns Ferry, and a study that was conducted for EPRI/NSP regarding a PLC-based Reactor Protection system. This article presents the benefits to be gained in replacing existing, outdated equipment with new advanced instrumentation

  20. Energy and environmental consciousness. Differences between advanced and developing countries

    International Nuclear Information System (INIS)

    Takeshita, Takashi

    1999-01-01

    The purpose of the present study is to understand how much differences there are between advanced countries and developing countries in terms of environmental and energy consciousness. We are experiencing now a big dilemma of the human desire to continue to exist and, at the same time, to develop the economy against the worsening of the Earth's environmental conditions. Understanding international differences of environmental and energy consciousness is a short way to solve this dilemma. The results of the present study were that peoples from advanced countries feel that science and technology are sometimes unreliable, while those from developing countries, are willing to rely upon them. However regardless of the country, people share the same consciousness about Earth's environment. In both, advanced and developing countries, people are reluctant to give up living comforts, unless this leads to a higher standard of living. Based on this result, the author would like to conduct another survey concerning the consciousness of future lifestyle. (author)

  1. Model-based design validation for advanced energy management strategies for electrified hybrid power trains using innovative vehicle hardware in the loop (VHIL) approach

    International Nuclear Information System (INIS)

    Mayyas, Abdel Ra'ouf; Kumar, Sushil; Pisu, Pierluigi; Rios, Jacqueline; Jethani, Puneet

    2017-01-01

    Highlights: •Vehicle hardware In-the-loop VHiL testing and validation is implemented in vehicle test bed. •Torque at the roller bench test is used to control the torque at wheels to reflect vehicle electrification symptoms. •Electrified powertrain with Equivalent Consumption Minimization Strategy is tested and validated using VHiL. •Fuel economy and power train performance is measured using high precision fuel measurement device. -- Abstract: Hybridization of automotive powertrains by using more than one type of energy converter is considered as an important step towards reducing fuel consumption and air pollutants. Specifically, the development of energy efficient, highly complex, alternative drive-train systems, in which the interactions of different energy converters play an important role, requires new design methods and processes. This paper discusses the inclusion of an alternative hybrid power train into an existing vehicle platform for maximum energy efficiency. The new proposed integrated Vehicle Hardware In-the-loop (VHiL) and Model Based Design (MBD) approach is utilized to evaluate the energy efficiency of electrified powertrain. In VHiL, a complete chassis system becomes an integrated part of the vehicle test bed. A complete conventional Internal Combustion Engine (ICE) powered vehicle is tested in roller bench test for the integration of energy efficient hybrid electric power train modules in closed-loop, real-time, feedback configuration. A model that is a replica of the test vehicle is executed – in real-time- where all hybrid power train modules are included. While the VHiL platform is controlling the signal exchange between the test bed automation software and the vehicle on-board controller, the road load exerted on the driving wheels is manipulated in closed –loop real-time manner in order to reflect all hybrid driving modes including: All Electric Range (AER), Electric Power Assist (EPA) and blended Modes (BM). Upon successful

  2. Pathfinding the Flight Advanced Stirling Convertor Design with the ASC-E3

    Science.gov (United States)

    Wong, Wayne A.; Wilson, Kyle; Smith, Eddie; Collins, Josh

    2012-01-01

    The Advanced Stirling Convertor (ASC) was initially developed by Sunpower, Inc. under contract to NASA Glenn Research Center (GRC) as a technology development project. The ASC technology fulfills NASA's need for high efficiency power convertors for future Radioisotope Power Systems (RPS). Early successful technology demonstrations between 2003 to 2005 eventually led to the expansion of the project including the decision in 2006 to use the ASC technology on the Advanced Stirling Radioisotope Generator (ASRG). Sunpower has delivered 22 ASC convertors of progressively mature designs to date to GRC. Currently, Sunpower with support from GRC, Lockheed Martin Space System Company (LMSSC), and the Department of Energy (DOE) is developing the flight ASC-F in parallel with the ASC-E3 pathfinders. Sunpower will deliver four pairs of ASC-E3 convertors to GRC which will be used for extended operation reliability assessment, independent validation and verification testing, system interaction tests, and to support LMSSC controller verification. The ASC-E3 and -F convertors are being built to the same design and processing documentation and the same product specification. The initial two pairs of ASC-E3 are built before the flight units and will validate design and processing changes prior to implementation on the ASC-F flight convertors. This paper provides a summary on development of the ASC technology and the status of the ASC-E3 build and how they serve the vital pathfinder role ahead of the flight build for ASRG. The ASRG is part of two of the three candidate missions being considered for selection for the Discovery 12 mission.

  3. Nanofabrication strategies for advanced electrode materials

    Directory of Open Access Journals (Sweden)

    Chen Kunfeng

    2017-09-01

    Full Text Available The development of advanced electrode materials for high-performance energy storage devices becomes more and more important for growing demand of portable electronics and electrical vehicles. To speed up this process, rapid screening of exceptional materials among various morphologies, structures and sizes of materials is urgently needed. Benefitting from the advance of nanotechnology, tremendous efforts have been devoted to the development of various nanofabrication strategies for advanced electrode materials. This review focuses on the analysis of novel nanofabrication strategies and progress in the field of fast screening advanced electrode materials. The basic design principles for chemical reaction, crystallization, electrochemical reaction to control the composition and nanostructure of final electrodes are reviewed. Novel fast nanofabrication strategies, such as burning, electrochemical exfoliation, and their basic principles are also summarized. More importantly, colloid system served as one up-front design can skip over the materials synthesis, accelerating the screening rate of highperformance electrode. This work encourages us to create innovative design ideas for rapid screening high-active electrode materials for applications in energy-related fields and beyond.

  4. Advances in energy systems and technology v.5

    CERN Document Server

    Auer, Peter L

    1986-01-01

    Advances in Energy Systems and Technology: Volume 5 present articles that provides a critical review of specific topics within the general field of energy. It discusses the fuel cells for electric utility power generation. It addresses the classification of fuel cell technologies. Some of the topics covered in the book are the major components of the fuel cell; the phosphoric acid fuel cells; molten carbonate fuel cells; solid oxide fuel cells; electric utility fuel cell systems; and the integration within fuel cell power plants. The analysis of the solar ponds is covered. The operational

  5. Advances on ELIC Design Studies

    International Nuclear Information System (INIS)

    Bogacz, S. Alex; Bogacz, S.; Chevtsov, P.; Derbenev, Ya.; Evtushenko, P.; Krafft, G.; Hutton, A.; Li, R.; Merminga, L.; Musson, J.; Yunn, B.; Zhang, Y.; Sayed, H.; Qiang, J.

    2008-01-01

    A conceptual design of a ring-ring electron-ion collider based on CEBAF with a center-of-mass energy up to 90 GeV at luminosity up to 1035 cm-2s-1 has been proposed at JLab to fulfill science requirements. Here, we summarize design progress including collider ring and interaction region optics with chromatic aberration compensation. Electron polarization in the Figure-8 ring, stacking of ion beams in an accumulator-cooler ring, beam-beam simulations and a faster kicker for the circulator electron cooler ring are also discussed

  6. Advanced Mixed Waste Treatment Project melter system preliminary design technical review meeting

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, T.L.; Raivo, B.D.; Soelberg, N.R.; Wiersholm, O.

    1995-02-01

    The Idaho National Engineering Laboratory Advanced Mixed Waste Treatment Project sponsored a plasma are melter technical design review meeting to evaluate high-temperature melter system configurations for processing heterogeneous alpha-contaminated low-level radioactive waste (ALLW). Thermal processing experts representing Department of Energy contractors, the Environmental Protection Agency, and private sector companies participated in the review. The participants discussed issues and evaluated alternative configurations for three areas of the melter system design: plasma torch melters and graphite arc melters, offgas treatment options, and overall system configuration considerations. The Technical Advisory Committee for the review concluded that graphite arc melters are preferred over plasma torch melters for processing ALLW. Initiating involvement of stakeholders was considered essential at this stage of the design. For the offgas treatment system, the advisory committee raised the question whether to a use wet-dry or a dry-wet system. The committee recommended that the waste stream characterization, feed preparation, and the control system are essential design tasks for the high-temperature melter treatment system. The participants strongly recommended that a complete melter treatment system be assembled to conduct tests with nonradioactive surrogate waste material. A nonradioactive test bed would allow for inexpensive design and operational changes prior to assembling a system for radioactive waste treatment operations.

  7. Advanced Mixed Waste Treatment Project melter system preliminary design technical review meeting

    International Nuclear Information System (INIS)

    Eddy, T.L.; Raivo, B.D.; Soelberg, N.R.; Wiersholm, O.

    1995-02-01

    The Idaho National Engineering Laboratory Advanced Mixed Waste Treatment Project sponsored a plasma are melter technical design review meeting to evaluate high-temperature melter system configurations for processing heterogeneous alpha-contaminated low-level radioactive waste (ALLW). Thermal processing experts representing Department of Energy contractors, the Environmental Protection Agency, and private sector companies participated in the review. The participants discussed issues and evaluated alternative configurations for three areas of the melter system design: plasma torch melters and graphite arc melters, offgas treatment options, and overall system configuration considerations. The Technical Advisory Committee for the review concluded that graphite arc melters are preferred over plasma torch melters for processing ALLW. Initiating involvement of stakeholders was considered essential at this stage of the design. For the offgas treatment system, the advisory committee raised the question whether to a use wet-dry or a dry-wet system. The committee recommended that the waste stream characterization, feed preparation, and the control system are essential design tasks for the high-temperature melter treatment system. The participants strongly recommended that a complete melter treatment system be assembled to conduct tests with nonradioactive surrogate waste material. A nonradioactive test bed would allow for inexpensive design and operational changes prior to assembling a system for radioactive waste treatment operations

  8. Novelties in design and construction of the advanced reactors

    International Nuclear Information System (INIS)

    Acosta Ezcurra, T.; Garcia Rodriguez, B.M.

    1996-01-01

    The advanced pressurized water reactors (APWR), advanced boiling water reactors (ABWR), advanced liquid metal reactors (ALMR), and modular high temperature gas-cooled reactors (MHTGR), as well as heavy water reactors (AHWR), are analyzed taking into account those characteristics which make them less complex, but safer than their current homologous ones. This fact simplifies their construction which reduces completion periods and costs, increasing safety and protection of the plants. It is demonstrated how the accumulated operational experience allows to find more standardized designs with some enhancement in the material and component technology and thus achieve also a better use of computerized systems

  9. Design and installation of earth energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Loggia, S; Adragna, M; Coyle, S; Foley, C; Hawryn, S; Martin, A; McConnell, J [eds.

    2002-07-01

    This first edition of the Canadian Standards Association (CSA) Standard C448 Series, replaces CSA Standards CAN/CSA-C445-M92 entitled Design and Installation of Earth Energy Heat Pump Systems for Residential and Other Small Buildings, as well as C447-94 entitled Design and Installation of Earth Energy Heat Pump Systems for Commercial and Institutional Buildings. This standard document consists of three parts: (C448.1) Design and installation of earth energy systems for commercial and institutional buildings; (C448.2) Design and installation of earth energy systems for residential and small buildings; and, (C448.3) Design and installation of underground thermal energy storage systems for commercial and institutional buildings. In C448.1, the requirements applicable to any system falling within the scope of the C448 series were included. Alternative requirements for houses and small buildings were added in C448.2. It was noted that either standard may be implemented. The standards applicable to the intentional storage of energy in the earth for later use were presented in C448.3. This latter section includes a brief introduction on underground thermal energy storage (UTES). tabs.

  10. Medium Access Control for Thermal Energy Harvesting in Advanced Metering Infrastructures

    DEFF Research Database (Denmark)

    Vithanage, Madava D.; Fafoutis, Xenofon; Andersen, Claus Bo

    2013-01-01

    In this paper we investigate the feasibility of powering wireless metering devices, namely heat cost allocators, by thermal energy harvested from radiators. The goal is to take a first step toward the realization of Energy-Harvesting Advanced Metering Infrastructures (EH-AMIs). While traditional...

  11. BWR 90 and BWR 90+: Two advanced BWR design generations from ABB

    International Nuclear Information System (INIS)

    Haukeland, S.; Ivung, B.; Pedersen, T.

    1999-01-01

    ABB has two evolutionary advanced light water reactors available today - the BWR 90 boiling water reactor and the System 80+ pressurised water reactor. The BWR 90 is based on the design, construction, commissioning and operation of the BWR 75 plants. The operation experience of the six plants of this advanced design has been very good. The average annual energy availability is above 90%, and total power generation costs have been low. When developing the BWR 90 specific changes were introduced to a reference design, to adapt to technological progress, new safety requirements and to achieve cost savings. The thermal power rating of BWR 90 is 3800 MWth (providing a nominal 1374 MWe net), slightly higher than that of the reference plant ABB Atom has taken advantage of margins gained using a new generation of its SVEA fuel to attain this power rating without major design modifications. The BWR 90 design was completed and offered to the TVO utility in Finland in 1991, as one of the contenders for the fifth Finnish nuclear power plant project. Hence, the design is available today for deployment in new plant projects. Utility views were incorporated through co-operation with the Finnish utility TVO, owner and operator of the two Olkiluoto plants of BWR 75 design. A review against the European Utility Requirement (EUR) set of requirements has been performed, since the design, in 1997, was selected by the EUR Steering Committee to be the first BWR to be evaluated against the EUR documents. The review work was completed in 1998. It will be the subject of an 'EUR Volume 3 Subset for BWR 90' document. ABB is continuing its BWR development work with an 'evolutionary' design called BWR 90+, which aims at developing the BWR as a competitive option for the anticipated revival of the market for new nuclear plants beyond the turn of the century, as well as feeding ideas and inputs to the continuous modernisation efforts at operating plants. The development is performed by ABB Atom

  12. Carbon nanomaterials for advanced energy conversion and storage.

    Science.gov (United States)

    Dai, Liming; Chang, Dong Wook; Baek, Jong-Beom; Lu, Wen

    2012-04-23

    It is estimated that the world will need to double its energy supply by 2050. Nanotechnology has opened up new frontiers in materials science and engineering to meet this challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. Comparing to conventional energy materials, carbon nanomaterials possess unique size-/surface-dependent (e.g., morphological, electrical, optical, and mechanical) properties useful for enhancing the energy-conversion and storage performances. During the past 25 years or so, therefore, considerable efforts have been made to utilize the unique properties of carbon nanomaterials, including fullerenes, carbon nanotubes, and graphene, as energy materials, and tremendous progress has been achieved in developing high-performance energy conversion (e.g., solar cells and fuel cells) and storage (e.g., supercapacitors and batteries) devices. This article reviews progress in the research and development of carbon nanomaterials during the past twenty years or so for advanced energy conversion and storage, along with some discussions on challenges and perspectives in this exciting field. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Design and implementation of Remote Digital Energy Meter (RDEM) based on GSM technology

    Science.gov (United States)

    Khan, Muhammad Waseem; Wang, Jie; Irfan, Muhammad; Shiraz, M.; Khan, Ali Hassan

    2017-11-01

    Electric power is one of the basic requirement for socio economic and social prosperity of any country, which is mainly employs for domestic, industrial and agricultural sectors. The primary purpose of this research is to design and implement an energy meter which can remotely control and monitor through global system for mobile (GSM) communication technology. For this purpose, a single phase or three phase digital energy meters are used to add on different advanced modules. The energy meter can be activated and display power consumption information at the consumer premises on liquid crystal display and through a short message service (SMS) by using GSM technology. At the power sending end, an energy meter can be remotely control and monitor through GSM technology without any system disturbances. This study will lead to make the system easier, economical, reliable and efficient for the electrical department.

  14. Advances in energy and environment. Vol. 2: Air quality, water quality

    International Nuclear Information System (INIS)

    El-Sharkawy, A.L.; Kummler, R.H.

    1996-01-01

    The 5th conference of energy and environment was held on 3-6 June 1996 in Cairo. The specialists discussed the effects of advances in energy and environment. The applications of solar energy, heat transfer, thermal application, storage and bio-conversion, fuels, energy and development. This second volume covers papers presented on the subjects air pollution, environmental protection, solid and hazardous wastes, water and wastewater treatment. tabs., figs

  15. Integrated Energy Design in Master Planning

    DEFF Research Database (Denmark)

    Strømann-Andersen, Jakob Bjørn

    This PhD thesis considers urban structure and buildings in an energy correlation and use the knowledge to design energy- and comfort-optimized cities and buildings. The parameters are: the structure of nature, the city and the landscape, both in terms of geometry and interrelationships and in terms...... in character as daylight is taken into account. Furthermore the results suggest that there are limits to urban densification (200-300%) as an energy optimization strategy. The solar energy and daylight potential should be considered, and indeed protected, as a common resource in urban design. The most...

  16. Steps to Design a Household Energy Game

    Directory of Open Access Journals (Sweden)

    Jan Dirk Fijnheer

    2016-09-01

    Full Text Available Research where gamification is used to influence household energy consumption is an emerging field. This paper reviews the design and effectiveness of ten games that aim to influence household energy consumption and presents a novel gamification approach in which real world activities are implemented in a game design. From the review suggestions for the design of a new game have been identified, such as including real life missions in order to optimize the transfer between the game world and the real world, feedback from monitoring the electricity meter, the presence of a strong storyline, personalized game characters, social interaction, etc. Based on this comparative analysis, the new game 'Powersaver Game' focused on reducing energy consumption has been designed and its prototype is described. In the next stage of iterative design, end-users evaluated the match between in-game scenes and household energy saving activities. This considerate user-centered design process should allow us to build a serious game that is potentially effective in reducing household energy consumption. 

  17. A 100 MWe Advanced Sodium-cooled Fast Reactor (AFR-100)

    International Nuclear Information System (INIS)

    Grandy, C.; Kim, T.K.; Jin, E.

    2013-01-01

    • AFR-100 Design development is continuing in the U.S.; • Various innovations are included in the design to understand their feasibility; • Engineering and safety analyses have been performed that demonstrate the inherent safety characteristics of the AFR-100 design during severe accidents; • R&D is being performed on a number of the innovations such as advanced materials, compact fuel handing system, advanced energy conversion system, advanced core design, etc

  18. Development of the Advanced Energetic Pair Telescope (AdEPT) for Medium-Energy Gamma-Ray Astronomy

    Science.gov (United States)

    Hunter, Stanley D.; Bloser, Peter F.; Dion, Michael P.; McConnell, Mark L.; deNolfo, Georgia A.; Son, Seunghee; Ryan, James M.; Stecker, Floyd W.

    2011-01-01

    Progress in high-energy gamma-ray science has been dramatic since the launch of INTEGRAL, AGILE and FERMI. These instruments, however, are not optimized for observations in the medium-energy (approx.0.3< E(sub gamma)< approx.200 MeV) regime where many astrophysical objects exhibit unique, transitory behavior, such as spectral breaks, bursts, and flares. We outline some of the major science goals of a medium-energy mission. These science goals are best achieved with a combination of two telescopes, a Compton telescope and a pair telescope, optimized to provide significant improvements in angular resolution and sensitivity. In this paper we describe the design of the Advanced Energetic Pair Telescope (AdEPT) based on the Three-Dimensional Track Imager (3-DTI) detector. This technology achieves excellent, medium-energy sensitivity, angular resolution near the kinematic limit, and gamma-ray polarization sensitivity, by high resolution 3-D electron tracking. We describe the performance of a 30x30x30 cm3 prototype of the AdEPT instrument.

  19. Alternative Natural Energy Sources in Building Design.

    Science.gov (United States)

    Davis, Albert J.; Schubert, Robert P.

    This publication provides a discussion of various energy conserving building systems and design alternatives. The information presented here covers alternative space and water heating systems, and energy conserving building designs incorporating these systems and other energy conserving techniques. Besides water, wind, solar, and bio conversion…

  20. Conceptual designs of advanced fast reactor. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1996-10-01

    A Technical Committee meeting (TCM) was held on Conceptual Designs of Advanced Fast Power Reactors to review the lessons learned from the construction and operation of demonstration and near-commercial size plants. This TCM focused on design and development of advanced fast reactors and identified methodologies to evaluate the economic competitiveness and reliability of advanced projects. The Member States which participated in the TCM were at different stages of LMFR development. The Russian Federation, Japan and India had prototype and/or experimental LMFRs and continue with mature R and D programmes. China, the Republic of Korea and Brazil were at the beginning of LMFR development. Therefore the aims of the TCM were to obtain technical descriptions of different design approaches for experimental, prototype, demonstration and commercial LMFRs, and to describe the engineering judgements made in developing the design approaches. Refs, figs, tabs

  1. Conceptual designs of advanced fast reactor. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    A Technical Committee meeting (TCM) was held on Conceptual Designs of Advanced Fast Power Reactors to review the lessons learned from the construction and operation of demonstration and near-commercial size plants. This TCM focused on design and development of advanced fast reactors and identified methodologies to evaluate the economic competitiveness and reliability of advanced projects. The Member States which participated in the TCM were at different stages of LMFR development. The Russian Federation, Japan and India had prototype and/or experimental LMFRs and continue with mature R and D programmes. China, the Republic of Korea and Brazil were at the beginning of LMFR development. Therefore the aims of the TCM were to obtain technical descriptions of different design approaches for experimental, prototype, demonstration and commercial LMFRs, and to describe the engineering judgements made in developing the design approaches. Refs, figs, tabs.

  2. Advanced Energy Saving and its Applications in Industry

    CERN Document Server

    Matsuda, Kazuo; Fushimi, Chihiro; Tsutsumi, Atsushi; Kishimoto, Akira

    2013-01-01

    The conventional approach for energy saving in a process system is to maximize heat recovery without changing any process conditions by using pinch technology. “Self-heat recuperation technology” was developed to achieve further energy saving in the process system by eliminating the necessity for any external heat input, such as firing or imported steam. Advanced Energy Saving and its Applications in Industry introduces the concept of self-heat recuperation and the application of such technology to a wide range of processes from heavy chemical complexes to other processes such as drying and gas separation processes, which require heating and cooling during operation.   Conventional energy saving items in a utility system are applied and implemented based on a single site approach, however, when looking at heavy chemical complexes, it was apparent that the low-grade heat discharged as waste from a refinery could also be used in an adjacent petrochemical plant. There could therefore be a large energy savin...

  3. Advanced Nanostructured Cathode for Ultra High Specific Energy Lithium Ion Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Integrate advanced nanotechnology with energy storage technology to develop advanced cathode materials for use in Li-ion batteries while maintaining a high level of...

  4. The importance of advancing technology to America's energy goals

    International Nuclear Information System (INIS)

    Greene, D.L.; Boudreaux, P.R.; Dean, D.J.; Fulkerson, W.; Gaddis, A.L.; Graham, R.L.; Graves, R.L.; Hopson, J.L.; Hughes, P.; Lapsa, M.V.; Mason, T.E.; Standaert, R.F.; Wilbanks, T.J.; Zucker, A.

    2010-01-01

    A wide range of energy technologies appears to be needed for the United States to meet its energy goals. A method is developed that relates the uncertainty of technological progress in eleven technology areas to the achievement of CO 2 mitigation and reduced oil dependence. We conclude that to be confident of meeting both energy goals, each technology area must have a much better than 50/50 probability of success, that carbon capture and sequestration, biomass, battery electric or fuel cell vehicles, advanced fossil liquids, and energy efficiency technologies for buildings appear to be almost essential, and that the success of each one of the 11 technologies is important. These inferences are robust to moderate variations in assumptions.

  5. [Design for constructability studies in support of the DOE ALWR (Advanced Light Water Reactor) Program

    International Nuclear Information System (INIS)

    1990-03-01

    This technical report accounts for work performed as part of Duke Power Company's Design for Constructability Program. This program is contractual agreement AC03-86SF16566, part of the US Department of Energy's Technology Program in Support of Advanced Light Water Reactors. This report covers the period from contract inception (September 1986) through completion (March 1990). This report is divided into 4 volumes. Volume 1 includes the executive summary and significant program conclusions. The details supporting these conclusions are in Volume 3, Improving Construction Performance, and Volume 4, Enchancing Constructability Through Design. Volume 2 includes a description of the program, objectives, and approach. A significant conclusion from these discussions was the identification of a ''missing link'' in ALWR programs. With an essentially complete, certified design, the majority of the up-front planning and preparation for implementing the design can be accomplished. Though a monumental undertaking beyond the scope of this project, this up-front planning and preparation must be considered as the next logical step for standardization. Much of the planning can be repeated with future plants and marketed to recoup expenditures. Devoting resources to develop the standard design (evolutionary or passive) to a marketable, standard, and comprehensive plant package is essential to revitalizing the option of nuclear energy. The DOE should seriously consider devoting these resources as a logical extension of its ALWR support

  6. Energy materials. Advances in characterization, modelling and application

    International Nuclear Information System (INIS)

    Andersen, N.H.; Eldrup, M.; Hansen, N.; Juul Jensen, D.; Nielsen, E.M.; Nielsen, S.F.; Soerensen, B.F.; Pedersen, A.S.; Vegge, T.; West, S.S.

    2008-01-01

    Energy-related topics in the modern world and energy research programmes cover the range from basic research to applications and structural length scales from micro to macro. Materials research and development is a central part of the energy area as break-throughs in many technologies depend on a successful development and validation of new or advanced materials. The Symposium is organized by the Materials Research Department at Risoe DTU - National Laboratory for Sustainable Energy. The Department concentrates on energy problems combining basic and applied materials research with special focus on the key topics: wind, fusion, superconductors and hydrogen. The symposium is based on these key topics and focus on characterization of materials for energy applying neutron, X-ray and electron diffraction. Of special interest is research carried out at large facilities such as reactors and synchrotrons, supplemented by other experimental techniques and modelling on different length scales that underpins experiments. The Proceedings contain 15 key note presentations and 30 contributed presentations, covering the abovementioned key topics relevant for the energy materials. The contributions clearly show the importance of materials research when developing sustainable energy technologies and also that many challenges remain to be approached. (BA)

  7. Design of a thorium fuelled Advanced Heavy Water Reactor

    International Nuclear Information System (INIS)

    Krishnani, P.D.

    2009-01-01

    Full text: The main objective for development of Advanced Heavy Water Reactor (AHWR) is to demonstrate thorium fuel cycle technologies, along with several other advanced technologies required for next generation reactors, so that these are readily available in time for launching the third stage. The AHWR under design is a 300 MWe vertical pressure tube type thorium-based reactor cooled by boiling light water and moderated by heavy water. The fuel consists of (Th-Pu)O 2 and ( 233 ThU)O 2 pins. The fuel cluster is designed to generate maximum energy out of 233 U, which is bred in-situ from thorium and has a slightly negative void coefficient of reactivity, negative fuel temperature coefficient and negative power coefficient. For the AHWR, the well -proven pressure tube technology and online fuelling have been adopted. Core heat removal is by natural circulation of coolant during normal operation and shutdown conditions. Thus, it combines the advantages of light water reactors and PHWRs and removes the disadvantages of PHWRs. It has several passive safety systems for reactor normal operation, decay heat removal, emergency core cooling, confinement of radioactivity etc. The fuel cycle is based on the in-situ conversion of naturally available thorium into fissile 233 U in self sustaining mode. The uranium in the spent fuel will be reprocessed and recycled back into the reactor. The plutonium inventory will be kept a minimum and will come from fuel irradiated in Indian PHWRs. The 233 U required initially can come from the fast reactor programme or it can be produced by specially designing the initial core of AHWR using (Th,Pu)MOX fuel. There will be gradual transition from the initial core which will not contain any 233 U to an equilibrium core, which will have ( 233 U, Th) MOX fuel pins also in a composite cluster. The self sustenance is being achieved by a differential fuel loading of low and a relatively higher Pu in the composite clusters. The AHWR burns the

  8. Bearingless AC Homopolar Machine Design and Control for Distributed Flywheel Energy Storage

    Science.gov (United States)

    Severson, Eric Loren

    The increasing ownership of electric vehicles, in-home solar and wind generation, and wider penetration of renewable energies onto the power grid has created a need for grid-based energy storage to provide energy-neutral services. These services include frequency regulation, which requires short response-times, high power ramping capabilities, and several charge cycles over the course of one day; and diurnal load-/generation-following services to offset the inherent mismatch between renewable generation and the power grid's load profile, which requires low self-discharge so that a reasonable efficiency is obtained over a 24 hour storage interval. To realize the maximum benefits of energy storage, the technology should be modular and have minimum geographic constraints, so that it is easily scalable according to local demands. Furthermore, the technology must be economically viable to participate in the energy markets. There is currently no storage technology that is able to simultaneously meet all of these needs. This dissertation focuses on developing a new energy storage device based on flywheel technology to meet these needs. It is shown that the bearingless ac homopolar machine can be used to overcome key obstacles in flywheel technology, namely: unacceptable self-discharge and overall system cost and complexity. Bearingless machines combine the functionality of a magnetic bearing and a motor/generator into a single electromechanical device. Design of these machines is particularly challenging due to cross-coupling effects and trade-offs between motor and magnetic bearing capabilities. The bearingless ac homopolar machine adds to these design challenges due to its 3D flux paths requiring computationally expensive 3D finite element analysis. At the time this dissertation was started, bearingless ac homopolar machines were a highly immature technology. This dissertation advances the state-of-the-art of these machines through research contributions in the areas of

  9. Design and validation of advanced driver assistance systems

    NARCIS (Netherlands)

    Gietelink, O.J.

    2007-01-01

    This thesis presents new tools and methods for the design and validation of advanced driver assistance systems (ADASs). ADASs aim to improve driving comfort and traffic safety by assisting the driver in recognizing and reacting to potentially dangerous traffic situations. A major challenge in

  10. Modular filter design for the white-beam undulator/wiggler beamlines at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Brite, C.; Shu, D.; Nian, T.; Wang, Z.; Haeffner, D.; Alp, E.; Kuzay, T.

    1994-01-01

    A new filter has been designed at Argonne National Laboratory that is intended for the use in undulator/wiggler beamlines at the Advanced Photon Source. The water-cooled frame allows up to four individual filter foil banks simultaneously in the beam path. Additionally, the bottom of each frame holds two thin (20 μm) uncooled carbon filters in tandem for low-energy filtering. Therefore, a maximum of 625 filter selection combinations is theoretically possible. The design is intelligent, compact and modular, with great flexibility for the users. To prevent accidental movement of the filter, effort has been taken to provide a mechanically locked, fail-safe actuator system. Programming aspects are under development as part of our general personnel and equipment protection system. Aspects of the design and operational principles of the filter are presented in this paper

  11. Development of the advanced PHWR technology -Design and analysis of CANDU advanced fuel-

    Energy Technology Data Exchange (ETDEWEB)

    Suk, Hoh Chun; Shim, Kee Sub; Byun, Taek Sang; Park, Kwang Suk; Kang, Heui Yung; Kim, Bong Kee; Jung, Chang Joon; Lee, Yung Wook; Bae, Chang Joon; Kwon, Oh Sun; Oh, Duk Joo; Im, Hong Sik; Ohn, Myung Ryong; Lee, Kang Moon; Park, Joo Hwan; Lee, Eui Joon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    This is the `94 annual report of the CANDU advanced fuel design and analysis project, and describes CANFLEX fuel design and mechanical integrity analysis, reactor physics analysis and safety analysis of the CANDU-6 with the CANFLEX-NU. The following is the R and D scope of this fiscal year : (1) Detail design of CANFLEX-NU and detail analysis on the fuel integrity, reactor physics and safety. (a) Detail design and mechanical integrity analysis of the bundle (b) CANDU-6 refueling simulation, and analysis on the Xe transients and adjuster system capability (c) Licensing strategy establishment and safety analysis for the CANFLEX-NU demonstration demonstration irradiation in a commercial CANDU-6. (2) Production and revision of CANFLEX-NU fuel design documents (a) Production and approval of CANFLEX-NU reference drawing, and revisions of fuel design manual and technical specifications (b) Production of draft physics design manual. (3) Basic research on CANFLEX-SEU fuel. 55 figs, 21 tabs, 45 refs. (Author).

  12. Leveraging advances in biology to design biomaterials

    Science.gov (United States)

    Darnell, Max; Mooney, David J.

    2017-12-01

    Biomaterials have dramatically increased in functionality and complexity, allowing unprecedented control over the cells that interact with them. From these engineering advances arises the prospect of improved biomaterial-based therapies, yet practical constraints favour simplicity. Tools from the biology community are enabling high-resolution and high-throughput bioassays that, if incorporated into a biomaterial design framework, could help achieve unprecedented functionality while minimizing the complexity of designs by identifying the most important material parameters and biological outputs. However, to avoid data explosions and to effectively match the information content of an assay with the goal of the experiment, material screens and bioassays must be arranged in specific ways. By borrowing methods to design experiments and workflows from the bioprocess engineering community, we outline a framework for the incorporation of next-generation bioassays into biomaterials design to effectively optimize function while minimizing complexity. This framework can inspire biomaterials designs that maximize functionality and translatability.

  13. Advanced thermionic reactor systems design code

    International Nuclear Information System (INIS)

    Lewis, B.R.; Pawlowski, R.A.; Greek, K.J.; Klein, A.C.

    1991-01-01

    An overall systems design code is under development to model an advanced in-core thermionic nuclear reactor system for space applications at power levels of 10 to 50 kWe. The design code is written in an object-oriented programming environment that allows the use of a series of design modules, each of which is responsible for the determination of specific system parameters. The code modules include a neutronics and core criticality module, a core thermal hydraulics module, a thermionic fuel element performance module, a radiation shielding module, a module for waste heat transfer and rejection, and modules for power conditioning and control. The neutronics and core criticality module determines critical core size, core lifetime, and shutdown margins using the criticality calculation capability of the Monte Carlo Neutron and Photon Transport Code System (MCNP). The remaining modules utilize results of the MCNP analysis along with FORTRAN programming to predict the overall system performance

  14. Performance of a transmutation advanced device for sustainable energy application

    International Nuclear Information System (INIS)

    Garcia, C.; Rosales, J.; Garcia, L.; Perez-Navarro, A.; Escriva, A.; Abanades, A.

    2009-01-01

    Preliminary studies have been performed to design a device for nuclear waste transmutation and hydrogen generation based on a gas cooled pebble bed accelerator driven system, TADSEA (transmutation advanced device for sustainable energy application). In previous studies we have addressed the viability of an ADS Transmutation device that uses as fuel wastes from the existing LWR power plants, encapsulated in graphite in the form of pebble beds, being cooled by helium which enables high temperatures, in the order of 1200 K, to facilitate hydrogen generation from water either by high temperature electrolysis or by thermo chemical cycles. To design this device several configurations were studied, including several reactors thickness, to achieve the desired parameters, the transmutation of nuclear waste and the production of 100 MW. of thermal power. In this paper we are presenting new studies performed on deep burn in-core fuel management strategy for LWR waste. We analyze the fuel cycle on TADSEA device based on driver and transmutation fuel that were proposed for the General Atomic design of a gas turbine-modular helium reactor. We compare the transmutation results of the three fuel management strategies, using driven and transmutation, and standard LWR spend fuel, and present several parameters that describe the neutron performance of TADSEA nuclear core as the fuel and moderator temperature reactivity coefficients and transmutation chain. (author)

  15. Performance of a transmutation advanced device for sustainable energy application

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, C.; Rosales, J.; Garcia, L. [Instituto Superior de Tecnologias y Ciencias Aplicadas (INSTEC), La Habana (Cuba); Perez-Navarro, A.; Escriva, A. [Universidad Politecnica de Valencia, Valencia (Spain). Inst. de Ingenieria Energetica; Abanades, A. [Universidad Politecnica de Madrid (Spain). Grupo de Modelizacion de Sistemas Termoenergeticos

    2009-07-01

    Preliminary studies have been performed to design a device for nuclear waste transmutation and hydrogen generation based on a gas cooled pebble bed accelerator driven system, TADSEA (transmutation advanced device for sustainable energy application). In previous studies we have addressed the viability of an ADS Transmutation device that uses as fuel wastes from the existing LWR power plants, encapsulated in graphite in the form of pebble beds, being cooled by helium which enables high temperatures, in the order of 1200 K, to facilitate hydrogen generation from water either by high temperature electrolysis or by thermo chemical cycles. To design this device several configurations were studied, including several reactors thickness, to achieve the desired parameters, the transmutation of nuclear waste and the production of 100 MW. of thermal power. In this paper we are presenting new studies performed on deep burn in-core fuel management strategy for LWR waste. We analyze the fuel cycle on TADSEA device based on driver and transmutation fuel that were proposed for the General Atomic design of a gas turbine-modular helium reactor. We compare the transmutation results of the three fuel management strategies, using driven and transmutation, and standard LWR spend fuel, and present several parameters that describe the neutron performance of TADSEA nuclear core as the fuel and moderator temperature reactivity coefficients and transmutation chain. (author)

  16. Daylight prediction techniques in energy design tools

    Energy Technology Data Exchange (ETDEWEB)

    Milne, M.; Zurick, J. [California Univ., Los Angeles, Dept. of Architecture, CA (United States)

    1998-09-01

    Four different whole-building energy design tool systems that calculate energy savings from daylighting and that display annual performance on an-hour-by-hour basis, have been tested. The nature of design tools, the sources of hourly outdoor illuminance data, the ways of predicting indoor illumination, the assumptions of each tool, and the resulting energy savings of the design tools tested are discussed. The tests were carried out with the essential criteria for evaluating whole-building daylighting and energy design tools in mind. These have been identified as user confidence, accuracy, response time, and the amount of detail. Results of the tests, all four of them run on a single elementary school classroom for the sake of comparability, were provided. 9 refs., 2 figs.

  17. Research opportunities to advance solar energy utilization.

    Science.gov (United States)

    Lewis, Nathan S

    2016-01-22

    Major developments, as well as remaining challenges and the associated research opportunities, are evaluated for three technologically distinct approaches to solar energy utilization: solar electricity, solar thermal, and solar fuels technologies. Much progress has been made, but research opportunities are still present for all approaches. Both evolutionary and revolutionary technology development, involving foundational research, applied research, learning by doing, demonstration projects, and deployment at scale will be needed to continue this technology-innovation ecosystem. Most of the approaches still offer the potential to provide much higher efficiencies, much lower costs, improved scalability, and new functionality, relative to the embodiments of solar energy-conversion systems that have been developed to date. Copyright © 2016, American Association for the Advancement of Science.

  18. Advanced control room design for nuclear power plants

    International Nuclear Information System (INIS)

    Scarola, K.

    1987-01-01

    The power industry has seen a continuous growth of size and complexity of nuclear power plants. Accompanying these changes have been extensive regulatory requirements resulting in significant construction, operation and maintenance costs. In response to related concerns raised by industry members, Combustion Engineering developed the NUPLEX 80 Advanced Control Room. The goal of NUPLEX 80 TM is to: reduce design and construction costs; increase plant safety and availability through improvements in the man-machine interface; and reduce maintenance costs. This paper provides an overview of the NUPLEX 80 Advanced Control Room and explains how the stated goals are achieved. (author)

  19. Design measures for prevention and mitigation of severe accidents at advanced water cooled reactors. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1998-06-01

    Over 8500 reactor-years of operating experience have been accumulated with the current nuclear energy systems. New generations of nuclear power plants are being developed, building upon this background of experience. During the last decade, requirements for equipment specifically intended to minimize releases of radioactive material to the environment in the event of a core melt accident have been introduced, and designs for new plants include measures for preventing and mitigating a range of severe accident scenarios. The IAEA Technical Committee Meeting on Impact of Severe Accidents on Plant Design and Layout of Advanced Water Cooled Reactors was jointly organized by the Department of Nuclear Energy and the Department of Nuclear Safety to review measures which are being incorporated into advanced water cooled reactor designs for preventing and mitigating severe accidents, the status of experimental and analytical investigations of severe accident phenomena and challenges which support design decisions and accident management procedures, and to understand the impact of explicitly addressing severe accidents on the cost of nuclear power plants. This publication is intended to provide an objective source of information on this topic. It includes 14 papers presented at the Technical Committee meeting held in Vienna between 21-25 October 1996. It also includes a Summary and Findings of the Working Groups. The papers were grouped in three sections. A separate abstract was prepared for each paper

  20. Recent advances in severe accident technology - direct containment heating in advanced light water reactors

    International Nuclear Information System (INIS)

    Fontana, M.H.

    1993-01-01

    The issues affecting high-pressure melt ejection (HPME) and the consequential containment pressurization from direct containment heating (DCH), as they affect advanced light water reactors (ALWRs), specifically advanced pressurized water reactors (APWRs), were reviewed by the U.S. Department of Energy Advanced Reactor Severe Accident Program (ARSAP). Recommendations from ARSAP regarding the design of APWRs to minimize DCH are embodied within the Electric Power Research Institute ALWR Utility Requirements Document, which specifies (a) a large, strong containment; (b) an in-containment refueling water storage tank; (c) a reactor cavity configuration that minimizes energy transport to the containment atmosphere; and (d) a reactor coolant system depressurization system. Experimental and analytical efforts, which have focused on current-generation plants, and analyses for APWRs were reviewed. Although DCH is a subject of continuous research and considerable uncertainties remain, it is the judgment of the ARSAP that reactors complying with the recommended design requirements would have a low probability of early containment failure due to HPME and DCH

  1. Survey of advanced radiation technologies used at designated cancer care hospitals in Japan

    International Nuclear Information System (INIS)

    Shikama, Naoto; Tsujino, Kayoko; Nakamura, Katsumasa; Ishikura, Satoshi

    2014-01-01

    Our survey assessed the use of advanced radiotherapy technologies at the designated cancer care hospitals in Japan, and we identified several issues to be addressed. We collected the data of 397 designated cancer care hospitals, including information on staffing in the department of radiation oncology (e.g. radiation oncologists, medical physicists and radiation therapists), the number of linear accelerators and the implementation of advanced radiotherapy technologies from the Center for Cancer Control and Information Services of the National Cancer Center, Japan. Only 53% prefectural designated cancer care hospitals and 16% regional designated cancer care hospitals have implemented intensity-modulated radiotherapy for head and neck cancers, and 62% prefectural designated cancer care hospitals and 23% regional designated cancer care hospitals use intensity-modulated radiotherapy for prostate cancer. Seventy-four percent prefectural designated cancer care hospitals and 40% regional designated cancer care hospitals employ stereotactic body radiotherapy for lung cancer. Our multivariate analysis of prefectural designated cancer care hospitals which satisfy the institute's qualifications for advanced technologies revealed the number of radiation oncologists (P=0.01) and that of radiation therapists (P=0.003) were significantly correlated with the implementation of intensity-modulated radiotherapy for prostate cancer, and the number of radiation oncologists (P=0.02) was correlated with the implementation of stereotactic body radiotherapy. There was a trend to correlate the number of medical physicists with the implementation of stereotactic body radiotherapy (P=0.07). Only 175 (51%) regional designated cancer care hospitals satisfy the institute's qualification of stereotactic body radiotherapy and 76 (22%) satisfy that of intensity-modulated radiotherapy. Seventeen percent prefectural designated cancer care hospitals and 13% regional designated cancer care hospitals

  2. Defining The Energy Saving Potential of Architectural Design

    DEFF Research Database (Denmark)

    Naboni, Emanuele; Malcangi, Antonio; Zhang, Yi

    2015-01-01

    Designers, in response to codes or voluntary " green building " programs, are increasingly concerned with building energy demand reduction, but they are not fully aware of the energy saving potential of architectural design. According to literature, building form, construction and material choices...... on sustainable design: " Design With Climate " by Olgyay (1963), which discussed strategies for climate-adapted architecture, and Lechner´s " Heating, Cooling and Lighting " (1991), on how to reduce building energy needs by as much as 60 – 80 percent with proper architectural design decisions. Both books used...... behaviour. The research shows the best solution for each of the climates and compares them with Olgyay´s findings. Finally, for each climate the energy saving potential is defined and then compared to Lechner's conclusions. Defining The Energy Saving Potential of Architectural Design (PDF Download Available...

  3. Advanced Technologies for Design Information Verification

    International Nuclear Information System (INIS)

    Watkins, Michael L.; Sheen, David M.; Rose, Joseph L.; Cumblidge, Stephen E.

    2009-01-01

    This paper discusses several technologies that have the potential to enhance facilities design verification. These approaches have shown promise in addressing the challenges associated with the verification of sub-component geometry and material composition for structures that are not directly accessible for physical inspection. A simple example is a pipe that extends into or through a wall or foundation. Both advanced electromagnetic and acoustic modalities will be discussed. These include advanced radar imaging, transient thermographic imaging, and guided acoustic wave imaging. Examples of current applications are provided. The basic principles and mechanisms of these inspection techniques are presented along with the salient practical features, advantages, and disadvantages of each technique. Other important considerations, such as component geometries, materials, and degree of access are also treated. The importance of, and strategies for, developing valid inspection models are also discussed. Beyond these basic technology adaptation and evaluation issues, important user interface considerations are outlined, along with approaches to quantify the overall performance reliability of the various inspection methods.

  4. Energy Design Plugin: An EnergyPlus Plugin for SketchUp; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, P. G.; Torcellini, P. A.; Crawley, D. B.

    2008-08-01

    This paper describes the Energy Design Plugin, a new software plugin that aims to integrate simulation as a tool during the earliest phases of the design process. The plugin couples the EnergyPlus whole-building simulation engine to the Google SketchUp drawing program.

  5. Advanced high-temperature thermal energy storage media for industrial applications

    Science.gov (United States)

    Claar, T. D.; Waibel, R. T.

    1982-02-01

    An advanced thermal energy storage media concept based on use of carbonate salt/ceramic composite materials is being developed for industrial process and reject heat applications. The composite latent/sensible media concept and its potential advantages over state of the art latent heat systems is described. Media stability requirements, on-going materials development efforts, and planned thermal energy storage (TES) performance evaluation tests are discussed.

  6. Indicative energy technology assessment of advanced rechargeable batteries

    International Nuclear Information System (INIS)

    Hammond, Geoffrey P.; Hazeldine, Tom

    2015-01-01

    Highlights: • Several ‘Advanced Rechargeable Battery Technologies’ (ARBT) have been evaluated. • Energy, environmental, economic, and technical appraisal techniques were employed. • Li-Ion Polymer (LIP) batteries exhibited the most attractive energy and power metrics. • Lithium-Ion batteries (LIB) and LIP batteries displayed the lowest CO 2 and SO 2 emissions per kW h. • Comparative costs for LIB, LIP and ZEBRA batteries were estimated against Nickel–Cadmium cells. - Abstract: Several ‘Advanced Rechargeable Battery Technologies’ (ARBT) have been evaluated in terms of various energy, environmental, economic, and technical criteria. Their suitability for different applications, such as electric vehicles (EV), consumer electronics, load levelling, and stationary power storage, have also been examined. In order to gain a sense of perspective regarding the performance of the ARBT [including Lithium-Ion batteries (LIB), Li-Ion Polymer (LIP) and Sodium Nickel Chloride (NaNiCl) {or ‘ZEBRA’} batteries] they are compared to more mature Nickel–Cadmium (Ni–Cd) batteries. LIBs currently dominate the rechargeable battery market, and are likely to continue to do so in the short term in view of their excellent all-round performance and firm grip on the consumer electronics market. However, in view of the competition from Li-Ion Polymer their long-term future is uncertain. The high charge/discharge cycle life of Li-Ion batteries means that their use may grow in the electric vehicle (EV) sector, and to a lesser extent in load levelling, if safety concerns are overcome and costs fall significantly. LIP batteries exhibited attractive values of gravimetric energy density, volumetric energy density, and power density. Consequently, they are likely to dominate the consumer electronics market in the long-term, once mass production has become established, but may struggle to break into other sectors unless their charge/discharge cycle life and cost are improved

  7. Advanced Gearless Drivetrain - Phase I Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Butterfield, Sandy; Smith, Jim; Petch, Derek; Sullivan, Brian; Smith, Peter; Pierce, Kirk

    2012-08-31

    Boulder Wind Power (BWP) collaborated with the National Renewable Energy Laboratory (NREL) in Golden, Colorado, to demonstrate the economics of scaling an advanced gearless drivetrain technology to 6MW (and larger) turbine applications. The project goal was to show that this advanced drivetrain technology enables a cost of energy of less than $0.10/kWH in offshore applications. This drivetrain technology achieves this Cost of Energy (COE) advantage via a 70% greater torque density versus current state-of-the-art drivetrain technologies. In addition, a new dynamically compliant design strategy is required to optimize turbine system-level COE. The BWP generator is uniquely suited for this new design strategy. This project developed a concept design for a 6MW drivetrain and culminated in a plan for a system-level test of this technology at 3MW scale. The project further demonstrated the advantage of the BWP drivetrain with increasing power ratings, with conceptual designs through 10 MW.

  8. ADVANCED TURBINE SYSTEM CONCEPTUAL DESIGN AND PRODUCT DEVELOPMENT - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht H. Mayer

    2000-07-15

    Asea Brown Boveri (ABB) has completed its technology based program. The results developed under Work Breakdown Structure (WBS) 8, concentrated on technology development and demonstration have been partially implemented in newer turbine designs. A significant improvement in heat rate and power output has been demonstrated. ABB will use the knowledge gained to further improve the efficiency of its Advanced Cycle System, which has been developed and introduced into the marked out side ABB's Advanced Turbine System (ATS) activities. The technology will lead to a power plant design that meets the ATS performance goals of over 60% plant efficiency, decreased electricity costs to consumers and lowest emissions.

  9. Energy and cost saving results for advanced technology systems from the Cogeneration Technology Alternatives Study (CTAS)

    Science.gov (United States)

    Sagerman, G. D.; Barna, G. J.; Burns, R. K.

    1979-01-01

    An overview of the organization and methodology of the Cogeneration Technology Alternatives Study is presented. The objectives of the study were to identify the most attractive advanced energy conversion systems for industrial cogeneration applications in the future and to assess the advantages of advanced technology systems compared to those systems commercially available today. Advanced systems studied include steam turbines, open and closed cycle gas turbines, combined cycles, diesel engines, Stirling engines, phosphoric acid and molten carbonate fuel cells and thermionics. Steam turbines, open cycle gas turbines, combined cycles, and diesel engines were also analyzed in versions typical of today's commercially available technology to provide a base against which to measure the advanced systems. Cogeneration applications in the major energy consuming manufacturing industries were considered. Results of the study in terms of plant level energy savings, annual energy cost savings and economic attractiveness are presented for the various energy conversion systems considered.

  10. Soft computing in design and manufacturing of advanced materials

    Science.gov (United States)

    Cios, Krzysztof J.; Baaklini, George Y; Vary, Alex

    1993-01-01

    The potential of fuzzy sets and neural networks, often referred to as soft computing, for aiding in all aspects of manufacturing of advanced materials like ceramics is addressed. In design and manufacturing of advanced materials, it is desirable to find which of the many processing variables contribute most to the desired properties of the material. There is also interest in real time quality control of parameters that govern material properties during processing stages. The concepts of fuzzy sets and neural networks are briefly introduced and it is shown how they can be used in the design and manufacturing processes. These two computational methods are alternatives to other methods such as the Taguchi method. The two methods are demonstrated by using data collected at NASA Lewis Research Center. Future research directions are also discussed.

  11. Projecting regulatory expectations for advanced reactor designs

    International Nuclear Information System (INIS)

    Viktorov, A.

    2011-01-01

    This paper explores the overarching safety principles that will likely guide the safety design of advanced reactor technologies. As will be shown, the already established safety framework provides a solid foundation for the safety design of future nuclear power plants. As a specific example, the principle of 'proven technology' is presented in greater detail and its implications for a novel technology are discussed. Research, modeling and prototyping are shown to be components in satisfying this principle. While the fundamental safety principles are in place, their interpretation may depend both on the considered technology as well as the national context. Thus, the regulatory authority will need to be engaged, at an appropriate stage of the technology development, in specifying the regulatory requirements that will have to be met for a specific reactor design. (author)

  12. Advanced energy projects FY 1997 research summaries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The mission of the Advanced Energy Projects (AEP) program is to explore the scientific feasibility of novel energy-related concepts that are high risk, in terms of scientific feasibility, yet have a realistic potential for a high technological payoff. The concepts supported by the AEP are typically at an early stage of scientific development. They often arise from advances in basic research and are premature for consideration by applied research or technology development programs. Some are based on discoveries of new scientific phenomena or involve exploratory ideas that span multiple scientific and technical disciplines which do not fit into an existing DOE program area. In all cases, the objective is to support evaluation of the scientific or technical feasibility of the novel concepts involved. Following AEP support, it is expected that each concept will be sufficiently developed to attract further funding from other sources to realize its full potential. Projects that involve evolutionary research or technology development and demonstration are not supported by AEP. Furthermore, research projects more appropriate for another existing DOE research program are not encouraged. There were 65 projects in the AEP research portfolio during Fiscal Year 1997. Eigheen projects were initiated during that fiscal year. This document consists of short summaries of projects active in FY 1997. Further information of a specific project may be obtained by contacting the principal investigator.

  13. Energy Conservation of the Designated Government Buildings in Thailand

    Directory of Open Access Journals (Sweden)

    Wangskarn Prapat

    2016-01-01

    Full Text Available The designated government buildings have implemented and administered energy program under the energy development and promotion Act 2007 for many years continuously until 2015. Appointment person responsible for energy, performing energy management and implementing the energy conservation work plan and measures are legal requirements for the designated buildings. Therefore, the ministry of Energy has launched the project to support the implementation of energy management. The aim of the project was to create the energy management system in the designated government buildings, and to reduce energy consumption. In this paper, the evaluation of the project has been presented from the achievements of 839 designated government buildings. The energy saving is more than 440 ktoe/year. This is about 3% of energy consumptions of buildings.

  14. Advanced design of local ventilation systems

    Energy Technology Data Exchange (ETDEWEB)

    Kulmala, I. [VTT Manufacturing Technology, Espoo (Finland). Safety Technology

    1997-12-31

    Local ventilation is widely used in industry for controlling airborne contaminants. However, the present design practices of local ventilation systems are mainly based on empirical equations and do not take quantitatively into account the various factors affecting the performance of these systems. The aim of this study was to determine the applicability and limitations of more advanced fluid mechanical methods to the design and development of local ventilation systems. The most important factors affecting the performance of local ventilation systems were determined and their effect was studied in a systematic manner. The numerical calculations were made with the FLUENT computer code and they were verified by laboratory experiments, previous measurements or analytical solutions. The results proved that the numerical calculations can provide a realistic simulation of exhaust openings, effects of ambient air flows and wake regions. The experiences with the low-velocity local supply air showed that these systems can also be modelled fairly well. The results were used to improve the efficiency and thermal comfort of a local ventilation unit and to increase the effective control range of exhaust hoods. In the simulation of the interaction of a hot buoyant source and local exhaust, the predicted capture efficiencies were clearly higher than those observed experimentally. The deviations between measurements and non-isothermal flow calculations may have partly been caused by the inability to achieve grid independent solutions. CFD simulations is an advanced and flexible tool for designing and developing local ventilation. The simulations can provide insight into the time-averaged flow field which may assist us in understanding the observed phenomena and to explain experimental results. However, for successful calculations the applicability and limitations of the models must be known. (orig.) 78 refs.

  15. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 11: Advanced steam systems. [energy conversion efficiency for electric power plants using steam

    Science.gov (United States)

    Wolfe, R. W.

    1976-01-01

    A parametric analysis was made of three types of advanced steam power plants that use coal in order to have a comparison of the cost of electricity produced by them a wide range of primary performance variables. Increasing the temperature and pressure of the steam above current industry levels resulted in increased energy costs because the cost of capital increased more than the fuel cost decreased. While the three plant types produced comparable energy cost levels, the pressurized fluidized bed boiler plant produced the lowest energy cost by the small margin of 0.69 mills/MJ (2.5 mills/kWh). It is recommended that this plant be designed in greater detail to determine its cost and performance more accurately than was possible in a broad parametric study and to ascertain problem areas which will require development effort. Also considered are pollution control measures such as scrubbers and separates for particulate emissions from stack gases.

  16. BIPV design study for Renewable Energy Centre and Eco-Energy House

    Energy Technology Data Exchange (ETDEWEB)

    Riffat, S.B.; Wilson, R.; Omer, S. [University of Nottingham (United Kingdom). School of the Built Environment

    2000-07-01

    The aim of this project was to monitor performance of PV systems on the Renewable Energy Centre and the Eco-Energy House at the School of Built Environment, University of Nottingham. The Renewable Energy Centre was constructed using a cash donation from Beacon Energy Limited, while construction of the Eco-Energy House was funded by David Wilson Homes Ltd. The primary role of these facilities is to assist in renewable energy technology transfer. Both buildings were designed to be thermally efficient and utilize a range of renewable energy systems. They will be used to attract and educate visitors from local government, schools and collages, and the general public. This report documents the design process for Building Integrated Photovoltaic (BIPV) systems on the two buildings. The buildings are significantly different in both construction and occupancy but are sited close to each other and share similar weather conditions. The rationale behind the BIPV designs is explained and detail is provided on the final solutions for each building. A number of methods were used to assist in the selection of appropriate PV systems to integrate into each building. These included energy analysis using PVSYST3 software, CAD modelling for aesthetics assessment, architectural and construction considerations and economic justification. The design chosen for Renewable Energy Centre was a vertical wall PV facade system using thin film technology, while a roof integrated system using monocrystalline PV roofing slates was chosen for the Eco-Energy House. In terms of economic justification, both systems cannot be said to be cost effective at the current market price for energy, however, the aim was to bring the technology to the attention of a wide audience and demonstrate the potential of the systems for reducing CO{sub 2} emission to the environment.

  17. Preliminary design concepts of an advanced integral reactor

    International Nuclear Information System (INIS)

    Moon, Kap S.; Lee, Doo J.; Kim, Keung K.; Chang, Moon H.; Kim, Si H.

    1997-01-01

    An integral reactor on the basis of PWR technology is being conceptually developed at KAERI. Advanced technologies such as intrinsic and passive safety features are implemented in establishing the design concepts of the reactor to enhance the safety and performance. Research and development including laboratory-scale tests are concurrently underway for confirming the technical adoption of those concepts to the rector design. The power output of the reactor will be in the range of 100MWe to 600MWe which is relatively small compared to the existing loop type reactors. The detailed analysis to assure the design concepts is in progress. (author). 3 figs, 1 tab

  18. Incorporating full-scale experience into advanced limestone wet FGD designs

    International Nuclear Information System (INIS)

    Rader, P.C.; Bakke, E.

    1992-01-01

    Utilities choosing flue gas desulfurization as a strategy for compliance with Phase I of the 1990 Clean Air Act Amendments will largely turn to limestone wet scrubbing as the most cost-effective, least-risk option. State-of-the-art single absorber wet scrubbing systems can be designed to achieve: SO 2 removal efficiencies in excess of 95 %, system availabilities in excess of 98%, and byproducts which can be marketed or land filled. As a result of varying fuel characteristics, site considerations, and owner preferences, FGD plants for large central power stations are typically custom-designed. To avoid the risks associated with new, first-of-a-kind technologies, utilities have preferred to purchase FGD systems from suppliers with proven utility experience and reference plants as close as possible to the design envisioned. As the market for FGD systems is regulatory driven, the demand has shifted geographically in response to national environmental policies. Although limestone wet scrubbing has emerged as the overwhelming choice for SO 2 emission control in coal-fired power stations, the technology has evolved and been adapted to suit local and regional technical and economic situations. Global suppliers are able to benefit from experience and technological advances in the world market. With market units in the U.S., Denmark, Italy, Sweden, and Germany active in the design and supply of wet FGD plants, ABB has a unique ability to incorporate knowledge and experience gained throughout the industrialized world to acid rain retrofit projects in the U.S. This paper describes the design of advanced limestone wet scrubbing systems for application to acid rain retrofits. Specifically, the evolution of advanced design concepts from a global experience base is discussed

  19. Energy Design Guides for Army Barracks: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Deru, M.; Zhivov, A.; Herron, D.

    2008-08-01

    The U.S. Army Corps of Engineers and NREL are developing target energy budgets and design guides to achieve 30% energy savings. This paper focuses the design guide for one type of barracks called unaccompanied enlisted personal housing.

  20. Energy Theft in the Advanced Metering Infrastructure

    Science.gov (United States)

    McLaughlin, Stephen; Podkuiko, Dmitry; McDaniel, Patrick

    Global energy generation and delivery systems are transitioning to a new computerized "smart grid". One of the principle components of the smart grid is an advanced metering infrastructure (AMI). AMI replaces the analog meters with computerized systems that report usage over digital communication interfaces, e.g., phone lines. However, with this infrastructure comes new risk. In this paper, we consider adversary means of defrauding the electrical grid by manipulating AMI systems. We document the methods adversaries will use to attempt to manipulate energy usage data, and validate the viability of these attacks by performing penetration testing on commodity devices. Through these activities, we demonstrate that not only is theft still possible in AMI systems, but that current AMI devices introduce a myriad of new vectors for achieving it.

  1. System design of a proton linac for the neutron science project at Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Hasegawa, Kazuo; Mizumoto, Motoharu; Ouchi, Nobuo; Honda, Yoichiro; Ino, Hiroshi

    1999-01-01

    The Japan Atomic Energy Research Institute has been proposing the Neutron Science Project (NSP). The NSP requires pulse and CW proton beams with an energy of 1.5 GeV and an average beam power up to 8MW. This paper describes design concepts and parameters of the linac. A front end part of the linac, which consists of RFQ, DTL and SDTL sections, uses normal conducting structures and a high energy part uses superconducting (SC) structures. The linac has two injector lines for the pulse and the CW modes, respectively, and the two lines merge at 7 MeV. The total linac length is approximately 900 m and most of the part (>75%) is the superconducting section. An equipartitioning design, which is a new idea to suppress an emittance growth for high power linacs, has been taken for the DTL, the SDTL and the SC sections. Compared with the conventional constant phase advance design scheme, the equipartitioning design scheme is proved to be a good approach to suppress the longitudinal emittance growth. (author)

  2. Microelectronic circuit design for energy harvesting systems

    National Research Council Canada - National Science Library

    Emilio, Maurizio Di Paolo

    2017-01-01

    .... Coverage includes advanced methods in low and high power electronics, as well as principles of micro-scale design based on piezoelectric, electromagnetic and thermoelectric technologies with control...

  3. Advanced PWR fuel design concepts

    International Nuclear Information System (INIS)

    Andersor, C.K.; Harris, R.P.; Crump, M.W.; Fuhrman, N.

    1987-01-01

    For nearly 15 years, Combustion Engineering has provided pressurized water reactor fuel with the features most suppliers are now introducing in their advanced fuel designs. Zircaloy grids, removable upper end fittings, large fission gas plenum, high burnup, integral burnable poisons and sophisticated analytical methods are all features of C-E standard fuel which have been well proven by reactor performance. C-E's next generation fuel for pressurized water reactors features 24-month operating cycles, optimal lattice burnable poisons, increased resistance to common industry fuel rod failure mechanisms, and hardware and methodology for operating margin improvements. Application of these various improvements offer continued improvement in fuel cycle economics, plant operation and maintenance. (author)

  4. Exploring Advanced Technology Gas Turbine Engine Design and Performance for the Large Civil Tiltrotor (LCTR)

    Science.gov (United States)

    Snyder, Christopher A.

    2014-01-01

    A Large Civil Tiltrotor (LCTR) conceptual design was developed as part of the NASA Heavy Lift Rotorcraft Systems Investigation in order to establish a consistent basis for evaluating the benefits of advanced technology for large tiltrotors. The concept has since evolved into the second-generation LCTR2, designed to carry 90 passengers for 1,000 nautical miles at 300 knots, with vertical takeoff and landing capability. This paper explores gas turbine component performance and cycle parameters to quantify performance gains possible for additional improvements in component and material performance beyond those identified in previous LCTR2 propulsion studies and to identify additional research areas. The vehicle-level characteristics from this advanced technology generation 2 propulsion architecture will help set performance levels as additional propulsion and power systems are conceived to meet ever-increasing requirements for mobility and comfort, while reducing energy use, cost, noise and emissions. The Large Civil Tiltrotor vehicle and mission will be discussed as a starting point for this effort. A few, relevant engine and component technology studies, including previous LCTR2 engine study results will be summarized to help orient the reader on gas turbine engine architecture, performance and limitations. Study assumptions and methodology used to explore engine design and performance, as well as assess vehicle sizing and mission performance will then be discussed. Individual performance for present and advanced engines, as well as engine performance effects on overall vehicle size and mission fuel usage, will be given. All results will be summarized to facilitate understanding the importance and interaction of various component and system performance on overall vehicle characteristics.

  5. Special Issue on Advances in Integrated Energy Systems Design, Control and Optimization

    DEFF Research Database (Denmark)

    Anvari-Moghaddam, Amjad; Guerrero, Josep M.

    2017-01-01

    and novel operation schemes, and new incentives and business models. This revolution is affecting the current paradigm and demanding that energy systems be integrated into multi-carrier energy hubs [1]. It is greatly increasing the interactions between today’s energy systems at various scales (ranging from...... energy costs to all consumers, increase reliability of service and mitigate carbon footprints. However, this plan of action necessitates regulatory frameworks, strategic incentives and business models for efficient deployment....

  6. Advanced proton-exchange materials for energy efficient fuel cells.

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Cy H.; Grest, Gary Stephen; Hickner, Michael A.; Cornelius, Christopher James; Staiger, Chad Lynn; Hibbs, Michael R.

    2005-12-01

    The ''Advanced Proton-Exchange Materials for Energy Efficient Fuel Cells'' Laboratory Directed Research and Development (LDRD) project began in October 2002 and ended in September 2005. This LDRD was funded by the Energy Efficiency and Renewable Energy strategic business unit. The purpose of this LDRD was to initiate the fundamental research necessary for the development of a novel proton-exchange membranes (PEM) to overcome the material and performance limitations of the ''state of the art'' Nafion that is used in both hydrogen and methanol fuel cells. An atomistic modeling effort was added to this LDRD in order to establish a frame work between predicted morphology and observed PEM morphology in order to relate it to fuel cell performance. Significant progress was made in the area of PEM material design, development, and demonstration during this LDRD. A fundamental understanding involving the role of the structure of the PEM material as a function of sulfonic acid content, polymer topology, chemical composition, molecular weight, and electrode electrolyte ink development was demonstrated during this LDRD. PEM materials based upon random and block polyimides, polybenzimidazoles, and polyphenylenes were created and evaluated for improvements in proton conductivity, reduced swelling, reduced O{sub 2} and H{sub 2} permeability, and increased thermal stability. Results from this work reveal that the family of polyphenylenes potentially solves several technical challenges associated with obtaining a high temperature PEM membrane. Fuel cell relevant properties such as high proton conductivity (>120 mS/cm), good thermal stability, and mechanical robustness were demonstrated during this LDRD. This report summarizes the technical accomplishments and results of this LDRD.

  7. Some points of advanced alarm system design

    International Nuclear Information System (INIS)

    Hollo, E.

    1977-01-01

    A description of some of the more relevant questions relating to advanced alarm systems for nuclear power plant installations. The development of such alarm systems embodies three main tasks: development of formal alarm handling methods, design of alarm patterns, development of alarm analysis systems. The major aspects of these tests are dealt with and the close relation between the alarm analysis and the plant disturbance analysis procedure is emphasized. (author)

  8. Design concepts and advanced manipulator development for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Feldman, M.J.

    1985-01-01

    In the Fuel Recycle Division, Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory, a comprehensive remote systems development program has existed for the past seven years. The new remote technology under development is expected to significantly improve remote operations by extending the range of tasks accomplished by remote means and increasing the efficiency of remote work undertaken. The application of advanced manipulation is viewed as an essential part of a series of design directions whose sum describes a somewhat unique blend of old and new technology. A design direction based upon the Teletec concept is explained and recent progress in the development of an advanced servomanipulator-based maintenance concept is summarized to show that a new generation of remote systems is feasible through advanced technology. 14 refs., 14 figs

  9. Advanced reactor development for non-electric applications

    International Nuclear Information System (INIS)

    Chang, M.H.; Kim, S.H.

    1996-01-01

    Advance in the nuclear reactor technology achieved through nuclear power programs carried out in the world has led nuclear communities to direct its attention to a better and peaceful utilization of nuclear energy in addition to that for power generation. The efforts for non-electric application of nuclear energy has been pursued in a limited number of countries in the world for their special needs. However, those needs and the associated efforts contributed largely to the development and practical realization of advanced reactors characterized by highly improved reactor safety and reliability by deploying the most up-to-date safety technologies. Due mainly to the special purpose of utilization, economic reasons and ease in implementation of new advanced technologies, small and medium reactors have become a major stream in the reactor developments for non-electric applications. The purpose of this paper is to provide, to the interested nuclear society, the overview of the development status and design characteristics of selected advanced nuclear reactors previously developed and/or currently under development specially for non-electric applications. Major design technologies employed in those reactors to enhance the reactor safety and reliability are reviewed to present the underlying principles of the design. Along with the overview, this paper also introduces a development program and major design characteristics of an advanced integral reactor (SMART) for co-generation purpose currently under conceptual development in Korea. (author)

  10. Recent advances in MoS2 nanostructured materials for energy and environmental applications - A review

    Science.gov (United States)

    Theerthagiri, J.; Senthil, R. A.; Senthilkumar, B.; Reddy Polu, Anji; Madhavan, J.; Ashokkumar, Muthupandian

    2017-08-01

    Molybdenum disulfide (MoS2), a layered transition metal dichalcogenide with an analogous structure to graphene, has attracted enormous attention worldwide owing to its use in a variety of applications such as energy storage, energy conversion, environmental remediation and sensors. MoS2 and graphene have almost similar functional properties such as high charge carrier transport, high wear resistance and good mechanical strength and friction. However, MoS2 is advantageous over graphene due to its low-cost, abundancy, tailorable morphologies and tuneable band gap with good visible light absorption properties. In this review, we have focussed mainly on recent advances in MoS2 nanostructured materials for the applications in the broad area of energy and environment. Special attention has been paid to their applications in dye-sensitized solar cells, supercapacitor, Li-ion battery, hydrogen evolution reaction, photocatalysis for the degradation of organic pollutants, chemical/bio sensors and gas sensors. Finally, the challenges to design MoS2 nanostructures suitable for energy and environmental applications are also highlighted.

  11. Reducing global NOx emissions: developing advanced energy and transportation technologies.

    Science.gov (United States)

    Bradley, Michael J; Jones, Brian M

    2002-03-01

    Globally, energy demand is projected to continue to increase well into the future. As a result, global NOx emissions are projected to continue on an upward trend for the foreseeable future as developing countries increase their standards of living. While the US has experienced improvements in reducing NOx emissions from stationary and mobile sources to reduce ozone, further progress is needed to reduce the health and ecosystem impacts associated with NOx emissions. In other parts of the world, (in developing countries in particular) NOx emissions have been increasing steadily with the growth in demand for electricity and transportation. Advancements in energy and transportation technologies may help avoid this increase in emissions if appropriate policies are implemented. This paper evaluates commercially available power generation and transportation technologies that produce fewer NOx emissions than conventional technologies, and advanced technologies that are on the 10-year commercialization horizon. Various policy approaches will be evaluated which can be implemented on the regional, national and international levels to promote these advanced technologies and ultimately reduce NOx emissions. The concept of the technology leap is offered as a possibility for the developing world to avoid the projected increases in NOx emissions.

  12. Evaluation of technical design of advanced information display

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Woo Chang; Kang, Young Ju; Ji, Jung Hun; Jang, Sung Pil; Jung, Sung Hae [Kumoh National Institute of Technology, Gumi (Korea, Republic of)

    2003-03-15

    The performance of human machine system such as nuclear power plant is highly dependent on the suitability of the interface design of the system. As the computer technology is highly developed, the mental model of computer users including NPP operators has been changed from analogue display type-based stereotype to digitalized one. Therefore, it is necessary and confident to consider the issues to evaluate system suitability of advanced information display on CRT or CBP (Computer Based Procedure). This document is intended for providing an updated and expanded set of user-interface guidelines that meet the needs of designing information display on CRT by finding the generic guidelines involving information display design issues as much as possible. The design Issues and resolutions from the finding may provide the cues for the designers and evaluators of the specific man machine interfaces of digitalized devices.

  13. Evaluation of technical design of advanced information display

    International Nuclear Information System (INIS)

    Cha, Woo Chang; Kang, Young Ju; Ji, Jung Hun; Jang, Sung Pil; Jung, Sung Hae

    2003-03-01

    The performance of human machine system such as nuclear power plant is highly dependent on the suitability of the interface design of the system. As the computer technology is highly developed, the mental model of computer users including NPP operators has been changed from analogue display type-based stereotype to digitalized one. Therefore, it is necessary and confident to consider the issues to evaluate system suitability of advanced information display on CRT or CBP (Computer Based Procedure). This document is intended for providing an updated and expanded set of user-interface guidelines that meet the needs of designing information display on CRT by finding the generic guidelines involving information display design issues as much as possible. The design Issues and resolutions from the finding may provide the cues for the designers and evaluators of the specific man machine interfaces of digitalized devices

  14. Design of the Advanced Rare Isotope Separator ARIS at FRIB

    Energy Technology Data Exchange (ETDEWEB)

    Hausmann, M., E-mail: hausmann@frib.msu.edu [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Aaron, A.M. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Amthor, A.M. [Dept. of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837 (United States); Avilov, M.; Bandura, L.; Bennett, R.; Bollen, G.; Borden, T. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Burgess, T.W. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Chouhan, S.S. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Graves, V.B. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Mittig, W. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Morrissey, D.J. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Pellemoine, F.; Portillo, M.; Ronningen, R.M.; Schein, M. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Sherrill, B.M. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Zeller, A. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States)

    2013-12-15

    The Facility for Rare Isotopes Beams (FRIB) at Michigan State University will use projectile fragmentation and induced in-flight fission of heavy-ion primary beams at energies of 200 MeV/u and higher and at a beam power of 400 kW to generate rare isotope beams for experiments in nuclear physics, nuclear astrophysics, and fundamental symmetries, as well as for societal needs. The Advanced Rare Isotope Separator (ARIS) has been designed as a three-stage fragment separator for the efficient collection and purification of the rare isotope beams of interest. A vertically bending preseparator (first stage) with production target and beam dump is fully integrated into a production target facility hot cell with remote handling. The new separator compresses the accepted momentum width of up to ±5% of the beam by a factor of three in the standard operational mode. Provisions for alternate operational modes for specific cases are included in the design. This preseparator is followed by two, horizontally-bending separator stages (second and third stages) utilizing the magnets from the existing A1900 fragment separator at the National Superconducting Cyclotron Laboratory (NSCL). These stages can alternatively be coupled to a single high-resolution separator stage, resulting in the flexibility to optimize the operation for different experiments, including momentum tagging and in-flight particle identification of rare isotope beams. The design of ARIS will be presented with an emphasis on beam physics characteristics, and anticipated operational modes will be described.

  15. Utilization of renewable energy in architectural design

    Institute of Scientific and Technical Information of China (English)

    TIAN Lei; QIN Youguo

    2007-01-01

    Renewable energy does not simply equal to using a photovoltaic (PV) board.In addition to heating,ventilation and air conditioning (HVAC) engineering considerations,the design approaches of architects are crucial to the utilization condition and methods of renewable energy.Through profound comprehension of the relationship between renewable energy utilization and design approaches,we can achieve a dual-standard of building environment performance and esthetics.

  16. Economics of compressed air energy storage employing thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, S.C.; Reilly, R.W.

    1979-11-01

    The approach taken in this study is to adopt system design and capital cost estimates from three independent CAES studies (eight total designs) and, by supplying a common set of fuel/energy costs and economic assumptions in conjunction with a common methodology, to arrive at a series of levelized energy costs over the system's lifetime. In addition, some analyses are provided to gauge the sensitivity of these levelized energy costs to fuel and compression energy costs and to system capacity factors. The systems chosen for comparison are of four generic types: conventional CAES, hybrid CAES, adiabatic CAES, and an advanced-design gas turbine (GT). In conventional CAES systems the heat of compression generated during the storage operation is rejected to the environment, and later, during the energy-generation phase, turbine fuel must be burned to reheat the compressed air. In the hybrid systems some of the heat of compression is stored and reapplied later during the generation phase, thereby reducing turbine fuel requirements. The adiabatic systems store adequate thermal energy to eliminate the need for turbine fuel entirely. The gas turbine is included within the report for comparison purposes; it is an advanced-design turbine, one that is expected to be available by 1985.

  17. Energy sorghum--a genetic model for the design of C4 grass bioenergy crops.

    Science.gov (United States)

    Mullet, John; Morishige, Daryl; McCormick, Ryan; Truong, Sandra; Hilley, Josie; McKinley, Brian; Anderson, Robert; Olson, Sara N; Rooney, William

    2014-07-01

    Sorghum is emerging as an excellent genetic model for the design of C4 grass bioenergy crops. Annual energy Sorghum hybrids also serve as a source of biomass for bioenergy production. Elucidation of Sorghum's flowering time gene regulatory network, and identification of complementary alleles for photoperiod sensitivity, enabled large-scale generation of energy Sorghum hybrids for testing and commercial use. Energy Sorghum hybrids with long vegetative growth phases were found to accumulate more than twice as much biomass as grain Sorghum, owing to extended growing seasons, greater light interception, and higher radiation use efficiency. High biomass yield, efficient nitrogen recycling, and preferential accumulation of stem biomass with low nitrogen content contributed to energy Sorghum's elevated nitrogen use efficiency. Sorghum's integrated genetics-genomics-breeding platform, diverse germplasm, and the opportunity for annual testing of new genetic designs in controlled environments and in multiple field locations is aiding fundamental discovery, and accelerating the improvement of biomass yield and optimization of composition for biofuels production. Recent advances in wide hybridization between Sorghum and other C4 grasses could allow the deployment of improved genetic designs of annual energy Sorghums in the form of wide-hybrid perennial crops. The current trajectory of energy Sorghum genetic improvement indicates that it will be possible to sustainably produce biofuels from C4 grass bioenergy crops that are cost competitive with petroleum-based transportation fuels. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Nuclear integrated database and design advancement system

    International Nuclear Information System (INIS)

    Ha, Jae Joo; Jeong, Kwang Sub; Kim, Seung Hwan; Choi, Sun Young.

    1997-01-01

    The objective of NuIDEAS is to computerize design processes through an integrated database by eliminating the current work style of delivering hardcopy documents and drawings. The major research contents of NuIDEAS are the advancement of design processes by computerization, the establishment of design database and 3 dimensional visualization of design data. KSNP (Korea Standard Nuclear Power Plant) is the target of legacy database and 3 dimensional model, so that can be utilized in the next plant design. In the first year, the blueprint of NuIDEAS is proposed, and its prototype is developed by applying the rapidly revolutionizing computer technology. The major results of the first year research were to establish the architecture of the integrated database ensuring data consistency, and to build design database of reactor coolant system and heavy components. Also various softwares were developed to search, share and utilize the data through networks, and the detailed 3 dimensional CAD models of nuclear fuel and heavy components were constructed, and walk-through simulation using the models are developed. This report contains the major additions and modifications to the object oriented database and associated program, using methods and Javascript.. (author). 36 refs., 1 tab., 32 figs

  19. An energy systems engineering approach to the optimal design of energy systems in commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pei; Pistikopoulos, Efstratios N. [Centre for Process Systems Engineering (CPSE), Department of Chemical Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Li, Zheng [Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)

    2010-08-15

    Energy consumption in commercial buildings accounts for a significant proportion of worldwide energy consumption. Any increase in the energy efficiency of the energy systems for commercial buildings would lead to significant energy savings and emissions reductions. In this work, we introduce an energy systems engineering framework towards the optimal design of such energy systems with improved energy efficiency and environmental performance. The framework features a superstructure representation of the various energy technology alternatives, a mixed-integer optimization formulation of the energy systems design problem, and a multi-objective design optimization solution strategy, where economic and environmental criteria are simultaneously considered and properly traded off. A case study of a supermarket energy systems design is presented to illustrate the key steps and potential of the proposed energy systems engineering approach. (author)

  20. An energy systems engineering approach to the optimal design of energy systems in commercial buildings

    International Nuclear Information System (INIS)

    Liu Pei; Pistikopoulos, Efstratios N.; Li Zheng

    2010-01-01

    Energy consumption in commercial buildings accounts for a significant proportion of worldwide energy consumption. Any increase in the energy efficiency of the energy systems for commercial buildings would lead to significant energy savings and emissions reductions. In this work, we introduce an energy systems engineering framework towards the optimal design of such energy systems with improved energy efficiency and environmental performance. The framework features a superstructure representation of the various energy technology alternatives, a mixed-integer optimization formulation of the energy systems design problem, and a multi-objective design optimization solution strategy, where economic and environmental criteria are simultaneously considered and properly traded off. A case study of a supermarket energy systems design is presented to illustrate the key steps and potential of the proposed energy systems engineering approach.

  1. An energy systems engineering approach to the optimal design of energy systems in commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu Pei [Centre for Process Systems Engineering (CPSE), Department of Chemical Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Pistikopoulos, Efstratios N., E-mail: e.pistikopoulos@imperial.ac.u [Centre for Process Systems Engineering (CPSE), Department of Chemical Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Li Zheng [Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)

    2010-08-15

    Energy consumption in commercial buildings accounts for a significant proportion of worldwide energy consumption. Any increase in the energy efficiency of the energy systems for commercial buildings would lead to significant energy savings and emissions reductions. In this work, we introduce an energy systems engineering framework towards the optimal design of such energy systems with improved energy efficiency and environmental performance. The framework features a superstructure representation of the various energy technology alternatives, a mixed-integer optimization formulation of the energy systems design problem, and a multi-objective design optimization solution strategy, where economic and environmental criteria are simultaneously considered and properly traded off. A case study of a supermarket energy systems design is presented to illustrate the key steps and potential of the proposed energy systems engineering approach.

  2. Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006

    Energy Technology Data Exchange (ETDEWEB)

    Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

    2006-10-01

    -ray sources, neutron sources, nanoscale science research centers, and supercomputers, offer the opportunity to transform and accelerate the fundamental materials and chemical sciences that underpin technology development for advanced nuclear energy systems. The fundamental challenge is to understand and control chemical and physical phenomena in multi-component systems from femto-seconds to millennia, at temperatures to 1000?C, and for radiation doses to hundreds of displacements per atom (dpa). This is a scientific challenge of enormous proportions, with broad implications in the materials science and chemistry of complex systems. New understanding is required for microstructural evolution and phase stability under relevant chemical and physical conditions, chemistry and structural evolution at interfaces, chemical behavior of actinide and fission-product solutions, and nuclear and thermomechanical phenomena in fuels and waste forms. First-principles approaches are needed to describe f-electron systems, design molecules for separations, and explain materials failure mechanisms. Nanoscale synthesis and characterization methods are needed to understand and design materials and interfaces with radiation, temperature, and corrosion resistance. Dynamical measurements are required to understand fundamental physical and chemical phenomena. New multiscale approaches are needed to integrate this knowledge into accurate models of relevant phenomena and complex systems across multiple length and time scales.

  3. Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006

    International Nuclear Information System (INIS)

    Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

    2006-01-01

    -ray sources, neutron sources, nanoscale science research centers, and supercomputers, offer the opportunity to transform and accelerate the fundamental materials and chemical sciences that underpin technology development for advanced nuclear energy systems. The fundamental challenge is to understand and control chemical and physical phenomena in multi-component systems from femto-seconds to millennia, at temperatures to 1000?C, and for radiation doses to hundreds of displacements per atom (dpa). This is a scientific challenge of enormous proportions, with broad implications in the materials science and chemistry of complex systems. New understanding is required for microstructural evolution and phase stability under relevant chemical and physical conditions, chemistry and structural evolution at interfaces, chemical behavior of actinide and fission-product solutions, and nuclear and thermomechanical phenomena in fuels and waste forms. First-principles approaches are needed to describe f-electron systems, design molecules for separations, and explain materials failure mechanisms. Nanoscale synthesis and characterization methods are needed to understand and design materials and interfaces with radiation, temperature, and corrosion resistance. Dynamical measurements are required to understand fundamental physical and chemical phenomena. New multiscale approaches are needed to integrate this knowledge into accurate models of relevant phenomena and complex systems across multiple length and time scales

  4. Front end designs for the 7-GeV advanced photon source

    International Nuclear Information System (INIS)

    Shu, D.; Barraza, J.; Sanchez, T.; Nielsen, R.W.; Collins, J.T.; Kuzay, T.M.

    1992-01-01

    The conceptual designs for the insertion device (ID) and bending magnet (BM) front ends have been completed for the 7-GeV Advanced Photon Source (APS) under construction at Argonne National Laboratory. These designs satisfy the generic front end functions. However, the high power and high heat fluxes imposed by the X-ray sources of the 7-GeV APS have presented various design engineering challenges for the front end. Consideration of such challenges and their solutions have led to novel and advanced features including modularized systems, enhanced heat transfer concepts in the fixed mask and the photon shutter designs, a radiation safety philosophy based on multiple photon shutters for a fail-safe operation, a sub-micron resolution beam position monitor for beam monitoring and ring feedback information, and minimal beam filtering concepts to deliver maximized beam power and spectra to the experimenters. The criteria and special features of the front end design are discussed in this paper

  5. Wireless Sensor Network for Advanced Energy Management Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Peter J. Theisen; Bin Lu, Charles J. Luebke

    2009-09-23

    Eaton has developed an advanced energy management solution that has been deployed to several Industries of the Future (IoF) sites. This demonstrated energy savings and reduced unscheduled downtime through an improved means for performing predictive diagnostics and energy efficiency estimation. Eaton has developed a suite of online, continuous, and inferential algorithms that utilize motor current signature analysis (MCSA) and motor power signature analysis (MPSA) techniques to detect and predict the health condition and energy usage condition of motors and their connect loads. Eaton has also developed a hardware and software platform that provided a means to develop and test these advanced algorithms in the field. Results from lab validation and field trials have demonstrated that the developed advanced algorithms are able to detect motor and load inefficiency and performance degradation. Eaton investigated the performance of Wireless Sensor Networks (WSN) within various industrial facilities to understand concerns about topology and environmental conditions that have precluded broad adoption by the industry to date. A Wireless Link Assessment System (WLAS), was used to validate wireless performance under a variety of conditions. Results demonstrated that wireless networks can provide adequate performance in most facilities when properly specified and deployed. Customers from various IoF expressed interest in applying wireless more broadly for selected applications, but continue to prefer utilizing existing, wired field bus networks for most sensor based applications that will tie into their existing Computerized Motor Maintenance Systems (CMMS). As a result, wireless technology was de-emphasized within the project, and a greater focus placed on energy efficiency/predictive diagnostics. Commercially available wireless networks were only utilized in field test sites to facilitate collection of motor wellness information, and no wireless sensor network products were

  6. Designing Holistic Zero Energy Homes in Denmark

    DEFF Research Database (Denmark)

    Bejder, Anne Kirkegaard; Knudstrup, Mary-Ann

    2016-01-01

    Designing zero-energy buildings (ZEB) is a complex but not an impossible task, which has also been illustrated through demonstration projects, including houses that produce as much energy as they use on a yearly basis. Over the last years an increased interest for ZEBs is also seen in practice......, however, designing ZEBs is still challenging. In order to gain further currency, we need to collect new knowledge and communicate it in an easy applicable way for the building industry. This paper presents the development and objectives of a publication entitled “Zero Energy Buildings – Design Principles...

  7. 23rd workshop on Advances in Analog Circuit Design

    CERN Document Server

    Baschirotto, Andrea; Makinwa, Kofi

    2015-01-01

    This book is based on the 18 tutorials presented during the 23rd workshop on Advances in Analog Circuit Design.  Expert designers present readers with information about a variety of topics at the frontier of analog circuit design, serving as a valuable reference to the state-of-the-art, for anyone involved in analog circuit research and development.    • Includes coverage of high-performance analog-to-digital and digital to analog converters, integrated circuit design in scaled technologies, and time-domain signal processing; • Provides a state-of-the-art reference in analog circuit design, written by experts from industry and academia; • Presents material in a tutorial-based format.

  8. Energy, Exergy and Advanced Exergy Analysis of a Milk Processing Factory

    DEFF Research Database (Denmark)

    Bühler, Fabian; Nguyen, Tuong-Van; Jensen, Jonas Kjær

    2016-01-01

    integration, an exergy analysis pinpoints the locations, causes and magnitudes of thermodynamic losses. The advanced exergy analysis further identifies the real potential for thermodynamic improvements of the system by splitting exergy destruction into its avoidable and unavoidable parts, which are related......, cream and milk powder. The results show the optimisation potential based on 1st and 2nd law analyses. An evaluation and comparison of the applicability of exergy methods, including advanced exergy methods, to the dairy industry is made. The comparison includes typical energy mappings conducted onsite......, and discusses the benefits and challenges of applying advanced thermodynamic methods to industrial processes....

  9. Newman Unit 1 advanced solar repowering advanced conceptual design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-04-01

    The Newman Unit 1 solar repowering design is a water/steam central receiver concept supplying superheated steam. The work reported is to develop a refined baseline conceptual design that has potential for construction and operation by 1986, makes use of existing solar thermal technology, and provides the best economics for this application. Trade studies performed in the design effort are described, both for the conceptual design of the overall system and for the subsystem conceptual design. System-level functional requirements, design, operation, performance, cost, safety, environmental, institutional, and regulatory considerations are described. Subsystems described include the collector, receiver, fossil energy, electrical power generating, and master control subsystems, site and site facilities. The conceptual design, cost, and performance of each subsystem is discussed at length. A detailed economic analysis of the repowered unit is made to realistically assess the economics of the first repowered unit using present cost data for a limited production level for solar hardware. Finally, a development plan is given, including the design, procurement, construction, checkout, startup, performance validation, and commercial operation. (LEW)

  10. 1st Advanced Marine Renewable Energy Instrumentation Experts Workshop

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-10-01

    The U.S. marine energy industry is actively pursuing development of offshore wind and marine hydrokinetic (MHK) energy systems. Experience in the wind energy sector demonstrates that new technology development requires thorough measurement and characterization of the environmental conditions prevalent at installation sites and of technology operating in the field. Presently, there are no turn-key instrumentation system solutions that meet the measurement needs of the marine energy industry. The 1st Advanced Marine Renewable Energy Instrumentation Experts Workshop brought together technical experts from government laboratories, academia, and industry representatives from marine energy, wind, offshore oil and gas, and instrumentation developers to present and discuss the instrumentation needs of the marine energy industry. The goals of the meeting were to: 1. Share the latest relevant knowledge among technical experts; 2. Review relevant state-of-the-art field measurement technologies and methods; 3. Review lessons learned from recent field deployments; 4. Identify synergies across different industries; 5. Identify gaps between existing and needed instrumentation capabilities; 6. Understand who are the leading experts; 7. Provide a forum where stakeholders from the marine energy industry could provide substantive input in the development of new marine energy field deployable instrumentation packages.

  11. The advanced controls program at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Knee, H.E.; White, J.D.

    1990-01-01

    The Oak Ridge National Laboratory (ORNL), under sponsorship of the US Department of Energy (DOE), is conducting research that will lead to advanced, automated control of new liquid-metal-reactor (LMR) nuclear power plants. Although this program of research (entitled the ''Advanced Controls Program'') is focused on LMR technology, it will be capable of providing control design, test, and qualification capability for other advanced reactor designs (e.g., the advanced light water reactor [ALWR] and high temperature gas-cooled reactor [HTGR] designs), while also benefiting existing nuclear plants. The Program will also have applicability to complex, non-nuclear process control environments (e.g., petrochemical, aerospace, etc.). The Advanced Controls Program will support capabilities throughout the entire plant design life cycle, i.e., from the initial interactive first-principle dynamic model development for the process, systems, components, and instruments through advanced control room qualification. The current program involves five principal areas of research activities: (1) demonstrations of advanced control system designs, (2) development of an advanced controls design environment, (3) development of advanced control strategies, (4) research and development (R ampersand D) in human-system integration for advanced control system designs, and (5) testing and validation of advanced control system designs. Discussion of the research in these five areas forms the basis of this paper. Also included is a description of the research directions of the program. 8 refs

  12. 7-GeV Advanced Photon Source Conceptual Design Report

    International Nuclear Information System (INIS)

    1987-04-01

    During the past decade, synchrotron radiation emitted by circulating electron beams has come into wide use as a powerful, versatile source of x-rays for probing the structure of matter and for studying various physical processes. Several synchrotron radiation facilities with different designs and characteristics are now in regular operation throughout the world, with recent additions in this country being the 0.8-GeV and 2.5-GeV rings of NSLS at Brookhaven National Laboratory. However, none of the operating facilities has been designed to use a low-emittance, high-energy stored beam, together with modern undulator devices, to produce a large number of hard x-ray beams of extremely high brilliance. This document is a proposal to the Department of Energy to construct and operate high-energy synchrotron radiation facility at Argonne National Laboratory. We have now chosen to set the design energy of this facility at 7.0 GeV, with the capability to operate at up to 7.5 GeV

  13. Developing an energy design tool: Phase 1 report

    Energy Technology Data Exchange (ETDEWEB)

    Heidell, J.A.; Deringer, J.D.

    1987-02-01

    This report documents the planning phase of a proposed four-phase project for creating computer software to provide energy expertise in a manageable form to architects and engineers - thereby decreasing energy use in new buildings. The government sponsored software would be integrated with commercially developed software for use in the design of buildings. The result would be an integrated software package to aid the designer in the building design process and to provide expert insight into the energy related implications of a proposed design.

  14. Optimized design of low energy buildings

    DEFF Research Database (Denmark)

    Rudbeck, Claus Christian; Esbensen, Peter Kjær; Svendsen, Sv Aa Højgaard

    1999-01-01

    concern which can be seen during the construction of new buildings. People want energy-friendly solutions, but they should be economical optimized. An exonomical optimized building design with respect to energy consumption is the design with the lowest total cost (investment plus operational cost over its...... to evaluate different separate solutions when they interact in the building.When trying to optimize several parameters there is a need for a method, which will show the correct price-performance of each part of a building under design. The problem with not having such a method will first be showed...

  15. Interim Service ISDN Satellite (ISIS) network model for advanced satellite designs and experiments

    Science.gov (United States)

    Pepin, Gerard R.; Hager, E. Paul

    1991-01-01

    The Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) Network Model for Advanced Satellite Designs and Experiments describes a model suitable for discrete event simulations. A top-down model design uses the Advanced Communications Technology Satellite (ACTS) as its basis. The ISDN modeling abstractions are added to permit the determination and performance for the NASA Satellite Communications Research (SCAR) Program.

  16. Advanced Cathode Material For High Energy Density Lithium-Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced cathode materials having high red-ox potential and high specific capacity offer great promise to the development of high energy density lithium-based...

  17. Advanced nickel/hydrogen dependent pressure vessel (DPV) cell and battery concepts

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, D.B. [Technologies Div., Eagle Picher Industries, Inc., Joplin, MO (United States); Fox, C.L. [Technologies Div., Eagle Picher Industries, Inc., Joplin, MO (United States); Miller, L.E. [Technologies Div., Eagle Picher Industries, Inc., Joplin, MO (United States)

    1997-03-01

    The dependent pressure vessel (DPV) nickel/hydrogen (NiH{sub 2}) design is being developed by Eagle-Picher industries, Inc. (EPI) as an advanced battery for military and commercial aerospace and terrestrial applications. The DPV cell design offers high specific energy and energy density as well as reduced cost, while retaining the established individual pressure vessel (IPV) technology, flight heritage and database. This advanced DPV design also offers a more efficient mechanical, electrical and thermal cell and battery configuration and a reduced parts count. The DPV battery design promotes compact, minimum volume packaging and weight efficiency, and delivers cost and weight savings with minimal design risks. (orig.)

  18. Design process and philosophy of TVA's latest advance control room complex

    International Nuclear Information System (INIS)

    Owens, G.R.; Masters, D.W.

    1979-01-01

    TVA's latest nuclear power plant control room design includes a greater emphasis on human factors as compared to their earlier plant designs. This emphasis has resulted in changes in the overall design philosophy and design process. This paper discusses some of the prominent design features of both the control room and the surrounding control room complex. In addition, it also presents some of the important activities involved in the process of developing the advanced control room design

  19. Virtual Welded-Joint Design Integrating Advanced Materials and Processing Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Z.; Dong, P.; Liu, S.; Babu, S.; Olson, G.; DebRoy, T.

    2005-04-15

    The primary goal of this project is to increase the fatigue life of a welded-joint by 10 times and to reduce energy use by 25% through product performance and productivity improvements using an integrated modeling approach. The fatigue strength of a welded-joint is currently the bottleneck to design high performance and lightweight welded structures using advanced materials such as high strength steels. In order to achieve high fatigue strength in a welded-joint it is necessary to manage the weld bead shape for lower stress concentration, produce preferable residual stress distribution, and obtain the desired microstructure for improved material toughness and strength. This is a systems challenge that requires the optimization of the welding process, the welding consumable, the base material, as well as the structure design. The concept of virtual welded-joint design has been proposed and established in this project. The goal of virtual welded-joint design is to develop a thorough procedure to predict the relationship of welding process, microstructure, property, residual stress, and the ultimate weld fatigue strength by a systematic modeling approach. The systematic approach combines five sub-models: weld thermal-fluid model, weld microstructure model, weld material property model, weld residual stress model, and weld fatigue model. The systematic approach is thus based on interdisciplinary applied sciences including heat transfer, computational fluid dynamics, materials science, engineering mechanics, and material fracture mechanics. The sub-models are based on existing models with further development. The results from modeling have been validated with critical experiments. The systematic modeling approach has been used to design high fatigue resistant welds considering the combined effects of weld bead geometry, residual stress, microstructure, and material property. In particular, a special welding wire has been developed in this project to introduce

  20. Utility guidance to advanced LWR designers

    International Nuclear Information System (INIS)

    Yedidia, J.M.

    1990-01-01

    The purpose of this paper is to describe the process envisioned for the development of advanced reactors for future use by the utility industry. The role of the potential utility customer is gradually evolving from that of an owner-operator of such plants to that of a sponsor-participant in the actual design process. The author discusses development of a set of utility requirements, intended to describe in detail utility needs and expectations relative to the performance of future reactors. The reactor vendors, who participated actively in the preparation of the requirements documents, pledged to make every effort to meet them in their future designs. At that stage, when the requirements have been finalized and agreed to by all parties involved, including the Nuclear Regulatory Commission, the utilities were expected to move to the sidelines and wait for the reactor vendors to come up with the product

  1. Groundwater Energy Designer (GED); Groundwater Energy Designer (GED). Computergestuetztes Auslegungstool zur Waerme- und Kaeltenutzung von Grundwasser

    Energy Technology Data Exchange (ETDEWEB)

    Poppei, J.; Mayer, G.; Schwarz, R.

    2006-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at a computer-aided dimensioning tool (Groundwater Energy Designer, GED) for use in the calculation work involved in designing systems for the thermal use of groundwater. The interactive tool is designed to support those involved in the analysis of heating and cooling demands and the direct use of groundwater to help meet such needs. The program and its user interface in German and French are described in detail, as are the basic models and data used in the calculations. Simulation aspects and the verification of the software are also discussed. Results of tests made are presented and discussed.

  2. Concept of Advanced Back-up Control Panel Design of Digital Main Control Room

    International Nuclear Information System (INIS)

    Jiang, Guo Jin; Sun, Yong Bin; Tan, Ke; Zhang, Li Ming; Shi, Ji; Zhang, Xue Gang; Huang, Wei Jun; Mao, Ting; Liu Yanzi

    2011-01-01

    Back-up control panel (BCP) of digital main control room (DMCR) is the backup means for main computerized control means (MCM). This paper focus on technical issues for advanced design of Backup Panel (BCP) for CPR1000 using qualified computer-based video display unit to display plant process indication and alarms. HFE issues also have been considered in the BCP design. Then, mean to fulfill safety target of NPP, best ergonomic effect has been described. At last conclusion on advanced BCP design is provided

  3. Concept of Advanced Back-up Control Panel Design of Digital Main Control Room

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Guo Jin; Sun, Yong Bin; Tan, Ke; Zhang, Li Ming; Shi, Ji; Zhang, Xue Gang; Huang, Wei Jun; Mao, Ting; Liu Yanzi [China Nuclear Power Engineering Company, Shenzen (China)

    2011-08-15

    Back-up control panel (BCP) of digital main control room (DMCR) is the backup means for main computerized control means (MCM). This paper focus on technical issues for advanced design of Backup Panel (BCP) for CPR1000 using qualified computer-based video display unit to display plant process indication and alarms. HFE issues also have been considered in the BCP design. Then, mean to fulfill safety target of NPP, best ergonomic effect has been described. At last conclusion on advanced BCP design is provided.

  4. Launch Vehicle Design and Optimization Methods and Priority for the Advanced Engineering Environment

    Science.gov (United States)

    Rowell, Lawrence F.; Korte, John J.

    2003-01-01

    NASA's Advanced Engineering Environment (AEE) is a research and development program that will improve collaboration among design engineers for launch vehicle conceptual design and provide the infrastructure (methods and framework) necessary to enable that environment. In this paper, three major technical challenges facing the AEE program are identified, and three specific design problems are selected to demonstrate how advanced methods can improve current design activities. References are made to studies that demonstrate these design problems and methods, and these studies will provide the detailed information and check cases to support incorporation of these methods into the AEE. This paper provides background and terminology for discussing the launch vehicle conceptual design problem so that the diverse AEE user community can participate in prioritizing the AEE development effort.

  5. Perspective of nuclear energy and advanced reactors

    International Nuclear Information System (INIS)

    Lopez Jimenez, J.; Cobian, J.

    2007-01-01

    Future nuclear energy growth will be the result of the contributions of every single plant being constructed or projected at present as it is connected to the grid. As per IAEA, there exists presently 34 nuclear power plants under construction 81 with the necessary permits and funding and 223 proposed, which are plants seriously pursuing permits and financing. This means that in a few decades the number of nuclear power plants in operation will have doubled. This growth rate is characterised by the incorporation of new countries to the nuclear club and the gradually increasing importance of Asian countries. During this expansive phase, generation III and III+designs are or will be used. These designs incorporate the experience from operating plants, and introduce innovations on rationalization design efficiency and safety, with emphasis on passive safety features. In a posterior phase, generation IV designs, presently under development, will be employed. Generation IV consists of several types of reactors (fast reactors, very high temperature reactors, etc), which will improve further sustain ability, economy, safety and reliability concepts. The described situation seems to lead to a renaissance of the nuclear energy to levels hardly thinkable several years ago. (Author)

  6. Status of Preconceptual Design of the Advanced High-Temperature Reactor (AHTR)

    Energy Technology Data Exchange (ETDEWEB)

    Ingersoll, D.T.

    2004-07-29

    A new reactor plant concept is presented that combines the benefits of ceramic-coated, high-temperature particle fuel with those of clean, high-temperature, low-pressure molten salt coolant. The Advanced High-Temperature Reactor (AHTR) concept is a collaboration of Oak Ridge National Laboratory, Sandia National Laboratories, and the University of California at Berkeley. The purpose of the concept is to provide an advanced design capable of satisfying the top-level functional requirements of the U.S. Department of Energy Next Generation Nuclear Plant (NGNP), while also providing a technology base that is sufficiently robust to allow future development paths to higher temperatures and larger outputs with highly competitive economics. This report summarizes the status of the AHTR preconceptual design. It captures the results from an intense effort over a period of 3 months to (1) screen and examine potential feasibility concerns with the concept; (2) refine the conceptual design of major systems; and (3) identify research, development, and technology requirements to fully mature the AHTR design. Several analyses were performed and are presented to quantify the AHTR performance expectations and to assist in the selection of several design parameters. The AHTR, like other NGNP reactor concepts, uses coated particle fuel in a graphite matrix. But unlike the other NGNP concepts, the AHTR uses molten salt rather than helium as the primary system coolant. The considerable previous experience with molten salts in nuclear environments is discussed, and the status of high-temperature materials is reviewed. The large thermal inertia of the system, the excellent heat transfer and fission product retention characteristics of molten salt, and the low-pressure operation of the primary system provide significant safety attributes for the AHTR. Compared with helium coolant, a molten salt cooled reactor will have significantly lower fuel temperatures (150-200-C lower) for the

  7. Status of Preconceptual Design of the Advanced High-Temperature Reactor (AHTR)

    International Nuclear Information System (INIS)

    Ingersoll, D.T.

    2004-01-01

    A new reactor plant concept is presented that combines the benefits of ceramic-coated, high-temperature particle fuel with those of clean, high-temperature, low-pressure molten salt coolant. The Advanced High-Temperature Reactor (AHTR) concept is a collaboration of Oak Ridge National Laboratory, Sandia National Laboratories, and the University of California at Berkeley. The purpose of the concept is to provide an advanced design capable of satisfying the top-level functional requirements of the U.S. Department of Energy Next Generation Nuclear Plant (NGNP), while also providing a technology base that is sufficiently robust to allow future development paths to higher temperatures and larger outputs with highly competitive economics. This report summarizes the status of the AHTR preconceptual design. It captures the results from an intense effort over a period of 3 months to (1) screen and examine potential feasibility concerns with the concept; (2) refine the conceptual design of major systems; and (3) identify research, development, and technology requirements to fully mature the AHTR design. Several analyses were performed and are presented to quantify the AHTR performance expectations and to assist in the selection of several design parameters. The AHTR, like other NGNP reactor concepts, uses coated particle fuel in a graphite matrix. But unlike the other NGNP concepts, the AHTR uses molten salt rather than helium as the primary system coolant. The considerable previous experience with molten salts in nuclear environments is discussed, and the status of high-temperature materials is reviewed. The large thermal inertia of the system, the excellent heat transfer and fission product retention characteristics of molten salt, and the low-pressure operation of the primary system provide significant safety attributes for the AHTR. Compared with helium coolant, a molten salt cooled reactor will have significantly lower fuel temperatures (150-200-C lower) for the

  8. Two approaches to meeting the economic challenge for advanced BWR designs

    International Nuclear Information System (INIS)

    Arnold, H.; Rao, A.S.; Sawyer, C.D.

    1996-01-01

    In developing next generation nuclear power plants many economic challenges must be addressed before they become economically attractive to utilities. The economic challenges vary from country to country but have several common characteristics. First and foremost, a plant has to have the lowest construction (costs) to even be considered for design and construction. Additionally, the plant design has to a have a reasonable chance of being licensed by the regulatory authorities in order to minimize the financial risk to the constructing utility. With the long lead times involved in the design and development of advanced plants nowadays, the overall development costs have also become a key factor in the evolution of advanced plants. This paper presents the design overview and approach to addressing the aforementioned economic challenges for two Advanced Boiling Water Reactor (ABWR) designs. The first plant is the ABWR and the second is the European Simplified Boiling Water. The ABWR relies on proven technology and components and an extensive infrastructure that has been built up over the last 20 year. Because it has proven and standard safety systems, which have been licensed in two countries, it has very limited uncertainly regarding licensing. Finally, it relies on the economies of scale and design flexibility to improve the overall economics of power generation. The ESBWR on the other hand has taken an innovative approach to reduce systems and components to simplify the overall plant to improve plant economics. The overall plant design is indeed simpler, but improved economics required reliance on some economies of scale also. This design embodied in the ESBWR, also has minimized the overall development cost by utilizing features and components from the ABWR and Simplified Boiling Water Reactor technology programs. (authors)

  9. Integration Science and Technology of Advanced Ceramics for Energy and Environmental Applications

    Science.gov (United States)

    Singh, M.

    2012-01-01

    The discovery of new and innovative materials has been known to culminate in major turning points in human history. The transformative impact and functional manifestation of new materials have been demonstrated in every historical era by their integration into new products, systems, assemblies, and devices. In modern times, the integration of new materials into usable products has a special relevance for the technological development and economic competitiveness of industrial societies. Advanced ceramic technologies dramatically impact the energy and environmental landscape due to potential wide scale applications in all aspects of energy production, storage, distribution, conservation, and efficiency. Examples include gas turbine propulsion systems, fuel cells, thermoelectrics, photovoltaics, distribution and transmission systems based on superconductors, nuclear power generation, and waste disposal. Robust ceramic integration technologies enable hierarchical design and manufacturing of intricate ceramic components starting with geometrically simpler units that are subsequently joined to themselves and/or to metals to create components with progressively higher levels of complexity and functionality. However, for the development of robust and reliable integrated systems with optimum performance under different operating conditions, the detailed understanding of various thermochemical and thermomechanical factors is critical. Different approaches are required for the integration of ceramic-metal and ceramic-ceramic systems across length scales (macro to nano). In this presentation, a few examples of integration of ceramic to metals and ceramic to ceramic systems will be presented. Various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Potential opportunities and need for the development of innovative design philosophies, approaches, and

  10. Technology Roadmap Instrumentation, Control, and Human-Machine Interface to Support DOE Advanced Nuclear Energy Programs

    Energy Technology Data Exchange (ETDEWEB)

    Donald D Dudenhoeffer; Burce P Hallbert

    2007-03-01

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functional obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order.Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies.

  11. Design for energy efficiency: Energy efficient industrialized housing research program. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Kellett, R.; Berg, R.; Paz, A.; Brown, G.Z.

    1991-03-01

    Since 1989, the U.S. Department of Energy has sponsored the Energy Efficient Industrialized Housing research program (EEIH) to improve the energy efficiency of industrialized housing. Two research centers share responsibility for this program: The Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. Additional funding is provided through the participation of private industry, state governments and utilities. The program is guided by a steering committee comprised of industry and government representatives. This report summarizes Fiscal Year (FY) 1990 activities and progress, and proposed activities for FY 1991 in Task 2.1 Design for Energy Efficiency. This task establishes a vision of energy conservation opportunities in critical regions, market segments, climate zones and manufacturing strategies significant to industrialized housing in the 21st Century. In early FY 1990, four problem statements were developed to define future housing demand scenarios inclusive of issues of energy efficiency, housing design and manufacturing. Literature surveys were completed to assess seven areas of influence for industrialized housing and energy conservation in the future. Fifty-five future trends were identified in computing and design process; manufacturing process; construction materials, components and systems; energy and environment; demographic context; economic context; and planning policy and regulatory context.

  12. Test Hardware Design for Flightlike Operation of Advanced Stirling Convertors (ASC-E3)

    Science.gov (United States)

    Oriti, Salvatore M.

    2012-01-01

    NASA Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). For this purpose, the Thermal Energy Conversion branch at GRC has been conducting extended operation of a multitude of free-piston Stirling convertors. The goal of this effort is to generate long-term performance data (tens of thousands of hours) simultaneously on multiple units to build a life and reliability database. The test hardware for operation of these convertors was designed to permit in-air investigative testing, such as performance mapping over a range of environmental conditions. With this, there was no requirement to accurately emulate the flight hardware. For the upcoming ASC-E3 units, the decision has been made to assemble the convertors into a flight-like configuration. This means the convertors will be arranged in the dual-opposed configuration in a housing that represents the fit, form, and thermal function of the ASRG. The goal of this effort is to enable system level tests that could not be performed with the traditional test hardware at GRC. This offers the opportunity to perform these system-level tests much earlier in the ASRG flight development, as they would normally not be performed until fabrication of the qualification unit. This paper discusses the requirements, process, and results of this flight-like hardware design activity.

  13. The ACR: Advanced design features for a short construction schedule

    International Nuclear Information System (INIS)

    Elgohary, M.; Fairclough, N.

    2003-01-01

    Building on the successful CANDU construction at Qinshan, the ACR-700 is designed with constructability considerations as a major requirement during all project phases from the concept design stage to the detail design stage. A project schedule of 48 months has been developed for the nth ACR unit with a 36 months construction period from First Concrete to Fuel Load. This paper describes some of the advanced design features implemented in the reactor building design in order to achieve this short construction period. These features include large volume concrete pours, prefabricated rebar, composite structures, prefabricated permanent formwork and significant modularization and prefabrication

  14. Advanced plant design recommendations from Cook Nuclear Plant experience

    International Nuclear Information System (INIS)

    Zimmerman, W.L.

    1993-01-01

    A project in the American Electric Power Service Corporation to review operating and maintenance experience at Cook Nuclear Plant to identify recommendations for advanced nuclear plant design is described. Recommendations so gathered in the areas of plant fluid systems, instrument and control, testing and surveillance provisions, plant layout of equipment, provisions to enhance effective maintenance, ventilation systems, radiological protection, and construction, are presented accordingly. An example for a design review checklist for effective plant operations and maintenance is suggested

  15. Recent Advances and Current Trends in Metamaterial-by-Design

    Science.gov (United States)

    Anselmi, N.; Gottardi, G.

    2018-02-01

    Thanks to their potential applications in several engineering areas, metamaterials gained much of attentions among different research communities, leading to the development of several analysis and synthesis tools. In this context, the metamaterial-by-design (MbD) paradigm has been recently introduced as a powerful tool for the design of complex metamaterials-based structures. In this work a review of the state-of-art, as well as the recent advancements of MbD-based methods are presented.

  16. Advances in Design and Fabrication of Free-Form Reciprocal Structures

    DEFF Research Database (Denmark)

    Parigi, Dario

    2016-01-01

    The paper presents the advances in design and fabrication of free-form Reciprocal Structures, and their application a during a one-week long workshop with the students of the 1st semester of the Master of Science in Architecture and Design, fall 2015, at Aalborg University. Two new factors were...... introduced and tested: a new version of the software Reciprocalizer, and an evolution of the Reciprocalizer Robot. The workshop didactic framework Performance Aided/Assisted Design (PAD) is presented....

  17. Design and optimization of zero-energy-consumption based solar energy residential building systems

    Science.gov (United States)

    Zheng, D. L.; Yu, L. J.; Tan, H. W.

    2017-11-01

    Energy consumption of residential buildings has grown fast in recent years, thus raising a challenge on zero energy residential building (ZERB) systems, which aim at substantially reducing energy consumption of residential buildings. Thus, how to facilitate ZERB has become a hot but difficult topic. In the paper, we put forward the overall design principle of ZERB based on analysis of the systems’ energy demand. In particular, the architecture for both schematic design and passive technology is optimized and both energy simulation analysis and energy balancing analysis are implemented, followed by committing the selection of high-efficiency appliance and renewable energy sources for ZERB residential building. In addition, Chinese classical residential building has been investigated in the proposed case, in which several critical aspects such as building optimization, passive design, PV panel and HVAC system integrated with solar water heater, Phase change materials, natural ventilation, etc., have been taken into consideration.

  18. Advanced safeguards research and development plan with an emphasis on its impact on nuclear power-plant design

    International Nuclear Information System (INIS)

    Tobin, S.J.; Demuth, S.F.; Miller, M.C.; Swinhoe, M.T.; Thomas, K.E.

    2007-01-01

    One tool for reducing the concern of nuclear proliferation is enhanced safeguards. Present safeguards have evolved over the past 40 years, and future safeguards will grow from this strong base to implement new technologies for improving our ability to quantify nuclear material. This paper will give an overview of the advanced technology research and development plan for safeguarding. One of the research facilities planned by the Department of Energy is the Advanced Fuel Cycle Facility (AFCF), to develop a novel nuclear fuel recycling program. Since the Advanced Fuel Cycle Facility will receive and reprocess spent fuel and will fabricate fast-reactor fuel, a wide breadth of safeguards technologies is involved. A fundamental concept in safeguards is material control and accounting (MCA). 4 topics concerning MCA and requiring further research have been identified: 1) measuring spent fuel, 2) measuring the plutonium content in the electro-refiner with pyro-processing, 3) measuring plutonium in the presence of other actinides, and 4) measuring neptunium and americium in the presence of other actinides. As for the long-term research and development plan for the AFCF, it will include improving MCA techniques as well as introducing new techniques that are not related to MCA, for example, enhanced containment and surveillance, or enhanced process monitoring. The top priority will stay quantifying the plutonium as accurately as possible and to reach this purpose 4 relevant technologies have been identified: 1) the microcalorimeter, 2) the passive neutron-albedo reactivity, 3) list-mode data acquisition, and 4) a liquid-scintillator multiplicity counter. Incorporating safeguards into the initial design of AFCF (safeguards by design) is a central concept. As the technology research and development plan for the Advanced Fuel Cycle Facility is examined, particular attention will be given to safeguards technologies that may affect the physical design of nuclear power plants

  19. Advances in mechanisms, robotics and design education and research

    CERN Document Server

    Schmiedeler, James; Sreenivasan, S; Su, Hai-Jun

    2013-01-01

    This book contains papers on a wide range of topics in the area of kinematics, mechanisms, robotics, and design, addressing new research advances and innovations in design education. The content is divided into  five main categories headed ‘Historical Perspectives’, ‘Kinematics and Mechanisms’, ‘Robotic Systems’, ‘Legged Locomotion’, and ‘Design Engineering Education’. Contributions take the form of survey articles, historical perspectives, commentaries on trends on education or research, original research contributions, and papers on design education.   This volume celebrates the achievements of Professor Kenneth Waldron who has made innumerable and invaluable contributions to these fields in the last fifty years. His leadership and his pioneering work have influenced thousands of people in this discipline.

  20. Energy efficient engine high pressure turbine test hardware detailed design report

    Science.gov (United States)

    Halila, E. E.; Lenahan, D. T.; Thomas, T. T.

    1982-01-01

    The high pressure turbine configuration for the Energy Efficient Engine is built around a two-stage design system. Moderate aerodynamic loading for both stages is used to achieve the high level of turbine efficiency. Flowpath components are designed for 18,000 hours of life, while the static and rotating structures are designed for 36,000 hours of engine operation. Both stages of turbine blades and vanes are air-cooled incorporating advanced state of the art in cooling technology. Direct solidification (DS) alloys are used for blades and one stage of vanes, and an oxide dispersion system (ODS) alloy is used for the Stage 1 nozzle airfoils. Ceramic shrouds are used as the material composition for the Stage 1 shroud. An active clearance control (ACC) system is used to control the blade tip to shroud clearances for both stages. Fan air is used to impinge on the shroud casing support rings, thereby controlling the growth rate of the shroud. This procedure allows close clearance control while minimizing blade tip to shroud rubs.

  1. Licensing of advanced reactors: Status report and perspective

    International Nuclear Information System (INIS)

    King, T.

    1988-01-01

    In July, 1986, the U.S. Nuclear Regulatory Commission issued a Policy State on the Regulation of Advanced Nuclear Power Plants. As part of this policy, advanced reactor designers were encouraged to interact with NRC [Nuclear Regulatory Commission] early in the design process to obtain feedback regarding licensing requirements for advanced reactors. Accordingly, the staff has been interacting with the Department of Energy (DOE) and its contractors on the review of three advanced reactor conceptual designs: one modular high temperature gas-cooled reactor (MHTGR) and two liquid metal reactors (LMRs). This paper provides a status of the NRC review effort, describes the key policy and technical issues resulting from our review and provides the current status and approach to the development of licensing guidance on each

  2. Proceedings of GLOBAL 2007 conference on advanced nuclear fuel cycles and systems

    International Nuclear Information System (INIS)

    2007-01-01

    In keeping with the 12-year history of this conference, GLOBAL 2007 focuses on future nuclear energy systems and fuel cycles. With the increasing public acceptance and political endorsement of nuclear energy, it is a pivotal time for nuclear energy research. Significant advances have been made in development of advanced nuclear fuels and materials, reactor designs, partitioning, transmutation and reprocessing technologies, and waste management strategies. In concert with the technological advances, it is more important than ever to develop sensible nuclear proliferation policies, to promote sustainability, and to continue to increase international collaboration. To further these aims, GLOBAL 2007 highlights recent developments in the following areas: advanced integrated fuel cycle concepts, spent nuclear fuel reprocessing, advanced reprocessing technology, advanced fuels and materials, advanced waste management technology, novel concepts for waste disposal and repository development, advanced reactors, partitioning and transmutation, developments in nuclear non-proliferation technology, policy, and implementation, sustainability and expanded global utilization of nuclear energy, and international collaboration on nuclear energy

  3. 77 FR 56241 - Notice of Withdrawal of Final Design Approval; Westinghouse Electric Company; Advanced Passive 1000

    Science.gov (United States)

    2012-09-12

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0131] Notice of Withdrawal of Final Design Approval; Westinghouse Electric Company; Advanced Passive 1000 By letter dated December 10, 2010, Westinghouse Electric... final design approval (FDA) for the Advanced Passive 1000 (AP1000) design upon the completion of...

  4. Design requirement for electrical system of an advanced research reactor

    International Nuclear Information System (INIS)

    Jung, Hoan Sung; Kim, H. K.; Kim, Y. K.; Wu, J. S.; Ryu, J. S.

    2004-12-01

    An advanced research reactor is being designed since 2002 and the conceptual design has been completed this year for the several types of core. Also the fuel was designed for the potential cores. But the process system, the I and C system, and the electrical system design are under pre-conceptual stage. The conceptual design for those systems will be developed in the next year. Design requirements for the electrical system set up to develop conceptual design. The same goals as reactor design - enhance safety, reliability, economy, were applied for the development of the requirements. Also the experience of HANARO design and operation was based on. The design requirements for the power distribution, standby power supply, and raceway system will be used for the conceptual design of electrical system

  5. Design requirement for electrical system of an advanced research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hoan Sung; Kim, H. K.; Kim, Y. K.; Wu, J. S.; Ryu, J. S

    2004-12-01

    An advanced research reactor is being designed since 2002 and the conceptual design has been completed this year for the several types of core. Also the fuel was designed for the potential cores. But the process system, the I and C system, and the electrical system design are under pre-conceptual stage. The conceptual design for those systems will be developed in the next year. Design requirements for the electrical system set up to develop conceptual design. The same goals as reactor design - enhance safety, reliability, economy, were applied for the development of the requirements. Also the experience of HANARO design and operation was based on. The design requirements for the power distribution, standby power supply, and raceway system will be used for the conceptual design of electrical system.

  6. Advanced Neutron Source: Plant Design Requirements

    International Nuclear Information System (INIS)

    1990-07-01

    The Advanced Neutron Source will be a new world-class facility for research using hot, thermal, cold, and ultra-cold neutrons. The heart of the facility will be a 330-MW (fission), heavy-water cooled and heavy-water moderated reactor. The reactor will be housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides will fan out into a large guide hall, housing about 30 neutron research stations. Appropriate office, laboratory, and shop facilities will be included to provide a complete facility for users. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory early in the next decade. This PDR document defines the plant-level requirements for the design, construction, and operation of ANS. It also defines and provides input to the individual System Design Description (SDD) documents. Together, this PDR document and the set of SDD documents will define and control the baseline configuration of ANS

  7. Safety Design Strategy for the Advanced Test Reactor Emergency Firewater Injection System Replacement Project

    International Nuclear Information System (INIS)

    Duckwitz, Noel

    2011-01-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets,' safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, 'Facility Safety,' and the expectations of DOE-STD-1189-2008, 'Integration of Safety into the Design Process,' provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

  8. Advanced CANDU reactor: an optimized energy source of oil sands application

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Bock, D.; Miller, A.; Kuran, S.; Keil, H.; Fiorino, L.; Duffey, R.; Dunbar, R.B.

    2003-01-01

    Atomic Energy of Canada Limited (AECL) is developing the ACR-700 TM (Advanced CANDU Reactor-700 TM ) to meet customer needs for reduced capital cost, shorter construction schedule, high capacity factor while retaining the benefits of the CANDU experience base. The ACR-700 is based on the concept of CANDU horizontal fuel channels surrounded by heavy water moderator. The major innovation of this design is the use of slightly enriched uranium fuel in a CANFLEX bundle that is cooled by light water. This ensures: higher main steam pressures and temperatures providing higher thermal efficiency; a compact and simpler reactor design with reduced capital costs and shorter construction schedules; and reduced heavy water inventory compared to existing CANDU reactors. ACR-700 is not only a technically advanced and cost effective solution for electricity generating utilities, but also a low-cost, long-life and sustainable steam source for increasing Alberta's Oil Sand production rates. Currently practiced commercial surface mining and extraction of Oil Sand resources has been well established over the last three decades. But a majority of the available resources are somewhat deeper underground require in-situ extraction. Economic removal of such underground resources is now possible through the Steam Assisted Gravity Drainage (SAGD) process developed and proto-type tested in-site. SAGD requires the injection of large quantities of high-pressure steam into horizontal wells to form reduced viscosity bitumen and condensate mixture that is then collected at the surface. This paper describes joint AECL studies with CERI (Canadian Energy Research Institute) for the ACR, supplying both electricity and medium-pressure steam to an oil sands facility. The extensive oil sands deposits in northern Alberta are a very large energy resource. Currently, 30% of Canda's oil production is from the oil sands and this is expected to expand greatly over the coming decade. The bitumen deposits in the

  9. One semester course in wind energy for advanced undergraduate and graduate engineering students

    International Nuclear Information System (INIS)

    Ghosh, K.

    2006-01-01

    The recent increase in energy consumption in India is resulting in high levels of greenhouse gas emissions. Attempts to harness new renewable energy sources such as wind power is creating the need for trained manpower in aerospace engineering and mechanical engineering. The course outline for a one semester course in wind energy for advanced undergraduate and graduate engineering students at the Indian Institute of Technology was presented in this paper. A history of wind energy was also presented along with the approaching global environmental crisis. International efforts and conventions to reduce greenhouse gas emissions were discussed. India's geography and relationship to wind resources were presented in terms of its latitude and geostrophic winds. The course outline also includes a section on measuring instruments (anemometers) and organization of wind data using Weibull distribution as well as the impacts of summer and monsoon winds. The aerodynamics of wind turbines including airfoils, airscrew theory, and its application to wind turbines were discussed. Rural and remote area usage of wind turbines as well as the structural design and construction of wind turbine blades using composite materials are also examined in the course. Last, the course presents a video cassette and a 16 mm film on wind energy and advises students that they are exposed to laboratory and field practices and encouraged to do practical projects. The course contains a discussion of policy issues such as reaching the common people, and industry-academia interaction. 8 refs., 10 figs

  10. One semester course in wind energy for advanced undergraduate and graduate engineering students

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, K. [Indian Inst. of Technology, Kanpur (India). Aerospace Engineering Dept.

    2006-07-01

    The recent increase in energy consumption in India is resulting in high levels of greenhouse gas emissions. Attempts to harness new renewable energy sources such as wind power is creating the need for trained manpower in aerospace engineering and mechanical engineering. The course outline for a one semester course in wind energy for advanced undergraduate and graduate engineering students at the Indian Institute of Technology was presented in this paper. A history of wind energy was also presented along with the approaching global environmental crisis. International efforts and conventions to reduce greenhouse gas emissions were discussed. India's geography and relationship to wind resources were presented in terms of its latitude and geostrophic winds. The course outline also includes a section on measuring instruments (anemometers) and organization of wind data using Weibull distribution as well as the impacts of summer and monsoon winds. The aerodynamics of wind turbines including airfoils, airscrew theory, and its application to wind turbines were discussed. Rural and remote area usage of wind turbines as well as the structural design and construction of wind turbine blades using composite materials are also examined in the course. Last, the course presents a video cassette and a 16 mm film on wind energy and advises students that they are exposed to laboratory and field practices and encouraged to do practical projects. The course contains a discussion of policy issues such as reaching the common people, and industry-academia interaction. 8 refs., 10 figs.

  11. Development of advanced loop-type fast reactor in Japan (4): An advanced design of the fuel handling system for the enhanced economic competitiveness

    International Nuclear Information System (INIS)

    Usui, S.; Mihara, T.; Obata, H.; Kotake, S.

    2008-01-01

    Refueling operation of sodium fast reactor (SFR) is one of major technical issue due to the chemical activities and opaqueness of sodium coolant properties in comparison with that of LWR. In the Japan Atomic Energy Agency (JAEA) sodium cooled Fast Reactor (JSFR) design study, the further reliable and rational fuel handling system (FHS) has been developing based on the experience of safe and reliable fuel handling operation in the existent SFR plants. Some of advanced concepts for the FHS have being studied in order to increase economic competitiveness further by attempting reduction of the amount of the material and the refueling time, and are scheduled to execute elemental tests and/or mock-up tests to confirm their feasibilities. (authors)

  12. Updated Assessment of an Open Rotor Airplane Using an Advanced Blade Design

    Science.gov (United States)

    Hendricks, Eric S.; Berton, Jeffrey J.; Haller, William J.; Tong, Michael T.; Guynn, Mark D.

    2013-01-01

    Application of open rotor propulsion systems (historically referred to as "advanced turboprops" or "propfans") to subsonic transport aircraft received significant attention and research in the 1970s and 1980s when fuel efficiency was the driving focus of aeronautical research. Recent volatility in fuel prices and concern for aviation's environmental impact have renewed interest in open rotor propulsion, and revived research by NASA and a number of engine manufacturers. Over the last few years, NASA has revived and developed analysis capabilities to assess aircraft designs with open rotor propulsion systems. These efforts have been described in several previous papers along with initial results from applying these capabilities. The initial results indicated that open rotor engines have the potential to provide large reductions in fuel consumption and emissions. Initial noise analysis indicated that current noise regulations can be met with modern baseline blade designs. Improved blades incorporating low-noise features are expected to result in even lower noise levels. This paper describes improvements to the initial assessment, plus a follow-on study using a more advanced open rotor blade design to power the advanced singleaisle transport. The predicted performance and environmental results of these two advanced open rotor concepts are presented and compared.

  13. NATO Advanced Study Institute on Magnetic Resonance : Introduction, Advanced Topics and Applications to Fossil Energy

    CERN Document Server

    Fraissard, Jacques

    1984-01-01

    This volume contains the lectures presented at an Advanced Study Institute on "Magnetic Resonance Techniques in Fossil Energy Problems," which was held at the village of Maleme, Crete, in July of 1983. As of this writing, a different popular attitude prevails from that when the ASI was proposed as far as how critical the world energy picture is. In the popular press, a panglossian attitude (the "petroleum glut" of the 80's) has replaced the jeremiads of the 70's ( a catastrophic "energy crisis"). Yet, there are certain important constants: (a) for the foreseeable future, fossil energy sources (petroleum, coal, oil shale, etc. ) will continue to be of paramount importance; and (b) science and technology of the highest order are needed to extend the fossil ener~y resource base and to utilize it in a cost-effective manner that is also environmentally acceptable. It is precisely this second item that this volume addresses. The volume introduces the phenomenology of magnetic resonance ~n a unified and detailed man...

  14. Energy, economic, and environmental impacts of advanced industrial process innovations, 1976--1996

    International Nuclear Information System (INIS)

    Quinn, J.E.; Reed, J.E.

    1997-01-01

    The mission of the Office of Industrial Technologies (OIT), within the Office of Energy Efficiency and Renewable Energy, is to develop and deploy advanced energy efficiency, renewable energy, and pollution-prevention technologies, through partnerships with industry, government, and non-governmental organizations. OIT's objectives have evolved and broadened over nearly two decades, continually responding to a changing energy situation and shifting national priorities. Today, the key focus of the OIT programs is the Industries of the Future approach. This strategy of close collaboration with industry catalyzes and facilitates technology development and transfer efforts in seven manufacturing industries that together account for over 80% of the energy used and over 80% of the wastes produced by the manufacturing sector. In this approach senior level industry groups develop a future vision of their industry and a technology roadmap to attain the vision. DOE helps facilitate this process and partners with industry to identify and pursue an advanced technology R and D portfolio. The seven industries are aluminum, chemicals, forest products, glass, metalcasting, petroleum refining, and steel. In managing all its activities, OIT draws upon program support provided primarily by national Laboratories, universities, and private-sector research organizations throughout the country that have the diverse and specialized expertise needed to develop advanced industrial technologies. Approximately 78 industrial technologies developed with Office of Industrial Technology (OIT) support have successfully entered commercial markets. These technologies have saved a cumulative total of almost 900 trillion Btu, representing a new production cost savings of over $1.8 billion. These dollar savings represent the net total value of all energy saved by technologies developed with OIT support minus the net cost to industry of using the technologies (including capital costs, operating and

  15. Development and Application of Advanced Weather Prediction Technologies for the Wind Energy Industry (Invited)

    Science.gov (United States)

    Mahoney, W. P.; Wiener, G.; Liu, Y.; Myers, W.; Johnson, D.

    2010-12-01

    Wind energy decision makers are required to make critical judgments on a daily basis with regard to energy generation, distribution, demand, storage, and integration. Accurate knowledge of the present and future state of the atmosphere is vital in making these decisions. As wind energy portfolios expand, this forecast problem is taking on new urgency because wind forecast inaccuracies frequently lead to substantial economic losses and constrain the national expansion of renewable energy. Improved weather prediction and precise spatial analysis of small-scale weather events are crucial for renewable energy management. In early 2009, the National Center for Atmospheric Research (NCAR) began a collaborative project with Xcel Energy Services, Inc. to perform research and develop technologies to improve Xcel Energy's ability to increase the amount of wind energy in their generation portfolio. The agreement and scope of work was designed to provide highly detailed, localized wind energy forecasts to enable Xcel Energy to more efficiently integrate electricity generated from wind into the power grid. The wind prediction technologies are designed to help Xcel Energy operators make critical decisions about powering down traditional coal and natural gas-powered plants when sufficient wind energy is predicted. The wind prediction technologies have been designed to cover Xcel Energy wind resources spanning a region from Wisconsin to New Mexico. The goal of the project is not only to improve Xcel Energy’s wind energy prediction capabilities, but also to make technological advancements in wind and wind energy prediction, expand our knowledge of boundary layer meteorology, and share the results across the renewable energy industry. To generate wind energy forecasts, NCAR is incorporating observations of current atmospheric conditions from a variety of sources including satellites, aircraft, weather radars, ground-based weather stations, wind profilers, and even wind sensors on

  16. Protein and energy intake in advanced chronic kidney disease: how much is too much?

    Science.gov (United States)

    Ikizler, T Alp

    2007-01-01

    Uremic wasting is strongly associated with increased risk of death and hospitalization events in patients with advanced chronic kidney disease (CKD). Recent evidence indicates that patients with advanced chronic kidney disease are prone to uremic wasting due to several factors, which include the dialysis procedure and certain comorbid conditions, especially chronic inflammation and insulin resistance or deficiency. While the catabolic effects of dialysis can be readily avoided with intradialytic nutritional supplementation, there are no established alternative strategies to avoid the catabolic consequences of comorbid conditions other than treatment of their primary etiology. To this end, there is no indication that simply increasing dietary protein and energy intake above the required levels based on level of kidney disease is beneficial in patients with advanced chronic kidney disease. However, aside from the potential adverse effects such as uremic toxin production, dietary protein and energy intake in excess of actual needs might be beneficial in maintenance dialysis patients as it may lead to weight gain over time. Clearly, the role of obesity in advanced uremia needs to be examined in detail prior to making any clinically applicable recommendations, both in terms of ''low'' and ''high'' dietary protein and energy intake.

  17. Advancing solar energy forecasting through the underlying physics

    Science.gov (United States)

    Yang, H.; Ghonima, M. S.; Zhong, X.; Ozge, B.; Kurtz, B.; Wu, E.; Mejia, F. A.; Zamora, M.; Wang, G.; Clemesha, R.; Norris, J. R.; Heus, T.; Kleissl, J. P.

    2017-12-01

    As solar power comprises an increasingly large portion of the energy generation mix, the ability to accurately forecast solar photovoltaic generation becomes increasingly important. Due to the variability of solar power caused by cloud cover, knowledge of both the magnitude and timing of expected solar power production ahead of time facilitates the integration of solar power onto the electric grid by reducing electricity generation from traditional ancillary generators such as gas and oil power plants, as well as decreasing the ramping of all generators, reducing start and shutdown costs, and minimizing solar power curtailment, thereby providing annual economic value. The time scales involved in both the energy markets and solar variability range from intra-hour to several days ahead. This wide range of time horizons led to the development of a multitude of techniques, with each offering unique advantages in specific applications. For example, sky imagery provides site-specific forecasts on the minute-scale. Statistical techniques including machine learning algorithms are commonly used in the intra-day forecast horizon for regional applications, while numerical weather prediction models can provide mesoscale forecasts on both the intra-day and days-ahead time scale. This talk will provide an overview of the challenges unique to each technique and highlight the advances in their ongoing development which come alongside advances in the fundamental physics underneath.

  18. Establishing the value of advanced glazings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E; Selkowitz, S.

    1999-01-01

    Numerous glazing technologies are under development worldwide to improve the performance of building facades. High-performance glazings can provide substantial energy and related environmental benefits, but often at greatly increased first cost when compared to conventional design solutions. To increase market viability, we discuss strategies to reduce the actual and owner-perceived costs associated with developing and producing advanced window systems, specifically switchable electrochromic glazings, and we also suggest marketing strategies designed to appeal to early adopter and mainstream purchasers. These strategies may be applicable to a broad range of advanced glazing materials.

  19. Technology Learning Activities. Design Brief--Measuring Inaccessible Distances. Alternative Energy Sources: Designing a Wind Powered Generator. Alternative Energy Sources: Designing a Hot Dog Heater Using Solar Energy.

    Science.gov (United States)

    Technology Teacher, 1991

    1991-01-01

    These three learning activities are on measuring accessible distances, designing a wind powered generator, and designing a hot dog heater using solar energy. Each activity includes description of context, objectives, list of materials and equipment, challenge to students, and evaluation questions. (SK)

  20. Relative Binding Free Energy Calculations in Drug Discovery: Recent Advances and Practical Considerations.

    Science.gov (United States)

    Cournia, Zoe; Allen, Bryce; Sherman, Woody

    2017-12-26

    Accurate in silico prediction of protein-ligand binding affinities has been a primary objective of structure-based drug design for decades due to the putative value it would bring to the drug discovery process. However, computational methods have historically failed to deliver value in real-world drug discovery applications due to a variety of scientific, technical, and practical challenges. Recently, a family of approaches commonly referred to as relative binding free energy (RBFE) calculations, which rely on physics-based molecular simulations and statistical mechanics, have shown promise in reliably generating accurate predictions in the context of drug discovery projects. This advance arises from accumulating developments in the underlying scientific methods (decades of research on force fields and sampling algorithms) coupled with vast increases in computational resources (graphics processing units and cloud infrastructures). Mounting evidence from retrospective validation studies, blind challenge predictions, and prospective applications suggests that RBFE simulations can now predict the affinity differences for congeneric ligands with sufficient accuracy and throughput to deliver considerable value in hit-to-lead and lead optimization efforts. Here, we present an overview of current RBFE implementations, highlighting recent advances and remaining challenges, along with examples that emphasize practical considerations for obtaining reliable RBFE results. We focus specifically on relative binding free energies because the calculations are less computationally intensive than absolute binding free energy (ABFE) calculations and map directly onto the hit-to-lead and lead optimization processes, where the prediction of relative binding energies between a reference molecule and new ideas (virtual molecules) can be used to prioritize molecules for synthesis. We describe the critical aspects of running RBFE calculations, from both theoretical and applied perspectives

  1. BUILDING DESIGN INFLUENCE ON THE ENERGY PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Moga Ligia

    2015-05-01

    Full Text Available Energy efficient design is a high priority in the national energy strategy of European countries considering the latest requirements of the European Directive on the Energy Performance of Buildings. The residential sector is responsible for a significant quantity of energy consumptions from the total amount of consumptions on a worldwide level. In residential building most of the energy consumptions are given mainly by heating, domestic hot water and lighting. Retrofitting the existing building stock offers great opportunities for reducing global energy consumptions and greenhouse gas emissions. The first part of the paper will address the need of thermal and energy retrofit of existing buildings. The second part will provide an overview on how various variables can influence the energy performance of a building that is placed in all four climatic zones from Romania. The paper is useful for specialist and designers from the construction field in understanding that buildings behave differently from the energy point of view in different climatic regions, even if the building characteristic remain the same.

  2. Driving forces shaping advanced reactor designs: Near-term and long-term prospects

    International Nuclear Information System (INIS)

    Sholly, S.C.

    1990-01-01

    This paper explores the forces which have driven and which in the opinion of the author should be driving advanced reactor development programs. Four general driving forces are identified: cost, safety, environmental concerns, and non-proliferation concerns. It is suggested that the primary driving forces should be cost and safety concerns. It is suggested that advanced reactors need to demonstrate the following characteristics: (a) A design which explicitly accounts for severe accidents, including severe external events (not necessarily limited to contemporary design basis events) and which results in a frequency of severe core damage substantially lower than in current plants. The goal for the frequency of severe core damage should reflect a reasonable assurance that a severe core damage accident will not occur during the operating lifetime of a fleet' of such plants. (b) A design which explicitly accounts for severe accidents in terms of accident mitigation, resulting in a very low conditional likelihood of a substantial fission product release given a severe accident. (c) A design which utilizes near-passive and passive concepts (whose safety and reliability are demonstrable by experiment and/or full-scale test) for both accident prevention and accident mitigation to the maximum extent feasible. (d) A design which allows f a suitably long time between refueling outages, with a balance struck between refueling outage duration and refueling outage frequency so as to maximize availability and capacity factor. (e) A design which emphasizes modular construction and exceptional quality control. (f) A design which de emphasizes the importance of maintenance and human reliability more generally to assure that safety functions are performed with acceptable reliability, and to assure that passive safety characteristics are not compromised by design, manufacturing, or installation defects. It is further suggested that key factors in gaining public acceptance are the early

  3. Driving forces shaping advanced reactor designs: Near-term and long-term prospects

    Energy Technology Data Exchange (ETDEWEB)

    Sholly, S C [MHB Technical Associates, San Jose, CA (United States)

    1990-07-01

    This paper explores the forces which have driven and which in the opinion of the author should be driving advanced reactor development programs. Four general driving forces are identified: cost, safety, environmental concerns, and non-proliferation concerns. It is suggested that the primary driving forces should be cost and safety concerns. It is suggested that advanced reactors need to demonstrate the following characteristics: (a) A design which explicitly accounts for severe accidents, including severe external events (not necessarily limited to contemporary design basis events) and which results in a frequency of severe core damage substantially lower than in current plants. The goal for the frequency of severe core damage should reflect a reasonable assurance that a severe core damage accident will not occur during the operating lifetime of a fleet' of such plants. (b) A design which explicitly accounts for severe accidents in terms of accident mitigation, resulting in a very low conditional likelihood of a substantial fission product release given a severe accident. (c) A design which utilizes near-passive and passive concepts (whose safety and reliability are demonstrable by experiment and/or full-scale test) for both accident prevention and accident mitigation to the maximum extent feasible. (d) A design which allows f a suitably long time between refueling outages, with a balance struck between refueling outage duration and refueling outage frequency so as to maximize availability and capacity factor. (e) A design which emphasizes modular construction and exceptional quality control. (f) A design which de emphasizes the importance of maintenance and human reliability more generally to assure that safety functions are performed with acceptable reliability, and to assure that passive safety characteristics are not compromised by design, manufacturing, or installation defects. It is further suggested that key factors in gaining public acceptance are the early

  4. Beamline standard component designs for the Advanced Photon Source

    International Nuclear Information System (INIS)

    Shu, D.; Barraza, J.; Brite, C.; Chang, J.; Sanchez, T.; Tcheskidov, V.; Kuzay, T.M.

    1994-01-01

    The Advanced Photon Source (APS) has initiated a design standardization and modularization activity for the APS synchrotron radiation beamline components. These standard components are included in components library, sub-components library and experimental station library. This paper briefly describes these standard components using both technical specifications and side view drawings

  5. Design of robust hollow fiber membranes with high power density for osmotic energy production

    KAUST Repository

    Zhang, Sui

    2014-04-01

    This study highlights the design strategy of highly asymmetric hollow fiber membranes that possess both characteristics of high flux and high mechanical strength to effectively reap the osmotic energy from seawater brine with an ultrahigh power density. An advanced co-extrusion technology was employed to fabricate the polyethersulfone (PES) hollow fiber supports with diversified structures from macrovoid to sponge-like. The microstructure of the supports is found critical for the stability and water permeability of the thin film composite (TFC) membranes. A high porosity in the porous layer is needed to reduce internal concentration polarization, while a thick and relatively dense skin layer underneath the TFC layer is required to maintain good mechanical stability and stress dissipation. The pore size of the supporting layer underneath the TFC layer must be small with a narrow pore size distribution to ensure the formation of a less-defective, highly permeable and mechanically stable TFC layer. The newly developed hollow fiber comprising high asymmetry, high porosity, and a thick skin layer with a small and narrow pore size distribution underneath the TFC layer produces a maximum power density of 24.3W/m2 at 20.0bar by using 1M NaCl as the concentrated brine and deionized (DI) water as the feed. The proposed design strategy for ultrahigh power density membranes clearly advances the osmotic energy production close to commercialization with a quite cost-effective and practicable approach. © 2013 Elsevier B.V.

  6. Design of robust hollow fiber membranes with high power density for osmotic energy production

    KAUST Repository

    Zhang, Sui; Sukitpaneenit, Panu; Chung, Neal Tai-Shung

    2014-01-01

    This study highlights the design strategy of highly asymmetric hollow fiber membranes that possess both characteristics of high flux and high mechanical strength to effectively reap the osmotic energy from seawater brine with an ultrahigh power density. An advanced co-extrusion technology was employed to fabricate the polyethersulfone (PES) hollow fiber supports with diversified structures from macrovoid to sponge-like. The microstructure of the supports is found critical for the stability and water permeability of the thin film composite (TFC) membranes. A high porosity in the porous layer is needed to reduce internal concentration polarization, while a thick and relatively dense skin layer underneath the TFC layer is required to maintain good mechanical stability and stress dissipation. The pore size of the supporting layer underneath the TFC layer must be small with a narrow pore size distribution to ensure the formation of a less-defective, highly permeable and mechanically stable TFC layer. The newly developed hollow fiber comprising high asymmetry, high porosity, and a thick skin layer with a small and narrow pore size distribution underneath the TFC layer produces a maximum power density of 24.3W/m2 at 20.0bar by using 1M NaCl as the concentrated brine and deionized (DI) water as the feed. The proposed design strategy for ultrahigh power density membranes clearly advances the osmotic energy production close to commercialization with a quite cost-effective and practicable approach. © 2013 Elsevier B.V.

  7. Evaluation of technical design of advanced information display(II)

    International Nuclear Information System (INIS)

    Cha, Woo Chang; Kang, Young Ju; Ji, Jung Hun; Jang, Sung Pil; Jung, Sung Hae; Park, Hyun Jin

    2004-02-01

    As the computer technology is highly developed, the mental model of computer users including NPP operators has been changed from analogue display type-based stereotype to digitalized one. Therefore, it is necessary and confident to consider the issues to evaluate system suitability of advanced information display on visual display terminal such as CRT. This document is intended for providing an updated and expanded set of user-interface guidelines that meet the needs of designing information display on CRT by finding the generic guidelines involving information display design issues, and the relationship among the guidelines. The design issues and resolutions from the finding may provide the cues for the designers and evaluators of the specific man machine interfaces of digitalized devices

  8. Evaluation of technical design of advanced information display(II)

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Woo Chang; Kang, Young Ju; Ji, Jung Hun; Jang, Sung Pil; Jung, Sung Hae; Park, Hyun Jin [Kumoh National Univ., Gumi (Korea, Republic of)

    2004-02-15

    As the computer technology is highly developed, the mental model of computer users including NPP operators has been changed from analogue display type-based stereotype to digitalized one. Therefore, it is necessary and confident to consider the issues to evaluate system suitability of advanced information display on visual display terminal such as CRT. This document is intended for providing an updated and expanded set of user-interface guidelines that meet the needs of designing information display on CRT by finding the generic guidelines involving information display design issues, and the relationship among the guidelines. The design issues and resolutions from the finding may provide the cues for the designers and evaluators of the specific man machine interfaces of digitalized devices.

  9. Final safety evaluation report related to the certification of the Advanced Boiling Water Reactor design. Supplement 1

    International Nuclear Information System (INIS)

    1997-05-01

    This report supplements the final safety evaluation report (FSER) for the US Advanced Boiling Water Reactor (ABWR) standard design. The FSER was issued by the US Nuclear Regulatory Commission (NRC) staff as NUREG-1503 in July 1994 to document the NRC staff's review of the US ABWR design. The US ABWR design was submitted by GE Nuclear Energy (GE) in accordance with the procedures of Subpart B to Part 52 of Title 10 of the Code of Federal Regulations. This supplement documents the NRC staff's review of the changes to the US ABWR design documentation since the issuance of the FSER. GE made these changes primarily as a result of first-of-a-kind-engineering (FOAKE) and as a result of the design certification rulemaking for the ABWR design. On the basis of its evaluations, the NRC staff concludes that the confirmatory issues in NUREG-1503 are resolved, that the changes to the ABWR design documentation are acceptable, and that GE's application for design certification meets the requirements of Subpart B to 10 CFR Part 52 that are applicable and technically relevant to the US ABWR design

  10. Final safety evaluation report related to the certification of the Advanced Boiling Water Reactor design. Supplement 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This report supplements the final safety evaluation report (FSER) for the US Advanced Boiling Water Reactor (ABWR) standard design. The FSER was issued by the US Nuclear Regulatory Commission (NRC) staff as NUREG-1503 in July 1994 to document the NRC staff`s review of the US ABWR design. The US ABWR design was submitted by GE Nuclear Energy (GE) in accordance with the procedures of Subpart B to Part 52 of Title 10 of the Code of Federal Regulations. This supplement documents the NRC staff`s review of the changes to the US ABWR design documentation since the issuance of the FSER. GE made these changes primarily as a result of first-of-a-kind-engineering (FOAKE) and as a result of the design certification rulemaking for the ABWR design. On the basis of its evaluations, the NRC staff concludes that the confirmatory issues in NUREG-1503 are resolved, that the changes to the ABWR design documentation are acceptable, and that GE`s application for design certification meets the requirements of Subpart B to 10 CFR Part 52 that are applicable and technically relevant to the US ABWR design.

  11. Fiscal 1998 achievement report. Research and development of advanced clean energy vehicles; 1998 nendo kokoritsu clean energy jidosha no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The efforts aim to develop advanced clean energy vehicles (ACEVs) which drive on substitutes of oil low in pollution, consuming 1/2 or less energy and emitting 1/2 or less CO2 than the existing vehicles. Studies conducted in fiscal 1998 covered high-efficiency hybrid power systems and ACEVs. Efforts to develop ACEVs involved a reformed methanol fuel cell hybrid passenger car of Nissan Motor Co., Ltd. (improvement on element technologies, study of methanol concentration); CNG (compressed natural gas) engine hybrid passenger car of Honda Research and Development Co., Ltd. (improvement on flywheels, studies of ANG (adsorbent natural gas) adsorbent and ANG tank); CNG ceramics engine hybrid cargo truck of Isuzu Ceramics Research Institute Co., Ltd. (fabrication of ceramics single-cylinder engine, design and fabrication of vehicle control system, fabrication of prototype); CNG lean burn engine hybrid cargo truck of Mitsubishi Motors Co., Ltd. (studies, designing, and fabrication of engine element parts); LNG engine hybrid bus of Nissan Diesel Motor Co., Ltd. (development of engine and power storage); and DME (dimethylether) engine hybrid bus of Hino Motors, Ltd. (development of DME fuel injection system and high-efficiency power storage). (NEDO)

  12. Conceptual study of advanced PWR core design

    International Nuclear Information System (INIS)

    Kim, Young Jin; Chang, Moon Hee; Kim, Keung Ku; Joo, Hyung Kuk; Kim, Young Il; Noh, Jae Man; Hwang, Dae Hyun; Kim, Taek Kyum; Yoo, Yon Jong.

    1997-09-01

    The purpose of this project is for developing and verifying the core design concepts with enhanced safety and economy, and associated methodologies for core analyses. From the study of the sate-of-art of foreign advanced reactor cores, we developed core concepts such as soluble boron free, high convertible and enhanced safety core loaded semi-tight lattice hexagonal fuel assemblies. To analyze this hexagonal core, we have developed and verified some neutronic and T/H analysis methodologies. HELIOS code was adopted as the assembly code and HEXFEM code was developed for hexagonal core analysis. Based on experimental data in hexagonal lattices and the COBRA-IV-I code, we developed a thermal-hydraulic analysis code for hexagonal lattices. Using the core analysis code systems developed in this project, we designed a 600 MWe core and studied the feasibility of the core concepts. Two additional scopes were performed in this project : study on the operational strategies of soluble boron free core and conceptual design of large scale passive core. By using the axial BP zoning concept and suitable design of control rods, this project showed that it was possible to design a soluble boron free core in 600 MWe PWR. The results of large scale core design showed that passive concepts and daily load follow operation could be practiced. (author). 15 refs., 52 tabs., 101 figs

  13. Conceptual study of advanced PWR core design

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Chang, Moon Hee; Kim, Keung Ku; Joo, Hyung Kuk; Kim, Young Il; Noh, Jae Man; Hwang, Dae Hyun; Kim, Taek Kyum; Yoo, Yon Jong

    1997-09-01

    The purpose of this project is for developing and verifying the core design concepts with enhanced safety and economy, and associated methodologies for core analyses. From the study of the sate-of-art of foreign advanced reactor cores, we developed core concepts such as soluble boron free, high convertible and enhanced safety core loaded semi-tight lattice hexagonal fuel assemblies. To analyze this hexagonal core, we have developed and verified some neutronic and T/H analysis methodologies. HELIOS code was adopted as the assembly code and HEXFEM code was developed for hexagonal core analysis. Based on experimental data in hexagonal lattices and the COBRA-IV-I code, we developed a thermal-hydraulic analysis code for hexagonal lattices. Using the core analysis code systems developed in this project, we designed a 600 MWe core and studied the feasibility of the core concepts. Two additional scopes were performed in this project : study on the operational strategies of soluble boron free core and conceptual design of large scale passive core. By using the axial BP zoning concept and suitable design of control rods, this project showed that it was possible to design a soluble boron free core in 600 MWe PWR. The results of large scale core design showed that passive concepts and daily load follow operation could be practiced. (author). 15 refs., 52 tabs., 101 figs.