WorldWideScience

Sample records for advanced energy activities

  1. Public perception of the activities of the Nuclear Energy and Advanced Technologies Agency of Cuba

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, Marta; Arencibia, Alois; Alvarado, Jorge; Garcia, Dulce; Rodriguez, Ingrids; Hernandez, Noslen [Centro de Gestion de la Informacion y Desarrollo de la Energia (CUBAENERGIA), La Habana (Cuba); Aguilar, Aurora; Perera, Maricela [Centro de Investigaciones Psicologicas y Sociologicas (CIPS), La Habana, (Cuba); Rodriguez, Ramon [Agencia de Energia Nuclear y Tecnologias de Avanzada (AENTA), La Habana, (Cuba); Alonso, Ivonne [Centro Nacional de Seguridad Nuclear (CNSN), La Habana, (Cuba); Quintana, Natacha [Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), La Habana, (Cuba); Cardenas, Juan; Ramos, Odalys [Centro de Proteccion e Higiene de las Radiaciones (CPHR), La Habana, (Cuba); Elias, Lidia Lauren [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana, (Cuba)

    2013-07-01

    The work presents the results of a study of perception of the nuclear activities of the Nuclear Energy and Advanced Technologies Agency of Cuba, carried out by means of a study of image. The public object was a wide group of clients, providers, journalists and experts of the governing and regulatory organs which constitute its external public. For the investigation a methodology was prepared with a questionnaire and a semi structured interview, which allowed to obtain complementary information of qualitative character. In general, the perception of the Agency turned out to be positive and the human resources were the best evaluated aspect. Nevertheless, the visibility of the Agency in the public day pupils is considered to be insufficient. The study provided the necessary information so as to design the strategy of communication of the Agency. (author)

  2. Public perception of the activities of the Nuclear Energy and Advanced Technologies Agency of Cuba

    International Nuclear Information System (INIS)

    Contreras, Marta; Arencibia, Alois; Alvarado, Jorge; Garcia, Dulce; Rodriguez, Ingrids; Hernandez, Noslen; Aguilar, Aurora; Perera, Maricela; Rodriguez, Ramon; Alonso, Ivonne; Quintana, Natacha; Cardenas, Juan; Ramos, Odalys; Elias, Lidia Lauren

    2013-01-01

    The work presents the results of a study of perception of the nuclear activities of the Nuclear Energy and Advanced Technologies Agency of Cuba, carried out by means of a study of image. The public object was a wide group of clients, providers, journalists and experts of the governing and regulatory organs which constitute its external public. For the investigation a methodology was prepared with a questionnaire and a semi structured interview, which allowed to obtain complementary information of qualitative character. In general, the perception of the Agency turned out to be positive and the human resources were the best evaluated aspect. Nevertheless, the visibility of the Agency in the public day pupils is considered to be insufficient. The study provided the necessary information so as to design the strategy of communication of the Agency. (author)

  3. Advanced energy materials

    CERN Document Server

    Tiwari, Ashutosh

    2014-01-01

    An essential resource for scientists designing new energy materials for the vast landscape of solar energy conversion as well as materials processing and characterization Based on the new and fundamental research on novel energy materials with tailor-made photonic properties, the role of materials engineering has been to provide much needed support in the development of photovoltaic devices. Advanced Energy Materials offers a unique, state-of-the-art look at the new world of novel energy materials science, shedding light on the subject's vast multi-disciplinary approach The book focuses p

  4. Advanced technologies and atomic energy

    International Nuclear Information System (INIS)

    1995-01-01

    The expert committee on the research 'Application of advanced technologies to nuclear power' started the activities in fiscal year 1994 as one of the expert research committees of Atomic Energy Society of Japan. The objective of its foundation is to investigate the information on the advanced technologies related to atomic energy and to promote their practice. In this fiscal year, the advanced technologies in the fields of system and safety, materials and measurement were taken up. The second committee meeting was held in March, 1995. In this report, the contents of the lectures at the committee meeting and the symposium are compiled. The topics in the symposium were the meaning of advanced technologies, the advanced technologies and atomic energy, human factors and control and safety systems, robot technology and microtechnology, and functionally gradient materials. Lectures were given at two committee meetings on the development of atomic energy that has come to the turning point, the development of advanced technologies centering around ULSI, the present problems of structural fine ceramics and countermeasures of JFCC, the material analysis using laser plasma soft X-ray, and the fullerene research of advanced technology development in Power Reactor and Nuclear Fuel Development Corporation. (K.I.)

  5. Advanced Energy Projects FY 1990 research summaries

    International Nuclear Information System (INIS)

    1990-09-01

    This report serves as a guide to prepare proposals and provides summaries of the research projects active in FY 1990, sponsored by the Office of Basic Energy Sciences Division of Advanced Energy Projects, Department of Energy. (JF)

  6. Advanced energy materials (Preface)

    Science.gov (United States)

    Titus, Elby; Ventura, João; Araújo, João Pedro; Campos Gil, João

    2017-12-01

    Advances in material science make it possible to fabricate the building blocks of an entirely new generation of hierarchical energy materials. Recent developments were focused on functionality and areas connecting macroscopic to atomic and nanoscale properties, where surfaces, defects, interfaces and metastable state of the materials played crucial roles. The idea is to combine both, the top-down and bottom-up approach as well as shape future materials with a blend of both the paradigms.

  7. Emerging applications of advanced fuels for energy generation and transmutation. Overview of IAEA activities

    International Nuclear Information System (INIS)

    Pong Eil Juhn; Arkhipov, V.

    1996-01-01

    Nuclear power generation is an established part of the world's electricity mix. However, the highly radioactive waste generated during power production is of great concern of public perception of nuclear energy. In order for nuclear power to realize its full potential as a major energy source for the entire world, there must be a safe and effective way to deal with this waste. Therefore, science must come to the rescue in the form of new, more effective technology aimed at reducing the amount of long-lived radioactive waste and eliminating nuclear weapons' grade material through transmutation of these isotopes in fission reactors or accelerators. In the framework of IAEA activities on the use of this new technologies the Agency has periodically review and assess the current status of the new fuel cycles, its applications worldwide, its economic benefits, and its perceived advantages vis-a-vis other nuclear fuel cycles. (author)

  8. Energy recovery during advanced wastewater treatment: simultaneous estrogenic activity removal and hydrogen production through solar photocatalysis.

    Science.gov (United States)

    Zhang, Wenlong; Li, Yi; Wang, Chao; Wang, Peifang; Wang, Qing

    2013-03-01

    Simultaneous estrogenic activity removal and hydrogen production from secondary effluent were successfully achieved using TiO(2) microspheres modified with both platinum nanoparticles and phosphates (P-TiO(2)/Pt) for the first time. The coexistence of platinum and phosphate on the surface of TiO(2) microspheres was confirmed by transmission electron microscope, energy-dispersive X-ray and X-ray photoelectron spectroscopy analyses. P-TiO(2)/Pt microspheres showed a significantly higher photocatalytic activity than TiO(2) microspheres and TiO(2) powders (P25) for the removal of estrogenic activity from secondary effluent with the removal ratio of 100%, 58.2% and 48.5% in 200 min, respectively. Moreover, the marked production of hydrogen (photonic efficiency: 3.23 × 10(-3)) was accompanied by the removal of estrogenic activity only with P-TiO(2)/Pt as photocatalysts. The hydrogen production rate was increasing with decreased DO concentration in secondary effluent. Results of reactive oxygen species (ROS) evaluation during P-TiO(2)/Pt photocatalytic process showed that O(2)(-)and OH were dominant ROS in aerobic phase, while OH was the most abundant ROS in anoxic phase. Changes of effluent organic matter (EfOM) during photocatalysis revealed that aromatic, hydrophobic, and high molecular weight fractions of EfOM were preferentially transformed into non-humic, hydrophilic, and low MW fractions (e.g. aldehydes and carboxylic acids), which were continuously utilized as electron donors in hydrogen production process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Hybrid and plug-in hybrid electric vehicle performance testing by the US Department of Energy Advanced Vehicle Testing Activity

    Science.gov (United States)

    Karner, Donald; Francfort, James

    The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and vehicle development programs. The AVTA has tested full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting baseline performance, battery benchmark and fleet tests of hybrid electric vehicles (HEV) and plug-in hybrid electric vehicles (PHEV). Testing has included all HEVs produced by major automotive manufacturers and spans over 2.5 million test miles. Testing is currently incorporating PHEVs from four different vehicle converters. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory.

  10. Advanced energy efficient windows

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund

    2007-01-01

    Windows should be paid special attention as they contribute a significant part of the total heat-loss coefficient of the building. Contrary to other parts of the thermal envelope the windows are not only heat loosers, but may gain heat in the day-time. Therefore there are possibilities for large...... energy savings. In terms of energy, windows occupy a special position compared with other thermal envelope structures due to their many functions: 1) windows let daylight into the building and provide occupants with visual contact with their surroundings 2) windows protect against the outdoor climate 3......) windows transmit solar energy that may contribute to a reduction of energy consumption, but which may also lead to unpleasant overheating. In the following paragraphs the current use of windows is reviewed with an emphasis on energy, while special products like solar protection glazing and security...

  11. Advances in energy research

    CERN Document Server

    Acosta, Morena J

    2013-01-01

    This book presents a comprehensive review of energy research studies from authors around the globe, including recent research in new technologies associated with the construction of nuclear power plants; oil disperse systems study using nuclear magnetic resonance relaxometry (NMRR); low energy consumption for cooling and heating systems; experimental investigation of the performance of a ground-source heat pump system for buildings heating and cooling; sustainable development of bioenergy from agricultural wastes and the environment; hazard identification and parametric analysis of toxic pollutants dispersion from large liquid hydrocarbon fuel-tank fires; maintenance benchmarking in petrochemicals plants by means of a multicriteria model; wind energy development innovation; power, people and pollution; nature and technology of geothermal energy and clean sustainable energy for the benefit of humanity and the environment; and soil thermal properties and the effects of groundwater on closed loops.

  12. Ohio Advanced Energy Manufacturing Center

    Energy Technology Data Exchange (ETDEWEB)

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote

  13. Advanced Performance Hydraulic Wind Energy

    Science.gov (United States)

    Jones, Jack A.; Bruce, Allan; Lam, Adrienne S.

    2013-01-01

    The Jet Propulsion Laboratory, California Institute of Technology, has developed a novel advanced hydraulic wind energy design, which has up to 23% performance improvement over conventional wind turbine and conventional hydraulic wind energy systems with 5 m/sec winds. It also has significant cost advantages with levelized costs equal to coal (after carbon tax rebate). The design is equally applicable to tidal energy systems and has passed preliminary laboratory proof-of-performance tests, as funded by the Department of Energy.

  14. Advanced materials for energy storage.

    Science.gov (United States)

    Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming

    2010-02-23

    Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted.

  15. Advanced materials for energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming [Shenyang National Laboratory for Materials Science Institute of Metal Research, Chinese Academy of Sciences 72 Wenhua Road, Shenyang 110016 (China)

    2010-02-23

    Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  16. Advances in energy deposition theory

    International Nuclear Information System (INIS)

    Paretzke, H.G.

    1980-01-01

    In light of the fields of radiation protection and dosimetric problems in medicine, advances in the area of microscopic target related studies are discussed. Energy deposition is discussed with emphasis upon track structures of electrons and heavy charged particles and track computer calculations

  17. Advanced energy projects: FY 1987 research summaries

    International Nuclear Information System (INIS)

    1987-09-01

    This report contains brief summaries of all projects active in the Division of Advanced Energy Projects during Fiscal Year 1987 (October 1, 1986-September 30, 1987). The intent of this compilation is to provide a convenient means for quickly acquainting an interested reader with the program in Advanced Energy Projects. More detailed information on research activities in a particular project may be obtained by contacting directly the principal investigator. Some projects will have reached the end of their contract periods by the time this book appears, and will, therefore, no longer be active. Those cases in which work was completed in FY '87 are indicated by the footnote: Project completed. The annual funding level of each project is shown

  18. Nanocarbons for advanced energy storage

    CERN Document Server

    Feng, Xinliang

    2015-01-01

    This first volume in the series on nanocarbons for advanced applications presents the latest achievements in the design, synthesis, characterization, and applications of these materials for electrochemical energy storage. The highly renowned series and volume editor, Xinliang Feng, has put together an internationally acclaimed expert team who covers nanocarbons such as carbon nanotubes, fullerenes, graphenes, and porous carbons. The first two parts focus on nanocarbon-based anode and cathode materials for lithium ion batteries, while the third part deals with carbon material-based supercapacit

  19. Advanced materials for clean energy

    CERN Document Server

    Xu (Kyo Jo), Qiang

    2015-01-01

    Arylamine-Based Photosensitizing Metal Complexes for Dye-Sensitized Solar CellsCheuk-Lam Ho and Wai-Yeung Wongp-Type Small Electron-Donating Molecules for Organic Heterojunction Solar CellsZhijun Ning and He TianInorganic Materials for Solar Cell ApplicationsYasutake ToyoshimaDevelopment of Thermoelectric Technology from Materials to GeneratorsRyoji Funahashi, Chunlei Wan, Feng Dang, Hiroaki Anno, Ryosuke O. Suzuki, Takeyuki Fujisaka, and Kunihito KoumotoPiezoelectric Materials for Energy HarvestingDeepam Maurya, Yongke Yan, and Shashank PriyaAdvanced Electrode Materials for Electrochemical Ca

  20. Activation Energy

    Science.gov (United States)

    Gadeken, Owen

    2002-01-01

    Teaming is so common in today's project management environment that most of us assume it comes naturally. We further assume that when presented with meaningful and challenging work, project teams will naturally engage in productive activity to complete their tasks. This assumption is expressed in the simple (but false) equation: Team + Work = Teamwork. Although this equation appears simple and straightforward, it is far from true for most project organizations whose reality is a complex web of institutional norms based on individual achievement and rewards. This is illustrated by the very first successful team experience from my early Air Force career. As a young lieutenant, I was sent to Squadron Officer School, which was the first in the series of Air Force professional military education courses I was required to complete during my career. We were immediately formed into teams of twelve officers. Much of the course featured competition between these teams. As the most junior member of my team, I quickly observed the tremendous pressure to show individual leadership capability. At one point early in the course, almost everyone in our group was vying to become the team leader. This conflict was so intense that it caused us to fail miserably in our first outdoor team building exercise. We spent so much time fighting over leadership that we were unable to complete any of the events on the outdoor obstacle course. This complete lack of success was so disheartening to me that I gave our team little hope for future success. What followed was a very intense period of bickering, conflict, and even shouting matches as our dysfunctional team tried to cope with our early failures and find some way to succeed. British physician and researcher Wilfred Bion (Experiences in Groups, 1961) discovered that there are powerful psychological forces inherent in all groups that divert from accomplishing their primary tasks. To overcome these restraining forces and use the potential

  1. Advanced Active Acoustics Lab (AAAL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Active Acoustics Lab (AAAL) is a state-of-the-art Undersea Warfare (USW) acoustic data analysis facility capable of both active and passive underwater...

  2. Advanced Energy Efficient Roof System

    Energy Technology Data Exchange (ETDEWEB)

    Jane Davidson

    2008-09-30

    the study. The market potential is enhanced through construction activity levels in target markets. Southern markets, from Florida to Texas account for 50 percent of the total new construction angled-roof volume. California contributes an additional 13 percent share of market volume. These states account for 28 to 30 million squares (2.8 to 3 billion square feet) of new construction angled roof opportunity. The major risk to implementation is the uncertainty of incorporating new design and construction elements into the construction process. By coordinating efforts to enhance the drivers for adoption and minimize the barriers, the panelized roof system stands to capitalize on a growing market demand for energy efficient building alternatives and create a compelling case for market adoption.

  3. Energy Theft in the Advanced Metering Infrastructure

    Science.gov (United States)

    McLaughlin, Stephen; Podkuiko, Dmitry; McDaniel, Patrick

    Global energy generation and delivery systems are transitioning to a new computerized "smart grid". One of the principle components of the smart grid is an advanced metering infrastructure (AMI). AMI replaces the analog meters with computerized systems that report usage over digital communication interfaces, e.g., phone lines. However, with this infrastructure comes new risk. In this paper, we consider adversary means of defrauding the electrical grid by manipulating AMI systems. We document the methods adversaries will use to attempt to manipulate energy usage data, and validate the viability of these attacks by performing penetration testing on commodity devices. Through these activities, we demonstrate that not only is theft still possible in AMI systems, but that current AMI devices introduce a myriad of new vectors for achieving it.

  4. Nanoscale Advances in Catalysis and Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yimin; Somorjai, Gabor A.

    2010-05-12

    In this perspective, we present an overview of nanoscience applications in catalysis, energy conversion, and energy conservation technologies. We discuss how novel physical and chemical properties of nanomaterials can be applied and engineered to meet the advanced material requirements in the new generation of chemical and energy conversion devices. We highlight some of the latest advances in these nanotechnologies and provide an outlook at the major challenges for further developments.

  5. Advanced Energy Validated Photovoltaic Inverter Technology at NREL | Energy

    Science.gov (United States)

    Inverter Technology at NREL Advanced Energy Industries-NREL's first partner at the Energy Systems Integration Facility (ESIF)-validated its advanced photovoltaic (PV) inverter technology using the ESIF's computer screen in a laboratory, with power inverter hardware in the background Photo by Dennis Schroeder

  6. Advanced energy projects FY 1997 research summaries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The mission of the Advanced Energy Projects (AEP) program is to explore the scientific feasibility of novel energy-related concepts that are high risk, in terms of scientific feasibility, yet have a realistic potential for a high technological payoff. The concepts supported by the AEP are typically at an early stage of scientific development. They often arise from advances in basic research and are premature for consideration by applied research or technology development programs. Some are based on discoveries of new scientific phenomena or involve exploratory ideas that span multiple scientific and technical disciplines which do not fit into an existing DOE program area. In all cases, the objective is to support evaluation of the scientific or technical feasibility of the novel concepts involved. Following AEP support, it is expected that each concept will be sufficiently developed to attract further funding from other sources to realize its full potential. Projects that involve evolutionary research or technology development and demonstration are not supported by AEP. Furthermore, research projects more appropriate for another existing DOE research program are not encouraged. There were 65 projects in the AEP research portfolio during Fiscal Year 1997. Eigheen projects were initiated during that fiscal year. This document consists of short summaries of projects active in FY 1997. Further information of a specific project may be obtained by contacting the principal investigator.

  7. Center for Advanced Energy Studies Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Kostelnik

    2005-09-01

    The world is facing critical energy-related challenges regarding world and national energy demands, advanced science and energy technology delivery, nuclear engineering educational shortfalls, and adequately trained technical staff. Resolution of these issues is important for the United States to ensure a secure and affordable energy supply, which is essential for maintaining U.S. national security, continued economic prosperity, and future sustainable development. One way that the U.S. Department of Energy (DOE) is addressing these challenges is by tasking the Battelle Energy Alliance, LLC (BEA) with developing the Center for Advanced Energy Studies (CAES) at the Idaho National Laboratory (INL). By 2015, CAES will be a self-sustaining, world-class, academic and research institution where the INL; DOE; Idaho, regional, and other national universities; and the international community will cooperate to conduct critical energy-related research, classroom instruction, technical training, policy conceptualization, public dialogue, and other events.

  8. Advanced Energy Retrofit Guide Office Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guopeng; Liu, Bing; Wang, Weimin; Zhang, Jian; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

    2011-09-27

    The Advanced Energy Retrofit Guide for Office Buildings is a component of the Department of Energy’s Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

  9. Advanced Energy Retrofit Guide Retail Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guopeng; Liu, Bing; Zhang, Jian; Wang, Weimin; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

    2011-09-19

    The Advanced Energy Retrofit Guide for Retail Buildings is a component of the Department of Energy’s Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

  10. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Liby, Alan L [ORNL; Rogers, Hiram [ORNL

    2013-10-01

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

  11. 2017 Publications Demonstrate Advancements in Wind Energy Research

    Energy Technology Data Exchange (ETDEWEB)

    2018-01-17

    In 2017, wind energy experts at the National Renewable Energy Laboratory (NREL) made significant strides to advance wind energy. Many of these achievements were presented in articles published in scientific and engineering journals and technical reports that detailed research accomplishments in new and progressing wind energy technologies. During fiscal year 2017, NREL wind energy thought leaders shared knowledge and insights through 45 journal articles and 25 technical reports, benefiting academic and national-lab research communities; industry stakeholders; and local, state, and federal decision makers. Such publications serve as important outreach, informing the public of how NREL wind research, analysis, and deployment activities complement advanced energy growth in the United States and around the world. The publications also illustrate some of the noteworthy outcomes of U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and Laboratory Directed Research and Development funding, as well as funding and facilities leveraged through strategic partnerships and other collaborations.

  12. Advanced Fibre Based Energy Storage

    Science.gov (United States)

    Reid, Daniel Oliver

    New energy storage devices are required to enable future technologies. With the rise of wearable consumer and medical devices, a suitable flexible and wearable means of storing electrical energy is required. Fibre-based devices present a possible method of achieving this aim. Fibres are inherently more flexible than their bulk counterparts, and as such can be employed to form the electrodes of flexible batteries and capacitors. They also present a facile possibility for incorporation into many fabrics and clothes, further boosting their potential for use in wearable devices. Electrically conducting fibres were produced from a dispersion of carbon nanomaterials in a room temperature ionic liquid. Coagulation of this dispersion was achieved through manual injection into aqueous solutions of xanthan gum. The limitations of this method are highlighted by very low ultimate tensile strengths of these fibres, in the order of 3 MPa, with high variation within all of the fibres. Fibres were also produced via scrolling of bi-component films containing poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and poly(vinyl alcohol) (PVA). Chemical treatments were employed to impart water compatibility to these fibres, and their electrochemical, physical and electrical properties were analysed. Fibres were wet spun from two PEDOT:PSS sources, in several fibre diameters. The effect of chemical treatments on the fibres were investigated and compared. Short 5 min treatment times with dimethyl sulfoxide (DMSO) on 20 mum fibres produced from Clevios PH1000 were found to produce the best overall treatment. Up to a six-fold increase in electrical conductivity resulted, reaching 800 S cm-1, with up to 40 % increase in specific capacitance and no loss of mechanical strength (55 F g-1 and 150 MPa recorded). A wet spinning system to produce PEDOT:PSS fibres containing functionalised graphenes and carbon nanotubes, as well as birnessite nanotubes was subsequently developed

  13. 50% Advanced Energy Design Guides: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Bonnema, E.; Leach, M.; Pless, S.; Liu, B.; Wang, W.; Thornton, B.; Williams, J.

    2012-07-01

    This paper presents the process, methodology, and assumptions for the development of the 50% Energy Savings Advanced Energy Design Guides (AEDGs), a design guidance document that provides specific recommendations for achieving 50% energy savings above the requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004 in four building types: (1) Small to medium office buildings, (2) K-12 school buildings, (3) Medium to big box retail buildings, (4) Large hospital buildings.

  14. Advanced energy projects FY 1992 research summaries

    International Nuclear Information System (INIS)

    1992-09-01

    The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are beyond the scope of ongoing applied research or technology development programs. The Division provides a mechanism for converting basic research findings to applications that eventually could impact the Nation's energy economy. Technical topics include physical, chemical, materials, engineering, and biotechnologies. Projects can involve interdisciplinary approaches to solve energy-related problems. Projects are supported for a finite period of time, which is typically three years. Annual funding levels for projects are usually about $300,000 but can vary from approximately $50,000 to $500,000. It is expected that, following AEP support, each concept will be sufficiently developed and promising to attract further funding from other sources in order to realize its full potential. There were 39 research projects in the Division of Advanced Energy Projects during Fiscal Year 1992 (October 1, 1991 -- September 30, 1992). The abstracts of those projects are provided to introduce the overall program in Advanced Energy Projects. Further information on a specific project may be obtained by contacting the principal investigator, who is listed below the project title. Projects completed during FY 1992 are indicated

  15. Recent advances in methane activation

    Energy Technology Data Exchange (ETDEWEB)

    Huuska, M; Kataja, K [VTT Chemical Technology, Espoo (Finland)

    1997-12-31

    Considerable work has been done in the research and development of methane conversion technologies. Although some promising conversion processes have been demonstrated, further advances in engineering and also in the chemistry are needed before these technologies become commercial. High-temperature processes, e.g. the oxidative coupling of methane, studied thoroughly during the last 15 years, suffer from severe theoretical yield limits and poor economics. In the long term, the most promising approaches seem to be the organometallic and, especially, the biomimetic activation of methane. (author) (22 refs.)

  16. Recent advances in methane activation

    Energy Technology Data Exchange (ETDEWEB)

    Huuska, M.; Kataja, K. [VTT Chemical Technology, Espoo (Finland)

    1996-12-31

    Considerable work has been done in the research and development of methane conversion technologies. Although some promising conversion processes have been demonstrated, further advances in engineering and also in the chemistry are needed before these technologies become commercial. High-temperature processes, e.g. the oxidative coupling of methane, studied thoroughly during the last 15 years, suffer from severe theoretical yield limits and poor economics. In the long term, the most promising approaches seem to be the organometallic and, especially, the biomimetic activation of methane. (author) (22 refs.)

  17. Distributed Sensor Coordination for Advanced Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Tumer, Kagan [Oregon State Univ., Corvallis, OR (United States)

    2013-07-31

    The ability to collect key system level information is critical to the safe, efficient and reliable operation of advanced energy systems. With recent advances in sensor development, it is now possible to push some level of decision making directly to computationally sophisticated sensors, rather than wait for data to arrive to a massive centralized location before a decision is made. This type of approach relies on networked sensors (called “agents” from here on) to actively collect and process data, and provide key control decisions to significantly improve both the quality/relevance of the collected data and the associating decision making. The technological bottlenecks for such sensor networks stem from a lack of mathematics and algorithms to manage the systems, rather than difficulties associated with building and deploying them. Indeed, traditional sensor coordination strategies do not provide adequate solutions for this problem. Passive data collection methods (e.g., large sensor webs) can scale to large systems, but are generally not suited to highly dynamic environments, such as advanced energy systems, where crucial decisions may need to be reached quickly and locally. Approaches based on local decisions on the other hand cannot guarantee that each agent performing its task (maximize an agent objective) will lead to good network wide solution (maximize a network objective) without invoking cumbersome coordination routines. There is currently a lack of algorithms that will enable self-organization and blend the efficiency of local decision making with the system level guarantees of global decision making, particularly when the systems operate in dynamic and stochastic environments. In this work we addressed this critical gap and provided a comprehensive solution to the problem of sensor coordination to ensure the safe, reliable, and robust operation of advanced energy systems. The differentiating aspect of the proposed work is in shifting the focus

  18. Electrospinning for advanced energy and environmental applications

    CERN Document Server

    Cavaliere, Sara

    2015-01-01

    Electrospinning for Advanced Energy and Environmental Applications delivers a state-of-the-art overview of the use of electrospun fibers in energy conversion and storage, as well as in environmental sensing and remediation. Featuring contributions from leading experts in electrospinning and its specific applications, this book: Introduces the electrospinning technique and its origins, outlining achievable one-dimensional (1D) nanoscaled materials and their various applications Discusses the use of electrospun materials in energy devices, including low- and high-temperature fuel cells, hydrogen storage, dye-sensitized solar cells, lithium-ion batteries, and supercapacitors Explores environmental applications of electrospun fibers, such as the use of electrospinning-issued materials in membranes for water and air purification, as well as in sensors and biosensors for pollution control Beneficial to both academic and industrial audiences, Electrospinning for Advanced Energy and Environmental Applications present...

  19. Advances in energy and environment. Vol. 1: Energy

    International Nuclear Information System (INIS)

    El-Sharkawy, A.L.; Kummler, R.H.

    1996-01-01

    The 5th conference of energy and environment was held on 3-6 June 1996 in Cairo. The specialists discussed the effects of advances in energy and environment. The applications of solar energy, heat transfer, thermal application, storage and bio-conversion, fuels, energy and development. Studies were discussed at the meeting and more than 1000 papers were presented. This first volume covers papers presented on the following topics: solar thermal, heat transfer and thermal applications, storage and bio-conversion, refrigeration and iar conditioning, combustion, fuels and engines, energy and development. tabs., figs

  20. Advanced Energy Projects: FY 1993, Research summaries

    International Nuclear Information System (INIS)

    1993-09-01

    AEP has been supporting research on novel materials for energy technology, renewable and biodegradable materials, new uses for scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, innovative approaches to waste treatment and reduction, etc. The summaries are grouped according to projects active in FY 1993, Phase I SBIR projects, and Phase II SBIR projects. Investigator and institutional indexes are included

  1. Advanced Energy Projects: FY 1993, Research summaries

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    AEP has been supporting research on novel materials for energy technology, renewable and biodegradable materials, new uses for scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, innovative approaches to waste treatment and reduction, etc. The summaries are grouped according to projects active in FY 1993, Phase I SBIR projects, and Phase II SBIR projects. Investigator and institutional indexes are included.

  2. Advanced reactors and future energy market needs

    International Nuclear Information System (INIS)

    Paillere, Henri; )

    2017-01-01

    Based on the results of a very well-attended international workshop on 'Advanced Reactor Systems and Future Energy Market Needs' that took place in April 2017, the NEA has embarked on a two-year study with the objective of analysing evolving energy market needs and requirements, as well as examining how well reactor technologies under development today will fit into tomorrow's low-carbon world. The NEA Expert Group on Advanced Reactor Systems and Future Energy Market Needs (ARFEM) held its first meeting on 5-6 July 2017 with experts from Canada, France, Italy, Japan, Korea, Poland, Romania, Russia and the United Kingdom. The outcome of the study will provide much needed insight into how well nuclear can fulfil its role as a key low-carbon technology, and help identify challenges related to new operational, regulatory or market requirements

  3. Advanced energy utilization MHD power generation

    International Nuclear Information System (INIS)

    2008-01-01

    The 'Technical Committee on Advanced Energy Utilization MHD Power Generation' was started to establish advanced energy utilization technologies in Japan, and has been working for three years from June 2004 to May 2007. This committee investigated closed cycle MHD, open cycle MHD, and liquid metal MHD power generation as high-efficiency power generation systems on the earth. Then, aero-space application and deep space exploration technologies were investigated as applications of MHD technology. The spin-off from research and development on MHD power generation such as acceleration and deceleration of supersonic flows was expected to solve unstart phenomena in scramjet engine and also to solve abnormal heating of aircrafts by shock wave. In addition, this committee investigated researches on fuel cells, on secondary batteries, on connection of wind power system to power grid, and on direct energy conversion system from nuclear fusion reactor for future. The present technical report described results of investigations by the committee. (author)

  4. Economic aspects of advanced energy technologies

    International Nuclear Information System (INIS)

    Ramakumar, R.; Rodriguez, A.P.; Venkata, S.S.

    1993-01-01

    Advanced energy technologies span a wide variety of resources, techniques, and end-user requirements. Economic considerations are major factors that shape their harnessing and utilization. A discussion of the basic factors in the economic arena is presented, with particular emphasis on renewable energy technologies--photovoltaics, solar-thermal, wind-electric conversion, biomass utilization, hydro, and tidal and wave energy systems. The following are essential to determine appropriate energy system topologies: proper resource-need matching with an eye on the quality of energy requirements, integrated use of several resources and technologies, and a comprehensive consideration which includes prospecting, collection, conversion, transportation, distribution, storage and reconversion, end use, and subsequent waste management aspects. A few case studies are included to apprise the reader of the status of some of the key technologies and systems

  5. Science Activities in Energy: Electrical Energy.

    Science.gov (United States)

    Oak Ridge Associated Universities, TN.

    Presented is a science activities in energy package which includes 16 activities relating to electrical energy. Activities are simple, concrete experiments for fourth, fifth and sixth grades which illustrate principles and problems relating to energy. Each activity is outlined in a single card which is introduced by a question. A teacher's…

  6. Advanced energy projects FY 1994 research summaries

    International Nuclear Information System (INIS)

    1994-09-01

    The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are premature for consideration by applied research or technology development programs. The AEP also supports high-risk, exploratory concepts that do not readily fit into a program area but could have several applications that may span scientific disciplines or technical areas. Projects supported by the Division arise from unsolicited ideas and concepts submitted by researchers. The portfolio of projects is dynamic and reflects the broad role of the Department in supporting research and development for improving the Nation's energy outlook. FY 1994 projects include the following topical areas: novel materials for energy technology; renewable and biodegradable materials; exploring uses of new scientific discoveries; alternate pathways to energy efficiency; alternative energy sources; and innovative approaches to waste treatment and reduction. Summaries are given for 66 projects

  7. Advanced Materials and Nano technology for Sustainable Energy Development

    International Nuclear Information System (INIS)

    Huo, Z.; Wu, Ch.H.; Zhu, Z.; Zhao, Y.

    2015-01-01

    Energy is the material foundation of human activities and also the single most valuable resource for the production activities of human society. Materials play a pivotal role in advancing technologies that can offer efficient renewable energy solutions for the future. This special issue has been established as an international foremost interdisciplinary forum that aims to publish high quality and original full research articles on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The special issue covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable energy production. It brings together stake holders from universities, industries, government agents, and businesses that are involved in the invention, design, development, and implementation of sustainable technologies. The research work has already been published in this special issue which discusses comprehensive technologies for wastewater treatment, strategies for controlling gaseous pollutant releases within chemical plant, evaluation of FCC catalysis poisoning mechanism, clean technologies for fossil fuel use, new-type photo catalysis material design with controllable morphology for solar energy conversion, and so forth. These studies describe important, intriguing, and systematic investigations on advanced materials and technologies for dealing with the key technologies and important issues that continue to haunt the global energy industry. They also tie together many aspects of current energy transportation science and technology, exhibiting outstanding industrial insights that have the potential to encourage and stimulate fresh perspectives on challenges, opportunities, and solutions to energy and environmental sustainability

  8. Advanced Energy Industries, Inc. SEGIS developments.

    Energy Technology Data Exchange (ETDEWEB)

    Scharf, Mesa P. (Advanced Energy Industries, Inc., Bend, OR); Bower, Ward Isaac; Mills-Price, Michael A. (Advanced Energy Industries, Inc., Bend, OR); Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali; Kuszmaul, Scott S.; Gonzalez, Sigifredo

    2012-03-01

    The Solar Energy Grid Integration Systems (SEGIS) initiative is a three-year, three-stage project that includes conceptual design and market analysis (Stage 1), prototype development/testing (Stage 2), and commercialization (Stage 3). Projects focus on system development of solar technologies, expansion of intelligent renewable energy applications, and connecting large-scale photovoltaic (PV) installations into the electric grid. As documented in this report, Advanced Energy Industries, Inc. (AE), its partners, and Sandia National Laboratories (SNL) successfully collaborated to complete the final stage of the SEGIS initiative, which has guided new technology development and development of methodologies for unification of PV and smart-grid technologies. The combined team met all deliverables throughout the three-year program and commercialized a broad set of the developed technologies.

  9. Advanced Analysis Methods in High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Pushpalatha C. Bhat

    2001-10-03

    During the coming decade, high energy physics experiments at the Fermilab Tevatron and around the globe will use very sophisticated equipment to record unprecedented amounts of data in the hope of making major discoveries that may unravel some of Nature's deepest mysteries. The discovery of the Higgs boson and signals of new physics may be around the corner. The use of advanced analysis techniques will be crucial in achieving these goals. The author discusses some of the novel methods of analysis that could prove to be particularly valuable for finding evidence of any new physics, for improving precision measurements and for exploring parameter spaces of theoretical models.

  10. Research opportunities to advance solar energy utilization.

    Science.gov (United States)

    Lewis, Nathan S

    2016-01-22

    Major developments, as well as remaining challenges and the associated research opportunities, are evaluated for three technologically distinct approaches to solar energy utilization: solar electricity, solar thermal, and solar fuels technologies. Much progress has been made, but research opportunities are still present for all approaches. Both evolutionary and revolutionary technology development, involving foundational research, applied research, learning by doing, demonstration projects, and deployment at scale will be needed to continue this technology-innovation ecosystem. Most of the approaches still offer the potential to provide much higher efficiencies, much lower costs, improved scalability, and new functionality, relative to the embodiments of solar energy-conversion systems that have been developed to date. Copyright © 2016, American Association for the Advancement of Science.

  11. Nanoporous metals for advanced energy technologies

    CERN Document Server

    Ding, Yi

    2016-01-01

    This book covers the state-of-the-art research in nanoporous metals for potential applications in advanced energy fields, including proton exchange membrane fuel cells, Li batteries (Li ion, Li-S, and Li-O2), and supercapacitors. The related structural design and performance of nanoporous metals as well as possible mechanisms and challenges are fully addressed. The formation mechanisms of nanoporous metals during dealloying, the microstructures of nanoporous metals and characterization methods, as well as miscrostructural regulation of nanoporous metals through alloy design of precursors and surface diffusion control are also covered in detail. This is an ideal book for researchers, engineers, graduate students, and government/industry officers who are in charge of R&D investments and strategy related to energy technologies.

  12. Science Activities in Energy: Wind Energy.

    Science.gov (United States)

    Oak Ridge Associated Universities, TN.

    Included in this science activities energy package are 12 activities related to wind energy for elementary students. Each activity is outlined on a single card and is introduced by a question. Topics include: (1) At what time of day is there enough wind to make electricity where you live?; (2) Where is the windiest spot on your schoolground?; and…

  13. Biomass energy conversion: conventional and advanced technologies

    Energy Technology Data Exchange (ETDEWEB)

    Young, B C; Hauserman, W B [Energy and Environmental Research Center, University of North Dakota, Grand Forks, ND (United States)

    1995-12-01

    Increasing interest in biomass energy conversion in recent years has focused attention on enhancing the efficiency of technologies converting biomass fuels into heat and power, their capital and operating costs and their environmental emissions. Conventional combustion systems, such as fixed-bed or grate units and entrainment units, deliver lower efficiencies (<25%) than modem coal-fired combustors (30-35%). The gasification of biomass will improve energy conversion efficiency and yield products useful for heat and power generation and chemical synthesis. Advanced biomass gasification technologies using pressurized fluidized-bed systems, including those incorporating hot-gas clean-up for feeding gas turbines or fuel cells, are being demonstrated. However, many biomass gasification processes are derivatives of coal gasification technologies and do not exploit the unique properties of biomass. This paper examines some existing and upcoming technologies for converting biomass into electric power or heat. Small-scale 1-30 MWe units are emphasized, but brief reference is made to larger and smaller systems, including those that bum coal-biomass mixtures and gasifiers that feed pilot-fuelled diesel engines. Promising advanced systems, such as a biomass integrated gasifier/gas turbine (BIG/GT) with combined-cycle operation and a biomass gasifier coupled to a fuel cell, giving cycle efficiencies approaching 50% are also described. These advanced gasifiers, typically fluid-bed designs, may be pressurized and can use a wide variety of biomass materials to generate electricity, process steam and chemical products such as methanol. Low-cost, disposable catalysts are becoming available for hot-gas clean-up (enhanced gas composition) for turbine and fuel cell systems. The advantages, limitations and relative costs of various biomass gasifier systems are briefly discussed. The paper identifies the best known biomass power projects and includes some information on proposed and

  14. Biomass energy conversion: conventional and advanced technologies

    International Nuclear Information System (INIS)

    Young, B.C.; Hauserman, W.B.

    1995-01-01

    Increasing interest in biomass energy conversion in recent years has focused attention on enhancing the efficiency of technologies converting biomass fuels into heat and power, their capital and operating costs and their environmental emissions. Conventional combustion systems, such as fixed-bed or grate units and entrainment units, deliver lower efficiencies (<25%) than modem coal-fired combustors (30-35%). The gasification of biomass will improve energy conversion efficiency and yield products useful for heat and power generation and chemical synthesis. Advanced biomass gasification technologies using pressurized fluidized-bed systems, including those incorporating hot-gas clean-up for feeding gas turbines or fuel cells, are being demonstrated. However, many biomass gasification processes are derivatives of coal gasification technologies and do not exploit the unique properties of biomass. This paper examines some existing and upcoming technologies for converting biomass into electric power or heat. Small-scale 1-30 MWe units are emphasized, but brief reference is made to larger and smaller systems, including those that bum coal-biomass mixtures and gasifiers that feed pilot-fuelled diesel engines. Promising advanced systems, such as a biomass integrated gasifier/gas turbine (BIG/GT) with combined-cycle operation and a biomass gasifier coupled to a fuel cell, giving cycle efficiencies approaching 50% are also described. These advanced gasifiers, typically fluid-bed designs, may be pressurized and can use a wide variety of biomass materials to generate electricity, process steam and chemical products such as methanol. Low-cost, disposable catalysts are becoming available for hot-gas clean-up (enhanced gas composition) for turbine and fuel cell systems. The advantages, limitations and relative costs of various biomass gasifier systems are briefly discussed. The paper identifies the best known biomass power projects and includes some information on proposed and

  15. Advances of energy drivers at Osaka

    International Nuclear Information System (INIS)

    Kato, Yoshiaki; Nakai, Sadao; Yamanaka, Chiyoe.

    1979-01-01

    The energy driver development at the Institute of Laser Engineering (ILE), Osaka University, comprises three fields; glass, laser, carbon dioxide laser, and relativistic electron beam. The development of reliable glass lasers has been the main program at ILE. The GEKKO 12 module program was carried out in the fiscal years from 1977 to 1979 in order to develop various laser components and subsystems which are necessary to construct a 20 kJ GEKKO 12 glass laser. The measured gain coefficient of the 200 mm disk amplifier was 0.10/cm corresponding to the αD product of 4.0. The expected peak output power of the system was 2 TW at 0.1 ns and 0.9 kJ at 1 ns. The recent advances in coating techniques will enable to operate this system over 1.3 kJ per beam at 3 ns. Carbon dioxide lasers have been developed as efficient high energy lasers to study the wave length scaling of implosion process. The design and construction of the 10 kJ LEKKO 8 laser system are in progress. Relativistic electron beam machines, being the most cost-effective driver, have been studied to control pulsed power and to investigate electron beam plasma interaction. As the future plans of ILE, the construction of a 100 kJ energy driver from 1958 to 1987 for scientific break-even experiments is considered. (Kato, T.)

  16. Advanced nuclear fuel cycles activities in IAEA

    International Nuclear Information System (INIS)

    Nawada, H.P.; Ganguly, C.

    2007-01-01

    Full text of publication follows. Of late several developments in reprocessing areas along with advances in fuel design and robotics have led to immense interest in partitioning and transmutation (P and T). The R and D efforts in the P and T area are being paid increased attention as potential answers to ever-growing issues threatening sustainability, environmental protection and non-proliferation. Any fuel cycle studies that integrate partitioning and transmutation are also known as ''advanced fuel cycles'' (AFC), that could incinerate plutonium and minor actinide (MA) elements (namely Am, Np, Cm, etc.) which are the main contributors to long-term radiotoxicity. The R and D efforts in developing these innovative fuel cycles as well as reactors are being co-ordinated by international initiatives such as Innovative Nuclear Power Reactors and Fuel Cycles (INPRO), the Generation IV International Forum (GIF) and the Global Nuclear Energy Partnership (GENP). For these advanced nuclear fuel cycle schemes to take shape, the development of liquid-metal-cooled reactor fuel cycles would be the most essential step for implementation of P and T. Some member states are also evaluating other concepts involving the use of thorium fuel cycle or inert-matrix fuel or coated particle fuel. Advanced fuel cycle involving novel partitioning methods such as pyrochemical separation methods to recover the transuranic elements are being developed by some member states which would form a critical stage of P and T. However, methods that can achieve a very high reduction (>99.5%) of MA and long-lived fission products in the waste streams after partitioning must be achieved to realize the goal of an improved protection of the environment. In addition, the development of MA-based fuel is also an essential and crucial step for transmutation of these transuranic elements. The presentation intends to describe progress of the IAEA activities encompassing the following subject-areas: minimization of

  17. Advanced Dark Energy Physics Telescope (ADEPT)

    Energy Technology Data Exchange (ETDEWEB)

    Charles L. Bennett

    2009-03-26

    In 2006, we proposed to NASA a detailed concept study of ADEPT (the Advanced Dark Energy Physics Telescope), a potential space mission to reliably measure the time-evolution of dark energy by conducting the largest effective volume survey of the universe ever done. A peer-review panel of scientific, management, and technical experts reported back the highest possible 'excellent' rating for ADEPT. We have since made substantial advances in the scientific and technical maturity of the mission design. With this Department of Energy (DOE) award we were granted supplemental funding to support specific extended research items that were not included in the NASA proposal, many of which were intended to broadly advance future dark energy research, as laid out by the Dark Energy Task Force (DETF). The proposed work had three targets: (1) the adaptation of large-format infrared arrays to a 2 micron cut-off; (2) analytical research to improve the understanding of the dark energy figure-of- merit; and (3) extended studies of baryon acoustic oscillation systematic uncertainties. Since the actual award was only for {approx}10% of the proposed amount item (1) was dropped and item (2) work was severely restricted, consistent with the referee reviews of the proposal, although there was considerable contradictions between reviewer comments and several comments that displayed a lack of familiarity with the research. None the less, item (3) was the focus of the work. To characterize the nature of the dark energy, ADEPT is designed to observe baryon acoustic oscillations (BAO) in a large galaxy redshift survey and to obtain substantial numbers of high-redshift Type Ia supernovae (SNe Ia). The 2003 Wilkinson Microwave Anisotropy Probe (WMAP) made a precise determination of the BAO 'standard ruler' scale, as it was imprinted on the cosmic microwave background (CMB) at z {approx} 1090. The standard ruler was also imprinted on the pattern of galaxies, and was first

  18. Advanced Light Source Activity Report 2000

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, A.; Moxon, L.; Robinson, A.; Tamura, L.

    2001-04-01

    This is an annual report, detailing activities at the Advanced Light Source for the year 2000. It includes highlights of scientific research by users of the facility as well as information about the development of the facility itself.

  19. Advanced Light Source Activity Report 2000

    International Nuclear Information System (INIS)

    Greiner, A.; Moxon, L.; Robinson, A.; Tamura, L.

    2001-01-01

    This is an annual report, detailing activities at the Advanced Light Source for the year 2000. It includes highlights of scientific research by users of the facility as well as information about the development of the facility itself

  20. Distributed sensor coordination for advanced energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Tumer, Kagan [Oregon State Univ., Corvallis, OR (United States). School of Mechanical, Industrial and Manufacturing Engineering

    2015-03-12

    Motivation: The ability to collect key system level information is critical to the safe, efficient and reliable operation of advanced power systems. Recent advances in sensor technology have enabled some level of decision making directly at the sensor level. However, coordinating large numbers of sensors, particularly heterogeneous sensors, to achieve system level objectives such as predicting plant efficiency, reducing downtime or predicting outages requires sophisticated coordination algorithms. Indeed, a critical issue in such systems is how to ensure the interaction of a large number of heterogenous system components do not interfere with one another and lead to undesirable behavior. Objectives and Contributions: The long-term objective of this work is to provide sensor deployment, coordination and networking algorithms for large numbers of sensors to ensure the safe, reliable, and robust operation of advanced energy systems. Our two specific objectives are to: 1. Derive sensor performance metrics for heterogeneous sensor networks. 2. Demonstrate effectiveness, scalability and reconfigurability of heterogeneous sensor network in advanced power systems. The key technical contribution of this work is to push the coordination step to the design of the objective functions of the sensors, allowing networks of heterogeneous sensors to be controlled. By ensuring that the control and coordination is not specific to particular sensor hardware, this approach enables the design and operation of large heterogeneous sensor networks. In addition to the coordination coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Impact: The impact of this work extends to a large class of problems relevant to the National Energy Technology Laboratory including sensor placement, heterogeneous sensor

  1. 1st Advanced Marine Renewable Energy Instrumentation Experts Workshop

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-10-01

    The U.S. marine energy industry is actively pursuing development of offshore wind and marine hydrokinetic (MHK) energy systems. Experience in the wind energy sector demonstrates that new technology development requires thorough measurement and characterization of the environmental conditions prevalent at installation sites and of technology operating in the field. Presently, there are no turn-key instrumentation system solutions that meet the measurement needs of the marine energy industry. The 1st Advanced Marine Renewable Energy Instrumentation Experts Workshop brought together technical experts from government laboratories, academia, and industry representatives from marine energy, wind, offshore oil and gas, and instrumentation developers to present and discuss the instrumentation needs of the marine energy industry. The goals of the meeting were to: 1. Share the latest relevant knowledge among technical experts; 2. Review relevant state-of-the-art field measurement technologies and methods; 3. Review lessons learned from recent field deployments; 4. Identify synergies across different industries; 5. Identify gaps between existing and needed instrumentation capabilities; 6. Understand who are the leading experts; 7. Provide a forum where stakeholders from the marine energy industry could provide substantive input in the development of new marine energy field deployable instrumentation packages.

  2. Advanced energy system with nuclear reactors as an energy source

    International Nuclear Information System (INIS)

    Kato, Y.; Ishizuka, T.; Nikitin, K.

    2007-01-01

    recovery system is also applicable to a fast reactor (FR) with a supercritical CO 2 gas turbine that achieves higher cycle efficiency than conventional sodium cooled FRs with steam turbines. The FR will eliminate problems of conventional FRs related to safety, plant maintenance, and construction costs. The FR consumes efficiently trans-uranium elements (TRU) produced in light water reactors as fuel and reduce long-lived radioactive wastes or environmental loads of long term geological disposal. An Advanced Energy System (AES) with nuclear reactors as an energy source has been proposed which supply electricity and heat to cities. The AES has three objectives: 1. Save energy resources and reduce green house gas emissions, attaining total energy utilization efficiency higher than 85% through waste heat recovery and utilization. 2. Foster a recycling society that produces methane and methanol for fuel cells from waste products of cities and farms. 3. Consume TRU produced in LWRs as fuel for FRs, and reduce long-lived radioactive wastes or environmental loads of long term geological disposal. References 1. Y. Kato, T. Nitawaki and K. Fujima, 'Zero Waste Heat Release Nuclear Cogeneration System, 'Proc. 2003 Intl. Congress on Advanced Nuclear Power Plants (ICAPP'03), Cordoba, Spain, May 4-7, 2003, Paper 3313. 2. Y. Kato, T. Nitawaki and Y. Muto, 'Medium Temperature Carbon Dioxide Gas Turbine Reactor, 'Nucl. Eng. Design, 230, pp. 195-207 (2004). 3. H. N. Tran and Y. Kato, 'New 2 37Np Burning Strategy in a Supercritical CO 2 Cooled Fast Reactor Core Attaining Zero Burnup Reactivity Loss,' Proc. American Nuclear Society's Topical Meeting on Reactor Physics (PHYSOR 2006), Vancouver, British Columbia, Canada, September 10-14, 2006

  3. Interregional technology transfer on advanced materials and renewable energy systems

    International Nuclear Information System (INIS)

    Agrianidis, P.; David, C.; Anthymidis, K.; Ekhrawat, M.

    2008-01-01

    Advanced materials are used in most industrial sectors and human activities and all developing and developed countries as well as international organizations eg. United Nations have established work groups, which survey the national and global state and developments in the area of advanced materials trying to establish strategies on that crucial technology sector. These strategies are focused on research and technology activities including education and vocation training, as well as stimulus for the starting up of new industrial applications. To introduce such a concept in Greece and especially in Northern Greece, the Technological Education Institute of Serres has initiated an Interregional technology transfer project in this scientific field. This project includes mod topics of advanced materials technology with emphasison specific industrial applications (renewable energy systems). The project demonstrates the development of a prototype photovoltaic thermal system in terms of a new industrial product. The product development procedure consists of steps such as initial product design, materials selection and processing, prototype design and manufacturing, quality control, performance optimization, but also control of materials ecocompatibility according to the national trends of life cycle design and recycling techniques. Keywords: Interregional technology transfer, materials, renewable energy systems

  4. Interregional technology transfer on advanced materials and renewable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Agrianidis, P.; David, C.; Anthymidis, K.; Ekhrawat, M. [Department of Mechanical Engineering, Technological Educational Institute of Serres, Serres (Greece)

    2008-07-01

    Advanced materials are used in most industrial sectors and human activities and all developing and developed countries as well as international organizations eg. United Nations have established work groups, which survey the national and global state and developments in the area of advanced materials trying to establish strategies on that crucial technology sector. These strategies are focused on research and technology activities including education and vocation training, as well as stimulus for the starting up of new industrial applications. To introduce such a concept in Greece and especially in Northern Greece, the Technological Education Institute of Serres has initiated an Interregional technology transfer project in this scientific field. This project includes mod topics of advanced materials technology with emphasison specific industrial applications (renewable energy systems). The project demonstrates the development of a prototype photovoltaic thermal system in terms of a new industrial product. The product development procedure consists of steps such as initial product design, materials selection and processing, prototype design and manufacturing, quality control, performance optimization, but also control of materials ecocompatibility according to the national trends of life cycle design and recycling techniques. Keywords: Interregional technology transfer, materials, renewable energy systems.

  5. The Advanced Telescope for High Energy Astrophysics

    Science.gov (United States)

    Guainazzi, Matteo

    2017-08-01

    Athena (the Advanced Telescope for High Energy Astrophysics) is a next generation X-ray observatory currently under study by ESA for launch in 2028. Athena is designed to address the Hot and Energetic Universe science theme, which addresses two key questions: 1) How did ordinary matter evolve into the large scale structures we see today? 2) How do black holes grow and shape the Universe. To address these topics Athena employs an innovative X-ray telescope based on Silicon Pore Optics technology to deliver extremely light weight and high throughput, while retaining excellent angular resolution. The mirror can be adjusted to focus onto one of two focal place instruments: the X-ray Integral Field Unit (X-IFU) which provides spatially-resolved, high resolution spectroscopy, and the Wide Field Imager (WFI) which provides spectral imaging over a large field of view, as well as high time resolution and count rate tolerance. Athena is currently in Phase A and the study status will be reviewed, along with the scientific motivations behind the mission.

  6. Advancing clean energy technology in Canada

    International Nuclear Information System (INIS)

    Munro, G.

    2011-01-01

    This paper discusses the development of clean energy technology in Canada. Energy is a major source of Canadian prosperity. Energy means more to Canada than any other industrialized country. It is the only OECD country with growing oil production. Canada is a stable and secure energy supplier and a major consumer. Promoting clean energy is a priority to make progress in multiple areas.

  7. The impacts of wind technology advancement on future global energy

    International Nuclear Information System (INIS)

    Zhang, Xiaochun; Ma, Chun; Song, Xia; Zhou, Yuyu; Chen, Weiping

    2016-01-01

    Highlights: • Integrated assessment model perform a series of scenarios of technology advances. • Explore the potential roles of wind energy technology advance in global energy. • Technology advance impacts on energy consumption and global low carbon market. • Technology advance influences on global energy security and stability. - Abstract: To avoid additional global warming and environmental damage, energy systems need to rely on the use of low carbon technologies like wind energy. However, supply uncertainties, production costs, and energy security are the main factors considered by the global economies when reshaping their energy systems. Here, we explore the potential roles of wind energy technology advancement in future global electricity generations, costs, and energy security. We use an integrated assessment model performing a series of technology advancement scenarios. The results show that double of the capital cost reduction causes 40% of generation increase and 10% of cost ​decrease on average in the long-term global wind electricity market. Today’s technology advancement could bring us the benefit of increasing electricity production in the future 40–50 years, and decreasing electricity cost in the future 90–100 years. The technology advancement of wind energy can help to keep global energy security and stability. An aggressive development and deployment of wind energy could in the long-term avoid 1/3 of gas and 1/28 of coal burned, and keep 1/2 biomass and 1/20 nuclear fuel saved from the global electricity system. The key is that wind resources are free and carbon-free. The results of this study are useful in broad coverage ranges from innovative technologies and systems of renewable energy to the economic industrial and domestic use of energy with no or minor impact on the environment.

  8. On the safety performance of the advanced nuclear energy systems

    International Nuclear Information System (INIS)

    Li Shounan

    1999-01-01

    Some features on the safety performances of the Advanced Nuclear Energy Systems are discussed. The advantages and some peculiar problems on the safety of Advanced Nuclear Energy Systems with subcritical nuclear reactor driven by external neutron sources are also pointed out in comparison with conventional nuclear reactors

  9. Advanced Energy Harvesting Control Schemes for Marine Renewable Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    McEntee, Jarlath [Ocean Renewable Power Company, Portland, ME (United States); Polagye, Brian [Ocean Renewable Power Company, Portland, ME (United States); Fabien, Brian [Ocean Renewable Power Company, Portland, ME (United States); Thomson, Jim [Ocean Renewable Power Company, Portland, ME (United States); Kilcher, Levi [Ocean Renewable Power Company, Portland, ME (United States); Marnagh, Cian [Ocean Renewable Power Company, Portland, ME (United States); Donegan, James [Ocean Renewable Power Company, Portland, ME (United States)

    2016-03-31

    The Advanced Energy Harvesting Control Schemes for Marine Renewable Energy Devices (Project) investigated, analyzed and modeled advanced turbine control schemes with the objective of increasing the energy harvested by hydrokinetic turbines in turbulent flow. Ocean Renewable Power Company (ORPC) implemented and validated a feedforward controller to increase power capture; and applied and tested the controls on ORPC’s RivGen® Power Systems in Igiugig, Alaska. Assessments of performance improvements were made for the RivGen® in the Igiugig environment and for ORPC’s TidGen® Power System in a reference tidal environment. Annualized Energy Production (AEP) and Levelized Cost of Energy (LCOE) improvements associated with implementation of the recommended control methodology were made for the TidGen® Power System in the DOE reference tidal environment. System Performance Advancement (SPA) goals were selected for the project. SPA targets were to improve Power to Weight Ratio (PWR) and system Availability, with the intention of reducing Levelized Cost of Electricity (LCOE). This project focused primarily reducing in PWR. Reductions in PWR of 25.5% were achieved. Reductions of 20.3% in LCOE were achieved. This project evaluated four types of controllers which were tested in simulation, emulation, a laboratory flume, and the field. The adaptive Kω2 controller performs similarly to the non-adaptive version of the same controller and may be useful in tidal channels where the mean velocity is continually evolving. Trends in simulation were largely verified through experiments, which also provided the opportunity to test assumptions about turbine responsiveness and control resilience to varying scales of turbulence. Laboratory experiments provided an essential stepping stone between simulation and implementation on a field-scale turbine. Experiments also demonstrated that using “energy loss” as a metric to differentiate between well-designed controllers operating at

  10. Advanced storage concepts for solar and low energy buildings, IEA-SHC Task 32. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, J.M.; Andersen, Elsa; Furbo, S.

    2008-01-15

    This report reports on the results of the activities carried through in connection with the Danish part of the IEA SHC Task 32 project: Advanced Storage Concepts for Solar and Low Energy Buildings. The Danish involvement has focused on Subtask C: Storage Concepts Based on Phase Change Materials and Subtask D: Storage Concepts Based on Advanced Water Tanks and Special Devices. The report describes activities concerning heat-of-fusion storage and advanced water storage. (BA)

  11. Which advances and place for photovoltaic energy?

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    While the European governments wish to raise to 20% the share of energy generated from clean sources, the solar energy appears as an excellent complement to the wind/hydraulic alternative. Today limited to 0.09% of the energy production capacity in Europe (with respect to 3.8% and 20% for the wind and hydro energies, respectively), the solar energy is a developing sector thanks to strong financial incentives. However, only important technological progresses would make solar energy a major energy source. Among the possible innovations, the development of efficient organic or plastic solar cells is one of the most promising way. Short paper. (J.S.)

  12. Bringing Advanced Computational Techniques to Energy Research

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Julie C

    2012-11-17

    Please find attached our final technical report for the BACTER Institute award. BACTER was created as a graduate and postdoctoral training program for the advancement of computational biology applied to questions of relevance to bioenergy research.

  13. Advances in wind energy conversion technology

    CERN Document Server

    Sathyajith, Mathew

    2011-01-01

    The technology of generating energy from wind has significantly changed during the past five years. The book brings together all the latest aspects of wind energy conversion technology - from wind resource analysis to grid integration of generated electricity.

  14. Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage.

    Science.gov (United States)

    Chen, Wenshuai; Yu, Haipeng; Lee, Sang-Young; Wei, Tong; Li, Jian; Fan, Zhuangjun

    2018-04-23

    Nanocellulose has emerged as a sustainable and promising nanomaterial owing to its unique structures, superb properties, and natural abundance. Here, we present a comprehensive review of the current research activities that center on the development of nanocellulose for advanced electrochemical energy storage. We begin with a brief introduction of the structural features of cellulose nanofibers within the cell walls of cellulose resources. We then focus on a variety of processes that have been explored to fabricate nanocellulose with various structures and surface chemical properties. Next, we highlight a number of energy storage systems that utilize nanocellulose-derived materials, including supercapacitors, lithium-ion batteries, lithium-sulfur batteries, and sodium-ion batteries. In this section, the main focus is on the integration of nanocellulose with other active materials, developing films/aerogel as flexible substrates, and the pyrolyzation of nanocellulose to carbon materials and their functionalization by activation, heteroatom-doping, and hybridization with other active materials. Finally, we present our perspectives on several issues that need further exploration in this active research field in the future.

  15. Advanced nanomaterials and their applications in renewable energy

    CERN Document Server

    Liu, Jingbo Louise

    2015-01-01

    Advanced Nanomaterials and Their Applications in Renewable Energy presents timely topics related to nanomaterials' feasible synthesis and characterization, and their application in the energy fields. In addition, the book provides insights and scientific discoveries in toxicity study, with information that is easily understood by a wide audience. Advanced energy materials are important in designing materials that have greater physical, electronic, and optical properties. This book emphasizes the fundamental physics and chemistry underlying the techniques used to develop solar and fuel cell

  16. Renewable energy systems advanced conversion technologies and applications

    CERN Document Server

    Luo, Fang Lin

    2012-01-01

    Energy conversion techniques are key in power electronics and even more so in renewable energy source systems, which require a large number of converters. Renewable Energy Systems: Advanced Conversion Technologies and Applications describes advanced conversion technologies and provides design examples of converters and inverters for renewable energy systems-including wind turbine and solar panel energy systems. Learn Cutting-Edge Techniques for Converters and Inverters Setting the scene, the book begins with a review of the basics of astronomy and Earth physics. It then systematically introduc

  17. Materials technologies for advanced nuclear energy concepts

    International Nuclear Information System (INIS)

    DiStefano, J.; Harms, B.

    1983-01-01

    High-performance, advanced nuclear power plant concepts have emerged with major emphasis on lower capital costs, inherent safety, and increased reliability. The materials problems posed by these concepts are discussed and how the scientists and technologists at ORNL plan to solve them is described

  18. Advanced DC/AC inverters applications in renewable energy

    CERN Document Server

    Luo, Fang Lin

    2013-01-01

    DC/AC inversion technology is of vital importance for industrial applications, including electrical vehicles and renewable energy systems, which require a large number of inverters. In recent years, inversion technology has developed rapidly, with new topologies improving the power factor and increasing power efficiency. Proposing many novel approaches, Advanced DC/AC Inverters: Applications in Renewable Energy describes advanced DC/AC inverters that can be used for renewable energy systems. The book introduces more than 100 topologies of advanced inverters originally developed by the authors,

  19. The NRNU MEPhI activities in the development and applications of advanced tools for innovative nuclear energy systems sustainability assessments - 5020

    International Nuclear Information System (INIS)

    Andrianov, A.; Dogov, A.; Kuptsov, I.; Fedorova, E.; Svetlichnyy, L.; Utianskaia, T.; Korovin, Y.

    2015-01-01

    This report delineates the multi-objective optimization and uncertainty treatment modules for the IAEA energy planning software MESSAGE developed at the National Research Nuclear University MEPhI and the Obninsk Institute for Nuclear Power Engineering intended for multi-objective optimization and sustainability assessments of innovative nuclear energy systems with account of uncertainty. The authors present some results of implementation of these tools for multi-objective nuclear energy system optimization studies. The developed software allows searching for compromises between the conflicting factors that determine the nuclear energy systems' effectiveness and calculating corresponding trade-off rates; carrying out comparative multi-criteria analysis of alternatives as well as choosing, ranking, and sorting corresponding options taking into account the evolution dynamics, structure and organization of a nuclear fuel cycle and the most important system constraints and restrictions. (authors)

  20. Modeling Innovations Advance Wind Energy Industry

    Science.gov (United States)

    2009-01-01

    In 1981, Glenn Research Center scientist Dr. Larry Viterna developed a model that predicted certain elements of wind turbine performance with far greater accuracy than previous methods. The model was met with derision from others in the wind energy industry, but years later, Viterna discovered it had become the most widely used method of its kind, enabling significant wind energy technologies-like the fixed pitch turbines produced by manufacturers like Aerostar Inc. of Westport, Massachusetts-that are providing sustainable, climate friendly energy sources today.

  1. Advances in solar thermal energy in Uruguay

    International Nuclear Information System (INIS)

    Franco Noceto, P.

    2012-01-01

    This article is about the law 18585 which declared de solar thermal energy as national interest. This law establishes the obligation to incorporate solar heating systems in health care centers, hotels and sports clubs.

  2. ADVANCES IN ZERO ENERGY TRANSPORTATION SYSTEMS

    OpenAIRE

    Ahmad, Othman

    2017-01-01

    Hyperloop mass transportation systems are activelydeveloped at the moment. They represent the forefront development of the ZeroEnergy Transportation systems where air drag is minimized by travelling in avacuum and friction is reduced by non-contact bearings. Hyperloop supportersare confident that the cost of their transportation systems would be lowcompared to existing transportation systems because of the low loss andtherefore low energy consumption as well as other cost-saving techniquesdoc...

  3. Power and Energy Architecture for Army Advanced Energy Initiative

    National Research Council Canada - National Science Library

    Shaffer, Edward C; Massie, Darrell D; Cross, James B

    2006-01-01

    ... technologies for the Army. The current P&E architecture is an amalgam of independent programs, which traditionally have been developed in stovepipe organizations, and often as an afterthought to the development of other advanced technologies...

  4. Decision support tools for advanced energy management

    International Nuclear Information System (INIS)

    Marik, Karel; Schindler, Zdenek; Stluka, Petr

    2008-01-01

    Rising fuel costs boost energy prices, which is a driving force for improving efficiency of operation of any energy generation facility. This paper focuses on enhancing the operation of distributed integrated energy systems (IES), system that bring together all forms of cooling, heating and power (CCHP) technologies. Described methodology can be applied in power generation and district heating companies, as well as in small-scale systems that supply multiple types of utilities to consumers in industrial, commercial, residential and governmental spheres. Dispatching of such system in an optimal way needs to assess large number of production and purchasing schemes in conditions of continually changing market and variable utility demands influenced by many external factors, very often by weather conditions. The paper describes a combination of forecasting and optimization methods that supports effective decisions in IES system management. The forecaster generates the future most probable utility demand several hours or days ahead, derived from the past energy consumer behaviour. The optimizer generates economically most efficient operating schedule for the IES system that matches these forecasted energy demands and respects expected purchased energy prices. (author)

  5. Advanced Telescope for High Energy Nuclear Astrophysics (ATHENA)

    National Research Council Canada - National Science Library

    Johnson, W. N; Dermer, C; Kroeger, R. A; Kurfess, J. D; Gehrels, N; Grindlay, J; Leising, M. D; Prince, T; Purcell, W; Ryan, J; Tumer, T

    1995-01-01

    We present a space mission concept for a low energy gamma-ray telescope, ATHENA, which is under investigation as the next major advance in gamma-ray spectroscopy following the current COMPTON Gamma...

  6. Advanced Reactor Technology/Energy Conversion Project FY17 Accomplishments.

    Energy Technology Data Exchange (ETDEWEB)

    Rochau, Gary E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    The purpose of the ART Energy Conversion (EC) Project is to provide solutions to convert the heat from an advanced reactor to useful products that support commercial application of the reactor designs.

  7. Regional characteristics relevant to advanced technology cogeneration development. [industrial energy

    Science.gov (United States)

    Manvi, R.

    1981-01-01

    To assist DOE in establishing research and development funding priorities in the area of advanced energy conversion technoloy, researchers at the Jet Propulsion Laboratory studied those specific factors within various regions of the country that may influence cogeneration with advanced energy conversion systems. Regional characteristics of advanced technology cogeneration possibilities are discussed, with primary emphasis given to coal derived fuels. Factors considered for the study were regional industry concentration, purchased fuel and electricity prices, environmental constraints, and other data of interest to industrial cogeneration.

  8. QA [Quality Assurance] role in advanced energy activities: Towards an /open quotes/orthodox/close quotes/ Quality Program: Canonizing the traditions at Fermilab

    International Nuclear Information System (INIS)

    Bodnarczuk, M.W.

    1988-02-01

    After a brief description of the goal of Fermi National Accelerator Laboratory (Fermilab) this paper poses and answers three questions related to Quality Assurance (QA) at the Laboratory. First, what is the difference between 'orthodox' and 'unorthodox' QA and is there a place for 'orthodox' QA at a laboratory like Fermilab? Second, are the deeper philosophical and cultural frameworks of high-energy physics acommodating or antagonistic to an 'orthodox' QA Program? Finally, faced with the task of developing an institutional QA program for Fermilab where does one begin? The paper is based on experience with the on-going development and implementation of an institutional QA Program at Fermilab. 10 refs

  9. The Consortium for Advancing Renewable Energy Technology (CARET)

    Science.gov (United States)

    Gordon, E. M.; Henderson, D. O.; Buffinger, D. R.; Fuller, C. W.; Uribe, R. M.

    1998-01-01

    The Consortium for Advancing Renewable Energy (CARET) is a research and education program which uses the theme of renewable energy to build a minority scientist pipeline. CARET is also a consortium of four universities and NASA Lewis Research Center working together to promote science education and research to minority students using the theme of renewable energy. The consortium membership includes the HBCUs (Historically Black Colleges and Universities), Fisk, Wilberforce and Central State Universities as well as Kent State University and NASA Lewis Research Center. The various stages of this pipeline provide participating students experiences with a different emphasis. Some emphasize building enthusiasm for the classroom study of science and technology while others emphasize the nature of research in these disciplines. Still others focus on relating a practical application to science and technology. And, of great importance to the success of the program are the interfaces between the various stages. Successfully managing these transitions is a requirement for producing trained scientists, engineers and technologists. Presentations describing the CARET program have been given at this year's HBCU Research Conference at the Ohio Aerospace Institute and as a seminar in the Solar Circle Seminar series of the Photovoltaic and Space Environments Branch at NASA Lewis Research Center. In this report, we will describe the many positive achievements toward the fulfillment of the goals and outcomes of our program. We will begin with a description of the interactions among the consortium members and end with a description of the activities of each of the member institutions .

  10. Energy Model of Neuron Activation.

    Science.gov (United States)

    Romanyshyn, Yuriy; Smerdov, Andriy; Petrytska, Svitlana

    2017-02-01

    On the basis of the neurophysiological strength-duration (amplitude-duration) curve of neuron activation (which relates the threshold amplitude of a rectangular current pulse of neuron activation to the pulse duration), as well as with the use of activation energy constraint (the threshold curve corresponds to the energy threshold of neuron activation by a rectangular current pulse), an energy model of neuron activation by a single current pulse has been constructed. The constructed model of activation, which determines its spectral properties, is a bandpass filter. Under the condition of minimum-phase feature of the neuron activation model, on the basis of Hilbert transform, the possibilities of phase-frequency response calculation from its amplitude-frequency response have been considered. Approximation to the amplitude-frequency response by the response of the Butterworth filter of the first order, as well as obtaining the pulse response corresponding to this approximation, give us the possibility of analyzing the efficiency of activating current pulses of various shapes, including analysis in accordance with the energy constraint.

  11. A Model for Infusing Energy Concepts into Vocational Education Programs. Advanced Solar Systems.

    Science.gov (United States)

    Delta Vocational Technical School, Marked Tree, AR.

    This instructional unit consists of materials designed to help students understand terms associated with solar energy; identify components of advanced solar systems; and identify applications of solar energy in business, industry, agriculture, and photovoltaics. Included in the unit are the following materials: suggested activities, instructional…

  12. High-energy diffraction microscopy at the advanced photon source

    DEFF Research Database (Denmark)

    Lienert, U.; Li, S. F.; Hefferan, C. M.

    2011-01-01

    The status of the High Energy Diffraction Microscopy (HEDM) program at the 1-ID beam line of the Advanced Photon Source is reported. HEDM applies high energy synchrotron radiation for the grain and sub-grain scale structural and mechanical characterization of polycrystalline bulk materials in situ...

  13. Development activities on advanced LWR in Argentina

    International Nuclear Information System (INIS)

    Gomez, S.E.

    2001-01-01

    CAREM, an Argentinean project, consists of the development, design and construction of a small Nuclear Power Plant. CAREM is an advanced reactor conceived with new generation design solutions and standing on the large experience accumulated in the safe operation of Light Water Reactors in the world. The CAREM is an indirect cycle reactor with some distinctive features that greatly simplify the reactor and also contribute to a high level of safety: integrated primary cooling system, self-pressurized, primary cooling by natural circulation and safety system relying on passive features. In this paper a brief description of the CAREM distinctive features and associated development activities are presented. (author)

  14. Multifunctional Carbon Nanostructures for Advanced Energy Storage Applications

    Directory of Open Access Journals (Sweden)

    Yiran Wang

    2015-05-01

    Full Text Available Carbon nanostructures—including graphene, fullerenes, etc.—have found applications in a number of areas synergistically with a number of other materials. These multifunctional carbon nanostructures have recently attracted tremendous interest for energy storage applications due to their large aspect ratios, specific surface areas, and electrical conductivity. This succinct review aims to report on the recent advances in energy storage applications involving these multifunctional carbon nanostructures. The advanced design and testing of multifunctional carbon nanostructures for energy storage applications—specifically, electrochemical capacitors, lithium ion batteries, and fuel cells—are emphasized with comprehensive examples.

  15. Frequent activation of EGFR in advanced chordomas

    Directory of Open Access Journals (Sweden)

    Dewaele Barbara

    2011-07-01

    Full Text Available Abstract Background Chordomas are rare neoplasms, arising from notochordal remnants in the midline skeletal axis, for which the current treatment is limited to surgery and radiotherapy. Recent reports suggest that receptor tyrosine kinases (RTK might be essential for the survival or proliferation of chordoma cells, providing a rationale for RTK targeted therapy. Nevertheless, the reported data are conflicting, most likely due to the assorted tumor specimens used for the studies and the heterogeneous methodological approaches. In the present study, we performed a comprehensive characterization of this rare entity using a wide range of assays in search for relevant therapeutic targets. Methods Histopathological features of 42 chordoma specimens, 21 primary and 21 advanced, were assessed by immunohistochemistry and fluorescent in situ hybridization (FISH using PDGFRB, CSF1R, and EGFR probes. Twenty-two of these cases, for which frozen material was available (nine primary and 13 advanced tumors, were selectively analyzed using the whole-genome 4.3 K TK-CGH-array, phospho-kinase antibody array or Western immunoblotting. The study was supplemented by direct sequencing of KIT, PDGFRB, CSF1R and EGFR. Results We demonstrated that EGFR is frequently and the most significantly activated RTK in chordomas. Furthermore, concurrent to EGFR activation, the tumors commonly reveal co-activation of alternative RTK. The consistent activation of AKT, the frequent loss of the tumor suppressor PTEN allele, the recurrent activation of upstream RTK and of downstream effectors like p70S6K and mTOR, all indicate the PI3K/AKT pathway as an important mediator of transformation in chordomas. Conclusions Given the complexity of the signaling in chordomas, combined treatment regimens targeting multiple RTK and downstream effectors are likely to be the most effective in these tumors. Personalized therapy with careful selection of the patients, based on the molecular profile of

  16. Advanced Offshore Wind Energy - Atlantic Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Kempton, Willett

    2015-11-04

    This project developed relationships among the lead institution, U of Delaware, wind industry participants from 11 companies, and two other universities in the region. The participating regional universities were University of Maryland and Old Dominion University. Research was carried out in six major areas: Analysis and documentation of extreme oceanic wind events & their impact on design parameters, calibration of corrosivity estimates measured on a coastal turbine, measurment and modeling of tower structures, measurement and modeling of the tribology of major drive components, and gearbox conditioning monitoring using acoustic sensors. The project also had several educational goals, including establishing a course in wind energy and training graduate students. Going beyond these goals, three new courses were developed, a graduate certificate program in wind power was developed and approved, and an exchange program in wind energy was established with Danish Technical University. Related to the installation of a Gamesa G90 turbine on campus and a Gamesa-UD research program established in part due to this award, several additional research projects have been carried out based on mutual industry-university interests, and funded by turbine revenues. This award and the Gamesa partnership have jointly led to seven graduate students receiving full safety and climb training, to become “research climbers” as part of their wind power training, and contributing to on-turbine research. As a result of the educational program, already six graduate students have taken jobs in the US wind industry.

  17. Perspective of nuclear energy and advanced reactors

    International Nuclear Information System (INIS)

    Lopez Jimenez, J.; Cobian, J.

    2007-01-01

    Future nuclear energy growth will be the result of the contributions of every single plant being constructed or projected at present as it is connected to the grid. As per IAEA, there exists presently 34 nuclear power plants under construction 81 with the necessary permits and funding and 223 proposed, which are plants seriously pursuing permits and financing. This means that in a few decades the number of nuclear power plants in operation will have doubled. This growth rate is characterised by the incorporation of new countries to the nuclear club and the gradually increasing importance of Asian countries. During this expansive phase, generation III and III+designs are or will be used. These designs incorporate the experience from operating plants, and introduce innovations on rationalization design efficiency and safety, with emphasis on passive safety features. In a posterior phase, generation IV designs, presently under development, will be employed. Generation IV consists of several types of reactors (fast reactors, very high temperature reactors, etc), which will improve further sustain ability, economy, safety and reliability concepts. The described situation seems to lead to a renaissance of the nuclear energy to levels hardly thinkable several years ago. (Author)

  18. Nuclear energy Division - 2011 Activity report

    International Nuclear Information System (INIS)

    2012-01-01

    This document reports the activity of the Nuclear Energy Department (DEN) within the CEA. It evokes its international relationship (participation to international initiatives, cooperation with different countries), describes the scientific activity within the DEN, presents the Advanced Material Program, and the activities undertaken in different fields: future nuclear industrial systems (fourth generation reactors, downstream part of the future fuel cycle, fundamental scientific and technological research), optimization of the present nuclear industrial activity (second and third generation reactors, nuclear security, upstream and downstream part of the present fuel cycle), tools for nuclear development (numerical simulation, Jules Horowitz reactor), cleaning up and nuclear dismantling (dismantling strategy, the Passage project in Grenoble, works in Marcoule, the Aladin project in Fontenay, waste and material flow management, nuclear support installations, transports). It finally addresses the specific activities of the Marcoule, Cadarache and Saclay centres

  19. Recent advances in statistical energy analysis

    Science.gov (United States)

    Heron, K. H.

    1992-01-01

    Statistical Energy Analysis (SEA) has traditionally been developed using modal summation and averaging approach, and has led to the need for many restrictive SEA assumptions. The assumption of 'weak coupling' is particularly unacceptable when attempts are made to apply SEA to structural coupling. It is now believed that this assumption is more a function of the modal formulation rather than a necessary formulation of SEA. The present analysis ignores this restriction and describes a wave approach to the calculation of plate-plate coupling loss factors. Predictions based on this method are compared with results obtained from experiments using point excitation on one side of an irregular six-sided box structure. Conclusions show that the use and calculation of infinite transmission coefficients is the way forward for the development of a purely predictive SEA code.

  20. Advanced Light Source: Activity report 1993

    International Nuclear Information System (INIS)

    1994-11-01

    The Advanced Light Source (ALS) produces the world's brightest light in the ultraviolet and soft x-ray regions of the spectrum. The first low-energy third-generation synchrotron source in the world, the ALS provides unprecedented opportunities for research in science and technology not possible anywhere else. This year marked the beginning of operations and the start of the user research program at the ALS, which has already produced numerous high quality results. A national user facility located at Lawrence Berkeley Laboratory of the University of California, the ALS is available to researchers from academia, industry, and government laboratories. This report contains the following: (1) director's message; (2) operations overview; (3) user program; (4) users' executive committee; (5) industrial outreach; (6) accelerator operations; (7) beamline control system; (8) insertion devices; (9) experimental systems; (10) beamline engineering; (11) first results from user beamlines; (12) beamlines for 1994--1995; (13) special events; (14) publications; (15) advisory panels; and (16) ALS staff

  1. International energy-promotion-activities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Comprehensive promotion of energy and environmental measures are demanded in order to realize improvement in energy demand/supply structures in developing countries where increase in energy demand is anticipated. To achieve this goal, technical transfer related to energy saving technologies and clean coal as well as international energy promotion activities are implemented in China and Indonesia since fiscal 1993. In the field of energy saving, model operations are performed to improve efficiency in such energy consuming fields as steel making, power generation, and oil refining, in addition to cooperation in structuring databases and establishing master plans. In the clean coal field, model operations are conducted to reduce environmental load in coal utilizing areas, in addition to cooperation in establishing master plans for coal utilization. This paper describes feasibility studies on environmentally harmonious coal utilization systems in developing countries, assistance to introduction thereof, and joint verification operations. To rationalize international energy usage, basic surveys on energy utilization efficiency improvement and model operations are carried out mainly in the Asia-Pacific countries.

  2. Advanced Energy Storage Management in Distribution Network

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guodong [ORNL; Ceylan, Oguzhan [ORNL; Xiao, Bailu [ORNL; Starke, Michael R [ORNL; Ollis, T Ben [ORNL; King, Daniel J [ORNL; Irminger, Philip [ORNL; Tomsovic, Kevin [University of Tennessee, Knoxville (UTK)

    2016-01-01

    With increasing penetration of distributed generation (DG) in the distribution networks (DN), the secure and optimal operation of DN has become an important concern. In this paper, an iterative mixed integer quadratic constrained quadratic programming model to optimize the operation of a three phase unbalanced distribution system with high penetration of Photovoltaic (PV) panels, DG and energy storage (ES) is developed. The proposed model minimizes not only the operating cost, including fuel cost and purchasing cost, but also voltage deviations and power loss. The optimization model is based on the linearized sensitivity coefficients between state variables (e.g., node voltages) and control variables (e.g., real and reactive power injections of DG and ES). To avoid slow convergence when close to the optimum, a golden search method is introduced to control the step size and accelerate the convergence. The proposed algorithm is demonstrated on modified IEEE 13 nodes test feeders with multiple PV panels, DG and ES. Numerical simulation results validate the proposed algorithm. Various scenarios of system configuration are studied and some critical findings are concluded.

  3. Advances in energy-transfer technology

    International Nuclear Information System (INIS)

    Terpstra, L.

    1992-01-01

    This paper discusses the technology of drying and curing inks, coatings and adhesives which is changing rapidly as converters and manufacturers strive to comply with regulations governing airborne emissions as well as discharge of liquid and solid wastes. Compliance with these regulations will become more difficult in the coming decade as the Clean Air Act's increasingly stringent limitations on emissions of volatile organic compounds are implemented to support the intentions of the Montreal protocol. Many of the customary solvents are being eliminated, and the volume of production for many others will be severely reduced. For some companies, the switch to the new materials means updating or replacing antiquated hot-air drying systems with high-velocity impingement ovens with higher temperature capabilities. Probably the least-expansive alternative to replacing the entire oven is to retrofit the installation with infrared (IR) energy in the form of separate predryers or postheaters or, in some cases, to install auxiliary IR heaters between the hot-air nozzles within the oven

  4. Wireless Sensor Network for Advanced Energy Management Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Peter J. Theisen; Bin Lu, Charles J. Luebke

    2009-09-23

    Eaton has developed an advanced energy management solution that has been deployed to several Industries of the Future (IoF) sites. This demonstrated energy savings and reduced unscheduled downtime through an improved means for performing predictive diagnostics and energy efficiency estimation. Eaton has developed a suite of online, continuous, and inferential algorithms that utilize motor current signature analysis (MCSA) and motor power signature analysis (MPSA) techniques to detect and predict the health condition and energy usage condition of motors and their connect loads. Eaton has also developed a hardware and software platform that provided a means to develop and test these advanced algorithms in the field. Results from lab validation and field trials have demonstrated that the developed advanced algorithms are able to detect motor and load inefficiency and performance degradation. Eaton investigated the performance of Wireless Sensor Networks (WSN) within various industrial facilities to understand concerns about topology and environmental conditions that have precluded broad adoption by the industry to date. A Wireless Link Assessment System (WLAS), was used to validate wireless performance under a variety of conditions. Results demonstrated that wireless networks can provide adequate performance in most facilities when properly specified and deployed. Customers from various IoF expressed interest in applying wireless more broadly for selected applications, but continue to prefer utilizing existing, wired field bus networks for most sensor based applications that will tie into their existing Computerized Motor Maintenance Systems (CMMS). As a result, wireless technology was de-emphasized within the project, and a greater focus placed on energy efficiency/predictive diagnostics. Commercially available wireless networks were only utilized in field test sites to facilitate collection of motor wellness information, and no wireless sensor network products were

  5. Argentine nuclear energy standardization activities

    International Nuclear Information System (INIS)

    Boero, Norma; Corcuera, Roberto; Palacios, Tulio A.; Hey, Alfredo M.; Berte, G.; Trama, L.

    2004-01-01

    The International Organization for Standardization (ISO) has more than 200 Technical Committees that develop technical standards. During April 2004 took place in Buenos Aires the 14th Plenary of the ISO/TC 85 Nuclear Energy Committee. During this Plenary issues as Nuclear Terminology, Radiation Protection, Nuclear Fuels, Nuclear Reactors and Irradiation Dosimetry was dealt with. 105 International delegates and 45 National delegates (belonging to CNEA, ARN, NASA, INVAP, CONUAR, IONICS and other organizations) attended the meetings. During this meeting ISO/TC 85 changed its scope; the new scope of the Committee is 'Standardization in the fields of peaceful applications of nuclear energy and of the protection of individuals against all sources of ionizing radiations'. This work summarizes the most important advances and resolutions about the development of standards taken during this meeting as well as the main conclusions. (author) [es

  6. Kalaeloa Energy System Redevelopment Options Including Advanced Microgrids.

    Energy Technology Data Exchange (ETDEWEB)

    Hightower, Marion Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Baca, Michael J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); VanderMey, Carissa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    In June 2016, the Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy (EERE) in collaboration with the Renewable Energy Branch for the Hawaii State Energy Office (HSEO), the Hawaii Community Development Authority (HCDA), the United States Navy (Navy), and Sandia National Laboratories (Sandia) established a project to 1) assess the current functionality of the energy infrastructure at the Kalaeloa Community Development District, and 2) evaluate options to use both existing and new distributed and renewable energy generation and storage resources within advanced microgrid frameworks to cost-effectively enhance energy security and reliability for critical stakeholder needs during both short-term and extended electric power outages. This report discusses the results of a stakeholder workshop and associated site visits conducted by Sandia in October 2016 to identify major Kalaeloa stakeholder and tenant energy issues, concerns, and priorities. The report also documents information on the performance and cost benefits of a range of possible energy system improvement options including traditional electric grid upgrade approaches, advanced microgrid upgrades, and combined grid/microgrid improvements. The costs and benefits of the different improvement options are presented, comparing options to see how well they address the energy system reliability, sustainability, and resiliency priorities identified by the Kalaeloa stakeholders.

  7. Advanced Combustion and Fuels; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Zigler, Brad

    2015-06-08

    Presented at the U.S. Department of Energy Vehicle Technologies Office 2015 Annual Merit Review and Peer Evaluation Meeting, held June 8-12, 2015, in Arlington, Virginia. It addresses technical barriers of inadequate data and predictive tools for fuel and lubricant effects on advanced combustion engines, with the strategy being through collaboration, develop techniques, tools, and data to quantify critical fuel physico-chemical effects to enable development of advanced combustion engines that use alternative fuels.

  8. New technology and possible advances in energy storage

    International Nuclear Information System (INIS)

    Baker, John

    2008-01-01

    Energy storage technologies may be electrical or thermal. Electrical energy stores have an electrical input and output to connect them to the system of which they form part, while thermal stores have a thermal input and output. The principal electrical energy storage technologies described are electrochemical systems (batteries and flow cells), kinetic energy storage (flywheels) and potential energy storage, in the form of pumped hydro and compressed air. Complementary thermal storage technologies include those based on the sensible and latent heat capacity of materials, which include bulk and smaller-capacity hot and cold water storage systems, ice storage, phase change materials and specific bespoke thermal storage media. For the majority of the storage technologies considered here, the potential for fundamental step changes in performance is limited. For electrochemical systems, basic chemistry suggests that lithium-based technologies represent the pinnacle of cell development. This means that the greatest potential for technological advances probably lies in the incremental development of existing technologies, facilitated by advances in materials science, engineering, processing and fabrication. These considerations are applicable to both electrical and thermal storage. Such incremental developments in the core storage technologies are likely to be complemented and supported by advances in systems integration and engineering. Future energy storage technologies may be expected to offer improved energy and power densities, although, in practice, gains in reliability, longevity, cycle life expectancy and cost may be more significant than increases in energy/powerdensity per se

  9. Exploring the energy benefits of advanced water metering

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Michael A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hans, Liesel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Piscopo, Kate [Univ. of California, Berkeley, CA (United States); Sohn, Michael D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-08-01

    Recent improvements to advanced water metering and communications technologies have the potential to improve the management of water resources and utility infrastructure, benefiting both utilities and ratepayers. The highly granular, near-real-time data and opportunity for automated control provided by these advanced systems may yield operational benefits similar to those afforded by similar technologies in the energy sector. While significant progress has been made in quantifying the water-related benefits of these technologies, the research on quantifying the energy benefits of improved water metering is underdeveloped. Some studies have quantified the embedded energy in water in California, however these findings are based on data more than a decade old, and unanimously assert that more research is needed to further explore how topography, climate, water source, and other factors impact their findings. In this report, we show how water-related advanced metering systems may present a broader and more significant set of energy-related benefits. We review the open literature of water-related advanced metering technologies and their applications, discuss common themes with a series of water and energy experts, and perform a preliminary scoping analysis of advanced water metering deployment and use in California. We find that the open literature provides very little discussion of the energy savings potential of advanced water metering, despite the substantial energy necessary for water’s extraction, conveyance, treatment, distribution, and eventual end use. We also find that water AMI has the potential to provide water-energy co-efficiencies through improved water systems management, with benefits including improved customer education, automated leak detection, water measurement and verification, optimized system operation, and inherent water and energy conservation. Our findings also suggest that the adoption of these technologies in the water sector has been slow

  10. Licensing activities for advanced reactors in NNC

    International Nuclear Information System (INIS)

    Chevalier, A.B.H.; Mustoe, J.; Walters, J.; Ingham, E.L.

    2001-01-01

    NNC has been involved in safety and licensing activities for advanced reactors for many years. Most recently NNC has been involved with national regulators or their representatives for the HTR (High Temperature Reactor) reactor and the possible siting of ITER (International Thermonuclear Experimental Reactor) within Europe. Commonalties between the two activities can be seen, even though one is a fission process and the other based on a completely new technology. Both have the potential to generate power at a very low overall exposure to the public and station staff, but both also need to demonstrate to the regulator the safety of a design which differs from the standard LWR practice. In both concepts passive design features provide a major part of the safety argument, but the detailed assessment and justification of these features in licensing terms still needs to be made. A number of critical safety issues can be identified, which generally apply to any advanced system. These are: Safety categorization, codes and standards; confinement or containment; ALARA; safety code modelling and data; Occupational Exposure; occupational exposures; decommissioning and waste; no evacuation, or no emergency plans. The UK is notable for a flexible licensing regime, which allows a safety case to be built up from first principles, where this is applicable. In addition, experience of licensing gas cooled, water cooled and liquid metal plant, as well as extensive experience outside the UK provides NNC with a unique insight into the different licensing methodologies which can be applied in the licensing process. This paper discusses some possible approaches which could be applied in order to satisfy regulatory demands when addressing the critical issues listed above. (author)

  11. Advanced materials and coatings for energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    St Pierre, George R. [Ohio State Univ., Materials Science and Engineering Dept., Columbus, OH (United States)

    1997-12-31

    Following an historical review of the development of high-temperature alloys for energy conversion systems including turbine engines, some of the current advances in single crystal materials, intermetallics, metal-matrix composites, and ceramic-matrix composites are discussed. Particular attention is directed at creep phenomena, fatigue properties and oxidation resistance. Included within the discussions is the current status of carbon/carbon composites as potential high-temperature engineering materials and the development of coating systems for thermal barrier and oxidation protection. The specific influences of combustion gas compositions, i.e., oxidation potential, sulfur, halides, etc. are discussed. A current list of eligible advanced materials and coatings systems is presented and assessed. Finally, the critical failure mechanism and life-prediction parameters for some of the new classes of advanced structural materials are elaborated with the view to achieving affordability and extended life with a high degree of reliability. Examples are drawn from a variety of energy conversion systems. (Author)

  12. Energy and environmental consciousness. Differences between advanced and developing countries

    International Nuclear Information System (INIS)

    Takeshita, Takashi

    1999-01-01

    The purpose of the present study is to understand how much differences there are between advanced countries and developing countries in terms of environmental and energy consciousness. We are experiencing now a big dilemma of the human desire to continue to exist and, at the same time, to develop the economy against the worsening of the Earth's environmental conditions. Understanding international differences of environmental and energy consciousness is a short way to solve this dilemma. The results of the present study were that peoples from advanced countries feel that science and technology are sometimes unreliable, while those from developing countries, are willing to rely upon them. However regardless of the country, people share the same consciousness about Earth's environment. In both, advanced and developing countries, people are reluctant to give up living comforts, unless this leads to a higher standard of living. Based on this result, the author would like to conduct another survey concerning the consciousness of future lifestyle. (author)

  13. Advances in active and nonlinear metamaterials

    Science.gov (United States)

    Boardman, A. D.; Mitchell-Thomas, R. C.; Rapoport, Y. G.

    2012-09-01

    Metamaterial research is an extremely important global activity that promises to change our lives in many different ways. These include making objects invisible and the dramatic impact of metamaterials upon the energy and medical sectors of society. Behind all of the applications, however, lies the business of creating metamaterials that are not going to be crippled by the kind of loss that is naturally heralded by use of resonant responses in their construction. Under the general heading of active and tunable metamaterials, an elegant route to the inclusion of nonlinearity and waveguide complexity coupled to soliton behavior suggested by forms of transformation dynamics is presented. In addition, various discussions will be framed within a magnetooptical environment that deploys externally applied magnetic field orientations. Light can then be directed to achieve energy control and be deployed for a variety of outcomes. Quite apart from the fact that the manufacture of metamaterials is attracting such a lot of global attention, the ability to control light, for example, in these materials is also immensely interesting and will lead to a new dawn of integrated circuits and computers. Recognizing the role of nonlinearity raises the possibility that dramatic manufacturing and applications are on the horizon.

  14. Photon energy tunability of advanced photon source undulators

    International Nuclear Information System (INIS)

    Viccaro, P.J.; Shenoy, G.K.

    1987-08-01

    At a fixed storage ring energy, the energy of the harmonics of an undulator can be shifted or ''tuned'' by changing the magnet gap of the device. The possible photon energy interval spanned in this way depends on the undulator period, minimum closed gap, minimum acceptable photon intensity and storage ring energy. The minimum magnet gap depends directly on the stay clear particle beam aperture required for storage ring operation. The tunability of undulators planned for the Advanced Photon Source with first harmonic photon energies in the range of 5 to 20 keV are discussed. The results of an analysis used to optimize the APS ring energy is presented and tunability contours and intensity parameters are presented for two typical classes of devices

  15. Evaluation and development of advanced nuclear materials: IAEA activities

    International Nuclear Information System (INIS)

    Inozemtsev, V.; Basak, U.; Killeen, J.; Dyck, G.; Zeman, A.; )

    2011-01-01

    Economical, environmental and non-proliferation issues associated with sustainable development of nuclear power bring about a need for optimization of fuel cycles and implementation of advanced nuclear systems. While a number of physical and design concepts are available for innovative reactors, the absence of reliable materials able to sustain new challenging irradiation conditions represents the real bottle-neck for practical implementation of these promising ideas. Materials performance and integrity are key issues for the safety and competitiveness of future nuclear installations being developed for sustainable nuclear energy production incorporating fuel recycling and waste transmutation systems. These systems will feature high thermal operational efficiency, improved utilization of resources (both fissile and fertile materials) and reduced production of nuclear waste. They will require development, qualification and deployment of new and advanced fuel and structural materials with improved mechanical and chemical properties combined with high radiation and corrosion resistance. The extensive, diverse, and expensive efforts toward the development of these materials can be more effectively organized within international collaborative programmes with wide participation of research, design and engineering communities. IAEA carries out a number of international projects supporting interested Member States with the use of available IAEA program implementation tools (Coordinated Research Projects, Technical Meetings, Expert Reviews, etc). The presentation summarizes the activities targeting material developments for advanced nuclear systems, with particular emphasis on fast reactors, which are the focal topics of IAEA Coordinated Research Projects 'Accelerator Simulation and Theoretical Modelling of Radiation Effects' (on-going), 'Benchmarking of Structural Materials Pre-Selected for Advanced Nuclear Reactors', 'Examination of advanced fast reactor fuel and core

  16. Advanced Detectors for Nuclear, High Energy and Astroparticle Physics

    CERN Document Server

    Das, Supriya; Ghosh, Sanjay

    2018-01-01

    The book presents high-quality papers presented at a national conference on ‘Advanced Detectors for Nuclear, High Energy and Astroparticle Physics’. The conference was organized to commemorate 100 years of Bose Institute. The book is based on the theme of the conference and provides a clear picture of basics and advancement of detectors for nuclear physics, high-energy physics and astroparticle physics together. The topics covered in the book include detectors for accelerator-based high energy physics; detectors for non-accelerator particle physics; nuclear physics detectors; detection techniques in astroparticle physics and dark matter; and applications and simulations. The book will be a good reference for researchers and industrial personnel working in the area of nuclear and astroparticle physics.

  17. Recent Advances in Porous Carbon Materials for Electrochemical Energy Storage.

    Science.gov (United States)

    Wang, Libin; Hu, Xianluo

    2018-06-18

    Climate change and the energy crisis have promoted the rapid development of electrochemical energy-storage devices. Owing to many intriguing physicochemical properties, such as excellent chemical stability, high electronic conductivity, and a large specific surface area, porous carbon materials have always been considering as a promising candidate for electrochemical energy storage. To date, a wide variety of porous carbon materials based upon molecular design, pore control, and compositional tailoring have been proposed for energy-storage applications. This focus review summarizes recent advances in the synthesis of various porous carbon materials from the view of energy storage, particularly in the past three years. Their applications in representative electrochemical energy-storage devices, such as lithium-ion batteries, supercapacitors, and lithium-ion hybrid capacitors, are discussed in this review, with a look forward to offer some inspiration and guidelines for the exploitation of advanced carbon-based energy-storage materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Policies for advancing energy efficiency and renewable energy use in Brazil

    International Nuclear Information System (INIS)

    Geller, Howard; Schaeffer, Roberto; Szklo, Alexandre; Tolmasquim, Mauricio

    2004-01-01

    This article first reviews energy trends and energy policy objectives in Brazil. It then proposes and analyzes 12 policy options for advancing energy efficiency and renewable energy use. The policies are analyzed as a group with respect to their impacts on total energy supply and demand as well as CO 2 emissions. It is determined that the policies would provide a broad range of benefits for Brazil including reducing investment requirements in the energy sector, cutting energy imports, lowering CO 2 emissions, and providing social benefits. (Author)

  19. Advanced Energy Saving and its Applications in Industry

    CERN Document Server

    Matsuda, Kazuo; Fushimi, Chihiro; Tsutsumi, Atsushi; Kishimoto, Akira

    2013-01-01

    The conventional approach for energy saving in a process system is to maximize heat recovery without changing any process conditions by using pinch technology. “Self-heat recuperation technology” was developed to achieve further energy saving in the process system by eliminating the necessity for any external heat input, such as firing or imported steam. Advanced Energy Saving and its Applications in Industry introduces the concept of self-heat recuperation and the application of such technology to a wide range of processes from heavy chemical complexes to other processes such as drying and gas separation processes, which require heating and cooling during operation.   Conventional energy saving items in a utility system are applied and implemented based on a single site approach, however, when looking at heavy chemical complexes, it was apparent that the low-grade heat discharged as waste from a refinery could also be used in an adjacent petrochemical plant. There could therefore be a large energy savin...

  20. Mickey Leland Energy Fellowship Report: Development of Advanced Window Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, Ladena A.; Alvine, Kyle J.; Schemer-Kohrn, Alan L.

    2014-08-05

    Advanced fenestration technologies for light and thermal management in building applications are of great recent research interest for improvements in energy efficiency. Of these technologies, there is specific interest in advanced window coating technologies that have tailored control over the visible and infrared (IR) scattering into a room for both static and dynamic applications. Recently, PNNL has investigated novel subwavelength nanostructured coatings for both daylighting, and IR thermal management applications. Such coatings rese still in the early stages and additional research is needed in terms of scalable manufacturing. This project investigates aspects of a potential new methodology for low-cost scalable manufacture of said subwavelength coatings.

  1. ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT. ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY

    International Nuclear Information System (INIS)

    PROJECT STAFF

    2001-01-01

    OAK A271 ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY. The General Atomics (GA) Advanced Fusion Technology Program seeks to advance the knowledge base needed for next-generation fusion experiments, and ultimately for an economical and environmentally attractive fusion energy source. To achieve this objective, they carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and they conduct research to develop basic and applied knowledge about these technologies. GA's Advanced Fusion Technology program derives from, and draws on, the physics and engineering expertise built up by many years of experience in designing, building, and operating plasma physics experiments. The technology development activities take full advantage of the GA DIII-D program, the DIII-D facility and the Inertial Confinement Fusion (ICF) program and the ICF Target Fabrication facility

  2. Energy and Economic Trade Offs for Advanced Technology Subsonic Aircraft

    Science.gov (United States)

    Maddalon, D. V.; Wagner, R. D.

    1976-01-01

    Changes in future aircraft technology which conserve energy are studied, along with the effect of these changes on economic performance. Among the new technologies considered are laminar-flow control, composite materials with and without laminar-flow control, and advanced airfoils. Aircraft design features studied include high-aspect-ratio wings, thickness ratio, and range. Engine technology is held constant at the JT9D level. It is concluded that wing aspect ratios of future aircraft are likely to significantly increase as a result of new technology and the push of higher fuel prices. Composite materials may raise aspect radio to about 11 to 12 and practical laminar flow-control systems may further increase aspect ratio to 14 or more. Advanced technology provides significant reductions in aircraft take-off gross weight, energy consumption, and direct operating cost.

  3. The importance of advancing technology to America's energy goals

    International Nuclear Information System (INIS)

    Greene, D.L.; Boudreaux, P.R.; Dean, D.J.; Fulkerson, W.; Gaddis, A.L.; Graham, R.L.; Graves, R.L.; Hopson, J.L.; Hughes, P.; Lapsa, M.V.; Mason, T.E.; Standaert, R.F.; Wilbanks, T.J.; Zucker, A.

    2010-01-01

    A wide range of energy technologies appears to be needed for the United States to meet its energy goals. A method is developed that relates the uncertainty of technological progress in eleven technology areas to the achievement of CO 2 mitigation and reduced oil dependence. We conclude that to be confident of meeting both energy goals, each technology area must have a much better than 50/50 probability of success, that carbon capture and sequestration, biomass, battery electric or fuel cell vehicles, advanced fossil liquids, and energy efficiency technologies for buildings appear to be almost essential, and that the success of each one of the 11 technologies is important. These inferences are robust to moderate variations in assumptions.

  4. Advanced fluoride-based materials for energy conversion

    CERN Document Server

    Nakajima, Tsuyoshi

    2015-01-01

    Advanced Fluoride-Based Materials for Energy Conversion provides thorough and applied information on new fluorinated materials for chemical energy devices, exploring the electrochemical properties and behavior of fluorinated materials in lithium ion and sodium ion batteries, fluoropolymers in fuel cells, and fluorinated carbon in capacitors, while also exploring synthesis applications, and both safety and stability issues. As electronic devices, from cell phones to hybrid and electric vehicles, are increasingly common and prevalent in modern lives and require dependable, stable chemical energy devices with high-level functions are becoming increasingly important. As research and development in this area progresses rapidly, fluorine compounds play a critical role in this rapid progression. Fluorine, with its small size and the highest electronegativity, yields stable compounds under various conditions for utilization as electrodes, electrolytes, and membranes in energy devices. The book is an ideal reference f...

  5. Nanostructured materials for advanced energy conversion and storage devices

    Science.gov (United States)

    Aricò, Antonino Salvatore; Bruce, Peter; Scrosati, Bruno; Tarascon, Jean-Marie; van Schalkwijk, Walter

    2005-05-01

    New materials hold the key to fundamental advances in energy conversion and storage, both of which are vital in order to meet the challenge of global warming and the finite nature of fossil fuels. Nanomaterials in particular offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. This review describes some recent developments in the discovery of nanoelectrolytes and nanoelectrodes for lithium batteries, fuel cells and supercapacitors. The advantages and disadvantages of the nanoscale in materials design for such devices are highlighted.

  6. Advances in energy systems and technology v.5

    CERN Document Server

    Auer, Peter L

    1986-01-01

    Advances in Energy Systems and Technology: Volume 5 present articles that provides a critical review of specific topics within the general field of energy. It discusses the fuel cells for electric utility power generation. It addresses the classification of fuel cell technologies. Some of the topics covered in the book are the major components of the fuel cell; the phosphoric acid fuel cells; molten carbonate fuel cells; solid oxide fuel cells; electric utility fuel cell systems; and the integration within fuel cell power plants. The analysis of the solar ponds is covered. The operational

  7. Advanced Light Source Activity Report 2002

    Energy Technology Data Exchange (ETDEWEB)

    Duque, Theresa; Greiner, Annette; Moxon, Elizabeth; Robinson, Arthur; Tamura, Lori (Editors)

    2003-06-12

    This annual report of the Advanced Light Source details science highlights and facility improvements during the year. It also offers information on events sponsored by the facility, technical specifications, and staff and publication information.

  8. Advanced Light Source Activity Report 2002

    International Nuclear Information System (INIS)

    Duque, Theresa; Greiner, Annette; Moxon, Elizabeth; Robinson, Arthur; Tamura, Lori

    2003-01-01

    This annual report of the Advanced Light Source details science highlights and facility improvements during the year. It also offers information on events sponsored by the facility, technical specifications, and staff and publication information

  9. Fossil Energy Advanced Research and Technology Development Materials Program

    Energy Technology Data Exchange (ETDEWEB)

    Cole, N.C.; Judkins, R.R. (comps.)

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  10. Durability and damage tolerance of advanced wind energy turbines

    Energy Technology Data Exchange (ETDEWEB)

    Blom, A F; Gustavsson, A I

    1986-01-01

    This paper contains a critical review of the state of the art fatigue design and analysis of advanced wind energy conversion systems (WECS). Special emphasis is placed on the work in progress and carried out within the past few years in Sweden. However, the treatment is general in character and aims to identify areas where more work is needed in order to ensure a safe fatigue life assessment of WECS.

  11. Energy materials. Advances in characterization, modelling and application

    International Nuclear Information System (INIS)

    Andersen, N.H.; Eldrup, M.; Hansen, N.; Juul Jensen, D.; Nielsen, E.M.; Nielsen, S.F.; Soerensen, B.F.; Pedersen, A.S.; Vegge, T.; West, S.S.

    2008-01-01

    Energy-related topics in the modern world and energy research programmes cover the range from basic research to applications and structural length scales from micro to macro. Materials research and development is a central part of the energy area as break-throughs in many technologies depend on a successful development and validation of new or advanced materials. The Symposium is organized by the Materials Research Department at Risoe DTU - National Laboratory for Sustainable Energy. The Department concentrates on energy problems combining basic and applied materials research with special focus on the key topics: wind, fusion, superconductors and hydrogen. The symposium is based on these key topics and focus on characterization of materials for energy applying neutron, X-ray and electron diffraction. Of special interest is research carried out at large facilities such as reactors and synchrotrons, supplemented by other experimental techniques and modelling on different length scales that underpins experiments. The Proceedings contain 15 key note presentations and 30 contributed presentations, covering the abovementioned key topics relevant for the energy materials. The contributions clearly show the importance of materials research when developing sustainable energy technologies and also that many challenges remain to be approached. (BA)

  12. Energy Storage. Teachers Guide. Science Activities in Energy.

    Science.gov (United States)

    Jacobs, Mary Lynn, Ed.

    Included in this science activities energy package for students in grades 4-10 are 12 activities related to energy storage. Each activity is outlined on the front and back of a single sheet and is introduced by a key question. Most of the activities can be completed in the classroom with materials readily available in any community. Among the…

  13. ENEA activities on photovoltaic energy

    International Nuclear Information System (INIS)

    Coiante, D.; Messana, C.

    1989-01-01

    Photovoltaic conversion appears to be a promising technology for producing electricity. Photovoltaic (PV) solar cells directly convert sun radiation into electricity, without needing moving parts or any kind of fuel. In a long term perspective, PV conversion is expected to become an integrative energy source; at present, high costs are the main limiting factor of the diffusion of PV technology. Costs can be reduced through the joint effect of technological innovation and mass production: therefore, the Italian strategy consists in promoting the gradual enlargement of production volumes and, at the same time, the introduction of less expensive technologies and processes, as soon as they become available. The main responsibility for PV strategies and activities is assigned to ENEA, the Italian National Commission for Nuclear and Alternative Energy Sources. The ENEA five year plan (1985-1989) had allocated about 100 M$ in the PV sector and, as a result, today ENEA is the main national organization promoting PV energy development. ENEA programs include both in house research and external activities. The latter are carried out by universities and industrial firms and concern the whole PV production process from raw materials to complete systems. In Italy there are three main industrial enterprises which produce PV modules an systems: Italsolar (formerly Pragma, ENI group), Ansaldo (IRI group) and Helios Technology, a private firm. Their total annual production capacity amounts to about 2 MW per shift, and is expected to increase in the near future. In 1986, the whole production has been about 0.7 MW: a substantial share of this production has been marketed abroad, mostly as complete systems. (author). 6 tabs

  14. Carbon nanomaterials for advanced energy conversion and storage.

    Science.gov (United States)

    Dai, Liming; Chang, Dong Wook; Baek, Jong-Beom; Lu, Wen

    2012-04-23

    It is estimated that the world will need to double its energy supply by 2050. Nanotechnology has opened up new frontiers in materials science and engineering to meet this challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. Comparing to conventional energy materials, carbon nanomaterials possess unique size-/surface-dependent (e.g., morphological, electrical, optical, and mechanical) properties useful for enhancing the energy-conversion and storage performances. During the past 25 years or so, therefore, considerable efforts have been made to utilize the unique properties of carbon nanomaterials, including fullerenes, carbon nanotubes, and graphene, as energy materials, and tremendous progress has been achieved in developing high-performance energy conversion (e.g., solar cells and fuel cells) and storage (e.g., supercapacitors and batteries) devices. This article reviews progress in the research and development of carbon nanomaterials during the past twenty years or so for advanced energy conversion and storage, along with some discussions on challenges and perspectives in this exciting field. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Advanced Energy Retrofit Guide: Practical Ways to Improve Energy Performance; Grocery Stores (Revised) (Book)

    Energy Technology Data Exchange (ETDEWEB)

    Hendron, B.

    2013-07-01

    The U.S. Department of Energy developed the Advanced Energy Retrofit Guides (AERGs) to provide specific methodologies, information, and guidance to help energy managers and other stakeholders successfully plan and execute energy efficiency improvements. Detailed technical discussion is fairly limited in these guides. Instead, we emphasize actionable information, practical methodologies, diverse case studies, and unbiased evaluations of the most promising retrofit measures for each building type. A series of AERGs is under development, addressing key segments of the commercial building stock. Grocery stores were selected as one of the highest priority sectors, because they represent one of the most energy-intensive market segments.

  16. Masters Study in Advanced Energy and Fuels Management

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Kanchan [Southern Illinois Univ., Carbondale, IL (United States)

    2014-12-08

    There are currently three key drivers for the US energy sector a) increasing energy demand and b) environmental stewardship in energy production for sustainability and c) general public and governmental desire for domestic resources. These drivers are also true for energy nation globally. As a result, this sector is rapidly diversifying to alternate sources that would supplement or replace fossil fuels. These changes have created a need for a highly trained workforce with a the understanding of both conventional and emerging energy resources and technology to lead and facilitate the reinvention of the US energy production, rational deployment of alternate energy technologies based on scientific and business criteria while invigorating the overall economy. In addition, the current trends focus on the the need of Science, Technology, Engineering and Math (STEM) graduate education to move beyond academia and be more responsive to the workforce needs of businesses and the industry. The SIUC PSM in Advanced Energy and Fuels Management (AEFM) program was developed in response to the industries stated need for employees who combine technical competencies and workforce skills similar to all PSM degree programs. The SIUC AEFM program was designed to provide the STEM graduates with advanced technical training in energy resources and technology while simultaneously equipping them with the business management skills required by professional employers in the energy sector. Technical training include core skills in energy resources, technology and management for both conventional and emerging energy technologies. Business skills training include financial, personnel and project management. A capstone internship is also built into the program to train students such that they are acclimatized to the real world scenarios in research laboratories, in energy companies and in government agencies. The current curriculum in the SIUC AEFM will help fill the need for training both recent

  17. IFP Energies nouvelles. 2016 Activity Report - Innovating for energy

    International Nuclear Information System (INIS)

    2017-01-01

    . IFPEN's innovations are brought to market through close partnerships with industrial players and IFP Group subsidiaries. In both emerging and mature markets, IFPEN creates companies or acquires stake-holdings in companies of significant potential, either directly or via capital funds. In addition, and as part of collaboration agreements, IFPEN supports the development of SMEs which in turn benefit from its technical and legal expertise. IFPEN is an active player in numerous projects, technological platforms and networks within the context of the European Horizon 2020 framework program, and is contributing to the emergence of a European vision of research in the fields of mobility and energy. IFPEN works with over 100 academic and industrial partners, international companies and SMEs around the globe, through collaborative projects, consortiums or bilateral contracts. Against the backdrop of the energy transition, IFP School and IFP Training provide industry with the highly qualified personnel it requires to take up current and future technological, economic and environmental challenges. IFP School operates within a highly international environment and provides young graduate engineers with advanced postgraduate programs in the fields of energy, motor vehicles and the environment. Over 500 students from throughout the world graduate from IFP School each year. IFP Training, an IFPEN subsidiary, offers training programs to almost 15,000 employees from industry every year, securing their competitiveness. This documents brings together IFPEN's 2016 activity, sustainable development and financial reports

  18. An advanced real time energy management system for microgrids

    International Nuclear Information System (INIS)

    Elsied, Moataz; Oukaour, Amrane; Youssef, Tarek; Gualous, Hamid; Mohammed, Osama

    2016-01-01

    This paper presents an advanced Real-Time Energy Management System (RT-EMS) for Microgrid (MG) systems. The proposed strategy of RT-EMS capitalizes on the power of Genetic Algorithms (GAs) to minimize the energy cost and carbon dioxide emissions while maximizing the power of the available renewable energy resources. MATLAB-dSPACE Real-Time Interface Libraries (MLIB/MTRACE) are used as new tools to run the optimization code in Real-Time Operation (RTO). The communication system is developed based on ZigBee communication network which is designed to work in harsh radio environment where the control system is developed based on Advanced Lead-Lag Compensator (ALLC) which its parameters are tuned online to achieve fast convergence and good tracking response. The proposed RT-EMS along with its control and communication systems is experimentally tested to validate the results obtained from the optimization algorithm in a real MG testbed. The simulation and experimental results using real-world data highlight the effectiveness of the proposed RT-EMS for MGs applications. - Highlights: • Real-time energy management system of a typical MG is developed, and analyzed. • RT-EMS considered the nonlinear cost function and emission constraints. • MLIB/MTRACE libraries in dSPACE are used as new tools to run the optimization code. • The communication system is developed based on a Zigbee communication network. • Control system parameters are tuned online to achieve good tracking response.

  19. Advanced Photonic Processes for Photovoltaic and Energy Storage Systems.

    Science.gov (United States)

    Sygletou, Maria; Petridis, Constantinos; Kymakis, Emmanuel; Stratakis, Emmanuel

    2017-10-01

    Solar-energy harvesting through photovoltaic (PV) conversion is the most promising technology for long-term renewable energy production. At the same time, significant progress has been made in the development of energy-storage (ES) systems, which are essential components within the cycle of energy generation, transmission, and usage. Toward commercial applications, the enhancement of the performance and competitiveness of PV and ES systems requires the adoption of precise, but simple and low-cost manufacturing solutions, compatible with large-scale and high-throughput production lines. Photonic processes enable cost-efficient, noncontact, highly precise, and selective engineering of materials via photothermal, photochemical, or photophysical routes. Laser-based processes, in particular, provide access to a plethora of processing parameters that can be tuned with a remarkably high degree of precision to enable innovative processing routes that cannot be attained by conventional approaches. The focus here is on the application of advanced light-driven approaches for the fabrication, as well as the synthesis, of materials and components relevant to PV and ES systems. Besides presenting recent advances on recent achievements, the existing limitations are outlined and future possibilities and emerging prospects discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. CEA nuclear energy Directorate - Activity report 2012

    International Nuclear Information System (INIS)

    2013-01-01

    After an overview of the activities of the Directorate at the international level, of its scientific activities, and of the consideration given to quality, and a presentation of the transverse program on advanced materials, this report proposes presentations of activities in different domains: future nuclear industrial systems (reactors of 4. generation, back-end of the future cycle, sustainable management of nuclear materials, fundamental scientific and technological research), optimization of the present industrial nuclear activity (reactors of 2. and 3. generation, front-end and back-end of the fuel cycle), the main tools for nuclear development (numerical simulation, the Jules Horowitz reactor), valorisation, economic support of Haute-Marne and Meuse territories (the Syndiese project), nuclear dismantling and decontamination (dismantling projects, projects and works in Fontenay-aux-Roses, Grenoble and Saclay, waste and material flow management, nuclear service facilities, transports). It also presents the activities of some specific CEA centres like Marcoule (R and D in fuel cycle), Cadarache (future energies) and Saclay (nuclear sciences and simulation of reactors and fuel cycle)

  1. High temperature electrical energy storage: advances, challenges, and frontiers.

    Science.gov (United States)

    Lin, Xinrong; Salari, Maryam; Arava, Leela Mohana Reddy; Ajayan, Pulickel M; Grinstaff, Mark W

    2016-10-24

    With the ongoing global effort to reduce greenhouse gas emission and dependence on oil, electrical energy storage (EES) devices such as Li-ion batteries and supercapacitors have become ubiquitous. Today, EES devices are entering the broader energy use arena and playing key roles in energy storage, transfer, and delivery within, for example, electric vehicles, large-scale grid storage, and sensors located in harsh environmental conditions, where performance at temperatures greater than 25 °C are required. The safety and high temperature durability are as critical or more so than other essential characteristics (e.g., capacity, energy and power density) for safe power output and long lifespan. Consequently, significant efforts are underway to design, fabricate, and evaluate EES devices along with characterization of device performance limitations such as thermal runaway and aging. Energy storage under extreme conditions is limited by the material properties of electrolytes, electrodes, and their synergetic interactions, and thus significant opportunities exist for chemical advancements and technological improvements. In this review, we present a comprehensive analysis of different applications associated with high temperature use (40-200 °C), recent advances in the development of reformulated or novel materials (including ionic liquids, solid polymer electrolytes, ceramics, and Si, LiFePO 4 , and LiMn 2 O 4 electrodes) with high thermal stability, and their demonstrative use in EES devices. Finally, we present a critical overview of the limitations of current high temperature systems and evaluate the future outlook of high temperature batteries with well-controlled safety, high energy/power density, and operation over a wide temperature range.

  2. Reducing global NOx emissions: developing advanced energy and transportation technologies.

    Science.gov (United States)

    Bradley, Michael J; Jones, Brian M

    2002-03-01

    Globally, energy demand is projected to continue to increase well into the future. As a result, global NOx emissions are projected to continue on an upward trend for the foreseeable future as developing countries increase their standards of living. While the US has experienced improvements in reducing NOx emissions from stationary and mobile sources to reduce ozone, further progress is needed to reduce the health and ecosystem impacts associated with NOx emissions. In other parts of the world, (in developing countries in particular) NOx emissions have been increasing steadily with the growth in demand for electricity and transportation. Advancements in energy and transportation technologies may help avoid this increase in emissions if appropriate policies are implemented. This paper evaluates commercially available power generation and transportation technologies that produce fewer NOx emissions than conventional technologies, and advanced technologies that are on the 10-year commercialization horizon. Various policy approaches will be evaluated which can be implemented on the regional, national and international levels to promote these advanced technologies and ultimately reduce NOx emissions. The concept of the technology leap is offered as a possibility for the developing world to avoid the projected increases in NOx emissions.

  3. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    Energy Technology Data Exchange (ETDEWEB)

    Soloiu, Valentin A. [Georgia Southern Univ., Statesboro, GA (United States)

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

  4. 78 FR 9446 - Advance Nanotech, Inc., Advanced ID Corp., Aeon Holdings, Inc. (n/k/a BCM Energy Partners, Inc...

    Science.gov (United States)

    2013-02-08

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Advance Nanotech, Inc., Advanced ID Corp., Aeon Holdings, Inc. (n/k/a BCM Energy Partners, Inc.), ANTS Software, Inc., Beauty Brands Group, Inc... current and accurate information concerning the securities of Advanced Nanotech, Inc. because it has not...

  5. Advanced Dark Energy Physics Telescope (ADEPT). Final Report

    International Nuclear Information System (INIS)

    Bennett, Charles L.

    2009-01-01

    In 2006, we proposed to NASA a detailed concept study of ADEPT (the Advanced Dark Energy Physics Telescope), a potential space mission to reliably measure the time-evolution of dark energy by conducting the largest effective volume survey of the universe ever done. A peer-review panel of scientific, management, and technical experts reported back the highest possible 'excellent' rating for ADEPT. We have since made substantial advances in the scientific and technical maturity of the mission design. With this Department of Energy (DOE) award we were granted supplemental funding to support specific extended research items that were not included in the NASA proposal, many of which were intended to broadly advance future dark energy research, as laid out by the Dark Energy Task Force (DETF). The proposed work had three targets: (1) the adaptation of large-format infrared arrays to a 2 micron cut-off; (2) analytical research to improve the understanding of the dark energy figure-of- merit; and (3) extended studies of baryon acoustic oscillation systematic uncertainties. Since the actual award was only for ∼10% of the proposed amount item (1) was dropped and item (2) work was severely restricted, consistent with the referee reviews of the proposal, although there was considerable contradictions between reviewer comments and several comments that displayed a lack of familiarity with the research. None the less, item (3) was the focus of the work. To characterize the nature of the dark energy, ADEPT is designed to observe baryon acoustic oscillations (BAO) in a large galaxy redshift survey and to obtain substantial numbers of high-redshift Type Ia supernovae (SNe Ia). The 2003 Wilkinson Microwave Anisotropy Probe (WMAP) made a precise determination of the BAO 'standard ruler' scale, as it was imprinted on the cosmic microwave background (CMB) at z ∼ 1090. The standard ruler was also imprinted on the pattern of galaxies, and was first detected in 2005 in Sloan Digital

  6. FY09 Advanced Instrumentation and Active Interrogation Research for Safeguards

    International Nuclear Information System (INIS)

    Chichester, D.L.; Pozzi, S.A.; Seabury, E.H.; Dolan, J.L.; Flaska, M.; Johnson, J.T.; Watson, S.M.; Wharton, J.

    2009-01-01

    Multiple small-scale projects have been undertaken to investigate advanced instrumentation solutions for safeguard measurement challenges associated with advanced fuel cycle facilities and next-generation fuel reprocessing installations. These activities are in support of the U.S. Department of Energy's Fuel Cycle Research and Development program and its Materials Protection, Accounting, and Control for Transmutation (MPACT) campaign. (1) Work was performed in a collaboration with the University of Michigan (Prof. Sara Pozzi, co-PI) to investigate the use of liquid-scintillator radiation detectors for assaying mixed-oxide (MOX) fuel, to characterize its composition and to develop advanced digital pulse-shape discrimination algorithms for performing time-correlation measurements in the MOX fuel environment. This work included both simulations and experiments and has shown that these techniques may provide a valuable approach for use within advanced safeguard measurement scenarios. (2) Work was conducted in a collaboration with Oak Ridge National Laboratory (Dr. Paul Hausladen, co-PI) to evaluate the strengths and weaknesses of the fast-neutron coded-aperture imaging technique for locating and characterizing fissile material, and as a tool for performing hold-up measurements in fissile material handling facilities. This work involved experiments at Idaho National Laboratory, using MOX fuel and uranium metal, in both passive and active interrogation configurations. A complete analysis has not yet been completed but preliminary results suggest several potential uses for the fast neutron imaging technique. (3) Work was carried out to identify measurement approaches for determining nitric acid concentration in the range of 1-4 M and beyond. This work included laboratory measurements to investigate the suitability of prompt-gamma neutron activation analysis for this measurement and product reviews of other commercial solutions. Ultrasonic density analysis appears to be

  7. Some advances in medical applications of low energy accelerators

    Science.gov (United States)

    Valković, V.; Moschini, G.

    1991-05-01

    Medical applications of low energy accelerators include: the use of nuclear analytical methods and procedures for laboratory studies and routine measurements; material productions and modifications to meet special requirements; radioisotope productions and their applications in radiopharmaceuticals as well as in positron emission tomography; and radiotherapy with ions, based on improved understanding of the interaction of charged particles with living tissue. Some of the recent advances in these fields are critically summarized. The plan for an improved charged particle facility in a hospital environment dedicated to applications in biology and medicine is presented.

  8. Assessment report of research and development activities. Activity: 'Advanced science research' (Pre-review report)

    International Nuclear Information System (INIS)

    2010-11-01

    Japan Atomic Energy Agency (hereinafter referred to as 'JAEA') consulted an assessment committee, 'Evaluation Committee of Research Activities for Advanced Science Research' (hereinafter referred to as 'Committee') for prior assessment of 'Advanced Science Research,' in accordance with 'General Guideline for the Evaluation of Government Research and Development (R and D) Activities' by Cabinet Office, Government of Japan, 'Guideline for Evaluation of R and D in Ministry of Education, Culture, Sports, Science and Technology' and 'Regulation on Conduct for Evaluation of R and D Activities' by JAEA. In response to the JAEA's request, the Committee assessed the research program and activities of the Advanced Science Research Center (hereinafter referred to as 'ASRC') for the period of five years from April 2010. The Committee evaluated the management and the research program of the ASRC based on the explanatory documents prepared by the ASRC and the oral presentations with questions-and-answers by the Director and the research group leaders. This report summarizes the result of the assessment by the Committee with the Committee report attached from page 7. (author)

  9. Assessment report on research and development activities. Activity: 'Advanced science research' (Interim report)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-15

    Japan Atomic Energy Agency (hereinafter referred to as 'JAEA') consulted an assessment committee, 'Evaluation Committee of Research Activities for Advanced Science Research' (hereinafter referred to as 'Committee') for interim assessment of 'Advanced Science Research,' in accordance with 'General Guideline for the Evaluation of Government Research and Development (R and D) Activities' by Cabinet Office, Government of Japan, 'Guideline for Evaluation of R and D in Ministry of Education, Culture, Sports, Science and Technology' and 'Regulation on Conduct for Evaluation of R and D Activities' by JAEA. In response to the JAEA's request, the Committee assessed the research programs and activities of the Advanced Science Research Center (hereinafter referred to as 'ASRC') for the period of two years from April 2010. The Committee evaluated the management and the research programs of the ASRC based on the explanatory documents prepared by the ASRC and the oral presentations with questions-and-answers by the Director and the research group leaders. This report summarizes the result of the assessment by the Committee with the Committee report attached from page 7. (author)

  10. Assessment report of research and development activities. Activity: advanced science research' (Interim report)

    International Nuclear Information System (INIS)

    2008-08-01

    Japan Atomic Energy Agency (hereinafter referred to as 'JAEA') consults an assessment committee, 'Evaluation Committee of Research Activities for Advanced Science Research' (hereinafter referred to as 'Committee') for interim assessment of 'Advanced Science Research,' in accordance with General Guideline for the Evaluation of Government Research and Development (R and D) Activities' by Cabinet Office, Government of Japan, 'Guideline for Evaluation of R and D in Ministry of Education, Culture, Sports, Science and Technology' and 'Regulation on Conduct for Evaluation of R and D Activities' by JAEA. In response to the JAEA's request, the Committee assessed the research program of the Advanced Science Research Center (hereinafter referred to as 'ASRC') during the period of two years from October 2005 to September 2007. The Committee evaluated the management and research activities of the ASRC based on the explanatory documents prepared by the ASRC, the oral presentations with questions-and-answers by the Director and the research group leaders, and interviews from group members through on-site visits by the Committee members. One CD-ROM is attached as an appendix. (J.P.N.)

  11. Cooperative technology development: An approach to advancing energy technology

    International Nuclear Information System (INIS)

    Stern, T.

    1989-09-01

    Technology development requires an enormous financial investment over a long period of time. Scarce national and corporate resources, the result of highly competitive markets, decreased profit margins, wide currency fluctuations, and growing debt, often preclude continuous development of energy technology by single entities, i.e., corporations, institutions, or nations. Although the energy needs of the developed world are generally being met by existing institutions, it is becoming increasingly clear that existing capital formation and technology transfer structures have failed to aid developing nations in meeting their growing electricity needs. This paper will describe a method for meeting the electricity needs of the developing world through technology transfer and international cooperative technology development. The role of nuclear power and the advanced passive plant design will be discussed. (author)

  12. Advancing solar energy forecasting through the underlying physics

    Science.gov (United States)

    Yang, H.; Ghonima, M. S.; Zhong, X.; Ozge, B.; Kurtz, B.; Wu, E.; Mejia, F. A.; Zamora, M.; Wang, G.; Clemesha, R.; Norris, J. R.; Heus, T.; Kleissl, J. P.

    2017-12-01

    As solar power comprises an increasingly large portion of the energy generation mix, the ability to accurately forecast solar photovoltaic generation becomes increasingly important. Due to the variability of solar power caused by cloud cover, knowledge of both the magnitude and timing of expected solar power production ahead of time facilitates the integration of solar power onto the electric grid by reducing electricity generation from traditional ancillary generators such as gas and oil power plants, as well as decreasing the ramping of all generators, reducing start and shutdown costs, and minimizing solar power curtailment, thereby providing annual economic value. The time scales involved in both the energy markets and solar variability range from intra-hour to several days ahead. This wide range of time horizons led to the development of a multitude of techniques, with each offering unique advantages in specific applications. For example, sky imagery provides site-specific forecasts on the minute-scale. Statistical techniques including machine learning algorithms are commonly used in the intra-day forecast horizon for regional applications, while numerical weather prediction models can provide mesoscale forecasts on both the intra-day and days-ahead time scale. This talk will provide an overview of the challenges unique to each technique and highlight the advances in their ongoing development which come alongside advances in the fundamental physics underneath.

  13. Advanced model for fast assessment of piezoelectric micro energy harvesters

    Directory of Open Access Journals (Sweden)

    Raffaele eArdito

    2016-04-01

    Full Text Available The purpose of this work is to present recent advances in modelling and design of piezoelectric energy harvesters, in the framework of Micro-Electro-Mechanical Systems (MEMS. More specifically, the case of inertial energy harvesting is considered, in the sense that the kinetic energy due to environmental vibration is transformed into electrical energy by means of piezoelectric transduction. The execution of numerical analyses is greatly important in order to predict the actual behaviour of MEMS devices and to carry out the optimization process. In the common practice, the results are obtained by means of burdensome 3D Finite Element Analyses (FEA.The case of beams could be treated by applying 1D models, which can enormously reduce the computational burden with obvious benefits in the case of repeated analyses. Unfortunately, the presence of piezoelectric coupling may entail some serious issues in view of its intrinsically three-dimensional behaviour. In this paper, a refined, yet simple, model is proposed with the objective of retaining the Euler-Bernoulli beam model, with the inclusion of effects connected to the actual three-dimensional shape of the device. The proposed model is adopted to evaluate the performances of realistic harvesters, both in the case of harmonic excitation and for impulsive loads.

  14. Development of the Advanced Energy Design Guide for K-12 Schools -- 50% Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    Bonnema, E.; Leach, M.; Pless, S.; Torcellini, P.

    2013-02-01

    This Technical Support Document (TSD) describes the process and methodology for the development of the Advanced Energy Design Guide for K-12 School Buildings: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-K12) (ASHRAE et al. 2011a). The AEDG-K12 provides recommendations for achieving 50% whole-building energy savings in K-12 schools over levels achieved by following ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings (Standard 90.1-2004) (ASHRAE 2004b). The AEDG-K12 was developed in collaboration with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IES), the U.S. Green Building Council (USGBC), and the U.S. Department of Energy (DOE).

  15. Advanced Reactor Systems and Future Energy Market Needs

    International Nuclear Information System (INIS)

    Magwood, W.; Keppler, J.H.; Paillere, Henri; ); Gogan, K.; Ben Naceur, K.; Baritaud, M.; ); Shropshire, D.; ); Wilmshurst, N.; Janssens, A.; Janes, J.; Urdal, H.; Finan, A.; Cubbage, A.; Stoltz, M.; Toni, J. de; Wasylyk, A.; Ivens, R.; Paramonov, D.; Franceschini, F.; Mundy, Th.; Kuran, S.; Edwards, L.; Kamide, H.; Hwang, I.; Hittner, D.; ); Levesque, C.; LeBlanc, D.; Redmond, E.; Rayment, F.; Faudon, V.; Finan, A.; Gauche, F.

    2017-04-01

    It is clear that future nuclear systems will operate in an environment that will be very different from the electricity systems that accompanied the fast deployment of nuclear power plants in the 1970's and 1980's. As countries fulfil their commitment to de-carbonise their energy systems, low-carbon sources of electricity and in particular variable renewables, will take large shares of the overall generation capacities. This is challenging since in most cases, the timescale for nuclear technology development is far greater than the speed at which markets and policy/regulation frameworks can change. Nuclear energy, which in OECD countries is still the largest source of low-carbon electricity, has a major role to play as a low-carbon dispatchable technology. In its 2 degree scenarios, the International Energy Agency (IEA) projects that nuclear capacity globally could reach over 900 GW by 2050, with a share of electricity generation rising from less than 11% today to about 16%. Nuclear energy could also play a role in the decarbonization of the heat sector, by targeting non-electric applications. The workshop discussed how energy systems are evolving towards low-carbon systems, what the future of energy market needs are, the changing regulatory framework from both the point of view of safety requirements and environmental constraints, and how reactor developers are taking these into account in their designs. In terms of technology, the scope covered all advanced reactor systems under development today, including evolutionary light water reactors (LWRs), small modular reactors (SMRs) - whether LWR technology-based or not, and Generation IV (Gen IV) systems. This document brings together the available presentations (slides) of the workshop

  16. Rechargeable dual-metal-ion batteries for advanced energy storage.

    Science.gov (United States)

    Yao, Hu-Rong; You, Ya; Yin, Ya-Xia; Wan, Li-Jun; Guo, Yu-Guo

    2016-04-14

    Energy storage devices are more important today than any time before in human history due to the increasing demand for clean and sustainable energy. Rechargeable batteries are emerging as the most efficient energy storage technology for a wide range of portable devices, grids and electronic vehicles. Future generations of batteries are required to have high gravimetric and volumetric energy, high power density, low price, long cycle life, high safety and low self-discharge properties. However, it is quite challenging to achieve the above properties simultaneously in state-of-the-art single metal ion batteries (e.g. Li-ion batteries, Na-ion batteries and Mg-ion batteries). In this contribution, hybrid-ion batteries in which various metal ions simultaneously engage to store energy are shown to provide a new perspective towards advanced energy storage: by connecting the respective advantages of different metal ion batteries they have recently attracted widespread attention due to their novel performances. The properties of hybrid-ion batteries are not simply the superposition of the performances of single ion batteries. To enable a distinct description, we only focus on dual-metal-ion batteries in this article, for which the design and the benefits are briefly discussed. We enumerate some new results about dual-metal-ion batteries and demonstrate the mechanism for improving performance based on knowledge from the literature and experiments. Although the search for hybrid-ion batteries is still at an early age, we believe that this strategy would be an excellent choice for breaking the inherent disadvantages of single ion batteries in the near future.

  17. Biomass supply management for advanced energy: applications in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Ranney, J W [Joint Institute for Energy and Environment, Knoxville, TN (United States); Perlack, R D [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    1995-12-01

    Advanced biomass energy systems, including new biomass resource enhancement technologies, should be developed only where compelling situations for investors or communities exist to economically do so. These situations, or minimum viable operating conditions, are assessed from a pragmatic perspective. They are determined by specific circumstances and divergent interests that take time to define and integrate. Customized solutions are necessary and can change quickly with geography and market circumstances New technologies offer more options but are not necessarily the best. The example of energy crop technology is used to demonstrate the interdependencies that exist between new resource enhancement technology and biomass energy systems operations. The ability to genetically increase the energy density of energy crops is compared to other enhancement measures such as increasing the number of tonnes grown per hectare-year, reducing costs per tonne and improving other characteristics. Issues that need to be considered include significant knowledge gaps, lack of commitments in R and D, specificity of conversion system requirements, handling capabilities and opportunity costs. Broader biomass procurement strategies, which may be more important than resource enhancement technologies, are discussed. Biomass cost-supply is utilized as a strong analytical feature to evaluate the effectiveness of biomass procurement strategies and new biomass production technologies. Some past experiences are reviewed. Cost-supply is assessed from the perspective of the whole biomass energy system to expose the interdependencies between production operations, conversion scale and technologies, and community markets and service. Investment limits, for example, may be as important a determinant as the cost-efficiency of a new technology, which, in turn, affects biomass cost-supply-quality requirements. The cost of new technologies can then be compared to the changed performance of the overall

  18. Biomass supply management for advanced energy: applications in developing countries

    International Nuclear Information System (INIS)

    Ranney, J.W.; Perlack, R.D.

    1995-01-01

    Advanced biomass energy systems, including new biomass resource enhancement technologies, should be developed only where compelling situations for investors or communities exist to economically do so. These situations, or minimum viable operating conditions, are assessed from a pragmatic perspective. They are determined by specific circumstances and divergent interests that take time to define and integrate. Customized solutions are necessary and can change quickly with geography and market circumstances New technologies offer more options but are not necessarily the best. The example of energy crop technology is used to demonstrate the interdependencies that exist between new resource enhancement technology and biomass energy systems operations. The ability to genetically increase the energy density of energy crops is compared to other enhancement measures such as increasing the number of tonnes grown per hectare-year, reducing costs per tonne and improving other characteristics. Issues that need to be considered include significant knowledge gaps, lack of commitments in R and D, specificity of conversion system requirements, handling capabilities and opportunity costs. Broader biomass procurement strategies, which may be more important than resource enhancement technologies, are discussed. Biomass cost-supply is utilized as a strong analytical feature to evaluate the effectiveness of biomass procurement strategies and new biomass production technologies. Some past experiences are reviewed. Cost-supply is assessed from the perspective of the whole biomass energy system to expose the interdependencies between production operations, conversion scale and technologies, and community markets and service. Investment limits, for example, may be as important a determinant as the cost-efficiency of a new technology, which, in turn, affects biomass cost-supply-quality requirements. The cost of new technologies can then be compared to the changed performance of the overall

  19. Indicative energy technology assessment of advanced rechargeable batteries

    International Nuclear Information System (INIS)

    Hammond, Geoffrey P.; Hazeldine, Tom

    2015-01-01

    Highlights: • Several ‘Advanced Rechargeable Battery Technologies’ (ARBT) have been evaluated. • Energy, environmental, economic, and technical appraisal techniques were employed. • Li-Ion Polymer (LIP) batteries exhibited the most attractive energy and power metrics. • Lithium-Ion batteries (LIB) and LIP batteries displayed the lowest CO 2 and SO 2 emissions per kW h. • Comparative costs for LIB, LIP and ZEBRA batteries were estimated against Nickel–Cadmium cells. - Abstract: Several ‘Advanced Rechargeable Battery Technologies’ (ARBT) have been evaluated in terms of various energy, environmental, economic, and technical criteria. Their suitability for different applications, such as electric vehicles (EV), consumer electronics, load levelling, and stationary power storage, have also been examined. In order to gain a sense of perspective regarding the performance of the ARBT [including Lithium-Ion batteries (LIB), Li-Ion Polymer (LIP) and Sodium Nickel Chloride (NaNiCl) {or ‘ZEBRA’} batteries] they are compared to more mature Nickel–Cadmium (Ni–Cd) batteries. LIBs currently dominate the rechargeable battery market, and are likely to continue to do so in the short term in view of their excellent all-round performance and firm grip on the consumer electronics market. However, in view of the competition from Li-Ion Polymer their long-term future is uncertain. The high charge/discharge cycle life of Li-Ion batteries means that their use may grow in the electric vehicle (EV) sector, and to a lesser extent in load levelling, if safety concerns are overcome and costs fall significantly. LIP batteries exhibited attractive values of gravimetric energy density, volumetric energy density, and power density. Consequently, they are likely to dominate the consumer electronics market in the long-term, once mass production has become established, but may struggle to break into other sectors unless their charge/discharge cycle life and cost are improved

  20. A Grounded Theory Approach to Physical Activity and Advanced Cancer

    Directory of Open Access Journals (Sweden)

    Sonya S. Lowe

    2015-11-01

    Full Text Available Background: Physical activity has demonstrated benefits in cancer-related fatigue and physical functioning in early-stage cancer patients, however the role of physical activity at the end stage of cancer has not been established. To challenge positivist–empiricist assumptions, I am seeking to develop a new theoretical framework that is grounded in the advanced cancer patient’s experience of activity. Aim: To gain an in-depth understanding of the experience of activity and quality of life in advanced cancer patients. Objectives: (1 To explore the meaning of activity for advanced cancer patients in the context of their day-to-day life, (2 to elicit advanced cancer patients’ perceptions of activity with respect to their quality of life, and (3 to elicit advanced cancer patients’ views of barriers and facilitators to activity in the context of their day-to-day life. Study Design: A two-phase, cross-sectional, qualitative study will be conducted through the postpositivist lens of subtle realism and informed by the principles of grounded theory methods. Study Methods: Advanced cancer patients will be recruited through the outpatient department of a tertiary cancer center. For Phase one, participants will wear an activPAL™ activity monitor and fill out a daily record sheet for seven days duration. For Phase two, the activity monitor output and daily record sheets will be used as qualitative probes for face-to-face, semistructured interviews. Concurrent coding, constant comparative analysis, and theoretical sampling will continue with the aim of achieving as close as possible to theoretical saturation. Ethics and Discussion: Ethical and scientific approval will be obtained by all local institutional review boards prior to study commencement. The findings will generate new mid-level theory about the experience of activity and quality of life in advanced cancer patients and aid in the development of a new theoretical framework for designing

  1. Advanced Electric Propulsion NextSTEP BAA Activity

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the AES Advanced Electric Propulsion Next Space Technologies for Exploration Partnerships (NextSTEP) Broad Agency Announcement (BAA) activity is to...

  2. Advancing Drug Discovery through Enhanced Free Energy Calculations.

    Science.gov (United States)

    Abel, Robert; Wang, Lingle; Harder, Edward D; Berne, B J; Friesner, Richard A

    2017-07-18

    A principal goal of drug discovery project is to design molecules that can tightly and selectively bind to the target protein receptor. Accurate prediction of protein-ligand binding free energies is therefore of central importance in computational chemistry and computer aided drug design. Multiple recent improvements in computing power, classical force field accuracy, enhanced sampling methods, and simulation setup have enabled accurate and reliable calculations of protein-ligands binding free energies, and position free energy calculations to play a guiding role in small molecule drug discovery. In this Account, we outline the relevant methodological advances, including the REST2 (Replica Exchange with Solute Temperting) enhanced sampling, the incorporation of REST2 sampling with convential FEP (Free Energy Perturbation) through FEP/REST, the OPLS3 force field, and the advanced simulation setup that constitute our FEP+ approach, followed by the presentation of extensive comparisons with experiment, demonstrating sufficient accuracy in potency prediction (better than 1 kcal/mol) to substantially impact lead optimization campaigns. The limitations of the current FEP+ implementation and best practices in drug discovery applications are also discussed followed by the future methodology development plans to address those limitations. We then report results from a recent drug discovery project, in which several thousand FEP+ calculations were successfully deployed to simultaneously optimize potency, selectivity, and solubility, illustrating the power of the approach to solve challenging drug design problems. The capabilities of free energy calculations to accurately predict potency and selectivity have led to the advance of ongoing drug discovery projects, in challenging situations where alternative approaches would have great difficulties. The ability to effectively carry out projects evaluating tens of thousands, or hundreds of thousands, of proposed drug candidates

  3. NATO Advanced Study Institute on Magnetic Resonance : Introduction, Advanced Topics and Applications to Fossil Energy

    CERN Document Server

    Fraissard, Jacques

    1984-01-01

    This volume contains the lectures presented at an Advanced Study Institute on "Magnetic Resonance Techniques in Fossil Energy Problems," which was held at the village of Maleme, Crete, in July of 1983. As of this writing, a different popular attitude prevails from that when the ASI was proposed as far as how critical the world energy picture is. In the popular press, a panglossian attitude (the "petroleum glut" of the 80's) has replaced the jeremiads of the 70's ( a catastrophic "energy crisis"). Yet, there are certain important constants: (a) for the foreseeable future, fossil energy sources (petroleum, coal, oil shale, etc. ) will continue to be of paramount importance; and (b) science and technology of the highest order are needed to extend the fossil ener~y resource base and to utilize it in a cost-effective manner that is also environmentally acceptable. It is precisely this second item that this volume addresses. The volume introduces the phenomenology of magnetic resonance ~n a unified and detailed man...

  4. Advanced Extravehicular Activity Pressure Garment Requirements Development

    Science.gov (United States)

    Ross, Amy

    2014-01-01

    The NASA Johnson Space Center advanced pressure garment technology development team is addressing requirements development for exploration missions. Lessons learned from the Z-2 high fidelity prototype development have reiterated that clear low-level requirements and verification methods reduce risk to the government, improve efficiency in pressure garment design efforts, and enable the government to be a smart buyer. The expectation is to provide requirements at the specification level that are validated so that their impact on pressure garment design is understood. Additionally, the team will provide defined verification protocols for the requirements. However, in reviewing exploration space suit high level requirements there are several gaps in the team's ability to define and verify related lower level requirements. This paper addresses the efforts in requirement areas such as mobility/fit/comfort and environmental protection (dust, radiation, plasma, secondary impacts) to determine the by what method the requirements can be defined and use of those methods for verification. Gaps exist at various stages. In some cases component level work is underway, but no system level effort has begun, in other cases no effort has been initiated to close the gap. Status of ongoing efforts and potential approaches to open gaps are discussed.

  5. Advanced Range Safety System for High Energy Vehicles

    Science.gov (United States)

    Claxton, Jeffrey S.; Linton, Donald F.

    2002-01-01

    The advanced range safety system project is a collaboration between the National Aeronautics and Space Administration and the United States Air Force to develop systems that would reduce costs and schedule for safety approval for new classes of unmanned high-energy vehicles. The mission-planning feature for this system would yield flight profiles that satisfy the mission requirements for the user while providing an increased quality of risk assessment, enhancing public safety. By improving the speed and accuracy of predicting risks to the public, mission planners would be able to expand flight envelopes significantly. Once in place, this system is expected to offer the flexibility of handling real-time risk management for the high-energy capabilities of hypersonic vehicles including autonomous return-from-orbit vehicles and extended flight profiles over land. Users of this system would include mission planners of Space Launch Initiative vehicles, space planes, and other high-energy vehicles. The real-time features of the system could make extended flight of a malfunctioning vehicle possible, in lieu of an immediate terminate decision. With this improved capability, the user would have more time for anomaly resolution and potential recovery of a malfunctioning vehicle.

  6. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    Energy Technology Data Exchange (ETDEWEB)

    Mekhiche, Mike [Principal Investigator; Dufera, Hiz [Project Manager; Montagna, Deb [Business Point of Contact

    2012-10-29

    The project conducted under DOE contract DE‐EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven‐stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy technology to deliver a device with much increased power delivery. Scaling‐up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke‐ unlimited Power Take‐Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  7. Sol-gel Technology and Advanced Electrochemical Energy Storage Materials

    Science.gov (United States)

    Chu, Chung-tse; Zheng, Haixing

    1996-01-01

    Advanced materials play an important role in the development of electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. The sol-gel process is a versatile solution for use in the fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. This processing technique is particularly useful in producing porous materials with high surface area and low density, two of the most desirable characteristics for electrode materials. In addition,the porous surface of gels can be modified chemically to create tailored surface properties, and inorganic/organic micro-composites can be prepared for improved material performance device fabrication. Applications of several sol-gel derived electrode materials in different energy storage devices are illustrated in this paper. V2O5 gels are shown to be a promising cathode material for solid state lithium batteries. Carbon aerogels, amorphous RuO2 gels and sol-gel derived hafnium compounds have been studied as electrode materials for high energy density and high power density electrochemical capacitors.

  8. Tribology: research and development needs in advanced energy technology

    International Nuclear Information System (INIS)

    Johnson, R.N.

    1977-01-01

    Poorly controlled wear and friction affects energy conservation, material conservation, and the reliability and safety of mechanical systems, and is estimated to cost U.S. industries $16 billion/yr. ERDA's National Friction, Wear, and Self-Welding Program and its accomplishments are described. This program includes studies of wear and friction problems in high temperature and unusual environments, e.g., as experienced by LMFBR components, and common to much technology involving energy conversion using fossil-fuel, geothermal, nuclear, and solar resources. Program activities for tribology information handling and wear and friction testing are discussed

  9. Activated alumina preparation and characterization: The review on recent advancement

    Science.gov (United States)

    Rabia, A. R.; Ibrahim, A. H.; Zulkepli, N. N.

    2018-03-01

    Aluminum and aluminum based material are significant industrial materials synthesis because of their abandonment, low weight and high-quality corrosion resistance. The most advances in aluminum processing are the ability to synthesize it's under suitable chemical composition and conditions, a porous structure can be formed on the surface. Activated alumina particles (AAP) synthesized by the electrochemically process from aluminum have gained serious attention, inexpensive material that can be employed for water filtration due to its active surface. Thus, the paper present a review study based on recent progress and advances in synthesizing activated alumina, various techniques currently being used in preparing activated alumina and its characteristics are studied and summarized

  10. Advanced fusion technology research and development. Annual report to the U.S. Department of Energy

    International Nuclear Information System (INIS)

    2001-01-01

    OAK-B135 The General Atomics (GA) Advanced Fusion Technology program seeks to advance the knowledge base needed for next-generation fusion experiments, and ultimately for an economical and environmentally attractive fusion energy source. To achieve this objective, they carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and they conduct research to develop basic and applied knowledge about these technologies. GA's Advanced Fusion Technology program derives from, and draws on, the physics and engineering expertise built up by many years of experience in designing, building, and operating plasma physics experiments. The technology development activities take full advantage of the GA DIII-D program, the DIII-D facility, the Inertial Confinement Fusion (ICF) program and the ICF Target Fabrication facility. The report summarizes GA's FY00 work in the areas of Fusion Power Plant Studies, Next Step Options, Advanced Liquid Plasma Facing Surfaces, Advanced Power Extraction Study, Plasma Interactive Materials, Radiation Testing of Magnetic Coil, Vanadium Component Demonstration, RF Technology, Inertial Fusion Energy Target Supply System, ARIES Integrated System Studies, and Spin-offs Brochure. The work in these areas continues to address many of the issues that must be resolved for the successful construction and operation of next-generation experiments and, ultimately, the development of safe, reliable, economic fusion power plants

  11. Low Energy Reaction cell for advanced space power applications

    International Nuclear Information System (INIS)

    Miley, George H.; Rice, Eric

    2001-01-01

    Power units using Low Energy Reactions (LENRs) are under study as a radical new approach to power units that could potentially replace nuclear and chemical power sources for a number of space applications. These cells employ thin metallic films (order of 500 deg., using variously Ni, Pd and Ti) as cathodes with various electrolytes such as 0.5-1 molar lithium sulfate in light water. Power densities exceeding 10 W/cm3 in the thin-films have been achieved. An ultimate goal is to incorporate this thin-film technology into a 'tightly packed' cell design where the film material occupies ∼20% of the total cell volume. If this is achieved, overall power densities of ∼20 W/cm3 appear feasible, opening the way to a number of potential applications ranging from distributed power units in spacecraft to advanced propulsion

  12. Advanced Power Batteries for Renewable Energy Applications 3.09

    Energy Technology Data Exchange (ETDEWEB)

    Shane, Rodney [East Penn Manufacturing Company, Inc., Lyon Station, PA (United States)

    2011-12-01

    This report describes the research that was completed under project title Advanced Power Batteries for Renewable Energy Applications 3.09, Award Number DE-EE0001112. The report details all tasks described in the Statement of Project Objectives (SOPO). The SOPO includes purchasing of test equipment, designing tooling, building cells and batteries, testing all variables and final evaluation of results. The SOPO is included. There were various types of tests performed during the project, such as; gas collection, float current monitoring, initial capacity, high rate partial state of charge (HRPSoC), hybrid pulse power characterization (HPPC), high rate capacity, corrosion, software modeling and solar life cycle tests. The grant covered a period of two years starting October 1, 2009 and ending September 30, 2011.

  13. Advanced Energy Retrofit Guide (AERG): Practical Ways to Improve Energy Performance; Healthcare Facilities (Book)

    Energy Technology Data Exchange (ETDEWEB)

    Hendron, R.; Leach, M.; Bonnema, E.; Shekhar, D.; Pless, S.

    2013-09-01

    The Advanced Energy Retrofit Guide for Healthcare Facilities is part of a series of retrofit guides commissioned by the U.S. Department of Energy. By presenting general project planning guidance as well as detailed descriptions and financial payback metrics for the most important and relevant energy efficiency measures (EEMs), the guides provide a practical roadmap for effectively planning and implementing performance improvements in existing buildings. The Advanced Energy Retrofit Guides (AERGs) are intended to address key segments of the U.S. commercial building stock: retail stores, office buildings, K-12 schools, grocery stores, and healthcare facilities. The guides' general project planning considerations are applicable nationwide; the energy and cost savings estimates for recommended EEMs were developed based on energy simulations and cost estimates for an example hospital tailored to five distinct climate regions. These results can be extrapolated to other U.S. climate zones. Analysis is presented for individual EEMs, and for packages of recommended EEMs for two project types: existing building commissioning projects that apply low-cost and no-cost measures, and whole-building retrofits involving more capital-intensive measures.

  14. National energy ombudsman. 2013 activity report

    International Nuclear Information System (INIS)

    Gaubert, Jean; Merville, Denis; Lechevin, Bruno; Mialot, Stephane

    2014-06-01

    The National Energy Ombudsman is an independent administrative authority that was created by the law of 7 December 2006 relating to the energy sector, in preparation for the imminent liberalisation of the French gas and electricity markets. It has two legal roles: participating in the process of informing consumers about their rights, and recommending solutions for settling disputes. The Ombudsman reports directly to the French Parliament. This report summarizes the 2013 national energy ombudsman's activity in the domains of energy transition, conciliation between energy operators and consumers, consumers information, mediation, dispute settlement, markets opening, energy prices, quality of supply, smart meters, fight against energy poverty etc

  15. Advancing capabilities for detecting undeclared nuclear activities

    International Nuclear Information System (INIS)

    Baute, J.

    2013-01-01

    When a country presents a consistent, transparent and predictable picture of its nuclear programme that is supported by the analysis of all information, IAEA inspectors do not need to go there as frequently for routine verification activities. Rather IAEA can redirect those resources to addressing safeguards issues in the state posing real proliferation concerns. The point is how to establish a coherent picture of a nuclear program and how to identify early warnings of safeguard breaches. A key element is the exploitation of all the information available (open sources, inspection report, satellite imagery, state declarations,...) through effective and quick information analysis. This document is made up of the slides of the presentation

  16. Assessment report on research and development activities. Activity: 'Advanced science research' (Interim report)

    International Nuclear Information System (INIS)

    2012-11-01

    Japan Atomic Energy Agency (hereinafter referred to as “JAEA”) consulted an assessment committee, “Evaluation Committee of Research Activities for Advanced Science Research” (hereinafter referred to as “Committee”) for interim assessment of “Advanced Science Research,” in accordance with “General Guideline for the Evaluation of Government Research and Development (R and D) Activities” by Cabinet Office, Government of Japan, “Guideline for Evaluation of R and D in Ministry of Education, Culture, Sports, Science and Technology” and “Regulation on Conduct for Evaluation of R and D Activities” by JAEA. In response to the JAEA's request, the Committee assessed the research programs and activities of the Advanced Science Research Center (hereinafter referred to as “ASRC”) for the period of two years from April 2010. The Committee evaluated the management and the research programs of the ASRC based on the explanatory documents prepared by the ASRC and the oral presentations with questions-and-answers by the Director and the research group leaders. This report summarizes the result of the assessment by the Committee with the Committee report attached from page 7. (author)

  17. Advanced light source. Activity report 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The ALS Activity Report is designed to share the breadth, variety, and interest of the scientific program and ongoing R&D efforts in a form that is accessible to a broad audience. Recent research results are presented in six sections, each representing an important theme in ALS science. These results are designed to demonstrate the capabilities of the ALS, rather than to give a comprehensive review of 1995 experiments. Although the scientific program and facilities report are separate sections, in practice the achievements and accomplishments of users and ALS staff are interdependent. This user-staff collaboration is essential to help us direct our efforts toward meeting the needs of the user community, and to ensure the continued success of the ALS as a premier facility.

  18. Advanced light source. Activity report 1995

    International Nuclear Information System (INIS)

    1996-07-01

    The ALS Activity Report is designed to share the breadth, variety, and interest of the scientific program and ongoing R ampersand D efforts in a form that is accessible to a broad audience. Recent research results are presented in six sections, each representing an important theme in ALS science. These results are designed to demonstrate the capabilities of the ALS, rather than to give a comprehensive review of 1995 experiments. Although the scientific program and facilities report are separate sections, in practice the achievements and accomplishments of users and ALS staff are interdependent. This user-staff collaboration is essential to help us direct our efforts toward meeting the needs of the user community, and to ensure the continued success of the ALS as a premier facility

  19. Advanced Energy Design Guide K-12: Next Generation of School Design and Operation

    Energy Technology Data Exchange (ETDEWEB)

    Torcellini, Paul A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pless, Shanti [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-01

    Driven by energy efficiency advances and renewable energy cost reductions, zero energy buildings are popping up all around the country. Although zero energy represents a bold paradigm shift - from buildings that consume energy to buildings that produce enough energy to meet their energy needs on an annual basis - it isn't a sudden shift. Zero energy buildings are the result of steady, incremental progress by researchers and building professionals working together to improve building energy performance. ASHRAE is taking the lead by publishing - in partnership with the American Institute of Architects (AIA), the Illuminating Engineering Society (IES), the U.S. Green Building Council (USGBC), and the U.S. Department of Energy (DOE) - a new series of advanced energy design guides (AEDGs) focused on zero energy buildings. The recently completed Advanced Energy Design Guide for K-12 School Buildings: Achieving Zero Energy (K-12 ZE AEDG) is the first in this series.

  20. Global development of advanced nuclear power plants, and related IAEA activities

    International Nuclear Information System (INIS)

    2006-09-01

    Renewed interest in the potential of nuclear energy to contribute to a sustainable worldwide energy mix is underlining the IAEA's statutory role in fostering the peaceful uses of nuclear energy, in particular the need for effective exchanges of information and collaborative research and technology development among Member States on advanced nuclear power technologies deployable in the near term as well as in the longer term. For applications in the medium to longer term, with rising expectations for the role of nuclear energy in the future, technological innovation has become a strong focus of nuclear power technology developments by many Member States. To meet Member States' needs, the IAEA conducts activities to foster information exchange and collaborative research and development in the area of advanced nuclear reactor technologies. These activities include coordination of collaborative research, organization of international information exchange, and analyses of globally available technical data and results, with a focus on reducing nuclear power plant capital costs and construction periods while further improving performance, safety and proliferation resistance. In other activities, evolutionary and innovative advances are catalyzed for all reactor lines such as advanced water cooled reactors, high temperature gas cooled reactors, liquid metal cooled reactors and accelerator driven systems, including small and medium sized reactors. In addition, there are activities related to other applications of nuclear energy such as seawater desalination, hydrogen production, and other process heat applications. This brochure summarizes the worldwide status and the activities related to advanced nuclear power technology development and related IAEA activities. It includes a list of the collaborative research and development projects conducted by the IAEA, as well as of the status reports and other publications produced

  1. 21st Century Coal: Advanced Technology and Global Energy Solution

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    Coal currently supplies with more than 40% of the world electricity consumption and it essential input of around 70% of world steel production, representing around 30% of the world primary energy supply. This is because coal is cheap, abundant, accessible, widely distributed and easy energy to transport, store and use. For these features, coal is projected to be intensively used in the future. Production and use of coal present a series of issues throughout the whole value chain. While existing technology allows addressing most of them (safety at work, land restoration, mercury, NOx and sulphur emissions avoidance, etc.), CO2 emissions continues to be the biggest challenge for coal use in the future. This report focuses on the technology path to near-zero emissions including useful insights in advanced coal power generation technologies and Carbon Capture, Utilisation and Storage, a promising technology with a large potential which can push Carbon Capture and Storage competitiveness. In addition, the report shows the features of the new generation of coal-fired power plants in terms of flexibility for dynamic operation and grid stability, requirements increasingly needed to operate on grids with significant wind and solar generation.

  2. Technical Support Document: Development of the Advanced Energy Design Guide for Large Hospitals - 50% Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    Bonnema, E.; Leach, M.; Pless, S.

    2013-06-01

    This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for Large Hospitals: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-LH) ASHRAE et al. (2011b). The AEDG-LH is intended to provide recommendations for achieving 50% whole-building energy savings in large hospitals over levels achieved by following Standard 90.1-2004. The AEDG-LH was created for a 'standard' mid- to large-size hospital, typically at least 100,000 ft2, but the strategies apply to all sizes and classifications of new construction hospital buildings. Its primary focus is new construction, but recommendations may be applicable to facilities undergoing total renovation, and in part to many other hospital renovation, addition, remodeling, and modernization projects (including changes to one or more systems in existing buildings).

  3. Advances in thermal-hydraulic studies of a transmutation advanced device for sustainable energy applications

    International Nuclear Information System (INIS)

    Fajardo, Laura Garcia; Castells, Facundo Alberto Escriva; Lira, Carlos Brayner de Olivera

    2013-01-01

    The Transmutation Advanced Device for Sustainable Energy Applications (TADSEA) is a pebble-bed Accelerator Driven System (ADS) with a graphite-gas configuration, designed for nuclear waste trans- mutation and for obtaining heat at very high temperatures to produce hydrogen. In previous work, the TADSEA's nuclear core was considered as a porous medium performed with a CFD code and thermal-hydraulic studies of the nuclear core were presented. In this paper, the heat transfer from the fuel to the coolant was analyzed for three core states during normal operation. The heat transfer inside the spherical fuel elements was also studied. Three critical fuel elements groups were defined regarding their position inside the core. Results were compared with a realistic CFD model of the critical fuel elements groups. During the steady state, no critical elements reached the limit temperature of this type of fuel. (author)

  4. Advanced Energy Retrofit Guide: Practical Ways to Improve Energy Performance, K-12 Schools (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2013-12-01

    The U.S. Department of Energy developed the Advanced Energy Retrofit Guides (AERGs) to provide specific methodologies, information, and guidance to help energy managers and other stakeholders plan and execute energy efficiency improvements. Detailed technical discussion is fairly limited. Instead, we emphasize actionable information, practical methodologies, diverse case studies, and unbiased evaluations of the most promising retrofit energy efficiency measures for each building type. A series of AERGs is under development, addressing key segments of the commercial building stock. K-12 schools were selected as one of the highest priority building sectors, because schools affect the lives of most Americans. They also represent approximately 8% of the energy use and 10% of the floor area in commercial buildings nationwide. U.S. K-12 school districts spend more than $8 billion each year on energy - more than they spend on computers and textbooks combined. Most occupy older buildings that often have poor operational performance - more than 30% of schools were built before 1960. The average age of a school is about 42 years - which is nearly the expected serviceable lifespan of the building. K-12 schools offer unique opportunities for deep, cost-effective energy efficiency improvements, and this guide provides convenient and practical guidance for exploiting these opportunities in the context of public, private, and parochial schools.

  5. A Study on intensifying efficiency for international collaborative development of Advanced Nuclear Energy Technology

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Dohee; Park, Seongwon; Chang, Moonhee

    2013-08-15

    All the countries of the world are promoting the use of atomic energy to provide against high oil prices, climatic changes, and energy security initiative. A domestic and foreign environment for nuclear energy is changing rapidly and 13 leading countries including Korea are trying to develop advanced technologies on Gen IV nuclear energy system through Gen IV International Forum (GIF). To enhance the effectiveness of the future nuclear energy system development plan, a strategic approach is necessary for GIF program and the connection process with the 4th Nuclear Energy Promotion Program and Nuclear Energy R and D Medium and Long Term 5 year Plan for 2012 ∼ 2016 needs to be prepared. This study was to analyze the global nuclear trends of 2012 and the status of GIF program which is international cooperation activities. Also we examined the domestic R and D status of future nuclear energy systems for developing core technology and commercialization of Gen-IV nuclear energy system. A successful performance of this project enables the effective national cooperation with GIF and promotes the public acceptance by suggesting the technical alternatives for the nuclear safety and the spent fuel management.

  6. 1st Advanced Marine Renewable Energy Instrumentation Experts Workshop: April 5-7, 2011

    International Nuclear Information System (INIS)

    2011-01-01

    The U.S. marine energy industry is actively pursuing development of offshore wind and marine hydrokinetic (MHK) energy systems. Experience in the wind energy sector demonstrates that new technology development requires thorough measurement and characterization of the environmental conditions prevalent at installation sites and of technology operating in the field. Presently, there are no turn-key instrumentation system solutions that meet the measurement needs of the marine energy industry. The 1st Advanced Marine Renewable Energy Instrumentation Experts Workshop brought together technical experts from government laboratories, academia, and industry representatives from marine energy, wind, offshore oil and gas, and instrumentation developers to present and discuss the instrumentation needs of the marine energy industry. The goals of the meeting were to: (1) Share the latest relevant knowledge among technical experts; (2) Review relevant state-of-the-art field measurement technologies and methods; (3) Review lessons learned from recent field deployments; (4) Identify synergies across different industries; (5) Identify gaps between existing and needed instrumentation capabilities; (6) Understand who are the leading experts; (7) Provide a forum where stakeholders from the marine energy industry could provide substantive input in the development of new marine energy field deployable instrumentation packages.

  7. 1st Advanced Marine Renewable Energy Instrumentation Experts Workshop: April 5-7, 2011

    Energy Technology Data Exchange (ETDEWEB)

    2011-10-01

    The U.S. marine energy industry is actively pursuing development of offshore wind and marine hydrokinetic (MHK) energy systems. Experience in the wind energy sector demonstrates that new technology development requires thorough measurement and characterization of the environmental conditions prevalent at installation sites and of technology operating in the field. Presently, there are no turn-key instrumentation system solutions that meet the measurement needs of the marine energy industry. The 1st Advanced Marine Renewable Energy Instrumentation Experts Workshop brought together technical experts from government laboratories, academia, and industry representatives from marine energy, wind, offshore oil and gas, and instrumentation developers to present and discuss the instrumentation needs of the marine energy industry. The goals of the meeting were to: (1) Share the latest relevant knowledge among technical experts; (2) Review relevant state-of-the-art field measurement technologies and methods; (3) Review lessons learned from recent field deployments; (4) Identify synergies across different industries; (5) Identify gaps between existing and needed instrumentation capabilities; (6) Understand who are the leading experts; (7) Provide a forum where stakeholders from the marine energy industry could provide substantive input in the development of new marine energy field deployable instrumentation packages.

  8. Advanced Wear-resistant Nanocomposites for Increased Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Cook, B. A.; Harringa, J. L.; Russel, A. M.

    2012-12-01

    This report summarizes the work performed by an Ames-led project team under a 4-year DOE-ITP sponsored project titled, 'Advanced Wear-resistant Nanocomposites for Increased Energy Efficiency.' The Report serves as the project deliverable for the CPS agreement number 15015. The purpose of this project was to develop and commercialize a family of lightweight, bulk composite materials that are highly resistant to degradation by erosive and abrasive wear. These materials, based on AlMgB{sub 14}, are projected to save over 30 TBtu of energy per year when fully implemented in industrial applications, with the associated environmental benefits of eliminating the burning of 1.5 M tons/yr of coal and averting the release of 4.2 M tons/yr of CO{sub 2} into the air. This program targeted applications in the mining, drilling, machining, and dry erosion applications as key platforms for initial commercialization, which includes some of the most severe wear conditions in industry. Production-scale manufacturing of this technology has begun through a start-up company, NewTech Ceramics (NTC). This project included providing technical support to NTC in order to facilitate cost-effective mass production of the wear-resistant boride components. Resolution of issues related to processing scale-up, reduction in energy intensity during processing, and improving the quality and performance of the composites, without adding to the cost of processing were among the primary technical focus areas of this program. Compositional refinements were also investigated in order to achieve the maximum wear resistance. In addition, synthesis of large-scale, single-phase AlMgB{sub 14} powder was conducted for use as PVD sputtering targets for nanocoating applications.

  9. Advanced proton-exchange materials for energy efficient fuel cells.

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Cy H.; Grest, Gary Stephen; Hickner, Michael A.; Cornelius, Christopher James; Staiger, Chad Lynn; Hibbs, Michael R.

    2005-12-01

    The ''Advanced Proton-Exchange Materials for Energy Efficient Fuel Cells'' Laboratory Directed Research and Development (LDRD) project began in October 2002 and ended in September 2005. This LDRD was funded by the Energy Efficiency and Renewable Energy strategic business unit. The purpose of this LDRD was to initiate the fundamental research necessary for the development of a novel proton-exchange membranes (PEM) to overcome the material and performance limitations of the ''state of the art'' Nafion that is used in both hydrogen and methanol fuel cells. An atomistic modeling effort was added to this LDRD in order to establish a frame work between predicted morphology and observed PEM morphology in order to relate it to fuel cell performance. Significant progress was made in the area of PEM material design, development, and demonstration during this LDRD. A fundamental understanding involving the role of the structure of the PEM material as a function of sulfonic acid content, polymer topology, chemical composition, molecular weight, and electrode electrolyte ink development was demonstrated during this LDRD. PEM materials based upon random and block polyimides, polybenzimidazoles, and polyphenylenes were created and evaluated for improvements in proton conductivity, reduced swelling, reduced O{sub 2} and H{sub 2} permeability, and increased thermal stability. Results from this work reveal that the family of polyphenylenes potentially solves several technical challenges associated with obtaining a high temperature PEM membrane. Fuel cell relevant properties such as high proton conductivity (>120 mS/cm), good thermal stability, and mechanical robustness were demonstrated during this LDRD. This report summarizes the technical accomplishments and results of this LDRD.

  10. Energy-Based Facial Rejuvenation: Advances in Diagnosis and Treatment.

    Science.gov (United States)

    Britt, Christopher J; Marcus, Benjamin

    2017-01-01

    The market for nonsurgical, energy-based facial rejuvenation techniques has increased exponentially since lasers were first used for skin rejuvenation in 1983. Advances in this area have led to a wide range of products that require the modern facial plastic surgeon to have a large repertoire of knowledge. To serve as a guide for current trends in the development of technology, applications, and outcomes of laser and laser-related technology over the past 5 years. We performed a review of PubMed from January 1, 2011, to March 1, 2016, and focused on randomized clinical trials, meta-analyses, systematic reviews, and clinical practice guidelines including case control, case studies and case reports when necessary, and included 14 articles we deemed landmark articles before 2011. Three broad categories of technology are leading non-energy-based rejuvenation technology: lasers, light therapy, and non-laser-based thermal tightening devices. Laser light therapy has continued to diversify with the use of ablative and nonablative resurfacing technologies, fractionated lasers, and their combined use. Light therapy has developed for use in combination with other technologies or stand alone. Finally, thermally based nonlaser skin-tightening devices, such as radiofrequency (RF) and intense focused ultrasonography (IFUS), are evolving technologies that have changed rapidly over the past 5 years. Improvements in safety and efficacy for energy-based treatment have expanded the patient base considering these therapies viable options. With a wide variety of options, the modern facial plastic surgeon can have a frank discussion with the patient regarding nonsurgical techniques that were never before available. Many of these patients can now derive benefit from treatments requiring significantly less downtime than before while the clinician can augment the treatment to maximize benefit to fit the patient's time schedule.

  11. Advanced ASON prototyping research activities in China

    Science.gov (United States)

    Hu, WeiSheng; Jin, Yaohui; Guo, Wei; Su, Yikai; He, Hao; Sun, Weiqiang

    2005-02-01

    This paper provides an overview of prototyping research activities of automatically switched optical networks and transport networks (ASONs/ASTNs) in China. In recent years, China has recognized the importance and benefits of the emerging ASON/ASTN techniques. During the period of 2001 and 2002, the national 863 Program of China started the preliminary ASON research projects with the main objectives to build preliminary ASON testbeds, develop control plane protocols and test their performance in the testbeds. During the period of 2003 and 2004, the 863 program started ASTN prototyping equipment projects for more practical applications. Totally 12 ASTN equipments are being developed by three groups led by Chinese venders: ZTE with Beijing University of Posts and Telecommunications (BUPT), Wuhan Research Institute of Posts and Telecommunication (WRI) with Shanghai Jiao Tong University (SJTU), and Huawei Inc. Meanwhile, as the ASTN is maturing, some of the China"s carries are participating in the OIF"s World Interoperability Demonstration, carrying out ASTN test, or deploying ASTN backbone networks. Finally, several ASTN backbone networks being tested or deployed now will be operated by the carries in 2005. The 863 Program will carry out an ASTN field trail in Yangtse River Delta, and finally deploy the 3TNET. 3TNET stands for Tbps transmission, Tbps switching, and Tbps routing, as well as a network integrating the above techniques. A task force under the "863" program is responsible for ASTN equipment specifications and interoperation agreements, technical coordination among all the participants, schedule of the whole project during the project undergoing, and organization of internetworking of all the equipments in the laboratories and field trials.

  12. Embrace the Dark Side: Advancing the Dark Energy Survey

    Science.gov (United States)

    Suchyta, Eric

    The Dark Energy Survey (DES) is an ongoing cosmological survey intended to study the properties of the accelerated expansion of the Universe. In this dissertation, I present work of mine that has advanced the progress of DES. First is an introduction, which explores the physics of the cosmos, as well as how DES intends to probe it. Attention is given to developing the theoretical framework cosmologists use to describe the Universe, and to explaining observational evidence which has furnished our current conception of the cosmos. Emphasis is placed on the dark sector - dark matter and dark energy - the content of the Universe not explained by the Standard Model of particle physics. As its name suggests, the Dark Energy Survey has been specially designed to measure the properties of dark energy. DES will use a combination of galaxy cluster, weak gravitational lensing, angular clustering, and supernovae measurements to derive its state of the art constraints, each of which is discussed in the text. The work described in this dissertation includes science measurements directly related to the first three of these probes. The dissertation presents my contributions to the readout and control system of the Dark Energy Camera (DECam); the name of this software is SISPI. SISPI uses client-server and publish-subscribe communication patterns to coordinate and command actions among the many hardware components of DECam - the survey instrument for DES, a 570 megapixel CCD camera, mounted at prime focus of the Blanco 4-m Telescope. The SISPI work I discuss includes coding applications for DECam's filter changer mechanism and hexapod, as well as developing the Scripts Editor, a GUI application for DECam users to edit and export observing sequence SISPI can load and execute. Next, the dissertation describes the processing of early DES data, which I contributed. This furnished the data products used in the first-completed DES science analysis, and contributed to improving the

  13. Hybrid energy harvesting using active thermal backplane

    Science.gov (United States)

    Kim, Hyun-Wook; Lee, Dong-Gun

    2016-04-01

    In this study, we demonstrate the concept of a new hybrid energy harvesting system by combing solar cells with magneto-thermoelectric generator (MTG, i.e., thermal energy harvesting). The silicon solar cell can easily reach high temperature under normal operating conditions. Thus the heated solar cell becomes rapidly less efficient as the temperature of solar cell rises. To increase the efficiency of the solar cell, air or water-based cooling system is used. To surpass conventional cooling devices requiring additional power as well as large working space for air/water collectors, we develop a new technology of pairing an active thermal backplane (ATB) to solar cell. The ATB design is based on MTG technology utilizing the physics of the 2nd order phase transition of active ferromagnetic materials. The MTG is cost-effective conversion of thermal energy to electrical energy and is fundamentally different from Seebeck TEG devices. The ATB (MTG) is in addition to being an energy conversion system, a very good conveyor of heat through both conduction and convection. Therefore, the ATB can provide dual-mode for the proposed hybrid energy harvesting. One is active convective and conductive cooling for heated solar cell. Another is active thermal energy harvesting from heat of solar cell. These novel hybrid energy harvesting device have potentially simultaneous energy conversion capability of solar and thermal energy into electricity. The results presented can be used for better understanding of hybrid energy harvesting system that can be integrated into commercial applications.

  14. Advanced Nanostructured Cathode for Ultra High Specific Energy Lithium Ion Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Integrate advanced nanotechnology with energy storage technology to develop advanced cathode materials for use in Li-ion batteries while maintaining a high level of...

  15. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    International Nuclear Information System (INIS)

    Brent W. Dixon; Steven J. Piet

    2004-01-01

    tripling market share by 2100 from the current 8.4% to 25%, equivalent to continuing the average market growth of last 50 years for an additional 100 years. Five primary spent fuel management strategies are assessed against each of the energy futures to determine the number of geological repositories needed and how the first repository would be used. The geological repository site at Yucca Mountain, Nevada, has the physical potential to accommodate all the spent fuel that will be generated by the current fleet of domestic commercial nuclear reactors, even with license extensions. If new nuclear plants are built in the future as replacements or additions, the United States will need to adopt spent fuel treatment to extend the life of the repository. Should a significant number of new nuclear plants be built, advanced fuel recycling will be needed to fully manage the spent fuel within a single repository. The analysis also considers the timeframe for most efficient implementation of new spent fuel management strategies. The mix of unprocessed spent fuel and processed high level waste in Yucca Mountain varies with each future and strategy. Either recycling must start before there is too much unprocessed waste emplaced or unprocessed waste will have to be retrieved later with corresponding costs. For each case, the latest date to implement reprocessing without subsequent retrieval is determined

  16. Atomic Energy Research benchmark activity

    International Nuclear Information System (INIS)

    Makai, M.

    1998-01-01

    The test problems utilized in the validation and verification process of computer programs in Atomic Energie Research are collected into one bunch. This is the first step towards issuing a volume in which tests for VVER are collected, along with reference solutions and a number of solutions. The benchmarks do not include the ZR-6 experiments because they have been published along with a number of comparisons in the Final reports of TIC. The present collection focuses on operational and mathematical benchmarks which cover almost the entire range of reaktor calculation. (Author)

  17. Application of advanced methods for the prognosis of production energy consumption

    International Nuclear Information System (INIS)

    Stetter, R; Witczak, P; Spindler, C; Hertel, J; Staiger, B

    2014-01-01

    This paper, based on a current research project, describes the application of advanced methods that are frequently used in fault-tolerance control and addresses the issue of the prognosis of energy efficiency. Today, the energy a product requires during its operation is the subject of many activities in research and development. However, the energy necessary for the production of goods is very often not analysed in comparable depth. In the field of electronics, studies come to the conclusion that about 80% of the total energy used by a product is from its production [1]. The energy consumption in production is determined very early in the product development process by designers and engineers, for example through selection of raw materials, explicit and implicit requirements concerning the manufacturing and assembly processes, or through decisions concerning the product architecture. Today, developers and engineers have at their disposal manifold design and simulation tools which can help to predict the energy consumption during operation relatively accurately. In contrast, tools with the objective to predict the energy consumption in production and disposal are not available. This paper aims to present an explorative study of the use of methods such as Fuzzy Logic to predict the production energy consumption early in the product development process

  18. High energy halogen atom reactions activated by nuclear transformations

    International Nuclear Information System (INIS)

    Rack, E.P.

    1990-05-01

    This program, which has been supported for twenty-four years by the Us Atomic Energy Commission and its successor agencies, has produced significant advances in the understanding of the mechanisms of chemical activation by nuclear processes; the stereochemistry of radioactivity for solution of specific problems. This program was contributed to the training of approximately seventy scientists at various levels. This final report includes a review of the areas of research and chronological tabulation of the publications

  19. Achieving 50% Energy Savings in New Schools, Advanced Energy Design Guides: K-12 Schools (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-09-01

    This fact sheet summarizes recommendations for designing elementary, middle, and high school buildings that will result in 50% less energy use than conventional new schools built to minimum code requirements. The recommendations are drawn from the Advanced Energy Design Guide for K-12 School Buildings, an ASHRAE publication that provides comprehensive recommendations for designing low-energy-use school buildings (see sidebar). Designed as a stand-alone document, this fact sheet provides key principles and a set of prescriptive design recommendations appropriate for smaller schools with insufficient budgets to fully implement best practices for integrated design and optimized performance. The recommendations have undergone a thorough analysis and review process through ASHRAE, and have been deemed the best combination of measures to achieve 50% savings in the greatest number of schools.

  20. Performance of a transmutation advanced device for sustainable energy application

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, C.; Rosales, J.; Garcia, L. [Instituto Superior de Tecnologias y Ciencias Aplicadas (INSTEC), La Habana (Cuba); Perez-Navarro, A.; Escriva, A. [Universidad Politecnica de Valencia, Valencia (Spain). Inst. de Ingenieria Energetica; Abanades, A. [Universidad Politecnica de Madrid (Spain). Grupo de Modelizacion de Sistemas Termoenergeticos

    2009-07-01

    Preliminary studies have been performed to design a device for nuclear waste transmutation and hydrogen generation based on a gas cooled pebble bed accelerator driven system, TADSEA (transmutation advanced device for sustainable energy application). In previous studies we have addressed the viability of an ADS Transmutation device that uses as fuel wastes from the existing LWR power plants, encapsulated in graphite in the form of pebble beds, being cooled by helium which enables high temperatures, in the order of 1200 K, to facilitate hydrogen generation from water either by high temperature electrolysis or by thermo chemical cycles. To design this device several configurations were studied, including several reactors thickness, to achieve the desired parameters, the transmutation of nuclear waste and the production of 100 MW. of thermal power. In this paper we are presenting new studies performed on deep burn in-core fuel management strategy for LWR waste. We analyze the fuel cycle on TADSEA device based on driver and transmutation fuel that were proposed for the General Atomic design of a gas turbine-modular helium reactor. We compare the transmutation results of the three fuel management strategies, using driven and transmutation, and standard LWR spend fuel, and present several parameters that describe the neutron performance of TADSEA nuclear core as the fuel and moderator temperature reactivity coefficients and transmutation chain. (author)

  1. Advanced photon source low-energy undulator test line

    International Nuclear Information System (INIS)

    Milton, S.V.

    1997-01-01

    The injector system of the Advanced Photon Source (APS) consists of a linac capable of producing 450-MeV positrons or > 650-MeV electrons, a positron accumulator ring (PAR), and a booster synchrotron designed to accelerate particles to 7 GeV. There are long periods of time when these machines are not required for filling the main storage ring and instead can be used for synchrotron radiation research. We describe here an extension of the linac beam transport called the Low-Energy Undulator Test Line (LEUTL). The LEUTL will have a twofold purpose. The first is to fully characterize innovative, future generation undulators, some of which may prove difficult or impossible to measure by traditional techniques. These might include small-gap and superconducting undulators, very long undulators, undulators with designed-in internal focusing, and helical undulators. This technique also holds the promise of extending the magnetic measurement sensitivity beyond that presently attainable. This line will provide the capability to directly test undulators before their possible insertion into operating storage rings. A second use for the test line will be to investigate the generation of coherent radiation at wavelengths down to a few tens of nanometers

  2. Performance of a transmutation advanced device for sustainable energy application

    International Nuclear Information System (INIS)

    Garcia, C.; Rosales, J.; Garcia, L.; Perez-Navarro, A.; Escriva, A.; Abanades, A.

    2009-01-01

    Preliminary studies have been performed to design a device for nuclear waste transmutation and hydrogen generation based on a gas cooled pebble bed accelerator driven system, TADSEA (transmutation advanced device for sustainable energy application). In previous studies we have addressed the viability of an ADS Transmutation device that uses as fuel wastes from the existing LWR power plants, encapsulated in graphite in the form of pebble beds, being cooled by helium which enables high temperatures, in the order of 1200 K, to facilitate hydrogen generation from water either by high temperature electrolysis or by thermo chemical cycles. To design this device several configurations were studied, including several reactors thickness, to achieve the desired parameters, the transmutation of nuclear waste and the production of 100 MW. of thermal power. In this paper we are presenting new studies performed on deep burn in-core fuel management strategy for LWR waste. We analyze the fuel cycle on TADSEA device based on driver and transmutation fuel that were proposed for the General Atomic design of a gas turbine-modular helium reactor. We compare the transmutation results of the three fuel management strategies, using driven and transmutation, and standard LWR spend fuel, and present several parameters that describe the neutron performance of TADSEA nuclear core as the fuel and moderator temperature reactivity coefficients and transmutation chain. (author)

  3. Physical activity in advanced cancer patients: a systematic review protocol.

    Science.gov (United States)

    Lowe, Sonya S; Tan, Maria; Faily, Joan; Watanabe, Sharon M; Courneya, Kerry S

    2016-03-11

    Progressive, incurable cancer is associated with increased fatigue, increased muscle weakness, and reduced physical functioning, all of which negatively impact quality of life. Physical activity has demonstrated benefits on cancer-related fatigue and physical functioning in early-stage cancer patients; however, its impact on these outcomes in end-stage cancer has not been established. The aim of this systematic review is to determine the potential benefits, harms, and effects of physical activity interventions on quality of life outcomes in advanced cancer patients. A systematic review of peer-reviewed literature on physical activity in advanced cancer patients will be undertaken. Empirical quantitative studies will be considered for inclusion if they present interventional or observational data on physical activity in advanced cancer patients. Searches will be conducted in the following electronic databases: CINAHL; CIRRIE Database of International Rehabilitation Research; Cochrane Database of Systematic Reviews (CDSR); Database of Abstracts of Reviews of Effects (DARE); Cochrane Central Register of Controlled Trials (CENTRAL); EMBASE; MEDLINE; PEDro: the Physiotherapy Evidence Database; PQDT; PsycInfo; PubMed; REHABDATA; Scopus; SPORTDiscus; and Web of Science, to identify relevant studies of interest. Additional strategies to identify relevant studies will include citation searches and evaluation of reference lists of included articles. Titles, abstracts, and keywords of identified studies from the search strategies will be screened for inclusion criteria. Two independent reviewers will conduct quality appraisal using the Effective Public Health Practice Project Quality Assessment Tool for Quantitative Studies (EPHPP) and the Cochrane risk of bias tool. A descriptive summary of included studies will describe the study designs, participant and activity characteristics, and objective and patient-reported outcomes. This systematic review will summarize the current

  4. Observation on optimal transition from conventional energy with resource constraints to advanced energy with virtually unlimited resource, (2)

    International Nuclear Information System (INIS)

    Ohkubo, Hiroo; Suzuki, Atsuyuki; Kiyose, Ryohei

    1983-01-01

    This is an extension of the Suzuki model (base model) on optimal transition from resource-limited energy (oil) to advanced energy with virtually unlimited resource. The finite length of plant life, fuel cost, technological progress factor of advanced energy and the upper limit upon annual consumption rate of oil are taken into account for such an extension. The difference in optimal solutions obtained from extended and base models is shown by an application of the maximum principle. The implication of advanced energy R and D andenergy conservation effort is also discussed. (author)

  5. Co-Extrusion: Advanced Manufacturing for Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, Corie Lynn [PARC, Palo Alto, CA (United States)

    2016-11-18

    The development of mass markets for large-format batteries, including electric vehicles (EVs) and grid support, depends on both cost reductions and performance enhancements to improve their economic viability. Palo Alto Research Center (PARC) has developed a multi-material, advanced manufacturing process called co-extrusion (CoEx) to remove multiple steps in a conventional battery coating process with the potential to simultaneously increase battery energy and power density. CoEx can revolutionize battery manufacturing across most chemistries, significantly lowering end-product cost and shifting the underlying economics to make EVs and other battery applications a reality. PARC’s scale-up of CoEx for electric vehicle (EV) batteries builds on a solid base of experience in applying CoEx to solar cell manufacturing, deposition of viscous ceramic pastes, and Li-ion battery chemistries. In the solar application, CoEx has been deployed commercially at production scale where multi-channel CoEx printheads are used to print viscous silver gridline pastes at full production speeds (>40 ft/min). This operational scale-up provided invaluable experience with the nuances of speed, yield, and maintenance inherent in taking a new technology to the factory floor. PARC has leveraged this experience, adapting the CoEx process for Lithium-ion (Li-ion) battery manufacturing. To date, PARC has worked with Li-ion battery materials and structured cathodes with high-density Li-ion regions and low-density conduction regions, documenting both energy and power performance. Modeling results for a CoEx cathode show a path towards a 10-20% improvement in capacity for an EV pouch cell. Experimentally, we have realized a co-extruded battery structure with a Lithium Nickel Manganese Cobalt (NMC) cathode at print speeds equivalent to conventional roll coating processes. The heterogeneous CoEx cathode enables improved capacity in thick electrodes at higher C-rates. The proof-of-principle coin cells

  6. Advanced energy design and operation technologies research: Recommendations for a US Department of Energy multiyear program plan

    Energy Technology Data Exchange (ETDEWEB)

    Brambley, M.R.; Crawley, D.B.; Hostetler, D.D.; Stratton, R.C.; Addision, M.S.; Deringer, J.J.; Hall, J.D.; Selkowitz, S.E.

    1988-12-01

    This document describes recommendations for a multiyear plan developed for the US Department of Energy (DOE) as part of the Advanced Energy Design and Operation Technologies (AEDOT) project. The plan is an outgrowth of earlier planning activities conducted for DOE as part of design process research under the Building System Integration Program (BSIP). The proposed research will produce intelligent computer-based design and operation technologies for commercial buildings. In this document, the concept is explained, the need for these new computer-based environments is discussed, the benefits are described, and a plan for developing the AEDOT technologies is presented for the 9-year period beginning FY 1989. 45 refs., 37 figs., 9 tabs.

  7. Recent progress in accelerator activities at Raja Ramanna Centre for Advanced Technology, Indore

    International Nuclear Information System (INIS)

    Gupta, P.D.

    2013-01-01

    Raja Ramanna Centre for Advanced Technology, Indore is a premier national institute engaged in R and D work in front-line areas of accelerator science, technology, and applications. The Centre has designed, developed, and commissioned two synchrotron radiation sources: Indus-1 and Indus-2, serving as national facilities. The Centre is pursuing various other accelerator activities viz. development of a high energy proton accelerator for a spallation neutron source, electron accelerators for food irradiation and industrial applications and free electron lasers (FEL) in THz and IR spectral region, study of innovative schemes of laser driven electron acceleration, and development of advanced technologies to support these activities such as superconducting RF (SCRF) technology, cryogenics, RF power, magnets, ultra high vacuum and control instrumentation. In this talk, an overview of the progress made in accelerator activities at Raja Ramanna Centre for Advanced Technology in recent years is be presented

  8. Advanced nanostructured materials for energy storage and conversion

    Science.gov (United States)

    Hutchings, Gregory S.

    Due to a global effort to reduce greenhouse gas emissions and to utilize renewable sources of energy, much effort has been directed towards creating new alternatives to fossil fuels. Identifying novel materials for energy storage and conversion can enable radical changes to the current fuel production infrastructure and energy utilization. The use of engineered nanostructured materials in these systems unlocks unique catalytic activity in practical configurations. In this work, research efforts have been focused on the development of nanostructured materials to address the need for both better energy conversion and storage, with applications toward Li-O2 battery electrocatalysts, electrocatalytic generation of H2, conversion of furfural to useful chemicals and fuels, and Li battery anode materials. Highly-active alpha-MnO2 materials were synthesized for use as bifunctional oxygen reduction (ORR) and evolution (OER) catalysts in Li-O2 batteries, and were evaluated under operating conditions with a novel in situ X-ray absorption spectroscopy configuration. Through detailed analysis of local coordination and oxidation states of Mn atoms at key points in the electrochemical cycle, a self-switching behavior affecting the bifunctional activity was identified and found to be critical. In an additional study of materials for lithium batteries, nanostructured TiO2 anode materials doped with first-row transition metals were synthesized and evaluated for improving battery discharge capacity and rate performance, with Ni and Co doping at low levels found to cause the greatest enhancement. In addition to battery technology research, I have also sought to find inexpensive and earth-abundant electrocatalysts to replace state-of-the-art Pt/C in the hydrogen evolution reaction (HER), a systematic computational study of Cu-based bimetallic electrocatalysts was performed. During the screening of dilute surface alloys of Cu mixed with other first-row transition metals, materials with

  9. Advanced Light Source Activity Report 1997/1998

    International Nuclear Information System (INIS)

    Greiner, Annette

    1999-01-01

    This Lawrence Berkeley National Laboratory, Advanced Light Source (ALS) activity report for 1997/98 discusses the following topics: Introduction and Overview; Science Highlights; Facility Report; Special Events; ALS Advisory Panels 1997/98; ALS Staff 1997/98 and Facts and Figures for the year

  10. Advanced Light Source Activity Report 1997/1998

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, Annette (ed.)

    1999-03-01

    This Lawrence Berkeley National Laboratory, Advanced Light Source (ALS) activity report for 1997/98 discusses the following topics: Introduction and Overview; Science Highlights; Facility Report; Special Events; ALS Advisory Panels 1997/98; ALS Staff 1997/98 and Facts and Figures for the year.

  11. Energy, economic, and environmental impacts of advanced industrial process innovations, 1976--1996

    International Nuclear Information System (INIS)

    Quinn, J.E.; Reed, J.E.

    1997-01-01

    The mission of the Office of Industrial Technologies (OIT), within the Office of Energy Efficiency and Renewable Energy, is to develop and deploy advanced energy efficiency, renewable energy, and pollution-prevention technologies, through partnerships with industry, government, and non-governmental organizations. OIT's objectives have evolved and broadened over nearly two decades, continually responding to a changing energy situation and shifting national priorities. Today, the key focus of the OIT programs is the Industries of the Future approach. This strategy of close collaboration with industry catalyzes and facilitates technology development and transfer efforts in seven manufacturing industries that together account for over 80% of the energy used and over 80% of the wastes produced by the manufacturing sector. In this approach senior level industry groups develop a future vision of their industry and a technology roadmap to attain the vision. DOE helps facilitate this process and partners with industry to identify and pursue an advanced technology R and D portfolio. The seven industries are aluminum, chemicals, forest products, glass, metalcasting, petroleum refining, and steel. In managing all its activities, OIT draws upon program support provided primarily by national Laboratories, universities, and private-sector research organizations throughout the country that have the diverse and specialized expertise needed to develop advanced industrial technologies. Approximately 78 industrial technologies developed with Office of Industrial Technology (OIT) support have successfully entered commercial markets. These technologies have saved a cumulative total of almost 900 trillion Btu, representing a new production cost savings of over $1.8 billion. These dollar savings represent the net total value of all energy saved by technologies developed with OIT support minus the net cost to industry of using the technologies (including capital costs, operating and

  12. Advancement of DOE's EnergyPlus Building Energy Simulation Payment

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Lixing [Florida Solar Energy Center, Cocoa, FL (United States); Shirey, Don [Florida Solar Energy Center, Cocoa, FL (United States); Raustad, Richard [Florida Solar Energy Center, Cocoa, FL (United States); Nigusse, Bereket [Florida Solar Energy Center, Cocoa, FL (United States); Sharma, Chandan [Florida Solar Energy Center, Cocoa, FL (United States); Lawrie, Linda [DHL Consulting, Bonn (Germany); Strand, Rick [Univ. of Illinois, Champaign, IL (United States); Pedersen, Curt [COPA, Panama City (Panama); Fisher, Dan [Oklahoma State Univ., Stillwater, OK (United States); Lee, Edwin [Oklahoma State Univ., Stillwater, OK (United States); Witte, Mike [GARD Analytics, Arlington Heights, IL (United States); Glazer, Jason [GARD Analytics, Arlington Heights, IL (United States); Barnaby, Chip [Wrightsoft, Lexington, MA (United States)

    2011-09-30

    EnergyPlus{sup TM} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOE's Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. The 5-year project was managed by the National Energy Technology Laboratory and was divided into 5 budget period between 2006 and 2011. During the project period, 11 versions of EnergyPlus were released. This report summarizes work performed by an EnergyPlus development team led by the University of Central Florida's Florida Solar Energy Center (UCF/FSEC). The team members consist of DHL Consulting, C. O. Pedersen Associates, University of Illinois at Urbana-Champaign, Oklahoma State University, GARD Analytics, Inc., and WrightSoft Corporation. The project tasks involved new feature development, testing and validation, user support and training, and general EnergyPlus support. The team developed 146 new features during the 5-year period to advance the EnergyPlus capabilities. Annual contributions of new features are 7 in budget period 1, 19 in period 2, 36 in period 3, 41 in period 4, and 43 in period 5, respectively. The testing and validation task focused on running test suite and publishing report, developing new IEA test suite cases, testing and validating new source code, addressing change requests, and creating and testing installation package. The user support and training task provided support for users and interface developers, and organized and taught workshops. The general support task involved upgrading StarTeam (team sharing) software and updating existing utility software. The project met the DOE objectives and completed all tasks successfully. Although the EnergyPlus software was enhanced

  13. Recent Development of Advanced Electrode Materials by Atomic Layer Deposition for Electrochemical Energy Storage.

    Science.gov (United States)

    Guan, Cao; Wang, John

    2016-10-01

    Electrode materials play a decisive role in almost all electrochemical energy storage devices, determining their overall performance. Proper selection, design and fabrication of electrode materials have thus been regarded as one of the most critical steps in achieving high electrochemical energy storage performance. As an advanced nanotechnology for thin films and surfaces with conformal interfacial features and well controllable deposition thickness, atomic layer deposition (ALD) has been successfully developed for deposition and surface modification of electrode materials, where there are considerable issues of interfacial and surface chemistry at atomic and nanometer scale. In addition, ALD has shown great potential in construction of novel nanostructured active materials that otherwise can be hardly obtained by other processing techniques, such as those solution-based processing and chemical vapor deposition (CVD) techniques. This review focuses on the recent development of ALD for the design and delivery of advanced electrode materials in electrochemical energy storage devices, where typical examples will be highlighted and analyzed, and the merits and challenges of ALD for applications in energy storage will also be discussed.

  14. Weldability and joining techniques for advanced fossil energy system alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lundin, C.D.; Qiao, C.Y.P.; Liu, W.; Yang, D.; Zhou, G.; Morrison, M. [Univ. of Tennessee, Knoxville, TN (United States)

    1998-05-01

    The efforts represent the concerns for the basic understanding of the weldability and fabricability of the advanced high temperature alloys so necessary to affect increases in the efficiency of the next generation Fossil Energy Power Plants. The effort was divided into three tasks with the first effort dealing with the welding and fabrication behavior of 310HCbN (HR3C), the second task details the studies aimed at understanding the weldability of a newly developed 310TaN high temperature stainless (a modification of 310 stainless) and Task 3 addressed the cladding of austenitic tubing with Iron-Aluminide using the GTAW process. Task 1 consisted of microstructural studies on 310HCbN and the development of a Tube Weldability test which has applications to production welding techniques as well as laboratory weldability assessments. In addition, the evaluation of ex-service 310HCbN which showed fireside erosion and cracking at the attachment weld locations was conducted. Task 2 addressed the behavior of the newly developed 310 TaN modification of standard 310 stainless steel and showed that the weldability was excellent and that the sensitization potential was minimal for normal welding and fabrication conditions. The microstructural evolution during elevated temperature testing was characterized and the second phase particles evolved upon aging were identified. Task 3 details the investigation undertaken to clad 310HCbN tubing with Iron Aluminide and developed welding conditions necessary to provide a crack free cladding. The work showed that both a preheat and a post-heat was necessary for crack free deposits and the effect of a third element on the cracking potential was defined together with the effect of the aluminum level for optimum weldability.

  15. Energy Regulation Commission. Activity report. 1 July - 31 December 2008

    International Nuclear Information System (INIS)

    2009-01-01

    After a description of the scope of activities, organisation and operation of the CRE (Commission de Regulation de l'Energie, Energy regulation commission) and of the CorDIS (Comite de reglement des differents et des sanctions de la CRE, CRE's Committee for settlements of controversies and sanctions), this report outlines the importance of the grid manager independence and of the regulation reinforcement for the building up of a domestic energy market. It discusses the role of the regulation authority in the interconnection of European grids, their operation security and supply security, but also in pricing and in investments. It highlights the relationship between the reduction of carbon emission, energy demand management, strengthening of electric grids, financial incentives, and advanced metering systems. It describes how the CRE ensures a good operation of electricity and natural gas markets

  16. National energy ombudsman. 2012 activity report

    International Nuclear Information System (INIS)

    Merville, Denis; Lechevin, Bruno; Mialot, Stephane; Lefeuvre, Katia

    2013-06-01

    The National Energy Ombudsman is an independent administrative authority that was created by the law of 7 December 2006 relating to the energy sector, in preparation for the imminent liberalisation of the French gas and electricity markets. It has two legal roles: participating in the process of informing consumers about their rights, and recommending solutions for settling disputes. The Ombudsman reports directly to the French Parliament. This 2012 edition of the National energy ombudsman's activity report has adopted a somewhat original, but very informative, format: an abc which allows us to take a look back at the highlights of 2012 and to summarise the great energy challenges that the National Energy Ombudsman has worked on since 2007: Achievements, Activity, Amicable agreement, Billing decree, Consultation, Disconnections, Energy voucher, National debate on energy transition, help to consumers, lowering gas prices, best management of public resources, communicating gas meter project, Peak hours and off-peak hours, Unpaid bills, Commercially sensitive information, Disputes, Mediation, development of the European Network of Independent Energy Ombudsmen, Combat against energy poverty, Consumer protection, Back billing time limit, Supply quality, Complaint, Recommendations, Debt distress, rise in prices etc

  17. Advanced energy systems and technologies research in Finland. NEMO-2 Programme Annual Report 1996-1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    Advanced energy technologies were linked to the national energy research in the beginning of 1988 when energy research was reorganised in Finland. The Ministry of Trade and Industry established several energy research programmes and NEMO was one of them. Major objectives of the programme were to assess the potential of new energy systems for the national energy supply system and to promote industrial activities. Within the NEMO 2 programme for the years 1993-1998, research was focused on a few promising technological solutions. In the beginning of 1995, the national energy research activities were passed on to the Technology Development Centre TEKES. The NEMO 2 programme is directed towards those areas that have particular potential for commercial exploitation or development. Emphasis is placed particularly on solar and wind energy, as well as supporting technologies, such as energy storage and hydrogen technology. Resources have been focused on three specific areas: arctic wind technology, wind turbine components, and the integration of solar energy into applications (including thin film solar cells). In Finland, the growth of the new energy technology industry is concentrated on these areas. The turnover of the Finnish industry has been growing considerably due to the national research activities and support of technology development. The sales have increased more than 10 times compared with the year 1987 and is now over 300 million FIM. The support to industries and their involvement in the program has grown considerably. In this report, the essential research projects of the programme during 1996-1997 are described. The total funding for these projects was about 30 million FIM per year, of which the TEKES`s share was about 40 per cent. The programme consists of 10 research projects, some 15 joint development projects, and 9 EU projects. In case the research projects and joint development projects are acting very closely, the description of the project is

  18. Advanced energy systems and technologies research in Finland. NEMO-2 Programme Annual Report 1996-1997

    International Nuclear Information System (INIS)

    1998-01-01

    Advanced energy technologies were linked to the national energy research in the beginning of 1988 when energy research was reorganised in Finland. The Ministry of Trade and Industry established several energy research programmes and NEMO was one of them. Major objectives of the programme were to assess the potential of new energy systems for the national energy supply system and to promote industrial activities. Within the NEMO 2 programme for the years 1993-1998, research was focused on a few promising technological solutions. In the beginning of 1995, the national energy research activities were passed on to the Technology Development Centre TEKES. The NEMO 2 programme is directed towards those areas that have particular potential for commercial exploitation or development. Emphasis is placed particularly on solar and wind energy, as well as supporting technologies, such as energy storage and hydrogen technology. Resources have been focused on three specific areas: arctic wind technology, wind turbine components, and the integration of solar energy into applications (including thin film solar cells). In Finland, the growth of the new energy technology industry is concentrated on these areas. The turnover of the Finnish industry has been growing considerably due to the national research activities and support of technology development. The sales have increased more than 10 times compared with the year 1987 and is now over 300 million FIM. The support to industries and their involvement in the program has grown considerably. In this report, the essential research projects of the programme during 1996-1997 are described. The total funding for these projects was about 30 million FIM per year, of which the TEKES's share was about 40 per cent. The programme consists of 10 research projects, some 15 joint development projects, and 9 EU projects. In case the research projects and joint development projects are acting very closely, the description of the project is

  19. Energy Conversion Advanced Heat Transport Loop and Power Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Oh, C. H.

    2006-08-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various

  20. Advanced Control of Active Bearings - Modelling, Design and Experiments

    DEFF Research Database (Denmark)

    Theisen, Lukas Roy Svane

    In all rotating machines relative movements between the stationary parts and the rotating parts imply energy loss and, in many critical cases, vibration problems. This energy loss leads to higher overall energy consumption of the system. Research activities towards the reduction of friction......, the enhancement of damping, the extension of operating range and the minimisation of critical vibrations in machine elements are of fundamental importance. The main component to tackle the energy-loss-related problems is the bearing. The area of design of active bearings, while very promising, is still in its...... the critical speeds. The feedback control law is preferably designed from a simple model, which captures the dominant dynamics of the machine in the frequency range of interest. This thesis offers two main original contributions in the field of active bearings. First, an experimental technique is proposed...

  1. Compensatory mechanisms activated with intermittent energy restriction

    DEFF Research Database (Denmark)

    Coutinho, Sílvia Ribeiro; Halset, Eline Holli; Gåsbakk, Sigrid

    2018-01-01

    Background & aims: Strong compensatory responses, with reduced resting metabolic rate (RMR), increased exercise efficiency (ExEff) and appetite, are activated when weight loss (WL) is achieved with continuous energy restriction (CER), which try to restore energy balance. Intermittent energy...... restriction (IER), where short spells of energy restriction are interspaced by periods of habitual energy intake, may offer some protection in minimizing those responses. We aimed to compare the effect of IER versus CER on body composition and the compensatory responses induced by WL. Methods: 35 adults (age......: 39 ± 9 y) with obesity (BMI: 36 ± 4 kg/m2) were randomized to lose a similar weight with an IER (N = 18) or a CER (N = 17) diet over a 12 week period. Macronutrient composition and overall energy restriction (33% reduction) were similar between groups. Body weight/composition, RMR, fasting...

  2. Annual Report: Advanced Energy Systems Fuel Cells (30 September 2013)

    Energy Technology Data Exchange (ETDEWEB)

    Gerdes, Kirk; Richards, George

    2014-04-16

    The comprehensive research plan for Fuel Cells focused on Solid State Energy Conversion Alliance (SECA) programmatic targets and included objectives in two primary and focused areas: (1) investigation of degradation modes exhibited by the anode/electrolyte/cathode (AEC), development of computational models describing the associated degradation rates, and generation of a modeling tool predicting long term AEC degradation response; and (2) generation of novel electrode materials and microstructures and implementation of the improved electrode technology to enhance performance. In these areas, the National Energy Technology Laboratory (NETL) Regional University Alliance (RUA) team has completed and reported research that is significant to the SECA program, and SECA continued to engage all SECA core and SECA industry teams. Examination of degradation in an operational solid oxide fuel cell (SOFC) requires a logical organization of research effort into activities such as fundamental data gathering, tool development, theoretical framework construction, computational modeling, and experimental data collection and validation. Discrete research activity in each of these categories was completed throughout the year and documented in quarterly reports, and researchers established a framework to assemble component research activities into a single operational modeling tool. The modeling framework describes a scheme for categorizing the component processes affecting the temporal evolution of cell performance, and provides a taxonomical structure of known degradation processes. The framework is an organizational tool that can be populated by existing studies, new research completed in conjunction with SECA, or independently obtained. The Fuel Cell Team also leveraged multiple tools to create cell performance and degradation predictions that illustrate the combined utility of the discrete modeling activity. Researchers first generated 800 continuous hours of SOFC experimental

  3. Advanced Power Electronics Interfaces for Distributed Energy Workshop Summary: August 24, 2006, Sacramento, California

    Energy Technology Data Exchange (ETDEWEB)

    Treanton, B.; Palomo, J.; Kroposki, B.; Thomas, H.

    2006-10-01

    The Advanced Power Electronics Interfaces for Distributed Energy Workshop, sponsored by the California Energy Commission Public Interest Energy Research program and organized by the National Renewable Energy Laboratory, was held Aug. 24, 2006, in Sacramento, Calif. The workshop provided a forum for industry stakeholders to share their knowledge and experience about technologies, manufacturing approaches, markets, and issues in power electronics for a range of distributed energy resources. It focused on the development of advanced power electronic interfaces for distributed energy applications and included discussions of modular power electronics, component manufacturing, and power electronic applications.

  4. Advanced Onboard Energy Storage Solution for Balloons, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Balloon Programs at NASA are looking for a potential 100 day missions at mid-altitudes. These balloons would be powered by solar panels to take advantage of...

  5. Advanced energy systems and technologies research in Finland. NEMO 2 annual report 1994-1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Advanced energy technologies were linked to the national energy research in beginning of 1988 when energy research was reorganised in Finland. The Ministry of Trade and Industry set up many energy research programmes and NEMO was one of them. Major objectives of the programme were to assess the potential of new energy systems for the national energy supply system and to promote industrial activities. Within the NEMO 2 programme for the years 1993-1998, research was focused on technological solutions. In the beginning of the 1995, the national energy research activities were passed on to the Technology Development Centre TEKES. The NEMO 2 programme is directed towards those areas that have particular potential for commercial exploitation or development. Emphasis is placed particularly on solar and wind energy, as well as supporting technologies such as energy storage and hydrogen technology. Resources has been focused on three specific areas: Arctic wind technology, wind turbine components, and the integration of solar energy into applications (including thin film solar cells). It seems that in Finland the growth of the new energy technology industry is focused on these areas. The sales of the industry have been growing considerable due to the national research activities and support of technology development. The sales have increased 6 - 7 times compared to the year 1987 and is now over 200 million FIM. The support to industries and their involvement in the program has grown more than 15 times compared to 1988. The total funding of the NEMO 2 program me was 30 million FIM in 1994 and 21 million FIM in 1995. The programme consists of 20 research projects, 15 joint development projects, and 5 EU projects. In this report, the essential research projects of the programme in 1994-1995 are described. The total funding for these projects was about 25 million FIM, of which the TEKES`s share was about half. When the research projects and joint development projects are

  6. Technical Support Document: Development of the Advanced Energy Design Guide for K-12 Schools--30% Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    Pless, S.; Torcellini, P.; Long, N.

    2007-09-01

    This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for K-12 School Buildings (K-12 AEDG), a design guidance document intended to provide recommendations for achieving 30% energy savings in K-12 Schools over levels contained in ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings. The 30% energy savings target is the first step toward achieving net-zero energy schools; schools that, on an annual basis, draw from outside sources less or equal energy than they generate on site from renewable energy sources.

  7. Prestressed-concrete pressure vessels and their applicability to advanced-energy-system concepts

    International Nuclear Information System (INIS)

    Naus, D.J.

    1983-01-01

    Prestressed concrete pressure vessels (PCPVs) are, in essence, spaced steel structures since their strength is derived from a multitude of steel elements made up of deformed reinforcing bars and prestressing tendons which are present in sufficient quantities to carry tension loads imposed on the vessel. Other major components of a PCPV include the concrete, liner and cooling system, and insulation. PCPVs exhibit a number of advantages which make them ideally suited for application to advanced energy concepts: fabricability in virtually any size and shape using available technology, improved safety, reduced capital costs, and a history of proven performance. PCPVs have many applications to both nuclear- and non-nuclear-based energy systems concepts. Several of these concepts will be discussed as well as the research and development activities conducted at ORNL in support of PCPV development

  8. Analysis of active piezoelectric energy harvester

    Directory of Open Access Journals (Sweden)

    Yiliang CUI

    2018-02-01

    Full Text Available Most of the existing piezoelectric traps are designed for a narrow frequency range of vibration, but the surrounding environment has a very wide frequency range, and the frequency may also be subject to change, causing the problem of difficult to achieve energy capture or capture inefficiency. In order to solve problem, a new T-type piezoelectric cantilever is proposed as a capture energy structure in the paper. To begin with the aspects of structural design and circuit design, the static analysis, modal analysis and resonance analysis of the structure are carried out and the natural frequency and excitation frequency of the device are analyzed. The design and calculation of the power consumption and the loss of the components of the circuit are analyzed by the simulation and verification of the active capture energy circuit, and the active and passive techniques are compared and analyzed, the simulation of the active capture circuit is verified by analyzing the power consumption of the circuit and the maximum power obtained by the active technology is 5 times of that of the passive technology. And then the voltage-controlled active boundary control method can be used for interface circuit design, taking the initiative to use each piezoelectric transduction cycle triggered by the electrical boundary conditions to effectively increase the input piezoelectric pump energy, and then increase output power. The way of utilizing the active trapping of piezoelectric materials is innovated, which has a positive effect on the development of piezoelectric traps.

  9. Advances in Energy Conservation of China Steel Industry

    Directory of Open Access Journals (Sweden)

    Wenqiang Sun

    2013-01-01

    Full Text Available The course, technical progresses, and achievements of energy conservation of China steel industry (CSI during 1980–2010 were summarized. Then, the paper adopted e-p method to analyze the variation law and influencing factors of energy consumptions of large- and medium-scale steel plants within different stages. It is pointed out that energy consumption per ton of crude steel has been almost one half lower in these thirty years, with 60% as direct energy conservation owing to the change of process energy consumption and 40% as indirect energy conservation attributed to the adjustment of production structure. Next, the latest research progress of some key common technologies in CSI was introduced. Also, the downtrend of energy consumption per ton of crude steel and the potential energy conservation for CSI during 2011–2025 were forecasted. Finally, it is indicated that the key topic of the next 15 years’ research on the energy conservation of CSI is the synergistic operation of material flow and energy flow. It could be achieved by the comprehensive study on energy flow network optimization, such as production, allocation, utilization, recovery, reuse, and resource, according to the energy quantity, quality, and user demand following the first and second laws of thermodynamics.

  10. Advances in energy conservation of China steel industry.

    Science.gov (United States)

    Sun, Wenqiang; Cai, Jiuju; Ye, Zhu

    2013-01-01

    The course, technical progresses, and achievements of energy conservation of China steel industry (CSI) during 1980-2010 were summarized. Then, the paper adopted e-p method to analyze the variation law and influencing factors of energy consumptions of large- and medium-scale steel plants within different stages. It is pointed out that energy consumption per ton of crude steel has been almost one half lower in these thirty years, with 60% as direct energy conservation owing to the change of process energy consumption and 40% as indirect energy conservation attributed to the adjustment of production structure. Next, the latest research progress of some key common technologies in CSI was introduced. Also, the downtrend of energy consumption per ton of crude steel and the potential energy conservation for CSI during 2011-2025 were forecasted. Finally, it is indicated that the key topic of the next 15 years' research on the energy conservation of CSI is the synergistic operation of material flow and energy flow. It could be achieved by the comprehensive study on energy flow network optimization, such as production, allocation, utilization, recovery, reuse, and resource, according to the energy quantity, quality, and user demand following the first and second laws of thermodynamics.

  11. Renewable energy activities in Senegal: a review

    International Nuclear Information System (INIS)

    Youm, I.; Sarr, J.; Kane, M.M.; Sall, M.

    2000-01-01

    Like many countries in Africa, Senegal is facing economical decline, energy crisis and serious desertification problem in rural areas. These issues could be removed if renewable energy is used as a primary source of energy in rural areas. What is required is a strategy to implement renewable energy technologies at large scale. The government and many non-governmental organisations (NGOs) have tried to comprehend and have strived to address the problem of energy. This paper present a review of activities in the field of renewable energy applications in Senegal, which goes back to the mid 1970s and will discuss the socio-economic benefits that the country has derived from these environmentally sound and appropriate sources of energy. The development and trial of systems were mostly funded so far by donor agencies in collaboration with government and NGOs. Among the applications being supported are solar lighting, water pumping and small power plants. Recent efforts have been aimed at restructuring the programmes and giving them a market orientation. Future trends, some suggestion and recommendations for successful dissemination of renewable energy sources are also drawn. The present situation is seen to be much more promising and favourable for renewable energy. (Author)

  12. Dual energy radiography using active detector technology

    International Nuclear Information System (INIS)

    Seibert, J.A.; Poage, T.F.; Alvarez, R.E.

    1996-01-01

    A new technology has been implemented using an open-quotes active-detectorclose quotes comprised of two computed radiography (CR) imaging plates in a sandwich geometry for dual-energy radiography. This detector allows excellent energy separation, short exposure time, and high signal to noise ratio (SNR) for clinically robust open-quotes bone-onlyclose quotes and open-quotes soft-tissue onlyclose quotes images with minimum patient motion. Energy separation is achieved by two separate exposures at widely different kVp's: the high energy (120 kVp + 1.5 mm Cu filter) exposure is initiated first, followed by a short burst of intense light to erase the latent image on the front plate, and then a 50 kVp (low energy) exposure. A personal computer interfaced to the x-ray generator, filter wheel, and active detector system orchestrates the acquisition sequence within a time period of 150 msec. The front and back plates are processed using a CR readout algorithm with fixed speed and wide dynamic range. open-quotes Bone-onlyclose quotes and open-quotes soft-tissue onlyclose quotes images are calculated by geometric alignment of the two images and application of dual energy decomposition algorithms on a pixel by pixel basis. Resultant images of a calibration phantom demonstrate an increase of SNR 2 / dose by ∼73 times when compared to a single exposure open-quotes passive-detectorclose quotes comprised of CR imaging plates, and an ∼8 fold increase compared to a screen-film dual-energy cassette comprised of different phosphor compounds. In conclusion, dual energy imaging with open-quotes active detectorclose quotes technology is clinically feasible and can provide substantial improvements over conventional methods for dual-energy radiography

  13. Commission of energy regulation. 2004 activity report

    International Nuclear Information System (INIS)

    2004-01-01

    The commission of energy regulation (CRE) is an independent administrative authority in charge of the control of the operation of gas and electricity markets. This document is the fifth activity report of CRE and covers the July 1, 2003 - June 30, 2004 period, which corresponds to the era of opening of energy markets as a consequence of the enforcement of the June 26, 2003 European directive. In the framework of the stakes made by energy markets liberalization, this document presents the situation of the gas and electricity markets during this period (European framework, regulation of both markets, public utility mission..) and describes CRE's means for the monitoring of these markets. (J.S.)

  14. IAEA activities in technology development for advanced water-cooled nuclear power plants

    International Nuclear Information System (INIS)

    Juhn, Poong Eil; Kupitz, Juergen; Cleveland, John; Lyon, Robert; Park, Je Won

    2003-01-01

    As part of its Nuclear Power Programme, the IAEA conducts activities that support international information exchange, co-operative research and technology assessments and advancements with the goal of improving the reliability, safety and economics of advanced water-cooled nuclear power plants. These activities are conducted based on the advice, and with the support, of the IAEA Department of Nuclear Energy's Technical Working Groups on Advanced Technologies for Light Water Reactors (LWRs) and Heavy Water Reactors (HWRs). Assessments of projected electricity generation costs for new nuclear plants have shown that design organizations are challenged to develop advanced designs with lower capital costs and short construction times, and sizes, including not only large evolutionary plants but also small and medium size plants, appropriate to grid capacity and owner financial investment capability. To achieve competitive costs, both proven means and new approaches should be implemented. The IAEA conducts activities in technology development that support achievement of improved economics of water-cooled nuclear power plants (NPPs). These include fostering information sharing and cooperative research in thermo-hydraulics code validation; examination of natural circulation phenomena, modelling and the reliability of passive systems that utilize natural circulation; establishment of a thermo-physical properties data base; improved inspection and diagnostic techniques for pressure tubes of HWRs; and collection and balanced reporting from recent construction and commissioning experiences with evolutionary water-cooled NPPs. The IAEA also periodically publishes Status Reports on global development of advanced designs. (author)

  15. Energy Efficient Engine program advanced turbofan nacelle definition study

    Science.gov (United States)

    Howe, David C.; Wynosky, T. A.

    1985-01-01

    Advanced, low drag, nacelle configurations were defined for some of the more promising propulsion systems identified in the earlier Benefit/Cost Study, to assess the benefits associated with these advanced technology nacelles and formulate programs for developing these nacelles and low volume thrust reversers/spoilers to a state of technology readiness in the early 1990's. The study results established the design feasibility of advanced technology, slim line nacelles applicable to advanced technology, high bypass ratio turbofan engines. Design feasibility was also established for two low volume thrust reverse/spoiler concepts that meet or exceed the required effectiveness for these engines. These nacelle and thrust reverse/spoiler designs were shown to be applicable in engines with takeoff thrust sizes ranging from 24,000 to 60,000 pounds. The reduced weight, drag, and cost of the advanced technology nacelle installations relative to current technology nacelles offer a mission fuel burn savings ranging from 3.0 to 4.5 percent and direct operating cost plus interest improvements from 1.6 to 2.2 percent.

  16. Polymeric drugs: Advances in the development of pharmacologically active polymers

    Science.gov (United States)

    Li, Jing; Yu, Fei; Chen, Yi; Oupický, David

    2015-01-01

    Synthetic polymers play a critical role in pharmaceutical discovery and development. Current research and applications of pharmaceutical polymers are mainly focused on their functions as excipients and inert carriers of other pharmacologically active agents. This review article surveys recent advances in alternative pharmaceutical use of polymers as pharmacologically active agents known as polymeric drugs. Emphasis is placed on the benefits of polymeric drugs that are associated with their macromolecular character and their ability to explore biologically relevant multivalency processes. We discuss the main therapeutic uses of polymeric drugs as sequestrants, antimicrobials, antivirals, and anticancer and anti-inflammatory agents. PMID:26410809

  17. Radionuclide Emission Estimation for the Center for Advanced Energy Studies (CAES)

    International Nuclear Information System (INIS)

    Schrader, Bradley J.

    2010-01-01

    An Radiological Safety Analysis Computer Program (RSAC)-7 model dose assessment was performed to evaluate maximum Center for Advanced Energy Studies (CAES) boundary effective dose equivalent (EDE, in mrem/yr) for potential individual releases of radionuclides from the facility. The CAES is a public/private partnership between the State of Idaho and its academic research institutions, the federal government through the U.S. Department of Energy (DOE), and the Idaho National Laboratory (INL) managed by the Battelle Energy Alliance (BEA). CAES serves to advance energy security for our nation by expanding educational opportunities at Idaho universities in energy-related areas, creating new capabilities within its member institutions, and delivering technological innovations leading to technology-based economic development for the intermountain region. CAES has developed a strategic plan (INL/EXT-07-12950) based on the balanced scorecard approach. At the present time it is unknown exactly what processes will be used in the facility in support of this strategic plan. What is known is that the Idaho State University (ISU) Radioactive Materials License (Nuclear Regulatory Commission (NRC) license 11-27380-01) is the basis for handling radioactive material in the facility. The material in this license is shared between the ISU campus and the CAES facility. There currently are no agreements in place to limit the amount of radioactive material at the CAES facility or what is done to the material in the facility. The scope of this analysis is a summary look at the basis dose for each radionuclide included under the license at a distance of 100, 500, and 1,000 m. Inhalation, ingestion and ground surface dose was evaluated using the NRC design basis guidelines. The results can be used to determine a sum of the fractions approach to facility safety. This sum of the fractions allows a facility threshold value (TV) to be established and potential activities to be evaluated against

  18. Energy reduction for a dual circuit cooling water system using advanced regulatory control

    International Nuclear Information System (INIS)

    Muller, C.J.; Craig, I.K.

    2016-01-01

    Highlights: • Potentially reduce energy required by a dual circuit cooling water system by 30%. • Accomplished using an advanced regulatory control and switching strategy. • No formal process model is required. • Can be implemented on control system hardware commonly used in industry. - Abstract: Various process utilities are used in the petrochemical industry as auxiliary variables to facilitate the addition/removal of energy to/from the process, power process equipment and inhibit unwanted reaction. Optimisation activities usually focus on the process itself or on the utility consumption though the generation and distribution of these utilities are often overlooked in this regard. Many utilities are prepared or generated far from the process plant and have to be transported or transmitted, giving rise to more losses and potential inefficiencies. To illustrate the potential benefit of utility optimisation, this paper explores the control of a dual circuit cooling water system with focus on energy reduction subject process constraints. This is accomplished through the development of an advanced regulatory control (ARC) and switching strategy which does not require the development of a system model, only rudimentary knowledge of the behaviour of the process and system constraints. The novelty of this manuscript lies in the fact that it demonstrates that significant energy savings can be obtained by applying ARC to a process utility containing both discrete and continuous dynamics. Furthermore, the proposed ARC strategy does not require a plant model, uses only existing plant equipment, and can be implemented on control system hardware commonly used in industry. The simulation results indicate energy saving potential in the region of 30% on the system under investigation.

  19. Experimental study of deceleration process of traveling wave direct energy converter for advanced fusion

    International Nuclear Information System (INIS)

    Takeno, Hormasa; Yamamoto, Takayoshi; Takada, Kousuke; Yasaka, Yasuyoshi

    2007-01-01

    Advanced fusion is attractive in the view point of utilization of high efficiency direct energy conversion from fusion produced ions. Deuterium-helium-3 reaction is the most possible, however, the energy of created fast proton is so enormous that conventional electro-static converters cannot be applied. Use of a traveling wave direct energy converter (TWDEC), the principle of which was inverse process of a linear accelerator, was proposed for recovering energy of the fast protons. In order to realize the TWDEC, the authors are continuing experimental study by employing a small-scale simulator. A TWDEC consists of a modulator and a decelerator. Fast proton beam extracted from a reactor is introduced in the modulator where radio frequency (RF) electrostatic field modulate the beam velocity, and hence, the protons are bunched and density-modulated in the downstream. The density-modulated protons flow into the decelerator where a number of electrodes connected to a transmission circuit are axially aligned. The flowing protons induce RF current which creates RF traveling voltage on the electrodes. The RF traveling field between aligned electrodes decelerates the protons, thus their energy is recovered into RF power. In this paper, deceleration process of TWDEC is experimentally examined. In our experimental simulator, because of the small beam current, the induced potential, i.e. the deceleration field is so weak that the beam cannot be decelerated. Thus, we examined the process by dividing into two: one was induction of the deceleration field by the modulated beam, which was called as passive decelerator. The other was energy recovery through interaction between the deceleration field and the modulated beam. In this latter experiment, the deceleration field was supplied externally, and we called this as active decelerator. As for the active decelerator mode, we performed higher beam energy experiment than previous one. As the beam energy increases, the divergence of

  20. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study

    Science.gov (United States)

    1982-01-01

    The Current and Advanced Technology ACT control system definition tasks of the Integrated Application of Active Controls (IAAC) Technology project within the Energy Efficient Transport Program are summarized. The systems mechanize six active control functions: (1) pitch augmented stability; (2) angle of attack limiting; (3) lateral/directional augmented stability; (4) gust load alleviation; (5) maneuver load control; and (6) flutter mode control. The redundant digital control systems meet all function requirements with required reliability and declining weight and cost as advanced technology is introduced.

  1. Advanced Performance Modeling with Combined Passive and Active Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Dovrolis, Constantine [Georgia Inst. of Technology, Atlanta, GA (United States); Sim, Alex [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-04-15

    To improve the efficiency of resource utilization and scheduling of scientific data transfers on high-speed networks, the "Advanced Performance Modeling with combined passive and active monitoring" (APM) project investigates and models a general-purpose, reusable and expandable network performance estimation framework. The predictive estimation model and the framework will be helpful in optimizing the performance and utilization of networks as well as sharing resources with predictable performance for scientific collaborations, especially in data intensive applications. Our prediction model utilizes historical network performance information from various network activity logs as well as live streaming measurements from network peering devices. Historical network performance information is used without putting extra load on the resources by active measurement collection. Performance measurements collected by active probing is used judiciously for improving the accuracy of predictions.

  2. Magnetic field dependence of vortex activation energy

    Indian Academy of Sciences (India)

    ... the resistance as a function of temperature and magnetic field in clean polycrystalline samples of NbSe2, MgB2 and Bi2Sr2Ca2Cu3O10 (BSCCO) superconductors. Thermally activated flux flow behaviour is seen in all the three systems and clearly identified in bulk MgB2. While the activation energy at low fields for MgB2 ...

  3. Energy and cost saving results for advanced technology systems from the Cogeneration Technology Alternatives Study (CTAS)

    Science.gov (United States)

    Sagerman, G. D.; Barna, G. J.; Burns, R. K.

    1979-01-01

    An overview of the organization and methodology of the Cogeneration Technology Alternatives Study is presented. The objectives of the study were to identify the most attractive advanced energy conversion systems for industrial cogeneration applications in the future and to assess the advantages of advanced technology systems compared to those systems commercially available today. Advanced systems studied include steam turbines, open and closed cycle gas turbines, combined cycles, diesel engines, Stirling engines, phosphoric acid and molten carbonate fuel cells and thermionics. Steam turbines, open cycle gas turbines, combined cycles, and diesel engines were also analyzed in versions typical of today's commercially available technology to provide a base against which to measure the advanced systems. Cogeneration applications in the major energy consuming manufacturing industries were considered. Results of the study in terms of plant level energy savings, annual energy cost savings and economic attractiveness are presented for the various energy conversion systems considered.

  4. A study on intensifying efficiency for international collaborative development of advanced nuclear energy technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. H.; Hahn, D. H.; Song, K. C.; Chang, J. H.; Kim, H. J.; Kim, H. J.; Lim, C. Y.; Lee, D. S.; Lee, Y. J. [KAERI, Daejeon (Korea, Republic of)

    2011-03-15

    The objective of the study was to participate the GIF for the efficient propulsion of future nuclear system development. For achieving the objective of this study, the followings were carried out. {Omicron} Analyze the international/domestic trends in the future nuclear energy system {Omicron} Analyze the domestic long-term R and D program for the future nuclear system and assist its implementation - Review the agenda of the executive committee, the technical committee, and sub-technical committee - Assist the committee meetings and workshops related to the future nuclear energy system {Omicron} Develop the participation strategy for the collaborative development of Gen-IV technology and conducting the international cooperation activities - Support the delegation by reviewing the agenda of GIF meetings in the technical and legal perspective - Research the system R and D arrangement and report its progress - Participate in the SFR SIA PA negotiation meeting and report its progress {Omicron} Support the activities related to I-NERI between Korea and U.S. - Support a delegation by reviewing the agenda in the technical/legal point of view - Participate in the BINERIC meetings and Support the related activities The result of this study may be used for 1) contribution to establishing the effective foundation and broadening the cooperation activities between the advanced countries and Korea and 2) contribution effective management of Gen IV international collaboration by technical/legal supporting

  5. A study on intensifying efficiency for international collaborative development of advanced nuclear energy technology

    International Nuclear Information System (INIS)

    Lee, J. H.; Hahn, D. H.; Song, K. C.; Chang, J. H.; Kim, H. J.; Kim, H. J.; Lim, C. Y.; Lee, D. S.; Lee, Y. J.

    2011-03-01

    The objective of the study was to participate the GIF for the efficient propulsion of future nuclear system development. For achieving the objective of this study, the followings were carried out. Ο Analyze the international/domestic trends in the future nuclear energy system Ο Analyze the domestic long-term R and D program for the future nuclear system and assist its implementation - Review the agenda of the executive committee, the technical committee, and sub-technical committee - Assist the committee meetings and workshops related to the future nuclear energy system Ο Develop the participation strategy for the collaborative development of Gen-IV technology and conducting the international cooperation activities - Support the delegation by reviewing the agenda of GIF meetings in the technical and legal perspective - Research the system R and D arrangement and report its progress - Participate in the SFR SIA PA negotiation meeting and report its progress Ο Support the activities related to I-NERI between Korea and U.S. - Support a delegation by reviewing the agenda in the technical/legal point of view - Participate in the BINERIC meetings and Support the related activities The result of this study may be used for 1) contribution to establishing the effective foundation and broadening the cooperation activities between the advanced countries and Korea and 2) contribution effective management of Gen IV international collaboration by technical/legal supporting

  6. Advanced energy technologies and climate change: An analysis using the Global Change Assessment Model (GCAM)

    International Nuclear Information System (INIS)

    Edmonds, J.; Wise, M.; MacCracken, C.

    1994-01-01

    The authors report results from a ''top down'' energy-economy model employing ''bottom up'' assumptions and embedded in an integrated assessment framework, GCAM. The analysis shows that, from the perspective of long-term energy system development, differences in results from the ''top down'' and ''bottom up'' research communities would appear to be more closely linked to differences in assumptions regarding the economic cost associated with advanced technologies than to differences in modeling approach. The adoption of assumptions regarding advanced energy technologies were shown to have a profound effect on the future rate of anthropogenic climate change. The cumulative effect of the five sets of advanced energy technologies is to reduce annual emissions from fossil fuel use to levels which stabilize atmospheric concentrations below 550 ppmv, the point at which atmospheric concentrations are double those that existed in the middle of the eighteenth century. The consideration of all greenhouse gases, and in particular sulfur, leads to some extremely interesting results that the rapid deployment of advanced energy technologies leads to higher temperatures prior to 2050 than in the reference case. This is due to the fact that the advanced energy technologies reduce sulfur emissions as well as those of carbon. The short-term cooling impact of sulfur dominates the long-term warming impact of CO 2 and CH 4 . While all energy technologies play roles, the introduction of advanced biomass energy production technology plays a particularly important role. 16 refs., 12 figs., 3 tabs

  7. Role of proactive behaviour enabled by advanced computational intelligence and ICT in Smart Energy Grids

    NARCIS (Netherlands)

    Nguyen, P.H.; Kling, W.L.; Ribeiro, P.F.; Venayagamoorthy, G.K.; Croes, R.

    2013-01-01

    Significant increase in renewable energy production and new forms of consumption has enormous impact to the electrical power grid operation. A Smart Energy Grid (SEG) is needed to overcome the challenge of a sustainable and reliable energy supply by merging advanced ICT and control techniques to

  8. Direction of Nuclear Energy. Activity report 2010

    International Nuclear Information System (INIS)

    2011-11-01

    This report proposes an overview of the research activities performed by the French DEN (Direction de l'Energie Nucleaire, Direction of Nuclear Energy) within the CEA. These activities address the future nuclear industrial systems (4. generation reactors, back-end of the future fuel cycle, basic scientific and technological research), the optimization of the industrial nuclear power (fuel cycle front end, second and third generation reactors, back-end of the present fuel cycle), major tools for the development of nuclear energy (simulation tools, Jules Horowitz reactor, value creation), clean up and dismantling of nuclear facilities (present status, the Passage project in Grenoble, the Aladin project in Fontenay-aux-Roses, projects at Marcoule, flow management of radioactive wastes, materials and disused fuels, transport). Three research centres are presented: Marcoule, Cadarache and Saclay

  9. International Atomic Energy Agency. Highlights of activities

    International Nuclear Information System (INIS)

    Gillen, V.A.

    1991-09-01

    This document provides a brief, well-illustrated summary of the activities of the International Atomic Energy Agency in the months up to September 1991. Especially mentioned are the programmes to enhance the safety of nuclear power, from the study of nuclear reactors to assessing the radiological consequences of reactor accidents, and the areas of non-proliferation and safeguards

  10. International Atomic Energy Agency: Highlights of activities

    International Nuclear Information System (INIS)

    Gillen, A.

    1992-09-01

    This document provides a brief, well-illustrated summary of the activities of the International Atomic Energy Agency in the months up to September 1992. Especially mentioned are the programmes to enhance the safety of nuclear power, from the study of nuclear reactors to assessing the radiological consequences of reactor accidents, and the areas of non-proliferation and safeguards

  11. Advanced Grid Control Technologies Workshop Series | Energy Systems

    Science.gov (United States)

    : Smart Grid and Beyond John McDonald, Director, Technical Strategy and Policy Development, General Control Technologies Workshop Series In July 2015, NREL's energy systems integration team hosted workshops the Energy Systems Integration Facility (ESIF) and included a technology showcase featuring projects

  12. Junction temperature estimation for an advanced active power cycling test

    DEFF Research Database (Denmark)

    Choi, Uimin; Blaabjerg, Frede; Jørgensen, S.

    2015-01-01

    estimation method using on-state VCE for an advanced active power cycling test is proposed. The concept of the advanced power cycling test is explained first. Afterwards the junction temperature estimation method using on-state VCE and current is presented. Further, the method to improve the accuracy...... of the maximum junction temperature estimation is also proposed. Finally, the validity and effectiveness of the proposed method is confirmed by experimental results.......On-state collector-emitter voltage (VCE) is a good indicator to determine the wear-out condition of power device modules. Further, it is a one of the Temperature Sensitive Electrical Parameters (TSEPs) and thus can be used for junction temperature estimation. In this paper, the junction temperature...

  13. A Study on intensifying efficiency for international collaborative development of Advanced Nuclear Energy Technology

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Moon Hee; Kim, H. R.; Kim, H. J.; Chang, J. H.; Hahn, D. H.; Bae, Y. Y.; Kim, W. W.; Jeong, I.; Lee, D. S.; Lee, J. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-06-15

    Generation IV International Forum(GIF), where 13 countries including Korea collaborate to develop future nuclear energy systems, put into force 'Generation IV International Forum Project Arrangement' in 2007 for the international research and development of Gen IV Systems, following the entry into force of Framework Agreement in 2005. The International Nuclear Research Initiative(I-NERI) between Korea and United States and the International Project on Innovative Nuclear Energy Systems and Fuel Cycles(INPRO) of IAEA are continued in this year, produced lots of visible outcomes. These international activities have a common goal of the collaborative development of advanced nuclear system technologies but differ in the main focusing areas and aspects, so Korea needs to establish the integrated strategy based on the distinguished and complementary approach for the participation of each international programs, as examples the GIF for the advanced system technology development, INPRO for the set-up of institution and infra-structure, and I-NERI for the access of the core technologies and acquisition of the transparency of nuclear R and D.

  14. A Study on intensifying efficiency for international collaborative development of Advanced Nuclear Energy Technology

    International Nuclear Information System (INIS)

    Chang, Moon Hee; Kim, H. R.; Kim, H. J.; Chang, J. H.; Hahn, D. H.; Bae, Y. Y.; Kim, W. W.; Jeong, I.; Lee, D. S.; Lee, J. H.

    2008-06-01

    Generation IV International Forum(GIF), where 13 countries including Korea collaborate to develop future nuclear energy systems, put into force 'Generation IV International Forum Project Arrangement' in 2007 for the international research and development of Gen IV Systems, following the entry into force of Framework Agreement in 2005. The International Nuclear Research Initiative(I-NERI) between Korea and United States and the International Project on Innovative Nuclear Energy Systems and Fuel Cycles(INPRO) of IAEA are continued in this year, produced lots of visible outcomes. These international activities have a common goal of the collaborative development of advanced nuclear system technologies but differ in the main focusing areas and aspects, so Korea needs to establish the integrated strategy based on the distinguished and complementary approach for the participation of each international programs, as examples the GIF for the advanced system technology development, INPRO for the set-up of institution and infra-structure, and I-NERI for the access of the core technologies and acquisition of the transparency of nuclear R and D

  15. IFP Energies Nouvelles. 2014 Activity report - Innovating for energy

    International Nuclear Information System (INIS)

    2015-01-01

    As part of the public-interest mission with which it has been tasked by the public authorities, IFP Energies Nouvelles (IFPEN) focuses on: - providing solutions to take up the challenges facing society in terms of energy and the climate, promoting the emergence of a sustainable energy mix, - creating wealth and jobs by supporting French and European economic activity, and the competitiveness of related industrial sectors. Despite the current economic environment, 2014 was a good year for IFPEN. In the field of renewable energies, major milestones were reached in two significant projects dedicated to the production of second generation biofuels in which IFPEN is very actively involved: processes developed in Futurol TM are already in the pre-marketing phase, while the construction of the two pilot units for the BioTfueL project has just been launched. In the field of ocean energies, IFPEN research has led to the first partnership agreements relating to floating wind turbines anchor technologies and command control systems for wind energy and wave energy conversion. In the transport sector, game-changing concepts are beginning to emerge, such as smart battery charging and a Rankine cycle system for an internal combustion engine transforming combustion heat into energy. In addition, IFPEN have joined forces with innovative SMEs to boost their research in the fields of electric power-trains and power electronics. Finally, IFPEN launched an eco-driving application that has proved extremely popular with the public. Turning now to oil and gas, IFPEN continued to expand its range of basin and reservoir simulation, modeling and characterization software, and it signed several contracts in the field of chemical enhanced recovery solutions with its EOR (Enhanced Oil Recovery) Alliance TM partners. IFPEN also developed new generations of high-performance catalysts and improved the conversion rate of its processes to enable refiners to convert increasingly heavy crudes and

  16. The Magnetic Free Energy in Active Regions

    Science.gov (United States)

    Metcalf, Thomas R.; Mickey, Donald L.; LaBonte, Barry J.

    2001-01-01

    The magnetic field permeating the solar atmosphere governs much of the structure, morphology, brightness, and dynamics observed on the Sun. The magnetic field, especially in active regions, is thought to provide the power for energetic events in the solar corona, such as solar flares and Coronal Mass Ejections (CME) and is believed to energize the hot coronal plasma seen in extreme ultraviolet or X-rays. The question remains what specific aspect of the magnetic flux governs the observed variability. To directly understand the role of the magnetic field in energizing the solar corona, it is necessary to measure the free magnetic energy available in active regions. The grant now expiring has demonstrated a new and valuable technique for observing the magnetic free energy in active regions as a function of time.

  17. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    International Nuclear Information System (INIS)

    Dixon, B.W.; Piet, S.J.

    2004-01-01

    The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository. There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected

  18. US Department of Energy Nuclear Energy University program in robotics for advanced reactors: Program plan, FY 1987-1991

    International Nuclear Information System (INIS)

    Mann, R.C.; Gonzalez, R.C.; Tulenko, J.S.; Tesar, D.; Wehe, D.K.

    1987-07-01

    The US Department of Energy has provided support to four universities and the Oak Ridge National Laboratory in order to pursue research leading to the development and deployment of an advanced robotic system capable of performing tasks that are hazardous to humans, that generate significant occupational radiation exposure, and/or whose execution times can be reduced if performed by an automated system. The goal is to develop a generation of advanced robotic systems capable of performing surveillance, maintenance, and repair tasks in nuclear facilities and other hazardous environments. This goal will be achieved through a team effort among the Universities of Florida, Michigan, Tennessee, Texas, and the Oak Ridge National Laboratory, and their industrial partners, Combustion Engineering, Martin Marietta Baltimore Aerospace, Odetics, Remotec, and Telerobotics International. Each of the universities and ORNL have ongoing activities and corresponding facilities in areas of R and D related to robotics. This program is designed to take full advantage of these existing resources at the participating institutions

  19. Advanced Carbon Materials for Environmental and Energy Applications

    KAUST Repository

    Dua, Rubal

    2014-01-01

    Carbon based materials, including porous carbons and carbon layer composites, are finding increased usage in latest environmental and energy related research. Among porous carbon materials, hierarchical porous carbons with multi-modal porosity are proving out to be an effective solution for applications where the traditional activated carbons fail. Thus, there has been a lot of recent interest in developing low-cost, facile, easy to scale-up, synthesis techniques for producing such multi-modal porous carbons. This dissertation offers two novel synthesis techniques: (i) ice templating integrated with hard templating, and (ii) salt templating coupled with hard templating, for producing such hierarchically porous carbons. The techniques offer tight control and tunability of porosity (macro- meso- and microscale) in terms of both size and extent. The synthesized multi-modal porous carbons are shown to be an effective solution for three important environment related applications – (i) Carbon dioxide capture using amine supported hierarchical porous carbons, (ii) Reduction in irreversible fouling of membranes used for wastewater reuse through a deposition of a layer of hierarchical porous carbons on the membrane surface, (iii) Electrode materials for electrosorptive applications. Finally, because of their tunability, the synthesized multi-modal porous carbons serve as excellent model systems for understanding the effect of different types of porosity on the performance of porous carbons for these applications. Also, recently, there has been a lot of interest in developing protective layer coatings for preventing photo-corrosion of semiconductor structures (in particular Cu2O) used for photoelectrochemical water splitting. Most of the developed protective strategies to date involve the use of metals or co-catalyst in the protective layer. Thus there is a big need for developing low-cost, facile and easy to scale protective coating strategies. Based on the expertise

  20. Advanced Carbon Materials for Environmental and Energy Applications

    KAUST Repository

    Dua, Rubal

    2014-05-01

    Carbon based materials, including porous carbons and carbon layer composites, are finding increased usage in latest environmental and energy related research. Among porous carbon materials, hierarchical porous carbons with multi-modal porosity are proving out to be an effective solution for applications where the traditional activated carbons fail. Thus, there has been a lot of recent interest in developing low-cost, facile, easy to scale-up, synthesis techniques for producing such multi-modal porous carbons. This dissertation offers two novel synthesis techniques: (i) ice templating integrated with hard templating, and (ii) salt templating coupled with hard templating, for producing such hierarchically porous carbons. The techniques offer tight control and tunability of porosity (macro- meso- and microscale) in terms of both size and extent. The synthesized multi-modal porous carbons are shown to be an effective solution for three important environment related applications – (i) Carbon dioxide capture using amine supported hierarchical porous carbons, (ii) Reduction in irreversible fouling of membranes used for wastewater reuse through a deposition of a layer of hierarchical porous carbons on the membrane surface, (iii) Electrode materials for electrosorptive applications. Finally, because of their tunability, the synthesized multi-modal porous carbons serve as excellent model systems for understanding the effect of different types of porosity on the performance of porous carbons for these applications. Also, recently, there has been a lot of interest in developing protective layer coatings for preventing photo-corrosion of semiconductor structures (in particular Cu2O) used for photoelectrochemical water splitting. Most of the developed protective strategies to date involve the use of metals or co-catalyst in the protective layer. Thus there is a big need for developing low-cost, facile and easy to scale protective coating strategies. Based on the expertise

  1. CANDU advanced fuel cycles: key to energy sustainability

    International Nuclear Information System (INIS)

    Boczar, P.G.; Fehrenbach, P.J.; Meneley, D.A.

    1996-01-01

    In the fast-growing economies of the Pacific Basin region, sustainability is an important requisite for new energy development. Many countries in this region have seen, and continue to see, very large increases in energy and electricity demand. The investment in any nuclear technology is large. Countries making that investment want to ensure that the technology can be sustained and that it can evolve in an ever-changing environment. Three key aspects in ensuring a sustainable energy future, are technological sustainability, economic sustainability, and environmental sustainability (including resource utilization). The fuel-cycle flexibility of the CANDU reactor provides a ready path to sustainable energy development in both the short and long term. (author)

  2. The global greenhouse effect and the advanced nuclear energy system

    International Nuclear Information System (INIS)

    Byong Whi Lee

    1998-01-01

    In spite of future uncertainty, Korea is very much committed to nuclear energy as a major source of electric power expansion, because of its lack of domestic energy resources. A long term nuclear power program has resulted in 11 nuclear power plants of 9.6 GWe in operation, 2 units under construction and 7 planned. This means that the share of nuclear power in Korean electricity production would be about 38% in 2006. Many other countries were faced with the problem of global warming which is related to carbondioxide emission from the use of fossil fuels. According to Korean experience, it could be concluded that substitution of fossil fuels would be the most efficient and economic means of reducing the greenhouse gas emissions. In addition to nuclear and hydropower, the most promising other non-fossil sources are geothermal energy, biomass, solar thermal energy, photovoltaic systems, wind power, tidal power, wave power and ocean thermal electric conversion

  3. Advances in molten salt electrochemistry towards future energy systems

    International Nuclear Information System (INIS)

    Ito, Yasuhiko

    2005-01-01

    This review article describes some selected novel molten salt electrochemical processes which have been created/developed by the author and his coworkers, with emphasis on the applications towards future energy systems. After showing a perspective of the applications of molten salt electrochemistry from the viewpoints of energy and environment, several selected topics are described in detail, which include nitride fuel cycle in a nuclear field, hydrogen energy system coupled with ammonia economy, thermally regenerative fuel cell systems, novel Si production process for solar cell and novel molten salt electrochemical processes for various energy and environment related functional materials including nitrides, rare earth-transition metal alloys, fine particles obtained by plasma-induced electrolysis, and carbon film. And finally, the author stresses again, the importance and potential of molten salt electrochemistry, and encourages young students, scientists and researchers to march in a procession hand in hand towards a bright future of molten salts. (author)

  4. Recent advances in energy storage materials and devices

    CERN Document Server

    Lu, Li

    2017-01-01

    This book compiles nine comprehensive contributions from the principle of Li-ion batteries, cathode and anode electrode materials to future energy storage systems such as solid electrolyte for all-solid-state batteries and high capacity redox flow battery.

  5. Advanced Cathode Material For High Energy Density Lithium-Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced cathode materials having high red-ox potential and high specific capacity offer great promise to the development of high energy density lithium-based...

  6. Ring energy selection and extra long straight sections for the Advanced Photon Source

    International Nuclear Information System (INIS)

    1987-04-01

    Recommended criteria are given for the performance of Advanced Photon Source (APS), taking into consideration undulator tunability criteria and their relationship to the storage ring energy and undulator gap, length of straight sections

  7. National energy ombudsman - 2010 activity report

    International Nuclear Information System (INIS)

    2010-01-01

    This report first gives an overview of the evolutions noticed on the energy market (natural gas and electric power) from the mediator's point of view for the consumer protection: improvement of transparency, struggle against energy precariousness, improvement of the protection of European consumers. Some figures and a description of a typical week of work are given to illustrate the mediator's activity. Solutions are proposed to improve practices: excess payment, index correction, set prices, first necessity tariff, and bill readability. Some social indicators are given and a financial report is provided

  8. Intermediate Energy Activation File (IEAF-99)

    International Nuclear Information System (INIS)

    Korovin, Yu.; Konobeev, A.; Pereslavtsev, P.; Stankovskij, A.; Fischer, U.; Moellendorff, U. von

    1999-01-01

    Nuclear data library IEAF-99, elaborated to study processes of interactions of intermediate energy neutrons with materials in accelerator driven systems, is described. The library is intended for activation and transmutation studies for materials irradiated by neutrons. IEAF-99 contains evaluated neutron induced reaction cross sections at the energies 0-150 MeV for 665 stable and unstable nuclei from C to Po. Approximately 50,000 excitation functions are included in the library. The IEAF-99 data are written in the ENDF-6 format combining MF = 3,6 MT = 5 data recording. (author)

  9. Monograph on safety in high power and high energy advanced technologies and medical applications of lasers

    International Nuclear Information System (INIS)

    2016-01-01

    This monograph is intended for creating awareness amongst the safety and health professionals of nuclear and radiation facilities on hazards involved in high power and high energy advanced technologies as well as on how development of advanced technologies can benefit the common people

  10. Advances in energy and environment. Vol. 2: Air quality, water quality

    International Nuclear Information System (INIS)

    El-Sharkawy, A.L.; Kummler, R.H.

    1996-01-01

    The 5th conference of energy and environment was held on 3-6 June 1996 in Cairo. The specialists discussed the effects of advances in energy and environment. The applications of solar energy, heat transfer, thermal application, storage and bio-conversion, fuels, energy and development. This second volume covers papers presented on the subjects air pollution, environmental protection, solid and hazardous wastes, water and wastewater treatment. tabs., figs

  11. 4+D digital engineering for advanced nuclear energy systems

    International Nuclear Information System (INIS)

    Jeong, S. G.; Suh, K. Y.; Nam, S. K.

    2007-01-01

    Nuclear power plants (NPPs) require massive quantity of data during the design, construction, operation, maintenance and decommissioning stages because of their special features like size, cost, radioactivity, and so forth. The system engineering thus calls for a fully automated way of managing the information flow spanning their life cycle. In line with practice in disciplines of naval architecture, aerospace engineering, and automotive manufacturing, the paper proposes total digital systems engineering based on three-dimensional (3D) computer-aided design (CAD) models. The signature in the proposal lies with the four-plus-dimensional (4 + D) Technology T M, a critical know-how for digital management. The so-called OPIUM (Optimized Plant Integrated Ubiquitous Management) features a 4 + D Technology T M for nuclear energy systems engineering. The technology proposed in the 3D space and time plus cost coordinates, i.e. 4 + D, is the backbone of digital engineering in the nuclear systems design and management. Based on an integrated 3D configuration management system, OPIUM consists of solutions NOTUS (Nuclear Optimization Technique Ubiquitous System), VENUS (Virtual Engineering Nuclear Ubiquitous System), INUUS (Informatics Nuclear Utilities Ubiquitous System), JANUS (Junctional Analysis Numerical Ubiquitous System) and EURUS (Electronic Unit Research Ubiquitous System). These solutions will help initial simulation capability for NPPs to supply the crucial information. NOTUS contributes to reducing the construction cost of the NPPs by optimizing the component manufacturing procedure and the plant construction process. Planning and scheduling construction projects can thus benefit greatly by integrating traditional management techniques with digital process simulation visualization. The 3D visualization of construction processes and the resulting products intrinsically afford most of the advantages realized by incorporating a purely schedule level detail based the 4

  12. Office of River Protection Advanced Low-Activity Waste Glass Research and Development Plan

    International Nuclear Information System (INIS)

    Kruger, A. A.; Peeler, D. K.; Kim, D. S.; Vienna, J. D.; Piepel, G. F.; Schweiger, M. J.

    2015-01-01

    The U.S. Department of Energy Office of River Protection (ORP) has initiated and leads an integrated Advanced Waste Glass (AWG) program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product performance requirements. The integrated ORP program is focused on providing a technical, science-based foundation for making key decisions regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities in the context of an optimized River Protection Project (RPP) flowsheet. The fundamental data stemming from this program will support development of advanced glass formulations, key product performance and process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste vitrification facilities. These activities will be conducted with the objective of improving the overall RPP mission by enhancing flexibility and reducing cost and schedule.

  13. Office of River Protection Advanced Low-Activity Waste Glass Research and Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Peeler, D. K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kim, D. S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vienna, J. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Piepel, G. F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schweiger, M. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-23

    The U.S. Department of Energy Office of River Protection (ORP) has initiated and leads an integrated Advanced Waste Glass (AWG) program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product performance requirements. The integrated ORP program is focused on providing a technical, science-based foundation for making key decisions regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities in the context of an optimized River Protection Project (RPP) flowsheet. The fundamental data stemming from this program will support development of advanced glass formulations, key product performance and process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste vitrification facilities. These activities will be conducted with the objective of improving the overall RPP mission by enhancing flexibility and reducing cost and schedule.

  14. Assessment report of research and development activities FY2014. Activity: 'Advanced science research' (Final report)

    International Nuclear Information System (INIS)

    2015-09-01

    Japan Atomic Energy Agency (hereinafter referred to as 'JAEA') consulted an assessment committee, 'Evaluation Committee of Research Activities for Advanced Science Research' (hereinafter referred to as 'Committee') for final evaluation and prior assessment of 'Advanced Science Research,' in accordance with 'General Guideline for the Evaluation of Government Research and Development (R and D) Activities' by Cabinet Office, Government of Japan, 'Guideline for Evaluation of R and D in Ministry of Education, Culture, Sports, Science and Technology' and 'Regulation on Conduct for Evaluation of R and D Activities' by JAEA. In response to the JAEA's request, the Committee assessed the research programs and activities of the Advanced Science Research Center (hereinafter referred to as 'ASRC') for the period of five years from April 2010 and the research programs from April 2015. The Committee evaluated the management and the research programs of the ASRC based on the explanatory documents prepared by the ASRC and the oral presentations with questions-and-answers by the Director and the research group leaders. This report summarizes the results of the assessment by the Committee with the Committee report attached. (author)

  15. Advanced Energy Efficiency Design Strategies In Retail Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Hayter, S.; Torcellini, P.

    2000-08-17

    This paper presents two US retail building projects that were designed and constructed using the energy design process. These buildings, the BigHorn Center in Silverthorne, Colorado, and the Zion National Park Visitor Center in Springdale, Utah, were both completed and occupied during the spring of 2000.

  16. Advanced ceramics for nuclear heat utilization and energy harvesting

    International Nuclear Information System (INIS)

    Prakash, Deep; Purohit, R.D.; Sinha, P.K.

    2015-01-01

    In recent years concerns related to global warming and green house gas emissions have focused the attention towards lowering the carbon foot print of energy generation. In this scenario, nuclear energy is considered as one of the strongest options to take on the challenges. Further, the nuclear heat, originated from the fission of nuclear fuels may be utilized not only by conversion to electricity using conventional techniques, but also may be used for production of hydrogen by splitting water. In the endeavor of realizing sustainable energy generation technologies, ceramic materials find key role as critical components. This paper covers an overview of various ceramic materials which are potential candidates for energy and hydrogen generation devices. These include solid oxide fuel cells, thermoelectric oxides and sodium conducting beta-alumina for alkali metal thermoelectric converters (AMTEC). The materials, which are generally complex oxides often need to be synthesized using chemical methods for purity and compositional control. Further, ceramic materials offer advantages in terms of doping different cations to engineer defects and maneuver properties. Nonetheless, shaping of ceramics to complex components is a challenging task, due to which various techniques such as isopressing, tape-casting, extrusion, slurry coating, spray deposition etc. are employed. The paper also provides a highlight of fabrication techniques and demonstration of miniature devices which are at various stages of development. (author)

  17. EC-LEDS Mexico: Advancing Clean Energy Goals

    Energy Technology Data Exchange (ETDEWEB)

    2016-07-01

    EC-LEDS works with the government of Mexico to help meet its goals of reducing greenhouse gas emissions from the energy sector. The program targets specific, highly technical areas where Mexico has indicated the program can add value and make an impact.

  18. Advanced Nano-Composites for Increased Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-05-01

    This factsheet describes a research project whose goal is to increase energy efficiency and operating lifetime of wear-intensive industrial components and systems by developing and commercializing a family of ceramic-based monolithic composites that have shown remarkable resistance to wear in laboratory tests.

  19. NREL at 40: Research Efforts Drive Advanced Energy | News | NREL

    Science.gov (United States)

    benefits. The laboratory gives U.S. entrepreneurs a competitive edge in the global energy race by bridging a steadily increasing amount of solar power added annually and a single gigawatt (GW) having the increasing obstacles in transporting these massive structures." The solution may be in manufacturing

  20. CISM Advanced School on Crashworthiness : Energy Management and Occupant Protection

    CERN Document Server

    2001-01-01

    From the fundamentals of impact mechanics and biomechanics to modern analysis and design techniques in impact energy management and occupant protection this book provides an overview of the application of nonlinear finite elements, conceptual modeling and multibody procedures, impact biomechanics, injury mechanisms, occupant mathematical modeling, and human surrogates in crashworthiness.

  1. Observation on optimal transition from conventional energy with resource constraints to advanced energy with virtually unlimited resource

    International Nuclear Information System (INIS)

    Suzuki, Atsuyuki

    1980-01-01

    The paper is aimed at making a theoretical analysis on optimal shift from finite energy resources like presently used oil toward advanced energy sources like nuclear and solar. First, the value of conventional energy as a finite resource is derived based on the variational principle. Second, a simplified model on macroeconomy is used to obtain and optimal relationship between energy production and consumption and thereby the optimality on energy price is provided. Third, the meaning of research and development of advanced energy is shown by taking into account resource constraints and technological progress. Finally, an optimal timing of the shift from conventional to advanced energies is determined by making use of the maximum principle. The methematical model employed there is much simplified but can be used to conclude that in order to make an optimal shift some policy-oriented decision must be made prior to when an economically competitive condition comes and that, even with that decision made, some recession of energy demand is inevitable during the transitional phase. (author)

  2. Automated Ecological Assessment of Physical Activity: Advancing Direct Observation.

    Science.gov (United States)

    Carlson, Jordan A; Liu, Bo; Sallis, James F; Kerr, Jacqueline; Hipp, J Aaron; Staggs, Vincent S; Papa, Amy; Dean, Kelsey; Vasconcelos, Nuno M

    2017-12-01

    Technological advances provide opportunities for automating direct observations of physical activity, which allow for continuous monitoring and feedback. This pilot study evaluated the initial validity of computer vision algorithms for ecological assessment of physical activity. The sample comprised 6630 seconds per camera (three cameras in total) of video capturing up to nine participants engaged in sitting, standing, walking, and jogging in an open outdoor space while wearing accelerometers. Computer vision algorithms were developed to assess the number and proportion of people in sedentary, light, moderate, and vigorous activity, and group-based metabolic equivalents of tasks (MET)-minutes. Means and standard deviations (SD) of bias/difference values, and intraclass correlation coefficients (ICC) assessed the criterion validity compared to accelerometry separately for each camera. The number and proportion of participants sedentary and in moderate-to-vigorous physical activity (MVPA) had small biases (within 20% of the criterion mean) and the ICCs were excellent (0.82-0.98). Total MET-minutes were slightly underestimated by 9.3-17.1% and the ICCs were good (0.68-0.79). The standard deviations of the bias estimates were moderate-to-large relative to the means. The computer vision algorithms appeared to have acceptable sample-level validity (i.e., across a sample of time intervals) and are promising for automated ecological assessment of activity in open outdoor settings, but further development and testing is needed before such tools can be used in a diverse range of settings.

  3. Active Vibration Reduction of the Advanced Stirling Convertor

    Science.gov (United States)

    Wilson, Scott D.; Metscher, Jonathan F.; Schifer, Nicholas A.

    2016-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint compared to the current state of the art. The Stirling Cycle Technology Development (SCTD) Project is funded by the RPS Program to developing Stirling-based subsystems, including convertors and controller maturation efforts that have resulted in high fidelity hardware like the Advanced Stirling Radioisotope Generator (ASRG), Advanced Stirling Convertor (ASC), and ASC Controller Unit (ACU). The SCTD Project also performs research to develop less mature technologies with a wide variety of objectives, including increasing temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Active vibration reduction systems (AVRS), or "balancers", have historically been developed and characterized to provide fault tolerance for generator designs that incorporate dual-opposed Stirling convertors or enable single convertor, or small RPS, missions. Balancers reduce the dynamic disturbance forces created by the power piston and displacer internal moving components of a single operating convertor to meet spacecraft requirements for induced disturbance force. To improve fault tolerance for dual-opposed configurations and enable single convertor configurations, a breadboard AVRS was implemented on the Advanced Stirling Convertor (ASC). The AVRS included a linear motor, a motor mount, and a closed-loop controller able to balance out the transmitted peak dynamic disturbance using acceleration feedback. Test objectives included quantifying power and mass penalty and reduction in transmitted force over a range of ASC

  4. Flexible and Stretchable Energy Storage: Recent Advances and Future Perspectives.

    Science.gov (United States)

    Liu, Wei; Song, Min-Sang; Kong, Biao; Cui, Yi

    2017-01-01

    Energy-storage technologies such as lithium-ion batteries and supercapacitors have become fundamental building blocks in modern society. Recently, the emerging direction toward the ever-growing market of flexible and wearable electronics has nourished progress in building multifunctional energy-storage systems that can be bent, folded, crumpled, and stretched while maintaining their electrochemical functions under deformation. Here, recent progress and well-developed strategies in research designed to accomplish flexible and stretchable lithium-ion batteries and supercapacitors are reviewed. The challenges of developing novel materials and configurations with tailored features, and in designing simple and large-scaled manufacturing methods that can be widely utilized are considered. Furthermore, the perspectives and opportunities for this emerging field of materials science and engineering are also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. River Devices to Recover Energy with Advanced Materials (River DREAM)

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, Daniel P. [Bayer MaterialScience LLC

    2013-07-03

    The purpose of this project is to develop a generator called a Galloping Hydroelectric Energy Extraction Device (GHEED). It uses a galloping prism to convert water flow into linear motion. This motion is converted into electricity via a dielectric elastomer generator (DEG). The galloping mechanism and the DEG are combined to create a system to effectively generate electricity. This project has three research objectives: 1. Oscillator development and design a. Characterize galloping behavior, evaluate control surface shape change on oscillator performance and demonstrate shape change with water flow change. 2. Dielectric Energy Generator (DEG) characterization and modeling a. Characterize and model the performance of the DEG based on oscillator design 3. Galloping Hydroelectric Energy Extraction Device (GHEED) system modeling and integration a. Create numerical models for construction of a system performance model and define operating capabilities for this approach Accomplishing these three objectives will result in the creation of a model that can be used to fully define the operating parameters and performance capabilities of a generator based on the GHEED design. This information will be used in the next phase of product development, the creation of an integrated laboratory scale generator to confirm model predictions.

  6. MEHODOLOGY FOR PROLIFERATION RESISTANCE FOR ADVANCE NUCLEAR ENERGY SYSTEMS

    International Nuclear Information System (INIS)

    YUE, M.; CHANG, L.Y.; BARI, R.

    2006-01-01

    The Technology Goals for Generation IV nuclear energy systems highlight Proliferation Resistance and Physical Protection (PRandPP) as one of the four goal areas for Generation 1V nuclear technology. Accordingly, an evaluation methodology is being developed by a PRandPP Experts Group. This paper presents a possible approach, which is based on Markov modeling, to the evaluation methodology for Generation IV nuclear energy systems being developed for PRandPP. Using the Markov model, a variety of proliferation scenarios can be constructed and the proliferation resistance measures can be quantified, particularly the probability of detection. To model the system with increased fidelity, the Markov model is further developed to incorporate multiple safeguards approaches in this paper. The approach to the determination of the associated parameters is presented. Evaluations of diversion scenarios for an example sodium fast reactor (ESFR) energy system are used to illustrate the methodology. The Markov model is particularly useful because it can provide the probability density function of the time it takes for the effort to be detected at a specific stage of the proliferation effort

  7. Carbon Lock-Out: Advancing Renewable Energy Policy in Europe

    Directory of Open Access Journals (Sweden)

    Robert Pietzcker

    2012-02-01

    Full Text Available As part of its climate strategy, the EU aims at increasing the share of electricity from renewable energy sources (RES-E in overall electricity generation. Attaining this target poses a considerable challenge as the electricity sector is “locked” into a carbon-intensive system, which hampers the adoption of RES-E technologies. Electricity generation, transmission and distribution grids as well as storage and demand response are subject to important path dependences, which put existing, non-renewable energy sources at an advantage. This paper examines how an EU framework for RES-E support policies should be designed to facilitate a carbon lock-out. For this purpose, we specify the major technological, economic and institutional barriers to RES-E. For each of the barriers, a policy review is carried out which assesses the performance of existing policy instruments and identifies needs for reform. The review reveals several shortcomings: while policies targeting generation are widely in place, measures to address barriers associated with electricity grids, storage and demand are still in their infancy and have to be extended. Moreover, the implementation of policies has been fragmented across EU Member States. In this respect, national policies should be embedded into an integrated EU-wide planning of the RES-E system with overarching energy scenarios and partially harmonized policy rules.

  8. Recent Advances in Layered Ti3 C2 Tx MXene for Electrochemical Energy Storage.

    Science.gov (United States)

    Xiong, Dongbin; Li, Xifei; Bai, Zhimin; Lu, Shigang

    2018-04-01

    Ti 3 C 2 T x , a typical representative among the emerging family of 2D layered transition metal carbides and/or nitrides referred to as MXenes, has exhibited multiple advantages including metallic conductivity, a plastic layer structure, small band gaps, and the hydrophilic nature of its functionalized surface. As a result, this 2D material is intensively investigated for application in the energy storage field. The composition, morphology and texture, surface chemistry, and structural configuration of Ti 3 C 2 T x directly influence its electrochemical performance, e.g., the use of a well-designed 2D Ti 3 C 2 T x as a rechargeable battery anode has significantly enhanced battery performance by providing more chemically active interfaces, shortened ion-diffusion lengths, and improved in-plane carrier/charge-transport kinetics. Some recent progresses of Ti 3 C 2 T x MXene are achieved in energy storage. This Review summarizes recent advances in the synthesis and electrochemical energy storage applications of Ti 3 C 2 T x MXene including supercapacitors, lithium-ion batteries, sodium-ion batteries, and lithium-sulfur batteries. The current opportunities and future challenges of Ti 3 C 2 T x MXene are addressed for energy-storage devices. This Review seeks to provide a rational and in-depth understanding of the relation between the electrochemical performance and the nanostructural/chemical composition of Ti 3 C 2 T x , which will promote the further development of 2D MXenes in energy-storage applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Medium Access Control for Thermal Energy Harvesting in Advanced Metering Infrastructures

    DEFF Research Database (Denmark)

    Vithanage, Madava D.; Fafoutis, Xenofon; Andersen, Claus Bo

    2013-01-01

    In this paper we investigate the feasibility of powering wireless metering devices, namely heat cost allocators, by thermal energy harvested from radiators. The goal is to take a first step toward the realization of Energy-Harvesting Advanced Metering Infrastructures (EH-AMIs). While traditional...

  10. Trends in Energy Management Technology - Part 4: Review ofAdvanced Applications in Energy Management, Control, and InformationSystems

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Gaymond; Webster, Tom

    2003-08-01

    In this article, the fourth in a series, we provide a review of advanced applications in Energy Management, Control, and Information Systems (EMCIS). The available features for these products are summarized and analyzed with regard to emerging trends in EMCIS and potential benefits to the Federal sector. The first article [1] covered enabling technologies for emerging energy management systems. The second article [2] serves as a basic reference for building control system (BCS) networking fundamentals and includes an assessment of current approaches to open communications. The third article [3] evaluated several products that exemplify the current state of practice in EMCIS. It is important for energy managers in the Federal sector to have a high level of knowledge and understanding of these complex energy management systems. This series of articles provides energy practitioners with some basic informational and educational tools to help make decisions relative to energy management systems design, specification, procurement, and energy savings potential.

  11. Waste-to-energy advanced cycles and new design concepts for efficient power plants

    CERN Document Server

    Branchini, Lisa

    2015-01-01

    This book provides an overview of state-of-the-art technologies for energy conversion from waste, as well as a much-needed guide to new and advanced strategies to increase Waste-to-Energy (WTE) plant efficiency. Beginning with an overview of municipal solid waste production and disposal, basic concepts related to Waste-To-Energy conversion processes are described, highlighting the most relevant aspects impacting the thermodynamic efficiency of WTE power plants. The pervasive influences of main steam cycle parameters and plant configurations on WTE efficiency are detailed and quantified. Advanc

  12. Advanced solar energy conversion. [solar pumped gas lasers

    Science.gov (United States)

    Lee, J. H.

    1981-01-01

    An atomic iodine laser, a candidate for the direct solar pumped lasers, was successfully excited with a 4 kW beam from a xenon arc solar simulator, thus proving the feasibility of the concept. The experimental set up and the laser output as functions of operating conditions are presented. The preliminary results of the iodine laser amplifier pumped with the HCP array to which a Q switch for giant pulse production was coupled are included. Two invention disclosures - a laser driven magnetohydrodynamic generator for conversion of laser energy to electricity and solar pumped gas lasers - are also included.

  13. Advanced Modeling of Renewable Energy Market Dynamics: May 2006

    Energy Technology Data Exchange (ETDEWEB)

    Evans, M.; Little, R.; Lloyd, K.; Malikov, G.; Passolt, G.; Arent, D.; Swezey, B.; Mosey, G.

    2007-08-01

    This report documents a year-long academic project, presenting selected techniques for analysis of market growth, penetration, and forecasting applicable to renewable energy technologies. Existing mathematical models were modified to incorporate the effects of fiscal policies and were evaluated using available data. The modifications were made based on research and classification of current mathematical models used for predicting market penetration. An analysis of the results was carried out, based on available data. MATLAB versions of existing and new models were developed for research and policy analysis.

  14. MAGNETIC ENERGY SPECTRA IN SOLAR ACTIVE REGIONS

    International Nuclear Information System (INIS)

    Abramenko, Valentyna; Yurchyshyn, Vasyl

    2010-01-01

    Line-of-sight magnetograms for 217 active regions (ARs) with different flare rates observed at the solar disk center from 1997 January until 2006 December are utilized to study the turbulence regime and its relationship to flare productivity. Data from the SOHO/MDI instrument recorded in the high-resolution mode and data from the BBSO magnetograph were used. The turbulence regime was probed via magnetic energy spectra and magnetic dissipation spectra. We found steeper energy spectra for ARs with higher flare productivity. We also report that both the power index, α, of the energy spectrum, E(k) ∼ k -α , and the total spectral energy, W = ∫E(k)dk, are comparably correlated with the flare index, A, of an AR. The correlations are found to be stronger than those found between the flare index and the total unsigned flux. The flare index for an AR can be estimated based on measurements of α and W as A = 10 b (αW) c , with b = -7.92 ± 0.58 and c = 1.85 ± 0.13. We found that the regime of the fully developed turbulence occurs in decaying ARs and in emerging ARs (at the very early stage of emergence). Well-developed ARs display underdeveloped turbulence with strong magnetic dissipation at all scales.

  15. [Activities of Research Institute for Advanced Computer Science

    Science.gov (United States)

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.

    2001-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administrations missions. RIACS is located at the NASA Ames Research Center, Moffett Field, California. RIACS research focuses on the three cornerstones of IT research necessary to meet the future challenges of NASA missions: 1. Automated Reasoning for Autonomous Systems Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth. 2. Human-Centered Computing Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities. 3. High Performance Computing and Networking Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to analysis of large scientific datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply IT research to a variety of NASA application domains. RIACS also engages in other activities, such as workshops, seminars, visiting scientist programs and student summer programs, designed to encourage and facilitate collaboration between the university and NASA IT research communities.

  16. Evaluation of thermal energy storage materials for advanced compressed air energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Zaloudek, F.R.; Wheeler, K.R.; Marksberry, L.

    1983-03-01

    Advanced Compressed-Air Energy Storage (ACAS) plants have the near-term potential to reduce the fuel consumption of compressed-air plants from 33 to 100%, depending upon their design. Fuel is saved by storing some or all of the heat of compression as sensible heat which is subsequently used to reheat the compressed air prior to expansion in the turbine generator. The thermal storage media required for this application must be low cost and durable. The objective of this project was to screen thermal store materials based on their thermal cycle durability, particulate formation and corrosion resistant characteristics. The materials investigated were iron oxide pellets, Denstone pebbles, cast-iron balls, and Dresser basalt rock. The study specifically addressed the problems of particle formation and thermal ratcheting of the materials during thermal cycling and the chemical attack on the materials by the high temperature and moist environment in an ACAS heat storage bed. The results indicate that from the durability standpoint Denstone, cast iron containing 27% or more chromium, and crushed Dresser basalt would possibly stand up to ACAS conditions. If costs are considered in addition to durability and performance, the crushed Dresser basalt would probably be the most desirable heat storage material for adiabatic and hybrid ACAS plants, and more in-depth longer term thermal cycling and materials testing of Dresser basalt is recommended. Also recommended is the redesign and costing analysis of both the hybrid and adiabatic ACAS facilities based upon the use of Dresser basalt as the thermal store material.

  17. 2011 NDIA Advanced Research Projects Agency - Energy/DoD Workshop

    Science.gov (United States)

    2011-09-12

    for Handoffs Advanced Research Projects Agency • Energy Portfolio of Projects UNIVERSITY/ LAB SMALL BUSINESS CORPORATION Fuel-Free Isothermal...2011 Present Programs • Agile Delivery of Electrical Power Technology (ADEPT) • Batteries for Electrical Energy Storage in Transportation ( BEEST ...Technologies for Energy (REACT) • Solar Agile Delivery of Electrical Power Technology (Solar – ADEPT) The BEEST : An Overview of ARPA-E’s Program in Ultra-High

  18. Intergovernmental organisation activities: European Atomic Energy Community, International Atomic Energy Agency, OECD Nuclear Energy Agency

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    European Atomic Energy Community: Proposed legislative instruments, Adopted legislative instruments, Non-legislative instruments, Other activities (meetings). International Atomic Energy Agency: IAEA Action Plan on Nuclear Safety. OECD Nuclear Energy Agency: The Russian Federation to join the OECD Nuclear Energy Agency; Participation by the regulatory authorities of India and the United Arab Emirates in the Multinational Design Evaluation Programme (MDEP); NEA International Workshop on Crisis Communication, 9-10 May 2012; International School of Nuclear Law: 2013; Next NEA International Nuclear Law Essentials Course

  19. Automated Ecological Assessment of Physical Activity: Advancing Direct Observation

    Directory of Open Access Journals (Sweden)

    Jordan A. Carlson

    2017-12-01

    Full Text Available Technological advances provide opportunities for automating direct observations of physical activity, which allow for continuous monitoring and feedback. This pilot study evaluated the initial validity of computer vision algorithms for ecological assessment of physical activity. The sample comprised 6630 seconds per camera (three cameras in total of video capturing up to nine participants engaged in sitting, standing, walking, and jogging in an open outdoor space while wearing accelerometers. Computer vision algorithms were developed to assess the number and proportion of people in sedentary, light, moderate, and vigorous activity, and group-based metabolic equivalents of tasks (MET-minutes. Means and standard deviations (SD of bias/difference values, and intraclass correlation coefficients (ICC assessed the criterion validity compared to accelerometry separately for each camera. The number and proportion of participants sedentary and in moderate-to-vigorous physical activity (MVPA had small biases (within 20% of the criterion mean and the ICCs were excellent (0.82–0.98. Total MET-minutes were slightly underestimated by 9.3–17.1% and the ICCs were good (0.68–0.79. The standard deviations of the bias estimates were moderate-to-large relative to the means. The computer vision algorithms appeared to have acceptable sample-level validity (i.e., across a sample of time intervals and are promising for automated ecological assessment of activity in open outdoor settings, but further development and testing is needed before such tools can be used in a diverse range of settings.

  20. Advanced directions of peaceful applications of nuclear energy in the Republic of Azerbaijan

    International Nuclear Information System (INIS)

    Garibov, A.A.

    2006-01-01

    Full text: Application of nuclear energy is actual during last years due to depletion of organic sources of row materials. Therefore, each country develops the programs on peaceful application of nuclear energy and using alternative as well as other energy sources on the basis of the analysis of fuel-energy balance and energy demand state. The Republic of Azerbaijan has huge hydrocarbon resources and alternative energy sources. However, taking into account the fact that hydrocarbon resources can cover increasing energy demand at maximum 50-60 years and renewable energy sources can not meet large energy demand during near future then the discovering of advanced ways on peaceful application of nuclear energy is of great importance. Since the seventies of the twentieth century, wide spectrum of scientific researches on the discovering advanced ways on peaceful application of nuclear energy are carried out in the Republic of Azerbaijan. Among them it is necessary to mark the following directions: radiation modification of the properties of polymers, absorbents, catalysts, metals and alloys, semiconductors, dielectrics, ferroelectrics and various devices; radiation oil-chemistry processes; radiation polymerization; radiation-heterogeneous processes; atomic-hydrogen energy; scientific problems of radiation safety and nuclear security; discovering possibilities for using radiation technologies in the solution of environmental problems; radiation sciences of materials and radiation physics; radiation biology and medicine; application of isotope sources in medicine; application of isotope in oil-gas industry; application of isotope sources in radiography and different fields of technique

  1. Requirements of Integrated Design Teams While Evaluating Advanced Energy Retrofit Design Options in Immersive Virtual Environments

    Directory of Open Access Journals (Sweden)

    Xue Yang

    2015-12-01

    Full Text Available One of the significant ways to save energy use in buildings is to implement advanced energy retrofits in existing buildings. Improving energy performance of buildings through advanced energy retrofitting requires a clear understanding of the cost and energy implications of design alternatives from various engineering disciplines when different retrofit options are considered. The communication of retrofit design alternatives and their energy implications is essential in the decision-making process, as it affects the final retrofit selections and hence the energy efficiency of the retrofitted buildings. The objective of the research presented here was to identify a generic list of information requirements that are needed to be shared and collectively analyzed by integrated design teams during advanced energy retrofit design review meetings held in immersive settings. While identifying such requirements, the authors used an immersive environment based iterative requirements elicitation approach. The technology was used as a means to better identify the information requirements of integrated design teams to be analyzed as a group. This paper provides findings on information requirements of integrated design teams when evaluating retrofit options in immersive virtual environments. The information requirements were identified through interactions with sixteen experts in design and energy modeling domain, and validated with another group of participants consisting of six design experts who were experienced in integrated design processes. Industry practitioners can use the findings in deciding on what information to share with integrated design team members during design review meetings that utilize immersive virtual environments.

  2. Energy National Mediator activity report 2009

    International Nuclear Information System (INIS)

    2009-01-01

    After some data illustrating the activity of the Energy National Mediator in 2009, and an interview of a representative of this institution who comments its practice, this report proposes the opinions of the different involved actors (communities, consumer associations, providers, and so on) about the mediator. It puts the adopted strategy in perspective from the past year to the coming one. It describes the missions: information, advice, protection. It reports actions, recommendations and facts for 2009 in terms of consumer information, group mediation, poverty management, samples of analysed disputes. It presents the social organisation and gives a financial assessment of the institution

  3. Actively Encouraging Learning and Degree Persistence in Advanced Astrophysics Courses

    Science.gov (United States)

    McIntosh, Daniel H.

    2018-01-01

    The need to grow and diversify the STEM workforce remains a critical national challenge. Less than 40% of college students interested in STEM achieve a bachelor's degree. These numbers are even more dire for women and URMs, underscoring a serious concern about the country's ability to remain competitive in science and tech. A major factor is persistent performance gaps in rigorous 'gateway' and advanced STEM courses for majors from diverse backgrounds leading to discouragement, a sense of exclusion, and high dropout rates. Education research has clearly demonstrated that interactive-engagement (`active learning') strategies increase performance, boost confidence, and help build positive 'identity' in STEM. Likewise, the evidence shows that traditional science education practices do not help most students gain a genuine understanding of concepts nor the necessary skill set to succeed in their disciplines. Yet, lecture-heavy courses continue to dominate the higher-ed curriculum, thus, reinforcing the tired notion that only a small percentage of 'special' students have the inherent ability to achieve a STEM degree. In short, very capable students with less experience and confidence in science, who belong to groups that traditionally are less identified with STEM careers, are effectively and efficiently 'weeded out' by traditional education practices. I will share specific examples for how I successfully incorporate active learning in advanced astrophysics courses to encourage students from all backgrounds to synthesize complex ideas, build bedrock conceptual frameworks, gain technical communication skills, and achieve mastery learning outcomes all necessary to successfully complete rigorous degrees like astrophysics. By creating an inclusive and active learning experience in junior-level extragalactic and stellar interiors/atmospheres courses, I am helping students gain fluency in their chosen major and the ability to 'think like a scientist', both critical to

  4. Nanostructured Fe-Cr Alloys for Advanced Nuclear Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Scattergood, Ronald O. [North Carolina State Univ., Raleigh, NC (United States)

    2016-04-26

    We have completed research on the grain-size stabilization of model nanostructured Fe14Cr base alloys at high temperatures by the addition of non-equilibrium solutes. Fe14Cr base alloys are representative for nuclear reactor applications. The neutron flux in a nuclear reactor will generate He atoms that coalesce to form He bubbles. These can lead to premature failure of the reactor components, limiting their lifetime and increasing the cost and capacity for power generation. In order to mitigate such failures, Fe14Cr base alloys have been processed to contain very small nano-size oxide particles (less than 10 nm in size) that trap He atoms and reduce bubble formation. Theoretical and experimental results indicate that the grain boundaries can also be very effective traps for He atoms and bubble formation. An optimum grain size will be less than 100 nm, ie., nanocrystalline alloys must be used. Powder metallurgy methods based on high-energy ball milling can produce Fe-Cr base nanocrystalline alloys that are suitable for nuclear energy applications. The problem with nanocrystalline alloys is that excess grain-boundary energy will cause grains to grow at higher temperatures and their propensity for He trapping will be lost. The nano-size oxide particles in current generation nuclear alloys provide some grain size stabilization by reducing grain-boundary mobility (Zener pinning – a kinetic effect). However the current mitigation strategy minimizing bubble formation is based primarily on He trapping by nano-size oxide particles. An alternate approach to nanoscale grain size stabilization has been proposed. This is based on the addition of small amounts of atoms that are large compared to the base alloy. At higher temperatures these will diffuse to the grain boundaries and will produce an equilibrium state for the grain size at higher temperatures (thermodynamic stabilization – an equilibrium effect). This would be preferred compared to a kinetic effect, which is not

  5. Recent advances in energy transfer in bulk and nanoscale luminescent materials: from spectroscopy to applications.

    Science.gov (United States)

    Liu, Xiaofeng; Qiu, Jianrong

    2015-12-07

    Transfer of energy occurs endlessly in our universe by means of radiation. Compared to energy transfer (ET) in free space, in solid state materials the transfer of energy occurs in a rather confined manner, which is usually mediated by real or virtual particles, including not only photons, but also electrons, phonons, and excitons. In the present review, we discuss the recent advances in optical ET by resonance mediated with photons in solid materials as well as their nanoscale counterparts, with focus on the photoluminescence behavior pertaining to ET between optically active centers, such as rare earth (RE) ions. This review begins with a brief discussion on the classification of optical ET together with an overview of the theoretical formulations and experimental method for the examination of ET. We will then present a comprehensive discussion on the ET in practical systems in which normal photoluminescence, upconversion and quantum cutting resulted from ET involving metal ions, QDs, organic species, 2D materials and plasmonic nanostructures. Diverse ET systems are therefore simply categorized into cases of ion-ion interactions and non-ion interactions. Special attention has been paid to the progress in the manipulation of spatially confined ET in nanostructured systems including core-shell structures, as well as the ET in multiple exciton generation found in QDs and organic molecules, which behave quite similarly to resonance ET between metal ion centers. Afterwards, we will discuss the broad spectrum of applications of ET in the aforementioned systems, including solid state lighting, solar energy utilization, bio-imaging and diagnosis, and sensing. In the closing part, along with a short summary, we discuss further research focus regarding the problems and possible future directions of optical ET in solids.

  6. Technical Support Document: Development of the Advanced Energy Design Guide for Medium to Big Box Retail Buildings - 50% Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    Bonnema, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Leach, Matt [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pless, Shanti [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-06-05

    This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for Medium to Big Box Retail Buildings: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-MBBR) ASHRAE et al. (2011b). The AEDG-MBBR is intended to provide recommendations for achieving 50% whole-building energy savings in retail stores over levels achieved by following ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings (Standard 90.1-2004) (ASHRAE 2004b). The AEDG-MBBR was developed in collaboration with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IES), the U.S. Green Building Council (USGBC), and the U.S. Department of Energy.

  7. Technical Support Document: Development of the Advanced Energy Design Guide for Medium to Big Box Retail Buildings - 50% Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    Bonnema, E.; Leach, M.; Pless, S.

    2013-06-01

    This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for Medium to Big Box Retail Buildings: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-MBBR) ASHRAE et al. (2011b). The AEDG-MBBR is intended to provide recommendations for achieving 50% whole-building energy savings in retail stores over levels achieved by following ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings (Standard 90.1-2004) (ASHRAE 2004b). The AEDG-MBBR was developed in collaboration with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IES), the U.S. Green Building Council (USGBC), and the U.S. Department of Energy.

  8. Advances in the development of AMPK-activating compounds.

    Science.gov (United States)

    Sriwijitkamol, Apiradee; Musi, Nicolas

    2008-10-01

    AMP-activated protein kinase (AMPK) is an energy sensing enzyme that controls glucose and lipid metabolism. This review summarizes the present data on AMPK as a pharmacologic target for the treatment of metabolic disorders. The mechanisms governing AMPK activity and how this enzyme controls different metabolic pathways are reviewed briefly, and details about the effect that AMPK activators have on glucose metabolism are provided. Evidence obtained using the AMPK-activating compound 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) suggests that AMPK promotes glucose transport into skeletal muscles and that this enzyme inhibits hepatic glucose production. AICAR also induces fatty acid oxidation in muscle and inhibits cholesterol synthesis in the liver. The metabolic effects of AICAR on glucose and lipid metabolism indicate that AMPK may be a good pharmacologic target for the treatment of type 2 diabetes and hypercholesterolemia. Novel AMPK-specific compounds are allowing researchers to examine whether this enzyme is a useful pharmacologic target for the treatment of human disease and whether chronic activation of AMPK will be safe.

  9. Nuclear Energy Division. 2009 Activity report

    International Nuclear Information System (INIS)

    2009-01-01

    After a presentation of the future investment programme of the nuclear energy department at the French national Nuclear Research Center (CEA), this report proposes a description of tomorrow's industrial nuclear systems (back-end of future fuel cycle, fourth generation systems, basic scientific and technological research), describes how current nuclear industrial systems are optimized (front-end and back-end of fuel cycle, second and third generation reactors). It presents the main tools for nuclear development: simulation programme, the Jules Horowitz reactor project, maintenance of specific facilities, research valorisation. It reports the activities related to the clean-up and dismantling in different nuclear sites, presents the activities of CEA's nuclear research centres (Saclay, Cadarache, Marcoule), briefly presents the transverse material programme, recalls some events, and gives some key figures

  10. Advanced energy systems (APU) for large commercial aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Westenberger, A.; Bleil, J.; Arendt, M. [Airbus Deutschland GmbH, Hamburg (Germany)

    2013-06-01

    The intention of using a highly integrated component using on fuel cell technology installed on board of large commercial passenger aircraft for the generation of onboard power for the systems demand during an entire aircraft mission was subject of several studies. The results of these studies have been based on the simulation of the whole system in the context of an aircraft system environment. In front of the work stood the analyses of different fuel cell technologies and the analyses of the aircraft system environment. Today onboard power is provided on ground by an APU and in flight by the main engines. In order to compare fuel cell technology with the today's usual gas turbine operational characteristics have been analysed. A second analysis was devoted to the system demand for typical aircraft categories. The MEA system concept was supposed in all cases. The favourable concept represented an aircraft propelled by conventional engines with starter generator units, providing AC electrical power, covering in total proximately half of the power demand and a component based on fuel cell technology. This component provided electrical DC power, clean potable water, thermal energy at 180 degrees Celsius and nitrogen enriched air for fire suppression and fire extinguishing agent. In opposite of a usual gas turbine based APU, this new unit was operated as the primary power system. (orig.)

  11. Estimating activity energy expenditure: how valid are physical activity questionnaires?

    Science.gov (United States)

    Neilson, Heather K; Robson, Paula J; Friedenreich, Christine M; Csizmadi, Ilona

    2008-02-01

    Activity energy expenditure (AEE) is the modifiable component of total energy expenditure (TEE) derived from all activities, both volitional and nonvolitional. Because AEE may affect health, there is interest in its estimation in free-living people. Physical activity questionnaires (PAQs) could be a feasible approach to AEE estimation in large populations, but it is unclear whether or not any PAQ is valid for this purpose. Our aim was to explore the validity of existing PAQs for estimating usual AEE in adults, using doubly labeled water (DLW) as a criterion measure. We reviewed 20 publications that described PAQ-to-DLW comparisons, summarized study design factors, and appraised criterion validity using mean differences (AEE(PAQ) - AEE(DLW), or TEE(PAQ) - TEE(DLW)), 95% limits of agreement, and correlation coefficients (AEE(PAQ) versus AEE(DLW) or TEE(PAQ) versus TEE(DLW)). Only 2 of 23 PAQs assessed most types of activity over the past year and indicated acceptable criterion validity, with mean differences (TEE(PAQ) - TEE(DLW)) of 10% and 2% and correlation coefficients of 0.62 and 0.63, respectively. At the group level, neither overreporting nor underreporting was more prevalent across studies. We speculate that, aside from reporting error, discrepancies between PAQ and DLW estimates may be partly attributable to 1) PAQs not including key activities related to AEE, 2) PAQs and DLW ascertaining different time periods, or 3) inaccurate assignment of metabolic equivalents to self-reported activities. Small sample sizes, use of correlation coefficients, and limited information on individual validity were problematic. Future research should address these issues to clarify the true validity of PAQs for estimating AEE.

  12. Advanced Active-Magnetic-Bearing Thrust-Measurement System

    Science.gov (United States)

    Imlach, Joseph; Kasarda, Mary; Blumber, Eric

    2008-01-01

    An advanced thrust-measurement system utilizes active magnetic bearings to both (1) levitate a floating frame in all six degrees of freedom and (2) measure the levitation forces between the floating frame and a grounded frame. This system was developed for original use in measuring the thrust exerted by a rocket engine mounted on the floating frame, but can just as well be used in other force-measurement applications. This system offers several advantages over prior thrust-measurement systems based on mechanical support by flexures and/or load cells: The system includes multiple active magnetic bearings for each degree of freedom, so that by selective use of one, some, or all of these bearings, it is possible to test a given article over a wide force range in the same fixture, eliminating the need to transfer the article to different test fixtures to obtain the benefit of full-scale accuracy of different force-measurement devices for different force ranges. Like other active magnetic bearings, the active magnetic bearings of this system include closed-loop control subsystems, through which the stiffness and damping characteristics of the magnetic bearings can be modified electronically. The design of the system minimizes or eliminates cross-axis force-measurement errors. The active magnetic bearings are configured to provide support against movement along all three orthogonal Cartesian axes, and such that the support along a given axis does not produce force along any other axis. Moreover, by eliminating the need for such mechanical connections as flexures used in prior thrust-measurement systems, magnetic levitation of the floating frame eliminates what would otherwise be major sources of cross-axis forces and the associated measurement errors. Overall, relative to prior mechanical-support thrust-measurement systems, this system offers greater versatility for adaptation to a variety of test conditions and requirements. The basic idea of most prior active

  13. A Study on intensifying efficiency for international collaborative development of Advanced Nuclear Energy Technology

    International Nuclear Information System (INIS)

    Chang, Moon Hee; Kim, H. R.; Kim, H. J.

    2009-08-01

    The objective of the study was to participate the GIF for the efficient propulsion of future nuclear system development. For achieving the objective of this study, the followings were carried out. · Investigation and analysis of the international and domestic trends related to future nuclear system · To maximize the national interests by the strategic participation of GIF meeting - To participate of GIF meeting and to support of relative work - To investigate the System R and D Arrangement and to inform its progress situation · To maximize the propulsion results of Korea/U.S nuclear energy joint research(I-NERI) - To support a delegation by the review of agenda in aspect of the technical/legal point - To participate of BINERIC meeting and to support of relative work · Streamline the nuclear energy R and D due to the effective connection between domestic R and D and international collaboration The result of this study may be used for 1) contribution to establishing the effective foundation and broadening the cooperation activities between the advanced countries and Korea and 2) contribution effective management of Gen IV international collaboration by technical/legal supporting

  14. Strategic Plan for Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)

    Energy Technology Data Exchange (ETDEWEB)

    Rich Johnson; Kimberlyn C. Mousseau; Hyung Lee

    2011-09-01

    NE-KAMS knowledge base will assist computational analysts, physics model developers, experimentalists, nuclear reactor designers, and federal regulators by: (1) Establishing accepted standards, requirements and best practices for V&V and UQ of computational models and simulations, (2) Establishing accepted standards and procedures for qualifying and classifying experimental and numerical benchmark data, (3) Providing readily accessible databases for nuclear energy related experimental and numerical benchmark data that can be used in V&V assessments and computational methods development, (4) Providing a searchable knowledge base of information, documents and data on V&V and UQ, and (5) Providing web-enabled applications, tools and utilities for V&V and UQ activities, data assessment and processing, and information and data searches. From its inception, NE-KAMS will directly support nuclear energy research, development and demonstration programs within the U.S. Department of Energy (DOE), including the Consortium for Advanced Simulation of Light Water Reactors (CASL), the Nuclear Energy Advanced Modeling and Simulation (NEAMS), the Light Water Reactor Sustainability (LWRS), the Small Modular Reactors (SMR), and the Next Generation Nuclear Power Plant (NGNP) programs. These programs all involve computational modeling and simulation (M&S) of nuclear reactor systems, components and processes, and it is envisioned that NE-KAMS will help to coordinate and facilitate collaboration and sharing of resources and expertise for V&V and UQ across these programs. In addition, from the outset, NE-KAMS will support the use of computational M&S in the nuclear industry by developing guidelines and recommended practices aimed at quantifying the uncertainty and assessing the applicability of existing analysis models and methods. The NE-KAMS effort will initially focus on supporting the use of computational fluid dynamics (CFD) and thermal hydraulics (T/H) analysis for M&S of nuclear

  15. Proceedings of the 2. invitational conference on advancing energy literacy in Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J. [Centre for Environment-Economy Learning Foundation, Edmonton, AB (Canada)

    2010-07-01

    This conference provided a forum to discuss and define necessary short-term actions to advance energy literacy in Alberta. The goals of the conference were to clearly define the conditions needed to move forward on energy literacy; provide input to the Strategic Framework for Advancing Energy Literacy in Alberta (AELA); and describe objectives for the next two years of cooperative work on advancing energy literacy in the province. Four sectors were recognized at the conference, notably government; electricity and other utilities; oil and gas industry; and community, which included educators, landowners, environmental and conservation group representatives, and private media. The 2010 conference intended to build on the interest of the energy community and focus on action. Alberta's Minister of Energy emphasized the need for Albertans to understand energy as it relates to the economic well being of the province. Participants were encouraged to find ways to work together, as a collective to develop and deliver education programs that help the public to understand that resources can be developed in an environmentally sustainable manner. Electronic polling of all conference participants produced a prioritized list of actions for launching an energy literacy program as well as an initial indication of commitment to those actions. tabs.

  16. Advanced energy conversion and application - Decentralized energy systems. Papers; Fortschrittliche Energiewandlung und -anwendung - Schwerpunkt: Dezentrale Energiesysteme. Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Decentralized energy systems is the major topic of this VDI report which contains the proceedings of the VDI conference on advanced energy conversion and application. The decentralized energy systems are in the focus because it is expected that they will gain in significance in the course of restructuring and liberalisation of the energy markets and growing commitment to greenhouse gas mitigation. The subjects of the papers are the cogeneration technology in general, and specific systems for combined generation of heat, power and cold,(CHPC systems), systems for renewable energy generation, industrial energy technology, and analysis and optimization of energy systems. The report is intended to serve as a source of guidance and reference for manufacturers and operators of decentralized energy systems, for decision-making on energy policy, and for the energy industry, counselling firms and regulatory/surveillance bodies, and members of universities involved in relevant research and development work. (orig./CB) [German] Themenschwerpunkt des VDI-Berichts sind die dezentralen Energiesysteme, die im Spannungsfeld von fortschreitender Liberalisierung der Energiemaerkte und der Bemuehungen um die Reduzierung von Emissionen an Bedeutung gewinnen. Dabei widmen sich die Beitraege den Systemen zur Kraft-Waerme-Kaelte-Kopplung und zur Nutzung erneuerbarer Energie sowie der industriellen Energietechnik und der Analyse und Optimierung von Energiesystemen. Der Bericht wendet sich an Hersteller und Betreiber dezentraler Energieanlagen, an Entscheidungstraeger aus Politik und Wirtschaft, an Berater und Ueberwachungsinstitutionen sowie an auf diesem Gebiet taetige Hochschullehrer und -mitarbeiter. (orig.)

  17. Energy, Exergy and Advanced Exergy Analysis of a Milk Processing Factory

    DEFF Research Database (Denmark)

    Bühler, Fabian; Nguyen, Tuong-Van; Jensen, Jonas Kjær

    2016-01-01

    integration, an exergy analysis pinpoints the locations, causes and magnitudes of thermodynamic losses. The advanced exergy analysis further identifies the real potential for thermodynamic improvements of the system by splitting exergy destruction into its avoidable and unavoidable parts, which are related......, cream and milk powder. The results show the optimisation potential based on 1st and 2nd law analyses. An evaluation and comparison of the applicability of exergy methods, including advanced exergy methods, to the dairy industry is made. The comparison includes typical energy mappings conducted onsite......, and discusses the benefits and challenges of applying advanced thermodynamic methods to industrial processes....

  18. Advanced Distribution Network Modelling with Distributed Energy Resources

    Science.gov (United States)

    O'Connell, Alison

    The addition of new distributed energy resources, such as electric vehicles, photovoltaics, and storage, to low voltage distribution networks means that these networks will undergo major changes in the future. Traditionally, distribution systems would have been a passive part of the wider power system, delivering electricity to the customer and not needing much control or management. However, the introduction of these new technologies may cause unforeseen issues for distribution networks, due to the fact that they were not considered when the networks were originally designed. This thesis examines different types of technologies that may begin to emerge on distribution systems, as well as the resulting challenges that they may impose. Three-phase models of distribution networks are developed and subsequently utilised as test cases. Various management strategies are devised for the purposes of controlling distributed resources from a distribution network perspective. The aim of the management strategies is to mitigate those issues that distributed resources may cause, while also keeping customers' preferences in mind. A rolling optimisation formulation is proposed as an operational tool which can manage distributed resources, while also accounting for the uncertainties that these resources may present. Network sensitivities for a particular feeder are extracted from a three-phase load flow methodology and incorporated into an optimisation. Electric vehicles are the focus of the work, although the method could be applied to other types of resources. The aim is to minimise the cost of electric vehicle charging over a 24-hour time horizon by controlling the charge rates and timings of the vehicles. The results demonstrate the advantage that controlled EV charging can have over an uncontrolled case, as well as the benefits provided by the rolling formulation and updated inputs in terms of cost and energy delivered to customers. Building upon the rolling optimisation, a

  19. Solar Energy Education. Renewable energy activities for chemistry and physics

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Information on renewable energy sources is provided for students in this teachers' guide. With the chemistry and physics student in mind, solar energy topics such as absorber plate coatings for solar collectors and energy collection and storage methods are studied. (BCS)

  20. Activation of the hedgehog pathway in advanced prostate cancer

    Directory of Open Access Journals (Sweden)

    McCormick Frank

    2004-10-01

    Full Text Available Abstract Background The hedgehog pathway plays a critical role in the development of prostate. However, the role of the hedgehog pathway in prostate cancer is not clear. Prostate cancer is the second most prevalent cause of cancer death in American men. Therefore, identification of novel therapeutic targets for prostate cancer has significant clinical implications. Results Here we report that activation of the hedgehog pathway occurs frequently in advanced human prostate cancer. We find that high levels of hedgehog target genes, PTCH1 and hedgehog-interacting protein (HIP, are detected in over 70% of prostate tumors with Gleason scores 8–10, but in only 22% of tumors with Gleason scores 3–6. Furthermore, four available metastatic tumors all have high expression of PTCH1 and HIP. To identify the mechanism of the hedgehog signaling activation, we examine expression of Su(Fu protein, a negative regulator of the hedgehog pathway. We find that Su(Fu protein is undetectable in 11 of 27 PTCH1 positive tumors, two of them contain somatic loss-of-function mutations of Su(Fu. Furthermore, expression of sonic hedgehog protein is detected in majority of PTCH1 positive tumors (24 out of 27. High levels of hedgehog target genes are also detected in four prostate cancer cell lines (TSU, DU145, LN-Cap and PC3. We demonstrate that inhibition of hedgehog signaling by smoothened antagonist, cyclopamine, suppresses hedgehog signaling, down-regulates cell invasiveness and induces apoptosis. In addition, cancer cells expressing Gli1 under the CMV promoter are resistant to cyclopamine-mediated apoptosis. All these data suggest a significant role of the hedgehog pathway for cellular functions of prostate cancer cells. Conclusion Our data indicate that activation of the hedgehog pathway, through loss of Su(Fu or overexpression of sonic hedgehog, may involve tumor progression and metastases of prostate cancer. Thus, targeted inhibition of hedgehog signaling may have

  1. AN ADVANCED CALIBRATION PROCEDURE FOR COMPLEX IMPEDANCE SPECTRUM MEASUREMENTS OF ADVANCED ENERGY STORAGE DEVICES

    Energy Technology Data Exchange (ETDEWEB)

    William H. Morrison; Jon P. Christophersen; Patrick Bald; John L. Morrison

    2012-06-01

    With the increasing demand for electric and hybrid electric vehicles and the explosion in popularity of mobile and portable electronic devices such as laptops, cell phones, e-readers, tablet computers and the like, reliance on portable energy storage devices such as batteries has likewise increased. The concern for the availability of critical systems in turn drives the availability of battery systems and thus the need for accurate battery health monitoring has become paramount. Over the past decade the Idaho National Laboratory (INL), Montana Tech of the University of Montana (Tech), and Qualtech Systems, Inc. (QSI) have been developing the Smart Battery Status Monitor (SBSM), an integrated battery management system designed to monitor battery health, performance and degradation and use this knowledge for effective battery management and increased battery life. Key to the success of the SBSM is an in-situ impedance measurement system called the Impedance Measurement Box (IMB). One of the challenges encountered has been development of an accurate, simple, robust calibration process. This paper discusses the successful realization of this process.

  2. Recent Progress in Advanced Nanobiological Materials for Energy and Environmental Applications

    Directory of Open Access Journals (Sweden)

    Hyo-Jick Choi

    2013-12-01

    Full Text Available In this review, we briefly introduce our efforts to reconstruct cellular life processes by mimicking natural systems and the applications of these systems to energy and environmental problems. Functional units of in vitro cellular life processes are based on the fabrication of artificial organelles using protein-incorporated polymersomes and the creation of bioreactors. This concept of an artificial organelle originates from the first synthesis of poly(siloxane-poly(alkyloxazoline block copolymers three decades ago and the first demonstration of protein activity in the polymer membrane a decade ago. The increased value of biomimetic polymers results from many research efforts to find new applications such as functionally active membranes and a biochemical-producing polymersome. At the same time, foam research has advanced to the point that biomolecules can be efficiently produced in the aqueous channels of foam. Ongoing research includes replication of complex biological processes, such as an artificial Calvin cycle for application in biofuel and specialty chemical production, and carbon dioxide sequestration. We believe that the development of optimally designed biomimetic polymers and stable/biocompatible bioreactors would contribute to the realization of the benefits of biomimetic systems. Thus, this paper seeks to review previous research efforts, examine current knowledge/key technical parameters, and identify technical challenges ahead.

  3. Advanced, Integrated Control for Building Operations to Achieve 40% Energy Saving

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yan; Song, Zhen; Loftness, Vivian; Ji, Kun; Zheng, Sam; Lasternas, Bertrand; Marion, Flore; Yuebin, Yu

    2012-10-15

    We developed and demonstrated a software based integrated advanced building control platform called Smart Energy Box (SEB), which can coordinate building subsystem controls, integrate variety of energy optimization algorithms and provide proactive and collaborative energy management and control for building operations using weather and occupancy information. The integrated control system is a low cost solution and also features: Scalable component based architecture allows to build a solution for different building control system configurations with needed components; Open Architecture with a central data repository for data exchange among runtime components; Extendible to accommodate variety of communication protocols. Optimal building control for central loads, distributed loads and onsite energy resource; uses web server as a loosely coupled way to engage both building operators and building occupants in collaboration for energy conservation. Based on the open platform of SEB, we have investigated and evaluated a variety of operation and energy saving control strategies on Carnegie Mellon University Intelligent Work place which is equipped with alternative cooling/heating/ventilation/lighting methods, including radiant mullions, radiant cooling/heating ceiling panels, cool waves, dedicated ventilation unit, motorized window and blinds, and external louvers. Based on the validation results of these control strategies, they were integrated in SEB in a collaborative and dynamic way. This advanced control system was programmed and computer tested with a model of the Intelligent Workplace's northern section (IWn). The advanced control program was then installed in the IWn control system; the performance was measured and compared with that of the state of the art control system to verify the overall energy savings great than 40%. In addition advanced human machine interfaces (HMI's) were developed to communicate both with building

  4. Sustaining high energy efficiency in existing processes with advanced process integration technology

    International Nuclear Information System (INIS)

    Zhang, Nan; Smith, Robin; Bulatov, Igor; Klemeš, Jiří Jaromír

    2013-01-01

    Highlights: ► Process integration with better modelling and more advanced solution methods. ► Operational changes for better environmental performance through optimisation. ► Identification of process integration technology for operational optimisation. ► Systematic implementation procedure of process integration technology. ► A case study with crude oil distillation to demonstrate the operational flexibility. -- Abstract: To reduce emissions in the process industry, much emphasis has been put on making step changes in emission reduction, by developing new process technology and making renewable energy more affordable. However, the energy saving potential of existing systems cannot be simply ignored. In recent years, there have been significant advances in process integration technology with better modelling techniques and more advanced solution methods. These methods have been applied to the new design and retrofit studies in the process industry. Here attempts are made to apply these technologies to improve the environmental performance of existing facilities with operational changes. An industrial project was carried out to demonstrate the importance and effectiveness of exploiting the operational flexibility for energy conservation. By applying advanced optimisation technique to integrate the operation of distillation and heat recovery in a crude oil distillation unit, the energy consumption was reduced by 8% without capital expenditure. It shows that with correctly identified technology and the proper execution procedure, significant energy savings and emission reduction can be achieved very quickly without major capital expenditure. This allows the industry to improve its economic and environment performance at the same time.

  5. Energy savings and economics of advanced control strategies for packaged air conditioners with gas heat

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Weimin; Katipamula, Srinivas; Huang, Yunzhi; Brambley, Michael R.

    2013-10-01

    This paper presents an evaluation of the potential energy savings from adding advanced control to existing packaged air conditioners. Advanced control options include air-side economizer, multi-speed fan control, demand control ventilation and staged cooling. The energy and cost savings from the different control strategies individually and in combination are estimated using the EnergyPlus detailed energy simulation program for four building types, namely, a small office building, a stand-alone retail building, a strip mall building and a supermarket building. For each of the four building types, the simulation was run for 16 locations covering all 15 climate zones in the U.S. The maximum installed cost of a replacement controller that provides acceptable payback periods to owners is estimated.

  6. International Atomic Energy Agency activities in decommissioning

    International Nuclear Information System (INIS)

    Reisenweaver, D W.; )

    2005-01-01

    Full text: The International Atomic Energy Agency (IAEA) has been addressing the safety and technical issues of decommissioning for over 20 years, but their focus has been primarily on planning. Up to know, the activities have been on an ad hoc basis and sometimes, important issues have been missed. A new Action Plan on the Decommissioning of Nuclear Facilities has recently been approved by the Agency's board of Governors which will focus the Agency's efforts and ensure that our Member States' concerns are addressed. The new initiatives associated with this Action Plan will help ensure that decommissioning activities in the future are performed in a safe and coherent manner. The International Atomic Energy Agency (IAEA) has been preparing safety and technical documents concerning decommissioning since the mid-1980's. There have been over 30 documents prepared that provide safety requirements, guidance and supporting technical information. Many of these documents are over 10 years old and need updating. The main focus in the past has been on planning for decommissioning. During the past five years, a set of Safety Standards have been prepared and issued to provide safety requirements and guidance to Member States. However, decommissioning was never a real priority with the Agency, but was something that had to be addressed. To illustrate this point, the first requirements documents on decommissioning were issued as part of a Safety Requirements [1] on pre-disposal management of radioactive waste. It was felt that decommissioning did not deserve its own document because it was just part of the normal waste management process. The focus was mostly on waste management. The Agency has assisted Member States with the planning process for decommissioning. Most of these activities have been focused on nuclear power plants and research reactors. Now, support for the decommissioning of other types of facilities is being requested. The Agency is currently providing technical

  7. Technical Support Document: The Development of the Advanced Energy Design Guide for Small Retail Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bing; Jarnagin, Ronald E.; Winiarski, David W.; Jiang, Wei; McBride, Merle F.; Crall, C.

    2006-09-30

    The Advanced Energy Design Guide for Small Retail Buildings (AEDG-SR) was developed by a partnership of organizations, including the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IESNA), the United States Green Buildings Council (USGBC), and the Department of Energy (DOE). The guide is intended to offer recommendations to achieve 30% energy savings and thus to encourage steady progress towards net-zero energy buildings. The baseline level energy use was set at buildings built at the turn of the millennium, which are assumed to be based on ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings (refer to as the ?Standard? in this report). ASHRAE and its partners are engaged in the development of a series of guides for small commercial buildings, with the AEDG-SR being the second in the series. Previously the partnership developed the Advanced Energy Design Guide for Small Office Buildings: Achieving 30% Energy Savings Over ANSI/ASHRAE/IESNA Standard 90.1-1999, which was published in late 2004. The technical support document prepared by PNNL details how the energy analysis performed in support of the Guide and documents development of recommendation criteria.

  8. Advanced Light Source activity report 1996/97

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Ten years ago, the Advanced Light Source (ALS) existed as a set of drawings, calculations, and ideas. Four years ago, it stored an electron beam for the first time. Today, the ALS has moved from those ideas and beginnings to a robust, third-generation synchrotron user facility, with eighteen beam lines in use, many more in planning or construction phases, and hundreds of users from around the world. Progress from concepts to realities is continuous as the scientific program, already strong in many diverse areas, moves in new directions to meet the needs of researchers into the next century. ALS staff members who develop and maintain the infrastructure for this research are similarly unwilling to rest on their laurels. As a result, the quality of the photon beams the authors deliver, as well as the support they provide to users, continues to improve. The ALS Activity Report is designed to share the results of these efforts in an accessible form for a broad audience. The Scientific Program section, while not comprehensive, shares the breadth, variety, and interest of recent research at the ALS. (The Compendium of User Abstracts and Technical Reports provides a more comprehensive and more technical view.) The Facility Report highlights progress in operations, ongoing accelerator research and development, and beamline instrumentation efforts. Although these Activity Report sections are separate, in practice the achievements of staff and users at the ALS are inseparable. User-staff collaboration is essential as they strive to meet the needs of the user community and to continue the ALS's success as a premier research facility.

  9. Advanced Light Source activity report 1996/97

    International Nuclear Information System (INIS)

    1997-01-01

    Ten years ago, the Advanced Light Source (ALS) existed as a set of drawings, calculations, and ideas. Four years ago, it stored an electron beam for the first time. Today, the ALS has moved from those ideas and beginnings to a robust, third-generation synchrotron user facility, with eighteen beam lines in use, many more in planning or construction phases, and hundreds of users from around the world. Progress from concepts to realities is continuous as the scientific program, already strong in many diverse areas, moves in new directions to meet the needs of researchers into the next century. ALS staff members who develop and maintain the infrastructure for this research are similarly unwilling to rest on their laurels. As a result, the quality of the photon beams the authors deliver, as well as the support they provide to users, continues to improve. The ALS Activity Report is designed to share the results of these efforts in an accessible form for a broad audience. The Scientific Program section, while not comprehensive, shares the breadth, variety, and interest of recent research at the ALS. (The Compendium of User Abstracts and Technical Reports provides a more comprehensive and more technical view.) The Facility Report highlights progress in operations, ongoing accelerator research and development, and beamline instrumentation efforts. Although these Activity Report sections are separate, in practice the achievements of staff and users at the ALS are inseparable. User-staff collaboration is essential as they strive to meet the needs of the user community and to continue the ALS's success as a premier research facility

  10. Advanced high-temperature thermal energy storage media for industrial applications

    Science.gov (United States)

    Claar, T. D.; Waibel, R. T.

    1982-02-01

    An advanced thermal energy storage media concept based on use of carbonate salt/ceramic composite materials is being developed for industrial process and reject heat applications. The composite latent/sensible media concept and its potential advantages over state of the art latent heat systems is described. Media stability requirements, on-going materials development efforts, and planned thermal energy storage (TES) performance evaluation tests are discussed.

  11. The Consortium of Advanced Residential Buildings (CARB) - A Building America Energy Efficient Housing Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Robb Aldrich; Lois Arena; Dianne Griffiths; Srikanth Puttagunta; David Springer

    2010-12-31

    This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis by 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at

  12. Public Information on the Nuclear Energy and Advanced Technology Agency of Cuba

    International Nuclear Information System (INIS)

    Contreras Izquierdo, Marta Alicia

    2007-01-01

    The mission of the Nuclear Energy and Advanced Technology Agency of Cuba is the promoting and controlling of the peaceful use of nuclear energy and radiation application; additionally, they have to inform the general public about those technologies. The main of this work is to expose the methodology and results of the studies of the attitudes toward the nuclear applications of the users of the nuclear techniques

  13. Optimal synthesis and operation of advanced energy supply systems for standard and domotic home

    International Nuclear Information System (INIS)

    Buoro, Dario; Casisi, Melchiorre; Pinamonti, Piero; Reini, Mauro

    2012-01-01

    Highlights: ► Definition of an optimization model for a home energy supply system. ► Optimization of the energy supply system for standard and domotic home. ► Strong improvement can be achieved adopting the optimal system in standard and domotic home. ► The improvements are consistent if supply side and demand side strategies are applied together. ► Solutions with internal combustion engines are less sensible to market price of electricity and gas. - Abstract: The paper deals with the optimization of an advanced energy supply systems for two dwellings: a standard home and an advanced domotic home, where some demand side energy saving strategies have been implemented. In both cases the optimal synthesis, design and operation of the whole energy supply system have been obtained and a sensitivity analysis has been performed, by introducing different economic constraints. The optimization model is based on a Mixed Integer Linear Program (MILP) and includes different kinds of small-scale cogenerators, geothermal heat pumps, boilers, heat storages, solar thermal and photovoltaic panels. In addition, absorption machines, supplied with cogenerated heat, can be used instead of conventional electrical chiller to face the cooling demand. The aim of the analysis is to address the question if advanced demand strategies and supply strategies have to be regarded as alternatives, or if they have to be simultaneously applied, in order to obtain the maximum energy and economic benefit.

  14. Advanced nuclear energy systems and the need of accurate nuclear data: the n_TOF project at CERN

    CERN Document Server

    Colonna, N; Praena, J; Lederer, C; Karadimos, D; Sarmento, R; Domingo-Pardo, C; Plag, R; Massimi, C; Calviani, M; Guerrero, C; Paradela, C; Belloni, F

    2010-01-01

    To satisfy the world's constantly increasing demand for energy, a suitable mix of different energy sources has to be devised. In this scenario, an important role could be played by nuclear energy, provided that major safety, waste and proliferation issues affecting current nuclear reactors are satisfactorily addressed. To this purpose, a large effort has been under way for a few years towards the development of advanced nuclear systems with the aim of closing the fuel cycle. Generation IV reactors, with full or partial waste recycling capability, accelerator driven systems, as well as new fuel cycles are the main options being investigated. The design of advanced systems requires improvements in basic nuclear data, such as cross-sections for neutron-induced reactions on actinides. In this paper, the main concepts of advanced reactor systems are described, together with the related needs of new and accurate nuclear data. The present activity in this field at the neutron facility n\\_TOF at CERN is discussed.

  15. The Limit of Free Magnetic Energy in Active Regions

    Science.gov (United States)

    Moore, Ron; Falconer, David; Sterling, Alphonse

    2012-01-01

    By measuring from active-region magnetograms a proxy of the free energy in the active region fs magnetic field, it has been found previously that (1) there is an abrupt upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region fs magnetic flux content, and (2) the free energy is usually near its limit when the field explodes in a CME/flare eruption. That is, explosive active regions are concentrated in a main-sequence path bordering the free-energy ]limit line in (flux content, free-energy proxy) phase space. Here, from measurement of Marshall Space Flight Center vector magnetograms, we find the magnetic condition that underlies the free ]energy limit and the accompanying main sequence of explosive active regions. Using a suitable free ]energy proxy measured from vector magnetograms of 44 active regions, we find that (1) in active regions at and near their free ]energy limit, the ratio of magnetic-shear free energy to the non ]free magnetic energy the potential field would have is approximately 1 in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free ]energy limit. This shows that most active regions in which this core-field energy ratio is much less than 1 cannot be triggered to explode; as this ratio approaches 1, most active regions become capable of exploding; and when this ratio is 1 or greater, most active regions are compelled to explode. From these results we surmise the magnetic condition that determines the free ]energy limit is the ratio of the free magnetic energy to the non-free energy the active region fs field would have were it completely relaxed to its potential ]field configuration, and that this ratio is approximately 1 at the free-energy limit and in the main sequence of explosive active regions.

  16. Wind energy activities at UNIANDES, Colombia

    International Nuclear Information System (INIS)

    Pinilla, A.

    1991-01-01

    In Colombia, a cooperation has been established between the Universidad de Los Andes and local manufacturers. It shows that the interaction between a local R ampersand D institution and local manufacturers can stimulate the introduction of small wind pumps. Wind energy activities at the University started in 1973, which resulted in the first product in 1976. Two wind pumps have been developed. One is the Jober (D=2.5 m, H<25m, 900 US$, 600 when installed), the other is the Gaviotas (D=2m, H<15m, 450 US$) wind pump. A lot of good, low cost measuring equipment has been developed at the University, a.o. an electro-magnetic flow meter, which costs only 200 US$ (commercially available products cost 3,000 US$). Good experiences have been obtained in research under field conditions, with participation of the end-users. Gaviotas has a remarkable marketing strategy: during the wet season some 40 to 60 wind pumps are manufactured. In the dry season each installed Gaviotas wind pump is visited for maintenance. These maintenance visits are combined with promotion: potential users in the neighbourhood are taken to the wind pumps for demonstration. Regarding future activities, a proposal for a joint program with the Technical University in Eindhoven (Netherlands) and the Reading University in the United Kingdom has been approved. 6 figs., 4 ills., 5 refs

  17. NATO Advanced Research Institute on the Application of Systems Science to Energy Policy Planning

    CERN Document Server

    Cherniavsky, E; Laughton, M; Ruff, L

    1981-01-01

    The Advanced Research Institute (ARI) on "The Application of Systems Science to Energy Policy Planning" was held under the auspices of the NATO Special Programme Panel on Systems Science in collaboration with the National Center for Analysis of Energy Sys­ tems, Brookhaven National Laboratory, USA, as a part of the NATO Science Committee's continuous effort to promote the advancement of science through international cooperation. Advanced Research Institutes are sponsored by the NATO Science Committee for the purposes of bringing together senior scientists to seek consensus on an assessment of the present state of knowl­ edge on a specific topic and to make recommendations for future research directions. Meetings are structured to encourage inten­ sive group discussion. Invitees are carefully selected so that the group as a whole will contain the experience and expertise neces­ sary to make the conclusions valid and significant. A final report is published presenting the various viewpoints and conclusions....

  18. Functional efficiency comparison between split- and parallel-hybrid using advanced energy flow analysis methods

    Energy Technology Data Exchange (ETDEWEB)

    Guttenberg, Philipp; Lin, Mengyan [Romax Technology, Nottingham (United Kingdom)

    2009-07-01

    The following paper presents a comparative efficiency analysis of the Toyota Prius versus the Honda Insight using advanced Energy Flow Analysis methods. The sample study shows that even very different hybrid concepts like a split- and a parallel-hybrid can be compared in a high level of detail and demonstrates the benefit showing exemplary results. (orig.)

  19. Alternative Green Technology for Power Generation Using Waste-Heat Energy And Advanced Thermoelectric Materials, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is interested in advancing green technology research for achieving sustainable and environmentally friendly energy sources for both terrestrial and space...

  20. Alternative Green Technology for Power Generation Using Waste-Heat Energy And Advanced Thermoelectric Materials, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is interested in advancing green technology research for achieving sustainable and environmentally friendly energy sources. Thermo-electric power generation...

  1. Energy-landscape Nexus: Advancing a conceptual framework for the design of sustainable energy landscapes

    NARCIS (Netherlands)

    Stremke, S.

    2013-01-01

    For some time now, the concept of “energy landscape” is discussed in academia while more and more practising landscape architects contribute to the siting, designing, and assessment of renewable energy technologies (see Stremke et al. 2012). Yet, there remains some ambiguity what exactly is meant

  2. Recent Advances and Research Status in Energy Conservation of Iron Ore Sintering in China

    Science.gov (United States)

    Wang, Yao-Zu; Zhang, Jian-Liang; Liu, Zheng-Jian; Du, Cheng-Bo

    2017-11-01

    For the ferrous burden of blast furnaces in China, sinter generally accounts for more than 70% and the sintering process accounts for approximately 6-10% of the total energy consumption of the iron and steel enterprise. Therefore, saving energy during the sintering process is important to reduce the energy consumption in the iron and steel industry. This paper aims to illustrate recent advances and the research status of energy conservation of iron ore sintering in China. It focuses on the development and application of energy-saving technologies such as the composite agglomeration process, sintering with high-proportion flue gas recirculation sintering, recovery of sensible heat from the sinter cooling process, homogeneous deep-bed sintering technology, and comprehensive treatment technology of leakage of sintering. Moreover, some suggestions for the future development of energy-saving technologies are put forward.

  3. Education in nuclear science at IPEN - CNEN, Sao Paulo, Brazil. Advanced School of Nuclear Energy-EAEN

    International Nuclear Information System (INIS)

    Semmler, R.; Catharino, M.G.M.; Vasconcellos, M.B.A.

    2012-01-01

    EAEN (Advanced School of Nuclear Energy, 2010) is an annual school that consists of a week of activities in the area of Nuclear Physics, Radiochemistry and uses of Nuclear Energy for a public made of high school students. The EAEN project represents a pioneering program on science education and dissemination of knowledge, conducted by researchers and focused mainly on high school and scientific education for the population in general. The school's priority is to explore the failures and the lack of education in the dissemination of nuclear energy for high school students as well as to attract prospective students with great potential for graduate courses of IPEN and other institutions in Sao Paulo and in Brazil. (author)

  4. Preparation for Future Defuelling and Decommissioning Works on EDF Energy's UK Fleet of Advanced Gas Cooled Reactors

    International Nuclear Information System (INIS)

    Bryers, John; Ashmead, Simon

    2016-01-01

    EDF Energy/Nuclear Generation is the owner and operator of 14 Advanced Gas cooled Reactors (AGR) and one Pressurised Water Reactor (PWR), on 8 nuclear stations in the UK. EDF Energy/Nuclear Generation is responsible for all the activities associated with the end of life of its nuclear installations: de-fuelling, decommissioning and waste management. As the first AGR is forecast to cease generation within 10 years, EDF Energy has started planning for the decommissioning. This paper covers: - broad outline of the technical strategy and arrangements for future de-fuelling and decommissioning works on the UK AGR fleet, - high level strategic drivers and alignment with wider UK nuclear policy, - overall programme of preparation and initial works, - technical approaches to be adopted during decommissioning. (authors)

  5. Measured performance of 12 demonstation projects - IEA Task 13 "advanced solar low energy buildings"

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund; Schultz, Jørgen Munthe; Poel, Bart

    2005-01-01

    This paper presents the results obtained from measurements and experiences gained from interviews on 12 advanced solar low energy houses designed and built as part of the IEA Solar Heating and Cooling Programme – Task 13. Three years after the IEA Task 13 formally ended, the results were collected...... climate conditions are compared and differences explained. Special innovative installations and systems are de-scribed and evaluated. In general the measured energy consumption was higher than the expected values due to user influence and unforeseen technical problems but still an energy saving of 60...

  6. The contribution to the energy balance and transport in an advanced-fuel tokamak reactor

    International Nuclear Information System (INIS)

    Atzeni, S.; Vlad, G.

    1985-01-01

    The influence of synchrotron radiation emission on the energy balance of an advanced-fuel (such as D- 3 He, or catalyzed-D) tokamak plasma is considered. It is shown that a region in the β-T space exists, where the fusion energy delivered to the plasma overcomes synchrotron and bremsstrahlung energy losses, and which could then allow for ignited operation. 1-Dimensional codes results are also presented, which illustrate the main features of radial transport in a ignited, D- 3 He tokamak plasma

  7. From Carbon-Based Nanotubes to Nanocages for Advanced Energy Conversion and Storage.

    Science.gov (United States)

    Wu, Qiang; Yang, Lijun; Wang, Xizhang; Hu, Zheng

    2017-02-21

    Carbon-based nanomaterials have been the focus of research interests in the past 30 years due to their abundant microstructures and morphologies, excellent properties, and wide potential applications, as landmarked by 0D fullerene, 1D nanotubes, and 2D graphene. With the availability of high specific surface area (SSA), well-balanced pore distribution, high conductivity, and tunable wettability, carbon-based nanomaterials are highly expected as advanced materials for energy conversion and storage to meet the increasing demands for clean and renewable energies. In this context, attention is usually attracted by the star material of graphene in recent years. In this Account, we overview our studies on carbon-based nanotubes to nanocages for energy conversion and storage, including their synthesis, performances, and related mechanisms. The two carbon nanostructures have the common features of interior cavity, high conductivity, and easy doping but much different SSAs and pore distributions, leading to different performances. We demonstrated a six-membered-ring-based growth mechanism of carbon nanotubes (CNTs) with benzene precursor based on the structural similarity of the benzene ring to the building unit of CNTs. By this mechanism, nitrogen-doped CNTs (NCNTs) with homogeneous N distribution and predominant pyridinic N were obtained with pyridine precursor, providing a new kind of support for convenient surface functionalization via N-participation. Accordingly, various transition-metal nanoparticles were directly immobilized onto NCNTs without premodification. The so-constructed catalysts featured high dispersion, narrow size distribution and tunable composition, which presented superior catalytic performances for energy conversions, for example, the oxygen reduction reaction (ORR) and methanol oxidation in fuel cells. With the advent of the new field of carbon-based metal-free electrocatalysts, we first extended ORR catalysts from the electron-rich N-doped to the

  8. Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary and Crystalline Formations

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Mike S. [Terralog Technologies USA, Inc., Calgary (Canada); Detwiler, Russell L. [Terralog Technologies USA, Inc., Calgary (Canada); Lao, Kang [Terralog Technologies USA, Inc., Calgary (Canada); Serajian, Vahid [Terralog Technologies USA, Inc., Calgary (Canada); Elkhoury, Jean [Terralog Technologies USA, Inc., Calgary (Canada); Diessl, Julia [Terralog Technologies USA, Inc., Calgary (Canada); White, Nicky [Terralog Technologies USA, Inc., Calgary (Canada)

    2012-12-13

    There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. The primary objectives of this DOE research effort are to develop and document optimum design configurations and operating practices to produce geothermal power from hot permeable sedimentary and crystalline formations using advanced horizontal well recirculation systems. During Phase I of this research project Terralog Technologies USA and The University of California, Irvine (UCI), have completed preliminary investigations and documentation of advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. We have also identified significant geologic resources appropriate for application of such technology. The main challenge for such recirculation systems is to optimize both the design configuration and the operating practices for cost-effective geothermal energy recovery. These will be strongly influenced by sedimentary formation properties, including thickness and dip, temperature, thermal conductivity, heat capacity, permeability, and porosity; and by working fluid properties.

  9. Simultaneous Waste Heat and Water Recovery from Power Plant Flue Gases for Advanced Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dexin [Gas Technology Inst., Des Plaines, IL (United States)

    2016-12-31

    This final report presents the results of a two-year technology development project carried out by a team of participants sponsored by the Department of Energy (DOE). The objective of this project is to develop a membrane-based technology to recover both water and low grade heat from power plant flue gases. Part of the recovered high-purity water and energy can be used directly to replace plant boiler makeup water as well as improving its efficiency, and the remaining part of the recovered water can be used for Flue Gas Desulfurization (FGD), cooling tower water makeup or other plant uses. This advanced version Transport Membrane Condenser (TMC) with lower capital and operating costs can be applied to existing plants economically and can maximize waste heat and water recovery from future Advanced Energy System flue gases with CO2 capture in consideration, which will have higher moisture content that favors the TMC to achieve higher efficiency.

  10. Technical Support Document: Development of the Advanced Energy Design Guide for Grocery Stores--50% Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    Hale, E. T.; Macumber, D. L.; Long, N. L.; Griffith, B. T.; Benne, K. S.; Pless, S. D.; Torcellini, P. A.

    2008-09-01

    This report provides recommendations that architects, designers, contractors, developers, owners, and lessees of grocery store buildings can use to achieve whole-building energy savings of at least 50% over ASHRAE Standard 90.1-2004.

  11. Advanced Curation Activities at NASA: Preparation for Upcoming Missions

    Science.gov (United States)

    Fries, M. D.; Evans, C. A.; McCubbin, F. M.; Harrington, A. D.; Regberg, A. B.; Snead, C. J.; Zeigler, R. A.

    2017-07-01

    NASA Curation cares for NASA's astromaterials and performs advanced curation so as to improve current practices and prepare for future collections. Cold curation, microbial monitoring, contamination control/knowledge and other aspects are reviewed.

  12. Simple Activity Demonstrates Wind Energy Principles

    Science.gov (United States)

    Roman, Harry T.

    2012-01-01

    Wind energy is an exciting and clean energy option often described as the fastest-growing energy system on the planet. With some simple materials, teachers can easily demonstrate its key principles in their classroom. (Contains 1 figure and 2 tables.)

  13. ROBOTICALLY ENHANCED ADVANCED MANUFACTURING CONCEPTS TO OPTIMIZE ENERGY, PRODUCTIVITY, AND ENVIRONMENTAL PERFORMANCE

    Energy Technology Data Exchange (ETDEWEB)

    Larry L. Keller; Joseph M. Pack; Robert V. Kolarik II

    2007-11-05

    In the first phase of the REML project, major assets were acquired for a manufacturing line for follow-on installation, capability studies and optimization. That activity has been documented in the DE-FC36-99ID13819 final report. In this the second phase of the REML project, most of the major assets have been installed in a manufacturing line arrangement featuring a green cell, a thermal treatment cell and a finishing cell. Most of the secondary and support assets have been acquired and installed. Assets have been integrated with a commercial, machine-tending gantry robot in the thermal treatment cell and with a low-mass, high-speed gantry robot in the finish cell. Capabilities for masterless gauging of product’s dimensional and form characteristics were advanced. Trial production runs across the entire REML line have been undertaken. Discrete event simulation modeling has aided in line balancing and reduction of flow time. Energy, productivity and cost, and environmental comparisons to baselines have been made. Energy The REML line in its current state of development has been measured to be about 22% (338,000 kVA-hrs) less energy intensive than the baseline conventional low volume line assuming equivalent annual production volume of approximately 51,000 races. The reduction in energy consumption is largely attributable to the energy reduction in the REML thermal treatment cell where the heating devices are energized on demand and are appropriately sized to the heating load of a near single piece flow line. If additional steps such as power factor correction and use of high-efficiency motors were implemented to further reduce energy consumption, it is estimated, but not yet demonstrated, that the REML line would be about 30% less energy intensive than the baseline conventional low volume line assuming equivalent annual production volume. Productivity The capital cost of an REML line would be roughly equivalent to the capital cost of a new conventional line. The

  14. Protein and energy intake in advanced chronic kidney disease: how much is too much?

    Science.gov (United States)

    Ikizler, T Alp

    2007-01-01

    Uremic wasting is strongly associated with increased risk of death and hospitalization events in patients with advanced chronic kidney disease (CKD). Recent evidence indicates that patients with advanced chronic kidney disease are prone to uremic wasting due to several factors, which include the dialysis procedure and certain comorbid conditions, especially chronic inflammation and insulin resistance or deficiency. While the catabolic effects of dialysis can be readily avoided with intradialytic nutritional supplementation, there are no established alternative strategies to avoid the catabolic consequences of comorbid conditions other than treatment of their primary etiology. To this end, there is no indication that simply increasing dietary protein and energy intake above the required levels based on level of kidney disease is beneficial in patients with advanced chronic kidney disease. However, aside from the potential adverse effects such as uremic toxin production, dietary protein and energy intake in excess of actual needs might be beneficial in maintenance dialysis patients as it may lead to weight gain over time. Clearly, the role of obesity in advanced uremia needs to be examined in detail prior to making any clinically applicable recommendations, both in terms of ''low'' and ''high'' dietary protein and energy intake.

  15. Advanced Electrode Materials for High Energy Next Generation Li ion Batteries

    Science.gov (United States)

    Hayner, Cary Michael

    Lithium ion batteries are becoming an increasingly ubiquitous part of modern society. Since their commercial introduction by Sony in 1991, lithium-ion batteries have grown to be the most popular form of electrical energy storage for portable applications. Today, lithium-ion batteries power everything from cellphones and electric vehicles to e-cigarettes, satellites, and electric aircraft. Despite the commercialization of lithium-ion batteries over twenty years ago, it remains the most active field of energy storage research for its potential improvement over current technology. In order to capitalize on these opportunities, new materials with higher energy density and storage capacities must be developed. Unfortunately, most next-generation materials suffer from rapid capacity degradation or severe loss of capacity when rapidly discharged. In this dissertation, the development of novel anode and cathode materials for advanced high-energy and high-power lithium-ion batteries is reported. In particular, the application of graphene-based materials to stabilize active material is emphasized. Graphene, a unique two-dimensional material composed of atomically thin carbon sheets, has shown potential to address unsatisfactory rate capability, limited cycling performance and abrupt failure of these next-generation materials. This dissertation covers four major subjects: development of silicon-graphene composites, impact of carbon vacancies on graphene high-rate performance, iron fluoride-graphene composites, and ternary iron-manganese fluoride synthesis. Silicon is considered the most likely material to replace graphite as the anode active material for lithium-ion batteries due to its ability to alloy with large amounts of lithium, leading to significantly higher specific capacities than the graphite standard. However, Si also expands in size over 300% upon lithiation, leading to particle fracture and isolation from conductive support, resulting in cell failure within a few

  16. Characterization of low active ghrelin ratio in patients with advanced pancreatic cancer.

    Science.gov (United States)

    Miura, Tomofumi; Mitsunaga, Shuichi; Ikeda, Masafumi; Ohno, Izumi; Takahashi, Hideaki; Suzuki, Hidetaka; Irisawa, Ai; Kuwata, Takeshi; Ochiai, Atsushi

    2018-05-18

    Acyl ghrelin is an orexigenic peptide. Active ghrelin ratio, the ratio of acyl ghrelin to total ghrelin, has an important role in physiological functions and gastrointestinal symptoms. However, low active ghrelin ratio-related characteristics, gastrointestinal symptoms, and chemotherapy-induced gastrointestinal toxicity in patients with advanced pancreatic cancer have not been previously evaluated. The goal of this study was to identify low active ghrelin ratio-related factors in treatment-naïve advanced pancreatic cancer patients. Patients with treatment-naïve advanced pancreatic cancer were eligible for inclusion in this study. Active ghrelin ratio and clinical parameters of patients were prospectively recorded. Factors correlated with low active ghrelin ratio and survival were analyzed. In total, 92 patients were analyzed. Low active ghrelin ratio-related factors were advanced age (P advanced pancreatic cancer.

  17. Office of River Protection Advanced Low-Activity Waste Glass Research and Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, David K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kim, Dong-Sang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vienna, John D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schweiger, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Piepel, Gregory F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-01

    The U.S. Department of Energy Office of River Protection (ORP) has initiated and leads an integrated Advanced Waste Glass (AWG) program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product performance requirements. The integrated ORP program is focused on providing a technical, science-based foundation for making key decisions regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities in the context of an optimized River Protection Project (RPP) flowsheet. The fundamental data stemming from this program will support development of advanced glass formulations, key product performance and process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste vitrification facilities. These activities will be conducted with the objective of improving the overall RPP mission by enhancing flexibility and reducing cost and schedule. The purpose of this advanced LAW glass research and development plan is to identify the near-term, mid-term, and longer-term research and development activities required to develop and validate advanced LAW glasses, property-composition models and their uncertainties, and an advanced glass algorithm to support WTP facility operations, including both Direct Feed LAW and full pretreatment flowsheets. Data are needed to develop, validate, and implement 1) new glass property-composition models and 2) a new glass formulation algorithm. Hence, this plan integrates specific studies associated with increasing the Na2O and SO3/halide concentrations in glass, because these components will ultimately dictate waste loadings for LAW vitrification. Of equal importance is the development of an efficient and economic strategy for 99Tc management. Specific and detailed studies are being implemented to understand the fate of Tc throughout

  18. High Level Requirements for the Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)

    Energy Technology Data Exchange (ETDEWEB)

    Rich Johnson; Hyung Lee; Kimberlyn C. Mousseau

    2011-09-01

    The US Department of Energy, Office of Nuclear Energy (DOE-NE), has been tasked with the important mission of ensuring that nuclear energy remains a compelling and viable energy source in the U.S. The motivations behind this mission include cost-effectively meeting the expected increases in the power needs of the country, reducing carbon emissions and reducing dependence on foreign energy sources. In the near term, to ensure that nuclear power remains a key element of U.S. energy strategy and portfolio, the DOE-NE will be working with the nuclear industry to support safe and efficient operations of existing nuclear power plants. In the long term, to meet the increasing energy needs of the U.S., the DOE-NE will be investing in research and development (R&D) and working in concert with the nuclear industry to build and deploy new, safer and more efficient nuclear power plants. The safe and efficient operations of existing nuclear power plants and designing, licensing and deploying new reactor designs, however, will require focused R&D programs as well as the extensive use and leveraging of advanced modeling and simulation (M&S). M&S will play a key role in ensuring safe and efficient operations of existing and new nuclear reactors. The DOE-NE has been actively developing and promoting the use of advanced M&S in reactor design and analysis through its R&D programs, e.g., the Nuclear Energy Advanced Modeling and Simulation (NEAMS) and Consortium for Advanced Simulation of Light Water Reactors (CASL) programs. Also, nuclear reactor vendors are already using CFD and CSM, for design, analysis, and licensing. However, these M&S tools cannot be used with confidence for nuclear reactor applications unless accompanied and supported by verification and validation (V&V) and uncertainty quantification (UQ) processes and procedures which provide quantitative measures of uncertainty for specific applications. The Nuclear Energy Knowledge base for Advanced Modeling and Simulation

  19. Energy Storage System Control for Energy Management in Advanced Aeronautic Applications

    Directory of Open Access Journals (Sweden)

    A. Cavallo

    2017-01-01

    Full Text Available In this paper an issue related to electric energy management on board an aircraft is considered. A battery pack is connected to a high-voltage bus through a controlled Battery Charge/Discharge Unit (BCDU that makes the overall behaviour of the battery “intelligent.” Specifically, when the aeronautic generator feeding the high-voltage bus has enough energy the battery is kept under charge, while if more loads are connected to the bus, so that the overload capacity of the generator is exceeded, the battery “helps” the generator by releasing its stored energy. The core of the application is a robust, supervised control strategy for the BCDU that automatically reverts the flow of power in the battery, when needed. Robustness is guaranteed by a low-level high gain control strategy. Switching from full-charge mode (i.e., when the battery absorbs power from the generator to generator mode (i.e., when the battery pumps energy on the high-voltage bus is imposed by a high-level supervisor. Different from previous approaches, mathematical proofs of stability are given for the controlled system. A switching implementation using a finite-time convergent controller is also proposed. The effectiveness of the proposed strategy is shown by detailed simulations in Matlab/Stateflow/SimPowerSystem.

  20. An Advanced IoT-based System for Intelligent Energy Management in Buildings.

    Science.gov (United States)

    Marinakis, Vangelis; Doukas, Haris

    2018-02-16

    The energy sector is closely interconnected with the building sector and integrated Information and Communication Technologies (ICT) solutions for effective energy management supporting decision-making at building, district and city level are key fundamental elements for making a city Smart. The available systems are designed and intended exclusively for a predefined number of cases and systems without allowing for expansion and interoperability with other applications that is partially due to the lack of semantics. This paper presents an advanced Internet of Things (IoT) based system for intelligent energy management in buildings. A semantic framework is introduced aiming at the unified and standardised modelling of the entities that constitute the building environment. Suitable rules are formed, aiming at the intelligent energy management and the general modus operandi of Smart Building. In this context, an IoT-based system was implemented, which enhances the interactivity of the buildings' energy management systems. The results from its pilot application are presented and discussed. The proposed system extends existing approaches and integrates cross-domain data, such as the building's data (e.g., energy management systems), energy production, energy prices, weather data and end-users' behaviour, in order to produce daily and weekly action plans for the energy end-users with actionable personalised information.

  1. An Advanced IoT-based System for Intelligent Energy Management in Buildings

    Science.gov (United States)

    Doukas, Haris

    2018-01-01

    The energy sector is closely interconnected with the building sector and integrated Information and Communication Technologies (ICT) solutions for effective energy management supporting decision-making at building, district and city level are key fundamental elements for making a city Smart. The available systems are designed and intended exclusively for a predefined number of cases and systems without allowing for expansion and interoperability with other applications that is partially due to the lack of semantics. This paper presents an advanced Internet of Things (IoT) based system for intelligent energy management in buildings. A semantic framework is introduced aiming at the unified and standardised modelling of the entities that constitute the building environment. Suitable rules are formed, aiming at the intelligent energy management and the general modus operandi of Smart Building. In this context, an IoT-based system was implemented, which enhances the interactivity of the buildings’ energy management systems. The results from its pilot application are presented and discussed. The proposed system extends existing approaches and integrates cross-domain data, such as the building’s data (e.g., energy management systems), energy production, energy prices, weather data and end-users’ behaviour, in order to produce daily and weekly action plans for the energy end-users with actionable personalised information. PMID:29462957

  2. An Advanced IoT-based System for Intelligent Energy Management in Buildings

    Directory of Open Access Journals (Sweden)

    Vangelis Marinakis

    2018-02-01

    Full Text Available The energy sector is closely interconnected with the building sector and integrated Information and Communication Technologies (ICT solutions for effective energy management supporting decision-making at building, district and city level are key fundamental elements for making a city Smart. The available systems are designed and intended exclusively for a predefined number of cases and systems without allowing for expansion and interoperability with other applications that is partially due to the lack of semantics. This paper presents an advanced Internet of Things (IoT based system for intelligent energy management in buildings. A semantic framework is introduced aiming at the unified and standardised modelling of the entities that constitute the building environment. Suitable rules are formed, aiming at the intelligent energy management and the general modus operandi of Smart Building. In this context, an IoT-based system was implemented, which enhances the interactivity of the buildings’ energy management systems. The results from its pilot application are presented and discussed. The proposed system extends existing approaches and integrates cross-domain data, such as the building’s data (e.g., energy management systems, energy production, energy prices, weather data and end-users’ behaviour, in order to produce daily and weekly action plans for the energy end-users with actionable personalised information.

  3. Renewable energy for America`s cities: Advanced Community Energy Systems Proposed Research, Development and Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    Gleason, T.C.J.

    1993-01-01

    The first purpose of this paper is to describe ACES technologies and their potential impact on the environment, the US energy supply system and economy. The second purpose is to recommend an R,D&D program to the US Department of Energy which has as its goal the rapid development of the most promising of the new technologies. ACES supply thermal energy to groups of buildings, communities and cities in the form of hot or chilled water for building space heating, domestic hot water or air conditioning. The energy is supplied via a network of insulated, underground pipes linking central sources of supply with buildings. ACES, by definition, employ very high energy efficiency conversion technologies such as cogeneration, heat pumps, and heat activated chillers. These systems also use renewable energy sources such as solar energy, winter cold, wind, and surface and subsurface warm and cold waters. ACES compose a new generation of community-scale building heating and air conditioning supply technologies. These new systems can effect a rapid and economical conversion of existing cities to energy supply by very efficient energy conversion systems and renewable energy systems. ACES technologies are the most promising near term means by which cities can make the transition from our present damaging dependence on fossil fuel supply systems to an economically and environmentally sustainable reliance on very high efficiency and renewable energy supply systems. When fully developed to serve an urban area, ACES will constitute a new utility system which can attain a level of energy efficiency, economy and reliance on renewable energy sources not possible with currently available energy supply systems.

  4. Renewable energy for America's cities: Advanced Community Energy Systems Proposed Research, Development and Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    Gleason, T.C.J.

    1993-01-01

    The first purpose of this paper is to describe ACES technologies and their potential impact on the environment, the US energy supply system and economy. The second purpose is to recommend an R,D D program to the US Department of Energy which has as its goal the rapid development of the most promising of the new technologies. ACES supply thermal energy to groups of buildings, communities and cities in the form of hot or chilled water for building space heating, domestic hot water or air conditioning. The energy is supplied via a network of insulated, underground pipes linking central sources of supply with buildings. ACES, by definition, employ very high energy efficiency conversion technologies such as cogeneration, heat pumps, and heat activated chillers. These systems also use renewable energy sources such as solar energy, winter cold, wind, and surface and subsurface warm and cold waters. ACES compose a new generation of community-scale building heating and air conditioning supply technologies. These new systems can effect a rapid and economical conversion of existing cities to energy supply by very efficient energy conversion systems and renewable energy systems. ACES technologies are the most promising near term means by which cities can make the transition from our present damaging dependence on fossil fuel supply systems to an economically and environmentally sustainable reliance on very high efficiency and renewable energy supply systems. When fully developed to serve an urban area, ACES will constitute a new utility system which can attain a level of energy efficiency, economy and reliance on renewable energy sources not possible with currently available energy supply systems.

  5. Adding structure to the transition process to advanced mathematical activity

    Science.gov (United States)

    Engelbrecht, Johann

    2010-03-01

    The transition process to advanced mathematical thinking is experienced as traumatic by many students. Experiences that students had of school mathematics differ greatly to what is expected from them at university. Success in school mathematics meant application of different methods to get an answer. Students are not familiar with logical deductive reasoning, required in advanced mathematics. It is necessary to assist students in this transition process, in moving from general to mathematical thinking. In this article some structure is suggested for this transition period. This essay is an argumentative exposition supported by personal experience and international literature. This makes this study theoretical rather than empirical.

  6. Advanced deposition model for thermal activated chemical vapor deposition

    Science.gov (United States)

    Cai, Dang

    Thermal Activated Chemical Vapor Deposition (TACVD) is defined as the formation of a stable solid product on a heated substrate surface from chemical reactions and/or dissociation of gaseous reactants in an activated environment. It has become an essential process for producing solid film, bulk material, coating, fibers, powders and monolithic components. Global market of CVD products has reached multi billions dollars for each year. In the recent years CVD process has been extensively used to manufacture semiconductors and other electronic components such as polysilicon, AlN and GaN. Extensive research effort has been directed to improve deposition quality and throughput. To obtain fast and high quality deposition, operational conditions such as temperature, pressure, fluid velocity and species concentration and geometry conditions such as source-substrate distance need to be well controlled in a CVD system. This thesis will focus on design of CVD processes through understanding the transport and reaction phenomena in the growth reactor. Since the in situ monitor is almost impossible for CVD reactor, many industrial resources have been expended to determine the optimum design by semi-empirical methods and trial-and-error procedures. This approach has allowed the achievement of improvements in the deposition sequence, but begins to show its limitations, as this method cannot always fulfill the more and more stringent specifications of the industry. To resolve this problem, numerical simulation is widely used in studying the growth techniques. The difficulty of numerical simulation of TACVD crystal growth process lies in the simulation of gas phase and surface reactions, especially the latter one, due to the fact that very limited kinetic information is available in the open literature. In this thesis, an advanced deposition model was developed to study the multi-component fluid flow, homogeneous gas phase reactions inside the reactor chamber, heterogeneous surface

  7. Feasibility of High Energy Lasers for Interdiction Activities

    Science.gov (United States)

    2017-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS FEASIBILITY OF HIGH ENERGY LASERS FOR INTERDICTION ACTIVITIES by Carlos Abel Javier Romero... ENERGY LASERS FOR INTERDICTION ACTIVITIES 5. FUNDING NUMBERS 6. AUTHOR(S) Carlos Abel Javier Romero Chero 7. PERFORMING ORGANIZATION NAME(S) AND...the people or cargo. High Energy Laser (HEL) weapons are an effective way to deliver energy precisely from a relative long range. This thesis studies

  8. Advanced Safeguards Technology Road-map for the Global Nuclear Energy Partnership

    International Nuclear Information System (INIS)

    Miller, M.C.; Tobin, S.; Smith, L.E.; Ehinger, M.; Dougan, A.; Cipiti, B.; Bakel, A.; Bean, R.

    2008-01-01

    Strengthening the nonproliferation regime, including advanced safeguards, is a cornerstone of the Global Nuclear Energy Partnership (GNEP). To meet these challenges, the Safeguards Campaign was formed, whose mission is to provide research and technology development for the foundation of next generation safeguards systems for implementation in U.S. GNEP facilities. The Safeguards Campaign works closely with the Nuclear Nonproliferation and International Security department (NA-24) of NNSA (National Nuclear Safety Administration) to ensure that technology developed for domestic safeguards applications are optimum with respect to international safeguards use. A major milestone of the program this year has been the development of the advanced safeguards technology road-map. This paper will broadly describe the road-map, which provides a path to next generation safeguards systems including advanced instrumentation; process monitoring; data integration, protection, and analysis; and system level evaluation and knowledge extraction for real time applications. (authors)

  9. Recent Advances in Cardiac Computed Tomography: Dual Energy, Spectral and Molecular CT Imaging

    Science.gov (United States)

    Danad, Ibrahim; Fayad, Zahi A.; Willemink, Martin J.; Min, James K.

    2015-01-01

    Computed tomography (CT) evolved into a powerful diagnostic tool and it is impossible to imagine current clinical practice without CT imaging. Due to its widespread availability, ease of clinical application, superb sensitivity for detection of CAD, and non-invasive nature, CT has become a valuable tool within the armamentarium of the cardiologist. In the last few years, numerous technological advances in CT have occurred—including dual energy CT (DECT), spectral CT and CT-based molecular imaging. By harnessing the advances in technology, cardiac CT has advanced beyond the mere evaluation of coronary stenosis to an imaging modality tool that permits accurate plaque characterization, assessment of myocardial perfusion and even probing of molecular processes that are involved in coronary atherosclerosis. Novel innovations in CT contrast agents and pre-clinical spectral CT devices have paved the way for CT-based molecular imaging. PMID:26068288

  10. Is Advanced Real-Time Energy Metering Sufficient to Persuade People to Save Energy?

    Directory of Open Access Journals (Sweden)

    Leite H.

    2012-10-01

    Full Text Available In order to promote a low-carbon economy, EU citizens may soon be able to check their electricity consumption from smart meter. It is hoped that smart meter can, by providing real-time consumption and pricing information to residential users, help reducing demand for electricity. It is argued in this paper that, according the Elaborative Likelihood Model (ELM, these methods are most likely to be effective when consumers perceive the issue of energy conservation relevant to their lives. Nevertheless, some fundamental characteristics of these methods result in limited amount of perceived personal relevance; for instance, energy expenditure expense may be relatively small comparing to other household expenditure like mortgage and consumption information does not enhance interpersonal trust. In this paper, it is suggested that smart meter can apply the “nudge” approaches which respond to ELM as the use of simple rules to make decision, which include the change of feedback delivery and device design.

  11. Is Advanced Real-Time Energy Metering Sufficient to Persuade People to Save Energy?

    Science.gov (United States)

    Ting, L.; Leite, H.; Ponce de Leão, T.

    2012-10-01

    In order to promote a low-carbon economy, EU citizens may soon be able to check their electricity consumption from smart meter. It is hoped that smart meter can, by providing real-time consumption and pricing information to residential users, help reducing demand for electricity. It is argued in this paper that, according the Elaborative Likelihood Model (ELM), these methods are most likely to be effective when consumers perceive the issue of energy conservation relevant to their lives. Nevertheless, some fundamental characteristics of these methods result in limited amount of perceived personal relevance; for instance, energy expenditure expense may be relatively small comparing to other household expenditure like mortgage and consumption information does not enhance interpersonal trust. In this paper, it is suggested that smart meter can apply the "nudge" approaches which respond to ELM as the use of simple rules to make decision, which include the change of feedback delivery and device design.

  12. Strategy to Promote Active Learning of an Advanced Research Method

    Science.gov (United States)

    McDermott, Hilary J.; Dovey, Terence M.

    2013-01-01

    Research methods courses aim to equip students with the knowledge and skills required for research yet seldom include practical aspects of assessment. This reflective practitioner report describes and evaluates an innovative approach to teaching and assessing advanced qualitative research methods to final-year psychology undergraduate students. An…

  13. Adding Structure to the Transition Process to Advanced Mathematical Activity

    Science.gov (United States)

    Engelbrecht, Johann

    2010-01-01

    The transition process to advanced mathematical thinking is experienced as traumatic by many students. Experiences that students had of school mathematics differ greatly to what is expected from them at university. Success in school mathematics meant application of different methods to get an answer. Students are not familiar with logical…

  14. Ceramic Integration Technologies for Advanced Energy Systems: Critical Needs, Technical Challenges, and Opportunities

    Science.gov (United States)

    Singh, Mrityunjay

    2010-01-01

    Advanced ceramic integration technologies dramatically impact the energy landscape due to wide scale application of ceramics in all aspects of alternative energy production, storage, distribution, conservation, and efficiency. Examples include fuel cells, thermoelectrics, photovoltaics, gas turbine propulsion systems, distribution and transmission systems based on superconductors, nuclear power generation and waste disposal. Ceramic integration technologies play a key role in fabrication and manufacturing of large and complex shaped parts with multifunctional properties. However, the development of robust and reliable integrated systems with optimum performance requires the understanding of many thermochemical and thermomechanical factors, particularly for high temperature applications. In this presentation, various needs, challenges, and opportunities in design, fabrication, and testing of integrated similar (ceramic ceramic) and dissimilar (ceramic metal) material www.nasa.gov 45 ceramic-ceramic-systems have been discussed. Experimental results for bonding and integration of SiC based Micro-Electro-Mechanical-Systems (MEMS) LDI fuel injector and advanced ceramics and composites for gas turbine applications are presented.

  15. Proceedings of the fourth international symposium on advanced nuclear energy research

    International Nuclear Information System (INIS)

    1992-12-01

    The papers presented and discussed in the 4th International Symposium on Advanced Nuclear Energy Research, of which subject was focussed on the Roles and Direction of Material Science in Nuclear Technology are contained. The sessions organized for the aural session of the symposium were (1) Processing Science for New Materials, (2) New Tools for Advanced Materials Research, (3) Challenge of Materials Database and (4) Frontier of Materials Technology in New Power Systems, from which 18 invited and 77 contributed papers were selected for the publication. The volume includes also summaries of the panel discussions titled as (1) Computer Simulation for Materials Innovation and (2) What is Expected for Materials Science in Future Nuclear Energy Developments ?, with which a complete recording of the discussions for the latter subject was attempted by the Editorial Working Group of the Program Committee. The 65 of the presented papers are indexed individually. (J.P.N.)

  16. Advanced concepts for waste management and nuclear energy production in the EURATOM 5. framework programme

    International Nuclear Information System (INIS)

    Hugon, M.; Bhatnagar, V.P.; Martin Bermejon, J.

    2002-01-01

    This paper summarises the objectives of the research projects on partitioning and transmutation (P and T) of long-lived radionuclides in nuclear waste and advanced systems for nuclear energy production in the key action on nuclear fission of the EURATOM 5. Framework Programme (FP5) (1998-2002). As these FP5 projects cover the main aspects of P and T, they should provide a basis for evaluating the practicability, on an industrial scale, of P and T for reducing the amount of long-lived radionuclides to be disposed of. Concerning advanced concepts, a cluster of projects is addressing the key technical issues to be solved before implementing high-temperature reactors (HTRs) commercially for energy production. Finally, the European Commissions proposal fora New Framework Programme (2002-2006) is briefly outlined. (authors)

  17. Advanced concepts for waste management and nuclear energy production in the EURATOM fifth framework programme

    International Nuclear Information System (INIS)

    Hugon, M.; Bhatnagar, V.P.; Martin Bermejo, J.

    2001-01-01

    This paper summarises the objectives of the research projects on Partitioning and Transmutation (P and T) of long lived radionuclides in nuclear waste and advanced systems for nuclear energy production in the key action on nuclear fission of the EURATOM Fifth Framework Programme (FP5) (1998-2002). As these FP5 projects cover the main aspects of P and T, they should provide a basis for evaluating the practicability, on an industrial scale, of P and T for reducing the amount of long lived radionuclides to be disposed of. Concerning advanced concepts, a cluster of projects is addressing the key technical issues to be solved before implementing High Temperature Reactors (HTRs) commercially for energy production. Finally, the European Commission(tm)s proposal for a New Framework Programme (2002-2006) is briefly outlined. (author)

  18. Advanced applications of tunable ferrofluids in energy systems and energy harvesters: A critical review

    International Nuclear Information System (INIS)

    Khairul, M.A.; Doroodchi, Elham; Azizian, Reza; Moghtaderi, Behdad

    2017-01-01

    Highlights: • Current developments in ferrofluids are reviewed. • The effects of unique features of ferrofluids on thermal properties are studied. • Applications of tunable magnetic nanofluids in energy harvesters are discussed. • Future research on ferrofluid based electromagnetic energy harvesters are suggested. - Abstract: Ferrofluids or Magnetic nanofluids (MNFs) are the suspensions of magnetic nanoparticles and non-magnetic base fluid. The heat transfer performance of a magnetic nano-suspension is influenced by the strength and orientation of an applied magnetic field. The main attraction of these types of nanofluids is that they not only enhance the fluids’ thermophysical properties but also possess both magnetic characteristics like the other magnetic materials and flow ability similar to any other fluids. Such an exclusive feature enables to control heat transfer, fluid flow and movement of the nanoparticles by using the external magnetic fields. This review paper summarises the recent investigations of magnetic nanofluids with the aim of identifying the effects of major parameters on the performance of heat transfer. In addition, this study also acknowledged the novel application of ferrofluids in the electromagnetic energy harvesters, and its challenges as well as the potentiality in the future research.

  19. Technical Support Document: The Development of the Advanced Energy Design Guide for Highway Lodging Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Wei; Jarnagin, Ronald E.; Gowri, Krishnan; McBride, M.; Liu, Bing

    2008-09-30

    This Technical Support Document (TSD) describes the process and methodology for development of the Advanced Energy Design Guide for Highway Lodgings (AEDG-HL or the Guide), a design guidance document intended to provide recommendations for achieving 30% energy savings in highway lodging properties over levels contained in ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings. The AEDG-HL is the fifth in a series of guides being developed by a partnership of organizations, including the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IESNA), the United States Green Buildings Council (USGBC), and the U.S. Department of Energy (DOE).

  20. Advanced energy sources and conversion techniques. Proceedings of a seminar. Volume 1. [35 papers

    Energy Technology Data Exchange (ETDEWEB)

    None

    1958-11-01

    The Seminar was organized as a series of tutorial presentations and round table discussions on a technical level to implement the following: (a) to identify and explore present and projected needs for energy sources and conversion techniques for military applications; (b) to exchange information on current and planned efforts in these fields; (c) to examine the effect of anticipated scientific and technological advances on these efforts; and (d) to present suggested programs aimed at satisfying the military needs for energy sources and conversion techniques. Volume I contains all of the unclassified papers presented at the Seminar. (W.D.M.)

  1. Advanced ceramic composite for high energy resistors : Characterization of electrical and physical properties

    International Nuclear Information System (INIS)

    Farrokh, Fattahi; Navid, Tagizadegan; Naser, Tabatabaei; Ahmad, Rashtehizadeh

    2005-01-01

    There is a need to characterize and apply advanced materials to improve the performance of components used in pulse power systems. One area for innovation is the use of bulk electrically conductive ceramics for non-inductive, high energy and high power electrical resistors. Standard Ceramics Inc. has developed a unique silicon carbide structural ceramic composite which exhibits electrical conductivity. The new, new, conductive, bulk ceramic material has a controlled microstructure, which results in improved homogeneity, making the material suitable for use as a non-inductive, high energy resistor

  2. Building Energy Benchmarking in India: an Action Plan for Advancing the State-of-the-Art

    Energy Technology Data Exchange (ETDEWEB)

    Sarraf, Saket [Centre for Environmental Planning and Technology (CEPT) Univ., Ahmedabad (India); Anand, Shilpi [Centre for Environmental Planning and Technology (CEPT) Univ., Ahmedabad (India); Shukla, Yash [Centre for Environmental Planning and Technology (CEPT) Univ., Ahmedabad (India); Mathew, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singh, Reshma [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-06-01

    This document describes an action plan for advancing the state of the art of commercial building energy benchmarking in the Indian context. The document is primarily intended for two audiences: (a) Research and development (R&D) sponsors and researchers can use the action plan to frame, plan, prioritize and scope new energy benchmarking R&D in order to ensure that their research is market relevant; (b) Policy makers and program implementers engaged in the deployment of benchmarking and building efficiency rating programmes can use the action plan for policy formulation and enforcement .

  3. Theoretical evaluation on the impact of heat exchanger in Advanced Adiabatic Compressed Air Energy Storage system

    International Nuclear Information System (INIS)

    Yang, Ke; Zhang, Yuan; Li, Xuemei; Xu, Jianzhong

    2014-01-01

    Highlights: • A multi-stage AA-CAES system model is established based on thermodynamic theory. • Four Cases about pressure loss and effectiveness of heat exchanger are investigated. • The impact of pressure loss on conversion of heat energy in TES is more sensitive. • The impact of heat exchanger effectiveness in charge process on system is stronger. • Pressure loss in heat exchanger affects the change trends of system efficiency. - Abstract: Advanced Adiabatic Compressed Air Energy Storage (AA-CAES) is a large-scale energy storage system based on gas turbine technology and thermal energy storage (TES). Electrical energy can be converted into internal energy of air and heat energy in TES during the charge process, while reverse energy conversion proceeds during discharge process. The performance of AA-CAES system requires further improvement in order to increase efficiency. In this paper, a multi-stage AA-CAES system model is established, and the influence of effectiveness and pressure loss in heat exchanger on energy conversion and utilization efficiency of AA-CAES system is analyzed theoretically based on the theory of thermodynamics. Four Cases about effectiveness and pressure loss of heat exchanger are investigated and compared with each other. It is found that effectiveness and pressure loss of heat exchanger are directly related to energy conversion and utilization in AA-CAES system. System efficiency changes with the variation of heat exchanger effectiveness and the impact of pressure loss on conversion of heat energy in TES is more sensitive than that of internal energy of air. Pressure loss can cause the complexity of system efficiency change. With appropriate selection of the values of heat exchanger effectiveness for both charge and discharge processes, an AA-CAES system with a higher efficiency could be expected

  4. Nuclear refinery - advanced energy complex for electricity generation, clean fuel production, and heat supply

    International Nuclear Information System (INIS)

    McDonald, C.F.

    1992-01-01

    In planning for increased U.S. energy users' demand after the year 2000 there are essentially four salient vectors: (1) reduced reliance on imported crude oil; (2) provide a secure supply with stable economics; (3) supply system must be in concert with improved environment goals; and (4) maximum use to be made of indigenous resources. For the last decade of this century the aforementioned will likely be met by increasing utilization of natural gas. Early in the next century, however, in the U.S. and the newly industrializing nations, the ever increasing energy demand will only be met by the combined use of uranium and coal. The proposed nuclear refinery concept is an advanced energy complex that has at its focal point an advanced modular helium reactor (MHR). This nuclear facility, together with a coal feedstock, could contribute towards meeting the needs of the four major energy sectors in the U.S., namely electricity, transportation, industrial heating and chemical feedstock, and space and water heating. Such a nuclear/coal synergistic system would be in concert with improved air quality goals. This paper discusses the major features and multifaceted operation of a nuclear refinery concept, and identifies the enabling technologies needed for such an energy complex to become a reality early in the 21st century. (Author)

  5. Status of advanced tritium breeder development for DEMO in the broader approach activities in Japan

    International Nuclear Information System (INIS)

    Hoshino, Tsuyoshi; Oikawa, Fumiaki; Nishitani, Takeo

    2010-01-01

    DEMO reactors require ' 6 Li-enriched ceramic tritium breeders' which have high tritium breeding ratios (TBRs) in the blanket designs of both EU and JA. Both parties have been promoting the development of fabrication technologies of Li 2 TiO 3 pebbles and of Li 4 SiO 4 pebbles including the reprocessing. However, the fabrication techniques of tritium breeders pebbles have not been established for large quantities. Therefore, these parties launch a collaborative project on scaleable and reliable production routes of advanced tritium breeders. In addition, this project aims to develop fabrication techniques allowing effective reprocessing of 6 Li. The development of the production and 6 Li reprocessing techniques includes preliminary fabrication tests of breeder pebbles, reprocessing of lithium, and suitable out-of-pile characterizations. The R and D on the fabrication technologies of the advanced tritium breeders and the characterization of developed materials has been started between the EU and Japan in the DEMO R and D of the International Fusion Energy Research Centre (IFERC) project as a part of the Broader Approach activities from 2007 to 2016. The equipment for production of advanced breeder pebbles is planned will be installed in the DEMO R and D building at Rokkasho, Japan. The design work in this facility was carried out. The specifications of the pebble production apparatuses and related equipment in this facility were fixed, and the basic data of these apparatuses was obtained. In this design work, the preliminary investigations of the dissolution and purification process of tritium breeders were carried out. From the results of the preliminary investigations, lithium resources of 90% above were recovered by the aqueous dissolving methods using HNO 3 and H 2 O 2 . The removal efficiency of 60 Co by the addition in the dissolved solutions of lithium ceramics were 97-99.9% above using activated carbon impregnated with 8-hydroxyquinolinol. In this report

  6. Development of selected advanced aerodynamics and active control concepts for commercial transport aircraft

    Science.gov (United States)

    Taylor, A. B.

    1984-01-01

    Work done under the Energy Efficient Transport project in the field of advanced aerodynamics and active controls is summarized. The project task selections focused on the following: the investigation of long-duct nacelle shape variation on interference drag; the investigation of the adequacy of a simple control law for the elastic modes of a wing; the development of the aerodynamic technology at cruise and low speed of high-aspect-ratio supercritical wings of high performance; and the development of winglets for a second-generation jet transport. All the tasks involved analysis and substantial wind tunnel testing. The winglet program also included flight evaluation. It is considered that the technology base has been built for the application of high-aspect-ratio supercritical wings and for the use of winglets on second-generation transports.

  7. Commission for energy regulation - 2012 Activity Report

    International Nuclear Information System (INIS)

    2013-06-01

    After a presentation of the organisation, role and missions of the French Commission for Energy Regulation (CRE), and of its relationship with other institutional actors, this report describes and comments the action of the CRE in the fields of dialogue and transparency. It presents and comments key figures regarding the electricity and gas retail markets. It reports and comments the European reaction to the cold peak of February 2012 (historical peak for consumption and prices, inquiry on the causes of these price peaks, need of a European market). The next part addresses the relationship between electricity grids and territories (solidarity between electricity grids as the basis of the Europe of energy, evolution of French grids to face new needs and to take regional and local dimensions into account). Another part addresses gas infrastructures which are considered as the cornerstone of a good operation for the French market and for the integration of the European energy market (gas world market in 2012, definition of a target model for the gas market by European regulators, evolution of the French market in compliance with the European target model, new tariffs for the use of natural gas transport networks). The report then addresses the development of renewable energies: actions of CRE (bidding, opinion of tariffs), influence of renewable energy development on electricity prices on gross markets, needed evolution of electricity grids. A last part addresses the issues of energy cost, demand management, and struggle against energy poverty

  8. Technical Support Document: Development of the Advanced Energy Design Guide for Small Office Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Jarnagin, Ronald E.; Liu, Bing; Winiarski, David W.; McBride, Merle F.; Suharli, L.; Walden, D.

    2006-11-30

    This Technical Support Document (TSD) describes the process and methodology for the development of the Advanced Energy Design Guide for Small Office Buildings (AEDG-SO), a design guidance document intended to provide recommendations for achieving 30% energy savings in small office buildings over levels contained in ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings. The AEDG-SO is the first in a series of guides being developed by a partnership of organizations, including the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IESNA), the New Buildings Institute (NBI), and the U.S. Department of Energy (DOE). Each of the guides in the AEDG series will provide recommendations and user-friendly design assistance to designers, developers and owners of small commercial buildings that will encourage steady progress towards net-zero energy buildings. The guides will provide prescriptive recommendation packages that are capable of reaching the energy savings target for each climate zone in order to ease the burden of the design and construction of energy-efficient small commercial buildings The AEDG-SO was developed by an ASHRAE Special Project committee (SP-102) made up of representatives of each of the partner organizations in eight months. This TSD describes the charge given to the committee in developing the office guide and outlines the schedule of the development effort. The project committee developed two prototype office buildings (5,000 ft2 frame building and 20,000 ft2 two-story mass building) to represent the class of small office buildings and performed an energy simulation scoping study to determine the preliminary levels of efficiency necessary to meet the energy savings target. The simulation approach used by the project committee is documented in this TSD along with

  9. Open-Source Integrated Design-Analysis Environment For Nuclear Energy Advanced Modeling & Simulation Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    O' Leary, Patrick [Kitware, Inc., Clifton Park, NY (United States)

    2017-01-30

    The framework created through the Open-Source Integrated Design-Analysis Environment (IDAE) for Nuclear Energy Advanced Modeling & Simulation grant has simplify and democratize advanced modeling and simulation in the nuclear energy industry that works on a range of nuclear engineering applications. It leverages millions of investment dollars from the Department of Energy's Office of Nuclear Energy for modeling and simulation of light water reactors and the Office of Nuclear Energy's research and development. The IDEA framework enhanced Kitware’s Computational Model Builder (CMB) while leveraging existing open-source toolkits and creating a graphical end-to-end umbrella guiding end-users and developers through the nuclear energy advanced modeling and simulation lifecycle. In addition, the work deliver strategic advancements in meshing and visualization for ensembles.

  10. International Atomic Energy Agency programme and activity on the utilization of low energy accelerators

    International Nuclear Information System (INIS)

    Shalnov, A.V.; Whetstone, S.L.

    1974-01-01

    One of the chief missions of the Agency is as intermediary between the more highly developed of its member states and the less developed. This involves transmittal of needs of the latter to the former and, where possible, in response to the needs, an appropriate transfer of information and technical assistance. The physics section of the IAEA has recently encouraged and supported requests for technical assistance for programs based on neutron activation studies or pedagogic neutron physics experiments for institutes entering the nuclear field. Neutron generator laboratories have been set up with IAEA-assistance most recently in Burma, Hong Kong, Lebanon. Other recent technical assistance projects involving low-energy accelerators include: (1) consultation on the future program for the accelerator laboratory in Algeria; (2) equipment and experts to assist the nuclear physics program at the Van de Graaff in Bangladesh; (3) expert assistance and equipment in support of the installation of an electron linear accelerator in Egypt; and (4) expert assistance for nuclear physics studies at the cyclotron in Chile. A large number of young scientists, particularly from S.E. Europe, but also from the Middle East and South America, have received training in nuclear physics experimentation by advanced countries at low energy accelerator laboratories under the IAEA fellowship program

  11. A reduced energy supply strategy in active vibration control

    Science.gov (United States)

    Ichchou, M. N.; Loukil, T.; Bareille, O.; Chamberland, G.; Qiu, J.

    2011-12-01

    In this paper, a control strategy is presented and numerically tested. This strategy aims to achieve the potential performance of fully active systems with a reduced energy supply. These energy needs are expected to be comparable to the power demands of semi-active systems, while system performance is intended to be comparable to that of a fully active configuration. The underlying strategy is called 'global semi-active control'. This control approach results from an energy investigation based on management of the optimal control process. Energy management encompasses storage and convenient restitution. The proposed strategy monitors a given active law without any external energy supply by considering purely dissipative and energy-demanding phases. Such a control law is offered here along with an analysis of its properties. A suboptimal form, well adapted for practical implementation steps, is also given. Moreover, a number of numerical experiments are proposed in order to validate test findings.

  12. A reduced energy supply strategy in active vibration control

    International Nuclear Information System (INIS)

    Ichchou, M N; Loukil, T; Bareille, O; Chamberland, G; Qiu, J

    2011-01-01

    In this paper, a control strategy is presented and numerically tested. This strategy aims to achieve the potential performance of fully active systems with a reduced energy supply. These energy needs are expected to be comparable to the power demands of semi-active systems, while system performance is intended to be comparable to that of a fully active configuration. The underlying strategy is called 'global semi-active control'. This control approach results from an energy investigation based on management of the optimal control process. Energy management encompasses storage and convenient restitution. The proposed strategy monitors a given active law without any external energy supply by considering purely dissipative and energy-demanding phases. Such a control law is offered here along with an analysis of its properties. A suboptimal form, well adapted for practical implementation steps, is also given. Moreover, a number of numerical experiments are proposed in order to validate test findings

  13. Energy management for the future. A sourcebook of ideas and activities for energy conservation learning programs

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    This book serves as a teaching aid for Canadian school programs in energy conservation and energy management. Suitable curriculum areas and objectives are outlined, and suggestions are presented for organizing thematic study units. References are made throughout to appropriate use of additional media such as filmstrips. Five study units, each with its own classroom activities, are detailed: energy resources, energy and the home, energy and food, energy and leisure, and energy in transportation. Suggestions are given for ongoing energy management educational programs to be tried out once the study units have been completed. 23 figs.

  14. The Austrian Research Centers activities in energy risks

    International Nuclear Information System (INIS)

    Sdouz, Gert

    1998-01-01

    Among the institutions involved in energy analyses in Austria the risk context is being treated by three different entities: the Energy Consumption Agency, internationally known as EVA, the Federal Environmental Protection Agency, or Urnweltbundesarnt assessing mainly the environmental risks involved and the Austrian Research Centers, working on safety and risk evaluation. The Austrian Research Center Seibersdorf draws form its proficiency in Reactor Safety and Fusion Research, two fields of experience it has been involved in since its foundation, for some 40 years now. Nuclear energy is not well accepted by the Austrian population. Therefore in our country only energy systems with advanced safety level might be accepted in the far future. This means that the development of methods to compare risks is an important task. The characteristics of energy systems featuring advanced safety levels are: A very low hazard potential and a focus on deterministic safety instead of probabilistic safety, meaning to rely on inherently safe physics concepts, confirmed by probabilistic safety evaluation results. This can be achieved by adequate design of fusion reactors, advanced fission reactors and all different renewable sources of energy

  15. RENEWABLE ENERGY, A KEY TO INTEGRATING COMPETITIVE POLICIES WITH ADVANCED ENVIRONMENT PROTECTION STRATEGIES

    Directory of Open Access Journals (Sweden)

    Cinade Lucian Ovidiu

    2011-12-01

    Full Text Available Development of competitive policies and improvement of environment protection strategies are two basic trends of the development of the European Unique Market. Energy, also known as 'industry bread', is basic product and strategic resource, where energy industry plays an obvious role in the economic and social development of any community. Traditional energy production is marred by three major drawbacks: it generates negative externalities by polluting; it is totally in the hands of the producers; hence, prices rise at their will, of fossil fuels such as oil and gas. Present study focuses on electric energy industry, yet bearing over the whole length of the chain producer-to-end-consumer, thus revealed as particularly complex. The question is do alternative energy sources meet the prerequisite of market being competitive meanwhile environment protection being highly observed. We identify limits in point, of the energy market; effects of market liberalization; entry barriers; interchangeability level of energy sources; active forces on the energy market. Competitive rivalry has been expressed as per market micro-economic analysis, based on Michael Porter's 5-forces model. It will thus be noticed that, morphologically, competition evolution depends firstly on the market type. For the time being, the consumer on the energy market stays captive, for various reasons such as: legislation; limits of energy transfer infrastructure; scarcity of resources; resources availability imbalance; no integrative strategy available, of renewable energy resources usage. Energy availability is vital for human society to function. Comparative advantages of renewable energy resources are twofold, as manifested: in terms of economics, i.e. improving competition by substitute products entered at the same time as new producers enter market; and in terms of ecology, by reducing CO2 emissions. As to energy production technology and transfer, the complementary nature will

  16. Advanced energy systems and technologies (NEMO 2). Final report 1993-1998

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P.; Konttinen, P. [eds.

    1998-12-31

    NEMO2 has been the major Finnish energy research programme on advanced energy systems and technologies during 1993-1998. The main objective of the programme has been to support industrial technology development but also to increase the utilisation of wind and solar energy in Finland. The main technology fields covered are wind and solar energy. In addition, the programme has supported projects on energy storage and other small-scale energy technologies such as fuel cells that support the main technology fields chosen. NEMO2 is one of the energy research programmes of the Technology Development Centre of Finland (TEKES). The total R and D funding over the whole programme period was FIM 130 million (ECU 22 million). The public funding of the total programme costs has been 43 %. The industrial participation has been strong. International co-operation has been an important aspect in NEMO2: the programme has stimulated 24 EU-projects and participation in several IEA co-operative tasks. International funding adds nearly 20 % to the NEMO2 R and D funding. (orig.)

  17. Energy and cost savings results for advanced technology systems from the Cogeneration Technology Alternatives Study /CTAS/

    Science.gov (United States)

    Sagerman, G. D.; Barna, G. J.; Burns, R. K.

    1979-01-01

    The Cogeneration Technology Alternatives Study (CTAS), a program undertaken to identify the most attractive advanced energy conversion systems for industrial cogeneration applications in the 1985-2000 time period, is described, and preliminary results are presented. Two cogeneration options are included in the analysis: a topping application, in which fuel is input to the energy conversion system which generates electricity and waste heat from the conversion system is used to provide heat to the process, and a bottoming application, in which fuel is burned to provide high temperature process heat and waste heat from the process is used as thermal input to the energy conversion system which generates energy. Steam turbines, open and closed cycle gas turbines, combined cycles, diesel engines, Stirling engines, phosphoric acid and molten carbonate fuel cells and thermionics are examined. Expected plant level energy savings, annual energy cost savings, and other results of the economic analysis are given, and the sensitivity of these results to the assumptions concerning fuel prices, price of purchased electricity and the potential effects of regional energy use characteristics is discussed.

  18. Advanced energy systems and technologies (NEMO 2). Final report 1993-1998

    International Nuclear Information System (INIS)

    Lund, P.; Konttinen, P.

    1998-01-01

    NEMO2 has been the major Finnish energy research programme on advanced energy systems and technologies during 1993-1998. The main objective of the programme has been to support industrial technology development but also to increase the utilisation of wind and solar energy in Finland. The main technology fields covered are wind and solar energy. In addition, the programme has supported projects on energy storage and other small-scale energy technologies such as fuel cells that support the main technology fields chosen. NEMO2 is one of the energy research programmes of the Technology Development Centre of Finland (TEKES). The total R and D funding over the whole programme period was FIM 130 million (ECU 22 million). The public funding of the total programme costs has been 43 %. The industrial participation has been strong. International co-operation has been an important aspect in NEMO2: the programme has stimulated 24 EU-projects and participation in several IEA co-operative tasks. International funding adds nearly 20 % to the NEMO2 R and D funding. (orig.)

  19. Cellular Links between Neuronal Activity and Energy Homeostasis

    OpenAIRE

    Shetty, Pavan K.; Galeffi, Francesca; Turner, Dennis A.

    2012-01-01

    Neuronal activity, astrocytic responses to this activity, and energy homeostasis are linked together during baseline, conscious conditions, and short-term rapid activation (as occurs with sensory or motor function). Nervous system energy homeostasis also varies during long-term physiological conditions (i.e., development and aging) and with adaptation to pathological conditions, such as ischemia or low glucose. Neuronal activation requires increased metabolism (i.e., ATP generation) which lea...

  20. High energy physics division semiannual report of research activities

    International Nuclear Information System (INIS)

    Schoessow, P.; Moonier, P.; Talaga, R.; Wagner, R.

    1991-08-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1991--June 30, 1991. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included

  1. A compilation of energy costs of physical activities.

    Science.gov (United States)

    Vaz, Mario; Karaolis, Nadine; Draper, Alizon; Shetty, Prakash

    2005-10-01

    There were two objectives: first, to review the existing data on energy costs of specified activities in the light of the recommendations made by the Joint Food and Agriculture Organization/World Health Organization/United Nations University (FAO/WHO/UNU) Expert Consultation of 1985. Second, to compile existing data on the energy costs of physical activities for an updated annexure of the current Expert Consultation on Energy and Protein Requirements. Electronic and manual search of the literature (predominantly English) to obtain published data on the energy costs of physical activities. The majority of the data prior to 1955 were obtained using an earlier compilation of Passmore and Durnin. Energy costs were expressed as physical activity ratio (PAR); the energy cost of the activity divided by either the measured or predicted basal metabolic rate (BMR). The compilation provides PARs for an expanded range of activities that include general personal activities, transport, domestic chores, occupational activities, sports and other recreational activities for men and women, separately, where available. The present compilation is largely in agreement with the 1985 compilation, for activities that are common to both compilations. The present compilation has been based on the need to provide data on adults for a wide spectrum of human activity. There are, however, lacunae in the available data for many activities, between genders, across age groups and in various physiological states.

  2. IFP Energies nouvelles - 2013 Activity Report. 2013 financial report. Innovating for energy

    International Nuclear Information System (INIS)

    2014-01-01

    access to an extremely high-quality technical environment, in terms of both facilities and testing resources. Against the backdrop of a rapidly changing energy sector, IFP School and IFP Training provide industry with the highly qualified personnel it requires to take up current and future technological, economic and environmental challenges. IFP School operates within an international environment and provides young graduate engineers with advanced postgraduate programs in the fields of energy, motor vehicles and the environment. Over 600 students from throughout the world graduate from IFP School each year. IFP Training, an IFPEN subsidiary, offers training programs to almost 15,000 employees from industry every year, securing their competitiveness. IFPEN has built up a unique body of knowledge as a result of several decades of research and scientific and industrial expertise. This extensive library of knowledge is made available to the widest possible audience with a view to informing and enriching collective and individual decisions regarding current and future energy and environmental issues. This document gathers both IFPEN's 2013 Activity report and financial report

  3. Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006

    Energy Technology Data Exchange (ETDEWEB)

    Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

    2006-10-01

    The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 new nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X

  4. Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006

    International Nuclear Information System (INIS)

    Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

    2006-01-01

    The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 new nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X

  5. OECD Nuclear Energy Agency Activities Related to Fast Reactor Development

    International Nuclear Information System (INIS)

    Dujardin, Thierry; Gulliford, Jim

    2013-01-01

    • Despite impact of Fukushima, there remains a high level of interest in continued development of advanced nuclear systems and fuel cycles: – better use of natural resources; – minimisation of waste and reduction of constraints on deep geological repositories. • Ambitious R&D programmes on-going at national level in many countries, also through international projects: – expected to lead to development of advanced reactors and fuel cycle facilities. • OECD/NEA will continue to support member countries in field of fast reactor development and related advanced fuel cycles: – forum for exchange of information; – collaborative activities

  6. Advanced computational simulations of water waves interacting with wave energy converters

    Science.gov (United States)

    Pathak, Ashish; Freniere, Cole; Raessi, Mehdi

    2017-03-01

    Wave energy converter (WEC) devices harness the renewable ocean wave energy and convert it into useful forms of energy, e.g. mechanical or electrical. This paper presents an advanced 3D computational framework to study the interaction between water waves and WEC devices. The computational tool solves the full Navier-Stokes equations and considers all important effects impacting the device performance. To enable large-scale simulations in fast turnaround times, the computational solver was developed in an MPI parallel framework. A fast multigrid preconditioned solver is introduced to solve the computationally expensive pressure Poisson equation. The computational solver was applied to two surface-piercing WEC geometries: bottom-hinged cylinder and flap. Their numerically simulated response was validated against experimental data. Additional simulations were conducted to investigate the applicability of Froude scaling in predicting full-scale WEC response from the model experiments.

  7. Advanced air distribution: Improving health and comfort while reducing energy use

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor

    2015-01-01

    -quality indoor environments at the same time as low-energy consumption. Advanced air distribution, designed to supply clean air where, when, and as much as needed, makes it possible to efficiently achieve thermal comfort, control exposure to contaminants, provide high-quality air for breathing and minimizing......Indoor environment affects the health, comfort, and performance of building occupants. The energy used for heating, cooling, ventilating, and air conditioning of buildings is substantial. Ventilation based on total volume air distribution in spaces is not always an efficient way to provide high...... the risk of airborne cross-infection while reducing energy use. This study justifies the need for improving the present air distribution design in occupied spaces, and in general the need for a paradigm shift from the design of collective environments to the design of individually controlled environments...

  8. Advanced ceramic composite for high energy resistors. Characterization of electrical and physical properties

    International Nuclear Information System (INIS)

    Farrokh, Fattahi; Navid, Tagizadegan; Naser, Tabatabaei; Ahmad, Rashtehizadeh

    2005-01-01

    There is a need to characterize and apply advanced materials to improve the performance of components used in pulse power systems. One area of innovation is the use of bulk electrically conductive ceramics for non-inductive, high energy and high power electrical resistors. Standard Ceramics Inc. has developed a unique silicon carbide structural ceramic composite which exhibits electrical conductivity. The new conductive bulk ceramic material has a controlled microstructure, which results in improved homogeneity, making the material suitable for use as a non-inductive high energy resistor. This paper describes characterization of the material's physical and electrical properties and relates them to improvements in low-inductance, high temperature, high power density and high energy density resistors. The bulk resistor approach offers high reliability through better mechanical properties and simplicity of construction

  9. NATO Advanced Research Workshop on Geometrical Derivatives of Energy Surfaces and Molecular Properties

    CERN Document Server

    Simons, Jack

    1986-01-01

    The development and computational implementation of analytical expres­ sions for the low-order derivatives of electronic energy surfaces and other molecular properties has undergone rapid growth in recent years. It is now fairly routine for chemists to make use of energy gradient information in locating and identifying stable geometries and transition states. The use of second analytical derivative (Hessian or curvature) expressions is not yet routine, and third and higher energy derivatives as well as property (e.g., dipole moment, polarizability) derivatives are just beginning to be applied to chemical problems. This NATO Advanced Research Workshop focused on analyzing the re­ lative merits of various strategies for deriving the requisite analyti­ cal expressions, for computing necessary integral derivatives and wave­ function parameter derivatives, and for efficiently coding these expres­ sions on conventional scalar machines and vector-oriented computers. The participant list contained many scientist...

  10. Biomass I. Science Activities in Energy [and] Teacher's Guide.

    Science.gov (United States)

    Oak Ridge Associated Universities, TN.

    Designed for science students in fourth, fifth, and sixth grades, the activities in this unit illustrate principles and problems related to biomass as a form of energy. (The word biomass is used to describe all solid material of animal or vegetable origin from which energy may be extracted.) Twelve student activities using art, economics,…

  11. 78 FR 64414 - Assistance to Foreign Atomic Energy Activities

    Science.gov (United States)

    2013-10-29

    ... nonproliferation norms, and to update the activities and technologies subject to the Secretary of Energy's specific... consistent with current global civil nuclear trade practices and nonproliferation norms, and to update the activities and technologies subject to the Secretary of Energy's specific authorization and DOE reporting...

  12. Selected Energy Education Activities for Pennsylvania Middle School Grades. Draft.

    Science.gov (United States)

    Hack, Nancy; And Others

    These activities are intended to help increase awareness and understanding of the energy situation and to encourage students to become energy conservationists. The document is divided into sections according to discipline area. A final section is devoted to interdisciplinary activities involving several discipline areas integrated with the energy…

  13. Effect of ultrasonic specific energy on waste activated sludge ...

    African Journals Online (AJOL)

    The effect of ultrasonic specific energy on waste activated sludge (WAS) solubilization and enzyme activity was investigated in this study. Experimental results showed that the increase of ultrasonic specific energy in the range of 0 - 90000 kJ/kg dried sludge (DS) benefited WAS particle size reduction and the solubilization ...

  14. Activities in nuclear and high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    High energy and nuclear physics research concerning bubble chamber investigations, European hybrid system ACCMOR, WA 18, PETRA, PEP, VA 4, SING, LENA, LEP 3 and DELPHI experiments is summarized. Experiments with electron beams, and in pions and muons physics, and radiochemistry are reported on.

  15. Structural, photoconductive, thermoelectric and activation energy ...

    Indian Academy of Sciences (India)

    2016-07-21

    Jul 21, 2016 ... This report investigated the structural, optical and electrical properties of V-doped SnO2 thin films deposited using spray .... SnO2 films were deposited on rotating hot substrates under the ... cal band gap energy (Eg) for V-doped SnO2 thin films ..... by Sn4+, resulting in the generation of free electron,.

  16. The dynamic relationship between daily activities, home environment, and identity when living with advanced cancer

    DEFF Research Database (Denmark)

    Mærsk, Jesper Larsen

    The importance of daily activities and home to identity when living with advanced cancer Introduction Research within occupational science and gerontology has documented that being engaged in daily activities and having relational bonds to home are important to identity formation. For people living...... with advanced cancer in Denmark it is of priority to be able to live at home for as long as possible. For approximately 80% their home is the preferred place to die. Studies indicate home is the place where people with advanced cancer spent most of their day and are engaged in most of their daily activities...... with advanced cancer in Denmark may experience challenges to how they can form and express their identity through what they do and where they live. Objectives The purpose of this study is to generate knowledge about how people with advanced cancer through their words and actions express: • The importance...

  17. International Atomic Energy Agency: activities in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Hayati, Ainul [Nuclear Energy Unit, Bangi, Selangor (Malaysia)

    1994-12-31

    The two main IAEA activities participated by Malaysia - technical cooperation programme (TC) and regional cooperative agreement programme (RCA/IAEA AND IAEA/RCA/UNDP). This article highlighted some of the IAEA technical cooperation activities in Malaysia (i.e. Medicine, Agriculture, Industry, Strategic, Social Science), assistance, funding and contribution made by Malaysia to the IAEA since 1989.

  18. International Atomic Energy Agency: activities in Malaysia

    International Nuclear Information System (INIS)

    Ainul Hayati

    1994-01-01

    The two main IAEA activities participated by Malaysia - technical cooperation programme (TC) and regional cooperative agreement programme (RCA/IAEA AND IAEA/RCA/UNDP). This article highlighted some of the IAEA technical cooperation activities in Malaysia (i.e. Medicine, Agriculture, Industry, Strategic, Social Science), assistance, funding and contribution made by Malaysia to the IAEA since 1989

  19. International program activities in magnetic fusion energy

    International Nuclear Information System (INIS)

    1986-03-01

    The following areas of our international activities in magnetic fusion are briefly described: (1) policy; (2) background; (3) strategy; (4) strategic considerations and concerns; (5) domestic program inplications, and (6) implementation. The current US activities are reviewed. Some of our present program needs are outlined

  20. Solar Energy Education. Home economics: student activities. Field test edition

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    A view of solar energy from the standpoint of home economics is taken in this book of activities. Students are provided information on solar energy resources while performing these classroom activities. Instructions for the construction of a solar food dryer and a solar cooker are provided. Topics for study include window treatments, clothing, the history of solar energy, vitamins from the sun, and how to choose the correct solar home. (BCS)

  1. Solar energy activities in the Arab countries

    International Nuclear Information System (INIS)

    Sayigh, A.A.M.

    1991-01-01

    The Arab countries, 22 in total, are divided into three groups. Group one consists of all countries of the Middle East. The second group is the Arabian Peninsula, and the third group consists of all Arab countries in Africa. The paper outlines the solar density and sunshine hours, as well as wind data in the region and compares them with some industrialized countries. Brief surveys of various solar energy projects are tabulated: that is solar, wind and biomass. Several specific major projects in various parts of the Arab World will be discussed. More specifically, the cooling of the solar energy research building in Baghdad (120 tons of solar absorption chillers, 80 tons of heat pumps), the heating of King Abdu-Asis Airborne and Physical Training School near Tabuk, Saudi Arabia, the 350 kW PV. field of the solar energy village near Riyadh and the 100 kW solar thermal plant in Kuwait are discussed. It is worth noting that the present photovoltaic capacity in the Arab world is more than 3.0 MW and the yearly installation potential per year is 2.0 MW. There are at least five photovoltaic production facilities in the Arab countries. Two of them in Saudi Arabia with capacity of 400 kW, one in Iraq with a capacity of 200 kW, one in Tunisia with a capacity of 100 kW and on in Algeria with capacity of 100 kW. The Arab countries can absorb 5MW per year and more countries like Egypt, Sudan, Morocco, Jordan and Libya are thinking of having their own production capabilities. Five desalination plants are also mentioned, plus the Yanbu plant of 240m/day, which is one of the largest in the world. The potential of wind energy utilisation is considered. Obstacles hindering the process of solar energy in the region are also outlined. (author). 11 refs, 1 fig., 4 tabs

  2. Activities of the Research Institute for Advanced Computer Science

    Science.gov (United States)

    Oliger, Joseph

    1994-01-01

    The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on June 6, 1983. RIACS is privately operated by USRA, a consortium of universities with research programs in the aerospace sciences, under contract with NASA. The primary mission of RIACS is to provide research and expertise in computer science and scientific computing to support the scientific missions of NASA ARC. The research carried out at RIACS must change its emphasis from year to year in response to NASA ARC's changing needs and technological opportunities. Research at RIACS is currently being done in the following areas: (1) parallel computing; (2) advanced methods for scientific computing; (3) high performance networks; and (4) learning systems. RIACS technical reports are usually preprints of manuscripts that have been submitted to research journals or conference proceedings. A list of these reports for the period January 1, 1994 through December 31, 1994 is in the Reports and Abstracts section of this report.

  3. Research for the energy turnaround. Phase transitions actively shape. Contributions

    International Nuclear Information System (INIS)

    Szczepanski, Petra; Wunschick, Franziska; Martin, Niklas

    2015-01-01

    The Annual Conference 2014 of the Renewable Energy Research Association was held in Berlin on 6 and 7 November 2014. This book documents the contributions of the conference on research for the energy turnaround, phase transitions actively shape. After an introduction and two contributions to the political framework, the contributions to the economic phases of the energy transition, the phase of the current turn, the phases of social energy revolution, the stages of heat turnaround (Waermewende), and the stages of the mobility turn deal with the stages of development of the energy system. Finally, the Research Association Renewable Energy is briefly presented. [de

  4. Advanced Manufacturing for Thermal and Environmental Control Systems: Achieving National Energy Goals

    Energy Technology Data Exchange (ETDEWEB)

    Bogucz, Edward A. [Syracuse Univ., NY (United States)

    2017-02-20

    This project was part of a regional initiative in the five counties of Central New York (CNY) that received funding from the U.S. Department of Energy (DOE) and four other federal agencies through the 2012 Advanced Manufacturing Jobs and Innovation Accelerator Challenge (AMJIAC). The CNY initiative was focused on cultivating the emergent regional cluster in “Advanced Manufacturing for Thermal and Environmental Control (AM-TEC).” As one component of the CNY AM-TEC initiative, the DOE-funded project supported five research & development seed projects that strategically targeted: 1) needs and opportunities of CNY AM-TEC companies, and 2) the goal of DOE’s Advanced Manufacturing Office (AMO) to reduce energy consumption by 50% across product life-cycles over 10 years. The project also sought to fulfill the AMO mission of developing and demonstrating new, energy-efficient processing and materials technologies at a scale adequate to prove their value to manufacturers and spur investment. The five seed projects demonstrated technologies and processes that can reduce energy intensity and improve production as well as use less energy throughout their lifecycles. The project was conducted over three years in two 18-month budget periods. During the first budget period, two projects proposed in the original AMJAIC application were successfully completed: Seed Project 1 focused on saving energy in heat transfer processes via development of nano structured surfaces to significantly increase heat flux; Seed Project 2 addressed saving energy in data centers via subzero cooling of the computing processors. Also during the first budget period, a process was developed and executed to select a second round of seed projects via a competitive request for proposals from regional companies and university collaborators. Applicants were encouraged to form industry-academic partnerships to leverage experience and resources of public and private sectors in the CNY region. Proposals were

  5. Benchmarking of thermalhydraulic loop models for lead-alloy-cooled advanced nuclear energy systems. Phase I: Isothermal forced convection case

    International Nuclear Information System (INIS)

    2012-06-01

    Under the auspices of the NEA Nuclear Science Committee (NSC), the Working Party on Scientific Issues of the Fuel Cycle (WPFC) has been established to co-ordinate scientific activities regarding various existing and advanced nuclear fuel cycles, including advanced reactor systems, associated chemistry and flowsheets, development and performance of fuel and materials and accelerators and spallation targets. The WPFC has different expert groups to cover a wide range of scientific issues in the field of nuclear fuel cycle. The Task Force on Lead-Alloy-Cooled Advanced Nuclear Energy Systems (LACANES) was created in 2006 to study thermal-hydraulic characteristics of heavy liquid metal coolant loop. The objectives of the task force are to (1) validate thermal-hydraulic loop models for application to LACANES design analysis in participating organisations, by benchmarking with a set of well-characterised lead-alloy coolant loop test data, (2) establish guidelines for quantifying thermal-hydraulic modelling parameters related to friction and heat transfer by lead-alloy coolant and (3) identify specific issues, either in modelling and/or in loop testing, which need to be addressed via possible future work. Nine participants from seven different institutes participated in the first phase of the benchmark. This report provides details of the benchmark specifications, method and code characteristics and results of the preliminary study: pressure loss coefficient and Phase-I. A comparison and analysis of the results will be performed together with Phase-II

  6. Advanced virtual monoenergetic images: improving the contrast of dual-energy CT pulmonary angiography

    International Nuclear Information System (INIS)

    Meier, A.; Wurnig, M.; Desbiolles, L.; Leschka, S.; Frauenfelder, T.; Alkadhi, H.

    2015-01-01

    Aim: To investigate the value of advanced virtual monoenergetic image reconstruction (mono-plus) from dual-energy computed tomography (CT) for improving the contrast of CT pulmonary angiography (CTPA). Materials and methods: Forty consecutive patients (25 women, mean 62.5 years, range 28–87 years) underwent 192-section dual-source CTPA with dual-energy CT (90/150 SnkVp) after the administration of 60 ml contrast media (300 mg iodine/ml). Conventional virtual monochromatic images at 60 keV and 17 mono-plus image datasets from 40–190 keV (in 10 keV steps) were reconstructed. Subjective image quality (artefacts, subjective noise) was rated. Attenuation was measured in the pulmonary trunk and in the right lower lobe pulmonary artery; noise was measured in the periscapular musculature. The signal-to-noise (SNR) and contrast-to-noise ratios (CNR) were calculated for each patient and dataset. Comparisons between monochromatic images and mono-plus images were performed by repeated measures analysis of variance (ANOVA) with post-hoc Bonferroni correction. Results: Interreader agreement was good to excellent for subjective image quality (ICC: 0.616–0.889). As compared to conventional 60 keV images, artefacts occurred less (p=0.001) and subjective noise was rated lower (p<0.001) in mono-plus 40 keV images. Noise was lower (p<0.001), and the SNR and CNR in the pulmonary trunk and right lower lobe pulmonary artery were higher (both, p<0.001) in mono-plus 40 keV images compared to conventional monoenergetic 60 keV images. Transient interruption of contrast (TIC) was found in 14/40 (35%) of patients, with subjective contrast being similar 8/40 (20%) or higher 32/40 (80%) in mono-plus 40 keV as compared to conventional monoenergetic 60 keV images. Conclusions: Compared to conventional virtual monoenergetic imaging, mono-plus images at 40 keV improve the contrast of dual-energy CTPA. - Highlights: • Advanced monoenergetic image reconstruction from dual-energy CT

  7. Local and regional energy companies offering energy services: Key activities and implications for the business model

    International Nuclear Information System (INIS)

    Kindström, Daniel; Ottosson, Mikael

    2016-01-01

    Highlights: • Many companies providing energy services are experiencing difficulties. • This research identifies key activities for the provision of energy services. • Findings are aggregated to the business-model level providing managerial insights. • This research identifies two different business model innovation paths. • Energy companies may need to renew parts of, or the entire, business model. - Abstract: Energy services play a key role in increasing energy efficiency in the industry. The key actors in these services are the local and regional energy companies that are increasingly implementing energy services as part of their market offering and developing service portfolios. Although expectations for energy services have been high, progress has so far been limited, and many companies offering energy services, including energy companies, are experiencing difficulties in implementing energy services and providing them to the market. Overall, this research examines what is needed for local and regional energy companies to successfully implement energy services (and consequently provide them to the market). In doing this, a two-stage process is used: first, we identify key activities for the successful implementation of energy services, and second, we aggregate the findings to the business model level. This research demonstrates that to succeed in implementing energy services, an energy company may need to renew parts or all of its existing product-based business model, formulate a new business model, or develop coexisting multiple business models. By discussing two distinct business model innovation processes, this research demonstrates that there can be different paths to success.

  8. Enacting Conceptual Metaphor through Blending: Learning activities embodying the substance metaphor for energy

    Science.gov (United States)

    Close, Hunter G.; Scherr, Rachel E.

    2015-04-01

    We demonstrate that a particular blended learning space is especially productive in developing understanding of energy transfers and transformations. In this blended space, naturally occurring learner interactions like body movement, gesture, and metaphorical speech are blended with a conceptual metaphor of energy as a substance in a class of activities called Energy Theater. We illustrate several mechanisms by which the blended aspect of the learning environment promotes productive intellectual engagement with key conceptual issues in the learning of energy, including distinguishing among energy processes, disambiguating matter and energy, identifying energy transfer, and representing energy as a conserved quantity. Conceptual advancement appears to be promoted especially by the symbolic material and social structure of the Energy Theater environment, in which energy is represented by participants and objects are represented by areas demarcated by loops of rope, and by Energy Theater's embodied action, including body locomotion, gesture, and coordination of speech with symbolic spaces in the Energy Theater arena. Our conclusions are (1) that specific conceptual metaphors can be leveraged to benefit science instruction via the blending of an abstract space of ideas with multiple modes of concrete human action, and (2) that participants' structured improvisation plays an important role in leveraging the blend for their intellectual development.

  9. Development and applications of Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y., E-mail: yican.wu@fds.org.cn [Inst. of Nuclear Energy Safety Technology, Hefei, Anhui (China)

    2015-07-01

    'Full text:' Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems (SuperMC) is a CAD-based Monte Carlo (MC) program for integrated simulation of nuclear system by making use of hybrid MC-deterministic method and advanced computer technologies. The main usability features are automatic modeling of geometry and physics, visualization and virtual simulation and cloud computing service. SuperMC 2.3, the latest version, can perform coupled neutron and photon transport calculation. SuperMC has been verified by more than 2000 benchmark models and experiments, and has been applied in tens of major nuclear projects, such as the nuclear design and analysis of International Thermonuclear Experimental Reactor (ITER) and China Lead-based reactor (CLEAR). Development and applications of SuperMC are introduced in this presentation. (author)

  10. The Nuclear Energy Advanced Modeling and Simulation Enabling Computational Technologies FY09 Report

    Energy Technology Data Exchange (ETDEWEB)

    Diachin, L F; Garaizar, F X; Henson, V E; Pope, G

    2009-10-12

    In this document we report on the status of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Enabling Computational Technologies (ECT) effort. In particular, we provide the context for ECT In the broader NEAMS program and describe the three pillars of the ECT effort, namely, (1) tools and libraries, (2) software quality assurance, and (3) computational facility (computers, storage, etc) needs. We report on our FY09 deliverables to determine the needs of the integrated performance and safety codes (IPSCs) in these three areas and lay out the general plan for software quality assurance to meet the requirements of DOE and the DOE Advanced Fuel Cycle Initiative (AFCI). We conclude with a brief description of our interactions with the Idaho National Laboratory computer center to determine what is needed to expand their role as a NEAMS user facility.

  11. Development and applications of Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems

    International Nuclear Information System (INIS)

    Wu, Y.

    2015-01-01

    'Full text:' Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems (SuperMC) is a CAD-based Monte Carlo (MC) program for integrated simulation of nuclear system by making use of hybrid MC-deterministic method and advanced computer technologies. The main usability features are automatic modeling of geometry and physics, visualization and virtual simulation and cloud computing service. SuperMC 2.3, the latest version, can perform coupled neutron and photon transport calculation. SuperMC has been verified by more than 2000 benchmark models and experiments, and has been applied in tens of major nuclear projects, such as the nuclear design and analysis of International Thermonuclear Experimental Reactor (ITER) and China Lead-based reactor (CLEAR). Development and applications of SuperMC are introduced in this presentation. (author)

  12. ATHENA [Advanced Thermal Hydraulic Energy Network Analyzer] solutions to developmental assessment problems

    International Nuclear Information System (INIS)

    Carlson, K.E.; Ransom, V.H.; Roth, P.A.

    1987-03-01

    The ATHENA (Advanced Thermal Hydraulic Energy Network Analyzer) code has been developed to perform transient simulation of the thermal hydraulic systems that may be found in fusion reactors, space reactors, and other advanced systems. As an assessment of current capability the code was applied to a number of physical problems, both conceptual and actual experiments. Results indicate that the numerical solution to the basic conservation equations is technically sound, and that generally good agreement can be obtained when modeling relevant hydrodynamic experiments. The assessment also demonstrates basic fusion system modeling capability and verifies compatibility of the code with both CDC and CRAY mainframes. Areas where improvements could be made include constitutive modeling, which describes the interfacial exchange term. 13 refs., 84 figs

  13. Advanced biological activated carbon filter for removing pharmaceutically active compounds from treated wastewater.

    Science.gov (United States)

    Sbardella, Luca; Comas, Joaquim; Fenu, Alessio; Rodriguez-Roda, Ignasi; Weemaes, Marjoleine

    2018-04-28

    Through their release of effluents, conventional wastewater treatment plants (WWTPs) represent a major pollution point sources for pharmaceutically active compounds (PhACs) in water bodies. The combination of a biological activated carbon (BAC) filter coupled with an ultrafiltration (UF) unit was evaluated as an advanced treatment for PhACs removal at pilot scale. The BAC-UF pilot plant was monitored for one year. The biological activity of the biofilm that developed on the granular activated carbon (GAC) particles and the contribution of this biofilm to the overall removal of PhACs were evaluated. Two different phases were observed during the long-term monitoring of PhACs removal. During the first 9200 bed volumes (BV; i.e., before GAC saturation), 89, 78, 83 and 79% of beta-blockers, psychiatric drugs, antibiotics and a mix of other therapeutic groups were removed, respectively. The second phase was characterized by deterioration of the overall performances during the period between 9200 and 13,800 BV. To quantify the respective contribution of adsorption and biodegradation, a lab-scale setup was operated for four months and highlighted the essential role played by GAC in biofiltration units. Physical adsorption was indeed the main removal mechanism. Nevertheless, a significant contribution due to biological activity was detected for some PhACs. The biofilm contributed to the removal of 22, 25, 30, 32 and 35% of ciprofloxacin, bezafibrate, ofloxacin, azithromycin and sulfamethoxazole, respectively. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  14. An Active Role of Citizens on the Energy Market

    International Nuclear Information System (INIS)

    Skrlec, D.

    2016-01-01

    In order to fulfil climate and energy goals that EU has set for the period until 2030 and also after 2050, an engagement of the entire society is necessary. The energy sector is entering a transition towards a so called 4D model: decarbonization, decentralisation, distribution and democratisation. Citizens' engagement and responsibility in this transition requires active consumption management, energy generation and application of energy efficiency measures. To be competitive on the energy market, various forms of collective citizen collaborations are needed and to encourage people to participate in those, they have to be further educated so that the energy sector transition can succeed. The expected road transportation electrification posts further challenges on the energy sector. Horizontal connection of more EU policies, climate-energy, circular economy, digital agenda shows that a holistic approach is needed for the transition into a new, resource and energy more efficient, society.(author).

  15. Environmental performance of advanced hybrid energy storage systems for electric vehicle applications

    International Nuclear Information System (INIS)

    Sanfélix, Javier; Messagie, Maarten; Omar, Noshin; Van Mierlo, Joeri; Hennige, Volker

    2015-01-01

    Highlights: • The environmental impact of advanced energy storage systems is assessed. • The methodology used is Life Cycle Assessment following the ISO 14040 and 14044. • Twelve impact categories are assessed to avoid burden shifting. • Increasing the efficiency and extending the lifetime benefits the environmental performance. • The results show that there are hot spots where to act and reduce the overall impact. - Abstract: In this paper the environmental performance of an advanced hybrid energy storage system, comprising high power and high energy lithium iron phosphate cells, is compared with a stand alone battery concept composed of lithium manganese oxide cells. The methodology used to analyse the environmental impacts is Life Cycle Assessment (LCA). The manufacturing, use phase and end-of-life of the battery packs are assessed for twelve impact categories. The functional unit is 1 km driven under European average conditions. The present study assesses the environmental performance of the two battery packs for two scenarios: scenario 1 with a vehicle total drive range of 150,000 km and scenario 2 with total driving range of the car of 300,000 km. The results of scenario 1 show that the increased efficiency of the hybrid system reduces, in general, the environmental impact during the use stage, although the manufacturing stage has higher impact than the benchmark. Scenario 2 shows how the extended lifetime of the hybrid system benefits the emissions per km driven

  16. Energy systems. Tome 3: advanced cycles, low environmental impact innovative systems

    International Nuclear Information System (INIS)

    Gicquel, R.

    2009-01-01

    This third tome about energy systems completes the two previous ones by showing up advanced thermodynamical cycles, in particular having a low environmental impact, and by dealing with two other questions linked with the study of systems with a changing regime operation: - the time management of energy, with the use of thermal and pneumatic storage systems and time simulation (schedule for instance) of systems (solar energy type in particular); - the technological dimensioning and non-nominal regime operation studies. Because this last topic is particularly complex, new functionalities have been implemented mainly by using the external classes mechanism, which allows the user to freely personalize his models. This tome is illustrated with about 50 examples of cycles modelled with Thermoptim software. Content: foreword; 1 - generic external classes; 2 - advanced gas turbine cycles; 3 - evaporation-concentration, mechanical steam compression, desalination, hot gas drying; 4 - cryogenic cycles; 5 - electrochemical converters; 6 - global warming, CO 2 capture and sequestration; 7 - future nuclear reactors (coupled to Hirn and Brayton cycles); 8 - thermodynamic solar cycles; 10 - pneumatic and thermal storage; 11 - calculation of thermodynamic solar facilities; 12 - problem of technological dimensioning and non-nominal regime; 13 - exchangers modeling and parameterizing for the dimensioning and the non-nominal regime; 14 - modeling and parameterizing of volumetric compressors; 15 - modeling and parameterizing of turbo-compressors and turbines; 16 - identification methodology of component parameters; 17 - case studies. (J.S.)

  17. Recent Advances in Marine Algae Polysaccharides: Isolation, Structure, and Activities.

    Science.gov (United States)

    Xu, Shu-Ying; Huang, Xuesong; Cheong, Kit-Leong

    2017-12-13

    Marine algae have attracted a great deal of interest as excellent sources of nutrients. Polysaccharides are the main components in marine algae, hence a great deal of attention has been directed at isolation and characterization of marine algae polysaccharides because of their numerous health benefits. In this review, extraction and purification approaches and chemico-physical properties of marine algae polysaccharides (MAPs) are summarized. The biological activities, which include immunomodulatory, antitumor, antiviral, antioxidant, and hypolipidemic, are also discussed. Additionally, structure-function relationships are analyzed and summarized. MAPs' biological activities are closely correlated with their monosaccharide composition, molecular weights, linkage types, and chain conformation. In order to promote further exploitation and utilization of polysaccharides from marine algae for functional food and pharmaceutical areas, high efficiency, and low-cost polysaccharide extraction and purification methods, quality control, structure-function activity relationships, and specific mechanisms of MAPs activation need to be extensively investigated.

  18. Recent Advances in Momordica charantia: Functional Components and Biological Activities

    Directory of Open Access Journals (Sweden)

    Shuo Jia

    2017-11-01

    Full Text Available Momordica charantia L. (M. charantia, a member of the Cucurbitaceae family, is widely distributed in tropical and subtropical regions of the world. It has been used in folk medicine for the treatment of diabetes mellitus, and its fruit has been used as a vegetable for thousands of years. Phytochemicals including proteins, polysaccharides, flavonoids, triterpenes, saponins, ascorbic acid and steroids have been found in this plant. Various biological activities of M. charantia have been reported, such as antihyperglycemic, antibacterial, antiviral, antitumor, immunomodulation, antioxidant, antidiabetic, anthelmintic, antimutagenic, antiulcer, antilipolytic, antifertility, hepatoprotective, anticancer and anti-inflammatory activities. However, both in vitro and in vivo studies have also demonstrated that M. charantia may also exert toxic or adverse effects under different conditions. This review addresses the chemical constituents of M. charantia and discusses their pharmacological activities as well as their adverse effects, aimed at providing a comprehensive overview of the phytochemistry and biological activities of M. charantia.

  19. Recent Advances in Momordica charantia: Functional Components and Biological Activities.

    Science.gov (United States)

    Jia, Shuo; Shen, Mingyue; Zhang, Fan; Xie, Jianhua

    2017-11-28

    Momordica charantia L. ( M. charantia ), a member of the Cucurbitaceae family, is widely distributed in tropical and subtropical regions of the world. It has been used in folk medicine for the treatment of diabetes mellitus, and its fruit has been used as a vegetable for thousands of years. Phytochemicals including proteins, polysaccharides, flavonoids, triterpenes, saponins, ascorbic acid and steroids have been found in this plant. Various biological activities of M. charantia have been reported, such as antihyperglycemic, antibacterial, antiviral, antitumor, immunomodulation, antioxidant, antidiabetic, anthelmintic, antimutagenic, antiulcer, antilipolytic, antifertility, hepatoprotective, anticancer and anti-inflammatory activities. However, both in vitro and in vivo studies have also demonstrated that M. charantia may also exert toxic or adverse effects under different conditions. This review addresses the chemical constituents of M. charantia and discusses their pharmacological activities as well as their adverse effects, aimed at providing a comprehensive overview of the phytochemistry and biological activities of M. charantia .

  20. Strategic Plan for Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)

    Energy Technology Data Exchange (ETDEWEB)

    Kimberlyn C. Mousseau

    2011-10-01

    The Nuclear Energy Computational Fluid Dynamics Advanced Modeling and Simulation (NE-CAMS) system is being developed at the Idaho National Laboratory (INL) in collaboration with Bettis Laboratory, Sandia National Laboratory (SNL), Argonne National Laboratory (ANL), Utah State University (USU), and other interested parties with the objective of developing and implementing a comprehensive and readily accessible data and information management system for computational fluid dynamics (CFD) verification and validation (V&V) in support of nuclear energy systems design and safety analysis. The two key objectives of the NE-CAMS effort are to identify, collect, assess, store and maintain high resolution and high quality experimental data and related expert knowledge (metadata) for use in CFD V&V assessments specific to the nuclear energy field and to establish a working relationship with the U.S. Nuclear Regulatory Commission (NRC) to develop a CFD V&V database, including benchmark cases, that addresses and supports the associated NRC regulations and policies on the use of CFD analysis. In particular, the NE-CAMS system will support the Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program, which aims to develop and deploy advanced modeling and simulation methods and computational tools for reliable numerical simulation of nuclear reactor systems for design and safety analysis. Primary NE-CAMS Elements There are four primary elements of the NE-CAMS knowledge base designed to support computer modeling and simulation in the nuclear energy arena as listed below. Element 1. The database will contain experimental data that can be used for CFD validation that is relevant to nuclear reactor and plant processes, particularly those important to the nuclear industry and the NRC. Element 2. Qualification standards for data evaluation and classification will be incorporated and applied such that validation data sets will result in well

  1. Enerplan, Professional association of solar energy - activity report 2006

    International Nuclear Information System (INIS)

    2007-01-01

    Enerplan is the French union of solar energy professionals. Created in 1983, its social purpose is the study and defense of the rights and of the material and moral interests of its members. Enerplan structures its action through two poles representing members' activities: 'solar energy and building' where topics about heat and electricity generation in relation with buildings are treated, and 'photovoltaic energy' where topics specific to big solar power plants are considered. Thanks to the collaborative participation of its members, both poles allow Enerplan union to be source of proposals to develop solar energy in France. As an active interface between professionals and institutions, Enerplan includes in its membership: industrialists, plant makers, engineering consultants, installers, associations, energy suppliers etc, from small-medium size companies to big groups. This document presents Enerplan's activities in 2006 (public relations, lobbying, meetings and conferences, promotional activities, collaborations, projects..)

  2. Optical activity from high energy physics models

    International Nuclear Information System (INIS)

    Jaiswal, M.K.; Ganguly, A.K.

    2012-01-01

    Since the last decade we have come across some observational evidence suggest that the universe is currently undergoing acceleration. A way to resolve this problem is by introducing a scalar field that provides 'dark energy' with negative pressure, that couples to ordinary matter fields. There are many theories where the existence of light scalar fields is possible, e.g. in string theory there are many moduli fields that couple to matter or scalar tensor theory etc. One such theory goes by the name of the chameleonic theory. The introduction of chameleon field was to explain to the source of dark matter in the universe

  3. One semester course in wind energy for advanced undergraduate and graduate engineering students

    International Nuclear Information System (INIS)

    Ghosh, K.

    2006-01-01

    The recent increase in energy consumption in India is resulting in high levels of greenhouse gas emissions. Attempts to harness new renewable energy sources such as wind power is creating the need for trained manpower in aerospace engineering and mechanical engineering. The course outline for a one semester course in wind energy for advanced undergraduate and graduate engineering students at the Indian Institute of Technology was presented in this paper. A history of wind energy was also presented along with the approaching global environmental crisis. International efforts and conventions to reduce greenhouse gas emissions were discussed. India's geography and relationship to wind resources were presented in terms of its latitude and geostrophic winds. The course outline also includes a section on measuring instruments (anemometers) and organization of wind data using Weibull distribution as well as the impacts of summer and monsoon winds. The aerodynamics of wind turbines including airfoils, airscrew theory, and its application to wind turbines were discussed. Rural and remote area usage of wind turbines as well as the structural design and construction of wind turbine blades using composite materials are also examined in the course. Last, the course presents a video cassette and a 16 mm film on wind energy and advises students that they are exposed to laboratory and field practices and encouraged to do practical projects. The course contains a discussion of policy issues such as reaching the common people, and industry-academia interaction. 8 refs., 10 figs

  4. High thermal efficiency x-ray energy conversion scheme for advanced fusion reactors

    International Nuclear Information System (INIS)

    Quimby, D.C.; Taussig, R.T.; Hertzberg, A.

    1977-01-01

    This paper reports on a new radiation energy conversion scheme which appears to be capable of producing electricity from the high quality x-ray energy with efficiencies of 60 to 70 percent. This new reactor concept incorporates a novel x-ray radiation boiler and a new thermal conversion device known as an energy exchanger. The low-Z first walls of the radiation boiler are semi-transparent to x-rays, and are kept cool by incoming working fluid, which is subsequently heated to temperatures of 2000 to 3000 0 K in the interior of the boiler by volumetric x-ray absorption. The radiation boiler may be a compact part of the reactor shell since x-rays are readily absorbed in high-Z materials. The energy exchanger transfers the high-temperature working fluid energy to a lower temperature gas which drives a conventional turbine. The overall efficiency of the cycle is characterized by the high temperature of the working fluid. The high thermal efficiencies which appear achievable with this cycle would make an otherwise marginal advanced fusion reactor into an attractive net power producer. The operating principles, initial conceptual design, and engineering problems of the radiation boiler and thermal cycle are presented

  5. One semester course in wind energy for advanced undergraduate and graduate engineering students

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, K. [Indian Inst. of Technology, Kanpur (India). Aerospace Engineering Dept.

    2006-07-01

    The recent increase in energy consumption in India is resulting in high levels of greenhouse gas emissions. Attempts to harness new renewable energy sources such as wind power is creating the need for trained manpower in aerospace engineering and mechanical engineering. The course outline for a one semester course in wind energy for advanced undergraduate and graduate engineering students at the Indian Institute of Technology was presented in this paper. A history of wind energy was also presented along with the approaching global environmental crisis. International efforts and conventions to reduce greenhouse gas emissions were discussed. India's geography and relationship to wind resources were presented in terms of its latitude and geostrophic winds. The course outline also includes a section on measuring instruments (anemometers) and organization of wind data using Weibull distribution as well as the impacts of summer and monsoon winds. The aerodynamics of wind turbines including airfoils, airscrew theory, and its application to wind turbines were discussed. Rural and remote area usage of wind turbines as well as the structural design and construction of wind turbine blades using composite materials are also examined in the course. Last, the course presents a video cassette and a 16 mm film on wind energy and advises students that they are exposed to laboratory and field practices and encouraged to do practical projects. The course contains a discussion of policy issues such as reaching the common people, and industry-academia interaction. 8 refs., 10 figs.

  6. Design and Experimental Evaluation on an Advanced Multisource Energy Harvesting System for Wireless Sensor Nodes

    Directory of Open Access Journals (Sweden)

    Hao Li

    2014-01-01

    Full Text Available An effective multisource energy harvesting system is presented as power supply for wireless sensor nodes (WSNs. The advanced system contains not only an expandable power management module including control of the charging and discharging process of the lithium polymer battery but also an energy harvesting system using the maximum power point tracking (MPPT circuit with analog driving scheme for the collection of both solar and vibration energy sources. Since the MPPT and the power management module are utilized, the system is able to effectively achieve a low power consumption. Furthermore, a super capacitor is integrated in the system so that current fluctuations of the lithium polymer battery during the charging and discharging processes can be properly reduced. In addition, through a simple analog switch circuit with low power consumption, the proposed system can successfully switch the power supply path according to the ambient energy sources and load power automatically. A practical WSNs platform shows that efficiency of the energy harvesting system can reach about 75–85% through the 24-hour environmental test, which confirms that the proposed system can be used as a long-term continuous power supply for WSNs.

  7. U.S. Department of Energy instrumentation and controls technology research for advanced small modular reactors

    International Nuclear Information System (INIS)

    Wood, Richard Thomas

    2013-01-01

    Instrumentation, controls, and human-machine interfaces (ICHMI) are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The U.S. Department of Energy (DOE) has recognized that ICHMI research, development, and demonstration (RD and D) is needed to resolve the technical challenges that may compromise the effective and efficient utilization of modern ICHMI technology and consequently inhibit realization of the benefits offered by expanded utilization of nuclear power. Consequently, key DOE programs have substantial ICHMI RD and D elements to their respective research portfolio. This article describes current ICHMI research to support the development of advanced small modular reactors. (author)

  8. Recent US advances in ion-beam-driven high energy density physics and heavy ion fusion

    International Nuclear Information System (INIS)

    Logan, B.G.; Bieniosek, F.M.; Celata, C.M.; Coleman, J.; Greenway, W.; Henestroza, E.; Kwan, J.W.; Lee, E.P.; Leitner, M.; Roy, P.K.; Seidl, P.A.; Vay, J.-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Kireeff Covo, M.; Molvik, A.W.; Lund, S.M.; Meier, W.R.; Sharp, W.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Grisham, L.; Kaganovich, I.D.; Qin, H.; Sefkow, A.B.; Startsev, E.A.; Welch, D.; Olson, C.

    2007-01-01

    During the past two years, significant experimental and theoretical progress has been made in the US heavy ion fusion science program in longitudinal beam compression, ion-beam-driven warm dense matter, beam acceleration, high brightness beam transport, and advanced theory and numerical simulations. Innovations in longitudinal compression of intense ion beams by >50X propagating through background plasma enable initial beam target experiments in warm dense matter to begin within the next two years. We are assessing how these new techniques might apply to heavy ion fusion drivers for inertial fusion energy

  9. Towards energy efficient operation of Heating, Ventilation and Air Conditioning systems via advanced supervisory control design

    Science.gov (United States)

    Oswiecinska, A.; Hibbs, J.; Zajic, I.; Burnham, K. J.

    2015-11-01

    This paper presents conceptual control solution for reliable and energy efficient operation of heating, ventilation and air conditioning (HVAC) systems used in large volume building applications, e.g. warehouse facilities or exhibition centres. Advanced two-level scalable control solution, designed to extend capabilities of the existing low-level control strategies via remote internet connection, is presented. The high-level, supervisory controller is based on Model Predictive Control (MPC) architecture, which is the state-of-the-art for indoor climate control systems. The innovative approach benefits from using passive heating and cooling control strategies for reducing the HVAC system operational costs, while ensuring that required environmental conditions are met.

  10. Dual energy x-ray microtomography for development and inspection of advanced aerospace materials

    International Nuclear Information System (INIS)

    Alvarez, R.E.; Cao, Q.

    1990-01-01

    A key step in development of advanced composite materials is to characterize their internal structure and composition in a quantitative manner. In this paper, the authors describe a technique and an instrument that allows the measurements of the interior volume of the material. It has several key advantages over conventional computed tomography. The technique quantitatively measures the mass density and effective atomic number throughout the volume. Further, these measurements are made with microscopic (20 micrometer or better) spatial resolution. The technique is based on ARACOR's Tomoscope computed tomography instrument and on dual energy computed tomography. The authors describe the theory of the technique and show experimental measurements of metal matrix composite materials

  11. Nuclear Energy Agency. 6. activity report. 1977

    International Nuclear Information System (INIS)

    1978-01-01

    NEA has, as a primary objective, to ensure through international co-operation that the nuclear option is available for consideration in its true worth. The safety and regulatory aspects of nulear development have represented in 1977 about two thirds of NEA's total effort; and a high degree of priority was given to questions of nuclear safety and of radioactive waste management. Similarly, the growing need of Member countries for an integrated appraisal of technical, economic, safety, environmental and political questions influencing the nuclear fuel cycle was increasingly taken into account. Finally, a general effort was made to achieve greater visibility for the positive results of the NEA programme, as a contribution to improved public understanding of the factors underlying nuclear power programmes. As in previous years, the NEA programme continued to involve close collaboration with the International Atomic Energy Agency (IAEA) and the Commission of the European Communities. Within the OECD, close collaboration was maintained with the Combined Energy Staff and the Environment Directorate

  12. Hybrid energy storage systems utilizing redox active organic compounds

    Science.gov (United States)

    Wang, Wei; Xu, Wu; Li, Liyu; Yang, Zhenguo

    2015-09-08

    Redox flow batteries (RFB) have attracted considerable interest due to their ability to store large amounts of power and energy. Non-aqueous energy storage systems that utilize at least some aspects of RFB systems are attractive because they can offer an expansion of the operating potential window, which can improve on the system energy and power densities. One example of such systems has a separator separating first and second electrodes. The first electrode includes a first current collector and volume containing a first active material. The second electrode includes a second current collector and volume containing a second active material. During operation, the first source provides a flow of first active material to the first volume. The first active material includes a redox active organic compound dissolved in a non-aqueous, liquid electrolyte and the second active material includes a redox active metal.

  13. Development and Application of Advanced Weather Prediction Technologies for the Wind Energy Industry (Invited)

    Science.gov (United States)

    Mahoney, W. P.; Wiener, G.; Liu, Y.; Myers, W.; Johnson, D.

    2010-12-01

    Wind energy decision makers are required to make critical judgments on a daily basis with regard to energy generation, distribution, demand, storage, and integration. Accurate knowledge of the present and future state of the atmosphere is vital in making these decisions. As wind energy portfolios expand, this forecast problem is taking on new urgency because wind forecast inaccuracies frequently lead to substantial economic losses and constrain the national expansion of renewable energy. Improved weather prediction and precise spatial analysis of small-scale weather events are crucial for renewable energy management. In early 2009, the National Center for Atmospheric Research (NCAR) began a collaborative project with Xcel Energy Services, Inc. to perform research and develop technologies to improve Xcel Energy's ability to increase the amount of wind energy in their generation portfolio. The agreement and scope of work was designed to provide highly detailed, localized wind energy forecasts to enable Xcel Energy to more efficiently integrate electricity generated from wind into the power grid. The wind prediction technologies are designed to help Xcel Energy operators make critical decisions about powering down traditional coal and natural gas-powered plants when sufficient wind energy is predicted. The wind prediction technologies have been designed to cover Xcel Energy wind resources spanning a region from Wisconsin to New Mexico. The goal of the project is not only to improve Xcel Energy’s wind energy prediction capabilities, but also to make technological advancements in wind and wind energy prediction, expand our knowledge of boundary layer meteorology, and share the results across the renewable energy industry. To generate wind energy forecasts, NCAR is incorporating observations of current atmospheric conditions from a variety of sources including satellites, aircraft, weather radars, ground-based weather stations, wind profilers, and even wind sensors on

  14. Impact of postgraduate education on advanced practice nurse activity - a national survey.

    Science.gov (United States)

    Wilkinson, J; Carryer, J; Budge, C

    2018-03-22

    There is a wealth of international evidence concerning the contribution post-registration master's level education makes to advancing the discipline of nursing. There are approximately 277 nurse practitioners registered in NZ, but they account for only a small portion of nurses who have undertaken master's level education. The additional contribution these nurses make to the work environment through advanced practice activities has not, hitherto, been documented. To report the extent of advanced practice nurse activity associated with various levels of nursing education in a sample of nurses working in clinical practice in New Zealand. A replication of recent Australian research was done via a national cross-sectional survey of 3255 registered nurses and nurse practitioners in New Zealand using an online questionnaire to collect responses to the amended Advanced Practice Delineation survey tool. In addition, demographic data were collected including position titles and levels of postgraduate education. A positive association was found between postgraduate education at any level and more time spent in advanced practice activities. Independent of level of postgraduate education, the role a nurse holds also effects the extent of involvement in advanced practice activities. There is an additional contribution made to the work environment by nurses with master's level education which occurs even when they are not employed in an advanced practice role. These findings are of significance to workforce policy and planning across the globe as countries work to sustain health services by increasing nursing capacity effectively within available resources. © 2018 International Council of Nurses.

  15. Advanced Extra-Vehicular Activity Pressure Garment Requirements Development

    Science.gov (United States)

    Ross, Amy; Aitchison, Lindsay; Rhodes, Richard

    2015-01-01

    The NASA Johnson Space Center advanced pressure garment technology development team is addressing requirements development for exploration missions. Lessons learned from the Z-2 high fidelity prototype development have reiterated that clear low-level requirements and verification methods reduce risk to the government, improve efficiency in pressure garment design efforts, and enable the government to be a smart buyer. The expectation is to provide requirements at the specification level that are validated so that their impact on pressure garment design is understood. Additionally, the team will provide defined verification protocols for the requirements. However, in reviewing exploration space suit high level requirements there are several gaps in the team's ability to define and verify related lower level requirements. This paper addresses the efforts in requirement areas such as mobility/fit/comfort and environmental protection (dust, radiation, plasma, secondary impacts) to determine the method by which the requirements can be defined and use of those methods for verification. Gaps exist at various stages. In some cases component level work is underway, but no system level effort has begun; in other cases no effort has been initiated to close the gap. Status of on-going efforts and potential approaches to open gaps are discussed.

  16. Mechanism of active transport: free energy dissipation and free energy transduction.

    OpenAIRE

    Tanford, C

    1982-01-01

    The thermodynamic pathway for "chemiosmotic" free energy transduction in active transport is discussed with an ATP-driven Ca2+ pump as an illustrative example. Two innovations are made in the analysis. (i) Free energy dissipated as heat is rigorously excluded from overall free energy bookkeeping by focusing on the dynamic equilibrium state of the chemiosmotic process. (ii) Separate chemical potential terms for free energy donor and transported ions are used to keep track of the thermodynamic ...

  17. Advanced biofuels - GHG emissions and energy balances. A report to IEA bioenergy task 39

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, Don [S and T 2 Consultants Inc., Delta, British Columbia (Canada)

    2013-05-25

    In this work, a number of advanced biofuel pathways were examined with respect to their energy balances and GHG emission performance. Some of these pathways have relatively detailed public techno-economic modelling studies available on which the energy and GHG lifecycle modelling has been based. However there is a continuum in the quality of publicly available data and, for some of the pathways a significant number of assumptions had to be made in order to generate results. Some caution is therefore warranted when the results of different systems are compared. Furthermore, none of the modelling data is based on actual operating systems, as the processes being assessed are not yet in commercial operation; rather, they are each in different stages of research, development and demonstration.

  18. NATO Advanced Study Institute on Statistical Treatments for Estimation of Mineral and Energy Resources

    CERN Document Server

    Fabbri, A; Sinding-Larsen, R

    1988-01-01

    This volume contains the edited papers prepared by lecturers and participants of the NATO Advanced Study Institute on "Statistical Treatments for Estimation of Mineral and Energy Resources" held at II Ciocco (Lucca), Italy, June 22 - July 4, 1986. During the past twenty years, tremendous efforts have been made to acquire quantitative geoscience information from ore deposits, geochemical, geophys ical and remotely-sensed measurements. In October 1981, a two-day symposium on "Quantitative Resource Evaluation" and a three-day workshop on "Interactive Systems for Multivariate Analysis and Image Processing for Resource Evaluation" were held in Ottawa, jointly sponsored by the Geological Survey of Canada, the International Association for Mathematical Geology, and the International Geological Correlation Programme. Thirty scientists from different countries in Europe and North America were invited to form a forum for the discussion of quantitative methods for mineral and energy resource assessment. Since then, not ...

  19. Advances in electric power and energy systems load and price forecasting

    CERN Document Server

    2017-01-01

    A comprehensive review of state-of-the-art approaches to power systems forecasting from the most respected names in the field, internationally. Advances in Electric Power and Energy Systems is the first book devoted exclusively to a subject of increasing urgency to power systems planning and operations. Written for practicing engineers, researchers, and post-grads concerned with power systems planning and forecasting, this book brings together contributions from many of the world’s foremost names in the field who address a range of critical issues, from forecasting power system load to power system pricing to post-storm service restoration times, river flow forecasting, and more. In a time of ever-increasing energy demands, mounting concerns over the environmental impacts of power generation, and the emergence of new, smart-grid technologies, electricity price forecasting has assumed a prominent role within both the academic and industrial ar nas. Short-run forecasting of electricity prices has become nece...

  20. Energy harvesting with Di-Electro Active Polymers

    DEFF Research Database (Denmark)

    Due, Jens; Munk-Nielsen, Stig; Nielsen, Rasmus Ørndrup

    2010-01-01

    This article presents a way of using Di-Electro Active Polymers (D-EAPs) for harvesting mechanical energy sources. The article describes the basics of energy harvesting with D-EAPs, and an electrical model of a D-EAP is suggested. This leads to a converter design which is able to extract...... the electrical energy harvested by the D-EAP. This converter is simulated and realized. Through experimental results both the model of the DEAP and the converter are verified. It is found that it is possible to harvest energy with a D-EAP and build a converter that can extract the harvested energy....

  1. Quantifying Adoption Rates and Energy Savings Over Time for Advanced Manufacturing Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hanes, Rebecca [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Carpenter Petri, Alberta C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Riddle, Matt [Argonne National Laboratory; Graziano, Diane [Argonne National Laboratory

    2017-10-09

    and used to identify the technologies which offer the greatest cumulative sector-level energy savings over a period of 20 years. Preliminary analysis indicates that relatively simple technologies, such as efficient furnaces, will be adopted more quickly and result in greater cumulative energy savings compared to more complex technologies that require process retrofitting, such as advanced control systems.

  2. The advanced fuel cycle facility (AFCF) role in the global nuclear energy partnership

    International Nuclear Information System (INIS)

    Griffith, Andrew

    2007-01-01

    The Global Nuclear Energy Partnership (GNEP), launched in February, 2006, proposes to introduce used nuclear fuel recycling in the United States with improved proliferation-resistance and a more effective waste management approach. This program is evaluating ways to close the fuel cycle in a manner that builds on recent laboratory breakthroughs in U.S. national laboratories and draws on international and industry partnerships. Central to moving this advanced fuel recycling technology from the laboratory to commercial implementation is a flexible research, development and demonstration facility, called the Advanced Fuel Cycle Facility (AFCF). The AFCF was introduced as one of three projects under GNEP and will provide the U.S. with the capabilities to evaluate technologies that separate used fuel into reusable material and waste in a proliferation-resistant manner. The separations technology demonstration capability is coupled with a remote transmutation fuel fabrication demonstration capability in an integrated manner that demonstrates advanced safeguard technologies. This paper will discuss the key features of AFCF and its support of the GNEP objectives. (author)

  3. Efficiency and cost advantages of an advanced-technology nuclear electrolytic hydrogen-energy production facility

    Science.gov (United States)

    Donakowski, T. D.; Escher, W. J. D.; Gregory, D. P.

    1977-01-01

    The concept of an advanced-technology (viz., 1985 technology) nuclear-electrolytic water electrolysis facility was assessed for hydrogen production cost and efficiency expectations. The facility integrates (1) a high-temperature gas-cooled nuclear reactor (HTGR) operating a binary work cycle, (2) direct-current (d-c) electricity generation via acyclic generators, and (3) high-current-density, high-pressure electrolyzers using a solid polymer electrolyte (SPE). All subsystems are close-coupled and optimally interfaced for hydrogen production alone (i.e., without separate production of electrical power). Pipeline-pressure hydrogen and oxygen are produced at 6900 kPa (1000 psi). We found that this advanced facility would produce hydrogen at costs that were approximately half those associated with contemporary-technology nuclear electrolysis: $5.36 versus $10.86/million Btu, respectively. The nuclear-heat-to-hydrogen-energy conversion efficiency for the advanced system was estimated as 43%, versus 25% for the contemporary system.

  4. Technology Roadmap Instrumentation, Control, and Human-Machine Interface to Support DOE Advanced Nuclear Energy Programs

    Energy Technology Data Exchange (ETDEWEB)

    Donald D Dudenhoeffer; Burce P Hallbert

    2007-03-01

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functional obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order.Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies.

  5. Advanced qualification methodology for actively cooled plasma facing components

    Science.gov (United States)

    Durocher, A.; Escourbiac, F.; Grosman, A.; Boscary, J.; Merola, M.; Cismondi, F.; Courtois, X.; Farjon, J. L.; Missirlian, M.; Schlosser, J.; Tivey, R.

    2007-12-01

    The use of high heat flux plasma facing components (PFCs) in steady state fusion devices requires high reliability. These components have to withstand heat fluxes in the range 10-20 MW m-2 involving a number of severe engineering constraints. Feedback from the experience of various industrial manufacturings showed that the bonding of the refractory armour material onto the metallic heat sink causes generic difficulties strongly depending on material qualities and specific design. As the heat exhaust capability and lifetime of PFCs during plasma operation are directly linked to the manufacturing quality, a set of qualification activities such as active infrared thermography, lock-in and acoustic measurements were performed during the component development phases following a qualification route. This paper describes the major improvements stemming from better measurement accuracy and refined data processing and analyses recent developments aimed at investigating the capability to qualify the component in situ during its lifetime.

  6. Advanced qualification methodology for actively cooled plasma facing components

    International Nuclear Information System (INIS)

    Durocher, A.; Escourbiac, F.; Grosman, A.; Boscary, J.; Merola, M.; Cismondi, F.; Courtois, X.; Farjon, J.L.; Missirlian, M.; Schlosser, J.; Tivey, R.

    2007-01-01

    The use of high heat flux plasma facing components (PFCs) in steady state fusion devices requires high reliability. These components have to withstand heat fluxes in the range 10-20 MW m -2 involving a number of severe engineering constraints. Feedback from the experience of various industrial manufacturings showed that the bonding of the refractory armour material onto the metallic heat sink causes generic difficulties strongly depending on material qualities and specific design. As the heat exhaust capability and lifetime of PFCs during plasma operation are directly linked to the manufacturing quality, a set of qualification activities such as active infrared thermography, lock-in and acoustic measurements were performed during the component development phases following a qualification route. This paper describes the major improvements stemming from better measurement accuracy and refined data processing and analyses recent developments aimed at investigating the capability to qualify the component in situ during its lifetime

  7. An Advanced Private Social Activity Invitation Framework with Friendship Protection

    Directory of Open Access Journals (Sweden)

    Weitian Tong

    2017-01-01

    Full Text Available Due to the popularity of social networks and human-carried/human-affiliated devices with sensing abilities, like smartphones and smart wearable devices, a novel application was necessitated recently to organize group activities by learning historical data gathered from smart devices and choosing invitees carefully based on their personal interests. We proposed a private and efficient social activity invitation framework. Our main contributions are (1 defining a novel friendship to reduce the communication/update cost within the social network and enhance the privacy guarantee at the same time; (2 designing a strong privacy-preserving algorithm for graph publication, which addresses an open concern proposed recently; (3 presenting an efficient invitee-selection algorithm, which outperforms the existing ones. Our simulation results show that the proposed framework has good performance. In our framework, the server is assumed to be untrustworthy but can nonetheless help users organize group activities intelligently and efficiently. Moreover, the new definition of the friendship allows the social network to be described by a directed graph. To the best of our knowledge, it is the first work to publish a directed graph in a differentially private manner with an untrustworthy server.

  8. Advanced active quenching circuit for ultra-fast quantum cryptography.

    Science.gov (United States)

    Stipčević, Mario; Christensen, Bradley G; Kwiat, Paul G; Gauthier, Daniel J

    2017-09-04

    Commercial photon-counting modules based on actively quenched solid-state avalanche photodiode sensors are used in a wide variety of applications. Manufacturers characterize their detectors by specifying a small set of parameters, such as detection efficiency, dead time, dark counts rate, afterpulsing probability and single-photon arrival-time resolution (jitter). However, they usually do not specify the range of conditions over which these parameters are constant or present a sufficient description of the characterization process. In this work, we perform a few novel tests on two commercial detectors and identify an additional set of imperfections that must be specified to sufficiently characterize their behavior. These include rate-dependence of the dead time and jitter, detection delay shift, and "twilighting". We find that these additional non-ideal behaviors can lead to unexpected effects or strong deterioration of the performance of a system using these devices. We explain their origin by an in-depth analysis of the active quenching process. To mitigate the effects of these imperfections, a custom-built detection system is designed using a novel active quenching circuit. Its performance is compared against two commercial detectors in a fast quantum key distribution system with hyper-entangled photons and a random number generator.

  9. Can dual-energy CT replace perfusion CT for the functional evaluation of advanced hepatocellular carcinoma?

    Science.gov (United States)

    Mulé, Sébastien; Pigneur, Frédéric; Quelever, Ronan; Tenenhaus, Arthur; Baranes, Laurence; Richard, Philippe; Tacher, Vania; Herin, Edouard; Pasquier, Hugo; Ronot, Maxime; Rahmouni, Alain; Vilgrain, Valérie; Luciani, Alain

    2018-05-01

    To determine the degree of relationship between iodine concentrations derived from dual-energy CT (DECT) and perfusion CT parameters in patients with advanced HCC under treatment. In this single-centre IRB approved study, 16 patients with advanced HCC treated with sorafenib or radioembolization who underwent concurrent dynamic perfusion CT and multiphase DECT using a single source, fast kV switching DECT scanner were included. Written informed consent was obtained for all patients. HCC late-arterial and portal iodine concentrations, blood flow (BF)-related and blood volume (BV)-related perfusion parameters maps were calculated. Mixed-effects models of the relationship between iodine concentrations and perfusion parameters were computed. An adjusted p value (Bonferroni method) statistic (F)=28.52, padvanced HCC lesions, DECT-derived late-arterial iodine concentration is strongly related to both aBF and BV, while portal iodine concentration mainly reflects BV, offering DECT the ability to evaluate both morphological and perfusion changes. • Late-arterial iodine concentration is highly related to arterial BF and BV. • Portal iodine concentration mainly reflects tumour blood volume. • Dual-energy CT offers significantly decreased radiation dose compared with perfusion CT.

  10. Recent advances in MoS2 nanostructured materials for energy and environmental applications - A review

    Science.gov (United States)

    Theerthagiri, J.; Senthil, R. A.; Senthilkumar, B.; Reddy Polu, Anji; Madhavan, J.; Ashokkumar, Muthupandian

    2017-08-01

    Molybdenum disulfide (MoS2), a layered transition metal dichalcogenide with an analogous structure to graphene, has attracted enormous attention worldwide owing to its use in a variety of applications such as energy storage, energy conversion, environmental remediation and sensors. MoS2 and graphene have almost similar functional properties such as high charge carrier transport, high wear resistance and good mechanical strength and friction. However, MoS2 is advantageous over graphene due to its low-cost, abundancy, tailorable morphologies and tuneable band gap with good visible light absorption properties. In this review, we have focussed mainly on recent advances in MoS2 nanostructured materials for the applications in the broad area of energy and environment. Special attention has been paid to their applications in dye-sensitized solar cells, supercapacitor, Li-ion battery, hydrogen evolution reaction, photocatalysis for the degradation of organic pollutants, chemical/bio sensors and gas sensors. Finally, the challenges to design MoS2 nanostructures suitable for energy and environmental applications are also highlighted.

  11. Advanced Graphene-Based Binder-Free Electrodes for High-Performance Energy Storage.

    Science.gov (United States)

    Ji, Junyi; Li, Yang; Peng, Wenchao; Zhang, Guoliang; Zhang, Fengbao; Fan, Xiaobin

    2015-09-23

    The increasing demand for energy has triggered tremendous research effort for the development of high-performance and durable energy-storage devices. Advanced graphene-based electrodes with high electrical conductivity and ion accessibility can exhibit superior electrochemical performance in energy-storage devices. Among them, binder-free configurations can enhance the electron conductivity of the electrode, which leads to a higher capacity by avoiding the addition of non-conductive and inactive binders. Graphene, a 2D material, can be fabricated into a porous and flexible structure with an interconnected conductive network. Such a conductive structure is favorable for both electron and ion transport to the entire electrode surface. In this review, the main processes used to prepare binder-free graphene-based hybrids with high porosity and well-designed electron conductive networks are summarized. Then, the applications of free-standing binder-free graphene-based electrodes in energy-storage devices are discussed. Future research aspects with regard to overcoming the technological bottlenecks are also proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. NATO Advanced Research Workshop “Nuclear Power and Energy Security”

    CERN Document Server

    Apikyan, Samuel A; Nuclear Power and Energy Security

    2010-01-01

    World energy consumption has grown dramatically over the past few decades. This growth in energy demand will be driven by large increases in both economic growth and world population coupled with rising living standards in rapidly growing countries. The last years, we routinely hear about a "renaissance" of nuclear energy. The recognition that nuclear power is vital to global energy security in the 21st century has been growing for some time. "The more we look to the future, the more we can expect countries to be considering the potential benefits that expanding nuclear power has to offer for the global environment and for economic growth," IAEA Director General Mohamed ElBaradei said in advance of a gathering of 500 nuclear power experts assembled in Moscow for the "International Conference on Fifty Years of Nuclear Power - the Next Fifty Years". But such a renaissance is not a single-valued and sure thing. Legitimate four unresolved questions remain about high relative costs; perceived adverse safety, envir...

  13. Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.; Frei, H.; Park, J.Y.

    2009-07-23

    The challenge of chemistry in the 21st century is to achieve 100% selectivity of the desired product molecule in multipath reactions ('green chemistry') and develop renewable energy based processes. Surface chemistry and catalysis play key roles in this enterprise. Development of in situ surface techniques such as high-pressure scanning tunneling microscopy, sum frequency generation (SFG) vibrational spectroscopy, time-resolved Fourier transform infrared methods, and ambient pressure X-ray photoelectron spectroscopy enabled the rapid advancement of three fields: nanocatalysts, biointerfaces, and renewable energy conversion chemistry. In materials nanoscience, synthetic methods have been developed to produce monodisperse metal and oxide nanoparticles (NPs) in the 0.8-10 nm range with controlled shape, oxidation states, and composition; these NPs can be used as selective catalysts since chemical selectivity appears to be dependent on all of these experimental parameters. New spectroscopic and microscopic techniques have been developed that operate under reaction conditions and reveal the dynamic change of molecular structure of catalysts and adsorbed molecules as the reactions proceed with changes in reaction intermediates, catalyst composition, and oxidation states. SFG vibrational spectroscopy detects amino acids, peptides, and proteins adsorbed at hydrophobic and hydrophilic interfaces and monitors the change of surface structure and interactions with coadsorbed water. Exothermic reactions and photons generate hot electrons in metal NPs that may be utilized in chemical energy conversion. The photosplitting of water and carbon dioxide, an important research direction in renewable energy conversion, is discussed.

  14. Simulation of Hawaiian Electric Companies Feeder Operations with Advanced Inverters and Analysis of Annual Photovoltaic Energy Curtailment

    Energy Technology Data Exchange (ETDEWEB)

    Giraldez Miner, Julieta I [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nagarajan, Adarsh [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gotseff, Peter [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Krishnan, Venkat K [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hoke, Anderson F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ueda, Reid [Hawaiian Electric Company; Shindo, Jon [Hawaiian Electric Company; Asano, Marc [Hawaiian Electric Company; Ifuku, Earle [Hawaiian Electric Company

    2017-07-26

    The Hawaiian Electric Companies achieved a consolidated Renewable Portfolio Standard (RPS) of approximately 26% at the end of 2016. This significant RPS performance was achieved using various renewable energy sources - biomass, geothermal, solar photovoltaic (PV) systems, hydro, wind, and biofuels - and customer-sited, grid-connected technologies (primarily private rooftop solar PV systems). The Hawaiian Electric Companies are preparing grid-modernization plans for the island grids. The plans outline specific near-term actions to accelerate the achievement of Hawai'i's 100% RPS by 2045. A key element of the Companies' grid-modernization strategy is to utilize new technologies - including storage and PV systems with grid-supportive inverters - that will help to more than triple the amount of private rooftop solar PV systems. The Hawaiian Electric Companies collaborated with the Smart Inverter Technical Working Group Hawai'i (SITWG) to partner with the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to research the implementation of advanced inverter grid support functions (GSF). Together with the technical guidance from the Companies's planning engineers and stakeholder input from the SITWG members, NREL proposed a scope of work that explored different modes of voltage-regulation GSF to better understand the trade-offs of the grid benefits and curtailment impacts from the activation of selected advanced inverter grid support functions. The simulation results presented in this report examine the effectiveness in regulating voltage as well as the impact to the utility and the customers of various inverter-based grid support functions on two Hawaiian Electric distribution substations.

  15. OECD Nuclear Energy Agency. 3. Activity report, 1974

    International Nuclear Information System (INIS)

    1975-01-01

    The main activities of the Agency are reviewed: study of nuclear power trends; regulatory aspects of nuclear power; technical developments: Eurochemic, Halden, Dragon, food irradiation, gas-cooled fast reactors, direct conversion, isotopic batteries; nuclear energy information

  16. Evaluating Maximum Wind Energy Exploitation in Active Distribution Networks

    DEFF Research Database (Denmark)

    Siano, Pierluigi; Chen, Peiyuan; Chen, Zhe

    2010-01-01

    The increased spreading of distributed and renewable generation requires moving towards active management of distribution networks. In this paper, in order to evaluate maximum wind energy exploitation in active distribution networks, a method based on a multi-period optimal power flow (OPF......) analysis is proposed. Active network management schemes such as coordinated voltage control, energy curtailment and power factor control are integrated in the method in order to investigate their impacts on the maximization of wind energy exploitation. Some case studies, using real data from a Danish...... distribution system, confirmed the effectiveness of the proposed method in evaluating the optimal applications of active management schemes to increase wind energy harvesting without costly network reinforcement for the connection of wind generation....

  17. Low-activation lead coolant for advanced small modular NPP

    International Nuclear Information System (INIS)

    Khorasanov, G.L.; Ivanov, A.P.; Blokhin, A.I.

    2001-01-01

    The purpose of the paper is in studying perspectives of a new heavy liquid metal coolant for a small fast reactor (FR) concept. To reduce the post irradiation activity of the coolant the using of lead isotope, Pb-206, instead of natural lead, Pb-nat, is offered. In this case the accumulation of such hazardous radionuclides, as Po-210, Bi-208, Bi-207, essentially decreases. The interval of the lead-206 coolant cost which does not exceed 20% of the overall FR cost is estimated. The possibility of lead-206 obtaining for FR needs with the centrifugal separation technique is pointed out. (author)

  18. Enerplan, Professional association of solar energy - activity report 2007. Network of solar energy professionals in France

    International Nuclear Information System (INIS)

    2008-01-01

    Enerplan is the French union of solar energy professionals. Created in 1983, its social purpose is the study and defense of the rights and of the material and moral interests of its members. Enerplan structures its action through two poles representing members' activities: 'solar energy and building' where topics about heat and electricity generation in relation with buildings are treated, and 'photovoltaic energy' where topics specific to big solar power plants are considered. Thanks to the collaborative participation of its members, both poles allow Enerplan union to be source of proposals to develop solar energy in France. As an active interface between professionals and institutions, Enerplan includes in its membership: industrialists, plant makers, engineering consultants, installers, associations, energy suppliers etc, from small-medium size companies to big groups. This document presents Enerplan's activities in 2007 (public relations, lobbying, meetings and conferences, promotional activities, collaborations, projects..)

  19. Enerplan, Professional association of solar energy - activity report 2008. Acting for solar energy promotion and development

    International Nuclear Information System (INIS)

    2009-01-01

    Enerplan is the French union of solar energy professionals. Created in 1983, its social purpose is the study and defense of the rights and of the material and moral interests of its members. Enerplan structures its action through two poles representing members' activities: 'solar energy and building' where topics about heat and electricity generation in relation with buildings are treated, and 'photovoltaic energy' where topics specific to big solar power plants are considered. Thanks to the collaborative participation of its members, both poles allow Enerplan union to be source of proposals to develop solar energy in France. As an active interface between professionals and institutions, Enerplan includes in its membership: industrialists, plant makers, engineering consultants, installers, associations, energy suppliers etc, from small-medium size companies to big groups. This document presents Enerplan's activities in 2008 (public relations, lobbying, meetings and conferences, promotional activities, collaborations, projects..)

  20. Energy consumption in buildings for different sport activities

    Energy Technology Data Exchange (ETDEWEB)

    Norrfors, M; Werner, G; Oertenstrand, G

    1978-01-01

    Some buildings for different kinds of sport activities have a great energy demand. The actions which could be taken in order to decrease the energy demand and at the same time decrease the operating costs for these buildings are summarized. References are given to literature of current interest in this field.

  1. Heat Mining or Replenishable Geothermal Energy? A Project for Advanced-Level Physics Students

    Science.gov (United States)

    Dugdale, Pam

    2014-01-01

    There is growing interest in the use of low enthalpy geothermal (LEG) energy schemes, whereby heated water is extracted from sandstone aquifers for civic heating projects. While prevalent in countries with volcanic activity, a recently proposed scheme for Manchester offered the perfect opportunity to engage students in the viability of this form…

  2. Solar activity and its evolution across the corona: recent advances

    Directory of Open Access Journals (Sweden)

    Rodriguez Luciano

    2013-04-01

    Full Text Available Solar magnetism is responsible for the several active phenomena that occur in the solar atmosphere. The consequences of these phenomena on the solar-terrestrial environment and on Space Weather are nowadays clearly recognized, even if not yet fully understood. In order to shed light on the mechanisms that are at the basis of the Space Weather, it is necessary to investigate the sequence of phenomena starting in the solar atmosphere and developing across the outer layers of the Sun and along the path from the Sun to the Earth. This goal can be reached by a combined multi-disciplinary, multi-instrument, multi-wavelength study of these phenomena, starting with the very first manifestation of solar active region formation and evolution, followed by explosive phenomena (i.e., flares, erupting prominences, coronal mass ejections, and ending with the interaction of plasma magnetized clouds expelled from the Sun with the interplanetary magnetic field and medium. This wide field of research constitutes one of the main aims of COST Action ES0803: Developing Space Weather products and services in Europe. In particular, one of the tasks of this COST Action was to investigate the Progress in Scientific Understanding of Space Weather. In this paper we review the state of the art of our comprehension of some phenomena that, in the scenario outlined above, might have a role on Space Weather, focusing on the researches, thematic reviews, and main results obtained during the COST Action ES0803.

  3. Fostering Engagement Activities To Advance Adaptation And Resiliency

    Science.gov (United States)

    Dissen, J.; Owen, T.; Brewer, M.; Hollingshead, A.; Mecray, E. L.; Werner, K.

    2015-12-01

    As the understanding of climate risks grows for public and private companies, the dissemination of meaningful climate and environmental information becomes important for improved risk management practices and innovation. In a broader effort to build capacity for adaptation and demonstrate the value of investment in resiliency, NCEI and its partners have made several shifts to showcase an improved understanding of uses and applications of climate and environmental data and information. The NOAA NCEI engagement initiative includes actively exploring ways to: 1) identify opportunities in data use and applications and 2) characterize needs and requirements from customers to help inform investment in the relevant science. This presentation will highlight: 1) NCEI's engagement initiative strategy, 2) our regional and national partnerships as agents of engagement in the region, 3) a few examples of uses of climate information with select stakeholders and 4) justification of customer engagement and requirements as a critical component in informing the science agenda.

  4. Advanced nonlinear control of three phase series active power filter

    Directory of Open Access Journals (Sweden)

    Abouelmahjoub Y.

    2014-01-01

    Full Text Available The problem of controlling three-phase series active power filter (TPSAPF is addressed in this paper in presence of the perturbations in the voltages of the electrical supply network. The control objective of the TPSAPF is twofold: (i compensation of all voltage perturbations (voltage harmonics, voltage unbalance and voltage sags, (ii regulation of the DC bus voltage of the inverter. A controller formed by two nonlinear regulators is designed, using the Backstepping technique, to provide the above compensation. The regulation of the DC bus voltage of the inverter is ensured by the use of a diode bridge rectifier which its output is in parallel with the DC bus capacitor. The Analysis of controller performances is illustrated by numerical simulation in Matlab/Simulink environment.

  5. Advances in integration of photovoltaic power and energy production in practical systems

    Science.gov (United States)

    Fartaria, Tomas Oliveira

    This thesis presents advances in integration of photovoltaic (PV) power and energy in practical systems, such as existing power plants in buildings or directly integrated in the public electrical grid. It starts by providing an analyze of the current state of PV power and some of its limitations. The work done in this thesis begins by providing a model to compute mutual shading in large PV plants, and after provides a study of the integration of a PV plant in a biogas power plant. The remainder sections focus on the work done for project PVCROPS, which consisted on the construction and operation of two prototypes composed of a PV system and a novel battery connected to a building and to the public electrical grid. These prototypes were then used to test energy management strategies and validate the suitability of the two advanced batteries (a lithium-ion battery and a vanadium redox ow battery) for households (BIPV) and PV plants. This thesis is divided in 7 chapters: Chapter 1 provides an introduction to explain and develop the main research questions studied for this thesis; Chapter 2 presents the development of a ray-tracing model to compute shading in large PV elds (with or without trackers); Chapter 3 shows the simulation of hybridizing a biogas plant with a PV plant, using biogas as energy storage; Chapters 4 and 5 present the construction, programming, and initial operation of both prototypes (Chapter 4), EMS testing oriented to BIPV systems (Chapter 5). Finally, Chapters 6 provides some future lines of investigation that can follow this thesis, and Chapter 7 shows a synopsis of the main conclusions of this work.

  6. Comparison of advanced imputation algorithms for detection of transportation mode and activity episode using GPS data

    NARCIS (Netherlands)

    Feng, T.; Timmermans, H.J.P.

    2016-01-01

    Global Positioning System (GPS) technologies have been increasingly considered as an alternative to traditional travel survey methods to collect activity-travel data. Algorithms applied to extract activity-travel patterns vary from informal ad-hoc decision rules to advanced machine learning methods

  7. Active osmotic exchanger for advanced filtration at the nano scale

    Science.gov (United States)

    Marbach, Sophie; Bocquet, Lyderic

    2015-11-01

    One of the main functions of the kidney is to remove the waste products of an organism, mostly by excreting concentrated urea while reabsorbing water and other molecules. The human kidney is capable of recycling about 200 liters of water per day, at the relatively low cost of 0.5 kJ/L (standard dialysis requiring at least 150 kJ/L). Kidneys are constituted of millions of parallel filtration networks called nephrons. The nephrons of all mammalian kidneys present a specific loop geometry, the Loop of Henle, that is believed to play a key role in the urinary concentrating mechanism. One limb of the loop is permeable to water and the other contains sodium pumps that exchange with a common interstitium. In this work, we take inspiration from this osmotic exchanger design to propose new nanofiltration principles. We first establish simple analytical results to derive general operating principles, based on coupled water permeable pores and osmotic pumps. The best filtration geometry, in terms of power required for a given water recycling ratio, is comparable in many ways to the mammalian nephron. It is not only more efficient than traditional reverse osmosis systems, but can also work at much smaller pressures (of the order of the blood pressure, 0.13 bar, as compared to more than 30 bars for pressure-retarded osmosis systems). We anticipate that our proof of principle will be a starting point for the development of new filtration systems relying on the active osmotic exchanger principle.

  8. Dietary intake, physical activity and energy expenditure of Malaysian adolescents.

    Science.gov (United States)

    Zalilah, M S; Khor, G L; Mirnalini, K; Norimah, A K; Ang, M

    2006-06-01

    Paediatric obesity is a public health concern worldwide as it can track into adulthood and increase the risk of adult morbidity and mortality. While the aetiology of obesity is multi-factorial, the roles of diet and physical activity are controversial. Thus, the purpose of this study was to report on the differences in energy intake, diet composition, time spent doing physical activity and energy expenditure among underweight (UW), normal weight (NW) and at-risk of overweight (OW) Malaysian adolescents (317 females and 301 males) aged 11-15 years. This was a cross-sectional study with 6,555 adolescents measured for weights and heights for body mass index (BMI) categorisation. A total of 618 subjects were randomly selected from each BMI category according to gender. The subjects' dietary intake and physical activity were assessed using self-reported three-day food and activity records, respectively. Dietary intake components included total energy and macronutrient intakes. Energy expenditure was calculated as a sum of energy expended for basal metabolic rate and physical activity. Time spent (in minutes) in low, medium and high intensity activities was also calculated. The OW adolescents had the highest crude energy intake and energy expenditure. However, after adjusting for body weight, the OW subjects had the lowest energy intake and energy expenditure (p-value is less than 0.001). The study groups did not differ significantly in time spent for low, medium and high intensity activities. Macronutrient intakes differed significantly only among the girls where the OW group had the highest intakes compared to UW and NW groups (p-value is less than 0.05). All study groups had greater than 30 percent and less than 55 percent of energy intake from fat and carbohydrate, respectively. The data suggested that a combination of low energy expenditure adjusted for body weight and high dietary fat intake may be associated with overweight and obesity among adolescents. To

  9. Monitoring the biological activity of micropollutants during advanced wastewater treatment with ozonation and activated carbon filtration.

    Science.gov (United States)

    Macova, M; Escher, B I; Reungoat, J; Carswell, S; Chue, K Lee; Keller, J; Mueller, J F

    2010-01-01

    A bioanalytical test battery was used to monitor the removal efficiency of organic micropollutants during advanced wastewater treatment in the South Caboolture Water Reclamation Plant, Queensland, Australia. This plant treats effluent from a conventional sewage treatment plant for industrial water reuse. The aqueous samples were enriched using solid-phase extraction to separate some organic micropollutants of interest from metals, nutrients and matrix components. The bioassays were chosen to provide information on groups of chemicals with a common mode of toxic action. Therefore they can be considered as sum indicators to detect certain relevant groups of chemicals, not as the most ecologically or human health relevant endpoints. The baseline toxicity was quantified with the bioluminescence inhibition test using the marine bacterium Vibrio fischeri. The specific modes of toxic action that were targeted with five additional bioassays included aspects of estrogenicity, dioxin-like activity, genotoxicity, neurotoxicity, and phytotoxicity. While the accompanying publication discusses the treatment steps in more detail by drawing from the results of chemical analysis as well as the bioanalytical results, here we focus on the applicability and limitations of using bioassays for the purpose of determining the treatment efficacy of advanced water treatment and for water quality assessment in general. Results are reported in toxic equivalent concentrations (TEQ), that is, the concentration of a reference compound required to elicit the same response as the unknown and unidentified mixture of micropollutants actually present. TEQ proved to be useful and easily communicable despite some limitations and uncertainties in their derivation based on the mixture toxicity theory. The results obtained were reproducible, robust and sensitive. The TEQ in the influent ranged in the same order of magnitude as typically seen in effluents of conventional sewage treatment plants. In the

  10. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jian; Liu, Jinping; Huang, Xintang [Institute of Nanoscience and Nanotechnology, Department of Physics, Central China Normal University, Wuhan, Hubei (China); Li, Yuanyuan [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan (China); Yuan, Changzhou; Lou, Xiong Wen [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore (China)

    2012-10-02

    Metal oxide nanostructures are promising electrode materials for lithium-ion batteries and supercapacitors because of their high specific capacity/capacitance, typically 2-3 times higher than that of the carbon/graphite-based materials. However, their cycling stability and rate performance still can not meet the requirements of practical applications. It is therefore urgent to improve their overall device performance, which depends on not only the development of advanced electrode materials but also in a large part ''how to design superior electrode architectures''. In the article, we will review recent advances in strategies for advanced metal oxide-based hybrid nanostructure design, with the focus on the binder-free film/array electrodes. These binder-free electrodes, with the integration of unique merits of each component, can provide larger electrochemically active surface area, faster electron transport and superior ion diffusion, thus leading to substantially improved cycling and rate performance. Several recently emerged concepts of using ordered nanostructure arrays, synergetic core-shell structures, nanostructured current collectors, and flexible paper/textile electrodes will be highlighted, pointing out advantages and challenges where appropriate. Some future electrode design trends and directions are also discussed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage.

    Science.gov (United States)

    Jiang, Jian; Li, Yuanyuan; Liu, Jinping; Huang, Xintang; Yuan, Changzhou; Lou, Xiong Wen David

    2012-10-02

    Metal oxide nanostructures are promising electrode materials for lithium-ion batteries and supercapacitors because of their high specific capacity/capacitance, typically 2-3 times higher than that of the carbon/graphite-based materials. However, their cycling stability and rate performance still can not meet the requirements of practical applications. It is therefore urgent to improve their overall device performance, which depends on not only the development of advanced electrode materials but also in a large part "how to design superior electrode architectures". In the article, we will review recent advances in strategies for advanced metal oxide-based hybrid nanostructure design, with the focus on the binder-free film/array electrodes. These binder-free electrodes, with the integration of unique merits of each component, can provide larger electrochemically active surface area, faster electron transport and superior ion diffusion, thus leading to substantially improved cycling and rate performance. Several recently emerged concepts of using ordered nanostructure arrays, synergetic core-shell structures, nanostructured current collectors, and flexible paper/textile electrodes will be highlighted, pointing out advantages and challenges where appropriate. Some future electrode design trends and directions are also discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Relative Binding Free Energy Calculations in Drug Discovery: Recent Advances and Practical Considerations.

    Science.gov (United States)

    Cournia, Zoe; Allen, Bryce; Sherman, Woody

    2017-12-26

    Accurate in silico prediction of protein-ligand binding affinities has been a primary objective of structure-based drug design for decades due to the putative value it would bring to the drug discovery process. However, computational methods have historically failed to deliver value in real-world drug discovery applications due to a variety of scientific, technical, and practical challenges. Recently, a family of approaches commonly referred to as relative binding free energy (RBFE) calculations, which rely on physics-based molecular simulations and statistical mechanics, have shown promise in reliably generating accurate predictions in the context of drug discovery projects. This advance arises from accumulating developments in the underlying scientific methods (decades of research on force fields and sampling algorithms) coupled with vast increases in computational resources (graphics processing units and cloud infrastructures). Mounting evidence from retrospective validation studies, blind challenge predictions, and prospective applications suggests that RBFE simulations can now predict the affinity differences for congeneric ligands with sufficient accuracy and throughput to deliver considerable value in hit-to-lead and lead optimization efforts. Here, we present an overview of current RBFE implementations, highlighting recent advances and remaining challenges, along with examples that emphasize practical considerations for obtaining reliable RBFE results. We focus specifically on relative binding free energies because the calculations are less computationally intensive than absolute binding free energy (ABFE) calculations and map directly onto the hit-to-lead and lead optimization processes, where the prediction of relative binding energies between a reference molecule and new ideas (virtual molecules) can be used to prioritize molecules for synthesis. We describe the critical aspects of running RBFE calculations, from both theoretical and applied perspectives

  13. Asymmetric impacts of international energy shocks on macroeconomic activities

    International Nuclear Information System (INIS)

    Yeh, Fang-Yu; Hu, Jin-Li; Lin, Cheng-Hsun

    2012-01-01

    While limited by its scarcity of natural resources, the impacts of energy price changes on Taiwan's economic activities have been an important issue for social public and government authorities. This study applies the multivariate threshold model to investigate the effects of various international energy price shocks on Taiwan's macroeconomic activity. By separating energy price changes into the so-called decrease and increase regimes, we can realize different impacts of energy price changes and their shocks on economic output. The results confirm that there is an asymmetric threshold effect for the energy-output nexus. The optimal threshold levels are exactly where the oil price change is at 2.48%, the natural gas price change is at 0.66%, and the coal price change is at 0.25%. The impulse response analysis suggests that oil price and natural gas shocks have a delayed negative impact on macroeconomic activities. - Highlights: ► This study applies multivariate threshold model to investigate the effects of various international energy price shocks on Taiwan's macroeconomic activity. ► The results confirm that there is an asymmetric threshold effect for energy-output nexus. ► The optimal threshold levels are exactly found where oil price change is at 2.48%, natural gas price change is at 0.66%, and coal price change is at 0.25%.

  14. Energy Harvesting Cycles of Dielectric ElectroActive Polymer Generators

    DEFF Research Database (Denmark)

    Dimopoulos, Emmanouil; Trintis, Ionut; Munk-Nielsen, Stig

    2012-01-01

    Energy harvesting via Dielectric ElectroActive Polymer (DEAP) generators has attracted much of the scientific interest over the past few years, mainly due to the advantages that these smart materials offer against competing technologies, as electromagnetic generators and piezoelectrics. Their hig......Energy harvesting via Dielectric ElectroActive Polymer (DEAP) generators has attracted much of the scientific interest over the past few years, mainly due to the advantages that these smart materials offer against competing technologies, as electromagnetic generators and piezoelectrics....... Their higher energy density, superior low-speed performance, light-weighted nature as well as their shapely structure have rendered DEAPs candidate solutions for various actuation and energy harvesting applications. In this paper, a thoroughly analysis of all energy harvesting operational cycles of a DEAP...

  15. The Current Status and Implications of Nuclear Energy Cultural Activities

    International Nuclear Information System (INIS)

    Kim, Dong Won

    2006-01-01

    The Korean nuclear energy community paid a high price in terms of the tremendous social costs incurred in the process of securing a site for mid-to-low radioactive waste disposal facility, indicating that interest in the technical danger of nuclear energy has spread to the realm of people's daily lives. Under the circumstances it is important to raise rational public awareness of nuclear science as a foundation of everyday life through nuclear cultural activities. This study examines the various types of public relations activities of the Korea Nuclear Energy Foundation, an organization in charge of promoting nuclear energy, and explores what activities are required to ensure efficient promotion in accordance with development of nuclear culture

  16. Physical activity recommendations: an alternative approach using energy expenditure.

    Science.gov (United States)

    Mudd, Lanay M; Rafferty, Ann P; Reeves, Mathew J; Pivarnik, James M

    2008-10-01

    Most adults do not meet the American College of Sports Medicine and Centers for Disease Control and Prevention (ACSM/CDC) physical activity recommendations. Even fewer meet the more extreme Institute of Medicine (IOM) physical activity recommendations. Compliance with either recommendation has been conventionally assessed by combining frequencies and durations of self-reported activities. Leisure-time energy expenditure is a cumulative measure of activity that offers an alternative method of defining compliance. To calculate the leisure-time energy expenditure of adults complying with the ACSM/CDC or the IOM physical activity recommendations determined by conventional measures and to reexamine compliance with the IOM recommendation using energy expenditure criteria. National, cross-sectional data from the 2000 Behavioral Risk Factor Surveillance System determined the mode, frequency, and duration of up to two leisure-time activities performed by adults. Four mutually exclusive activity groups (Non-, Low-, ACSM/CDC-, and IOM-Active) were defined on the basis of frequencies and durations of reported activities. Leisure-time energy expenditure (kcal x kg(-1) x wk(-1)) was calculated per respondent. The energy expenditure threshold for meeting the IOM recommendation was calculated as 21 kcal x kg(-1) x wk(-1). Of the 162,669 respondents included in the analyses, 29.9% were Nonactive, whereas 42.3%, 23.3%, and 4.5% were Low-, ACSM/CDC-, and IOM-Active, respectively. Median leisure-time energy expenditure values were 9.0, 27.4, and 63.0 kcal x kg(-1) x wk(-1) for Low-, ACSM/CDC-, and IOM-Active groups, respectively. When using energy expenditure criteria, compliance with the IOM recommendation rose to 27.7% of respondents. Compliance with the IOM physical activity recommendation dramatically increased when assessed by energy expenditure compared with conventional criteria, thereby highlighting the potential bias of conventional methods. A significant proportion of adults

  17. Energy Multiplier Module (EM{sup 2}) - advanced small modular reactor for electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Bertch, T.; Schleicher, R.; Choi, H.; Rawls, J., E-mail: timothy.bertch@ga.com [General Atomics, San Diego, California (United States)

    2013-07-01

    In order to provide cost effective nuclear energy in other than large reactor, large grid applications, fission technology needs to make further advances. 'Convert and burn' fast reactors offer long life cores, improved fuel utilization, reduced waste and other benefits while achieving cost effective energy production in a smaller reactor. General Atomics' Energy Multiplier Module (EM{sup 2}), a helium-cooled compact fast reactor that augments its fissile fuel load with either depleted uranium (DU) or used nuclear fuel (UNF). The convert and burn in-situ provides 250 MWe with a 30 year core life. High temperature provides a simple, high efficiency direct cycle gas turbine which along with modular construction, fewer systems, road shipment and minimum on site construction support cost effectiveness. Additional advantages in fuel cycle, non-proliferation and siting flexibility and its ability to meet all safety requirements make for an attractive power source, especially in remote and small grid regions. (author)

  18. Energy footprint of advanced dense numerical linear algebra using tile algorithms on multicore architectures

    KAUST Repository

    Dongarra, Jack; Ltaief, Hatem; Luszczek, Piotr R.; Weaver, Vincent M.

    2012-01-01

    We propose to study the impact on the energy footprint of two advanced algorithmic strategies in the context of high performance dense linear algebra libraries: (1) mixed precision algorithms with iterative refinement allow to run at the peak performance of single precision floating-point arithmetic while achieving double precision accuracy and (2) tree reduction technique exposes more parallelism when factorizing tall and skinny matrices for solving over determined systems of linear equations or calculating the singular value decomposition. Integrated within the PLASMA library using tile algorithms, which will eventually supersede the block algorithms from LAPACK, both strategies further excel in performance in the presence of a dynamic task scheduler while targeting multicore architecture. Energy consumption measurements are reported along with parallel performance numbers on a dual-socket quad-core Intel Xeon as well as a quad-socket quad-core Intel Sandy Bridge chip, both providing component-based energy monitoring at all levels of the system, through the Power Pack framework and the Running Average Power Limit model, respectively. © 2012 IEEE.

  19. Proceedings of the NATO Advanced Research Workshop on Nuclear Power and Energy Security

    International Nuclear Information System (INIS)

    Apikyan, S.; Diamond, D.

    2010-01-01

    The purpose of this NATO workshop is to contribute to the critical assessment of how to prepare for a new national nuclear energy program, and to make recommendations for future action. In addition, our goal is to promote close working relationships between technical people from different countries and with different professional expertise. In particular, the countries that are involved in this workshop are those from NATO and those from the Partner countries such as those in the Commonwealth of Independent States. A NATO workshop is not an international conference or symposium but rather a forum for advanced level, intensive discussions. The presentations are part of the growing font of knowledge on the subject of how to develop a national nuclear energy program. It is heard about the infrastructure that is needed and how the IAEA and countries with existing experience are helping to provide that infrastructure to those working toward a nuclear energy program. It is heard about the experiences of several countries embarking on new nuclear development, with an emphasis on how progress is being made in Armenia. It is also heard about the potential for using small and medium size reactors; something not being pursued by the countries with large nuclear programs

  20. Selection of high temperature thermal energy storage materials for advanced solar dynamic space power systems

    Science.gov (United States)

    Lacy, Dovie E.; Coles-Hamilton, Carolyn; Juhasz, Albert

    1987-01-01

    Under the direction of NASA's Office of Aeronautics and Technology (OAST), the NASA Lewis Research Center has initiated an in-house thermal energy storage program to identify combinations of phase change thermal energy storage media for use with a Brayton and Stirling Advanced Solar Dynamic (ASD) space power system operating between 1070 and 1400 K. A study has been initiated to determine suitable combinations of thermal energy storage (TES) phase change materials (PCM) that result in the smallest and lightest weight ASD power system possible. To date the heats of fusion of several fluoride salt mixtures with melting points greater than 1025 K have been verified experimentally. The study has indicated that these salt systems produce large ASD systems because of their inherent low thermal conductivity and low density. It is desirable to have PCMs with high densities and high thermal conductivities. Therefore, alternate phase change materials based on metallic alloy systems are also being considered as possible TES candidates for future ASD space power systems.