WorldWideScience

Sample records for advanced automotive gas

  1. The AGT 101 advanced automotive gas turbine

    Science.gov (United States)

    Rackley, R. A.; Kidwell, J. R.

    1982-01-01

    A development program is described whose goal is the accumulation of the technology base needed by the U.S. automotive industry for the production of automotive gas turbine powertrains. Such gas turbine designs must exhibit reduced fuel consumption, a multi-fuel capability, and low exhaust emissions. The AGT101 powertrain described is a 74.6 kW, regenerated single-shaft gas turbine, operating at a maximum inlet temperature of 1644 K and coupled to a split differential gearbox and automatic overdrive transmission. The engine's single stage centrifugal compressor and single stage radial inflow turbine are mounted on a common shaft, and will operate at a maximum rotor speed of 100,000 rpm. All high temperature components, including the turbine rotor, are ceramic.

  2. Advanced Materials for Automotive Application

    International Nuclear Information System (INIS)

    Tisza, M

    2013-01-01

    In this paper some recent material developments will be overviewed mainly from the point of view of automotive industry. In car industry, metal forming is one of the most important manufacturing processes imposing severe restrictions on materials; these are often contradictory requirements, e.g. high strength simultaneously with good formability, etc. Due to these challenges and the ever increasing demand new material classes have been developed; however, the more and more wide application of high strength materials meeting the requirements stated by the mass reduction lead to increasing difficulties concerning the formability which requires significant technological developments as well. In this paper, the recent materials developments will be overviewed from the point of view of the automotive industry

  3. Advanced ignition for automotive engines

    OpenAIRE

    Pineda, Daniel Ivan

    2017-01-01

    Spark plugs have been igniting combustible mixtures like those found in automotive engines for over a century, and the principles of the associated ignition techniques using thermal plasma (inductive or capacitive sparks) have remained relatively unchanged during that time. However, internal combustion engines are increasingly operating with boosted intake pressures (i.e. turbo- or super-charged) in order to maintain power output while simultaneously reducing engine size and weight, and they ...

  4. Advanced Microsystems for Automotive Applications 2005

    Science.gov (United States)

    Valldorf, Jürgen; Gessner, Wolfgang

    Since 1995 the annual international forum on Advanced Microsystems for Automotive Applications (AMAA) has been held in Berlin. The event offers a unique opportunity for microsystems component developers, system suppliers and car manufacturers to show and to discuss competing technological approaches of microsystems based solutions in vehicles. The book accompanying the event has demonstrated to be an efficient instrument for the diffusion of new concepts and technology results. The present volume including the papers of the AMAA 2005 gives an overview on the state-of-the-art and outlines imminent and mid-term R&D perspectives.

  5. Advanced high strength steels for automotive industry

    Energy Technology Data Exchange (ETDEWEB)

    Galan, J.; Samek, L.; Verleysen, P.; Verbeken, K.; Houbert, Y.

    2012-11-01

    The car industry is facing pressure because of the growing demand for more fuel-efficient passenger cars. In order to limit energy consumption and air pollution the weight of the car body has to be reduced. At the same time, high levels of safety have to be guaranteed. In this situation, the choice of material becomes a key decision in car design. As a response to the requirements of the automotive sector, high strength steels and advanced high strength steels have been developed by the steel industry. These modern steel grades offer an excellent balance of low cost, light weight and mechanical properties. (Author) 48 refs.

  6. AGT101 automotive gas turbine system development

    Science.gov (United States)

    Rackley, R. A.; Kidwell, J. R.

    1982-01-01

    The AGT101 automotive gas turbine system consisting of a 74.6 kw regenerated single-shaft gas turbine engine, is presented. The development and testing of the system is reviewed, and results for aerothermodynamic components indicate that compressor and turbine performance levels are within one percent of projected levels. Ceramic turbine rotor development is encouraging with successful cold spin testing of simulated rotors to speeds over 12,043 rad/sec. Spin test results demonstrate that ceramic materials having the required strength levels can be fabricated by net shape techniques to the thick hub cross section, which verifies the feasibility of the single-stage radial rotor in single-shaft engines.

  7. Reducing greenhouse gas emissions from the Ontario automotive sector

    International Nuclear Information System (INIS)

    Anon.

    1995-11-01

    A variety of options to reduce greenhouse gas emissions from the automotive sector in Ontario over the next decade were discussed. Each option was assessed in terms of practicality and implications for implementation. I was concluded that improvements in fuel economy anticipated from advancing technology, with or without new mandated standards, will not be enough to offset the impact of growth in vehicle fleet size and kilometres driven. If the goal is to stabilize greenhouse gas emissions, other measures such as reducing the fleet size and vehicle kilometres travelled and accelerated vehicle retirement (scrappage) programs must be considered. Key constraints on expansion of the alternative fuel fleet were identified. These include: (1) limited availability of an adequate range of alternative fuel vehicles at competitive prices, (2) limited refuelling facility infrastructure in the case of natural gas, limited range and fuel storage capacity for natural gas; (3)current limited fuel ethanol production capacity, and (4) market perceptions of performance, reliability and safety. tabs

  8. Advancing Material Models for Automotive Forming Simulations

    International Nuclear Information System (INIS)

    Vegter, H.; An, Y.; Horn, C.H.L.J. ten; Atzema, E.H.; Roelofsen, M.E.

    2005-01-01

    Simulations in automotive industry need more advanced material models to achieve highly reliable forming and springback predictions. Conventional material models implemented in the FEM-simulation models are not capable to describe the plastic material behaviour during monotonic strain paths with sufficient accuracy. Recently, ESI and Corus co-operate on the implementation of an advanced material model in the FEM-code PAMSTAMP 2G. This applies to the strain hardening model, the influence of strain rate, and the description of the yield locus in these models. A subsequent challenge is the description of the material after a change of strain path.The use of advanced high strength steels in the automotive industry requires a description of plastic material behaviour of multiphase steels. The simplest variant is dual phase steel consisting of a ferritic and a martensitic phase. Multiphase materials also contain a bainitic phase in addition to the ferritic and martensitic phase. More physical descriptions of strain hardening than simple fitted Ludwik/Nadai curves are necessary.Methods to predict plastic behaviour of single-phase materials use a simple dislocation interaction model based on the formed cells structures only. At Corus, a new method is proposed to predict plastic behaviour of multiphase materials have to take hard phases into account, which deform less easily. The resulting deformation gradients create geometrically necessary dislocations. Additional micro-structural information such as morphology and size of hard phase particles or grains is necessary to derive the strain hardening models for this type of materials.Measurements available from the Numisheet benchmarks allow these models to be validated. At Corus, additional measured values are available from cross-die tests. This laboratory test can attain critical deformations by large variations in blank size and processing conditions. The tests are a powerful tool in optimising forming simulations prior

  9. Advances in LEDs for automotive applications

    Science.gov (United States)

    Bhardwaj, Jy; Peddada, Rao; Spinger, Benno

    2016-03-01

    High power LEDs were introduced in automotive headlights in 2006-2007, for example as full LED headlights in the Audi R8 or low beam in Lexus. Since then, LED headlighting has become established in premium and volume automotive segments and beginning to enable new compact form factors such as distributed low beam and new functions such as adaptive driving beam. New generations of highly versatile high power LEDs are emerging to meet these application needs. In this paper, we will detail ongoing advances in LED technology that enable revolutionary styling, performance and adaptive control in automotive headlights. As the standards which govern the necessary lumens on the road are well established, increasing luminance enables not only more design freedom but also headlight cost reduction with space and weight saving through more compact optics. Adaptive headlighting is based on LED pixelation and requires high contrast, high luminance, smaller LEDs with high-packing density for pixelated Matrix Lighting sources. Matrix applications require an extremely tight tolerance on not only the X, Y placement accuracy, but also on the Z height of the LEDs given the precision optics used to image the LEDs onto the road. A new generation of chip scale packaged (CSP) LEDs based on Wafer Level Packaging (WLP) have been developed to meet these needs, offering a form factor less than 20% increase over the LED emitter surface footprint. These miniature LEDs are surface mount devices compatible with automated tools for L2 board direct attach (without the need for an interposer or L1 substrate), meeting the high position accuracy as well as the optical and thermal performance. To illustrate the versatility of the CSP LEDs, we will show the results of, firstly, a reflector-based distributed low beam using multiple individual cavities each with only 20mm height and secondly 3x4 to 3x28 Matrix arrays for adaptive full beam. Also a few key trends in rear lighting and impact on LED light

  10. Advanced Automotive Diesel Assessment Program, executive summary

    Science.gov (United States)

    1983-01-01

    The objectives of this analytical study were: to select one advanced automotive diesel engine (AAD) concept which would increase the tank mileage of a 3,000 pound passenger car from the present 35 mpg to at least 52 mpg; to identify long term component research and development work required to bring the selected concept to fruition; and to prepare a development strategy that will bring the selected concept to a prototype testing phase. Cummins Engine Company has completed this study. The selected concept is a 4 stroke cycle, direct injection, spark assisted, advanced adiabatic diesel engine with positive displacement compounding plus expander and part load air preheating. The engine does not use a liquid coolant nor liquid lubricants. It is a 4 cylinder, in-line, 77 mm bore x 77 mm stroke, 1.434 liters displacement engine weighing 300 lb, and rated at 70 BHP at 3000 rpm. Installation dimensions are 621 mm length x 589 mm width x 479 mm height (24.4 inch x 22 inch x 18.9 inch).

  11. Advanced high strength steels for automotive industry

    Directory of Open Access Journals (Sweden)

    Galán, J.

    2012-04-01

    Full Text Available The car industry is facing pressure because of the growing demand for more fuel-efficient passenger cars. In order to limit energy consumption and air pollution the weight of the carbody has to be reduced. At the same time, high levels of safety have to be guaranteed. In this situation, the choice of material becomes a key decision in car design. As a response to the requirements of the automotive sector, high strength steels and advanced high strength steels have been developed by the steel industry. These modern steel grades offer an excellent balance of low cost, light weight and mechanical properties.

    La industria del automóvil se enfrenta a una creciente demanda de vehículos de pasajeros más eficientes. Con el fin de disminuir el consumo de energía y la contaminación ambiental, el peso del vehículo tiene que ser reducido, al mismo tiempo que se garantizan altos niveles de seguridad. Ante esta situación, la elección de material se convierte en una decisión crucial en el diseño del vehículo. Como respuesta a las necesidades del sector automovilístico, nuevos aceros avanzados y de alta resistencia, han sido desarrollados por la industria siderúrgica. Dichos tipos de acero ofrecen un excelente equilibrio de precio, peso y propiedades mecánicas.

  12. Advanced Automotive Technologies annual report to Congress, fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This annual report serves to inform the United States Congress on the progress for fiscal year 1996 of programs under the Department of Energy`s Office of Advanced Automotive Technologies (OAAT). This document complies with the legislative requirement to report on the implementation of Title III of the Automotive Propulsion Research and Development Act of 1978. Also reported are related activities performed under subsequent relevant legislation without specific reporting requirements. Furthermore, this report serves as a vital means of communication from the Department to all public and private sector participants. Specific requirements that are addressed in this report are: Discussion of how each research and development contract, grant, or project funded under the authority of this Act satisfies the requirements of each subsection; Current comprehensive program definition for implementing Title III; Evaluation of the state of automotive propulsion system research and development in the United States; Number and amount of contracts and grants awarded under Title III; Analysis of the progress made in developing advanced automotive propulsion system technology; and Suggestions for improvements in automotive propulsion system research and development, including recommendations for legislation.

  13. Advanced Automotive Technologies annual report to Congress, fiscal year 1996

    International Nuclear Information System (INIS)

    NONE

    1998-01-01

    This annual report serves to inform the United States Congress on the progress for fiscal year 1996 of programs under the Department of Energy's Office of Advanced Automotive Technologies (OAAT). This document complies with the legislative requirement to report on the implementation of Title III of the Automotive Propulsion Research and Development Act of 1978. Also reported are related activities performed under subsequent relevant legislation without specific reporting requirements. Furthermore, this report serves as a vital means of communication from the Department to all public and private sector participants. Specific requirements that are addressed in this report are: Discussion of how each research and development contract, grant, or project funded under the authority of this Act satisfies the requirements of each subsection; Current comprehensive program definition for implementing Title III; Evaluation of the state of automotive propulsion system research and development in the United States; Number and amount of contracts and grants awarded under Title III; Analysis of the progress made in developing advanced automotive propulsion system technology; and Suggestions for improvements in automotive propulsion system research and development, including recommendations for legislation

  14. Advanced materials for application in the aerospace and automotive industries

    CSIR Research Space (South Africa)

    Damm, O

    2008-11-01

    Full Text Available The CSIR conducts research and development (R&D) involving advanced materials with applications in the local automotive and aerospace industries. The relevance of these R&D programmes is illustrated by positioning them in the context of key industry...

  15. Natural gas as an automotive fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gritsenko, A I; Vasiliev, Y N; Jankiewicz, A [VPO ' Soyuzgastekhnologiya' All-Union Scientific Research Inst. of Natural gases (VNIIGAS) (SU)

    1990-02-01

    The review presented covers mass production of gas-petrol and gas-diesel automobiles in the USSR, second generation auto gas filling compressor stations, principal exhaust toxicants, and tests indicating natural gas fired autos emit >5 times less NO{sub x} and 10 times less hydrocarbons excluding methane. The switch over to gas as auto fuel and ensuing release of petrol and diesel for other uses are discussed. (UK).

  16. Heat exchangers for automotive gas turbine power plants

    International Nuclear Information System (INIS)

    Penny, R.N.

    1974-01-01

    Automotive gas turbine power plants are now in the final stages of development for quantity manufacture. A crucial factor in this development is the regenerative heat exchanger. The relative merits of the rotary regenerative and static recuperative heat exchanger are compared. Thermal efficiency and initial cost are two vital issues involved in the design of small gas turbines for the commercial establishment of gas turbine vehicles. The selection of a material for the rotaty regenerator is essentially related to resolving the two vital issues of future small gas turbines and is, therefore, analysed. The account of the pioneering work involved in engineering the glass ceramic and other non-metal regenerators includes a complete failure analysis based on running experience with over 200 ceramic regenerators. The problems of sealing, supporting and manufacturing the ceramic regenerator are discussed and future practical designs are outlined. Heat exchange theory applied to small gas turbines is also reviewed

  17. Advanced cold rolled steels for automotive applications

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Harald; Mattissen, Dorothea; Schaumann, Thomas Wilhelm [ThyssenKrupp Steel AG, Center of Materials Excellence, Dortmund (Germany)

    2009-01-15

    Advanced high-strength steels offer a great potential for the further development of automobile bodies-in-white due to their combined mechanical properties of high formability and strength. They represent the first choice in material selection for strength and crash-relevant parts with challenging geometries. The intensive development of multiphase steels by ThyssenKrupp Steel has led to hot dip galvanizing concepts with an outstanding forming potential. Hot rolled, hot dip galvanized complex-phase steels are currently produced in addition to cold rolled dual phase (DP) and retained austenite (RA) or transformation induced plasticity (TRIP) steels. New continuously annealed grades of steel are being developed with tensile strength levels of up to 1000 MPa in combination with sufficient ductility for the high demands of structural automobile components. These steels make use of the classic advantages of microalloying as well as the principles of DP steels and RA / TRIP steels. Further improvement of properties will be reached by the new class of high manganese alloyed steels. (orig.)

  18. Advanced cold rolled steels for automotive applications

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, H. [ThyssenKrupp Steel AG, Eberhardstrasse 12, 44145 Dortmund (Germany); Mattissen, D.; Schaumann, T.W. [ThyssenKrupp Steel AG, Duisburg (Germany)

    2006-09-15

    Advanced multiphase steels offer a great potential for bodies-in-white through their combination of formability and achievable component strength levels. They are first choice for strength and crash-relevant parts of challenging geometry. The intensive development of high-strength multiphase steels by ThyssenKrupp has led to hot dip galvanizing concepts with an outstanding forming potential. Hot rolled, hot dip galvanized complex phase steels are currently produced in addition to cold rolled DP and RA steels. New continuously annealed grades with tensile strength levels of up to 1000 MPa in combination with sufficient ductility for applications mainly in the field of structural automobile elements make use of the classic advantages of microalloying as well as the principles of DP and TRIP steels. Further improvement of properties will be reached by the new class of high manganese alloyed steels. (Abstract Copyright [2006], Wiley Periodicals, Inc.) [German] Fortschrittliche Multiphasen-Staehle eroeffnen wegen der inzwischen erreichbaren Kombination aus Umformbarkeit und Bauteilfestigkeit ein enormes Potenzial fuer Rohkarosserien. Sie stellen eine erste Wahl dar, wenn es um Festigkeit und um Crashsicherheit geht und besondere Anforderungen an die Bauteilgeometrien gestellt werden. Bei ThyssenKrupp hat die Entwicklung hochfester Multiphasen-Staehle in Verbindung mit dem Feuerverzinken zur Realisierung von Blechhalbzeugen gefuehrt, die hervorragend formbar sind. Es werden heute feuerverzinkte Komplexphasenstaehle neben den bewaehrten kaltgewalzten Dualphasen(DP) - und Retained Austenit(RA)-Staehlen produziert. Die neuen kontinuierlich gegluehten Stahlvarianten mit Festigkeiten bis zu 1000 MPa in Kombination mit der bei Strukturbauteilen im Automobilbau geforderten Duktilitaet nutzen sowohl die klassischen Vorteile des Mikrolegierens aus und dazu die Prinzipien, die man bei DP- und TRIP-Staehlen anwendet. Eine weitere Verbesserung des Eigenschaftsprofils wird mit dem

  19. Applicability of advanced automotive heat engines to solar thermal power

    Science.gov (United States)

    Beremand, D. G.; Evans, D. G.; Alger, D. L.

    The requirements of a solar thermal power system are reviewed and compared with the predicted characteristics of automobile engines under development. A good match is found in terms of power level and efficiency when the automobile engines, designed for maximum powers of 65-100 kW (87 to 133 hp) are operated to the nominal 20-40 kW electric output requirement of the solar thermal application. At these reduced power levels it appears that the automotive gas turbine and Stirling engines have the potential to deliver the 40+ percent efficiency goal of the solar thermal program.

  20. An overview of aerospace gas turbine technology of relevance to the development of the automotive gas turbine engine

    Science.gov (United States)

    Evans, D. G.; Miller, T. J.

    1978-01-01

    The NASA-Lewis Research Center (LeRC) has conducted, and has sponsored with industry and universities, extensive research into many of the technology areas related to gas turbine propulsion systems. This aerospace-related technology has been developed at both the component and systems level, and may have significant potential for application to the automotive gas turbine engine. This paper summarizes this technology and lists the associated references. The technology areas are system steady-state and transient performance prediction techniques, compressor and turbine design and performance prediction programs and effects of geometry, combustor technology and advanced concepts, and ceramic coatings and materials technology.

  1. On the efficiency of an advanced automotive fuel cell system

    Energy Technology Data Exchange (ETDEWEB)

    Buechi, F.N.; Freunberger, S.A.; Reum, M.; Tsukada, A.; Dietrich, P. [Paul Scherrer Institut, Electrochemistry Laboratory, CH-5232 Villigen PSI (Switzerland); Paganelli, G.; Delfino, A. [Conception et Developpement Michelin, Route Andre-Piller 30, CH-1762 Givisiez (Switzerland)

    2007-04-15

    Efficiency is the key parameter for the application of fuel cells in automotive applications. The efficiency of a hydrogen/oxygen polymer electrolyte fuel cell system is analyzed and compared to hydrogen/air systems. The analysis is performed for the tank to electric power chain. Furthermore, the additional energy required for using pure oxygen as a second fuel is analyzed and included in the calculation. The results show that if hydrogen is produced from primary fossil energy carriers, such as natural gas and pure oxygen needs to be obtained by a conventional process; the fuel to electric current efficiency is comparable for hydrogen/oxygen and hydrogen/air systems. However, if hydrogen and oxygen are produced by the splitting of water, i.e., by electrolysis or by a thermochemical process, the fuel to electric current efficiency for the hydrogen/oxygen system is clearly superior. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  2. International Forum on Advanced Microsystems for Automotive Application

    CERN Document Server

    Meyer, Gereon

    2014-01-01

    The automobile is going through the biggest transformation in its history. Automation and electrification of vehicles are expected to enable safer and cleaner mobility. The prospects and requirements of the future automobile affect innovations in major technology fields like driver assistance systems, vehicle networking and drivetrain development. Smart systems such as adaptive ICT components and MEMS devices, novel network architectures, integrated sensor systems, intelligent interfaces and functional materials form the basis of these features and permit their successful and synergetic integration. It has been the mission of the International Forum on Advanced Microsystems for Automotive Applications (AMAA) for more than fifteen years to detect novel trends and to discuss the technological implications from early on. Therefore, the topic of the AMAA 2014 will be “Smart Systems for Safe, Clean, and Automated Vehicles”. This book contains peer-reviewed papers written by leading engineers and researchers w...

  3. The development of natural gas as an automotive fuel in China

    International Nuclear Information System (INIS)

    Ma, Linwei; Geng, Jia; Li, Weqi; Liu, Pei; Li, Zheng

    2013-01-01

    This manuscript aims to systematically review the development of natural gas as an automotive fuel in China and to draw policy implications for decision making. This manuscript presents a brief overview of natural gas development and the potential of natural gas as an automotive fuel in China, followed by an introduction to the development of various technology pathways for using natural gas as an automotive fuel, including CNG (compressed natural gas) vehicles, LNG (liquefied natural gas) vehicles, and others. This material suggests, a large potential to increase the use of natural gas as an automotive fuel, especially for CNG and LNG vehicles. The following activities will promote the development of natural gas vehicles: prioritizing vehicle use in the utilization of natural gas, supporting the construction of natural gas filling stations, developing a favorable pricing policy for natural gas used in vehicles, and enhancing the research and development to further improve the technology performance, especially for the technology of LNG vehicles. -- Highlights: •An overview of the natural gas development in China. •A systematic introduction of the development of natural gas vehicles in China. •A review of the technological performance of natural gas vehicles. •Policy suggestions to promote the development of natural gas vehicles in China

  4. 20th International Forum on Advanced Microsystems for Automotive Applications

    CERN Document Server

    Müller, Beate; Meyer, Gereon

    2016-01-01

    This book contains the papers presented at the 20th anniversary edition of the AMAA conference held in Brussels, Belgium in 2016. The theme of the conference was "Smart Systems for the Automobile of the Future". The automobile is currently being reshaped at unprecedented pace. Automation and electrification are the two dominant megatrends which dramatically change the choice and design of components, systems, vehicular architectures and ultimately the way we use cars in the coming decades. Novel E/E architectures, vehicular connectivity and cloud services will be key to extending the perception and decision-making horizons of automated vehicles, to enable cooperative functions and a seamless digital user experience. The AMAA's ongoing mission to detect novel trends in automotive ICT, electronics and smart systems and to discuss the technological implications is once again reflected in this volume. The book will be a valuable read for research experts and professionals in the automotive and smart systems indus...

  5. Status of the Ford program to evaluate ceramics for stator applications in automotive gas turbine engines

    Science.gov (United States)

    Trela, W.

    1980-01-01

    The paper reviews the progress of the major technical tasks of the DOE/NASA/Ford program Evaluation of Ceramics for Stator Applications in Automotive Gas Turbine Engines: reliability prediction, stator fabrication, material characterization, and stator evaluation. A fast fracture reliability model was prepared for a one-piece ceramic stator. Periodic inspection results are presented.

  6. Application of Pyrolysis - Gas Chromatography/Mass Spectrometry in Failure Analysis in the Automotive Industry

    OpenAIRE

    Kusch, Peter (Dr.)

    2015-01-01

    This book chapter describes application examples of gas chromatography/mass spectrometry and pyrolysis – gas chromatography/mass spectrometry in failure analysis for the identification of chemical materials like mineral oils and nitrile rubber gaskets. Furthermore, failure cases demanding identification of polymers/copolymers in fouling on the compressor wall of a car air conditioner and identification of fouling on the surface of a bearing race from the automotive industry are demonstr...

  7. Liquefied Petroleum Gas as Automotive Fuel in Environmental Protection

    Directory of Open Access Journals (Sweden)

    Nada Štrumberger

    2012-10-01

    Full Text Available This paper considers the possibilities of using liquefied petroleumgas (LPG as alternative fuel for propelling Olio enginesin passenger cars. The advantages of using LPG comparedto petrol are reflected in the reduced emission of harmfulgases, lower price. The disadvantages include the costs of installingthe gas equipment, occupying part of the boot, as well asfew gas filling stations. In spite of the disadvantages, liquefiedpetroleum gas is claimed to be the fuel of the future.

  8. Advanced Emergency Braking Controller Design for Pedestrian Protection Oriented Automotive Collision Avoidance System

    OpenAIRE

    Lie, Guo; Zejian, Ren; Pingshu, Ge; Jing, Chang

    2014-01-01

    Automotive collision avoidance system, which aims to enhance the active safety of the vehicle, has become a hot research topic in recent years. However, most of the current systems ignore the active protection of pedestrian and other vulnerable groups in the transportation system. An advanced emergency braking control system is studied by taking into account the pedestrians and the vehicles. Three typical braking scenarios are defined and the safety situations are assessed by comparing the cu...

  9. Automotive exhaust gas flow control for an ammonia–water absorption refrigeration system

    International Nuclear Information System (INIS)

    Rêgo, A.T.; Hanriot, S.M.; Oliveira, A.F.; Brito, P.; Rêgo, T.F.U.

    2014-01-01

    A considerable part of the energy generated by an automotive internal combustion engine is wasted as heat in the exhaust system. This wasted heat could be recovered and applied to power auxiliary systems in a vehicle, contributing to its overall energy efficiency. In the present work, the experimental analysis of an absorption refrigeration system was performed. The exhaust system of an automotive internal combustion engine was connected to the generator element of an absorption refrigeration system. The performance of the absorption refrigerator was evaluated as a function of the supplied heat. The use of a control strategy for the engine exhaust gas mass flow rate was implemented to optimize the system. Exhaust gas flow was controlled by step-motor actuated valves commanded by a microcontroller in which a proportional-integral control scheme was implemented. Information such as engine torque, speed, key temperatures in the absorption cycle, as well as internal temperatures of the refrigerator was measured in a transient regime. The results indicated that the refrigeration system exhibited better performance when the amount of input heat is controlled based on the temperature of the absorption cycle generator. It was possible to conclude that, by dynamically controlling the amount of input heat, the utilisation range of the absorption refrigeration system powered by exhaust gas heat could be expanded in order to incorporate high engine speed operating conditions. - Highlights: •An absorption refrigerator was driven by automotive exhaust gas heat. •A system for controlling the refrigeration system heat input was developed. •Excessive exhaust gas heat leads to ineffective operation of the refrigerator. •Control of refrigerator's generator temperature led to better performance. •The use of exhaust gas was possible for high engine speeds

  10. Ceramic applications in the advanced Stirling automotive engine

    Science.gov (United States)

    Tomazic, W. A.; Cairelli, J. E.

    1978-01-01

    The requirements of the ideal Stirling cycle, as well as basic types of practical engines are described. Advantages, disadvantages, and problem areas of these Stirling engines are discussed. The potential for ceramic components is also considered. Currently ceramics are used in only two areas, the air preheater and insulating tiles between the burner and the heater head. For the advanced Stirling engine to achieve high efficiency and low cost, the principal components are expected to be made from ceramic materials, including the heater head, air preheater, regenerator, the burner and the power piston. Supporting research and technology programs for ceramic component development are briefly described.

  11. Advanced microsystems for automotive applications 2013 smart systems for safe and green vehicles

    CERN Document Server

    Meyer, Gereon

    2013-01-01

    The road vehicle of the future will embrace innovations from three major automotive technology fields: driver assistance systems, vehicle networking and alternative propulsion. Smart systems such as adaptive ICT components and MEMS devices, novel network architectures, integrated sensor systems, intelligent interfaces and functional materials form the basis of these features and permit their successful and synergetic integration. They increasingly appear to be the key enabling technologies for safe and green road mobility. For more than fifteen years the International Forum on Advanced Microsystems for Automotive Applications (AMAA) has been successful in detecting novel trends and in discussing the technological implications from early on. The topic of the AMAA 2013 will be “Smart Systems for Safe and Green Vehicles”. This book contains peer-reviewed papers written by leading engineers and researchers which all address the ongoing research and novel developments in the field. www.amaa.de.

  12. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-04-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  13. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-02-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  14. 3. IFAC workshop: advances in automotive control. Vol. 1. Preprints

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    As the subject indicates, the aim of this workshop will be to discuss the latest advances related to motor vehicles, but also, and more generally, to exchange ideas between academic partners, car-manufacturers and subcontractors. The programme shows that a special effort has been made in this respect. No doubt plenary lectures are of great importance and the thematic sessions in the different sectors are the essence of such workshops; however, the discussions between experts in the different fields, the meetings between people from industry, universities and public or private laboratories, as well as the resulting exchange of ideas, are at least as important. Research is often criticized for providing merely theoretical results and for the insufficient number of its applications. But the motor vehicle offers a wide field of applications in which we can validate all techniques, tools and methods. This allows us to be involved in all the areas of fundamental research, in all the different possible approaches from fundamental research to technology transfer, and to observe the actual effects of our results. The increase in road traffic was a major problem of the past XXth century. It is clear that one the challenges of the XXIst century will be improve driving safety and comfort. The different work sessions concerning more control, driveline modelling, vehicle dynamics, electronic architecture, intelligent components, engine control, engine modelling, the modelling of combustion and turbocharging, diagnostics and subsystems. The quality of the papers and the diversity of their origins clearly shows the interest that we all take in this key sector of our research and industry. (orig.)

  15. Advanced Automotive Fuels Research, Development, and Commercialization Cluster (OH)

    Energy Technology Data Exchange (ETDEWEB)

    Linkous, Clovis; Hripko, Michael; Abraham, Martin; Balendiran, Ganesaratnam; Hunter, Allen; Lovelace-Cameron, Sherri; Mette, Howard; Price, Douglas; Walker, Gary; Wang, Ruigang

    2013-08-31

    Technical aspects of producing alternative fuels that may eventually supplement or replace conventional the petroleum-derived fuels that are presently used in vehicular transportation have been investigated. The work was centered around three projects: 1) deriving butanol as a fuel additive from bacterial action on sugars produced from decomposition of aqueous suspensions of wood cellulose under elevated temperature and pressure; 2) using highly ordered, openly structured molecules known as metal-organic framework (MOF) compounds as adsorbents for gas separations in fuel processing operations; and 3) developing a photocatalytic membrane for solar-driven water decomposition to generate pure hydrogen fuel. Several departments within the STEM College at YSU contributed to the effort: Chemistry, Biology, and Chemical Engineering. In the butanol project, sawdust was blended with water at variable pH and temperature (150 – 250{degrees}C), and heated inside a pressure vessel for specified periods of time. Analysis of the extracts showed a wide variety of compounds, including simple sugars that bacteria are known to thrive upon. Samples of the cellulose hydrolysate were fed to colonies of Clostridium beijerinckii, which are known to convert sugars to a mixture of compounds, principally butanol. While the bacteria were active toward additions of pure sugar solutions, the cellulose extract appeared to inhibit butanol production, and furthermore encouraged the Clostridium to become dormant. Proteomic analysis showed that the bacteria had changed their genetic code to where it was becoming sporulated, i.e., the bacteria were trying to go dormant. This finding may be an opportunity, as it may be possible to genetically engineer bacteria that resist the butanol-driven triggering mechanism to stop further fuel production. Another way of handling the cellulosic hydrolysates was to simply add the enzymes responsible for butanol synthesis to the hydrolytic extract ex-vivo. These

  16. A pathway to eliminate the gas flow dependency of a hydrocarbon sensor for automotive exhaust applications

    Directory of Open Access Journals (Sweden)

    G. Hagen

    2018-02-01

    Full Text Available Gas sensors will play an essential role in future combustion-based mobility to effectively reduce emissions and monitor the exhausts reliably. In particular, an application in automotive exhausts is challenging due to the high gas temperatures that come along with highly dynamic flow rates. Recently, a thermoelectric hydrocarbon sensor was developed by using materials which are well known in the exhausts and therefore provide the required stability. As a sensing mechanism, the temperature difference that is generated between a catalytically activated area during the exothermic oxidation of said hydrocarbons and an inert area of the sensor is measured by a special screen-printed thermopile structure. As a matter of principle, this thermovoltage significantly depends on the mass flow rate of the exhausts under certain conditions. The present contribution helps to understand this cross effect and proposes a possible setup for its avoidance. By installing the sensor in the correct position of a bypass solution, the gas flow around the sensor is almost free of turbulence. Now, the signal depends only on the hydrocarbon concentration and not on the gas flow. Such a setup may open up new possibilities of applying novel sensors in automotive exhausts for on-board-measurement (OBM purposes.

  17. Multiroller traction drive speed reducer: Evaluation for automotive gas turbine engine

    Science.gov (United States)

    Rohn, D. A.; Anderson, N. E.; Loewenthal, S. H.

    1982-01-01

    Tests were conducted on a nominal 14:1 fixed-ratio Nasvytis multiroller traction drive retrofitted as the speed reducer in an automotive gas turbine engine. Power turbine speeds of 45,000 rpm and a drive output power of 102 kW (137 hp) were reached. The drive operated under both variable roller loading (proportional to torque) and fixed roller loading (automatic loading mechanism locked). The drive operated smoothly and efficiently as the engine speed reducer. Engine specific fuel consumption with the traction speed reducer was comparable to that with the original helical gearset.

  18. The Advanced Gas Centrifuge program

    International Nuclear Information System (INIS)

    Riepe, R.

    1984-01-01

    Although the gas centrifuge process for uranium enrichment is often referred to as a ''new technology,'' it has been under development for approximately 25 years to bring it to its current state of deployment. Centrifuges are now being installed in a new gas centrifuge enrichment plant (GCEP) at Portsmouth, Ohio. The objective of this new plant was to provide additional U.S. uranium enrichment capacity at a production cost comparable to the U.S. diffusion process but requiring much less power per separative work unit (SWU) produced. The current, commercial scale centrifuge technology being installed meets that objective. The objective for new U.S. enrichment capacity has changed. The objective is not to provide more SWUs but to provide cheaper SWUs. The objective is to make the U.S. uranium enrichment enterprise competitive on the international market. Where the U.S. at one time supplied virtually all of the free world SWU demand, the U.S. market share has now dropped to approximately 35% of the foreign free world market. The Advanced Gas Centrifuge (AGC) program provides an avenue for making the U.S. the economically attractive, reliable enrichment supplier

  19. Gas fired advanced turbine system

    Science.gov (United States)

    Lecren, R. T.; White, D. J.

    The basic concept thus derived from the Ericsson cycle is an intercooled, recuperated, and reheated gas turbine. Theoretical performance analyses, however, showed that reheat at high turbine rotor inlet temperatures (TRIT) did not provide significant efficiency gains and that the 50 percent efficiency goal could be met without reheat. Based upon these findings, the engine concept adopted as a starting point for the gas-fired advanced turbine system is an intercooled, recuperated (ICR) gas turbine. It was found that, at inlet temperatures greater than 2450 F, the thermal efficiency could be maintained above 50%, provided that the turbine cooling flows could be reduced to 7% of the main air flow or lower. This dual and conflicting requirement of increased temperatures and reduced cooling will probably force the abandonment of traditional air cooled turbine parts. Thus, the use of either ceramic materials or non-air cooling fluids has to be considered for the turbine nozzle guide vanes and turbine blades. The use of ceramic components for the proposed engine system is generally preferred because of the potential growth to higher temperatures that is available with such materials.

  20. 16th International Forum on Advanced Microsystems for Automotive Applications (AMAA)

    CERN Document Server

    Advanced Microsystems for Automotive Applications 2012 : Smart Systems for Safe, Sustainable and Networked Vehicles

    2012-01-01

    The ambitious objectives of future road mobility, i.e. fuel efficiency, reduced emissions, and zero accidents, imply a paradigm shift in the concept of the car regarding its architecture, materials, and propulsion technology, and require an intelligent integration into the systems of transportation and power. ICT, components and smart systems have been essential for a multitude of recent innovations, and are expected to be key enabling technologies for the changes ahead, both inside the vehicle and at its interfaces for the exchange of data and power with the outside world. It has been the objective of the International Forum on Advanced Microsystems for Automotive Applications (AMAA) for almost two decades to detect novel trends and to discuss technological implications and innovation potential from day one on. In 2012, the topic of the AMAA conference is “Smart Systems for Safe, Sustainable and Networked Vehicles”. The conference papers selected for this book address current research, developments and i...

  1. Experimentally-determined external heat loss of automotive gas turbine engine

    Science.gov (United States)

    Meng, P. R.; Wulf, R. F.

    1975-01-01

    An external heat balance was conducted on a 150 HP two-shaft automotive gas turbine engine. The engine was enclosed in a calorimeter box and the temperature change of cooling air passing through the box was measured. Cooling airflow ranges of 1.6 to 2.1 lb-per-second and 0.8 to 1.1 lb-per-second were used. The engine housing heat loss increased as the cooling airflow through the calorimeter box was increased, as would be the case in a moving automobile. The heat balance between the total energy input and the sum of shaft power output and various losses compared within 30 percent at engine idle speeds and within 7 percent at full power.

  2. Catalysts as Sensors—A Promising Novel Approach in Automotive Exhaust Gas Aftertreatment

    Directory of Open Access Journals (Sweden)

    Ralf Moos

    2010-07-01

    Full Text Available Sensors that detect directly and in situ the status of automotive exhaust gas catalysts by monitoring the electrical properties of the catalyst coating itself are overviewed. Examples included in this review are the in-situ determination of the electrical impedance of three-way catalysts based on ceria-zirconia solutions and of lean NOx traps of earth-alkaline based coatings, as well as approaches to determine the ammonia loading in Fe-SCR-zeolites with electrical ac measurements. Even more sophisticated approaches based on interactions with electromagnetic waves are also reviewed. For that purpose, metallic stick-like antennas are inserted into the exhaust pipe. The catalyst properties are measured in a contactless manner, directly indicating the catalyst status. The radio frequency probes gauge the oxygen loading degree of three-way catalysts, the NOx-loading of lean NOx traps, and the soot loading of Diesel particulate filters

  3. Catalysts as Sensors—A Promising Novel Approach in Automotive Exhaust Gas Aftertreatment

    Science.gov (United States)

    Moos, Ralf

    2010-01-01

    Sensors that detect directly and in situ the status of automotive exhaust gas catalysts by monitoring the electrical properties of the catalyst coating itself are overviewed. Examples included in this review are the in-situ determination of the electrical impedance of three-way catalysts based on ceria-zirconia solutions and of lean NOx traps of earth-alkaline based coatings, as well as approaches to determine the ammonia loading in Fe-SCR-zeolites with electrical ac measurements. Even more sophisticated approaches based on interactions with electromagnetic waves are also reviewed. For that purpose, metallic stick-like antennas are inserted into the exhaust pipe. The catalyst properties are measured in a contactless manner, directly indicating the catalyst status. The radio frequency probes gauge the oxygen loading degree of three-way catalysts, the NOx-loading of lean NOx traps, and the soot loading of Diesel particulate filters. PMID:22163575

  4. Catalysts as sensors--a promising novel approach in automotive exhaust gas aftertreatment.

    Science.gov (United States)

    Moos, Ralf

    2010-01-01

    Sensors that detect directly and in situ the status of automotive exhaust gas catalysts by monitoring the electrical properties of the catalyst coating itself are overviewed. Examples included in this review are the in-situ determination of the electrical impedance of three-way catalysts based on ceria-zirconia solutions and of lean NO(x) traps of earth-alkaline based coatings, as well as approaches to determine the ammonia loading in Fe-SCR-zeolites with electrical ac measurements. Even more sophisticated approaches based on interactions with electromagnetic waves are also reviewed. For that purpose, metallic stick-like antennas are inserted into the exhaust pipe. The catalyst properties are measured in a contactless manner, directly indicating the catalyst status. The radio frequency probes gauge the oxygen loading degree of three-way catalysts, the NO(x)-loading of lean NO(x) traps, and the soot loading of Diesel particulate filters.

  5. Developing compressed natural gas as an automotive fuel in Nigeria: Lessons from international markets

    International Nuclear Information System (INIS)

    Ogunlowo, Olufemi O.; Bristow, Abigail L.; Sohail, M.

    2015-01-01

    The Nigerian government proposed the use of compressed natural gas (CNG) as an automotive fuel in 1997 as part of the initiatives to harness natural gas (NG) resources but progress has been slow. This paper examines the natural gas vehicle (NGV) implementation approaches and outcomes in seven countries with diverse experiences in order to gain an understanding of the barriers to the NGV market development in Nigeria. The analysis employs hermeneutic principles to secondary data derived from academic literature, published reports from a variety of international agencies, grey literature, and text from online sources and identifies eight success factors for NGV market development namely: strategic intent, legal backing, learning and adaptation, assignment of responsibilities, financial incentives, NG pricing, consumer confidence, and NG infrastructure. The paper concludes that the principal impediment to NGV market development in Nigeria is the uncoordinated implementation approach and that greater government involvement is required in setting strategic goals, developing the legal and regulatory frameworks, setting of clear standards for vehicles and refuelling stations as well as assigning responsibilities to specific agencies. Short-term low cost policy interventions identified include widening the existing NG and gasoline price gap and offering limited support for refuelling and retrofitting facilities. - Highlights: • We examined the NGV policies and implementation strategies in selected countries. • The use of legislative mandates help deepen NGV penetration. • Aligning stakeholder interest is critical to NGV adoption. • Making national interest a priority ahead of regional infrastructure is a critical success factor. • Government support drives participation

  6. Waste Gas And Particulate Control Measures For Laser Cutters In The Automotive Cloth Industry

    Science.gov (United States)

    Ball, R. D.; Kulik, B. F.; Stoncel, R. J.; Tan, S. L.

    1986-11-01

    Demands for greater flexibility and accuracy in the manufacture of automobile trim parts has made single-ply laser cutting an attractive proposition. Lasers are able to cut a large variety of cloth types, from vinyls to velours. Unlike mechanically cut parts, which in the case of velours produce rough edges and dust problems, laster cutting of parts produces smooth edges, fumes and fine particulate. A detailed study of the nature of the laser effluent from a cross section of typical synthetic cloth found in an automotive trim plant was undertaken. Most samples were cut by a fast axial flow, 500 Watt, continuous wave CO2 laser. A 254 mm (10-inch) focussing optics package was used. The width of the kerf varied with the material, and values were determined at between 0.2 and 0.7 mm. Particle size distribution analysis and rates of particulate emission for each cloth were determined. Gases were collected in gas sample bags and analyzed using Fourier transform infrared analysis. Low boiling point organics were collected on activated charcoal tubes, identified on a gas chromatograph mass spectrometer, and quantified on a gas chromatograph. Inorganic contaminants were collected on filter paper and analysed on an inductively coupled plasma atomic emission spectrometer. A number of different effluent control systems were evaluated. Due to the very fine and sticky nature of the particulate, filters capable of removing particulate sizes in the 10 μm or lower range, tend to clog rapidly. Laboratory scale models of wet scrubbers, and electrostatic precipitators were built and tested. The most effective dust and effluent gas control was given by a wet electrostatic precipitator. This system, in conjunction with a scrubber, should maintain emission levels within environmental standards.

  7. Automotive turbogenerator design options

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, C. [ITC, San Diego, CA (United States); McDonald, C. [McDonald Thermal Engineering, La Jolla, CA (United States)

    1998-12-31

    For the small turbogenerator to find reception in the hybrid electric automotive market its major features must be dominated by the following considerations, low cost, high performance, low emissions, compact size and high reliability. Not meeting the first two criteria has been the nemesis of earlier attempts to introduce the small gas turbine for automotive service. With emphasis on the design for low cost and high performance, this paper presents several turbogenerator design flowpath configuration options for the major engine components. The projected evolution from today`s state-of-the-art all metallic engines, to advanced technology ceramic units for service in the early decade of the 21st century, is the major topic of this paper. (author)

  8. Ceramics technology for advanced industrial gas turbines

    International Nuclear Information System (INIS)

    Anson, D.; Sheppard, W.J.; DeCorso, M.; Parks, W.J. Jr.

    1991-01-01

    Recent developments in the fabrication of high strength ceramic materials and in their application to automotive and aerospace gas turbine engines may lead also to significant improvements in the performance of industrial gas turbines. This paper presents a brief review of the improvements projected in a study initiated by the U.S. Department of Energy. The future costs of power generated by small gas turbines (up to 25 MW) are predicted, as well as the potential for fuel savings. Gas turbines in this size range are used extensively for gas compression and for cogeneration, as well as in a variety of more diverse applications. This paper includes results of analyses of the ways in which changes in gas turbine cost and performance are likely to affect market penetration. These results lead to predictions of future savings in U.S. fuel consumption in the industrial sector that would result. The paper also presents a brief overview of the scope of a suggested R and D program, with an appropriate schedule, which would provide a technical basis for achieving the projected results. Important parts of this program would cover ceramic design and fabrication technology, engine development and demonstration, and combustion technology

  9. Low Cost Advanced Thermoelectric (TE) Technology for Automotive Waste Heat Recovery

    Science.gov (United States)

    Meisner, G. P.

    2014-03-01

    Low cost, fully integrated TE generators (TEGs) to recover waste heat from vehicle exhaust will reduce transportation sector energy consumption and emissions. TEGs will be the first application of high-temperature TE materials for high-volume use and establish new industrial sectors with scaled up production capability of TEG materials and components. We will create a potential supply chain for practical automotive TEGs and identify manufacturing and assembly processes for large scale production of TEG materials and components. Our work focusses on several innovative R&D paths: (1) enhanced TE material performance by doping and compositional tuning, (2) optimized TE material fabrication and processing to reduce thermal conductivity and improve fracture strength, (3) high volume production for successful skutterudite commercialization, (4) new material, nanostructure, and nanoscale approaches to reduce thermal interface and electrical contact resistances, (5) innovative heat exchangers for high efficiency heat flows and optimum temperature profiles despite highly variable exhaust gas operating conditions, (6) new modeling and simulation tools, and (7) inexpensive materials for thermal insulation and coatings for TE encapsulation. Recent results will be presented. Supported by the U.S. DOE Vehicle Technology Program.

  10. Advanced Emergency Braking Controller Design for Pedestrian Protection Oriented Automotive Collision Avoidance System

    Directory of Open Access Journals (Sweden)

    Guo Lie

    2014-01-01

    Full Text Available Automotive collision avoidance system, which aims to enhance the active safety of the vehicle, has become a hot research topic in recent years. However, most of the current systems ignore the active protection of pedestrian and other vulnerable groups in the transportation system. An advanced emergency braking control system is studied by taking into account the pedestrians and the vehicles. Three typical braking scenarios are defined and the safety situations are assessed by comparing the current distance between the host vehicle and the obstacle with the critical braking distance. To reflect the nonlinear time-varying characteristics and control effect of the longitudinal dynamics, the vehicle longitudinal dynamics model is established in CarSim. Then the braking controller with the structure of upper and lower layers is designed based on sliding mode control and the single neuron PID control when confronting deceleration or emergency braking conditions. Cosimulations utilizing CarSim and Simulink are finally carried out on a CarSim intelligent vehicle model to explore the effectiveness of the proposed controller. Results display that the designed controller has a good response in preventing colliding with the front vehicle or pedestrian.

  11. Advanced emergency braking controller design for pedestrian protection oriented automotive collision avoidance system.

    Science.gov (United States)

    Lie, Guo; Zejian, Ren; Pingshu, Ge; Jing, Chang

    2014-01-01

    Automotive collision avoidance system, which aims to enhance the active safety of the vehicle, has become a hot research topic in recent years. However, most of the current systems ignore the active protection of pedestrian and other vulnerable groups in the transportation system. An advanced emergency braking control system is studied by taking into account the pedestrians and the vehicles. Three typical braking scenarios are defined and the safety situations are assessed by comparing the current distance between the host vehicle and the obstacle with the critical braking distance. To reflect the nonlinear time-varying characteristics and control effect of the longitudinal dynamics, the vehicle longitudinal dynamics model is established in CarSim. Then the braking controller with the structure of upper and lower layers is designed based on sliding mode control and the single neuron PID control when confronting deceleration or emergency braking conditions. Cosimulations utilizing CarSim and Simulink are finally carried out on a CarSim intelligent vehicle model to explore the effectiveness of the proposed controller. Results display that the designed controller has a good response in preventing colliding with the front vehicle or pedestrian.

  12. European Automotive Congress

    CERN Document Server

    Clenci, Adrian

    2016-01-01

    The volume includes selected and reviewed papers from the European Automotive Congress held in Bucharest, Romania, in November 2015. Authors are experts from research, industry and universities coming from 14 countries worldwide. The papers are covering the latest developments in fuel economy and environment, automotive safety and comfort, automotive reliability and maintenance, new materials and technologies, traffic and road transport systems, advanced engineering methods and tools, as well as advanced powertrains and hybrid and electric drives.

  13. Hydrodynamic air lubricated compliant surface bearing for an automotive gas turbine engine. 2: Materials and coatings

    Science.gov (United States)

    Bhushan, B.; Ruscitto, D.; Gray, S.

    1978-01-01

    Material coatings for an air-lubricated, compliant journal bearing for an automotive gas turbine engine were exposed to service test temperatures of 540 C or 650 C for 300 hours, and to 10 temperature cycles from room temperatures to the service test temperatures. Selected coatings were then put on journal and partial-arc foils and tested in start-stop cycle tests at 14 kPa (2 psi) loading for 2000 cycles. Half of the test cycles were performed at a test chamber service temperature of 540 C (1000 F) or 650 C (1200 F); the other half were performed at room temperature. Based on test results, the following combinations and their service temperature limitations are recommended: HL-800 TM (CdO and graphite) on foil versus chrome carbide on journal up to 370 C (700 F); NASA PS 120 (Tribaloy 400, silver and CaF2 on journal versus uncoated foil up to 540 C (1000 F); and Kaman DES on journal and foil up to 640 C (1200 F). Kaman DES coating system was further tested successfully at 35 kPa (5 psi) loading for 2000 start-stop cycles.

  14. Pyrolysis of automotive shredder residue for the production of fuel-grade gas

    International Nuclear Information System (INIS)

    Sharp, L.L.; Ness, R.O. Jr.

    1993-01-01

    Every year eight to ten million cars and trucks are disposed of by shredding at one of the 200 auto shredders located in the United States. Automotive shredder residue (ASR) is a by-product created in the dismantling of automobiles. Figure 1 illustrates the process by which ASR is generated. An automobile is stripped of useful and/or hazardous items, such as the gas tank, battery, tires, and radiator. Although it is beneficial to have these items removed for safety and environmental concerns, this is not always accomplished. After removal of some or all of these items, the automobile is shredded to provide a material less than 4 inches in size and composed of approximately 50% organic and 50% inorganic fractions. Ferrous scrap is then separated out magnetically. This ferrous scrap supplies the steel industry with 12 to 14 million tons per year for electric arc furnace feedstock. Air cyclone separators isolate a low density open-quotes fluffclose quotes from the nonferrous fraction (aluminum, copper, etc.). This fluff (shredder residue) is composed of a variety of plastics, fabrics, foams, glass, rubber, and an assortment of contaminants. Fluff bulk density is approximately 20 lb/ft

  15. Advanced technology for aero gas turbine components

    Energy Technology Data Exchange (ETDEWEB)

    1987-09-01

    The Symposium is aimed at highlighting the development of advanced components for new aero gas turbine propulsion systems in order to provide engineers and scientists with a forum to discuss recent progress in these technologies and to identify requirements for future research. Axial flow compressors, the operation of gas turbine engines in dust laden atmospheres, turbine engine design, blade cooling, unsteady gas flow through the stator and rotor of a turbomachine, gear systems for advanced turboprops, transonic blade design and the development of a plenum chamber burner system for an advanced VTOL engine are among the topics discussed.

  16. Dual-fuelling of a direct-injection automotive diesel engine by diesel and compressed natural gas

    International Nuclear Information System (INIS)

    Pirouzpanah, V.; Mohammadi Kosha, A.; Mosseibi, A.; Moshirabadi, J.; Gangi, A.; Moghadaspour, M.

    2000-01-01

    Application of Compressed Natural Gas in diesel engines has always been important, especially in the field of automotive engineering. This is due to easy accessibility, better mixing quality and good combustion characteristics of the Compressed Natural Gas fuel. In this study the application of Compressed Natural Gas fuel along with diesel oil in a heavy duty direct-injection automotive diesel engine is experimentally investigated. In order to convert a diesel engine into a diesel-gas one, the so called m ixed diesel-gas a pproach has been used and for this purpose a carbureted Compressed Natural Gas fuel system has been designed and manufactured. For controlling quantity of Compressed Natural Gas, the gas valve is linked to the diesel fuel injection system by means of a set of rods. Then, the dual-fuel system is adjusted so that, at full load conditions, the quantity of diesel fuel is reduced to 20% and 80% of its equivalent energy is substituted by Compressed Natural Gas fuel. Also injection pressure of pilot jet is increased by 11.4%. Performance and emission tests are conducted under variation of load and speed on both diesel and diesel-gas engines. Results show that, with equal power and torque, the diesel-gas engine has the potential to improve overall engine performance and emission. For example, at rated power and speed, fuel economy increases by 5.48%, the amount of smoke decreases by 78%, amount of CO decreases by 64.3% and mean exhaust gas temperature decreases by 6.4%

  17. Advances in gas avalanche photomultipliers

    CERN Document Server

    Breskin, Amos; Buzulutskov, A F; Chechik, R; Garty, E; Shefer, G; Singh, B K

    2000-01-01

    Gas avalanche detectors, combining solid photocathodes with fast electron multipliers, provide an attractive solution for photon localization over very large sensitive areas and under high illumination flux. They offer single-photon sensitivity and the possibility of operation under very intense magnetic fields. We discuss the principal factors governing the operation of gas avalanche photomultipliers. We summarize the recent progress made in alkali-halide and CVD-diamond UV-photocathodes, capable of operation under gas multiplication, and novel thin-film protected alkali-antimonide photocathodes, providing, for the first time, the possibility of operating gas photomultipliers in the visible range. Electron multipliers, adequate for these photon detectors, are proposed and some applications are briefly discussed.

  18. Development and performance measurement of micro-power pack using micro-gas turbine driven automotive alternators

    International Nuclear Information System (INIS)

    Sim, Kyuho; Koo, Bonjin; Kim, Chang Ho; Kim, Tae Ho

    2013-01-01

    Highlights: ► We develop micro-power pack using automotive alternator and micro-gas turbine. ► We measure rotordynamic and power generation performance of micro-power pack. ► Micro-power pack shows dramatic increases in mass and volumetric power densities. ► Test results assure feasibility of micro-power pack for electric vehicles. -- Abstract: This paper presents the development of a micro-power pack using automotive alternators powered by a micro-gas turbine (MGT) to recharge battery packs, in particular for electric vehicles (EVs). The thermodynamic efficiency for the MGT with the power turbine is estimated from a simple Brayton cycle analysis. The rotordynamic and power generation performance of the MGT driven alternator was measured during a series of experiments under electrical no-loading and loading conditions, and with belt-pulley and flexible bellows couplings. The flexible coupling showed superior rotordynamic and power generation performance than the belt coupling due to the enhanced alignment of the alternator rotor and the reduced mechanical frictions. Furthermore, the micro-power pack showed dramatic increases in the mass and volumetric power densities by ∼4 times and ∼5 times, respectively, compared with those of a commercial diesel generator with similar power level. As a result, this paper assures the feasibility of the light-weight micro-power pack using a MGT and automotive alternators for EVs.

  19. Advanced ultrasonic technology for natural gas measurement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    In recent years, due to rising environmental and safety concerns, increasing commodity prices, and operational inefficiencies, a paradigm shift has been taking place with respect to gas measurement. The price of natural gas depends on the location, time of the year, and type of consumer. There is wide uncertainty associated with an orifice meter. This paper presents the use of advanced ultrasonic technology for the measurement of natural gas. For many years, multi-path ultrasonic meters with intelligent sensor technology have been used for gas measurement. This paper gives the various applications of ultrasonic technology along with their advantages and a draws a comparison with orifice meters. From the study it can be concluded that extensive advances in the use of ultrasonic technology for gas measurement have widened the areas of application and that varying frequencies combined with sealed transducer designs make it possible to measure atmospheric and sour gas in custody transfer process control and flaring accurately.

  20. Advancing agricultural greenhouse gas quantification*

    Science.gov (United States)

    Olander, Lydia; Wollenberg, Eva; Tubiello, Francesco; Herold, Martin

    2013-03-01

    given to methods appropriate to low-income countries, where strategies are needed for getting robust data with extremely limited resources in order to support national mitigation planning within widely accepted standards and thus provide access to essential international support, including climate funding. Managing agricultural emissions needs to occur in tandem with managing for agricultural productivity, resilience to climate change, and ecosystem impacts. Management decisions and priorities will require measures and information that identify GHG efficiencies in production and reduce inputs without reducing yields, while addressing climate resilience and maintaining other essential environmental services, such as water quality and support for pollinators. Another set of papers in this issue considers the critical synergies and tradeoffs possible between these multiple objectives of mitigation, resilience, and production efficiency to help us understand how we need to tackle these in our quantification systems. Significant capacity to quantify greenhouse gases is already built, and with some near-term strategic investment, could become an increasingly robust and useful tool for planning and development in the agricultural sector around the world. Acknowledgments The Climate Change Agriculture and Food Security Program of the Consultative Group on International Agricultural Research, the Technical Working Group on Agricultural Greenhouse Gases (T-AGG) at Duke University's Nicholas Institute for Environmental Policy Solutions, and the United Nations Food and Agriculture Organization (FAO) have come together to guide the development of this focus issue and associated activities and papers, given their common desire to improve our understanding of the state of agricultural greenhouse gas (GHG) quantification and to advance ideas for building data and methods that will help mitigation policy and programs move forward around the world. We thank the David and Lucile Packard

  1. Lightweighting Automotive Materials for Increased Fuel Efficiency and Delivering Advanced Modeling and Simulation Capabilities to U.S. Manufacturers

    Energy Technology Data Exchange (ETDEWEB)

    Hale, Steve

    2013-09-11

    Abstract The National Center for Manufacturing Sciences (NCMS) worked with the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), to bring together research and development (R&D) collaborations to develop and accelerate the knowledgebase and infrastructure for lightweighting materials and manufacturing processes for their use in structural and applications in the automotive sector. The purpose/importance of this DOE program: • 2016 CAFÉ standards. • Automotive industry technology that shall adopt the insertion of lightweighting material concepts towards manufacturing of production vehicles. • Development and manufacture of advanced research tools for modeling and simulation (M&S) applications to reduce manufacturing and material costs. • U.S. competitiveness that will help drive the development and manufacture of the next generation of materials. NCMS established a focused portfolio of applied R&D projects utilizing lightweighting materials for manufacture into automotive structures and components. Areas that were targeted in this program: • Functionality of new lightweighting materials to meet present safety requirements. • Manufacturability using new lightweighting materials. • Cost reduction for the development and use of new lightweighting materials. The automotive industry’s future continuously evolves through innovation, and lightweight materials are key in achieving a new era of lighter, more efficient vehicles. Lightweight materials are among the technical advances needed to achieve fuel/energy efficiency and reduce carbon dioxide (CO2) emissions: • Establish design criteria methodology to identify the best materials for lightweighting. • Employ state-of-the-art design tools for optimum material development for their specific applications. • Match new manufacturing technology to production volume. • Address new process variability with new production-ready processes.

  2. Ceramic technologies for automotive industry: Current status and perspectives

    International Nuclear Information System (INIS)

    Okada, Akira

    2009-01-01

    The automotive industry has developed substantially through advances in mechanical technologies, and technologies such as electronics and advanced materials have also contributed to further advances in automobiles. The contribution of ceramic materials to automobile technologies ranges over driving performance, exhaust gas purification, and fuel efficiency improvements. Several ceramic components, such as knock sensors, oxygen sensors, exhaust gas catalysts, and silicon nitride parts for automotive engines, have been successfully applied to automobiles. This paper focuses on the contribution of ceramics to automotive technologies. It also mentions potential contributions in the future, including adiabatic turbo-compound diesels, ceramic gas turbines, fuel cells, and electric vehicles because ceramic technologies have been intensively involved in the challenge to achieve advanced power sources.

  3. Combustion modeling in advanced gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Smoot, L.D.; Hedman, P.O.; Fletcher, T.H. [Brigham Young Univ., Provo, UT (United States)] [and others

    1995-10-01

    The goal of the U.S. Department of Energy`s Advanced Turbine Systems (ATS) program is to help develop and commercialize ultra-high efficiency, environmentally superior, and cost competitive gas turbine systems for base-load applications in the utility, independent power producer, and industrial markets. Combustion modeling, including emission characteristics, has been identified as a needed, high-priority technology by key professionals in the gas turbine industry.

  4. Advanced IGCC/Hydrogen Gas Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    York, William [General Electric Company, Schenectady, NY (United States); Hughes, Michael [General Electric Company, Schenectady, NY (United States); Berry, Jonathan [General Electric Company, Schenectady, NY (United States); Russell, Tamara [General Electric Company, Schenectady, NY (United States); Lau, Y. C. [General Electric Company, Schenectady, NY (United States); Liu, Shan [General Electric Company, Schenectady, NY (United States); Arnett, Michael [General Electric Company, Schenectady, NY (United States); Peck, Arthur [General Electric Company, Schenectady, NY (United States); Tralshawala, Nilesh [General Electric Company, Schenectady, NY (United States); Weber, Joseph [General Electric Company, Schenectady, NY (United States); Benjamin, Marc [General Electric Company, Schenectady, NY (United States); Iduate, Michelle [General Electric Company, Schenectady, NY (United States); Kittleson, Jacob [General Electric Company, Schenectady, NY (United States); Garcia-Crespo, Andres [General Electric Company, Schenectady, NY (United States); Delvaux, John [General Electric Company, Schenectady, NY (United States); Casanova, Fernando [General Electric Company, Schenectady, NY (United States); Lacy, Ben [General Electric Company, Schenectady, NY (United States); Brzek, Brian [General Electric Company, Schenectady, NY (United States); Wolfe, Chris [General Electric Company, Schenectady, NY (United States); Palafox, Pepe [General Electric Company, Schenectady, NY (United States); Ding, Ben [General Electric Company, Schenectady, NY (United States); Badding, Bruce [General Electric Company, Schenectady, NY (United States); McDuffie, Dwayne [General Electric Company, Schenectady, NY (United States); Zemsky, Christine [General Electric Company, Schenectady, NY (United States)

    2015-07-30

    The objective of this program was to develop the technologies required for a fuel flexible (coal derived hydrogen or syngas) gas turbine for IGCC that met DOE turbine performance goals. The overall DOE Advanced Power System goal was to conduct the research and development (R&D) necessary to produce coal-based IGCC power systems with high efficiency, near-zero emissions, and competitive capital cost. To meet this goal, the DOE Fossil Energy Turbine Program had as an interim objective of 2 to 3 percentage points improvement in combined cycle (CC) efficiency. The final goal is 3 to 5 percentage points improvement in CC efficiency above the state of the art for CC turbines in IGCC applications at the time the program started. The efficiency goals were for NOx emissions of less than 2 ppm NOx (@15 % O2). As a result of the technologies developed under this program, the DOE goals were exceeded with a projected 8 point efficiency improvement. In addition, a new combustion technology was conceived of and developed to overcome the challenges of burning hydrogen and achieving the DOE’s NOx goal. This report also covers the developments under the ARRA-funded portion of the program that include gas turbine technology advancements for improvement in the efficiency, emissions, and cost performance of gas turbines for industrial applications with carbon capture and sequestration. Example applications could be cement plants, chemical plants, refineries, steel and aluminum plants, manufacturing facilities, etc. The DOE’s goal for more than 5 percentage point improvement in efficiency was met with cycle analyses performed for representative IGCC Steel Mill and IGCC Refinery applications. Technologies were developed in this program under the following areas: combustion, larger latter stage buckets, CMC and EBC, advanced materials and coatings, advanced configurations to reduce cooling, sealing and rotor purge flows, turbine aerodynamics, advanced sensors, advancements in first

  5. Automotive Technology Skill Standards

    Science.gov (United States)

    Garrett, Tom; Asay, Don; Evans, Richard; Barbie, Bill; Herdener, John; Teague, Todd; Allen, Scott; Benshoof, James

    2009-01-01

    The standards in this document are for Automotive Technology programs and are designed to clearly state what the student should know and be able to do upon completion of an advanced high-school automotive program. Minimally, the student will complete a three-year program to achieve all standards. Although these exit-level standards are designed…

  6. Advanced gas-cooled reactors (AGR)

    Energy Technology Data Exchange (ETDEWEB)

    Yeomans, R. M. [South of Scotland Electricity Board, Hunterston Power Station, West Kilbride, Ayshire, UK

    1981-01-15

    The paper describes the advanced gas-cooled reactor system, Hunterston ''B'' power station, which is a development of the earlier natural uranium Magnox type reactor. Data of construction, capital cost, operating performance, reactor safety and also the list of future developments are given.

  7. The California greenhouse gas initiative and its implications to the automotive industry

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B. C.; Miller, R. T.; Center for Automotive Research

    2006-05-31

    CAR undertook this investigation to better understand the costs and challenges of a local (state) regulation necessitating the implementation of alternative or advanced powertrain technology. CAR will attempt to add insight into the challenges that local regulations present to the automotive industry, and to contribute further to the discussion of how advanced powertrain technology may be used to meet such regulation. Any local law that (directly or indirectly) affects light duty motor vehicle fuel economy creates what in effect is a specialty market for powertrain technology. As such these small markets present significant challenges for automotive manufacturers. First, a small market with unique standards presents significant challenges to an industry that has sustained growth by relying on large volumes to achieve scale economies and deliver products at a cost acceptable to the consumer. Further, the challenges of the additional technology make it likely that any powertrain capable of meeting the stringent emissions standards will include costly additional components, and thus will be more costly to manufacture. It is likely that manufacturers would consider the following actions as steps to deliver products to meet the pending California regulatory requirements anticipated as a result of prior California legislation: (1) Substituting more fuel efficient vehicles: Bring in more efficient vehicles from global operations, while likely dropping existing domestic products. (2) Substituting powertrains: Add existing downsized engines (i.e. turbocharged versions, etc.) into California market-bound vehicles. (3) Powertrain enhancements: Add technology to current engine and transmission offerings to improve efficiency and reduce emissions. (4) Incorporating alternative powertrains into existing vehicle platforms: Develop a hybrid or other type of powertrain for an existing vehicle. (5) New powertrains and new platforms: Develop vehicles specifically intended to

  8. Advanced thermoelectric materials and systems for automotive applications in the next millennium

    Energy Technology Data Exchange (ETDEWEB)

    Morelli, D T

    1997-07-01

    A combination of environmental, economic, and technological drivers has led to a reassessment of the potential for using thermoelectric devices in several automotive applications. In order for this technology to achieve its ultimate potential, new materials with enhanced thermoelectric properties are required. Experimental results on the fundamental physical properties of some new thermoelectric materials, including filled skutterudites and 1-1-1 intermetallic semiconductors, are presented.

  9. Advanced high temperature materials for the energy efficient automotive Stirling engine

    International Nuclear Information System (INIS)

    Titran, R.H.; Stephens, J.R.

    1984-01-01

    The Stirling engine is under investigation jointly by the Department of Energy and NASA Lewis as an alternative to the internal combustion engine for automotive applications. The Stirling engine is an external combustion engine that offers the advantage of high fuel economy, low emissions, low noise, and low vibrations compared to current internal combustion automotive engines. The most critical component from a materials viewpoint is the heater head consisting of the cylinders, heating tubes, and regenerator housing. Materials requirements for the heater head include compatibility with hydrogen, resistance to hydrogen permeation, high temperature oxidation/corrosion resistance, and high temperature creep-rupture and fatigue properties. A continuing supporting materials research and technology program has identified the wrought alloys CG-27 and 12RN72, and the cast alloys XF-818 and NASAUT 4G-A1 as candidate replacements for the cobalt containing alloys used in current prototype engines. Based on the materials research program in support of the automotive Stirling engine it is concluded that manufacture of the engine is feasible from low cost iron-base alloys rather than the cobalt alloys used in prototype engines. This paper presents results of research that led to this conclusion

  10. Cost Benefit Analysis of Using Clean Energy Supplies to Reduce Greenhouse Gas Emissions of Global Automotive Manufacturing

    Directory of Open Access Journals (Sweden)

    Xiang Zhao

    2011-09-01

    Full Text Available Automotive manufacturing is energy-intensive. The consumed energy contributes to the generation of significant amounts of greenhouse gas (GHG emissions by the automotive manufacturing industry. In this paper, a study is conducted on assessing the application potential of such clean energy power systems as solar PV, wind and fuel cells in reducing the GHG emissions of the global auto manufacturing industry. The study is conducted on the representative solar PV, wind and fuel cell clean energy systems available on the commercial market in six representative locations of GM’s global facilities, including the United States, Mexico, Brazil, China, Egypt and Germany. The results demonstrate that wind power is superior to other two clean energy technologies in the economic performance of the GHG mitigation effect. Among these six selected countries, the highest GHG emission mitigation potential is in China, through wind power supply. The maximum GHG reduction could be up to 60 tons per $1,000 economic investment on wind energy supply in China. The application of wind power systems in the United States and Germany could also obtain relatively high GHG reductions of between 40–50 tons per $1,000 economic input. When compared with wind energy, the use of solar and fuel cell power systems have much less potential for GHG mitigation in the six countries selected. The range of median GHG mitigation values resulting from solar and wind power supply are almost at the same level.

  11. Advanced coal-fueled gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Wenglarz, R.A.

    1994-08-01

    Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

  12. Properties of rapidly solidified Fe-Cr-Al ribbons for the use as automotive exhaust gas catalyst substrates

    International Nuclear Information System (INIS)

    Emmerich, K.

    1993-01-01

    Metallic honeycomb structures are used as catalyst substrates in automotive exhaust gas systems. This application requires an outstanding corrosion resistance at elevated temperatures of the substrate material. Technical improvements can be achieved by the use of rapid solidification technology for the production of the Fe-Cr-Al ribbons since the Al content can be substantially increased from about 5% Al in the conventionally rolled material to about 12% Al in the rapid solidified ribbon. As a result the lifetime of the ribbon in a higher-temperature corrosion environment is drastically increased. In addition the scale/metal adherance is improved. The impediment of recrystallization in the rapidly solidified ribbons prevents an embrittlement even in carbonizing atmospheres. (orig.)

  13. Advanced Microsystems for Automotive Applications 2015 : Smart Systems for Green and Automated Driving

    CERN Document Server

    Müller, Beate; Meyer, Gereon

    2016-01-01

    This edited volume presents the proceedings of the AMAA 2015 conference, Berlin, Germany. The topical focus of the 2015 conference lies on smart systems for green and automated driving. The automobile of the future has to respond to two major trends, the electrification of the drivetrain, and the automation of the transportation system. These trends will not only lead to greener and safer driving but re-define the concept of the car completely, particularly if they interact with each other in a synergetic way as for autonomous parking and charging, self-driving shuttles or mobile robots. Key functionalities like environment perception are enabled by electronic components and systems, sensors and actuators, communication nodes, cognitive systems and smart systems integration. The book will be a valuable read for research experts and professionals in the automotive industry but the book may also be beneficial for graduate students.

  14. Evolutions of Advanced Stamping CAE -- Technology Adventures and Business Impact on Automotive Dies and Stamping

    International Nuclear Information System (INIS)

    Wang Chuantao

    2005-01-01

    In the past decade, sheet metal forming and die development has been transformed to a science-based and technology-driven engineering and manufacturing enterprise from a tryout-based craft. Stamping CAE, especially the sheet metal forming simulation, as one of the core components in digital die making and digital stamping, has played a key role in this historical transition. The stamping simulation technology and its industrial applications have greatly impacted automotive sheet metal product design, die developments, die construction and tryout, and production stamping. The stamping CAE community has successfully resolved the traditional formability problems such as splits and wrinkles. The evolution of the stamping CAE technology and business demands opens even greater opportunities and challenges to stamping CAE community in the areas of (1) continuously improving simulation accuracy, drastically reducing simulation time-in-system, and improving operationalability (friendliness) (2) resolving those historically difficult-to-resolve problems such as dimensional quality problems (springback and twist) and surface quality problems (distortion and skid/impact lines) (3) resolving total manufacturability problems in line die operations including blanking, draw/redraw, trim/piercing, and flanging, and (4) overcoming new problems in forming new sheet materials with new forming techniques. In this article, the author first provides an overview of the stamping CAE technology adventures and achievements, and industrial applications in the past decade. Then the author presents a summary of increasing manufacturability needs from the formability to total quality and total manufacturability of sheet metal stampings. Finally, the paper outlines the new needs and trends for continuous improvements and innovations to meet increasing challenges in line die formability and quality requirements in automotive stamping

  15. Evolutions of Advanced Stamping CAE — Technology Adventures and Business Impact on Automotive Dies and Stamping

    Science.gov (United States)

    Wang, Chuantao (C. T.)

    2005-08-01

    In the past decade, sheet metal forming and die development has been transformed to a science-based and technology-driven engineering and manufacturing enterprise from a tryout-based craft. Stamping CAE, especially the sheet metal forming simulation, as one of the core components in digital die making and digital stamping, has played a key role in this historical transition. The stamping simulation technology and its industrial applications have greatly impacted automotive sheet metal product design, die developments, die construction and tryout, and production stamping. The stamping CAE community has successfully resolved the traditional formability problems such as splits and wrinkles. The evolution of the stamping CAE technology and business demands opens even greater opportunities and challenges to stamping CAE community in the areas of (1) continuously improving simulation accuracy, drastically reducing simulation time-in-system, and improving operationalability (friendliness), (2) resolving those historically difficult-to-resolve problems such as dimensional quality problems (springback and twist) and surface quality problems (distortion and skid/impact lines), (3) resolving total manufacturability problems in line die operations including blanking, draw/redraw, trim/piercing, and flanging, and (4) overcoming new problems in forming new sheet materials with new forming techniques. In this article, the author first provides an overview of the stamping CAE technology adventures and achievements, and industrial applications in the past decade. Then the author presents a summary of increasing manufacturability needs from the formability to total quality and total manufacturability of sheet metal stampings. Finally, the paper outlines the new needs and trends for continuous improvements and innovations to meet increasing challenges in line die formability and quality requirements in automotive stamping.

  16. AGT101 Advanced Gas Turbine Technology update

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, G.L.; Kidwell, J.R.; Kreiner, D.M.

    1986-01-01

    The Garrett/Ford Advanced Gas Turbine Technology Development Program, designated AGT101, has made significant progress during 1985 encompassing ceramic engine and ceramic component testing. Engine testing has included full speed operation to 100,000 rpm and 1149C (2100F) turbine inlet temperature, initial baseline performance mapping and ceramic combustor start and steady state operation. Over 380 hours of test time have been accumulated on four development engines. High temperature foil bearing coatings have passed rig test and a thick precious metal foil coating selected for engine evaluation. Ceramic structures have been successfully rig tested at 1371C (2500F) for over 27 hours.

  17. Advanced computational simulation for design and manufacturing of lightweight material components for automotive applications

    Energy Technology Data Exchange (ETDEWEB)

    Simunovic, S.; Aramayo, G.A.; Zacharia, T. [Oak Ridge National Lab., TN (United States); Toridis, T.G. [George Washington Univ., Washington, DC (United States); Bandak, F.; Ragland, C.L. [Dept. of Transportation, Washington, DC (United States)

    1997-04-01

    Computational vehicle models for the analysis of lightweight material performance in automobiles have been developed through collaboration between Oak Ridge National Laboratory, the National Highway Transportation Safety Administration, and George Washington University. The vehicle models have been verified against experimental data obtained from vehicle collisions. The crashed vehicles were analyzed, and the main impact energy dissipation mechanisms were identified and characterized. Important structural parts were extracted and digitized and directly compared with simulation results. High-performance computing played a key role in the model development because it allowed for rapid computational simulations and model modifications. The deformation of the computational model shows a very good agreement with the experiments. This report documents the modifications made to the computational model and relates them to the observations and findings on the test vehicle. Procedural guidelines are also provided that the authors believe need to be followed to create realistic models of passenger vehicles that could be used to evaluate the performance of lightweight materials in automotive structural components.

  18. Assessment of institutional barriers to the use of natural gas fuel in automotive vehicle fleets

    Science.gov (United States)

    Jablonski, J.; Lent, L.; Lawrence, M.; White, L.

    1983-01-01

    Institutional barriers to the use of natural gas as a fuel for motor vehicle fleets were identified. Recommendations for barrier removal were developed. Eight types of institutional barriers were assessed: (1) lack of a national standard for the safe design and certification of natural gas vehicles and refueling stations; (2) excessively conservative or misapplied state and local regulations, including bridge and tunnel restrictions, restrictions on types of vehicles that may be fueled by natural gas, zoning regulations that prohibit operation of refueling stations, parking restrictions, application of LPG standards to LNG vehicles, and unintentionally unsafe vehicle or refueling station requirements; (3) need for clarification of EPA's tampering enforcement policy; (4) the U.S. hydrocarbon standard; (5) uncertainty concerning state utility commission jurisdiction; (6) sale for resale prohibitions imposed by natural gas utility companies or state utility commissions; (7) uncertainty of the effects of conversions to natural gas on vehicle manufactures warranties; and (8) need for a natural gas to gasoline equivalent units conversion factor for use in calculation of state road use taxes.

  19. AGT 101 - Advanced Gas Turbine technology update

    Energy Technology Data Exchange (ETDEWEB)

    Kidwell, J.R.; Kreiner, D.M.

    1985-03-01

    The Advanced Gas Turbine (AGT) 101 program has made significant progress during 1984 in ceramic component and engine test bed development, including initial ceramic engine testing. All ceramic components for the AGT 101 (1644 K) engine are now undergoing development. Ceramic structures have been undergoing extensive analysis, design modification, and rig testing. AGT 101 (1644 K) start capability has been demonstrated in rig tests. Also, 1644 K steady-state testing has been initiated in the test rigs to obtain a better understanding of ceramics in that environment. The ceramic turbine rotor has progressed through cold spin test 12,040 rad/sec and hot turbine rig test, and is currently in initial phases of engine test. Over 400 hours of engine testing is expected by March 1985, including approximately 150 hours of operation and 50 starts on the 1422 K engine. All activities are progressing toward 1644 K engine testing in mid-1985.

  20. ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

    International Nuclear Information System (INIS)

    Charles M. Boyer II; Ronald J. MacDonald P.G.

    2001-01-01

    As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger-Holditch Reservoir Technologies (H-RT) has joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden and Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners have provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We are currently in the final stages of developing and testing our new Microsoft(trademark) Access/Excel based software. We will be processing this well data and identifying potential candidate wells that can be used in Phase 2 to validate these methodologies. Preparation of the final technical report is underway

  1. ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

    International Nuclear Information System (INIS)

    Charles M. Boyer II; Ronald J. MacDonald P.G.

    2001-01-01

    As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger-Holditch Reservoir Technologies (H-RT) has joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden and Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners have provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We have continued to enhance and streamline our software, and we are testing the final stages of our new Microsoft(trademark) Access/Excel based software. We are continuing to process this well data and are identifying potential candidate wells that can be used in Phase 2 to validate the new methodologies. In addition, preparation of the final technical report is underway

  2. Parametric tests of a traction drive retrofitted to an automotive gas turbine

    Science.gov (United States)

    Rohn, D. A.; Lowenthal, S. H.; Anderson, N. E.

    1980-01-01

    The results of a test program to retrofit a high performance fixed ratio Nasvytis Multiroller Traction Drive in place of a helical gear set to a gas turbine engine are presented. Parametric tests up to a maximum engine power turbine speed of 45,500 rpm and to a power level of 11 kW were conducted. Comparisons were made to similar drives that were parametrically tested on a back-to-back test stand. The drive showed good compatibility with the gas turbine engine. Specific fuel consumption of the engine with the traction drive speed reducer installed was comparable to the original helical gearset equipped engine.

  3. Automotive Chassis; Automotive Mechanics-Basic: 9043.02.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This automotive chassis course is designed to familiarize the beginning student of the history and development of the automobile with basic concepts common to the automobile industry, and general information that is required for successful advancement in the automotive mechanics field. It is one quinmester in a series of quinmester outlines…

  4. Engineered Materials for Advanced Gas Turbine Engine, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop innovative composite powders and composites that will surpass the properties of currently identified materials for advanced gas turbine...

  5. Understanding the formative stage of technological innovation system development: The case of natural gas as an automotive fuel

    International Nuclear Information System (INIS)

    Suurs, Roald A.A.; Hekkert, Marko P.; Kieboom, Sander; Smits, Ruud E.H.M.

    2010-01-01

    This study contributes to insights into mechanisms that influence the successes and failures of emerging energy technologies. It is assumed that for an emerging technology to fruitfully develop, it should be fostered by a Technological Innovation System (TIS), which is the network of actors, institutions and technologies in which it is embedded. For an emerging technology a TIS has yet to be built up. This research focuses on the dynamics of this build-up process by mapping the development of seven key activities: so-called system functions. The main contribution revolves around the notion of cumulative causation, or the phenomenon that the build-up of a TIS accelerates due to system functions reinforcing each other over time. As an empirical basis, an analysis is provided of the historical development of the TIS around automotive natural gas technology in the Netherlands (1970-2007). The results show that this TIS undergoes a gradual build-up in the 1970s, followed by a breakdown in the 1980s and, again, a build-up from 2000 to 2007. It is shown that underlying these trends are different forms of cumulative causation, here called motors of innovation. The study provides strategic insights for practitioners that aspire to support such motors of innovation.

  6. Automotive exhaust gas conversion: from elementary step kinetics to prediction of emission dynamics

    NARCIS (Netherlands)

    Hoebink, J.H.B.J.; Harmsen, J.M.A.; Balenovic, M.; Backx, A.C.P.M.; Schouten, J.C.

    2001-01-01

    Elementary step based kinetics show a high added value to describe the performance of catalytic exhaust gas converters under dynamic conditions, as demonstrated with a Euro test cycle. Combination of such kinetic models for individual global reactions covers the mutual interactions via common

  7. Use of compressed natural gas in automotive vehicles; Uso del gas natural comprimido aplicado en vehiculos automotores

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez R, Adrian [Comision Nacional para el Ahorro de Energia (CONAE) (Mexico)

    2005-07-01

    The natural gas is natural origin energy (fossil fuel); it contains predominantly 90 percent methane; does not require transformation process for its use; is supplied the 24 hours to commerce, industries and homes by underground pipes; it is lighter than air; it is not corrosive, nor absorbent or toxic. For those reasons a study was performed where it is widely justified why the natural gas ought to be used in vehicles. [Spanish] El gas natural es un energetico de origen natural (combustible fosil), contiene predominantemente 90 por ciento de metano, no requiere proceso de transformacion para su utilizacion, llega directamente las 24 horas del dia a los hogares, comercios e industrias por tuberias subterraneas, es mas ligero que el aire, no es corrosivo, no es absorbente y no es toxico. Por esas razones se hizo un estudio donde se justifica ampliamente porque el gas natural debe utilizarse en vehiculos.

  8. Making aerospace technology work for the automotive industry - Introduction

    Science.gov (United States)

    Olson, W. T.

    1978-01-01

    In many cases it has been found that advances made in one technical field can contribute to other fields. An investigation is in this connection conducted concerning subjects from contemporary NASA programs and projects which might have relevance and potential usefulness to the automotive industry. Examples regarding aerospace developments which have been utilized by the automotive industry are related to electronic design, computer systems, quality control experience, a NASA combustion scanner and television display, exhaust gas analyzers, and a device for suppressing noise propagated through ducts. Projects undertaken by NASA's center for propulsion and power research are examined with respect to their value for the automotive industry. As a result of some of these projects, a gas turbine engine and a Stirling engine might each become a possible alternative to the conventional spark ignition engine.

  9. Investigation on dissimilar laser welding of advanced high strength steel sheets for the automotive industry

    Energy Technology Data Exchange (ETDEWEB)

    Rossini, M., E-mail: matteo.rossini@unibz.it [Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano (Italy); Spena, P. Russo, E-mail: pasquale.russospena@unibz.it [Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano (Italy); Cortese, L., E-mail: luca.cortese@unibz.it [Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano (Italy); Matteis, P., E-mail: paolo.matteis@polito.it [Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Firrao, D., E-mail: donato.firrao@polito.it [Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2015-03-25

    To support the use of advanced high strength steels in car body design and fabrication, an investigation was carried out on dissimilar butt laser welding between TWinning Induced Plasticity (TWIP) steels, Dual Phase (DP) steels, hot stamping boron (22MnB5) steels, and TRansformation Induced Plasticity (TRIP) steels. The base materials and the weldments were fully characterized by means of metallography, microhardness, and tensile tests. Digital image analysis was also used to provide additional information on the local strain field in the joint during the tensile tests. Fractographic examination was finally performed on the fracture surfaces of the tensile samples. The dissimilar joints between the DP, 22MnB5, and TRIP steels exhibit good resistance properties. On the contrary, the dissimilar joints encompassing the TWIP steel exhibit poor mechanical strength and fail along the weld seam by intergranular fracture, probably due to presence of Mn segregations. Therefore, the laser welding of TWIP steel with other advanced high strength steels is not recommended without the use of proper metal fillers. Dissimilar laser welding of DP, TRIP and 22MnB5 combinations, on the contrary, can be a solution to assemble car body parts made of these steel grades.

  10. Multiroller Traction Drive Speed Reducer. Evaluation for Automotive Gas Turbine Engine

    Science.gov (United States)

    1982-06-01

    Speed is deLermined by a magnetic pickup on a toothed wheel . Gas turbine engine instrumunelLtiouu i -designed 1f0r measurement of specific fuel...buffer seal and the fluid--film bearing measured a maximum total runout of 0.038 mm (0.0015 in.) at low speed. At higher speeds, above 8000 rpm, the...maximum was 0.025 mm (0.001 in.) except near 10 000 rpm, where the oscilloscope indicated an excursion of 0.045 mm (0.0018 in.). This runout was within

  11. Advanced gas cooled reactors - Designing for safety

    International Nuclear Information System (INIS)

    Keen, Barry A.

    1990-01-01

    The Advanced Gas-Cooled Reactor Power Stations recently completed at Heysham in Lancashire, England, and Torness in East Lothian, Scotland represent the current stage of development of the commercial AGR. Each power station has two reactor turbo-generator units designed for a total station output of 2x660 MW(e) gross although powers in excess of this have been achieved and it is currently intended to uprate this as far as possible. The design of both stations has been based on the successful operating AGRs at Hinkley Point and Hunterston which have now been in-service for almost 15 years, although minor changes were made to meet new safety requirements and to make improvements suggested by operating experience. The construction of these new AGRs has been to programme and within budget. Full commercial load for the first reactor at Torness was achieved in August 1988 with the other three reactors following over the subsequent 15 months. This paper summarises the safety principles and guidelines for the design of the reactors and discusses how some of the main features of the safety case meet these safety requirements. The paper also summarises the design problems which arose during the construction period and explains how these problems were solved with the minimum delay to programme

  12. Advanced gas cooled reactors - Designing for safety

    Energy Technology Data Exchange (ETDEWEB)

    Keen, Barry A [Engineering Development Unit, NNC Limited, Booths Hall, Knutsford, Cheshire (United Kingdom)

    1990-07-01

    The Advanced Gas-Cooled Reactor Power Stations recently completed at Heysham in Lancashire, England, and Torness in East Lothian, Scotland represent the current stage of development of the commercial AGR. Each power station has two reactor turbo-generator units designed for a total station output of 2x660 MW(e) gross although powers in excess of this have been achieved and it is currently intended to uprate this as far as possible. The design of both stations has been based on the successful operating AGRs at Hinkley Point and Hunterston which have now been in-service for almost 15 years, although minor changes were made to meet new safety requirements and to make improvements suggested by operating experience. The construction of these new AGRs has been to programme and within budget. Full commercial load for the first reactor at Torness was achieved in August 1988 with the other three reactors following over the subsequent 15 months. This paper summarises the safety principles and guidelines for the design of the reactors and discusses how some of the main features of the safety case meet these safety requirements. The paper also summarises the design problems which arose during the construction period and explains how these problems were solved with the minimum delay to programme.

  13. ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

    International Nuclear Information System (INIS)

    Charles M. Boyer II; Ronald J. MacDonald P.G.

    2002-01-01

    As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger-Holditch Reservoir Technologies (H-RT) has joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden and Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners have provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We have continued to enhance and streamline our software, and we are testing the final stages of our new Microsoft(trademark) Access/Excel based software. We are continuing to process the information and are identifying potential candidate wells that can be used in Phase 2 to validate the new methodologies. In addition, preparation of the final technical report is underway. During this quarter, we have presented our project and discussed the software to numerous Petroleum Technology Transfer Council (PTTC) workshops located in various regions of the United States

  14. Advanced Natural Gas Reciprocating Engine(s)

    Energy Technology Data Exchange (ETDEWEB)

    Kwok, Doris; Boucher, Cheryl

    2009-09-30

    Energy independence and fuel savings are hallmarks of the nation’s energy strategy. The advancement of natural gas reciprocating engine power generation technology is critical to the nation’s future. A new engine platform that meets the efficiency, emissions, fuel flexibility, cost and reliability/maintainability targets will enable American manufacturers to have highly competitive products that provide substantial environmental and economic benefits in the US and in international markets. Along with Cummins and Waukesha, Caterpillar participated in a multiyear cooperative agreement with the Department of Energy to create a 50% efficiency natural gas powered reciprocating engine system with a 95% reduction in NOx emissions by the year 2013. This platform developed under this agreement will be a significant contributor to the US energy strategy and will enable gas engine technology to remain a highly competitive choice, meeting customer cost of electricity targets, and regulatory environmental standard. Engine development under the Advanced Reciprocating Engine System (ARES) program was divided into phases, with the ultimate goal being approached in a series of incremental steps. This incremental approach would promote the commercialization of ARES technologies as soon as they emerged from development and would provide a technical and commercial foundation of later-developing technologies. Demonstrations of the Phase I and Phase II technology were completed in 2004 and 2008, respectively. Program tasks in Phase III included component and system development and testing from 2009-2012. Two advanced ignition technology evaluations were investigated under the ARES program: laser ignition and distributed ignition (DIGN). In collaboration with Colorado State University (CSU), a laser ignition system was developed to provide ignition at lean burn and high boost conditions. Much work has been performed in Caterpillar’s DIGN program under the ARES program. This work

  15. Sensitivity of Emissions to Uncertainties in Residual Gas Fraction Measurements in Automotive Engines: A Numerical Study

    Directory of Open Access Journals (Sweden)

    S. M. Aithal

    2018-01-01

    Full Text Available Initial conditions of the working fluid (air-fuel mixture within an engine cylinder, namely, mixture composition and temperature, greatly affect the combustion characteristics and emissions of an engine. In particular, the percentage of residual gas fraction (RGF in the engine cylinder can significantly alter the temperature and composition of the working fluid as compared with the air-fuel mixture inducted into the engine, thus affecting engine-out emissions. Accurate measurement of the RGF is cumbersome and expensive, thus making it hard to accurately characterize the initial mixture composition and temperature in any given engine cycle. This uncertainty can lead to challenges in accurately interpreting experimental emissions data and in implementing real-time control strategies. Quantifying the effects of the RGF can have important implications for the diagnostics and control of internal combustion engines. This paper reports on the use of a well-validated, two-zone quasi-dimensional model to compute the engine-out NO and CO emission in a gasoline engine. The effect of varying the RGF on the emissions under lean, near-stoichiometric, and rich engine conditions was investigated. Numerical results show that small uncertainties (~2–4% in the measured/computed values of the RGF can significantly affect the engine-out NO/CO emissions.

  16. Automotive mechatronics automotive networking, driving stability systems, electronics

    CERN Document Server

    2015-01-01

    As the complexity of automotive vehicles increases this book presents operational and practical issues of automotive mechatronics. It is a comprehensive introduction to controlled automotive systems and provides detailed information of sensors for travel, angle, engine speed, vehicle speed, acceleration, pressure, temperature, flow, gas concentration etc. The measurement principles of the different sensor groups are explained and examples to show the measurement principles applied in different types. Contents Basics of mechatronics.- Architecture.- Electronic control unit.- Software development.- Basic principles of networking.- Automotive networking.- Bus systems.- Automotive sensors.- Sensor measuring principles.- Sensor types.- Electric actuators.- Electrohydraulic actuators.- Electronic transmission control.- Electronic transmission control unit.- Modules for transmission control.- Antilock braking system.- Traction control system.- Electronic stability program.- Automatic brake functions.- Hydraulic modu...

  17. Advances in gas-liquid flows 1990

    International Nuclear Information System (INIS)

    Kim, J.M.; Hashemi, A.

    1990-01-01

    Gas-liquid two-phase flows commonly occur in nature and industrial applications. Rain, clouds, geysers, and waterfalls are examples of natural gas-liquid flow phenomena, whereas industrial applications can be found in nuclear reactors, steam generators, boilers, condensers, evaporators, fuel atomization, heat pipes, electronic equipment cooling, petroleum engineering, chemical process engineering, and many others. The household-variety phenomena such as garden sprinklers, shower, whirlpool bath, dripping faucet, boiling tea pot, and bubbling beer provide daily experience of gas-liquid flows. The papers presented in this volume reflect the variety and richness of gas-liquid two-phase flow and the increasing role it plays in modern technology. This volume contains papers dealing with some recent development in gas-liquid flow science and technology, covering basic gas-liquid flows, measurements and instrumentation, cavitation and flashing flows, countercurrent flow and flooding, flow in various components and geometries liquid metals and thermocapillary effects, heat transfer, nonlinear phenomena, instability, and other special and general topics related to gas-liquid flows

  18. Advanced On Board Inert Gas Generation System (OBBIGS), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Valcor Engineering Corporation proposes to develop an advanced On Board Inert Gas Generation System, OBIGGS, for aircraft fuel tank inerting to prevent hazardous...

  19. Automotive websites

    CERN Document Server

    Jensen, Todd A

    2006-01-01

    For anyone buying a new car, restoring an old favorite, collecting license plates or looking for motorsports information, the internet is the place to go and this is the book to help you get there. Now with over 650 internet addresses, this expanded and updated guide provides detailed descriptions and reviews of the biggest, best and most interesting automotive websites on the net. Beginning with a brief internet history and helpful hints, it aids the novice (or not so novice) user in picking through the countless automotive sites on the internet. Websites are arranged by topics such as afterm

  20. Effect of water injection and off scheduling of variable inlet guide vanes, gas generator speed and power turbine nozzle angle on the performance of an automotive gas turbine engine

    Science.gov (United States)

    Warren, E. L.

    1980-01-01

    The Chrysler/ERDA baseline automotive gas turbine engine was used to experimentally determine the power augmentation and emissions reductions achieved by the effect of variable compressor and power engine geometry, water injection downstream of the compressor, and increases in gas generator speed. Results were dependent on the mode of variable geometry utilization. Over 20 percent increase in power was accompanied by over 5 percent reduction in SFC. A fuel economy improvement of at least 6 percent was estimated for a vehicle with a 75 kW (100 hp) engine which could be augmented to 89 kW (120 hp) relative to an 89 Kw (120 hp) unaugmented engine.

  1. Advanced Gas Storage Concepts: Technologies for the Future

    Energy Technology Data Exchange (ETDEWEB)

    Freeway, Katy (PB-KBB Inc.); Rogers, R.E. (Mississippi State University); DeVries, Kerry L.; Nieland, Joel D.; Ratigan, Joe L.; Mellegard, Kirby D. (RESPEC)

    2000-02-01

    This full text product includes: 1) A final technical report titled Advanced Underground Gas Storage Concepts, Refrigerated-Mined Cavern Storage and presentations from two technology transfer workshops held in 1998 in Houston, Texas, and Pittsburgh, Pennsylvania (both on the topic of Chilled Gas Storage in Mined Caverns); 2) A final technical report titled Natural Gas Hydrates Storage Project, Final Report 1 October 1997 - 31 May 1999; 3) A final technical report titled Natural Gas Hydrates Storage Project Phase II: Conceptual Design and Economic Study, Final Report 9 June - 10 October 1999; 4) A final technical report titled Commerical Potential of Natural Gas Storage in Lined Rock Caverns (LRC) and presentations from a DOE-sponsored workshop on Alternative Gas Storage Technologies, held Feb 17, 2000 in Pittsburgh, PA; and 5) Phase I and Phase II topical reports titled Feasibility Study for Lowering the Minimum Gas Pressure in Solution-Mined Caverns Based on Geomechanical Analyses of Creep-Induced Damage and Healing.

  2. Automotive Mechanics.

    Science.gov (United States)

    Linder, Ralph C.; And Others

    This curriculum guide, which was validated by vocational teachers and mechanics in the field, describes the competencies needed by entry-level automotive mechanics. This guide lists 15 competencies; for each competency, various tasks with their performance objective, student learning experiences, suggested instructional techniques, instructional…

  3. ADVANCED STRIPPER GAS PRODUCED WATER REMEDIATION

    International Nuclear Information System (INIS)

    Ray W. Sheldon

    2001-01-01

    Natural gas and oil production from stripper wells also produces water contaminated with hydrocarbons, and in most locations, salts and trace elements. The hydrocarbons are not generally present in concentrations that allow the operator to economically recover these liquids. Produced liquids, (stripper gas water) which are predominantly water, present the operator with two options; purify the water to acceptable levels of contaminates, or pay for the disposal of the water. The project scope involves testing SynCoal as a sorbent to reduce the levels of contamination in stripper gas well produced water to a level that the water can be put to a productive use. Produced water is to be filtered with SynCoal, a processed sub-bituminous coal. It is expected that the surface area of and in the SynCoal would sorb the hydrocarbons and other contaminates and the effluent would be usable for agricultural purposes. Test plan anticipates using two well locations described as being disparate in the level and type of contaminates present. The loading capacity and the rate of loading for the sorbent should be quantified in field testing situations which include unregulated and widely varying liquid flow rates. This will require significant flexibility in the initial stages of the investigation. The scope of work outlined below serves as the guidelines for the testing of SynCoal carbon product as a sorbent to remove hydrocarbons and other contaminants from the produced waters of natural gas wells. A maximum ratio of 1 lb carbon to 100 lbs water treated is the initial basis for economic design. While the levels of contaminants directly impact this ratio, the ultimate economics will be dictated by the filter servicing requirements. This experimental program is intended to identify those treatment parameters that yield the best technological practice for a given set of operating conditions. The goal of this research is to determine appropriate guidelines for field trials by accurately

  4. Advanced Natural Gas Reciprocating Engines(s)

    Energy Technology Data Exchange (ETDEWEB)

    Zurlo, James [Dresser, Inc., Addison, TX (United States)

    2012-04-05

    The ARES program was initiated in 2001 to improve the overall brake thermal efficiency of stationary, natural gas, reciprocating engines. The ARES program is a joint award that is shared by Dresser, Inc., Caterpillar and Cummins. The ARES program was divided into three phases; ARES I (achieve 44% BTE), ARES II (achieve 47% BTE) and ARES III (achieve 50% BTE). Dresser, Inc. completed ARES I in March 2005 which resulted in the commercialization of the APG1000 product line. ARES II activities were completed in September 2010 and the technology developed is currently being integrated into products. ARES III activities began in October 2010. The ARES program goal is to improve the efficiency of natural gas reciprocating engines. The ARES project is structured in three phases with higher efficiency goals in each phase. The ARES objectives are as follows: 1. Achieve 44% (ARES I), 47% (ARES II), and 50% brake thermal efficiency (BTE) as a final ARES III objective 2. Achieve 0.1 g/bhp-hr NOx emissions (with after-treatment) 3. Reduce the cost of the produced electricity by 10% 4. Improve or maintain reliability, durability and maintenance costs

  5. Advancement of Miniature Optic Gas Sensor (MOGS) Probe Technology

    Science.gov (United States)

    Chullen, Cinda

    2015-01-01

    Advancement of Miniature Optic Gas Sensor (MOGS) Probe Technology" project will investigate newly developed optic gas sensors delivered from a Small Business Innovative Research (SBIR) Phase II effort. A ventilation test rig will be designed and fabricated to test the sensors while integrated with a Suited Manikin Test Apparatus (SMTA). Once the sensors are integrated, a series of test points will be completed to verify that the sensors can withstand Advanced Suit Portable Life Support System (PLSS) environments and associated human metabolic profiles for changes in pressure and levels of Oxygen (ppO2), carbon dioxide (ppCO2), and humidity (ppH2O).

  6. Economic aspects of advanced coal-fired gas turbine locomotives

    Science.gov (United States)

    Liddle, S. G.; Bonzo, B. B.; Houser, B. C.

    1983-01-01

    Increases in the price of such conventional fuels as Diesel No. 2, as well as advancements in turbine technology, have prompted the present economic assessment of coal-fired gas turbine locomotive engines. A regenerative open cycle internal combustion gas turbine engine may be used, given the development of ceramic hot section components. Otherwise, an external combustion gas turbine engine appears attractive, since although its thermal efficiency is lower than that of a Diesel engine, its fuel is far less expensive. Attention is given to such a powerplant which will use a fluidized bed coal combustor. A life cycle cost analysis yields figures that are approximately half those typical of present locomotive engines.

  7. International Congress of Automotive and Transport Engineering

    CERN Document Server

    Ispas, Nicolae

    2017-01-01

    The volume will include selected and reviewed papers from CONAT - International Congress of Automotive and Transport Engineering to be held in Brasov, Romania, in October 2016. Authors are experts from research, industry and universities coming from 14 countries worldwide. The papers are covering the latest developments in automotive vehicles and environment, advanced transport systems and road traffic, heavy and special vehicles, new materials, manufacturing technologies and logistics, accident research and analysis and innovative solutions for automotive vehicles. The conference will be organized by SIAR (Society of Automotive Engineers from Romania) in cooperation with FISITA. .

  8. Automotive sensors

    Science.gov (United States)

    Marek, Jiri; Illing, Matthias

    2003-01-01

    Sensors are an essential component of most electronic systems in the car. They deliver input parameters for comfort features, engine and emission control as well as for the active and passive safety systems. New technologies such as silicon micromachining play an important role for the introduction of these sensors in all vehicle classes. The importance and use of these sensor technologies in today"s automotive applications will be shown in this article. Finally an outlook on important current developments and new functions in the car will be given.

  9. A literature survey on gas turbines materials - recent advances

    International Nuclear Information System (INIS)

    Gras, J.M.

    1992-10-01

    The 9001F gas turbine (rating of about 200 MW) is one of the most recent versions of the 9000 series, benefitting from the developments and technological advances, notably in regard to structural materials. In the framework of the EDF gas turbine engineering and construction program, evaluating the nature of these developments can provide guidance in appraising the construction materials proposed by other manufacturers. After a brief comparison between the Gennevilliers 9001F engine and the 85 MW 9000B gas turbine at Bouchain, ordered by EDF in 1971, various research aspects for optimizing gas turbine refractory material mechanical properties and corrosion resistance (superalloys, monolithic ceramics and composite ceramics) are presented; present current and future trends for high power equipment of this type are also discussed

  10. Utilization of Common Automotive Three-Way NOx Reduction Catalyst for Managing Off- Gas from Thermal Treatment of High-Nitrate Waste - 13094

    International Nuclear Information System (INIS)

    Foster, Adam L.; Ki Song, P.E.

    2013-01-01

    Studsvik's Thermal Organic Reduction (THOR) steam reforming process has been tested and proven to effectively treat radioactive and hazardous wastes streams with high nitrate contents to produce dry, stable mineral products, while providing high conversion (>98%) of nitrates and nitrites directly to nitrogen gas. However, increased NO x reduction may be desired for some waste streams under certain regulatory frameworks. In order to enhance the NO x reduction performance of the THOR process, a common Three-Way catalytic NO x reduction unit was installed in the process gas piping of a recently completed Engineering Scale Technology Demonstration (ESTD). The catalytic DeNO x unit was located downstream of the main THOR process vessel, and it was designed to catalyze the reduction of residual NO x to nitrogen gas via the oxidation of the hydrogen, carbon monoxide, and volatile organic compounds that are inherent to the THOR process gas. There was no need for auxiliary injection of a reducing gas, such as ammonia. The unit consisted of four monolith type catalyst sections positioned in series with a gas mixing section located between each catalyst section. The process gas was monitored for NO x concentration upstream and downstream of the catalytic DeNO x unit. Conversion efficiencies ranged from 91% to 97% across the catalytic unit, depending on the composition of the inlet gas. Higher concentrations of hydrogen and carbon monoxide in the THOR process gas increased the NO x reduction capability of the catalytic DeNO x unit. The NO x destruction performance of THOR process in combination with the Three-Way catalytic unit resulted in overall system NO x reduction efficiencies of greater than 99.9% with an average NO x reduction efficiency of 99.94% for the entire demonstration program. This allowed the NO x concentration in the ESTD exhaust gas to be maintained at less than 40 parts per million (ppm), dry basis with an average concentration of approximately 17 ppm, dry

  11. State Estimation in the Automotive SCR DeNOx Process

    DEFF Research Database (Denmark)

    Zhou, Guofeng; Jørgensen, John Bagterp; Duwig, Christophe

    2012-01-01

    on exhaust gas emissions. For advanced control, e.g. Model Predictive Control (MPC), of the SCR process, accurate state estimates are needed. We investigate the performance of the ordinary and the extended Kalman filters based on a simple first principle system model. The performance is tested through......Selective catalytic reduction (SCR) of nitrogen oxides (NOx) is a widely applied diesel engine exhaust gas after-treatment technology. For effective NOx removal in a transient operating automotive application, controlled dosing of urea can be used to meet the increasingly restrictive legislations...

  12. Gas-cooled reactors for advanced terrestrial applications

    International Nuclear Information System (INIS)

    Kesavan, K.; Lance, J.R.; Jones, A.R.; Spurrier, F.R.; Peoples, J.A.; Porter, C.A.; Bresnahan, J.D.

    1986-01-01

    Conceptual design of a power plant on an inert gas cooled nuclear coupled to an open, air Brayton power conversion cycle is presented. The power system, called the Westinghouse GCR/ATA (Gas-Cooled Reactors for Advanced Terrestrial Applications), is designed to meet modern military needs, and offers the advantages of secure, reliable and safe electrical power. The GCR/ATA concept is adaptable over a range of 1 to 10 MWe power output. Design descriptions of a compact, air-transportable forward base unit for 1 to 3 MWe output and a fixed-base, permanent installation for 3 to 10 MWe output are presented

  13. The future of automotive technology

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, J.A.Jr.; Hamilton, D. [USDOE, Washington, DC (United States); Shah, R.; Belanger, M. [Computer Systems Management Inc., Alexandria, VA (United States)

    2000-07-01

    An overview of the technological advances that have been made in the automotive industry worldwide in recent years were presented with a brief insight into the potential ramifications in terms of fuel efficiency and pollution abatement. Developments in power trains, materials and alternative fuels were reviewed. Up to and including the 1980's most vehicles consisted of internal combustion engines. Today, advanced spark ignition and electric vehicles/hybrid electric vehicles are already in production in Japan, North America and Europe and all major automakers are working on vehicles powered by fuel cells. The use of alternative fuels such as natural gas, propane, alcohols, biodiesel and hydrogen will be encouraged for economic, environmental and energy security reasons. These alternative fuels, however, will not reduce emissions of carbon dioxide as long as they are made from fossil-carbon sources. Cars with all aluminum or fiber-reinforced polymetric-matrix composite bodies and aluminum chassis are emerging as a challenge to steel's domination. Also family sedans with fuel efficiencies of 80 miles per US gallon will be common place. It was emphasized that the extent to which these new technologies will be implemented will depend on consumer acceptance and on governmental regulations. 8 refs., 1 tab.

  14. Thermodynamic analysis of steam-injected advanced gas turbine cycles

    Science.gov (United States)

    Pandey, Devendra; Bade, Mukund H.

    2017-12-01

    This paper deals with thermodynamic analysis of steam-injected gas turbine (STIGT) cycle. To analyse the thermodynamic performance of steam-injected gas turbine (STIGT) cycles, a methodology based on pinch analysis is proposed. This graphical methodology is a systematic approach proposed for a selection of gas turbine with steam injection. The developed graphs are useful for selection of steam-injected gas turbine (STIGT) for optimal operation of it and helps designer to take appropriate decision. The selection of steam-injected gas turbine (STIGT) cycle can be done either at minimum steam ratio (ratio of mass flow rate of steam to air) with maximum efficiency or at maximum steam ratio with maximum net work conditions based on the objective of plants designer. Operating the steam injection based advanced gas turbine plant at minimum steam ratio improves efficiency, resulting in reduction of pollution caused by the emission of flue gases. On the other hand, operating plant at maximum steam ratio can result in maximum work output and hence higher available power.

  15. Western tight gas sands advanced logging workshop proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, J B; Carroll, Jr, H B [eds.

    1982-04-01

    An advanced logging research program is one major aspect of the Western Tight Sands Program. Purpose of this workshop is to help BETC define critical logging needs for tight gas sands and to allow free interchange of ideas on all aspects of the current logging research program. Sixteen papers and abstracts are included together with discussions. Separate abstracts have been prepared for the 12 papers. (DLC)

  16. Ultracapacitors for automotive applications

    Science.gov (United States)

    Ashtiani, Cyrus; Wright, Randy; Hunt, Gary

    In response to a growing consensus in the auto industry that ultracapacitors can potentially play a key role in the modern vehicle power distribution network, a task force was created at the United States Advanced Battery Consortium (USABC) to tackle issues facing the fledging industry. The task force embarked on first developing and establishing standards for performance and abuse tolerance of ultracapacitors in collaboration with the U.S. Department of Energy and National Labs. Subsequently, potential applications in the automotive industry were identified and a consensus requirement specification was drawn as a development guide for the industry.

  17. Ultracapacitors for automotive applications

    Energy Technology Data Exchange (ETDEWEB)

    Ashtiani, Cyrus [DaimlerChrysler Corp., CIMS 526-00-00, 1870 Technology Dr., Troy, MI 48083 (United States); Wright, Randy; Hunt, Gary [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 834415-3830 (United States)

    2006-03-21

    In response to a growing consensus in the auto industry that ultracapacitors can potentially play a key role in the modern vehicle power distribution network, a task force was created at the United States Advanced Battery Consortium (USABC) to tackle issues facing the fledging industry. The task force embarked on first developing and establishing standards for performance and abuse tolerance of ultracapacitors in collaboration with the U.S. Department of Energy and National Labs. Subsequently, potential applications in the automotive industry were identified and a consensus requirement specification was drawn as a development guide for the industry. (author)

  18. Environmental potential of the alternative automotive fuels biogas, ethanol, methanol, natural gas, rape oil methyl ester, and dimethyl ether

    International Nuclear Information System (INIS)

    Egebaeck, K.E.; Westerholm, R.

    1997-09-01

    The aim of the project was to estimate the future emission levels when using alternative fuels, as a contribution to the Committee for Evaluation of Alternative Automotive Fuels (organized by the Swedish Ministry of Environment). The method used for the project was to use the today's knowledge about the emission levels and the emission control technology as a base for the estimation of what additional potential there is to decrease the emissions by coming development of vehicles and the emission control technology. The results of the analysis and the estimations show that there exist a positive development for all types of vehicles and alternative fuels. However, there will be a difference between the different fuel alternatives depending on chemical and physical differences between the different fuels. There will also be a difference in the possibilities of the different fuels to capture a market which will have certain impact on the willingness and the economic possibilities for the car manufacturers to invest in the development needed to reach low emission levels. 124 refs

  19. Final report: U.S. competitive position in automotive technologies

    Energy Technology Data Exchange (ETDEWEB)

    Albert, Michael B.; Cheney, Margaret; Thomas, Patrick; Kroll, Peter

    2002-09-30

    Patent data are presented and analyzed to assess the U.S. competitive position in eleven advanced automotive technology categories, including automotive fuel cells, hydrogen storage, advanced batteries, hybrid electric vehicles and others. Inventive activity in most of the technologies is found to be growing at a rapid pace, particularly in advanced batteries, automotive fuel cells and ultracapacitors. The U.S. is the clear leader in automotive fuel cells, on-board hydrogen storage and light weight materials. Japan leads in advanced batteries, hybrid electric vehicles, ultracapacitors, and appears to be close to overtaking the U.S. in other areas of power electronics.

  20. Static and dynamic modelling of gas turbines in advanced cycles

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Jan-Olof

    1998-12-01

    Gas turbines have been in operation for at least 50 years. The engine is used for propulsion of aircraft and high speed ships. It is used for power production in remote locations and for peak load and emergency situations. Gas turbines have been used in combined cycles for 20 to 30 years. Highly efficient power plants based on gas turbines are a competitive option for the power industry today. The thermal efficiency of the simple cycle gas turbine has increased due to higher turbine inlet temperatures and improved compressor and expander designs. Equally important are the improved cycles in which the gas turbine operates. One example is the combined cycle that uses steam for turbine cooling. Steam is extracted from the bottoming cycle, then used as airfoil coolant in a closed loop and returned to the bottoming cycle. The Evaporative Gas Turbine (EvGT), also known as the Humid Air Turbine (HAT), is another advanced cycle. A mixture of air and water vapour is used as working media. Air from the compressor outlet is humidified and then preheated in a recuperator prior to combustion. The static and dynamic performance is changed when the gas turbine is introduced in an evaporative cycle. The cycle is gaining in popularity, but so far it has not been demonstrated. A Swedish joint program to develop the cycle has been in operation since 1993. As part of the program, a small pilot plant is being erected at the Lund Institute of Technology (LTH). The plant is based on a 600 kW gas turbine, and demonstration of the EvGT cycle started autumn 1998 and will continue, in the present phase, for one year. This thesis presents static and dynamic models for traditional gas turbine components, such as, the compressor, combustor, expander and recuperator. A static model for the humidifier is presented, based on common knowledge for atmospheric humidification. All models were developed for the pilot plant at LTH with the objective to support evaluation of the process and individual

  1. Life-cycle analysis of energy and greenhouse gas emissions of automotive fuels in India: Part 1 – Tank-to-Wheel analysis

    International Nuclear Information System (INIS)

    Gupta, S.; Patil, V.; Himabindu, M.; Ravikrishna, R.V.

    2016-01-01

    As part of a two-part life cycle efficiency and greenhouse gas emission analysis for various automotive fuels in the Indian context, this paper presents the first part, i.e., Tank-to-Wheel analysis of various fuel/powertrain configurations for a subcompact passenger car. The Tank-to-Wheel analysis was applied to 28 fuel/powertrain configurations using fuels such as gasoline, diesel, compressed natural gas, liquefied petroleum gas and hydrogen with various conventional and hybrid electric powertrains. The gasoline-equivalent fuel economy and carbon dioxide emission results for individual fuel/powertrain configuration are evaluated and compared. It is found that the split hybrid configuration is best among hybrids as it leads to fuel economy improvement and carbon dioxide emissions reduction by 20–40% over the Indian drive cycle. Further, the engine efficiency, engine on-off time and regenerative braking energy assessment is done to evaluate the causes for higher energy efficiency of hybrid electric vehicles. The hybridization increases average engine efficiency by 10–60% which includes 19–23% of energy recovered at wheel through regenerative braking over the drive cycle. Overall, the Tank-to-Wheel energy use and efficiency results are evaluated for all fuel/powertrain configurations which show Battery Electric Vehicle, fuel cell vehicles and diesel hybrids are near and long term energy efficient vehicle configurations. - Highlights: • Tank-to-Wheel energy use & CO_2 emissions for subcompact car on Indian driving cycle. • Gasoline, diesel, CNG, LPG, hydrogen and electric vehicles are evaluated in this study. • First comprehensive Tank-to-Wheel analysis for India on small passenger car platform. • Parallel, series and split hybrid electric vehicles with various fuels are analysed.

  2. Measurement of sulphur-35 in the coolant gas of the Windscale Advanced Gas-Cooled Reactor

    International Nuclear Information System (INIS)

    Sandalls, F.J.

    1978-03-01

    Sulphur is an important element in some food chains and the release of radioactive sulphur to the environment must be closely controlled if the chemical form is such that it is available or potentially available for entering food chains. The presence of sulphur-35 in the coolant gas of the Windscale Advanced Gas-Cooled Reactor warranted a study to assess the quantity and chemical form of the radioactive sulphur in order to estimate the magnitude of the potential environmental hazard which might arise from the release of coolant gas from Civil Advanced Gas-Cooled Reactors. A combination of gas chromatographic and radiochemical analyses revealed carbonyl sulphide to be the only sulphur-35 compound present in the coolant gas of the Windscale Reactor. The concentration of carbonyl sulphide was found to lie in the range 40 to 100 x 10 -9 parts by volume and the sulphur-35 specific activity was about 20 mCi per gramme. The analytical techniques are described in detail. The sulphur-35 appears to be derived from the sulphur and chlorine impurities in the graphite. A method for the preparation of carbonyl sulphide labelled with sulphur-35 is described. (author)

  3. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    David Liscinsky

    2002-10-20

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated

  4. Automotive History and Development of the Automobile; Automotive Mechanics I: 9043.01.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    The automotive history and development of the automobile course is designed to familiarize the beginning student with basic concepts common to the automobile history and general information that is required for successful advancement in the automotive mechanics field. A course outline is provided and seven pages of post-tests are included in the…

  5. Natural gas as an alternative to crude oil in automotive fuel chains well-to-wheel analysis and transition strategy development

    International Nuclear Information System (INIS)

    Hekkert, M.P.; Hendriks, F.H.J.F.; Faaij, A.P.C.; Neelis, M.L.

    2005-01-01

    Road transport produces significant amounts of CO 2 by using crude oil as primary energy source. A reduction of CO 2 emissions can be achieved by implementing alternative fuel chains. This article studies CO 2 emissions and energy efficiencies by means of a well to wheel analysis of alternative automotive fuel chains, using natural gas (NG) as an alternative primary energy source to replace crude oil. The results indicate that NG-based hydrogen applied in fuel cell vehicles (FCVs) lead to largest CO 2 emission reductions (up to 40% compared to current practice). However, large implementation barriers for this option are foreseen, both technically and in terms of network change. Two different transition strategies are discussed to gradually make the transition to these preferred fuel chains. Important transition technologies that are the backbone of these routes are traditional engine technology fuelled by compressed NG and a FCV fuelled by gasoline. The first is preferred in terms of carbon emissions. The results furthermore indicate that an innovation in the conventional chain, the diesel hybrid vehicle, is more efficient than many NG-based chains. This option scores well in terms of carbon emissions and implementation barriers and is a very strong option for the future

  6. Wideband continuous-time ΣΔ ADCs, automotive electronics, and power management : advances in analog circuit design 2016

    NARCIS (Netherlands)

    Baschirotto, A.; Harpe, P.J.A.; Makinwa, K.A.A.

    2017-01-01

    This book is based on the 18 tutorials presented during the 25th workshop on Advances in Analog Circuit Design. Expert designers present readers with information about a variety of topics at the frontier of analog circuit design, including low-power and energy-efficient analog electronics, with

  7. Evaluation of advanced driver assistance system with the VEHIL test facility: experiences and future developments at TNO automotive

    NARCIS (Netherlands)

    Kusters, L.J.J.; Gietelink, O.J.; Hoof, J.F.A.M. van; Lemmen, P.P.M.

    2004-01-01

    This paper presents the working principle, functionality and the experience during the first operational period of the VEHIL laboratory, dedicated to the development and testing of advanced driver assistance systems. The position of VEHIL and its PC based full software variant PRESCAN is illustrated

  8. Advanced Gas Tungsten Arc Weld Surfacing Current Status and Application

    Directory of Open Access Journals (Sweden)

    Stephan Egerland

    2015-09-01

    Full Text Available Abstract Gas Shielded Tungsten Arc Welding (GTAW – a process well-known providing highest quality weld results joined though by lower performance. Gas Metal Arc Welding (GMAW is frequently chosen to increase productivity along with broadly accepted quality. Those industry segments, especially required to produce high quality corrosion resistant weld surfacing e.g. applying nickel base filler materials, are regularly in consistent demand to comply with "zero defect" criteria. In this conjunction weld performance limitations are overcome employing advanced 'hot-wire' GTAW systems. This paper, from a Welding Automation perspective, describes the technology of such devices and deals with the current status is this field – namely the application of dual-cathode hot-wire electrode GTAW cladding; considerably broadening achievable limits.

  9. Flow and Combustion in Advanced Gas Turbine Combustors

    CERN Document Server

    Janicka, Johannes; Schäfer, Michael; Heeger, Christof

    2013-01-01

    With regard to both the environmental sustainability and operating efficiency demands, modern combustion research has to face two main objectives, the optimization of combustion efficiency and the reduction of pollutants. This book reports on the combustion research activities carried out within the Collaborative Research Center (SFB) 568 “Flow and Combustion in Future Gas Turbine Combustion Chambers” funded by the German Research Foundation (DFG). This aimed at designing a completely integrated modeling and numerical simulation of the occurring very complex, coupled and interacting physico-chemical processes, such as turbulent heat and mass transport, single or multi-phase flows phenomena, chemical reactions/combustion and radiation, able to support the development of advanced gas turbine chamber concepts.

  10. Utilization of Common Automotive Three-Way NO{sub x} Reduction Catalyst for Managing Off- Gas from Thermal Treatment of High-Nitrate Waste - 13094

    Energy Technology Data Exchange (ETDEWEB)

    Foster, Adam L.; Ki Song, P.E. [Studsvik, Inc. 5605 Glenridge Drive Suite 705, Atlanta, GA 30342 (United States)

    2013-07-01

    Studsvik's Thermal Organic Reduction (THOR) steam reforming process has been tested and proven to effectively treat radioactive and hazardous wastes streams with high nitrate contents to produce dry, stable mineral products, while providing high conversion (>98%) of nitrates and nitrites directly to nitrogen gas. However, increased NO{sub x} reduction may be desired for some waste streams under certain regulatory frameworks. In order to enhance the NO{sub x} reduction performance of the THOR process, a common Three-Way catalytic NO{sub x} reduction unit was installed in the process gas piping of a recently completed Engineering Scale Technology Demonstration (ESTD). The catalytic DeNO{sub x} unit was located downstream of the main THOR process vessel, and it was designed to catalyze the reduction of residual NO{sub x} to nitrogen gas via the oxidation of the hydrogen, carbon monoxide, and volatile organic compounds that are inherent to the THOR process gas. There was no need for auxiliary injection of a reducing gas, such as ammonia. The unit consisted of four monolith type catalyst sections positioned in series with a gas mixing section located between each catalyst section. The process gas was monitored for NO{sub x} concentration upstream and downstream of the catalytic DeNO{sub x} unit. Conversion efficiencies ranged from 91% to 97% across the catalytic unit, depending on the composition of the inlet gas. Higher concentrations of hydrogen and carbon monoxide in the THOR process gas increased the NO{sub x} reduction capability of the catalytic DeNO{sub x} unit. The NO{sub x} destruction performance of THOR process in combination with the Three-Way catalytic unit resulted in overall system NO{sub x} reduction efficiencies of greater than 99.9% with an average NO{sub x} reduction efficiency of 99.94% for the entire demonstration program. This allowed the NO{sub x} concentration in the ESTD exhaust gas to be maintained at less than 40 parts per million (ppm

  11. Advanced Combustion Systems for Next Generation Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Joel Haynes; Jonathan Janssen; Craig Russell; Marcus Huffman

    2006-01-01

    Next generation turbine power plants will require high efficiency gas turbines with higher pressure ratios and turbine inlet temperatures than currently available. These increases in gas turbine cycle conditions will tend to increase NOx emissions. As the desire for higher efficiency drives pressure ratios and turbine inlet temperatures ever higher, gas turbines equipped with both lean premixed combustors and selective catalytic reduction after treatment eventually will be unable to meet the new emission goals of sub-3 ppm NOx. New gas turbine combustors are needed with lower emissions than the current state-of-the-art lean premixed combustors. In this program an advanced combustion system for the next generation of gas turbines is being developed with the goal of reducing combustor NOx emissions by 50% below the state-of-the-art. Dry Low NOx (DLN) technology is the current leader in NOx emission technology, guaranteeing 9 ppm NOx emissions for heavy duty F class gas turbines. This development program is directed at exploring advanced concepts which hold promise for meeting the low emissions targets. The trapped vortex combustor is an advanced concept in combustor design. It has been studied widely for aircraft engine applications because it has demonstrated the ability to maintain a stable flame over a wide range of fuel flow rates. Additionally, it has shown significantly lower NOx emission than a typical aircraft engine combustor and with low CO at the same time. The rapid CO burnout and low NOx production of this combustor made it a strong candidate for investigation. Incremental improvements to the DLN technology have not brought the dramatic improvements that are targeted in this program. A revolutionary combustor design is being explored because it captures many of the critical features needed to significantly reduce emissions. Experimental measurements of the combustor performance at atmospheric conditions were completed in the first phase of the program

  12. Advances in High Temperature Gas Cooled Reactor Fuel Technology

    International Nuclear Information System (INIS)

    2012-12-01

    This publication reports on the results of a coordinated research project on advances in high temperature gas cooled reactor (HTGR) fuel technology and describes the findings of research activities on coated particle developments. These comprise two specific benchmark exercises with the application of HTGR fuel performance and fission product release codes, which helped compare the quality and validity of the computer models against experimental data. The project participants also examined techniques for fuel characterization and advanced quality assessment/quality control. The key exercise included a round-robin experimental study on the measurements of fuel kernel and particle coating properties of recent Korean, South African and US coated particle productions applying the respective qualification measures of each participating Member State. The summary report documents the results and conclusions achieved by the project and underlines the added value to contemporary knowledge on HTGR fuel.

  13. Advances in High Temperature Gas Cooled Reactor Fuel Technology

    International Nuclear Information System (INIS)

    2012-06-01

    This publication reports on the results of a coordinated research project on advances in high temperature gas cooled reactor (HTGR) fuel technology and describes the findings of research activities on coated particle developments. These comprise two specific benchmark exercises with the application of HTGR fuel performance and fission product release codes, which helped compare the quality and validity of the computer models against experimental data. The project participants also examined techniques for fuel characterization and advanced quality assessment/quality control. The key exercise included a round-robin experimental study on the measurements of fuel kernel and particle coating properties of recent Korean, South African and US coated particle productions applying the respective qualification measures of each participating Member State. The summary report documents the results and conclusions achieved by the project and underlines the added value to contemporary knowledge on HTGR fuel.

  14. Investigation of the Performance of HEMT-Based NO, NO₂ and NH₃ Exhaust Gas Sensors for Automotive Antipollution Systems.

    Science.gov (United States)

    Halfaya, Yacine; Bishop, Chris; Soltani, Ali; Sundaram, Suresh; Aubry, Vincent; Voss, Paul L; Salvestrini, Jean-Paul; Ougazzaden, Abdallah

    2016-02-23

    We report improved sensitivity to NO, NO₂ and NH₃ gas with specially-designed AlGaN/GaN high electron mobility transistors (HEMT) that are suitable for operation in the harsh environment of diesel exhaust systems. The gate of the HEMT device is functionalized using a Pt catalyst for gas detection. We found that the performance of the sensors is enhanced at a temperature of 600 °C, and the measured sensitivity to 900 ppm-NO, 900 ppm-NO₂ and 15 ppm-NH₃ is 24%, 38.5% and 33%, respectively, at 600 °C. We also report dynamic response times as fast as 1 s for these three gases. Together, these results indicate that HEMT sensors could be used in a harsh environment with the ability to control an anti-pollution system in real time.

  15. The development of advanced gas cooled reactor iodine adsorber systems

    International Nuclear Information System (INIS)

    Meddings, P.

    1986-01-01

    Advanced Gas Cooled Reactors (AGRs) are provided with plants to process the carbon dioxide coolant prior to its discharge to atmosphere. Included in these are beds of granular activated charcoal, contained within a suitable pressure vessel, through which the high pressure carbon dioxide is passed for the purpose of retaining iodine and iodine-containing compounds. Carry-over carbon dust from the adsorption beds was identified during active in-situ commissioning testing, radio-iodine being transported with the particulate material due to gross disturbance of the adsorber carbon bed and displacement of the vessel internals. The methods used to identify the causes of the problems and find solutions are described. A development programme for the Heysham-2 and Torness reactors iodine adsorber units was set up to identify a method of de-dusting granular charcoal and develop it for full-scale use, of assess the effect under conditions of high gas density of approach velocity on charcoal fines production and to establish the pressure drop characteristics of a packed granular bed and to develop an effective design of inlet gas diffuser manifold to ensure an acceptable velocity distribution. This has involved the construction of a small scale high pressure carbon dioxide rig and development of an air flow model. This work is described. (UK)

  16. Corrosion Behavior of Metal Active Gas Welded Joints of a High-Strength Steel for Automotive Application

    Science.gov (United States)

    Garcia, Mainã Portella; Mantovani, Gerson Luiz; Vasant Kumar, R.; Antunes, Renato Altobelli

    2017-10-01

    In this work, the corrosion behavior of metal active gas-welded joints of a high-strength steel with tensile yield strength of 900 MPa was investigated. The welded joints were obtained using two different heat inputs. The corrosion behavior has been studied in a 3.5 wt.% NaCl aqueous solution using electrochemical impedance spectroscopy and potentiodynamic polarization tests. Optical microscopy images, scanning electron microscopy and transmission electron microscopy with energy-dispersive x-ray revealed different microstructural features in the heat-affected zone (HAZ) and the weld metal (WM). Before and after the corrosion process, the sample was evaluated by confocal laser scanning microscopy to measure the depth difference between HAZ and WM. The results showed that the heat input did not play an important role on corrosion behavior of HSLA steel. The anodic and cathodic areas of the welded joints could be associated with depth differences. The HAZ was found to be the anodic area, while the WM was cathodic with respect to the HAZ. The corrosion behavior was related to the amount and orientation nature of carbides in the HAZ. The microstructure of the HAZ consisted of martensite and bainite, whereas acicular ferrite was observed in the weld metal.

  17. Exhaust gas emissions from various automotive fuels for light-duty vehicles. Effects on health, environment and energy utilization

    International Nuclear Information System (INIS)

    Ahlvik, P.; Brandberg, Aa.

    1999-12-01

    The main aim of the investigation has been to assess the effects on health and environment from various alternative fuels for light-duty vehicles. Effects that can be identified and quantified, such as acidification, ozone formation, cancer risk and climate change, have been of primary interest but other effects, such as respiratory diseases, have also been investigated. Data have been collected through literature surveys for subsequent calculation of the mentioned effects in different time-frames. Corrections have been used to take into consideration the influence of climate, ageing and driving pattern. Emissions generated in fuel production have also been accounted for. The most significant and important differences between the fuels have been found for effects as ozone formation cancer risk and particulate emissions. Alternative fuels, such as methanol and methane (natural gas and biogas), significantly decrease the ozone formation in comparison to petrol, while ethanol, methanol and methane are advantageous concerning cancer risk. The particulate emissions are considerably higher for diesel engines fuelled by diesel oil and RME in comparison to the other fuels. In the future, the importance of acid emissions in the fuel production will increase since the NO x and SO x emissions will decrease from the vehicles. The emissions of climate gases could be significantly reduced by using non-fossil fuels but the efficiency of the drive train is also of importance. The technical development potential for further emission reductions is considerable for all fuels but the advantage for the best fuel options will remain in the future

  18. Advanced gas cooled nuclear reactor materials evaluation and development program

    International Nuclear Information System (INIS)

    1977-01-01

    Results of work performed from January 1, 1977 through March 31, 1977 on the Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program are presented. The objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Process Heat and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (impure Helium), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in this report includes progress to date on alloy selection for VHTR Nuclear Process Heat (NPH) applications and for DCHT applications. The present status on the simulated reactor helium loop design and on designs for the testing and analysis facilities and equipment is discussed

  19. Windscale advanced gas-cooled reactor (WAGR) decommissioning project overview

    International Nuclear Information System (INIS)

    Pattinson, A.

    2003-01-01

    The current BNFL reactor decommissioning projects are presented. The projects concern power reactor sites at Berkely, Trawsfynydd, Hunterstone, Bradwell, Hinkley Point; UKAEA Windscale Pile 1; Research reactors within UK Scottish Universities at East Kilbride and ICI (both complete); WAGR. The BNFL environmental role include contract management; effective dismantling strategy development; implementation and operation; sentencing, encapsulation and transportation of waste. In addition for the own sites it includes strategy development; baseline decommissioning planning; site management and regulator interface. The project objectives for the Windscale Advanced Gas-Cooled Reactor (WAGR) are 1) Safe and efficient decommissioning; 2) Building of good relationships with customer; 3) Completion of reactor decommissioning in 2005. The completed WAGR decommissioning campaigns are: Operational Waste; Hot Box; Loop Tubes; Neutron Shield; Graphite Core and Restrain System; Thermal Shield. The current campaign is Lower Structures and the remaining are: Pressure vessel and Insulation; Thermal Columns and Outer Vault Membrane. An overview of each campaign is presented

  20. Advanced materials for critical components in industrial gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Gibbons, T.B. (Div. of Materials Metrology, National Physical Lab., Teddington (United Kingdom))

    1992-06-01

    Combined-cycle plant for power production has advantages in terms of capital costs and flexibility compared to large power plants either nuclear of fossil-fired, used for base load. In combined-cycle plant the overall efficiency is highly dependent on the performance of the gas turbine and turbine entry temperatures of > 1200deg C will be required to obtain attractive levels of efficiency. Bearing in mind the need for reliability and longterm performance from components such as turbine blades, the challenge to the materials enginer is formidable. In this paper some of the recent developments in Ni - Cr-base alloys are described and the potential for advanced materials such as ceramics and intermetallics is briefly considered. Development in coating technology to provide effective thermal barriers and good resistance to aggressive environments are discussed. (orig./MM).

  1. Advances in marine ice profiling for oil and gas applications

    International Nuclear Information System (INIS)

    Fissel, D.; Marko, J.; Melling, H.

    2008-01-01

    Developments in acoustic profiling technologies have allowed ever more accurate and information-rich extraction of data on the draft, undersurface topography and immediately adjacent water column environment of polar and other marine and freshwater ice covers. The purpose of these advances was to replace and improve upon other, often inconvenient, costly and/or otherwise unsatisfactory methodologies such as the use of upward looking sonar (ULS) sounders on submarines as well as deployments of airborne- sensors such as laser profilometers and electromagnetic induction instrumentation. ULS is a primary source of data for measurements of ice thickness. Self-contained units now have the data capacity and accuracy/resolution sufficient for unattended operation. Recent technological advances have now led to the next generation of ice profiling sonar (IPS), incorporating much expanded on-board data storage capacity and powerful onboard real-time firmware. This paper outlined the nature of the issues addressed in past oil and gas related ice profiling studies. The paper focused on identifying the key items of interest and the remaining uncertainties in the derived products. All of the data gathered in this regard was obtained with first generation profiling instrumentation of the type initially introduced by Melling and coworkers in 1995. The additional features of a recently introduced next generation IPS instrument were briefly described. The observed and potential benefits offered in oil and gas related applications were also presented. It was concluded that the next generation ice profilers sets the stage for research and development into the measurement of new ice parameters, the combination of information from ice profilers and all-weather radar satellite systems, and the possibility of remote access to the ice profiler data from multi-year moorings located well within the main Arctic Ocean ice pack. 11 refs., 10 figs

  2. PARs for combustible gas control in advanced light water reactors

    International Nuclear Information System (INIS)

    Hosler, J.; Sliter, G.

    1997-01-01

    This paper discusses the progress being made in the United States to introduce passive autocatalytic recombiner (PAR) technology as a cost-effective alternative to electric recombiners for controlling combustible gas produced in postulated accidents in both future Advanced Light Water Reactors (ALWRs) and certain U. S. operating nuclear plants. PARs catalytically recombine hydrogen and oxygen, gradually producing heat and water vapor. They have no moving parts and are self-starting and self-feeding, even under relatively cold and wet containment conditions. Buoyancy of the hot gases they create sets up natural convective flow that promotes mixing of combustible gases in a containment. In a non-inerted ALWR containment, two approaches each employing a combination of PARs and igniters are being considered to control hydrogen in design basis and severe accidents. In pre-inerted ALWRs, PARs alone control radiolytic oxygen produced in either accident type. The paper also discusses regulatory feedback regarding these combustible gas control approaches and describes a test program being conducted by the Electric Power Research Institute (EPRI) and Electricite de France (EdF) to supplement the existing PAR test database with performance data under conditions of interest to U.S. plants. Preliminary findings from the EPRI/EdF PAR model test program are included. Successful completion of this test program and confirmatory tests being sponsored by the U. S. NRC are expected to pave the way for use of PARs in ALWRs and operating plants. (author)

  3. Exhaust gas recirculation for advanced diesel combustion cycles

    International Nuclear Information System (INIS)

    Asad, Usman; Zheng, Ming

    2014-01-01

    Highlights: • Analysis of the incremental (cycle-by-cycle) build-up of EGR. • Proposed one-step equations for transient/steady-state gas concentration estimation. • Defined an in-cylinder excess-air ratio to account for the recycled oxygen with EGR. • Demonstrated the use of intake oxygen as a reliable measure of EGR effectiveness. • Demonstrated the impact of engine load and intake pressure on EGR effectiveness. - Abstract: Modern diesel engines tend to utilize significantly large quantities of exhaust gas recirculation (EGR) and high intake pressures across the engine load range to meet NOx targets. At such high EGR rates, the combustion process and exhaust emissions tend to exhibit a marked sensitivity to small changes in the EGR quantity, resulting in unintended deviations from the desired engine performance characteristics (energy efficiency, emissions, stability). An accurate estimation of EGR and its effect on the intake dilution are, therefore, necessary to enable its application during transient engine operation or unstable combustion regimes. In this research, a detailed analysis that includes estimation of the transient (cycle-by-cycle) build-up of EGR and the time (engine cycles) required to reach the steady-state EGR operation has been carried out. One-step global equations to calculate the transient and steady-state gas concentrations in the intake and exhaust are proposed. The effects of engine load and intake pressure on EGR have been examined and explained in terms of intake charge dilution and in-cylinder excess-air ratio. The EGR analysis is validated against a wide range of empirical data that include low temperature combustion cycles, intake pressure and load sweeps. This research intends to not only formulate a clear understanding of EGR application for advanced diesel combustion but also to set forth guidelines for transient analysis of EGR

  4. Environmental benefits of advanced oil and gas exploration and production technology

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-10-01

    THROUGHOUT THE OIL AND GAS LIFE CYCLE, THE INDUSTRY HAS APPLIED AN ARRAY OF ADVANCED TECHNOLOGIES TO IMPROVE EFFICIENCY, PRODUCTIVITY, AND ENVIRONMENTAL PERFORMANCE. THIS REPORT FOCUSES SPECIFICALLY ON ADVANCES IN EXPLORATION AND PRODUCTION (E&P) OPERATIONS.

  5. Natural gas for public and private transportation: Present situation and prospects

    International Nuclear Information System (INIS)

    Gambino, M.; Iannaccone, S.; Unich, A.

    1992-01-01

    In recent years, the use of natural gas as an automotive fuel for private and public vehicles has grown due to its interesting chemical-physical properties which make it an efficient fuel and more environmentally compatible than conventional fuels. This promising consumption trend has led to increased R ampersand D investments in attempts to enhance the fuel's automotive performance and exhaust emission characteristics. This paper reviews the advances in these directions which have been made thus far by research teams around the world and assesses commercialization prospects for natural gas automotive fuels in light of the more stringent air pollution regulations being proposed by the European Communities

  6. Combustion Noise and Pollutants Prediction for Injection Pattern and Exhaust Gas Recirculation Tuning in an Automotive Common-Rail Diesel Engine

    Directory of Open Access Journals (Sweden)

    Arsie Ivan

    2015-01-01

    Full Text Available In the last years, emissions standards for internal combustion engines are becoming more and more restrictive, particularly for NOx and soot emissions from Diesel engines. In order to comply with these requirements, OEMs have to face with innovative combustion concepts and/or sophisticate after-treatment devices. In both cases, the role of the Engine Management System (EMS is increasingly essential, following the large number of actuators and sensors introduced and the need to meet customer expectations on performance and comfort. On the other hand, the large number of control variables to be tuned imposes a massive recourse to the experimental testing which is poorly sustainable in terms of time and money. In order to reduce the experimental effort and the time to market, the application of simulation models for EMS calibration has become fundamental. Predictive models, validated against a limited amount of experimental data, allow performing detailed analysis on the influence of engine control variables on pollutants, comfort and performance. In this paper, a simulation analysis on the impact of injection pattern and Exhaust Gas Recirculation (EGR rate on fuel consumption, combustion noise, NO and soot emissions is presented for an automotive Common-Rail Diesel engine. Simulations are accomplished by means of a quasi-dimensional multi-zone model of in-cylinder processes. Furthermore a methodology for in-cylinder pressure processing is presented to estimate combustion noise contribution to radiated noise. Model validation is carried out by comparing simulated in-cylinder pressure traces and exhaust emissions with experimental data measured at the test bench in steady-state conditions. Effects of control variables on engine performance, noise and pollutants are analyzed by imposing significant deviation of EGR rate and injection pattern (i.e. rail pressure, start-of-injection, number of injections. The results evidence that quasi-dimensional in

  7. Economic assessment of advanced flue gas desulfurization processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bierman, G. R.; May, E. H.; Mirabelli, R. E.; Pow, C. N.; Scardino, C.; Wan, E. I.

    1981-09-01

    This report presents the results of a project sponsored by the Morgantown Energy Technology Center (METC). The purpose of the study was to perform an economic and market assessment of advanced flue gas desulfurization (FGD) processes for application to coal-fired electric utility plants. The time period considered in the study is 1981 through 1990, and costs are reported in 1980 dollars. The task was divided into the following four subtasks: (1) determine the factors affecting FGD cost evaluations; (2) select FGD processes to be cost-analyzed; (3) define the future electric utility FGD system market; and (4) perform cost analyses for the selected FGD processes. The study was initiated in September 1979, and separate reports were prepared for the first two subtasks. The results of the latter two subtasks appear only in this final reprot, since the end-date of those subtasks coincided with the end-date of the overall task. The Subtask 1 report, Criteria and Methods for Performing FGD Cost Evaluations, was completed in October 1980. A slightly modified and condensed version of that report appears as appendix B to this report. The Subtask 2 report, FGD Candidate Process Selection, was completed in January 1981, and the principal outputs of that subtask appear in Appendices C and D to this report.

  8. Description of the advanced gas cooled type of reactor (AGR)

    Energy Technology Data Exchange (ETDEWEB)

    Nonboel, E. [Risoe National Lab., Roskilde (Denmark)

    1996-11-01

    The present report comprises a technical description of the Advanced Gas cooled Reactor (AGR), a reactor type which has only been built in Great Britain. 14 AGR reactors have been built, located at 6 different sites and each station is supplied with twin-reactors. The Torness AGR plant on the Lothian coastline of Scotland, 60 km east of Edinburgh, has been chosen as the reference plant and is described in some detail. Data on the other 6 stations, Dungeness B, Hinkely Point B, Hunterston G, Hartlepool, Heysham I and Heysham II, are given only in tables with a summary of design data. Where specific data for Torness AGR has not been available, corresponding data from other AGR plans has been used, primarily from Heysham II, which belongs to the same generation of AGR reactors. The information presented is based on the open literature. The report is written as a part of the NKS/RAK-2 subproject 3: `Reactors in Nordic Surroundings`, which comprises a description of nuclear power plants neighbouring the Nordic countries. (au) 11 refs.

  9. Description of the advanced gas cooled type of reactor (AGR)

    International Nuclear Information System (INIS)

    Nonboel, E.

    1996-11-01

    The present report comprises a technical description of the Advanced Gas cooled Reactor (AGR), a reactor type which has only been built in Great Britain. 14 AGR reactors have been built, located at 6 different sites and each station is supplied with twin-reactors. The Torness AGR plant on the Lothian coastline of Scotland, 60 km east of Edinburgh, has been chosen as the reference plant and is described in some detail. Data on the other 6 stations, Dungeness B, Hinkely Point B, Hunterston G, Hartlepool, Heysham I and Heysham II, are given only in tables with a summary of design data. Where specific data for Torness AGR has not been available, corresponding data from other AGR plans has been used, primarily from Heysham II, which belongs to the same generation of AGR reactors. The information presented is based on the open literature. The report is written as a part of the NKS/RAK-2 subproject 3: 'Reactors in Nordic Surroundings', which comprises a description of nuclear power plants neighbouring the Nordic countries. (au) 11 refs

  10. Advanced modeling of oxy-fuel combustion of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Chungen Yin

    2011-01-15

    The main goal of this small-scale project is to investigate oxy-combustion of natural gas (NG) through advanced modeling, in which radiation, chemistry and mixing will be reasonably resolved. 1) A state-of-the-art review was given regarding the latest R and D achievements and status of oxy-fuel technology. The modeling and simulation status and achievements in the field of oxy-fuel combustion were also summarized; 2) A computer code in standard c++, using the exponential wide band model (EWBM) to evaluate the emissivity and absorptivity of any gas mixture at any condition, was developed and validated in detail against data in literature. A new, complete, and accurate WSGGM, applicable to both air-fuel and oxy-fuel combustion modeling and applicable to both gray and non-gray calculation, was successfully derived, by using the validated EWBM code as the reference mode. The new WSGGM was implemented in CFD modeling of two different oxy-fuel furnaces, through which its great, unique advantages over the currently most widely used WSGGM were demonstrated. 3) Chemical equilibrium calculations were performed for oxy-NG flame and air-NG flame, in which dissociation effects were considered to different degrees. Remarkable differences in oxy-fuel and air-fuel combustion were revealed, and main intermediate species that play key roles in oxy-fuel flames were identified. Different combustion mechanisms are compared, e.g., the most widely used 2-step global mechanism, refined 4-step global mechanism, a global mechanism developed for oxy-fuel using detailed chemical kinetic modeling (CHEMKIN) as reference. 4) Over 15 CFD simulations were done for oxy-NG combustion, in which radiation, chemistry, mixing, turbulence-chemistry interactions, and so on were thoroughly investigated. Among all the simulations, RANS combined with 2-step and refined 4-step mechanism, RANS combined with CHEMKIN-based new global mechanism for oxy-fuel modeling, and LES combined with different combustion

  11. Automotive electronics design fundamentals

    CERN Document Server

    Zaman, Najamuz

    2015-01-01

    This book explains the topology behind automotive electronics architectures and examines how they can be profoundly augmented with embedded controllers. These controllers serve as the core building blocks of today’s vehicle electronics. Rather than simply teaching electrical basics, this unique resource focuses on the fundamental concepts of vehicle electronics architecture, and details the wide variety of Electronic Control Modules (ECMs) that enable the increasingly sophisticated "bells & whistles" of modern designs.  A must-have for automotive design engineers, technicians working in automotive electronics repair centers and students taking automotive electronics courses, this guide bridges the gap between academic instruction and industry practice with clear, concise advice on how to design and optimize automotive electronics with embedded controllers.

  12. Advances in operations research in the oil and gas industry

    International Nuclear Information System (INIS)

    Breton, M.; Zaccour, G.

    1991-01-01

    Various theories and examples of modelling, forecasting and optimization designing in the different parts of the petroleum and gas industries are presented, stochastic programming for long term planning in the refining industry, stochastic model for gasoline blending, feedstock optimization, location and sizing for offshore platforms, hydrocarbon exploration simulation rapid method, valuation of oil field development leases, economic models for petroleum allocation, models for oil supply market, trade embargo game theory, stochastic programming of gas contract portfolio management, scheduling transportation of oil and gas, strategic planning in an oil pipeline company, simulation of offshore oil terminal systems, hierarchical selection of oil and gas distribution systems

  13. Advances in the Partial Oxidation of Methane to Synthesis Gas

    Institute of Scientific and Technical Information of China (English)

    Quanli Zhu; Xutao Zhao; Youquan Deng

    2004-01-01

    The conversion and utilization of natural gas is of significant meaning to the national economy,even to the everyday life of people. However, it has not become a popular industrial process as expected due to the technical obstacles. In the past decades, much investigation into the conversion of methane,predominant component of natural gas, has been carried out. Among the possible routes of methane conversion, the partial oxidation of methane to synthesis gas is considered as an effective and economically feasible one. In this article, a brief review of recent studies on the mechanism of the partial oxidation of methane to synthesis gas together with catalyst development is wherein presented.

  14. Advanced Gas Hydrate Reservoir Modeling Using Rock Physics

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Daniel

    2017-12-30

    Prospecting for high saturation gas hydrate deposits can be greatly aided with improved approaches to seismic interpretation and especially if sets of seismic attributes can be shown as diagnostic or direct hydrocarbon indicators for high saturation gas hydrates in sands that would be of most interest for gas hydrate production.

    A large 3D seismic data set in the deep water Eastern Gulf of Mexico was screened for gas hydrates using a set of techniques and seismic signatures that were developed and proven in the Central deepwater Gulf of Mexico in the DOE Gulf of Mexico Joint Industry Project JIP Leg II in 2009 and recently confirmed with coring in 2017.

    A large gas hydrate deposit is interpreted in the data where gas has migrated from one of the few deep seated faults plumbing the Jurassic hydrocarbon source into the gas hydrate stability zone. The gas hydrate deposit lies within a flat-lying within Pliocene Mississippi Fan channel that was deposited outboard in a deep abyssal environment. The uniform architecture of the channel aided the evaluation of a set of seismic attributes that relate to attenuation and thin-bed energy that could be diagnostic of gas hydrates. Frequency attributes derived from spectral decomposition also proved to be direct hydrocarbon indicators by pseudo-thickness that could be only be reconciled by substituting gas hydrate in the pore space. The study emphasizes that gas hydrate exploration and reservoir characterization benefits from a seismic thin bed approach.

  15. Advanced sulfur control concepts for hot gas desulfurization technology

    International Nuclear Information System (INIS)

    1998-01-01

    The objective of this project is to develop a hot-gas desulfurization process scheme for control of H 2 S in HTHP coal gas that can be more simply and economically integrated with known regenerable sorbents in DOE/METC-sponsored work than current leading hot-gas desulfurization technologies. In addition to being more economical, the process scheme to be developed must yield an elemental sulfur byproduct. The Direct Sulfur Recovery Process (DSRP), a leading process for producing an elemental sulfur byproduct in hot-gas desulfurization systems, incurs a coal gas use penalty, because coal gas is required to reduce the SO 2 in regeneration off-gas to elemental sulfur. Alternative regeneration schemes, which avoid coal gas use and produce elemental sulfur, will be evaluated. These include (i) regeneration of sulfided sorbent using SO 2 ; (ii) partial oxidation of sulfided sorbent in an O 2 starved environment; and (iii) regeneration of sulfided sorbent using steam to produce H 2 S followed by direct oxidation of H 2 S to elemental sulfur. Known regenerable sorbents will be modified to improve the feasibility of the above alternative regeneration approaches. Performance characteristics of the modified sorbents and processes will be obtained through lab- and bench-scale testing. Technical and economic evaluation of the most promising processes concept(s) will be carried out

  16. Online Reputation in Automotive

    Directory of Open Access Journals (Sweden)

    Vodák Josef

    2017-01-01

    Full Text Available This paper deals with the issue of online reputation, namely the social networking profile of businesses. Selected companies in the automotive industry through social profiles communicate with their customers, the public and they trying to improve their name and the name of their products in the public eye. Online reputation analysis was carried out to determine the current situation on the territory of Slovakia. On the basis of the data found, measures were proposed to improve the current state and reputation of automotive companies. Recommendations suggested by the findings can be used on any market to improve the current state and increase the competitiveness of automotive companies.

  17. Automotive sensors: past, present and future

    International Nuclear Information System (INIS)

    Prosser, S J

    2007-01-01

    This paper will provide a review of past, present and future automotive sensors. Today's vehicles have become highly complex sophisticated electronic control systems and the majority of innovations have been solely achieved through electronics and the use of advanced sensors. A range of technologies have been used over the past twenty years including silicon microengineering, thick film, capacitive, variable reluctance, optical and radar. The automotive sensor market continues to grow with respect to vehicle production level in recognition of the transition to electronically controlled electrically actuated systems. The environment for these sensors continues to be increasingly challenging with respect to robustness, reliability, quality and cost

  18. Automotive sensors: past, present and future

    Science.gov (United States)

    Prosser, S. J.

    2007-07-01

    This paper will provide a review of past, present and future automotive sensors. Today's vehicles have become highly complex sophisticated electronic control systems and the majority of innovations have been solely achieved through electronics and the use of advanced sensors. A range of technologies have been used over the past twenty years including silicon microengineering, thick film, capacitive, variable reluctance, optical and radar. The automotive sensor market continues to grow with respect to vehicle production level in recognition of the transition to electronically controlled electrically actuated systems. The environment for these sensors continues to be increasingly challenging with respect to robustness, reliability, quality and cost.

  19. Nanotechnology impact on the automotive industry.

    Science.gov (United States)

    Wong, Kaufui V; Paddon, Patrick A

    2014-01-01

    Nanotechnology has been implemented widely in the automotive industry. This technology is particularly useful in coatings, fabrics, structural materials, fluids, lubricants, tires, and preliminary applications in smart glass/windows and video display systems. A special sub-class of improved materials, alternative energy, has also seen a boost from advances in nanotechnology, and continues to be an active research area. A correlation exists in the automotive industry between the areas with increased nanotechnology incorporation and those with increased profit margins via improvements and customer demands.

  20. Ambient Laboratory Coater for Advanced Gas Reactor Fuel Development

    International Nuclear Information System (INIS)

    Bruns, Duane D.; Counce, Robert M.; Lima Rojas, Irma D.

    2010-01-01

    This research is targeted at developing improved experimentally-based scaling relationships for the hydrodynamics of shallow, gas-spouted beds of dense particles. The work is motivated by the need to more effctively scale up shallow spouted beds used in processes such as in the coating of nuclear fuel particles where precise control of solids and gas circulation is critically important. Experimental results reported here are for a 50 mm diameter spouted bed containing two different types of bed solids (alumina and zirconia) at different static bed depths and fluidized by air and helium. Measurements of multiple local average pressures, inlet gas pressure fluctuations, and spout height were used to characterize the bed hydrodynamics for each operating condition. Follow-on studies are planned that include additional variations in bed size, particle properties, and fluidizing gas. The ultimate objective is to identify the most important non-dimensional hydrodynamic scaling groups and possible spouted-bed design correlations based on these groups.

  1. Vermont Yankee advanced off-gas system (AOG)

    International Nuclear Information System (INIS)

    Littlefield, P.S.; Miller, S.R.; DerHagopian, H.

    1975-01-01

    Early in 1971 the Vermont Yankee Nuclear Power Corporation decided to modify the existing off-gas delay system to reduce the release of noble gas isotopes from its boiling water reactor. This modification included a subsystem for recombining the radiolytic hydrogen and oxygen from the reactor and a series of adsorber tanks filled with activated carbon to delay the noble gas isotopes from the condenser air ejectors. The off-gas system and its operating history from initial operation in November 1973 to the present time are described. Data are also presented on the measured dynamic adsorption coefficient of the ambient carbon subsystem. Laboratory adsorption tests were conducted on the carbon prior to AOG startup and the results are compared with the effective coefficients obtained under operating conditions. (U.S.)

  2. National Automotive Center - NAC

    Data.gov (United States)

    Federal Laboratory Consortium — Encouraged by the advantages of collaboration, the U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC) worked with the Secretary of the...

  3. Advanced Gas Sensing Technology for Space Suits, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced space suits require lightweight, low-power, durable sensors for monitoring critical life support materials. No current compact sensors have the tolerance...

  4. Advanced Hydraulic Fracturing Technology for Unconventional Tight Gas Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Holditch; A. Daniel Hill; D. Zhu

    2007-06-19

    The objectives of this project are to develop and test new techniques for creating extensive, conductive hydraulic fractures in unconventional tight gas reservoirs by statistically assessing the productivity achieved in hundreds of field treatments with a variety of current fracturing practices ranging from 'water fracs' to conventional gel fracture treatments; by laboratory measurements of the conductivity created with high rate proppant fracturing using an entirely new conductivity test - the 'dynamic fracture conductivity test'; and by developing design models to implement the optimal fracture treatments determined from the field assessment and the laboratory measurements. One of the tasks of this project is to create an 'advisor' or expert system for completion, production and stimulation of tight gas reservoirs. A central part of this study is an extensive survey of the productivity of hundreds of tight gas wells that have been hydraulically fractured. We have been doing an extensive literature search of the SPE eLibrary, DOE, Gas Technology Institute (GTI), Bureau of Economic Geology and IHS Energy, for publicly available technical reports about procedures of drilling, completion and production of the tight gas wells. We have downloaded numerous papers and read and summarized the information to build a database that will contain field treatment data, organized by geographic location, and hydraulic fracture treatment design data, organized by the treatment type. We have conducted experimental study on 'dynamic fracture conductivity' created when proppant slurries are pumped into hydraulic fractures in tight gas sands. Unlike conventional fracture conductivity tests in which proppant is loaded into the fracture artificially; we pump proppant/frac fluid slurries into a fracture cell, dynamically placing the proppant just as it occurs in the field. From such tests, we expect to gain new insights into some of the critical

  5. Methods for studying fuel management in advanced gas cooled reactors

    International Nuclear Information System (INIS)

    Buckler, A.N.; Griggs, C.F.; Tyror, J.G.

    1971-07-01

    The methods used for studying fuel and absorber management problems in AGRs are described. The basis of the method is the use of ARGOSY lattice data in reactor calculations performed at successive time steps. These reactor calculations may be quite crude but for advanced design calculations a detailed channel-by-channel representation of the whole core is required. The main emphasis of the paper is in describing such an advanced approach - the ODYSSEUS-6 code. This code evaluates reactor power distributions as a function of time and uses the information to select refuelling moves and determine controller positions. (author)

  6. Greenhouse gas emission curves for advanced biofuel supply chains

    NARCIS (Netherlands)

    Daioglou, Vassilis|info:eu-repo/dai/nl/345702867; Doelman, Jonathan C.|info:eu-repo/dai/nl/411286099; Stehfest, Elke; Müller, Christoph; Wicke, Birka|info:eu-repo/dai/nl/306645955; Faaij, Andre; van Vuuren, Detlef P.|info:eu-repo/dai/nl/11522016X

    2017-01-01

    Most climate change mitigation scenarios that are consistent with the 1.5–2 °C target rely on a large-scale contribution from biomass, including advanced (second-generation) biofuels. However, land-based biofuel production has been associated with substantial land-use change emissions. Previous

  7. Advanced exergetic analysis of five natural gas liquefaction processes

    International Nuclear Information System (INIS)

    Vatani, Ali; Mehrpooya, Mehdi; Palizdar, Ali

    2014-01-01

    Highlights: • Advanced exergetic analysis was investigated for five LNG processes. • Avoidable/unavoidable and endogenous/exogenous irreversibilities were calculated. • Advanced exergetic analysis identifies the potentials for improving the system. - Abstract: Conventional exergy analysis cannot identify portion of inefficiencies which can be avoided. Also this analysis does not have ability to calculate a portion of exergy destruction which has been produced through performance of a component alone. In this study advanced exergetic analysis was performed for five mixed refrigerant LNG processes and four parts of irreversibility (avoidable/unavoidable) and (endogenous/exogenous) were calculated for the components with high inefficiencies. The results showed that portion of endogenous exergy destruction in the components is higher than the exogenous one. In fact interactions among the components do not affect the inefficiencies significantly. Also this analysis showed that structural optimization cannot be useful to decrease the overall process irreversibilities. In compressors high portion of the exergy destruction is related to the avoidable one, thus they have high potential to improve. But in multi stream heat exchangers and air coolers, unavoidable inefficiencies were higher than the other parts. Advanced exergetic analysis can identify the potentials and strategies to improve thermodynamic performance of energy intensive processes

  8. Multichip module technology for automotive application

    Science.gov (United States)

    Johnson, R. Wayne; Evans, John L.; Bosley, Larry

    1995-01-01

    Advancements in multichip module technology are creating design freedoms previously unavailable to design engineers. These advancements are opening new markets for laminate based multichip module products. In particular, material improvements in laminate printed wiring boards are allowing multichip module technology to meet more stringent environmental conditions. In addition, improvements in encapsulants and adhesives are enhancing the capabilities of multichip module technology to meet harsh environment. Furthermore, improvements in manufacturing techniques are providing the reliability improvements necessary for use in high quality electronic systems. These advances are making multichip module technology viable for high volume, harsh environment applications like under-the-hood automotive electronics. This paper will provide a brief review of multichip module technology, a discussion of specific research activities with Chrysler for use of multichip modules in automotive engine controllers and finally a discussion of prototype multichip modules fabricated and tested.

  9. Automotive Thermoelectric Waste Heat Recovery

    Science.gov (United States)

    Meisner, Gregory P.

    2015-03-01

    Considerable fuel energy, as much as 70%, is not converted to useful work by internal combustion engines but is instead rejected as waste heat, and more than half of the waste heat, nearly 40% of fuel energy, is contained in vehicle exhaust gas. This provides an opportunity to recover some of the wasted fuel energy and convert it from heat into useful work, subject to the laws of thermodynamics, and thereby improve vehicle energy efficiency. Thermoelectric (TE) materials have been extensively researched and TE devices are now being developed for operation at high temperatures corresponding to automotive exhaust gases for direct solid-state conversion of heat into electricity. This has stimulated substantial progress in the development of practical TE generator (TEG) systems for large-scale commercialization. A significant enabler of this progress has been the US Department of Energy's Vehicle Technologies Program through funding for low cost solutions for automotive TE waste heat recovery to improve fuel economy. Our current project at General Motors has culminated in the identification of the potential supply chain for all components and assembly of an automotive TEG. A significant focus has been to develop integrated and iterative modeling tools for a fully optimized TEG design that includes all components and subsystems (TE modules, heat exchangers, thermal interfaces, electrical interconnects, power conditioning, and vehicle integration for maximal use of TEG power). We have built and tested a new, low-cost Initial TEG prototype based on state-of-the-art production-scale skutterudite TE modules, novel heat exchanger designs, and practical solutions to the many technical challenges for optimum TEG performance. We will use the results for our Initial TEG prototype to refine our modeling and design tools for a Final automotive TEG system prototype. Our recent results will be presented. Thanks to: J.R. Salvador, E.R. Gundlach, D. Thompson, N.K. Bucknor, M

  10. Seismic snubber reduction on advanced gas-cooled reactor pipework

    International Nuclear Information System (INIS)

    Kennedy, P.A.; Harkin, N.J.

    1989-01-01

    Recent advances in pipework dynamic analysis procedures have enabled a more realistic approach to be taken to the design of pipework under earthquake loadings. In particular, it is proving possible to reduce the number of seismic snubbers employed to limit pipework displacements. This paper presents the background to, and outcome of, a snubber optimisation study performed for the main steam pipework system at Torness Nuclear Power Station. (author)

  11. ADVANCED SULFUR CONTROL CONCEPTS FOR HOT-GAS DESULFURIZATION TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    A. LOPEZ ORTIZ; D.P. HARRISON; F.R. GROVES; J.D. WHITE; S. ZHANG; W.-N. HUANG; Y. ZENG

    1998-10-31

    This research project examined the feasibility of a second generation high-temperature coal gas desulfurization process in which elemental sulfur is produced directly during the sorbent regeneration phase. Two concepts were evaluated experimentally. In the first, FeS was regenerated in a H2O-O2 mixture. Large fractions of the sulfur were liberated in elemental form when the H2O-O2 ratio was large. However, the mole percent of elemental sulfur in the product was always quite small (<<1%) and a process based on this concept was judged to be impractical because of the low temperature and high energy requirements associated with condensing the sulfur. The second concept involved desulfurization using CeO2 and regeneration of the sulfided sorbent, Ce2O2S, using SO2 to produce elemental sulfur directly. No significant side reactions were observed and the reaction was found to be quite rapid over the temperature range of 500°C to 700°C. Elemental sulfur concentrations (as S2) as large as 20 mol% were produced. Limitations associated with the cerium sorbent process are concentrated in the desulfurization phase. High temperature and highly reducing coal gas such as produced in the Shell gasification process are required if high sulfur removal efficiencies are to be achieved. For example, the equilibrium H2S concentration at 800°C from a Shell gas in contact with CeO2 is about 300 ppmv, well above the allowable IGCC specification. In this case, a two-stage desulfurization process using CeO2 for bulk H2S removal following by a zinc sorbent polishing step would be required. Under appropriate conditions, however, CeO2 can be reduced to non-stoichiometric CeOn (n<2) which has significantly greater affinity for H2S. Pre-breakthrough H2S concentrations in the range of 1 ppmv to 5 ppmv were measured in sulfidation tests using CeOn at 700°C in highly reducing gases, as measured by equilibrium O2 concentration, comparable to the Shell gas. Good sorbent durability was indicated in

  12. Advanced sulfur control concepts for hot-gas desulfurization technology

    International Nuclear Information System (INIS)

    Lopez Ortiz, A.; Harrison, D.P.; Groves, F.R.; White, J.D.; Zhang, S.; Huang, W.N.; Zeng, Y.

    1998-01-01

    This research project examined the feasibility of a second generation high-temperature coal gas desulfurization process in which elemental sulfur is produced directly during the sorbent regeneration phase. Two concepts were evaluated experimentally. In the first, FeS was regenerated in a H2O-O2 mixture. Large fractions of the sulfur were liberated in elemental form when the H2O-O2 ratio was large. However, the mole percent of elemental sulfur in the product was always quite small (<<1%) and a process based on this concept was judged to be impractical because of the low temperature and high energy requirements associated with condensing the sulfur. The second concept involved desulfurization using CeO2 and regeneration of the sulfided sorbent, Ce2O2S, using SO2 to produce elemental sulfur directly. No significant side reactions were observed and the reaction was found to be quite rapid over the temperature range of 500C to 700C. Elemental sulfur concentrations (as S2) as large as 20 mol% were produced. Limitations associated with the cerium sorbent process are concentrated in the desulfurization phase. High temperature and highly reducing coal gas such as produced in the Shell gasification process are required if high sulfur removal efficiencies are to be achieved. For example, the equilibrium H2S concentration at 800C from a Shell gas in contact with CeO2 is about 300 ppmv, well above the allowable IGCC specification. In this case, a two-stage desulfurization process using CeO2 for bulk H2S removal following by a zinc sorbent polishing step would be required. Under appropriate conditions, however, CeO2 can be reduced to non-stoichiometric CeOn (n<2) which has significantly greater affinity for H2S. Pre-breakthrough H2S concentrations in the range of 1 ppmv to 5 ppmv were measured in sulfidation tests using CeOn at 700C in highly reducing gases, as measured by equilibrium O2 concentration, comparable to the Shell gas. Good sorbent durability was indicated in a

  13. Advanced solar energy conversion. [solar pumped gas lasers

    Science.gov (United States)

    Lee, J. H.

    1981-01-01

    An atomic iodine laser, a candidate for the direct solar pumped lasers, was successfully excited with a 4 kW beam from a xenon arc solar simulator, thus proving the feasibility of the concept. The experimental set up and the laser output as functions of operating conditions are presented. The preliminary results of the iodine laser amplifier pumped with the HCP array to which a Q switch for giant pulse production was coupled are included. Two invention disclosures - a laser driven magnetohydrodynamic generator for conversion of laser energy to electricity and solar pumped gas lasers - are also included.

  14. Ceramic membranes for gas separation in advanced fossil power plants

    Energy Technology Data Exchange (ETDEWEB)

    Meulenberg, W.A.; Baumann, S.; Ivanova, M.; Gestel, T. van; Bram, M.; Stoever, D. [Forschungszentrum Juelich GmbH (DE). Inst. fuer Energieforschung (IEF)

    2010-07-01

    The reduction or elimination of CO{sub 2} emissions from electricity generation power plants fuelled by coal or gas is a major target in the current socio-economic, environmental and political discussion to reduce green house gas emissions such as CO{sub 2}. This mission can be achieved by introducing gas separation techniques making use of membrane technology, which is, as a rule, associated with significantly lower efficiency losses compared with the conventional separation technologies. Depending on the kind of power plant process different membrane types (ceramic, polymer, metal) can be implemented. The possible technology routes are currently investigated to achieve the emission reduction. They rely on different separation tasks. The CO{sub 2}/N{sub 2} separation is the main target in the post-combustion process. Air separation (O{sub 2}/N{sub 2}) is the focus of the oxyfuel process. In the pre-combustion process an additional H{sub 2}/CO{sub 2} separation is included. Although all separation concepts imply different process requirements they have in common a need in membranes with high permeability, selectivity and stability. In each case CO{sub 2} is obtained in a readily condensable form. CO{sub 2}/N{sub 2} separation membranes like microporous membranes or polymer membranes are applicable in post-combustion stages. In processes with oxyfuel combustion, where the fuel is combusted with pure oxygen, oxygen transport membranes i.e. mixed ionic electronic conducting (MIEC) membranes with mainly perovskite or fluorite structure can be integrated. In the pre-combustion stages of the power plant process, H{sub 2}/CO{sub 2} separation membranes like microporous membranes e.g. doped silica or mixed protonic electronic conductors or metal membranes can be applied. The paper gives an overview about the considered ceramic materials for the different gas separation membranes. The manufacturing of bulk materials as well as supported thin films of these membranes along

  15. Gas Cooled Fast Reactors: Recent advances and prospects

    International Nuclear Information System (INIS)

    Poette, C.; Guedeney, P.; Stainsby, R.; Mikityuk, K.; Knol, S.

    2013-01-01

    Gas Cooled Fast Reactors: Conclusion - GFR: an attractive longer term option allowing to combine Fast spectrum & Helium coolant benefits; • Innovative SiC fuel cladding solutions were found; • A first design confirming the encouraging potential of the reactor system Design improvements are nevertheless recommended and interesting tracks have been identified (core & system design, DHR system); • The GFR requires large R&D needs to confirm its potential (fuel & core materials, specific Helium technology); • ALLEGRO prototype studies are the first step and are drawing the R&D priorities

  16. Automotive NVH technology

    CERN Document Server

    Nijman, Eugenius; Priebsch, Hans-Herwig

    2016-01-01

    This book presents seven chapters examining selected noise, vibration and harshness (NVH) topics that are highly relevant for automotive vehicle development. These include applications following the major trends toward increased passenger comfort, vehicle electrification and lightweight design. The authors of the seven chapters, all of which are experts from the automotive industry and academia, present the foremost challenges and potential solutions in this demanding field. Among others, applications for sound optimization in downsized engines, noise optimization in electric powertrains, weight reduction options for exhaust systems, porous materials description, and the vibro-acoustic analysis of geared systems are discussed.

  17. Identification for automotive systems

    CERN Document Server

    Hjalmarsson, Håkan; Re, Luigi

    2012-01-01

    Increasing complexity and performance and reliability expectations make modeling of automotive system both more difficult and more urgent. Automotive control has slowly evolved from an add-on to classical engine and vehicle design to a key technology to enforce consumption, pollution and safety limits. Modeling, however, is still mainly based on classical methods, even though much progress has been done in the identification community to speed it up and improve it. This book, the product of a workshop of representatives of different communities, offers an insight on how to close the gap and exploit this progress for the next generations of vehicles.

  18. Standardized Curriculum for Automotive Mechanics.

    Science.gov (United States)

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized curricula are provided for two courses for the secondary vocational education program in Mississippi: automotive mechanics I and II. The six units in automotive mechanics I are as follows: orientation and safety; tools, equipment, and manuals; measurement; automotive engines; basic electrical systems; and fuel systems. Automotive…

  19. Advanced Gas Sensors Using SERS-Activated Waveguides

    Science.gov (United States)

    Lascola, Robert; McWhorter, Scott; Murph, Simona Hunyadi

    2010-08-01

    This contribution describes progress towards the development and testing of a functionalized capillary that will provide detection of low-concentration gas-phase analytes through SERS. Measurement inside a waveguide allows interrogation of a large surface area, potentially overcoming the short distance dependence of the SERS effect. The possible use of Raman spectroscopy for gas detection is attractive for IR-inactive molecules or scenarios where infrared technology is inconvenient. However, the weakness of Raman scattering limits the use of the technique to situations where low detection limits are not required or large gas pressures are present. With surface-enhanced Raman spectroscopy (SERS), signal enhancements of 106 are often claimed, and higher values are seen in specific instances. However, most of the examples of SERS analysis are on liquid-phase samples, where the molecular density is high, usually combined with some sort of sample concentration at the surface. Neither of these factors is present in gas-phase samples. Because the laser is focused to a small point in the typical experimental setup, and the spatial extent of the effect above the surface is small (microns), the excitation volume is miniscule. Thus, exceptionally large enhancements are required to generate a signal comparable to that obtained by conventional Raman measurements. A reflective waveguide offers a way to increase the interaction volume of the laser with a SERS-modified surface. The use of a waveguide to enhance classical Raman measurements was recently demonstrated by S.M. Angel and coworkers, who obtained 12- to 30-fold sensitivity improvements for nonabsorbing gases (CO2, CH4) with a silvered capillary (no SERS enhancement). Shi et al.. demonstrated 10-to 100-fold enhancement of aqueous Rhodamine 6G in a capillary coated with silver nanoparticles. They observed enhancements of 10- to 100-fold compared to direct sampling, but this relied on a "double substrate", which required

  20. TESTING OF GAS REACTOR MATERIALS AND FUEL IN THE ADVANCED TEST REACTOR

    International Nuclear Information System (INIS)

    Grover, S.B.

    2004-01-01

    The Advanced Test Reactor (ATR) has long been involved in testing gas reactor materials, and has developed facilities well suited for providing the right conditions and environment for gas reactor tests. This paper discusses the different types of irradiation hardware that have been utilized in past ATR irradiation tests of gas reactor materials. The new Gas Test Loop facility currently being developed for the ATR is discussed and the different approaches being considered in the design of the facility. The different options for an irradiation experiment such as active versus passive temperature control, neutron spectrum tailoring, and different types of lead experiment sweep gas monitors are also discussed. The paper is then concluded with examples of different past and present gas reactor material and fuel irradiations

  1. Testing of Gas Reactor Materials and Fuel in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    S. Blaine Grover

    2004-01-01

    The Advanced Test Reactor (ATR) has long been involved in testing gas reactor materials, and has developed facilities well suited for providing the right conditions and environment for gas reactor tests. This paper discusses the different types of irradiation hardware that have been utilized in past ATR irradiation tests of gas reactor materials. The new Gas Test Loop facility currently being developed for the ATR is discussed and the different approaches being considered in the design of the facility. The different options for an irradiation experiment such as active versus passive temperature control, neutron spectrum tailoring, and different types of lead experiment sweep gas monitors are also discussed. The paper is then concluded with examples of different past and present gas reactor material and fuel irradiations

  2. Greenhouse gas emission curves for advanced biofuel supply chains

    Science.gov (United States)

    Daioglou, Vassilis; Doelman, Jonathan C.; Stehfest, Elke; Müller, Christoph; Wicke, Birka; Faaij, Andre; van Vuuren, Detlef P.

    2017-12-01

    Most climate change mitigation scenarios that are consistent with the 1.5-2 °C target rely on a large-scale contribution from biomass, including advanced (second-generation) biofuels. However, land-based biofuel production has been associated with substantial land-use change emissions. Previous studies show a wide range of emission factors, often hiding the influence of spatial heterogeneity. Here we introduce a spatially explicit method for assessing the supply of advanced biofuels at different emission factors and present the results as emission curves. Dedicated crops grown on grasslands, savannahs and abandoned agricultural lands could provide 30 EJBiofuel yr-1 with emission factors less than 40 kg of CO2-equivalent (CO2e) emissions per GJBiofuel (for an 85-year time horizon). This increases to 100 EJBiofuel yr-1 for emission factors less than 60 kgCO2e GJBiofuel-1. While these results are uncertain and depend on model assumptions (including time horizon, spatial resolution, technology assumptions and so on), emission curves improve our understanding of the relationship between biofuel supply and its potential contribution to climate change mitigation while accounting for spatial heterogeneity.

  3. Application of advanced data reduction methods to gas turbine dynamic analysis

    International Nuclear Information System (INIS)

    Juhl, P.B.

    1978-01-01

    This paper discusses the application of advanced data reduction methods to the evaluation of dynamic data from gas turbines and turbine components. The use of the Fast Fourier Transform and of real-time spectrum analyzers is discussed. The use of power spectral density and probability density functions for analyzing random data is discussed. Examples of the application of these modern techniques to gas turbine testing are presented. The use of the computer to automate the data reduction procedures is discussed. (orig.) [de

  4. Hydrogen as automotive fuel

    International Nuclear Information System (INIS)

    Ambrosini, G.; Ciancia, A.; Pede, G.; Brighigna, M.

    1993-01-01

    Hydrogen fueled vehicles may just be the answer to the air pollution problem in highly polluted urban environments where the innovative vehicle's air pollution abatement characteristics would justify its high operating costs as compared with those of conventional automotive alternatives. This paper examines the feasibility of hydrogen as an automotive fuel by analyzing the following aspects: the chemical-physical properties of hydrogen in relation to its use in internal combustion engines; the modifications necessary to adapt internal combustion engines to hydrogen use; hydrogen fuel injection systems; current production technologies and commercialization status of hydrogen automotive fuels; energy efficiency ratings; environmental impacts; in-vehicle storage systems - involving the use of hydrides, high pressure systems and liquid hydrogen storage systems; performance in terms of pay-load ratio; autonomous operation; and operating costs. With reference to recent trial results being obtained in the USA, an assessment is also made of the feasibility of the use of methane-hydrogen mixtures as automotive fuels. The paper concludes with a review of progress being made by ENEA (the Italian Agency for New Technology, Energy and the Environment) in the development of fuel storage and electronic fuel injection systems for hydrogen powered vehicles

  5. Automotive Brake Systems.

    Science.gov (United States)

    Marine Corps Inst., Washington, DC.

    This correspondence course, orginally developed for the Marine Corps, is designed to provide mechanics with an understanding of the basic operations of automotive brake systems on military vehicles. The course contains four study units covering hydraulic brakes, air brakes, power brakes, and auxiliary brake systems. A troubleshooting guide for…

  6. Design and instrumentation of an automotive heat pump system using ambient air, engine coolant and exhaust gas as a heat source

    International Nuclear Information System (INIS)

    Hosoz, M.; Direk, M.; Yigit, K.S.; Canakci, M.; Alptekin, E.; Turkcan, A.

    2009-01-01

    Because the amount of waste heat used for comfort heating of the passenger compartment in motor vehicles decreases continuously as a result of the increasing engine efficiencies originating from recent developments in internal combustion engine technology, it is estimated that heat requirement of the passenger compartment in vehicles using future generation diesel engines will not be met by the waste heat taken from the engine coolant. The automotive heat pump (AHP) system can heat the passenger compartment individually, or it can support the present heating system of the vehicle. The AHP system can also be employed in electric vehicles, which do not have waste heat, as well as vehicles driven by a fuel cell. The authors of this paper observed that such an AHP system using ambient air as a heat source could not meet the heat requirement of the compartment when ambient temperature was extremely low. The reason is the decrease in the amount of heat taken from the ambient air as a result of low evaporating temperatures. Furthermore, the moisture condensed from air freezed on the evaporator surface, thus blocking the air flow through it. This problem can be solved by using the heat of engine coolant or exhaust gases. In this case, the AHP system can have a higher heating capacity and reuse waste heat. (author)

  7. Recent Advances in Water Analysis with Gas Chromatograph Mass Spectrometers

    Science.gov (United States)

    MacAskill, John A.; Tsikata, Edem

    2014-01-01

    We report on progress made in developing a water sampling system for detection and analysis of volatile organic compounds in water with a gas chromatograph mass spectrometer (GCMS). Two approaches are described herein. The first approach uses a custom water pre-concentrator for performing trap and purge of VOCs from water. The second approach uses a custom micro-volume, split-splitless injector that is compatible with air and water. These water sampling systems will enable a single GC-based instrument to analyze air and water samples for VOC content. As reduced mass, volume, and power is crucial for long-duration, manned space-exploration, these water sampling systems will demonstrate the ability of a GCMS to monitor both air and water quality of the astronaut environment, thereby reducing the amount of required instrumentation for long duration habitation. Laboratory prototypes of these water sampling systems have been constructed and tested with a quadrupole ion trap mass spectrometer as well as a thermal conductivity detector. Presented herein are details of these water sampling system with preliminary test results.

  8. A Low Cost Ferritic Stainless Steel Microalloyed by Higher Nb for Automotive Exhaust System

    Science.gov (United States)

    Chen, Erhu; Wang, Xuelin; Shang, Chengjia

    Automotive engine exhaust gas after combustion of fuel, and the gas will be liquefied in the rear of automotive exhaust system. A lot of corrosive anions existing in the condensate make corrosion of the exhaust system materials. Therefore, once pitting perforation, automotive exhaust system will fail directly. In 1980s, automotive exhaust manifold was made of Si-Mo ductile iron, mufflers and the tail pipe were made of carbon steel or aluminized steel. But with higher emission standards carried out, the improvement of engine performance and the higher exhaust temperature as well as the needs of the automotive light-weighting, we need the higher corrosion resistance of the material for automotive exhaust systems to meet the requirements.

  9. Fuel cycles and advanced core designs for the Gas-Cooled Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Simon, R.H.; Hamilton, C.J.; Hunter, R.S.

    1982-01-01

    Studies indicate that a 1200 MW(e) Gas-Cooled Fast Breeder Reactor could achieve compound system doubling times of under ten years when using advanced oxide or carbide fuels. In addition, when thorium is used in the breeding blankets, enough U-233 can be generated in each GCFR to supply several advanced converter reactors with fissionable material and this symbiotic relationship could provide energy for the world for centuries. (author)

  10. Aero and vibroacoustics of automotive turbochargers

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen-Schaefer, Hung [Bosch Mahle Turbo Systems GmbH, Stuttgart (Germany)

    2013-02-01

    First book about the aeroacoustics of automotive turbochargers. Author of the book ''Rotordynamics of Automotive Turbochargers'', Springer, 2012. Written by an R and D expert in the turbocharger industry. Aero and Vibroacoustics of Automotive Turbochargers is a topic involving aspects from the working fields of thermodynamics of turbomachinery, aerodynamics, rotordynamics, and noise propagation computation. In this broadly interdisciplinary subject, thermodynamics of turbomachinery is used to design the turbocharger and to determine its operating conditions. Aerodynamics is needed to study the compressor flow dynamics and flow instabilities of rotating stall and surge, which can produce growling and whining-type noises. Rotordynamics is necessary to study rotor unbalance and self-excited oil-whirl instabilities, which lead to whistling and constant tone-type noises in rotating floating oil-film type bearings. For the special case of turbochargers using ball bearings, some high-order harmonic and wear noises also manifest in the rotor operating range. Lastly, noise propagation computation, based on Lighthill's analogy, is required to investigate airborne noises produced by turbochargers in passenger vehicles. The content of this book is intended for advanced undergraduates, graduates in mechanical engineering, research scientists and practicing engineers who want to better understand the interactions between these working fields and the resulting impact on the interesting topic of Aero and Vibroacoustics of Automotive Turbochargers.

  11. Life prediction of advanced materials for gas turbine application

    Energy Technology Data Exchange (ETDEWEB)

    Zamrik, S.Y.; Ray, A.; Koss, D.A. [Pennsylvania State Univ., University Park, PA (United States)

    1995-10-01

    Most of the studies on the low cycle fatigue life prediction have been reported under isothermal conditions where the deformation of the material is strain dependent. In the development of gas turbines, components such as blades and vanes are exposed to temperature variations in addition to strain cycling. As a result, the deformation process becomes temperature and strain dependent. Therefore, the life of the component becomes sensitive to temperature-strain cycling which produces a process known as {open_quotes}thermomechanical fatigue, or TMF{close_quotes}. The TMF fatigue failure phenomenon has been modeled using conventional fatigue life prediction methods, which are not sufficiently accurate to quantitatively establish an allowable design procedure. To add to the complexity of TMF life prediction, blade and vane substrates are normally coated with aluminide, overlay or thermal barrier type coatings (TBC) where the durability of the component is dominated by the coating/substrate constitutive response and by the fatigue behavior of the coating. A number of issues arise from TMF depending on the type of temperature/strain phase cycle: (1) time-dependent inelastic behavior can significantly affect the stress response. For example, creep relaxation during a tensile or compressive loading at elevated temperatures leads to a progressive increase in the mean stress level under cyclic loading. (2) the mismatch in elastic and thermal expansion properties between the coating and the substrate can lead to significant deviations in the coating stress levels due to changes in the elastic modulii. (3) the {open_quotes}dry{close_quotes} corrosion resistance coatings applied to the substrate may act as primary crack initiation sites. Crack initiation in the coating is a function of the coating composition, its mechanical properties, creep relaxation behavior, thermal strain range and the strain/temperature phase relationship.

  12. Future Automotive Systems Technology Simulator (FASTSim)

    Energy Technology Data Exchange (ETDEWEB)

    2018-04-11

    An advanced vehicle powertrain systems analysis tool, the Future Automotive Systems Technology Simulator (FASTSim) provides a simple way to compare powertrains and estimate the impact of technology improvements on light-, medium- and heavy-duty vehicle efficiency, performance, cost, and battery life. Created by the National Renewable Energy Laboratory, FASTSim accommodates a range of vehicle types - including conventional vehicles, electric-drive vehicles, and fuel cell vehicles - and is available for free download in Microsoft Excel and Python formats.

  13. The status of ceramic turbine component fabrication and quality assurance relevant to automotive turbine needs

    Energy Technology Data Exchange (ETDEWEB)

    Richerson, D.W.

    2000-02-01

    This report documents a study funded by the U.S. Department of Energy (DOE) Office of Transportation Technologies (OTT) with guidance from the Ceramics Division of the United States Automotive Materials Partnership (USAMP). DOE and the automotive companies have funded extensive development of ceramic materials for automotive gas turbine components, the most recent effort being under the Partnership for a New Generation of Vehicles (PNGV) program.

  14. Advanced combustion technologies for gas turbine power plants

    Energy Technology Data Exchange (ETDEWEB)

    Vandsburger, U.; Desu, S.B. [Virginia Tech, Blacksburg, VA (United States); Roe, L.A.

    1995-10-01

    During the second half of fiscal year 1995 progress was made in all three funded subject areas of the project as well as in a new area. Work in the area of mixing and combustion management through flow actuation was transferred into an enclosed facility. Jet mixing in a ducted co-flow was examined. The same jets were also subjected to a strong acoustic field established in the duct. Excitation of the jet with static spatial modes was shown to be effective even in the presence of co-flow and the acoustic field. Only when a wall is placed at the jet exit plane did the acoustic field dominate the jet dispersion (as expected due to reflective boundary conditions and the jet shear layer receptivity). This case is, however, not the most relevant to gas turbine combustors since it precludes co-flow. In the area of combustor testing, the design, fabrication, and assembly of a modular combustor test rig for project has been completed at the University of Arkansas. In the area of high temperature piezoceramic actuator materials development, Sr{sub 2}(Nb{sub x}Ta{sub 1-x}){sub 2}O{sub 7} powders have been synthesized, and bulk samples and thick films sintered. These materials have a curie temperature of about 1400{degrees}C compared with 300{degrees}C for the commercially available PZT. While at room temperature the new materials show a piezoelectric constant (d{sub 33}) which is a factor of 100 lower than PZT, at high temperatures they can exhibit significant action. A new area of non-linear, neural-net based, controllers for mixing and combustion control has been added during the second contract year. This work is not funded by the contract. Significant progress was made in this area. Neural nets with up to 15 neurons in the hidden layer were trained with experimental data and also with data generated using linear stability theory. System ID was performed successfully. The network was then used to predict the behavior of jets excited at other modes not used for the training.

  15. New dual gas puff imaging system with up-down symmetry on experimental advanced superconducting tokamak

    DEFF Research Database (Denmark)

    Liu, S. C.; Shao, L. M.; Zweben, S. J.

    2012-01-01

    advanced superconducting tokamak (EAST). The two views are up-down symmetric about the midplane and separated by a toroidal angle of 66.6 degrees. A linear manifold with 16 holes apart by 10 mm is used to form helium gas cloud at the 130x130 mm (radial versus poloidal) objective plane. A fast camera...

  16. Automotive fuels. Quality current and future perspectives

    International Nuclear Information System (INIS)

    Avella, F.

    1999-01-01

    In the present paper, a general view of the automotive fuel characteristics and of the influence of the most important fuel parameters on the engine performance and emissions are presented. At short term, the future scenario is conditioned by the application of the next European Directive on fuel specifications, that will came into effect on 1 January 2000. The composition of liquid fuels shall be subject to modifications nd restrictions to meet the new specifications Among alternative fuels, natural gas and Lpg (liquefied petroleum gases) are the most interesting in the view point of environmental protection. Biodiesel constitutes a potential and valid alternative to mineral gas oil in diesel engines [it

  17. Rotordynamics of automotive turbochargers

    CERN Document Server

    Nguyen-Schäfer, Hung

    2015-01-01

    Rotordynamics of automotive turbochargers is dealt with in this book encompassing the widely working field of small turbomachines under real operating conditions at the very high rotor speeds up to 300000 rpm. The broadly interdisciplinary field of turbocharger rotordynamics involves 1) Thermodynamics and Turbo-Matching of Turbochargers 2) Dynamics of Turbomachinery 3) Stability Analysis of Linear Rotordynamics with the Eigenvalue Theory 4) Stability Analysis of Nonlinear Rotordynamics with the Bifurcation Theory 5) Bearing Dynamics of the Oil Film using the Two-Phase Reynolds Equation 6) Computation of Nonlinear Responses of a Turbocharger Rotor 7) Aero and Vibroacoustics of Turbochargers 8) Shop and Trim Balancing at Two Planes of the Rotor 9) Tribology of the Bearing Surface Roughness 10) Design of Turbocharger Platforms using the Similarity Laws The rotor response of an automotive turbocharger at high rotor speeds is studied analytically, computationally, and experimentally. Due to the nonlinear character...

  18. Automotive systems engineering

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, Markus [Technische Univ. Braunschweig (Germany). Inst. fuer Regelungstechnik; Winner, Hermann (eds.) [Technische Univ. Darmstadt (Germany). Fachgebiet Fahrzeugtechnik

    2013-06-01

    Innovative state-of-the-art book. Presents brand new results of a joint workshop in the field of automotive systems engineering. Recommendable to students for further reading even though not a primary text book. This book reflects the shift in design paradigm in automobile industry. It presents future innovations, often referred as ''automotive systems engineering''. These cause fundamental innovations in the field of driver assistance systems and electro-mobility as well as fundamental changes in the architecture of the vehicles. New driving functionalities can only be realized if the software programs of multiple electronic control units work together correctly. This volume presents the new and innovative methods which are mandatory to master the complexity of the vehicle of the future.

  19. Hydrogen as automotive fuel

    International Nuclear Information System (INIS)

    Dini, D.; Ciancia, A.; Pede, G.; Sglavo, V.; ENEA, Rome

    1992-01-01

    An assessment of the technical/economic feasibility of the use of hydrogen as an automotive fuel is made based on analyses of the following: the chemical- physical properties of hydrogen in relation to its use in internal combustion engines; the modifications necessary to adapt internal combustion engines to hydrogen use; hydrogen fuel injection systems - with water vapour injection, cryogenic injection, and the low or high pressure injection of hydrogen directly into the combustion chamber; the current commercialization status of hydrogen automotive fuels; energy efficiency ratings; environmental impacts; in-vehicle storage systems - involving the use of hydrides, high pressure systems and liquid hydrogen storage systems; performance in terms of pay-load ratio; autonomous operation; and operating costs. The paper concludes that, considering current costs for hydrogen fuel production, distribution and use, at present, the employment of hydrogen fuelled vehicles is feasible only in highly polluted urban environments where the innovative vehicle's air pollution abatement characteristics would justify its high operating costs as compared with those of conventional automotive alternatives

  20. Polymer matrix nanocomposites for automotive structural components

    Science.gov (United States)

    Naskar, Amit K.; Keum, Jong K.; Boeman, Raymond G.

    2016-12-01

    Over the past several decades, the automotive industry has expended significant effort to develop lightweight parts from new easy-to-process polymeric nanocomposites. These materials have been particularly attractive because they can increase fuel efficiency and reduce greenhouse gas emissions. However, attempts to reinforce soft matrices by nanoscale reinforcing agents at commercially deployable scales have been only sporadically successful to date. This situation is due primarily to the lack of fundamental understanding of how multiscale interfacial interactions and the resultant structures affect the properties of polymer nanocomposites. In this Perspective, we critically evaluate the state of the art in the field and propose a possible path that may help to overcome these barriers. Only once we achieve a deeper understanding of the structure-properties relationship of polymer matrix nanocomposites will we be able to develop novel structural nanocomposites with enhanced mechanical properties for automotive applications.

  1. FISITA 2012 World Automotive Congress

    CERN Document Server

    2013-01-01

    Proceedings of the FISITA 2012 World Automotive Congress are selected from nearly 2,000 papers submitted to the 34th FISITA World Automotive Congress, which is held by Society of Automotive Engineers of China (SAE-China ) and the International Federation of Automotive Engineering Societies (FISITA). This proceedings focus on solutions for sustainable mobility in all areas of passenger car, truck and bus transportation. Volume 8: Vehicle Design and Testing (II) focuses on: •Automotive Reliability Technology •Lightweight Design Technology •Design for Recycling •Dynamic Modeling •Simulation and Experimental Validation •Virtual Design, Testing and Validation •Testing of Components, Systems and Full Vehicle Above all researchers, professional engineers and graduates in fields of automotive engineering, mechanical engineering and electronic engineering will benefit from this book.   SAE-China is a national academic organization composed of enterprises and professionals who focus on research, design a...

  2. WLAN Hot Spot services for the automotive and oil industries :a business analysis Or : "Refuel the car with petrol and information, both ways at the gas station"

    NARCIS (Netherlands)

    L-F. Pau (Louis-François); M.H.P. Oremus

    2003-01-01

    textabstractWhile you refuel for gas ,why not refuel for information or download vehicle data ? This paper analyzes in extensive detail the user segmentation by vehicle usage , service offering , and full business models from WLAN hot spot services delivered to vehicles (private, professional ,

  3. Get Your Automotive Program Nationally Certified!

    Science.gov (United States)

    Lundquist, Patricia A.

    2000-01-01

    Automotive programs that nationally certified enhance student recruitment and give students better employment opportunities. Technicians who earn the Automotive Service Excellence credential have joined the ranks of professionals in the automotive service industry. (Author/JOW)

  4. Investigation of the Performance of HEMT-Based NO, NO2 and NH3 Exhaust Gas Sensors for Automotive Antipollution Systems

    Science.gov (United States)

    Halfaya, Yacine; Bishop, Chris; Soltani, Ali; Sundaram, Suresh; Aubry, Vincent; Voss, Paul L.; Salvestrini, Jean-Paul; Ougazzaden, Abdallah

    2016-01-01

    We report improved sensitivity to NO, NO2 and NH3 gas with specially-designed AlGaN/GaN high electron mobility transistors (HEMT) that are suitable for operation in the harsh environment of diesel exhaust systems. The gate of the HEMT device is functionalized using a Pt catalyst for gas detection. We found that the performance of the sensors is enhanced at a temperature of 600 °C, and the measured sensitivity to 900 ppm-NO, 900 ppm-NO2 and 15 ppm-NH3 is 24%, 38.5% and 33%, respectively, at 600 °C. We also report dynamic response times as fast as 1 s for these three gases. Together, these results indicate that HEMT sensors could be used in a harsh environment with the ability to control an anti-pollution system in real time. PMID:26907298

  5. Investigation of the Performance of HEMT-Based NO, NO2 and NH3 Exhaust Gas Sensors for Automotive Antipollution Systems

    Directory of Open Access Journals (Sweden)

    Yacine Halfaya

    2016-02-01

    Full Text Available We report improved sensitivity to NO, NO2 and NH3 gas with specially-designed AlGaN/GaN high electron mobility transistors (HEMT that are suitable for operation in the harsh environment of diesel exhaust systems. The gate of the HEMT device is functionalized using a Pt catalyst for gas detection. We found that the performance of the sensors is enhanced at a temperature of 600 °C, and the measured sensitivity to 900 ppm-NO, 900 ppm-NO 2 and 15 ppm-NH 3 is 24%, 38.5% and 33%, respectively, at 600 °C. We also report dynamic response times as fast as 1 s for these three gases. Together, these results indicate that HEMT sensors could be used in a harsh environment with the ability to control an anti-pollution system in real time.

  6. Automotive Engines; Automotive Mechanics I: 9043.03.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This automotive engines course studies and demonstrates the theory and principles of operation of the automotive four stroke cycle engine. The student will develop an understanding of the systems necessary to make the engine perform as designed, such as cooling, fuel, ignition and lubrication. This is a one or two quinmester credit course of 45…

  7. Effect of advanced injection timing on emission characteristics of diesel engine running on natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Nwafor, O.M.I. [Department of Mechanical Engineering, Federal University of Technology, Owerri, Imo State (Nigeria)

    2007-11-15

    There has been a growing concern on the emission of greenhouse gases into the atmosphere, whose consequence is global warming. The sources of greenhouse gases have been identified, of which the major contributor is the combustion of fossil fuel. Researchers have intensified efforts towards identifying greener alternative fuel substitutes for the present fossil fuel. Natural gas is now being investigated as potential alternative fuel for diesel engines. Natural gas appears more attractive due to its high octane number and perhaps, due to its environmental friendly nature. The test results showed that alternative fuels exhibit longer ignition delay, with slow burning rates. Longer delays will lead to unacceptable rates of pressure rise with the result of diesel knock. This work examines the effect of advanced injection timing on the emission characteristics of dual-fuel engine. The engine has standard injection timing of 30 BTDC. The injection was first advanced by 5.5 and given injection timing of 35.5 BTDC. The engine performance was erratic on this timing. The injection was then advanced by 3.5 . The engine performance was smooth on this timing especially at low loading conditions. The ignition delay was reduced through advanced injection timing but tended to incur a slight increase in fuel consumption. The CO and CO{sub 2} emissions were reduced through advanced injection timing. (author)

  8. A technology development summary for the AGT101 advanced gas turbine program

    Science.gov (United States)

    Boyd, Gary L.; Kidwell, James R.; Kreiner, Daniel M.

    1987-01-01

    A summary is presented of significant technology developments that have been made in the AGT101 advanced gas turbine program. The AGT101 design features are reviewed, and the power section testing and results are addressed in detail. The results of component testing and evaluation are described for the compressor, turbine, regenerator, and foil bearing. Ceramic component development is discussed, including that of the static seal, turbine shroud seal, regenerator shield planar seal, regenerator shield piston ring, stator rig, ceramic combustor, and turbine rotor. Important areas to be addressed by the Advanced Turbine Technology Applications Project now in the planning stage at DOE and NASA are briefly reviewed.

  9. Evolution of the Automotive Body Coating Process—A Review

    Directory of Open Access Journals (Sweden)

    Nelson K. Akafuah

    2016-06-01

    Full Text Available Automotive coatings and the processes used to coat automobile surfaces exemplify the avant-garde of technologies that are capable of producing durable surfaces, exceeding customers’ expectations of appearance, maximizing efficiency, and meeting environmental regulations. These accomplishments are rooted in 100 years of experience, trial-and-error approaches, technique and technology advancements, and theoretical assessments. Because of advancements directed at understanding the how, why, when, and where of automobile coatings, the progress in controlling droplets and their deposition attributes, and the development of new technologies and paint chemistries, a comprehensive and up-to-date review of automobile coatings and coating technologies was considered to be of value to industrial practitioners and researchers. Overall, the critical performance factors driving the development and use of advanced automotive coatings and coating technologies are (a aesthetic characteristics; (b corrosion protection; (c mass production; (d cost and environmental requirements; and (e appearance and durability. Although the relative importance of each of these factors is debatable, the perfection of any one at the expense of another would be unacceptable. Hence, new developments in automotive coatings are described and discussed in the following review, and then related to improvements in production technologies and paints. Modern automotive coating procedures are also discussed in detail. Finally, an extrapolation into the future of automotive coating is offered with a view of the developments and technologies needed for an increasingly efficient and more sustainable coatings industry.

  10. Recent advances in liquid and gas chromatography methodology for extending coverage of the metabolome.

    Science.gov (United States)

    Haggarty, Jennifer; Burgess, Karl Ev

    2017-02-01

    The metabolome is the complete complement of metabolites (small organic biomolecules). In order to comprehensively understand the effect of stimuli on a biological system, it is important to detect as many of the metabolites within that system as possible. This review briefly describes some new advances in liquid and gas chromatography to improve coverage of the metabolome, including the serial combination of two columns in tandem, column switching and different variations of two-dimensional chromatography. Supercritical fluid chromatography could provide complimentary data to liquid and gas chromatography. Although there have been many recent advancements in the field of metabolomics, it is evident that a combination, rather than a single method, is required to approach full coverage of the metabolome. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Recent Developments of Advanced Austenitic and Duplex Stainless Steels for Oil and Gas Industry

    Science.gov (United States)

    Chai, Guocai; Kangas, Pasi

    The demands for fuel and the development of the fuel exploitation processes have made it economically possible to produce oil-gas from deeper and more corrosive wells where the parameters such as high chloride, H2S or CO2 content, high temperature and pressure, erosion and bioactivities in seawater should be considered. In these applications, special grades of stainless steels with greater corrosion resistance at a broad range of temperatures and high strength have to be used to meet the requirements. This paper provides an overview on the development, properties and applications of these advanced materials for oil & gas industry. They include recently developed advanced super austenitic stainless steels with high Mo, Ni, Cr and N contents with a PRE (pitting resistance equivalent) number up to 52 and hyper duplex stainless steels.

  12. Automotive systems engineering

    CERN Document Server

    Winner, Hermann

    2013-01-01

    This book reflects the shift in design paradigm in automobile industry. It presents future innovations, often referred as  “automotive systems engineering”.  These cause fundamental innovations in the field of driver assistance systems and electro-mobility as well as fundamental changes in the architecture of the vehicles. New driving functionalities can only be realized if the software programs of multiple electronic control units work together correctly. This volume presents the new and innovative methods which are mandatory to master the complexity of the vehicle of the future.

  13. The automotive transmission book

    CERN Document Server

    Fischer, Robert; Jürgens, Gunter; Najork, Rolf; Pollak, Burkhard

    2015-01-01

    This book presents essential information on systems and interactions in automotive transmission technology and outlines the methodologies used to analyze and develop transmission concepts and designs. Functions of and interactions between components and subassemblies of transmissions are introduced, providing a basis for designing transmission systems and for determining their potentials and properties in vehicle-specific applications: passenger cars, trucks, buses, tractors, and motorcycles. With these fundamentals the presentation provides universal resources for both state-of-the-art and future transmission technologies, including systems for electric and hybrid electric vehicles.

  14. Automotive battery technology

    CERN Document Server

    Watzenig, Daniel

    2014-01-01

    The use of electrochemical energy storage systems in automotive applications also involves new requirements for modeling these systems, especially in terms of model depth and model quality. Currently, mainly simple application-oriented models are used to describe the physical behavior of batteries. This book provides a step beyond of state-of-the-art modeling showing various different approaches covering following aspects: system safety, misuse behavior (crash, thermal runaway), battery state estimation and electrochemical modeling with the needed analysis (pre/post mortem). All this different approaches are developed to support the overall integration process from a multidisciplinary point-of-view and depict their further enhancements to this process.

  15. Optimization of advanced gas-cooled reactor fuel performance by a stochastic method

    International Nuclear Information System (INIS)

    Parks, G.T.

    1987-01-01

    A brief description is presented of a model representing the in-core behaviour of a single advanced gas-cooled reactor fuel channel, developed specifically for optimization studies. The performances of the only suitable Numerical Algorithms Group (NAG) library package and a Metropolis algorithm routine on this problem are discussed and contrasted. It is concluded that, for the problem in question, the stochastic Metropolis algorithm has distinct advantages over the deterministic NAG routine. (author)

  16. Reliability in automotive ethernet networks

    DEFF Research Database (Denmark)

    Soares, Fabio L.; Campelo, Divanilson R.; Yan, Ying

    2015-01-01

    This paper provides an overview of in-vehicle communication networks and addresses the challenges of providing reliability in automotive Ethernet in particular.......This paper provides an overview of in-vehicle communication networks and addresses the challenges of providing reliability in automotive Ethernet in particular....

  17. Automotive Fuel and Exhaust Systems.

    Science.gov (United States)

    Irby, James F.; And Others

    Materials are provided for a 14-hour course designed to introduce the automotive mechanic to the basic operations of automotive fuel and exhaust systems incorporated on military vehicles. The four study units cover characteristics of fuels, gasoline fuel system, diesel fuel systems, and exhaust system. Each study unit begins with a general…

  18. INTEGRATED AUTOMOTIVE MANUFACTURING SUPPLY

    Directory of Open Access Journals (Sweden)

    P.J.S. Van Dyk

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Supply planning and traffic flow planning are major activities in the automotive manufacturing environment worldwide. Traditionally, the impact of supply planning strategies on plant traffic is rarely considered. This paper describes the development of a Decision Support System (DSS that will assist automotive manufacturers to analyse the effect of supply planning decisions on plant traffic during the supply planning phase of their logistics planning process. In essence, this DSS consists of a Supply Medium Decision Support Tool (SMDST (an interactive MS-Excel model with Visual Basic interfacing and a traffic flow simulation model tool (using eMPlant simulation software.

    AFRIKAANSE OPSOMMING: Verskaffingsbeplanning en verkeersvloeibeplanning is belangrike aktiwiteite in die motorvervaardigingsbedryf wêreldwyd. Tradisioneel word die uitwerking van verskaffings-beplanningsstrategië op aanlegverkeer selde in ag geneem. Hierdie artikel beskryf die ontwikkeling van ’n Besluitnemings Ondersteuningstelsel (DSS wat motorvervaardigers sal ondersteun in die analise van die effek van verskaffingsbeplanningbesluite op aanlegverkeer tydens die verskaffingsbeplanningsfase van hulle logistieke beplanningsproses. Hierdie DSS bestaan hoofsaaklik uit ’n Verskaffings-vervoermiddel Besluitnemingshulpmiddel (SMDST (’n interaktiewe MS-Excel model met “Visual Basic” koppelling asook ’n simulasiemodel van verkeersvloei (met eM-Plant simulasiesagteware.

  19. Automotive Stirling Engine Development Project

    Science.gov (United States)

    Ernst, William D.; Shaltens, Richard K.

    1997-01-01

    The development and verification of automotive Stirling engine (ASE) component and system technology is described as it evolved through two experimental engine designs: the Mod 1 and the Mod 2. Engine operation and performance and endurance test results for the Mod 1 are summarized. Mod 2 engine and component development progress is traced from the original design through hardware development, laboratory test, and vehicle installation. More than 21,000 hr of testing were accomplished, including 4800 hr with vehicles that were driven more dm 59,000 miles. Mod 2 engine dynamometer tests demonstrated that the engine system configuration had accomplished its performance goals for power (60 kW) and efficiency (38.5%) to within a few percent. Tests with the Mod 2 engine installed in a delivery van demonstrated combined metro-highway fuel economy improvements consistent with engine performance goals and the potential for low emission levels. A modified version of the Mod 2 has been identified as a manufacturable design for an ASE. As part of the ASE project, the Industry Test and Evaluation Program (ITEP), NASA Technology Utilization (TU) project, and the industry-funded Stirling Natural Gas Engine program were undertaken to transfer ASE technology to end users. The results of these technology transfer efforts are also summarized.

  20. Performance evaluation of an automotive thermoelectric generator

    Science.gov (United States)

    Dubitsky, Andrei O.

    Around 40% of the total fuel energy in typical internal combustion engines (ICEs) is rejected to the environment in the form of exhaust gas waste heat. Efficient recovery of this waste heat in automobiles can promise a fuel economy improvement of 5%. The thermal energy can be harvested through thermoelectric generators (TEGs) utilizing the Seebeck effect. In the present work, a versatile test bench has been designed and built in order to simulate conditions found on test vehicles. This allows experimental performance evaluation and model validation of automotive thermoelectric generators. An electrically heated exhaust gas circuit and a circulator based coolant loop enable integrated system testing of hot and cold side heat exchangers, thermoelectric modules (TEMs), and thermal interface materials at various scales. A transient thermal model of the coolant loop was created in order to design a system which can maintain constant coolant temperature under variable heat input. Additionally, as electrical heaters cannot match the transient response of an ICE, modelling was completed in order to design a relaxed exhaust flow and temperature history utilizing the system thermal lag. This profile reduced required heating power and gas flow rates by over 50%. The test bench was used to evaluate a DOE/GM initial prototype automotive TEG and validate analytical performance models. The maximum electrical power generation was found to be 54 W with a thermal conversion efficiency of 1.8%. It has been found that thermal interface management is critical for achieving maximum system performance, with novel designs being considered for further improvement.

  1. La catalyse d'épuration des gaz d'échappement automobiles. Situation actuelle et nouvelles orientations Catalytic Automotive Exhaust Gas Depollution. Present Status and New Trends

    Directory of Open Access Journals (Sweden)

    Prigent M.

    2006-11-01

    Full Text Available Cet article passe en revue les différents systèmes catalytiques de post-traitement utilisés actuellement sur la plupart des automobiles pour limiter leurs rejets de polluants. Les systèmes sont différenciés par leur mode de fonctionnement, le type de moteur à dépolluer (deux-temps, quatre-temps, diesel ou essence ou par leur mode de réalisation. Les nouvelles orientations, prévues pour respecter les futures réglementations antipollution, sont également décrites. On montre que certains véhicules prototypes, équipés de moteurs à combustion interne, sont capables d'avoir des émissions très proches de zéro tout comme les véhicules électriques. A review is made of the various types of exhaust gas aftertreatment systems presently used on most vehicles to reduce pollutant emissions. The systems are differentiated by their mode of action, according to the engine type to be depolluted (two-stroke, four-stroke, diesel or spark-ignition, and by their type of make-up. The major developments foreseen in the future, in view of compliance with the new legislations, are described. It is shown that some prototype vehicles with internal combustion engines are able to emit pollutant quantities really close to zero, such as electric cars.

  2. Effects of a Dual-Loop Exhaust Gas Recirculation System and Variable Nozzle Turbine Control on the Operating Parameters of an Automotive Diesel Engine

    Directory of Open Access Journals (Sweden)

    Giorgio Zamboni

    2017-01-01

    Full Text Available Reduction of NOX emissions and fuel consumption are the main topics in engine development, forcing the adoption of complex techniques and components, whose interactions have to be clearly understood for proper and reliable operations and management of the whole system. The investigation presented in this paper aimed at the development of integrated control strategies of turbocharging, high pressure (HP and low pressure (LP exhaust gas recirculation (EGR systems for better NOX emissions and fuel consumption, while analyzing their reciprocal influence and the resulting variations of engine quantities. The study was based on an extended experimental program in three part load engine operating conditions. In the paper a comparison of the behavior of the main engine sub-systems (intake and exhaust circuits, turbocharger turbine and compressor, HP and LP EGR loops in a wide range of operating modes is presented and discussed, considering open and closed loop approaches for variable nozzle turbine (VNT control, and showing how these affect engine performance and emissions. The potential of significant decrease in NOX emissions through the integration of HP and LP EGR was confirmed, while a proper VNT management allowed for improved fuel consumption level, if an open loop control scheme is followed. At higher engine speed and load, further actions have to be applied to compensate for observed soot emissions increase.

  3. Exhaust gas emissions from various automotive fuels for light-duty vehicles. Effects on health, environment and energy utilization; Avgasemissioner fraan laetta fordon drivna med olika drivmedel

    Energy Technology Data Exchange (ETDEWEB)

    Ahlvik, P.; Brandberg, Aa. [Ecotraffic RandD AB, Stockholm (Sweden)

    1999-12-01

    The main aim of the investigation has been to assess the effects on health and environment from various alternative fuels for light-duty vehicles. Effects that can be identified and quantified, such as acidification, ozone formation, cancer risk and climate change, have been of primary interest but other effects, such as respiratory diseases, have also been investigated. Data have been collected through literature surveys for subsequent calculation of the mentioned effects in different time-frames. Corrections have been used to take into consideration the influence of climate, ageing and driving pattern. Emissions generated in fuel production have also been accounted for. The most significant and important differences between the fuels have been found for effects as ozone formation cancer risk and particulate emissions. Alternative fuels, such as methanol and methane (natural gas and biogas), significantly decrease the ozone formation in comparison to petrol, while ethanol, methanol and methane are advantageous concerning cancer risk. The particulate emissions are considerably higher for diesel engines fuelled by diesel oil and RME in comparison to the other fuels. In the future, the importance of acid emissions in the fuel production will increase since the NO{sub x} and SO{sub x} emissions will decrease from the vehicles. The emissions of climate gases could be significantly reduced by using non-fossil fuels but the efficiency of the drive train is also of importance. The technical development potential for further emission reductions is considerable for all fuels but the advantage for the best fuel options will remain in the future.

  4. Melt Infiltrated Ceramic Matrix Composites for Shrouds and Combustor Liners of Advanced Industrial Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Corman; Krishan Luthra; Jill Jonkowski; Joseph Mavec; Paul Bakke; Debbie Haught; Merrill Smith

    2011-01-07

    This report covers work performed under the Advanced Materials for Advanced Industrial Gas Turbines (AMAIGT) program by GE Global Research and its collaborators from 2000 through 2010. A first stage shroud for a 7FA-class gas turbine engine utilizing HiPerComp{reg_sign}* ceramic matrix composite (CMC) material was developed. The design, fabrication, rig testing and engine testing of this shroud system are described. Through two field engine tests, the latter of which is still in progress at a Jacksonville Electric Authority generating station, the robustness of the CMC material and the shroud system in general were demonstrated, with shrouds having accumulated nearly 7,000 hours of field engine testing at the conclusion of the program. During the latter test the engine performance benefits from utilizing CMC shrouds were verified. Similar development of a CMC combustor liner design for a 7FA-class engine is also described. The feasibility of using the HiPerComp{reg_sign} CMC material for combustor liner applications was demonstrated in a Solar Turbines Ceramic Stationary Gas Turbine (CSGT) engine test where the liner performed without incident for 12,822 hours. The deposition processes for applying environmental barrier coatings to the CMC components were also developed, and the performance of the coatings in the rig and engine tests is described.

  5. Tank-automotive robotics

    Science.gov (United States)

    Lane, Gerald R.

    1999-07-01

    To provide an overview of Tank-Automotive Robotics. The briefing will contain program overviews & inter-relationships and technology challenges of TARDEC managed unmanned and robotic ground vehicle programs. Specific emphasis will focus on technology developments/approaches to achieve semi- autonomous operation and inherent chassis mobility features. Programs to be discussed include: DemoIII Experimental Unmanned Vehicle (XUV), Tactical Mobile Robotics (TMR), Intelligent Mobility, Commanders Driver Testbed, Collision Avoidance, International Ground Robotics Competition (ICGRC). Specifically, the paper will discuss unique exterior/outdoor challenges facing the IGRC competing teams and the synergy created between the IGRC and ongoing DoD semi-autonomous Unmanned Ground Vehicle and DoT Intelligent Transportation System programs. Sensor and chassis approaches to meet the IGRC challenges and obstacles will be shown and discussed. Shortfalls in performance to meet the IGRC challenges will be identified.

  6. Efficiency Improvement Opportunities for Light-Duty Natural-Gas-Fueled Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, R.H.; Thomas, J.F.

    1998-12-01

    The purpose of this report is to evaluate and make recommendations concerning technologies that promise to improve the efilciency of compressed natural gas (CNG) light-duty vehicles. Technical targets for CNG automotive technology given in the March 1998 OffIce of Advanced Automotive Technologies research and development plan were used as guidance for this effort. The technical target that necessitates this current study is to validate technologies that enable CNG light vehicles to have at least 10% greater - fuel economy (on a miles per gallon equivalent basis) than equivalent gasoline vehicles by 2006. Other tar- gets important to natural gas (NG) automotive technology and this study are to: (1) increase CNG vehicle range to 380 miles, (2) reduce the incremental vehicle cost (CNG vs gasoline) to $1500, and (3) meet the California ultra low-emission vehicle (ULEV) and Federal Tier 2 emission standards expected to be in effect in 2004.

  7. Gas-phase advanced oxidation as an integrated air pollution control technique

    Directory of Open Access Journals (Sweden)

    Getachew A. Adnew

    2016-03-01

    Full Text Available Gas-phase advanced oxidation (GPAO is an emerging air cleaning technology based on the natural self-cleaning processes that occur in the Earth’s atmosphere. The technology uses ozone, UV-C lamps and water vapor to generate gas-phase hydroxyl radicals that initiate oxidation of a wide range of pollutants. In this study four types of GPAO systems are presented: a laboratory scale prototype, a shipping container prototype, a modular prototype, and commercial scale GPAO installations. The GPAO systems treat volatile organic compounds, reduced sulfur compounds, amines, ozone, nitrogen oxides, particles and odor. While the method covers a wide range of pollutants, effective treatment becomes difficult when temperature is outside the range of 0 to 80 °C, for anoxic gas streams and for pollution loads exceeding ca. 1000 ppm. Air residence time in the system and the rate of reaction of a given pollutant with hydroxyl radicals determine the removal efficiency of GPAO. For gas phase compounds and odors including VOCs (e.g. C6H6 and C3H8 and reduced sulfur compounds (e.g. H2S and CH3SH, removal efficiencies exceed 80%. The method is energy efficient relative to many established technologies and is applicable to pollutants emitted from diverse sources including food processing, foundries, water treatment, biofuel generation, and petrochemical industries.

  8. Microscopical examination of carbon deposits formed in the Windscale advanced gas cooled reactor

    International Nuclear Information System (INIS)

    Livesey, D.J.; Chatwin, W.H.; Pearce, J.H.

    1980-12-01

    Methods are described of sampling and examining carbon deposits on fuel cladding in the Windscale advanced gas-cooled reactor. Deposition is observed on fuel cladding in both the reactor core and experimental loops in carbon dioxide coolants containing various amounts of carbon monoxide and methane. Deposit distribution over the cladding surface indicated that nucleation is dependent on local surface conditions. Microscopical examination showed that deposit thickness increases by carbon filament growth into the coolant gas stream and that the process can be markedly influenced by metallic impurities. There is evidence that nickel can play a particularly significant role in deposition in loop experiments but similar effects have not been observed in the reactor core. (author)

  9. A technology development summary for the AGT101 Advanced Gas Turbine Program

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, G.L.; Kidwell, J.R.; Kreiner, D.M.

    1987-01-01

    Since the program initiation in October 1979, the Garrett/Ford Advanced Gas Turbine Program, designated AGT101, has made significant progress in developing ceramic technology for gas turbine applications. Successful component development has resulted in engine tests with an all ceramic hot section to temperatures up to 2200F (1204C) and full speed operation to 100,000 rpm (turbine rotor tip speed of 2300 ft/sec (701 m/s)). An 85-hour test was performed on an all ceramic engine at 2200F (1204C) turbine inlet temperature. These engine tests represent important first steps in the development of ceramic materials and technology. Engine evaluation was preceded by important component development. Activities included aerodynamic component evaluation and development of a high temperature foil bearing to support the ceramic turbine rotor. Development of low leakage regenerator seals and static ceramic seals in this high temperature environment were critical to engine performance.

  10. Treatment of reduced sulphur compounds and SO2 by Gas Phase Advanced Oxidation

    DEFF Research Database (Denmark)

    Meusinger, Carl; Bluhme, Anders Brostrøm; Ingemar, Jonas L.

    2017-01-01

    Reduced sulphur compounds (RSCs) emitted from pig farms are a major problem for agriculture, due to their health and environmental impacts and foul odour. This study investigates the removal of RSCs, including H2S, and their oxidation product SO2 using Gas Phase Advanced Oxidation (GPAO). GPAO...... is a novel air cleaning technique which utilises accelerated atmospheric chemistry to oxidise pollutants before removing their oxidation products as particles. Removal efficiencies of 24.5% and 3.9% were found for 461 ppb of H2S and 714 ppb of SO2 in a laboratory system (volumetric flow Q = 75 m3/h......). A numerical model of the reactor system was developed to explore the basic features of the system; its output was in fair agreement with the experiment. The model verified the role of OH radicals in initiating the oxidation chemistry. All sulphur removed from the gas phase was detected as particulate matter...

  11. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M. Q.

    1998-12-16

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

  12. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies

    International Nuclear Information System (INIS)

    Wang, M. Q.

    1998-01-01

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions

  13. Development of a CVD silica coating for UK advanced gas-cooled nuclear reactor fuel pins

    International Nuclear Information System (INIS)

    Bennett, M.J.; Houlton, M.R.; Moore, D.A.; Foster, A.I.; Swidzinski, M.A.M.

    1983-04-01

    Vapour deposited silica coatings could extend the life of the 20% Cr/25% Ni niobium stabilised (20/25/Nb) stainless steel fuel cladding of the UK advanced gas cooled reactors. A CVD coating process developed originally to be undertaken at atmospheric pressure has now been adapted for operation at reduced pressure. Trials on the LP CVD process have been pursued to the production scale using commercial equipment. The effectiveness of the LP CVD silica coatings in providing protection to 20/25/Nb steel surfaces against oxidation and carbonaceous deposition has been evaluated. (author)

  14. Recent Trends of Coated Sheet Steels for Automotive use

    International Nuclear Information System (INIS)

    Moon, Manbeen

    2012-01-01

    Recent issues in the automotive industries are, improvement of fuel efficiency according to the worldwide CO 2 regulation, passenger safety through enhanced crash worthiness, superior design and cost reduction due to price fluctuation of raw material. To meet these demands, steelmaking companies are developing advanced high strength steel and new process technologies such as hydroforming, TWB(Tailor Welded Blank), hot stamping and so on. In addition, eco-friendly and high corrosion resistant coating technologies are getting more attention to comply with the environmental regulations. In this paper, reviews and prospects of recent coating technologies for automotive use are presented

  15. Advanced exergoeconomic analysis of a gas engine heat pump (GEHP) for food drying processes

    International Nuclear Information System (INIS)

    Gungor, Aysegul; Tsatsaronis, George; Gunerhan, Huseyin; Hepbasli, Arif

    2015-01-01

    Highlights: • Comparison between conventional and advanced exergoconomic analyses for food drying. • 74% of the total energy destruction can be avoided. • The condenser has the highest improvement potential. • Inefficiencies and options for improvement are identified for each component. - Abstract: Exergetic and exergoeconomic analyses are often used to evaluate the performance of energy systems from the thermodynamic and economic points of view. While a conventional exergetic analysis can be used to recognize the sources of inefficiencies, the so-called advanced exergy-based analysis is convenient for identifying the real potential for thermodynamic improvements and the system component interactions by splitting the exergy destruction and the total operating cost within each component into endogenous/exogenous and unavoidable/avoidable parts. In this study for the first time an advanced exergoeconomic analysis is applied to a gas-engine-driven heat pump (GEHP) drying system used in food drying for evaluating its performance along with each component. The advanced exergoeconomic analysis shows that the unavoidable part of the exergy destruction cost rate within the components of the system is lower than the avoidable part. The most important components based on the total avoidable costs are drying ducts, the condenser and the expansion valve. The inefficiencies within the condenser could particularly be improved by structural improvements of the whole system and the remaining system components. Finally, it can be concluded that the internal design changes play a more essential role in determining the cost of each component

  16. The European automotive LPG market

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    The European automotive LPG market could reach at least 4 % of the European fuel market in 2005 versus 1 % in 1990. This would represent a rise of about 35 % in automotive LPG sales (from 2,4 million tonnes in 1997 to 7 million tonnes estimated for 2005). This was underlined by Alain Deleuse, Primagaz group's Marketing Director, in the paper he delivered at the AEGPL Budapest Convention. We publish large excepts of this paper. (author)

  17. The Next Generation Nuclear Plant/Advanced Gas Reactor Fuel Irradiation Experiments in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Grover, S. Blaine

    2009-01-01

    The United States Department of Energy's Next Generation Nuclear Plant (NGNP) Program will be irradiating eight separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy's lead laboratory for nuclear energy development. The ATR is one of the world's premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006, and the second experiment (AGR-2) is currently in the design phase. The design of test trains, as well as the support systems and fission product monitoring system that will monitor and control the experiment during irradiation will be discussed. In

  18. Investigation of advanced propulsion technologies: The RAM accelerator and the flowing gas radiation heater

    Science.gov (United States)

    Bruckner, A. P.; Knowlen, C.; Mattick, A. T.; Hertzberg, A.

    1992-01-01

    The two principal areas of advanced propulsion investigated are the ram accelerator and the flowing gas radiation heater. The concept of the ram accelerator is presented as a hypervelocity launcher for large-scale aeroballistic range applications in hypersonics and aerothermodynamics research. The ram accelerator is an in-bore ramjet device in which a projectile shaped like the centerbody of a supersonic ramjet is propelled in a stationary tube filled with a tailored combustible gas mixture. Combustion on and behind the projectile generates thrust which accelerates it to very high velocities. The acceleration can be tailored for the 'soft launch' of instrumented models. The distinctive reacting flow phenomena that have been observed in the ram accelerator are relevant to the aerothermodynamic processes in airbreathing hypersonic propulsion systems and are useful for validating sophisticated CFD codes. The recently demonstrated scalability of the device and the ability to control the rate of acceleration offer unique opportunities for the use of the ram accelerator as a large-scale hypersonic ground test facility. The flowing gas radiation receiver is a novel concept for using solar energy to heat a working fluid for space power or propulsion. Focused solar radiation is absorbed directly in a working gas, rather than by heat transfer through a solid surface. Previous theoretical analysis had demonstrated that radiation trapping reduces energy loss compared to that of blackbody receivers, and enables higher efficiencies and higher peak temperatures. An experiment was carried out to measure the temperature profile of an infrared-active gas and demonstrate the effect of radiation trapping. The success of this effort validates analytical models of heat transfer in this receiver, and confirms the potential of this approach for achieving high efficiency space power and propulsion.

  19. Advanced fuels for gas turbines: Fuel system corrosion, hot path deposit formation and emissions

    International Nuclear Information System (INIS)

    Seljak, Tine; Širok, Brane; Katrašnik, Tomaž

    2016-01-01

    Highlights: • Technical feasibility analysis of alternative fuels requires a holistic approach. • Fuel, combustion, corrosion and component functionality are strongly related. • Used approach defines design constraints for microturbines using alternative fuels. - Abstract: To further expand the knowledge base on the use of innovative fuels in the micro gas turbines, this paper provides insight into interrelation between specific fuel properties and their impact on combustion and emission formation phenomena in micro gas turbines for stationary power generation as well as their impact on material corrosion and deposit formation. The objective of this study is to identify potential issues that can be related to specific fuel properties and to propose counter measures for achieving stable, durable, efficient and low emission operation of the micro gas turbine while utilizing advanced/innovative fuels. This is done by coupling combustion and emission formation analyses to analyses of material degradation and degradation of component functionality while interpreting them through fuel-specific properties. To ensure sufficiently broad range of fuel properties to demonstrate the applicability of the method, two different fuels with significantly different properties are analysed, i.e. tire pyrolysis oil and liquefied wood. It is shown that extent of required micro gas turbine adaptations strongly correlates with deviations of the fuel properties from those of the baseline fuel. Through the study, these adaptations are supported by in-depth analyses of impacts of fuel properties on different components, parameters and subsystems and their quantification. This holistic approach is further used to propose methodologies and innovative approaches for constraining a design space of micro gas turbine to successfully utilize wide spectra of alternative/innovative fuels.

  20. Risk assessment of LPG automotive refuelling facilities

    Energy Technology Data Exchange (ETDEWEB)

    Melchers, R.E. [University of Newcastle, Newcastle (Australia). Dept. of Civil, Surveying and Enviromental Engineering; Feutrill, W.R. [Wesfarmers Kleenheat Gas Pty. Ltd., Perth (Australia)

    2001-12-01

    Quantified risk analysis (QRA) was used for the revision of regulatory separation distances associated with medium size liquefied petroleum gas (LPG) refuelling facilities used in automotive service (gas) stations. Typically these facilities consist of a 7.5 kl pressure vessel, pump, pipework, dispensing equipment and safety equipment. Multi-tank installations are relatively uncommon. This paper describes the hazard scenarios considered, the risk analysis procedure and the selection and application of data for initiating events and for rates of failure of mechanical components and of the pressure vessel. Human errors and intervention possibilities were also considered. Because of the inapplicability of established consequence models and the relatively small scale of the facilities, a number of tests were performed to estimate flame length, flame impingement effects, ignition probabilities and the effectiveness of screening devices. (author)

  1. Automotive mechatronics operational and practical issues

    CERN Document Server

    Fijalkowski, B T

    2011-01-01

    This book presents operational and practical issues of automotive mechatronics with special emphasis on the heterogeneous automotive vehicle systems approach, and is intended as a graduate text as well as a reference for scientists and engineers involved in the design of automotive mechatronic control systems. As the complexity of automotive vehicles increases, so does the dearth of high competence, multi-disciplined automotive scientists and engineers. This book provides a discussion into the type of mechatronic control systems found in modern vehicles and the skills required by automotive scientists and engineers working in this environment. Divided into two volumes and five parts, Automotive Mechatronics aims at improving automotive mechatronics education and emphasises the training of students' experimental hands-on abilities, stimulating and promoting experience among high education institutes and produce more automotive mechatronics and automation engineers. The main subject that are treated are: VOLUME...

  2. Advanced gasifier and water gas shift technologies for low cost coal conversion to high hydrogen syngas

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Andrew Kramer [Gas Technology Inst., Des Plaines, IL (United States)

    2016-09-30

    The Gas Technology Institute (GTI) and team members RTI International (RTI), Coanda Research and Development, and Nexant, are developing and maturing a portfolio of technologies to meet the United States Department of Energy (DOE) goals for lowering the cost of producing high hydrogen syngas from coal for use in carbon capture power and coal-to-liquids/chemicals. This project matured an advanced pilot-scale gasifier, with scalable and commercially traceable components, to readiness for use in a first-of-a-kind commercially-relevant demonstration plant on the scale of 500-1,000 tons per day (TPD). This was accomplished through cold flow simulation of the gasifier quench zone transition region at Coanda and through an extensive hotfire gasifier test program on highly reactive coal and high ash/high ash fusion temperature coals at GTI. RTI matured an advanced water gas shift process and catalyst to readiness for testing at pilot plant scale through catalyst development and testing, and development of a preliminary design basis for a pilot scale reactor demonstrating the catalyst. A techno-economic analysis was performed by Nexant to assess the potential benefits of the gasifier and catalyst technologies in the context of power production and methanol production. This analysis showed an 18%reduction in cost of power and a 19%reduction in cost of methanol relative to DOE reference baseline cases.

  3. Axisymmetric whole pin life modelling of advanced gas-cooled reactor nuclear fuel

    International Nuclear Information System (INIS)

    Mella, R.; Wenman, M.R.

    2013-01-01

    Thermo-mechanical contributions to pellet–clad interaction (PCI) in advanced gas-cooled reactors (AGRs) are modelled in the ABAQUS finite element (FE) code. User supplied sub-routines permit the modelling of the non-linear behaviour of AGR fuel through life. Through utilisation of ABAQUS’s well-developed pre- and post-processing ability, the behaviour of the axially constrained steel clad fuel was modelled. The 2D axisymmetric model includes thermo-mechanical behaviour of the fuel with time and condition dependent material properties. Pellet cladding gap dynamics and thermal behaviour are also modelled. The model treats heat up as a fully coupled temperature-displacement study. Dwell time and direct power cycling was applied to model the impact of online refuelling, a key feature of the AGR. The model includes the visco-plastic behaviour of the fuel under the stress and irradiation conditions within an AGR core and a non-linear heat transfer model. A multiscale fission gas release model is applied to compute pin pressure; this model is coupled to the PCI gap model through an explicit fission gas inventory code. Whole pin, whole life, models are able to show the impact of the fuel on all segments of cladding including weld end caps and cladding pellet locking mechanisms (unique to AGR fuel). The development of this model in a commercial FE package shows that the development of a potentially verified and future-proof fuel performance code can be created and used

  4. Thermal barrier coatings issues in advanced land-based gas turbines

    Science.gov (United States)

    Parks, W. P.; Lee, W. Y.; Wright, I. G.

    1995-01-01

    The Department of Energy's Advanced Turbine System (ATS) program is aimed at forecasting the development of a new generation of land-based gas turbine systems with overall efficiencies significantly beyond those of current state-of-the-art machines, as well as greatly increased times between inspection and refurbishment, improved environmental impact, and decreased cost. The proposed duty cycle of ATS turbines will require the use of different criteria in the design of the materials for the critical hot gas path components. In particular, thermal barrier coatings will be an essential feature of the hot gas path components in these machines. While such coatings are routinely used in high-performance aircraft engines and are becoming established in land-based turbines, the requirements of the ATS turbine application are sufficiently different that significant improvements in thermal barrier coating technology will be necessary. In particular, it appears that thermal barrier coatings will have to function on all airfoil sections of the first stage vanes and blades to provide the significant temperature reduction required. In contrast, such coatings applied to the blades and vances of advanced aircraft engines are intended primarily to reduce air cooling requirements and extend component lifetime; failure of those coatings can be tolerated without jeopardizing mechanical or corrosion performance. A major difference is that in ATS turbines these components will be totally reliant on thermal barrier coatings which will, therefore, need to be highly reliable even over the leading edges of first stage blades. Obviously, the ATS program provides a very challenging opportunity for TBC's, and involves some significant opportunities to extend this technology.

  5. GATE Center of Excellence at UAB in Lightweight Materials for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-07-31

    This report summarizes the accomplishments of the UAB GATE Center of Excellence in Lightweight Materials for Automotive Applications. The first Phase of the UAB DOE GATE center spanned the period 2005-2011. The UAB GATE goals coordinated with the overall goals of DOE's FreedomCAR and Vehicles Technologies initiative and DOE GATE program. The FCVT goals are: (1) Development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost; (2) To provide a new generation of engineers and scientists with knowledge and skills in advanced automotive technologies. The UAB GATE focused on both the FCVT and GATE goals in the following manner: (1) Train and produce graduates in lightweight automotive materials technologies; (2) Structure the engineering curricula to produce specialists in the automotive area; (3) Leverage automotive related industry in the State of Alabama; (4) Expose minority students to advanced technologies early in their career; (5) Develop innovative virtual classroom capabilities tied to real manufacturing operations; and (6) Integrate synergistic, multi-departmental activities to produce new product and manufacturing technologies for more damage tolerant, cost-effective, and lighter automotive structures.

  6. Exploring Advanced Technology Gas Turbine Engine Design and Performance for the Large Civil Tiltrotor (LCTR)

    Science.gov (United States)

    Snyder, Christopher A.

    2014-01-01

    A Large Civil Tiltrotor (LCTR) conceptual design was developed as part of the NASA Heavy Lift Rotorcraft Systems Investigation in order to establish a consistent basis for evaluating the benefits of advanced technology for large tiltrotors. The concept has since evolved into the second-generation LCTR2, designed to carry 90 passengers for 1,000 nautical miles at 300 knots, with vertical takeoff and landing capability. This paper explores gas turbine component performance and cycle parameters to quantify performance gains possible for additional improvements in component and material performance beyond those identified in previous LCTR2 propulsion studies and to identify additional research areas. The vehicle-level characteristics from this advanced technology generation 2 propulsion architecture will help set performance levels as additional propulsion and power systems are conceived to meet ever-increasing requirements for mobility and comfort, while reducing energy use, cost, noise and emissions. The Large Civil Tiltrotor vehicle and mission will be discussed as a starting point for this effort. A few, relevant engine and component technology studies, including previous LCTR2 engine study results will be summarized to help orient the reader on gas turbine engine architecture, performance and limitations. Study assumptions and methodology used to explore engine design and performance, as well as assess vehicle sizing and mission performance will then be discussed. Individual performance for present and advanced engines, as well as engine performance effects on overall vehicle size and mission fuel usage, will be given. All results will be summarized to facilitate understanding the importance and interaction of various component and system performance on overall vehicle characteristics.

  7. MEMS for automotive and aerospace applications

    CERN Document Server

    Kraft, Michael

    2013-01-01

    MEMS for automotive and aerospace applications reviews the use of Micro-Electro-Mechanical-Systems (MEMS) in developing solutions to the unique challenges presented by the automotive and aerospace industries.Part one explores MEMS for a variety of automotive applications. The role of MEMS in passenger safety and comfort, sensors for automotive vehicle stability control applications and automotive tire pressure monitoring systems are considered, along with pressure and flow sensors for engine management, and RF MEMS for automotive radar sensors. Part two then goes on to explore MEMS for

  8. Materials and structural aspects of advanced gas-turbine helicopter engines

    Science.gov (United States)

    Freche, J. C.; Acurio, J.

    1979-01-01

    Advances in materials, coatings, turbine cooling technology, structural and design concepts, and component-life prediction of helicopter gas-turbine-engine components are presented. Stationary parts including the inlet particle separator, the front frame, rotor tip seals, vanes and combustors and rotating components - compressor blades, disks, and turbine blades - are discussed. Advanced composite materials are considered for the front frame and compressor blades, prealloyed powder superalloys will increase strength and reduce costs of disks, the oxide dispersion strengthened alloys will have 100C higher use temperature in combustors and vanes than conventional superalloys, ceramics will provide the highest use temperature of 1400C for stator vanes and 1370C for turbine blades, and directionally solidified eutectics will afford up to 50C temperature advantage at turbine blade operating conditions. Coatings for surface protection at higher surface temperatures and design trends in turbine cooling technology are discussed. New analytical methods of life prediction such as strain gage partitioning for high temperature prediction, fatigue life, computerized prediction of oxidation resistance, and advanced techniques for estimating coating life are described.

  9. Degradation of TBC Systems in Environments Relevant to Advanced Gas Turbines for IGCC Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gleeson, Brian [Univ. of Pittsburgh, PA (United States)

    2014-09-30

    Air plasma sprayed (APS) thermal barrier coatings (TBCs) are used to provide thermal insulation for the hottest components in gas turbines. Zirconia stabilized with 7wt% yttria (7YSZ) is the most common ceramic top coat used for turbine blades. The 7YSZ coating can be degraded from the buildup of fly-ash deposits created in the power-generation process. Fly ash from an integrated gasification combined cycle (IGCC) system can result from coal-based syngas. TBCs are also exposed to harsh gas environments containing CO2, SO2, and steam. Degradation from the combined effects of fly ash and harsh gas atmospheres has the potential to severely limit TBC lifetimes. The main objective of this study was to use lab-scale testing to systematically elucidate the interplay between prototypical deposit chemistries (i.e., ash and its constituents, K2SO4, and FeS) and environmental oxidants (i.e., O2, H2O and CO2) on the degradation behavior of advanced TBC systems. Several mechanisms of early TBC failure were identified, as were the specific fly-ash constituents responsible for degradation. The reactivity of MCrAlY bondcoats used in TBC systems was also investigated. The specific roles of oxide and sulfate components were assessed, together with the complex interplay between gas composition, deposit chemistry and alloy reactivity. Bondcoat composition design strategies to mitigate corrosion were established, particularly with regard to controlling phase constitution and the amount of reactive elements the bondcoat contains in order to achieve optimal corrosion resistance.

  10. Anisotropic mechanical behaviour of sedimentary basins inferred by advanced radar interferometry above gas storage fields

    Science.gov (United States)

    Teatini, P.; Gambolati, G.; Ferretti, A.

    2010-12-01

    Natural gas is commonly stored underground in depleted oil and gas fields to provide safe storage capacity and deliverability to market areas where production is limited, or to take advantage of seasonal price swings. In response to summer gas injection and winter gas withdrawal the reservoir expands and contracts with the overlying land that moves accordingly. Depending on the field burial depth, a few kilometres of the upper lithosphere are subject to local three-dimensional deformations with the related cyclic motion of the ground surface being both vertical and horizontal. Advanced Persistent Scatterer Interferometry (PSI) data, obtained by combining ascending and descending RADARSAT-1 images acquired from 2003 to 2008 above gas storage fields located in the sedimentary basin of the Po river plain, Italy, provide reliable measurement of these seasonal vertical ups and downs as well as horizontal displacements to and from the injection/withdrawal wells. Combination of the land surface movements together with an accurate reconstruction of the subsurface geology made available by three-dimensional seismic surveys and long-time records of fluid pore pressure within the 1000-1500 m deep reservoirs has allowed for the development of an accurate 3D poro-mechanical finite-element model of the gas injection/removal occurrence. Model calibration based on the observed cyclic motions, which are on the range of 10-15 mm and 5-10 mm in the vertical and horizontal west-east directions, respectively, helps characterize the nonlinear hysteretic geomechanical properties of the basin. First, using a basin-scale relationship between the oedometric rock compressibility cM in virgin loading conditions versus the effective intergranular stress derived from previous experimental studies, the modeling results show that the ratio s between loading and unloading-reloading cM is about 4, consistent with in-situ expansions measured by the radioactive marker technique in similar reservoirs

  11. Automotive fuel efficiency

    International Nuclear Information System (INIS)

    Abelson, P.H.

    1992-01-01

    For at least the remainder of this century, the United States faces a growing dependence on imported oil. Costs are substantial, and they will mount. In June 1992, net imports provided nearly 50% of supplies, and their cost was $4.3 billion. Cost of net imports of motor vehicles and parts amounted to $3.0 billion. The two items combined totaled more than the negative trade balance of $6.6 billion. The light-duty highway fleet alone accounted for 38.2% of U.S. oil consumption in 1988. Correspondingly, the fleet was a substantial emitter of air pollutants - NO x , CO, and nonmethane hydrocarbons. In addition, it was a major source of CO 2 . The twin problems of oil imports and pollution would be ameliorated if the fuel economy if cars and trucks could be improved and their emissions were also reduced. In principle, the mileage of US automobiles could be substantially improved. But on purchasing a car, U.S. buyers rank fuel efficiency eight when making their choice. They are attracted to options that lower mileage. Consumers also tend to prefer large cars over small ones for reasons of safety. Increasingly, buyers are purchasing light trucks and vans that have inferior fuel efficiency. As a result of the above trends, the average mileage of the US automotive fleet has been diminishing. As long as fuel is available at comparatively low prices and there is no federal requirement for better mileage, improvement is unlikely. Moreover, even if improvements were mandated, change would be slow

  12. Development of Competency-Based Articulated Automotive Program. Big Bend Community College and Area High Schools. Final Report.

    Science.gov (United States)

    Buche, Fred; Cox, Charles

    A competency-based automotive mechanics curriculum was developed at Big Bend Community College (Washington) in order to provide the basis for an advanced placement procedure for high school graduates and experienced adults through a competency assessment. In order to create the curriculum, Big Bend Community College automotive mechanics…

  13. Advanced model for expansion of natural gas distribution networks based on geographic information systems

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Rosado, I.J.; Fernandez-Jimenez, L.A.; Garcia-Garrido, E.; Zorzano-Santamaria, P.; Zorzano-Alba, E. [La Rioja Univ., La Rioja (Spain). Dept. of Electrical Engineering; Miranda, V.; Montneiro, C. [Porto Univ., Porto (Portugal). Faculty of Engineering]|[Inst. de Engenharia de Sistemas e Computadores do Porto, Porto (Portugal)

    2005-07-01

    An advanced geographic information system (GIS) model of natural gas distribution networks was presented. The raster-based model was developed to evaluate costs associated with the expansion of electrical networks due to increased demand in the La Rioja region of Spain. The model was also used to evaluate costs associated with maintenance and amortization of the already existing distribution network. Expansion costs of the distribution network were modelled in various demand scenarios. The model also considered a variety of technical factors associated with pipeline length and topography. Soil and slope data from previous pipeline projects were used to estimate real costs per unit length of pipeline. It was concluded that results obtained by the model will be used by planners to select zones where expansion is economically feasible. 4 refs., 5 figs.

  14. Safety design features for current UK advanced gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Yellowlees, J. M.; Cobb, E. C. [Nuclear Power Co. (Risley) Ltd. (UK)

    1981-01-15

    The nuclear power stations planned for Heysham II and Torness will each have twin 660 MW(e) Advanced Gas-cooled Reactors (AGR) based on the design of those which have been operating at Hinkley Point 'B' and Hunterston 'B' since 1976. This paper has described the way in which the shutdown and cooling systems for the Heysham II and Torness AGRs have been selected in order to meet current UK safety requirements. Fault tree analyses have been used to identify the credible fault sequences, the probabilities of which have been calculated. By this means the relative importance of the various protective systems has been established and redundancy and reliability requirements identified. This systematic approach has led to a balanced design giving protection over the complete spectrum of fault sequences. Current safety requirements for thermal reactors in the UK and particular requirements in the design of the Heysham II and Torness reactors are discussed.

  15. Advancing Development and Greenhouse Gas Reductions in Vietnam's Wind Sector

    Energy Technology Data Exchange (ETDEWEB)

    Bilello, D.; Katz, J.; Esterly, S.; Ogonowski, M.

    2014-09-01

    Clean energy development is a key component of Vietnam's Green Growth Strategy, which establishes a target to reduce greenhouse gas (GHG) emissions from domestic energy activities by 20-30 percent by 2030 relative to a business-as-usual scenario. Vietnam has significant wind energy resources, which, if developed, could help the country reach this target while providing ancillary economic, social, and environmental benefits. Given Vietnam's ambitious clean energy goals and the relatively nascent state of wind energy development in the country, this paper seeks to fulfill two primary objectives: to distill timely and useful information to provincial-level planners, analysts, and project developers as they evaluate opportunities to develop local wind resources; and, to provide insights to policymakers on how coordinated efforts may help advance large-scale wind development, deliver near-term GHG emission reductions, and promote national objectives in the context of a low emission development framework.

  16. Functionally gradient materials for thermal barrier coatings in advanced gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Banovic, S.W.; Barmak, K.; Chan, H.M. [Lehigh Univ., Bethlehem, PA (United States)] [and others

    1995-10-01

    New designs for advanced gas turbine engines for power production are required to have higher operating temperatures in order to increase efficiency. However, elevated temperatures will increase the magnitude and severity of environmental degradation of critical turbine components (e.g. combustor parts, turbine blades, etc{hor_ellipsis}). To offset this problem, the usage of thermal barrier coatings (TBCs) has become popular by allowing an increase in maximum inlet temperatures for an operating engine. Although thermal barrier technology is over thirty years old, the principle failure mechanism is the spallation of the ceramic coating at or near the ceramic/bond coat interface. Therefore, it is desirable to develop a coating that combines the thermal barrier qualities of the ceramic layer and the corrosion protection by the metallic bond coat without the detrimental effects associated with the localization of the ceramic/metal interface to a single plane.

  17. Investigation of austenitic alloys for advanced heat recovery and hot-gas cleanup systems

    Energy Technology Data Exchange (ETDEWEB)

    Swindeman, R.W. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    Materials properties were collected for the design and construction of structural components for use in advanced heat recovery and hot gas cleanup systems. Alloys systems included 9Cr-1Mo-V steel, modified 316 stainless steel, modified type 310 stainless steel, modified 20Cr-25Ni-Nb stainless steel, and modified alloy 800. Experimental work was undertaken to expand the databases for potentially useful alloys. Types of testing included creep, stress-rupture, creep-crack growth, fatigue, and post-exposure short-time tensile tests. Because of the interest in relatively inexpensive alloys for service at 700 C and higher, research emphasis was placed on a modified type 310 stainless steel and a modified 20Cr-25Ni-Nb stainless steel. Both steels were found to have useful strength to 925 C with good weldability and ductility.

  18. The rate of diffusion into advanced gas cooled reactor moderator bricks: an equivalent cylinder model

    International Nuclear Information System (INIS)

    Kyte, W.S.

    1980-01-01

    The graphite moderator bricks which make up the moderator of an advanced gas-cooled nuclear reactor (AGR) are of many different and complex shapes. Many physico-chemical processes that occur within these porous bricks include a diffusional step and thus to model these processes it is necessary to solve the diffusion equation (with chemical reaction) in a porous medium of complex shape. A finite element technique is applied to calculating the rate at which nitrogen diffuses into and out of the porous moderator graphite during operation of a shutdown procedure for an AGR. However, the finite element method suffers from several disadvantages that undermine its general usefulness for calculating rates of diffusion in AGR moderator cores. A model which overcomes some of these disadvantages is presented (the equivalent cylinder model) and it is shown that this gives good results for a variety of different boundary and initial conditions

  19. Safety design features for current UK advanced gas-cooled reactors

    International Nuclear Information System (INIS)

    Yellowlees, J.M.; Cobb, E.C.

    1981-01-01

    The nuclear power stations planned for Heysham II and Torness will each have twin 660 MW(e) Advanced Gas-cooled Reactors (AGR) based on the design of those which have been operating at Hinkley Point 'B' and Hunterston 'B' since 1976. This paper has described the way in which the shutdown and cooling systems for the Heysham II and Torness AGRs have been selected in order to meet current UK safety requirements. Fault tree analyses have been used to identify the credible fault sequences, the probabilities of which have been calculated. By this means the relative importance of the various protective systems has been established and redundancy and reliability requirements identified. This systematic approach has led to a balanced design giving protection over the complete spectrum of fault sequences. Current safety requirements for thermal reactors in the UK and particular requirements in the design of the Heysham II and Torness reactors are discussed

  20. Gas-phase advanced oxidation for effective, efficient in situ control of pollution

    DEFF Research Database (Denmark)

    Johnson, Matthew Stanley; Nilsson, Elna Johanna Kristina; Svensson, Erik Anders

    2014-01-01

    In this article, gas-phase advanced oxidation, a new method for pollution control building on the photo-oxidation and particle formation chemistry occurring in the atmosphere, is introduced and characterized. The process uses ozone and UV-C light to produce in situ radicals to oxidize pollution......, generating particles that are removed by a filter; ozone is removed using a MnO2 honeycomb catalyst. This combination of in situ processes removes a wide range of pollutants with a comparatively low specific energy input. Two proof-of-concept devices were built to test and optimize the process...... particulate mass. Secondary pollution including formaldehyde and ultrafine particles might be generated, depending on the composition of the primary pollution....

  1. Multicycle Optimization of Advanced Gas-Cooled Reactor Loading Patterns Using Genetic Algorithms

    International Nuclear Information System (INIS)

    Ziver, A. Kemal; Carter, Jonathan N.; Pain, Christopher C.; Oliveira, Cassiano R.E. de; Goddard, Antony J. H.; Overton, Richard S.

    2003-01-01

    A genetic algorithm (GA)-based optimizer (GAOPT) has been developed for in-core fuel management of advanced gas-cooled reactors (AGRs) at HINKLEY B and HARTLEPOOL, which employ on-load and off-load refueling, respectively. The optimizer has been linked to the reactor analysis code PANTHER for the automated evaluation of loading patterns in a two-dimensional geometry, which is collapsed from the three-dimensional reactor model. GAOPT uses a directed stochastic (Monte Carlo) algorithm to generate initial population members, within predetermined constraints, for use in GAs, which apply the standard genetic operators: selection by tournament, crossover, and mutation. The GAOPT is able to generate and optimize loading patterns for successive reactor cycles (multicycle) within acceptable CPU times even on single-processor systems. The algorithm allows radial shuffling of fuel assemblies in a multicycle refueling optimization, which is constructed to aid long-term core management planning decisions. This paper presents the application of the GA-based optimization to two AGR stations, which apply different in-core management operational rules. Results obtained from the testing of GAOPT are discussed

  2. Genetic algorithms and artificial neural networks for loading pattern optimisation of advanced gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ziver, A.K. E-mail: a.k.ziver@imperial.ac.uk; Pain, C.C; Carter, J.N.; Oliveira, C.R.E. de; Goddard, A.J.H.; Overton, R.S

    2004-03-01

    A non-generational genetic algorithm (GA) has been developed for fuel management optimisation of Advanced Gas-Cooled Reactors, which are operated by British Energy and produce around 20% of the UK's electricity requirements. An evolutionary search is coded using the genetic operators; namely selection by tournament, two-point crossover, mutation and random assessment of population for multi-cycle loading pattern (LP) optimisation. A detailed description of the chromosomes in the genetic algorithm coded is presented. Artificial Neural Networks (ANNs) have been constructed and trained to accelerate the GA-based search during the optimisation process. The whole package, called GAOPT, is linked to the reactor analysis code PANTHER, which performs fresh fuel loading, burn-up and power shaping calculations for each reactor cycle by imposing station-specific safety and operational constraints. GAOPT has been verified by performing a number of tests, which are applied to the Hinkley Point B and Hartlepool reactors. The test results giving loading pattern (LP) scenarios obtained from single and multi-cycle optimisation calculations applied to realistic reactor states of the Hartlepool and Hinkley Point B reactors are discussed. The results have shown that the GA/ANN algorithms developed can help the fuel engineer to optimise loading patterns in an efficient and more profitable way than currently available for multi-cycle refuelling of AGRs. Research leading to parallel GAs applied to LP optimisation are outlined, which can be adapted to present day LWR fuel management problems.

  3. An advanced conceptual Tokamak fusion power reactor utilizing closed cycle helium gas turbines

    International Nuclear Information System (INIS)

    Conn, R.W.

    1976-01-01

    UWMAK-III is a conceptual Tokamak reactor designed to study the potential and the problems associated with an advanced version of Tokamaks as power reactors. Design choices have been made which represent reasonable extrapolations of present technology. The major features are the noncircular plasma cross section, the use of TZM, a molybdenum based alloy, as the primary structural material, and the incorporation of a closed-cycle helium gas turbine power conversion system. A conceptual design of the turbomachinery is given together with a preliminary heat exchanger analysis that results in relatively compact designs for the generator, precooler, and intercooler. This paper contains a general description of the UWMAK-III system and a discussion of those aspects of the reactor, such as the burn cycle, the blanket design and the heat transfer analysis, which are required to form the basis for discussing the power conversion system. The authors concentrate on the power conversion system and include a parametric performance analysis, an interface and trade-off study and a description of the reference conceptual design of the closed-cycle helium gas turbine power conversion system. (Auth.)

  4. Apparent dynamic contact angle of an advancing gas--liquid meniscus

    International Nuclear Information System (INIS)

    Kalliadasis, S.; Chang, H.

    1994-01-01

    The steady motion of an advancing meniscus in a gas-filled capillary tube involves a delicate balance of capillary, viscous, and intermolecular forces. The limit of small capillary numbers Ca (dimensionless speeds) is analyzed here with a matched asymptotic analysis that links the outer capillary region to the precursor film in front of the meniscus through a lubricating film. The meniscus shape in the outer region is constructed and the apparent dynamic contact angle Θ that the meniscus forms with the solid surface is derived as a function of the capillary number, the capillary radius, and the Hamaker's constant for intermolecular forces, under conditions of weak gas--solid interaction, which lead to fast spreading of the precursor film and weak intermolecular forces relative to viscous forces within the lubricating film. The dependence on intermolecular forces is very weak and the contact angle expression has a tight upper bound tan Θ=7.48 Ca 1/3 for thick films, which is independent of the Hamaker constant. This upper bound is in very good agreement with existing experimental data for wetting fluids in any capillary and for partially wetting fluids in a prewetted capillary. Significant correction to the Ca 1/3 dependence occurs only at very low Ca, where the intermolecular forces become more important and tan Θ diverges slightly from the above asymptotic behavior toward lower values

  5. Requirements for future automotive batteries - a snapshot

    Science.gov (United States)

    Karden, Eckhard; Shinn, Paul; Bostock, Paul; Cunningham, James; Schoultz, Evan; Kok, Daniel

    Introduction of new fuel economy, performance, safety, and comfort features in future automobiles will bring up many new, power-hungry electrical systems. As a consequence, demands on automotive batteries will grow substantially, e.g. regarding reliability, energy throughput (shallow-cycle life), charge acceptance, and high-rate partial state-of-charge (HRPSOC) operation. As higher voltage levels are mostly not an economically feasible alternative for the short term, the existing 14 V electrical system will have to fulfil these new demands, utilizing advanced 12 V energy storage devices. The well-established lead-acid battery technology is expected to keep playing a key role in this application. Compared to traditional starting-lighting-ignition (SLI) batteries, significant technological progress has been achieved or can be expected, which improve both performance and service life. System integration of the storage device into the vehicle will become increasingly important. Battery monitoring systems (BMS) are expected to become a commodity, penetrating the automotive volume market from both highly equipped premium cars and dedicated fuel-economy vehicles (e.g. stop/start). Battery monitoring systems will allow for more aggressive battery operating strategies, at the same time improving the reliability of the power supply system. Where a single lead-acid battery cannot fulfil the increasing demands, dual-storage systems may form a cost-efficient extension. They consist either of two lead-acid batteries or of a lead-acid battery plus another storage device.

  6. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 2: Advanced energy conversion systems. Part 1: Open-cycle gas turbines

    Science.gov (United States)

    Brown, D. H.; Corman, J. C.

    1976-01-01

    Ten energy conversion systems are defined and analyzed in terms of efficiency. These include: open-cycle gas turbine recuperative; open-cycle gas turbine; closed-cycle gas turbine; supercritical CO2 cycle; advanced steam cycle; liquid metal topping cycle; open-cycle MHD; closed-cycle inert gas MHD; closed-cycle liquid metal MHD; and fuel cells. Results are presented.

  7. Noble gas and hydrocarbon tracers in multiphase unconventional hydrocarbon systems: Toward integrated advanced reservoir simulators

    Science.gov (United States)

    Darrah, T.; Moortgat, J.; Poreda, R. J.; Muehlenbachs, K.; Whyte, C. J.

    2015-12-01

    Although hydrocarbon production from unconventional energy resources has increased dramatically in the last decade, total unconventional oil and gas recovery from black shales is still less than 25% and 9% of the totals in place, respectively. Further, the majority of increased hydrocarbon production results from increasing the lengths of laterals, the number of hydraulic fracturing stages, and the volume of consumptive water usage. These strategies all reduce the economic efficiency of hydrocarbon extraction. The poor recovery statistics result from an insufficient understanding of some of the key physical processes in complex, organic-rich, low porosity formations (e.g., phase behavior, fluid-rock interactions, and flow mechanisms at nano-scale confinement and the role of natural fractures and faults as conduits for flow). Noble gases and other hydrocarbon tracers are capably of recording subsurface fluid-rock interactions on a variety of geological scales (micro-, meso-, to macro-scale) and provide analogs for the movement of hydrocarbons in the subsurface. As such geochemical data enrich the input for the numerical modeling of multi-phase (e.g., oil, gas, and brine) fluid flow in highly heterogeneous, low permeability formations Herein we will present a combination of noble gas (He, Ne, Ar, Kr, and Xe abundances and isotope ratios) and molecular and isotopic hydrocarbon data from a geographically and geologically diverse set of unconventional hydrocarbon reservoirs in North America. Specifically, we will include data from the Marcellus, Utica, Barnett, Eagle Ford, formations and the Illinois basin. Our presentation will include geochemical and geological interpretation and our perspective on the first steps toward building an advanced reservoir simulator for tracer transport in multicomponent multiphase compositional flow (presented separately, in Moortgat et al., 2015).

  8. Sustainable automotive energy system in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiliang (ed.) [Tsinghua Univ. Beijing (China). China Automotive Energy Research Center

    2013-06-01

    The latest research available on automotive energy system analysis in China. Thorough introduction on automotive energy system in China. Provides the broad perspective to aid in planning sustainable road transport in China. Sustainable Automotive Energy System in China aims at identifying and addressing the key issues of automotive energy in China in a systematic way, covering demography, economics, technology and policy, based on systematic and in-depth, multidisciplinary and comprehensive studies. Five scenarios of China's automotive energy development are created to analyze the possible contributions in the fields of automotive energy, vehicle fuel economy improvement, electric vehicles, fuel cell vehicles and the 2nd generation biofuel development. Thanks to this book, readers can gain a better understanding of the nature of China's automotive energy development and be informed about: (1) the current status of automotive energy consumption, vehicle technology development, automotive energy technology development and policy; (2) the future of automotive energy development, fuel consumption, propulsion technology penetration and automotive energy technology development, and (3) the pathways of sustainable automotive energy transformation in China, in particular, the technological and the policy-related options. This book is intended for researchers, engineers and graduates students in the low-carbon transportation and environmental protection field.

  9. Action Handbook for Automotive Service Instruction.

    Science.gov (United States)

    Motor Vehicle Manufacturers Association of the U.S., Inc., Detroit, MI.

    The document is a handbook for a vocational automotive service education program which was formulated as a result of a four-day series of intensive workshops called the National Automotive Service Vocational Education Conference. The handbook discusses the major components of an automotive service vocational education program and aspects of their…

  10. Selection of an industrial natural-gas-fired advanced turbine system - Task 3A

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, G.M.

    1997-05-01

    TASK OBJECTIVES: Identify a gas-fueled turbine and steam system which will meet the program goals for efficiency - and emissions. TECHNICAL GOALS AND REQUIREMENTS: Goals for the Advanced Turbine System Program (ATS) where outlined in the statement of work for five basic categories: Cycle Efficiency - System heat rate to have a 15% improvement over 1991 vintage systems being offered to the market. Environmental No post-combustion devices while meeting the following parameter targets: (1) Nitrous Oxide (NO{sub x}) emissions to equal 8 parts per million dry (ppmd) with 15% oxygen. (2) Carbon monoxide (CO) and unburned hydrocarbon (UHC) emissions to equal 20 parts per million(ppmd) each. Cost of electricity to be 10 percent less when compared to similar 1991 systems. Fuel Flexibility Have to ability to burn coal or coal derived fuels without extensive redesign. Reliability, Availability, Maintainability Reliability, availability and maintainability must be comparable to modern advanced power generation systems. For all cycle and system studies, analyses were done for the following engine system ambient conditions: Temperature - 59F; Altitude - Sea Level; Humidity - 60%. For the 1991 reference system, GE Aircraft Engines used its LM6OOO engine product offering for comparison of the Industrial System parameters developed under this program.

  11. A modeling and control approach to advanced nuclear power plants with gas turbines

    International Nuclear Information System (INIS)

    Ablay, Günyaz

    2013-01-01

    Highlights: • Load frequency control strategies in nuclear plants are researched. • Nuclear reactor-centered control system may not be suitable for load control. • Local unit controllers improve stability and overall time constant. • Coolant loops in nuclear plants should be controlled locally. - Abstract: Advanced nuclear power plants are currently being proposed with a number of various designs. However, there is a lack of modeling and control strategies to deal with load following operations. This research investigates a possible modeling approach and load following control strategy for gas turbine nuclear power plants in order to provide an assessment way to the concept designs. A load frequency control strategy and average temperature control mechanism are studied to get load following nuclear power plants. The suitability of the control strategies and concept designs are assessed through linear stability analysis methods. Numerical results are presented on an advanced molten salt reactor concept as an example nuclear power plant system to demonstrate the validity and effectiveness of the proposed modeling and load following control strategies

  12. Design of lightweight multi-material automotive bodies using new material performance indices of thin-walled beams for the material selection with crashworthiness consideration

    International Nuclear Information System (INIS)

    Cui, Xintao; Zhang, Hongwei; Wang, Shuxin; Zhang, Lianhong; Ko, Jeonghan

    2011-01-01

    Currently, automotive bodies are constructed usually using a single material, e.g. steel or aluminum. Compared to single-material automotive bodies, multi-material automotive bodies allow optimal material selection in each structural component for higher product performance and lower cost. This paper presents novel material performance indices and procedures developed to guide systematic material selection for multi-material automotive bodies. These new indices enable to characterize the crashworthiness performance of complex-shaped thin-walled beams in multi-material automotive bodies according to material types. This paper also illustrates the application of these performance indices and procedures by designing a lightweight multi-material automotive body. These procedures will help to design a lightweight and affordable body favored by the automotive industry, thus to reduce fuel consumption and greenhouse gas emissions.

  13. Advanced exergoenvironmental assessment of a natural gas-fired electricity generating facility

    International Nuclear Information System (INIS)

    Açıkkalp, Emin; Aras, Haydar; Hepbasli, Arif

    2014-01-01

    Highlights: • Advanced exergoenvironmental analysis was conducted for an electricity generating facility. • Exergy destructions and environmental effects were divided into parts. • Environmental relations between the components were determined. • Environmental improvement strategies of the system were determined. - Abstract: This paper presents conventional and advanced exergoenvironmental analyses of an electricity generation facility located in the Eskisehir Industry Estate Zone, Turkey. This facility consists of gas turbine and steam cycles, which generate electrical power of approximately 37 MW and 18 MW, respectively. Exergy efficiency of the system is 0.402 and exergy destruction rate of the system is 78.242 MW. Unit exergy cost of electrical power generated by the system is 25.66 $/GJ and total exergoeconomic factor of the system is 0.279. Conventional exergy analysis method was applied to the system first. Next, exergy environmental impacts of exergy destruction rate within the facility’s components were divided into four parts generally, as endogenous, exogenous, avoidable and unavoidable environmental impact of exergy destruction rate. Through this analysis, improvement potential of the environmental impacts of the components and the overall system and the environmental relations between the components were then determined. Finally, exergoenvironmental factor was determined as 0.277 and environmental impact of the electricity was 8.472 (Pts/h). The system has 33% development potential for environmental impacts while its components have weak relations because of big endogenous parts of environmental impacts (80%). It may be concluded that advanced exergoenvironmental analysis indicated that priority should be given to the GT and CC, while defining the improvement strategies

  14. Determining organic pollutants in automotive industry sludge.

    Science.gov (United States)

    Munaretto, Juliana S; Wonghon, Audrey L; von Mühlen, Carin

    2012-12-01

    In Brazil, the policy for disposing industrial sludge is changing from an emphasis on using controlled landfills to other treatment or co-processing methods; however, the monitoring of organic pollutants is not mandatory. The present study evaluated two general screening methods for organic pollutants in sludge generated in an automotive industrial complex in southern Brazil. The screening was performed using Soxhlet and sonication extractions and Gas Chromatograph coupled with Quadrupole Mass Spectrometry (GC/qMS). It was concluded that both techniques were effective and that most of the compounds identified were alkanes, phenols and esters. Important pollutants were detected in the sludge, which confirms the necessity of monitoring this type of residue.

  15. Automotive, the Future of Mobility

    NARCIS (Netherlands)

    Rieck, Frank; Machielsen, C.; van Duin, Ron

    2017-01-01

    Will the Automotive era come to an end in the 21th century? Looking at today’s environmental and economic challenges of the use of cars based on last century technology and listening to some trend watchers one could think so. Cars can be regarded, as an old school status product indeed, for which

  16. Future perspectives on automotive CAE

    NARCIS (Netherlands)

    Bensler, Henry; Eller, Tom; Kabat vel Job, Alexander; Magoulas, Nikolaos; Yigit, Emrah; Van Tongeren, A.

    2014-01-01

    Computer Aided Engineering (CAE) is an integral part of today’s automotive design process. Very often OEM’s rely solely on software vendors to provide appropriate solutions. On the other hand, some companies still use in-house developed software for specific applications. It is, however, a

  17. Automotive the Future of Mobility

    NARCIS (Netherlands)

    ir. F.G. Rieck; ir. Cees Machielse; Ron van Duin

    2017-01-01

    Will the Automotive era come to an end in the 21th century? Looking at today’s environmental and economic challenges of the use of last century technology cars and listening to some trend watchers one could think so. Cars can be regarded, as an old school status product indeed, for which there is

  18. Automotive Mechanics. Student Learning Guides.

    Science.gov (United States)

    Ridge Vocational-Technical Center, Winter Haven, FL.

    These 33 learning guides are self-instructional packets for 33 tasks identified as essential for performance on an entry-level job in automotive mechanics. Each guide is based on a terminal performance objective (task) and 1-9 enabling objectives. For each enabliing objective, some or all of these materials may be presented: learning steps…

  19. Automotive Electronics. Teacher Edition (Revised).

    Science.gov (United States)

    Mackert, Howard C.; Heiserman, Russell L.

    This learning module addresses computers and their applications in contemporary automobiles. The text provides students with information on automotive microcomputers and hands-on activities that will help them see how semiconductors and digital logic devices fit into the modern repair facility. The module contains nine instructional units that…

  20. On Ugliness and the Automotive

    DEFF Research Database (Denmark)

    Herriott, Richard

    2016-01-01

    The function of this essay is to to see what consequences a consideration of ugliness in automotive styling has for the theories of three writers on aesthetics in design: David Pye, Roger Scruton and Ralf Weber. As such, the concepts of beauty and ugliness will be treated in brief before moving...

  1. Innovative Technology in Automotive Technology

    Science.gov (United States)

    Gardner, John

    2007-01-01

    Automotive Technology combines hands-on training along with a fully integrated, interactive, computerized multistationed facility. Our program is a competency based, true open-entry/open-exit program that utilizes flexible self-paced course outlines. It is designed around an industry partnership that promotes community and economic development,…

  2. Efficiency Standard in automotive industry

    International Nuclear Information System (INIS)

    Goldoni, G.

    2008-01-01

    A technological transition in the transport sector could be only be possible with a convergence of objectives of the automotive and the fuel industries, which is not very simple to obtain. Fuel economy standards could differently reduce the growing trend of CO 2 emissions in this sector but regulators should avoid capture from domestic industry. [it

  3. Project and implementation of advanced controls in a natural gas reformation unit; Projeto e implementacao de controles avancados em unidade de reforma de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Andreoni, Bruno [Andreoni Servicos de Engenharia Ltda., Rio de Janeiro, RJ (Brazil); Bueno, Roberto Galvao [Prosint S.A., XX (Brazil); Cruz, Luiz Alfredo A [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia

    1993-12-31

    This paper presents an effective implementation of advanced controls using a DCS previously loaded with conventional controls only. The advanced control system for a multiple fuel natural gas reform furnace consists of material and energy on-line balances, multivariable feedback trims, dynamic compensations and adaptive controls. The system performed well without an analyzer despite wide variations in fuel composition. A few items were implemented to improve the system after startup of the original strategies. All implementations were made possible through great involvement of plant personnel, aided by a consulting firm. The system provided tangible benefits and adequate return on the investment. (author)

  4. Active gated imaging for automotive safety applications

    Science.gov (United States)

    Grauer, Yoav; Sonn, Ezri

    2015-03-01

    The paper presents the Active Gated Imaging System (AGIS), in relation to the automotive field. AGIS is based on a fast gated-camera equipped with a unique Gated-CMOS sensor, and a pulsed Illuminator, synchronized in the time domain to record images of a certain range of interest which are then processed by computer vision real-time algorithms. In recent years we have learned the system parameters which are most beneficial to night-time driving in terms of; field of view, illumination profile, resolution and processing power. AGIS provides also day-time imaging with additional capabilities, which enhances computer vision safety applications. AGIS provides an excellent candidate for camera-based Advanced Driver Assistance Systems (ADAS) and the path for autonomous driving, in the future, based on its outstanding low/high light-level, harsh weather conditions capabilities and 3D potential growth capabilities.

  5. Experience of the remote dismantling of the Windscale advanced gas-cooled reactor and Windscale pile chimneys

    International Nuclear Information System (INIS)

    Wright, E.M.

    1993-01-01

    This paper gives brief descriptions of some of the remote dismantling work and equipment used on two large decommissioning projects: the BNFL Windscale Pile Chimneys Project (remote handling machine, waste packaging machine, remotely controlled excavator, remotely controlled demolition machine) and the AEA Windscale Advanced Gas-cooled Reactor Project (remote dismantling machine, operational waste, bulk removal techniques, semi-remote cutting operations)

  6. An Advanced Analytical Chemistry Experiment Using Gas Chromatography-Mass Spectrometry, MATLAB, and Chemometrics to Predict Biodiesel Blend Percent Composition

    Science.gov (United States)

    Pierce, Karisa M.; Schale, Stephen P.; Le, Trang M.; Larson, Joel C.

    2011-01-01

    We present a laboratory experiment for an advanced analytical chemistry course where we first focus on the chemometric technique partial least-squares (PLS) analysis applied to one-dimensional (1D) total-ion-current gas chromatography-mass spectrometry (GC-TIC) separations of biodiesel blends. Then, we focus on n-way PLS (n-PLS) applied to…

  7. The Progressive Insurance Automotive X PRIZE Education Program

    Energy Technology Data Exchange (ETDEWEB)

    Robyn Ready

    2011-12-31

    The Progressive Insurance Automotive X PRIZE Education Program conducted education and outreach activities and used the competition's technical goals and vehicle demonstrations as a means of attracting students and the public to learn more about advanced vehicle technologies, energy efficiency, climate change, alternative fuels, and the science and math behind efficient vehicle development. The Progressive Insurance Automotive X PRIZE Education Program comprised three integrated components that were designed to educate the general public and create a multi-tiered initiative to engage students and showcase the 21st century skills students will need to compete in our global economy: teamwork, creativity, strong literacy, math and science skills, and innovative thinking. The elements included an Online Experience, a National Student Contest, and in person education events and activites. The project leveraged online connections, strategic partnerships, in-classroom, and beyond-the-classroom initiatives, as well as mainstream media. This education program supported by the U.S. Department of Energy (DOE) also funded the specification of vehicle telemetry and the full development and operation of an interactive online experience that allowed internet users to follow the Progressive Insurance Automotive X PRIZE vehicles as they performed in real-time during the Progressive Insurance Automotive X PRIZE competition events.

  8. Automotive HMI design and participatory user involvement: review and perspectives.

    Science.gov (United States)

    François, Mathilde; Osiurak, François; Fort, Alexandra; Crave, Philippe; Navarro, Jordan

    2017-04-01

    Automotive human-machine interface (HMI) design is facing new challenges due to the technological advances of the last decades. The design process has to be adapted in order to address human factors and road safety challenges. It is now widely accepted that user involvement in the HMI design process is valuable. However, the current form of user involvement in industry remains at the stages of concept assessment and usability tests. Moreover, the literature in other fields (e.g. information systems) promotes a broader user involvement with participatory design (i.e. the user is fully involved in the development process). This article reviews the established benefits of participatory design and reveals perspectives for automotive HMI quality improvement in a cognitive ergonomic framework. Practitioner Summary: Automotive HMI quality determines, in part, drivers' ability to perform primary driving tasks while using in-vehicle devices. User involvement in the design process is a key point to contribute to HMI quality. This article reports the potential benefits of a broad involvement from drivers to meet automotive HMI design challenges.

  9. MICROALLOYED STEELS FOR THE AUTOMOTIVE INDUSTRY

    Directory of Open Access Journals (Sweden)

    Debanshu Bhattacharya

    2014-12-01

    Full Text Available Two major drivers for the use of newer steels in the automotive industry are fuel efficiency and increased safety performance. Fuel efficiency is mainly a function of weight of steel parts, which in turn, is controlled by gauge and design. Safety is determined by the energy absorbing capacity of the steel used to make the part. All of these factors are incentives for the U.S. automakers to use both Highly Formable and Advanced High Strength Steels (AHSS to replace the conventional steels used to manufacture automotive parts in the past. AHSS is a general term used to describe various families of steels. The most common AHSS is the dual-phase steel that consists of a ferrite-martensite microstructure. These steels are characterized by high strength, good ductility, low tensile to yield strength ratio and high bake hardenability. Another class of AHSS is the complex-phase or multi-phase steel which has a complex microstructure consisting of various phase constituents and a high yield to tensile strength ratio. Transformation Induced Plasticity (TRIP steels is another class of AHSS steels finding interest among the U.S. automakers. These steels consist of a ferrite-bainite microstructure with significant amount of retained austenite phase and show the highest combination of strength and elongation, so far, among the AHSS in use. High level of energy absorbing capacity combined with a sustained level of high n value up to the limit of uniform elongation as well as high bake hardenability make these steels particularly attractive for safety critical parts and parts needing complex forming. A relatively new class of AHSS is the Quenching and Partitioning (Q&P steels. These steels seem to offer higher ductility than the dual-phase steels of similar strengths or similar ductility as the TRIP steels at higher strengths. Finally, martensitic steels with very high strengths are also in use for certain parts. The most recent initiative in the area of AHSS

  10. Upgrading the Center for Lightweighting Automotive Materials and Processing - a GATE Center of Excellence at the University of Michigan-Dearborn

    Energy Technology Data Exchange (ETDEWEB)

    Mallick, P. K.

    2012-08-30

    The Center for Lightweighting Materials and Processing (CLAMP) was established in September 1998 with a grant from the Department of Energy’s Graduate Automotive Technology Education (GATE) program. The center received the second round of GATE grant in 2005 under the title “Upgrading the Center for Lightweighting Automotive Materials and Processing”. Using the two grants, the Center has successfully created 10 graduate level courses on lightweight automotive materials, integrated them into master’s and PhD programs in Automotive Systems Engineering, and offered them regularly to the graduate students in the program. In addition, the Center has created a web-based lightweight automotive materials database, conducted research on lightweight automotive materials and organized seminars/symposia on lightweight automotive materials for both academia and industry. The faculty involved with the Center has conducted research on a variety of topics related to design, testing, characterization and processing of lightweight materials for automotive applications and have received numerous research grants from automotive companies and government agencies to support their research. The materials considered included advanced steels, light alloys (aluminum, magnesium and titanium) and fiber reinforced polymer composites. In some of these research projects, CLAMP faculty have collaborated with industry partners and students have used the research facilities at industry locations. The specific objectives of the project during the current funding period (2005 – 2012) were as follows: (1) develop new graduate courses and incorporate them in the automotive systems engineering curriculum (2) improve and update two existing courses on automotive materials and processing (3) upgrade the laboratory facilities used by graduate students to conduct research (4) expand the Lightweight Automotive Materials Database to include additional materials, design case studies and make it more

  11. Advanced Flue Gas Desulfurization (AFGD) demonstration project: Volume 2, Project performance and economics. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-30

    The project objective is to demonstrate removal of 90--95% or more of the SO{sub 2} at approximately one-half the cost of conventional scrubbing technology; and to demonstrate significant reduction of space requirements. In this project, Pure Air has built a single SO{sub 2} absorber for a 528-MWe power plant. The absorber performs three functions in a single vessel: prequencher, absorber, and oxidation of sludge to gypsum. Additionally, the absorber is of a co- current design, in which the flue gas and scrubbing slurry move in the same direction and at a relatively high velocity compared to conventional scrubbers. These features all combine to yield a state- of-the-art SO{sub 2} absorber that is more compact and less expensive than conventional scrubbers. The project incorporated a number of technical features including the injection of pulverized limestone directly into the absorber, a device called an air rotary sparger located within the base of the absorber, and a novel wastewater evaporation system. The air rotary sparger combines the functions of agitation and air distribution into one piece of equipment to facilitate the oxidation of calcium sulfite to gypsum. Additionally, wastewater treatment is being demonstrated to minimize water disposal problems inherent in many high-chloride coals. Bituminous coals primarily from the Indiana, Illinois coal basin containing 2--4.5% sulfur were tested during the demonstration. The Advanced Flue Gas Desulfurization (AFGD) process has demonstrated removal of 95% or more of the SO{sub 2} while providing a commercial gypsum by-product in lieu of solid waste. A portion of the commercial gypsum is being agglomerated into a product known as PowerChip{reg_sign} gypsum which exhibits improved physical properties, easier flowability and more user friendly handling characteristics to enhance its transportation and marketability to gypsum end-users.

  12. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    Energy Technology Data Exchange (ETDEWEB)

    Victor W. Wong; Tian Tian; Grant Smedley; Jeffrey Jocsak

    2004-09-30

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston/ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and emissions. An iterative process of simulation, experimentation and analysis, are being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston/ring dynamic and friction models have been developed and applied that illustrated the fundamental relationships between design parameters and friction losses. Various low-friction strategies and ring-design concepts have been explored, and engine experiments have been done on a full-scale Waukesha VGF F18 in-line 6 cylinder power generation engine rated at 370 kW at 1800 rpm. Current accomplishments include designing and testing ring-packs using a subtle top-compression-ring profile (skewed barrel design), lowering the tension of the oil-control ring, employing a negative twist to the scraper ring to control oil consumption. Initial test data indicate that piston ring-pack friction was reduced by 35% by lowering the oil-control ring tension alone, which corresponds to a 1.5% improvement in fuel efficiency. Although small in magnitude, this improvement represents a first step towards anticipated aggregate improvements from other strategies. Other ring-pack design strategies to lower friction have been identified, including reduced axial distance between the top two rings, tilted top-ring groove. Some of these configurations have been tested and some await further evaluation. Colorado State University performed the tests and Waukesha Engine Dresser, Inc. provided technical support. Key elements of the continuing work include optimizing the engine piston design, application of surface and material developments in conjunction with improved lubricant properties, system modeling and analysis, and continued technology

  13. Automotive Control Systems: For Engine, Driveline, and Vehicle

    Science.gov (United States)

    Kiencke, Uwe; Nielsen, Lars

    Advances in automotive control systems continue to enhance safety and comfort and to reduce fuel consumption and emissions. Reflecting the trend to optimization through integrative approaches for engine, driveline, and vehicle control, this valuable book enables control engineers to understand engine and vehicle models necessary for controller design, and also introduces mechanical engineers to vehicle-specific signal processing and automatic control. The emphasis on measurement, comparisons between performance and modeling, and realistic examples derive from the authors' unique industrial experience

  14. Fission product monitoring of TRISO coated fuel for the advanced gas reactor-1 experiment

    International Nuclear Information System (INIS)

    Scates, Dawn M.; Hartwell, John K.; Walter, John B.; Drigert, Mark W.; Harp, Jason M.

    2010-01-01

    The US Department of Energy has embarked on a series of tests of TRISO coated particle reactor fuel intended for use in the Very High Temperature Reactor (VHTR) as part of the Advanced Gas Reactor (AGR) program. The AGR-1 TRISO fuel experiment, currently underway, is the first in a series of eight fuel tests planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The AGR-1 experiment reached a peak compact averaged burnup of 9% FIMA with no known TRISO fuel particle failures in March 2008. The burnup goal for the majority of the fuel compacts is to have a compact averaged burnup greater than 18% FIMA and a minimum compact averaged burnup of 14% FIMA. At the INL the TRISO fuel in the AGR-1 experiment is closely monitored while it is being irradiated in the ATR. The effluent monitoring system used for the AGR-1 fuel is the Fission Product Monitoring System (FPMS). The FPMS is a valuable tool that provides near real-time data indicative of the AGR-1 test fuel performance and incorporates both high-purity germanium (HPGe) gamma-ray spectrometers and sodium iodide [NaI(Tl)] scintillation detector-based gross radiation monitors. To quantify the fuel performance, release-to-birth ratios (R/B's) of radioactive fission gases are computed. The gamma-ray spectra acquired by the AGR-1 FPMS are analyzed and used to determine the released activities of specific fission gases, while a dedicated detector provides near-real time count rate information. Isotopic build up and depletion calculations provide the associated isotopic birth rates. This paper highlights the features of the FPMS, encompassing the equipment, methods and measures that enable the calculation of the release-to-birth ratios. Some preliminary results from the AGR-1 experiment are also presented.

  15. Automotive Catalyst State Diagnosis Using Microwaves

    Directory of Open Access Journals (Sweden)

    Moos Ralf

    2015-01-01

    Full Text Available The state of catalysts plays a key role in automotive exhaust gas aftertreatment. The soot or ash loading of Diesel particulate filters, the oxygen loading degree in three-way catalysts, the amount of stored ammonia in SCR catalysts, or the NOx loading degree in NOx storage catalysts are important parameters that are today determined indirectly and in a model-based manner with gas sensors installed upstream and/or downstream of the catalysts. This contribution gives an overview on a novel approach to determine the catalyst state directly by a microwave-based technique. The method exploits the fact that the catalyst housing acts as a microwave cavity resonator. As “sensing” elements, one or two simple antennas are mounted inside the catalyst canning. The electrical properties of the catalyst device (ceramic honeycomb plus coating and storage material can be measured. Preferably, the resonance characteristics, e.g., the resonance frequencies, of selected cavity modes are observed. The information on the catalyst interior obtained in such a contactless manner is very well correlated with the catalyst state as will be demonstrated for different exhaust gas aftertreatment systems.

  16. United States Automotive Materials Partnership LLC (USAMP)

    Energy Technology Data Exchange (ETDEWEB)

    United States Automotive Materials Partnership

    2011-01-31

    The United States Automotive Materials Partnership LLC (USAMP) was formed in 1993 as a partnership between Chrysler Corporation, Ford Motor Company, and General Motors Corporation. Since then the U.S. Department of Energy (DOE) has supported its activities with funding and technical support. The mission of the USAMP is to conduct vehicle-oriented research and development in materials and materials processing to improve the competitiveness of the U.S. Auto Industry. Its specific goals are: (1) To conduct joint research to further the development of lightweight materials for improved automotive fuel economy; and (2) To work with the Federal government to explore opportunities for cooperative programs with the national laboratories, Federal agencies such as the DOE and universities. As a major component of the DOE's Office of FreedomCAR and Vehicle Technologies Program (FCVT) collaboration with the USAMP, the Automotive Lightweighting Materials (ALM) program focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. The FCVT was announced in FY 2002 and implemented in FY 2003, as a successor of the Partnership for a New Generation of Vehicles (PNGV), largely addressed under the first Cooperative Agreement. This second USAMP Cooperative Agreement with the DOE has expanded a unique and valuable framework for collaboratively directing industry and government research efforts toward the development of technologies capable of solving important societal problems related to automobile transportation. USAMP efforts are conducted by the domestic automobile manufacturers, in collaboration with materials and manufacturing suppliers, national laboratories, universities, and other technology or trade organizations. These interactions provide a direct route for implementing newly

  17. Advanced compressed hydrogen fuel storage systems

    International Nuclear Information System (INIS)

    Jeary, B.

    2000-01-01

    Dynetek was established in 1991 by a group of private investors, and since that time efforts have been focused on designing, improving, manufacturing and marketing advanced compressed fuel storage systems. The primary market for Dynetek fuel systems has been Natural Gas, however as the automotive industry investigates the possibility of using hydrogen as the fuel source solution in Alternative Energy Vehicles, there is a growing demand for hydrogen storage on -board. Dynetek is striving to meet the needs of the industry, by working towards developing a fuel storage system that will be efficient, economical, lightweight and eventually capable of storing enough hydrogen to match the driving range of the current gasoline fueled vehicles

  18. Remote handling equipment for the decommissioning of the Windscale Advanced Gas Cooled Reactor

    International Nuclear Information System (INIS)

    Barker, A.; Birss, I.R.; Fish, G.

    1984-01-01

    A decision to decommission the Windscale Advanced Gas Cooled Reactor was taken shortly after reactor shutdown in 1981. The fuel has now been discharged and the decommissioning programme will last about 10-12 years. The paper describes the programme and objectives and deals with methods of handling and disposing of the radioactive waste material. The main new facility required is a Waste Packaging Building adjacent to the existing reactor in which the waste boxes will be filled, active waste encapsulated in concrete and the boxes cleaned, swabbed and monitored to comply with IAEA transport regulations. The handling machine concept and features are described. The assaying and packaging of the waste material, the control of box movement and the process of concrete encapsulation is described. The paper concludes with a description of the development programme to support the Project. The tasks include a study of cutting techniques, production and control of dust and smoke, viewing and lighting methods, filtration, decontamination and fixing of contamination

  19. Sensitivity analysis of an Advanced Gas-cooled Reactor control rod model

    International Nuclear Information System (INIS)

    Scott, M.; Green, P.L.; O’Driscoll, D.; Worden, K.; Sims, N.D.

    2016-01-01

    Highlights: • A model was made of the AGR control rod mechanism. • The aim was to better understand the performance when shutting down the reactor. • The model showed good agreement with test data. • Sensitivity analysis was carried out. • The results demonstrated the robustness of the system. - Abstract: A model has been made of the primary shutdown system of an Advanced Gas-cooled Reactor nuclear power station. The aim of this paper is to explore the use of sensitivity analysis techniques on this model. The two motivations for performing sensitivity analysis are to quantify how much individual uncertain parameters are responsible for the model output uncertainty, and to make predictions about what could happen if one or several parameters were to change. Global sensitivity analysis techniques were used based on Gaussian process emulation; the software package GEM-SA was used to calculate the main effects, the main effect index and the total sensitivity index for each parameter and these were compared to local sensitivity analysis results. The results suggest that the system performance is resistant to adverse changes in several parameters at once.

  20. Gas centrifuge enrichment plants inspection frequency and remote monitoring issues for advanced safeguards implementation

    International Nuclear Information System (INIS)

    Boyer, Brian David; Erpenbeck, Heather H.; Miller, Karen A.; Ianakiev, Kiril D.; Reimold, Benjamin A.; Ward, Steven L.; Howell, John

    2010-01-01

    Current safeguards approaches used by the IAEA at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low enriched uranium (LEU) production, detect undeclared LEU production and detect high enriched uranium (BEU) production with adequate probability using non destructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and 235 U enrichment of declared cylinders of uranium hexafluoride that are used in the process of enrichment at GCEPs. This paper contains an analysis of how possible improvements in unattended and attended NDA systems including process monitoring and possible on-site destructive analysis (DA) of samples could reduce the uncertainty of the inspector's measurements providing more effective and efficient IAEA GCEPs safeguards. We have also studied a few advanced safeguards systems that could be assembled for unattended operation and the level of performance needed from these systems to provide more effective safeguards. The analysis also considers how short notice random inspections, unannounced inspections (UIs), and the concept of information-driven inspections can affect probability of detection of the diversion of nuclear material when coupled to new GCEPs safeguards regimes augmented with unattended systems. We also explore the effects of system failures and operator tampering on meeting safeguards goals for quantity and timeliness and the measures needed to recover from such failures and anomalies.

  1. Optical Breath Gas Extravehicular Activity Sensor for the Advanced Portable Life Support System

    Science.gov (United States)

    Wood, William R.; Casias, Miguel E.; Pilgrim, Jeffrey S.; Chullen, Cinda; Campbell, Colin

    2016-01-01

    The infrared gas transducer used during extravehicular activity (EVA) in the extravehicular mobility unit (EMU) measures and reports the concentration of carbon dioxide (CO2) in the ventilation loop. It is nearing its end of life and there are a limited number remaining. Meanwhile, the next generation advanced portable life support system (PLSS) now being developed requires CO2 sensing technology with performance beyond that presently in use. A laser diode (LD) spectrometer based on wavelength modulation spectroscopy (WMS) is being developed to address both applications by Vista Photonics, Inc. Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. Version 1.0 devices were delivered to NASA Johnson Space Center (JSC) in 2011. The sensors incorporate a laser diode based CO2 channel that also includes an incidental water vapor (humidity) measurement. The prototypes are controlled digitally with a field-programmable gate array (FPGA)/microcontroller architecture. Version 2.0 devices with improved electronics and significantly reduced wetted volumes were delivered to JSC in 2012. A version 2.5 upgrade recently implemented wavelength stabilized operation, better humidity measurement, and much faster data analysis/reporting. A wholly reconfigured version 3.0 will maintain the demonstrated performance of earlier versions while being backwards compatible with the EMU and offering a radiation tolerant architecture.

  2. Mechanical Properties of Advanced Gas-Cooled Reactor Stainless Steel Cladding After Irradiation

    Science.gov (United States)

    Degueldre, Claude; Fahy, James; Kolosov, Oleg; Wilbraham, Richard J.; Döbeli, Max; Renevier, Nathalie; Ball, Jonathan; Ritter, Stefan

    2018-05-01

    The production of helium bubbles in advanced gas-cooled reactor (AGR) cladding could represent a significant hazard for both the mechanical stability and long-term storage of such materials. However, the high radioactivity of AGR cladding after operation presents a significant barrier to the scientific study of the mechanical properties of helium incorporation, said cladding typically being analyzed in industrial hot cells. An alternative non-active approach is to implant He2+ into unused AGR cladding material via an accelerator. Here, a feasibility study of such a process, using sequential implantations of helium in AGR cladding steel with decreasing energy is carried out to mimic the buildup of He (e.g., 50 appm) that would occur for in-reactor AGR clad in layers of the order of 10 µm in depth, is described. The implanted sample is subsequently analyzed by scanning electron microscopy, nanoindentation, atomic force and ultrasonic force microscopies. As expected, the irradiated zones were affected by implantation damage (steel cladding is retained despite He2+ implantation.

  3. Advanced Flue Gas Desulfurization (AFGD) Demonstration Project, A DOE Assessment; FINAL

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2001-01-01

    The AFGD process as demonstrated by Pure Air at the Bailly Station offers a reliable and cost-effective means of achieving a high degree of SO(sub 2) emissions reduction when burning high-sulfur coals. Many innovative features have been successfully incorporated in this process, and it is ready for widespread commercial use. The system uses a single-loop cocurrent scrubbing process with in-situ oxidation to produce wallboard-grade gypsum instead of wet sludge. A novel wastewater evaporation system minimizes effluents. The advanced scrubbing process uses a common absorber to serve multiple boilers, thereby saving on capital through economies of scale. Major results of the project are: (1) SO(sub 2) removal of over 94 percent was achieved over the three-year demonstration period, with a system availability exceeding 99.5 percent; (2) a large, single absorber handled the combined flue gas of boilers generating 528 MWe of power, and no spares were required; (3) direct injection of pulverized limestone into the absorber was successful; (4) Wastewater evaporation eliminated the need for liquid waste disposal; and (5) the gypsum by-product was used directly for wallboard manufacture, eliminating the need to dispose of waste sludge

  4. Automotive fuels survey. Part 4. Innovations or illusions

    International Nuclear Information System (INIS)

    Troelstra, W.P.; Van Walwijk, M.; Bueckmann, M.

    1999-01-01

    Volumes 1 to 3 of the IEA/AFIS Automotive Fuels Survey, address the most well-known automotive fuels and fuel production routes. Less well-known fuels and energy sources that are not used in combustion engines, e.g. electricity, were excluded from these volumes. In this report fuel routes and fuels that have not been addressed in the first volumes will be analysed. In this report, each chapter starts with a short description of the fuel(route) and its status of development (e.g. if the idea has been abandoned or if the fuel is already sold at a fuel station). Then the different aspects of that fuel are described as far as the information is available. This is limited to information that can not be found in volumes one and two of the Automotive Fuels Survey. For example: for the diesel-water mixtures, the production of diesel is not be described. If comparisons are made, they are made either relative to an already described fuel(route) that is related (e.g. biogas will be compared with natural gas) or relative to diesel and gasoline as was done in volume 1 and 2 of the Automotive Fuels Survey. For some of the fuels, the relation with a fuel already covered in volume one and two is very strong. For these fuels more information can be found in the chapters on the related fuel in the other volumes of the Automotive Fuels Survey. The following fuels are covered in this report: biodiesel from used oil and fat, biodiesel and biogasoline from algae, diesel from hydrothermal upgrading, biogas, hythane, Fischer-Tropsch diesel, diesel-water blends, higher ethers, and electricity. 74 refs

  5. Future automotive fuels

    International Nuclear Information System (INIS)

    Lepik, M.

    1993-01-01

    There are several important factors which are fundamental to the choice of alternative automobile fuels: the chain of energetic efficiency of fuels; costs; environmental friendliness; suitability for usual engines or adapting easiness; existing reserves of crude oil, natural gas or the fossil energy sources; and, alternatively, agricultural potentiality. This paper covers all these factors. The fuels dealt with in this paper are alcohol, vegetable oil, gaseous fuel, hydrogen and ammonia fuels. Renewable fuels are the most valuable forms of renewable energy. In addition to that rank, they can contribute to three other problem areas: agricultural surpluses, environmental degradation, and conservation of natural resources. Due to the competitive utilization of biomass for food energy production, bio-fuels should mainly be produced in those countries where an energy shortage is combined with a food surplus. The fuels arousing the most interest are alcohol and vegetable oil, the latter for diesel engines, even in northern countries. (au)

  6. GLOBAL PERSPECTIVES IN AUTOMOTIVE INDUSTRY

    Directory of Open Access Journals (Sweden)

    NICOLETA ISAC

    2010-01-01

    Full Text Available The automotive sector is characterised by a relatively low trade/salesratio. While the production of most automotive producers in the world is spread over variouscountries in the value chain, the brands are still considered to reflect some national identity.Internationalisation strategies may change over the lifecycle of the product and automakerstend to pursue diametrically opposed strategies. In mature markets, it is about managing whatgoes on beneath a static surface; in emerging markets’ dynamic environments, companies muststrategically position themselves to benefit from growth opportunities. However, without theright strategy and execution in mature markets, it is clear that traditional OEMs cannot profitfrom emerging markets-the persistence of structural issues in mature market operationseventually will rob all but the most resilient competitors of the opportunity to compete inemerging markets.

  7. Antenna Arrays and Automotive Applications

    CERN Document Server

    Rabinovich, Victor

    2013-01-01

    This book throws a lifeline to designers wading through mounds of antenna array patents looking for the most suitable systems for their projects. Drastically reducing the research time required to locate solutions to the latest challenges in automotive communications, it sorts and systematizes material on cutting-edge antenna arrays that feature multi-element communication systems with enormous potential for the automotive industry. These new systems promise to make driving safer and more efficient, opening up myriad applications, including vehicle-to-vehicle traffic that prevents collisions, automatic toll collection, vehicle location and fine-tuning for cruise control systems. This book’s exhaustive coverage begins with currently deployed systems, frequency ranges and key parameters. It proceeds to examine system geometry, analog and digital beam steering technology (including "smart" beams formed in noisy environments), maximizing signal-to-noise ratios, miniaturization, and base station technology that ...

  8. Advanced composites: Design and application. Proceedings of the meeting of the Mechanical Failures Prevention Group

    Science.gov (United States)

    Shives, T. R.; Willard, W. A.

    1979-01-01

    The design and application of advanced composites is discussed with emphasis on aerospace, aircraft, automotive, marine, and industrial applications. Failure modes in advanced composites are also discussed.

  9. Fast automotive diesel exhaust measurement using quantum cascade lasers

    Science.gov (United States)

    Herbst, J.; Brunner, R.; Lambrecht, A.

    2013-12-01

    Step by step, US and European legislations enforce the further reduction of atmospheric pollution caused by automotive exhaust emissions. This is pushing automotive development worldwide. Fuel efficient diesel engines with SCRtechnology can impede NO2-emission by reduction with NH3 down to the ppm range. To meet the very low emission limits of the Euro6 resp. US NLEV (National Low Emission Vehicle) regulations, automotive manufacturers have to optimize continuously all phases of engine operation and corresponding catalytic converters. Especially nonstationary operation holds a high potential for optimizing gasoline consumption and further reducing of pollutant emissions. Test equipment has to cope with demanding sensitivity and speed requirements. In the past Fraunhofer IPM has developed a fast emission analyzer called DEGAS (Dynamic Exhaust Gas Analyzer System), based on cryogenically cooled lead salt lasers. These systems have been used at Volkswagen AG`s test benches for a decade. Recently, IPM has developed DEGAS-Next which is based on cw quantum cascade lasers and thermoelectrically cooled detectors. The system is capable to measure three gas components (i.e. NO, NO2, NH3) in two channels with a time resolution of 20 ms and 1 ppm detection limits. We shall present test data and a comparison with fast FTIR measurements.

  10. Computational intelligence in automotive applications

    Energy Technology Data Exchange (ETDEWEB)

    Prokhorov, Danil (ed.) [Toyota Motor Engineering and Manufacturing (TEMA), Ann Arbor, MI (United States). Toyota Technical Center

    2008-07-01

    What is computational intelligence (CI)? Traditionally, CI is understood as a collection of methods from the fields of neural networks (NN), fuzzy logic and evolutionary computation. This edited volume is the first of its kind, suitable to automotive researchers, engineers and students. It provides a representative sample of contemporary CI activities in the area of automotive technology. The volume consists of 13 chapters, including but not limited to these topics: vehicle diagnostics and vehicle system safety, control of vehicular systems, quality control of automotive processes, driver state estimation, safety of pedestrians, intelligent vehicles. All chapters contain overviews of state of the art, and several chapters illustrate their methodologies on examples of real-world systems. About the Editor: Danil Prokhorov began his technical career in St. Petersburg, Russia, after graduating with Honors from Saint Petersburg State University of Aerospace Instrumentation in 1992 (MS in Robotics). He worked as a research engineer in St. Petersburg Institute for Informatics and Automation, one of the institutes of the Russian Academy of Sciences. He came to the US in late 1993 for Ph.D. studies. He became involved in automotive research in 1995 when he was a Summer intern at Ford Scientific Research Lab in Dearborn, MI. Upon his graduation from the EE Department of Texas Tech University, Lubbock, in 1997, he joined Ford to pursue application-driven research on neural networks and other machine learning algorithms. While at Ford, he took part in several production-bound projects including neural network based engine misfire detection. Since 2005 he is with Toyota Technical Center, Ann Arbor, MI, overseeing important mid- and long-term research projects in computational intelligence. (orig.)

  11. Modern materials for automotive industry

    Directory of Open Access Journals (Sweden)

    Hovorun T. P.

    2017-12-01

    Full Text Available The car industry uses a tremendous number of materials to build cars, including iron, aluminum, steel, glass, rubber, petroleum products, copper, steel and others. These materials have evolved greatly over the decades, becoming more sophisticated, better built, and safer. They've changed as new automotive manufacturing technologies have emerged over the years, and they're used in increasingly innovative ways. This article is devoted to systematization information on the introduction and application of modern materials in the automotive industry. Given both domestic and foreign sources of information, it follows that car manufacturers are constantly pushing to create the lightest cars possible to increase speed and power. Research and development into lightweight materials is essential for lowering their cost, increasing their ability to be recycled, enabling their integration into vehicles, and maximizing their fuel economy benefits. Light weighting without loss of strength and speed properties is the present, and the future, of the automotive manufacturing industry. It brings innovative materials to the frontline of design.

  12. Making aerospace technology work for the automotive industry, introduction

    Science.gov (United States)

    Olson, W. T.

    1978-01-01

    NASA derived technology already in use in the automotive industry include: (1) developments in electronics design, computer systems, and quality control methods for line testing of cars and trucks; (2) a combustion analysis computer program for automotive engine research and development; (3) an infrared scanner and television display for analyzing tire design and performance, and for studying the effects of heat on the service life of V-belts, shock mounts, brakes, and rubber bearings; (4) exhaust gas analyzers for trouble shooting and emissions certification; (5) a device for reducing noise from trucks; and (6) a low cost test vehicle for measuring highway skid resistance. Services offered by NASA to facilitate access to its technology are described.

  13. Mitigating the Risk of Stress Corrosion of Austenitic Stainless Steels in Advanced Gas Cooled Reactor Boilers

    International Nuclear Information System (INIS)

    Bull, A.; Owen, J.; Quirk, G.; G, Lewis; Rudge, A.; Woolsey, I.S.

    2012-09-01

    Advanced Gas-Cooled Reactors (AGRs) operated in the UK by EDF Energy have once-through boilers, which deliver superheated steam at high temperature (∼500 deg. C) and pressure (∼150 bar) to the HP turbine. The boilers have either a serpentine or helical geometry for the tubing of the main heat transfer sections of the boiler and each individual tube is fabricated from mild steel, 9%Cr1%Mo and Type 316 austenitic stainless steel tubing. Type 316 austenitic stainless steel is used for the secondary (final) superheater and steam tailpipe sections of the boiler, which, during normal operation, should operate under dry, superheated steam conditions. This is achieved by maintaining a specified margin of superheat at the upper transition joint (UTJ) between the 9%Cr1%Mo primary superheater and the Type 316 secondary superheater sections of the boiler. Operating in this mode should eliminate the possibility of stress corrosion cracking of the Type 316 tube material on-load. In recent years, however, AGRs have suffered a variety of operational problems with their boilers that have made it difficult to maintain the specified superheat margin at the UTJ. In the case of helical boilers, the combined effects of carbon deposition on the gas side and oxide deposition on the waterside of the tubing have resulted in an increasing number of austenitic tubes operating with less than the specified superheat margin at the UTJ and hence the possibility of wetting the austenitic section of the boiler. Some units with serpentine boilers have suffered creep-fatigue damage of the high temperature sections of the boiler, which currently necessitates capping the steam outlet temperature to prevent further damage. The reduction in steam outlet temperature has meant that there is an increased risk of operation with less than the specified superheat margin at the UTJ and hence stress corrosion cracking of the austenitic sections of the boiler. In order to establish the risk of stress

  14. Advanced fuel gas desulfurization (AFGD) demonstration project. Technical progress report No. 19, July 1, 1994--September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The {open_quotes}Advanced Flue Gas Desulfurization (AFGD) Demonstration Project{close_quotes} is a $150.5 million cooperative effort between the U.S. Department of Energy and Pure Air, a general partnership of Air Products and Chemicals, Inc. and Mitsubishi Heavy Industries America, Inc. The AFGD process is one of several alternatives to conventional flue gas desulfurization (FGD) being demonstrated under the Department of Energy`s Clean Coal Technology Demonstration Program. The AFGD demonstration project is located at the Northern Indiana Public Service Company`s Bailly Generating Station, about 12 miles northeast of Gary, Indiana.

  15. Advanced High Strength Steel in Auto Industry: an Overview

    Directory of Open Access Journals (Sweden)

    N. Baluch

    2014-08-01

    Full Text Available The world’s most common alloy, steel, is the material of choice when it comes to making products as diverse as oil rigs to cars and planes to skyscrapers, simply because of its functionality, adaptability, machine-ability and strength. Newly developed grades of Advanced High Strength Steel (AHSS significantly outperform competing materials for current and future automotive applications. This is a direct result of steel’s performance flexibility, as well as of its many benefits including low cost, weight reduction capability, safety attributes, reduced greenhouse gas emissions and superior recyclability. To improve crash worthiness and fuel economy, the automotive industry is, increasingly, using AHSS. Today, and in the future, automotive manufacturers must reduce the overall weight of their cars. The most cost-efficient way to do this is with AHSS. However, there are several parameters that decide which of the AHSS types to be used; the most important parameters are derived from the geometrical form of the component and the selection of forming and blanking methods. This paper describes the different types of AHSS, highlights their advantages for use in auto metal stampings, and discusses about the new challenges faced by stampers, particularly those serving the automotive industry.

  16. Evaluation of Handheld Scanners for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Wadea Ameen

    2018-01-01

    Full Text Available The process of generating a computerized geometric model for an existing part is known as Reverse Engineering (RE. It is a very useful technique in product development and plays a significant role in automotive, aerospace, and medical industries. In fact, it has been getting remarkable attention in manufacturing industries owing to its advanced data acquisition technologies. The process of RE is based on two primary steps: data acquisition (also known as scanning and data processing. To facilitate point data acquisition, a variety of scanning systems is available with different capabilities and limitations. Although the optical control of 3D scanners is fully developed, still several factors can affect the quality of the scanned data. As a result, the proper selection of scanning parameters, such as resolution, laser power, shutter time, etc., becomes very crucial. This kind of investigation can be very helpful and provide its users with guidelines to identify the appropriate factors. Moreover, it is worth noting that no single system is ideal in all applications. Accordingly, this work has compared two portable (handheld systems based on laser scanning and white light optical scanning for automotive applications. A car door containing a free-form surface has been used to achieve the above-mentioned goal. The design of experiments has been employed to determine the effects of different scanning parameters and optimize them. The capabilities and limitations have been identified by comparing the two scanners in terms of accuracy, scanning time, triangle numbers, ease of use, and portability. Then, the relationships between the system capabilities and the application requirements have been established. The results revealed that the laser scanner performed better than the white light scanner in terms of accuracy, while the white light scanner performed better in terms of acquisition speed and triangle numbers.

  17. Automotive fuels - environmental and health implications

    International Nuclear Information System (INIS)

    Lucas, A.G.

    1992-01-01

    This document covers papers presented to the Institute of Petroleum's conference ''Automotive Fuels: Environmental and Health Implications'' held on the 9th October 1991. This wide ranging title meant that topics covered included the biochemistry, pathology and epidemiology of automotive fuel use, combustion science, environmental chemistry and atmospheric modelling. Also discussed are the technology of fuel and engine manufacture, limiting and containing emissions and social and political aspects relating to the use of automotive fuels. (UK)

  18. Rare earth metals for automotive exhaust catalysts

    International Nuclear Information System (INIS)

    Shinjoh, Hirohumi

    2006-01-01

    The usage of rare earth metals for automotive exhaust catalysts is demonstrated in this paper. Rare earth metals have been widely used in automotive catalysts. In particular, three-way catalysts require the use of ceria compounds as oxygen storage materials, and lanthana as both a stabilizer of alumina and a promoter. The application for diesel catalysts is also illustrated. Effects of inclusion of rare earth metals in automotive catalysts are discussed

  19. Modularity analysis of automotive control software

    OpenAIRE

    Dajsuren, Y.; Brand, van den, M.G.J.; Serebrenik, A.

    2013-01-01

    A design language and tool like MATLAB/Simulink is used for the graphical modelling and simulation of automotive control software. As the functionality based on electronics and software systems increases in motor vehicles, it is becoming increasingly important for system/software architects and control engineers in the automotive industry to ensure the quality of the highly complex MATLAB/Simulink control software. For automotive software, modularity is recognized as being a crucial quality a...

  20. Structural instabilities of high temperature alloys and their use in advanced high temperature gas cooled reactors

    International Nuclear Information System (INIS)

    Schuster, H.; Ennis, P.J.; Nickel, H.; Czyrska-Filemonowicz, A.

    1989-01-01

    High-temperature, iron-nickel and nickel based alloys are the candidate heat exchanger materials for advanced high temperature gas-cooled reactors supplying process heat for coal gasification, where operation temperatures can reach 850-950 deg. C and service lives of more than 100,000 h are necessary. In the present paper, typical examples of structural changes which occur in two representative alloys (Alloy 800 H, Fe-32Ni-20Cr and Alloy 617, Ni-22Cr-12Co-9Mo-1Al) during high temperature exposure will be given and the effects on the creep rupture properties discussed. At service temperatures, precipitation of carbides occurs which has a significant effect on the creep behaviour, especially in the early stages of creep when the precipitate particles are very fine. During coarsening of the carbides, carbides at grain boundaries restrict grain boundary sliding which retards the development of creep damage. In the service environments, enhanced carbide precipitation may occur due to the ingress of carbon from the environment (carburization). Although the creep rate is not adversely affected, the ductility of the carburized material at low and intermediate temperatures is very low. During simulated service exposures, the formation of surface corrosion scales, the precipitation of carbides and the formation of internal oxides below the surface leads to depletion of the matrix in the alloying elements involved in the corrosion processes. In thin-walled tubes the depletion of Cr due to Cr 2 O 3 formation on the surface can lead to a loss of creep strength. An additional depletion effect resulting from environmental-metal reactions is the loss of carbon (decarburization) which may occur in specific environments. The compositions of the cooling gases which decarburize the material have been determined; they are to be avoided during reactor operation

  1. Optimization of a Gas Switching Combustion process through advanced heat management strategies

    International Nuclear Information System (INIS)

    Cloete, Schalk; Zaabout, Abdelghafour; Romano, Matteo C.; Chiesa, Paolo; Lozza, Giovanni; Gallucci, Fausto; Sint Annaland, Martin van; Amini, Shahriar

    2017-01-01

    Highlights: • GSC is a promising new reactor concept for power production with cost effective CO 2 capture. • The standalone fluidized bed reactors employed will allow for easy process scale-up. • The GSC simple configuration achieves higher efficiencies than conventional solutions. • Further increases in efficiency can be achieved via advanced heat management. • The 41.9% maximum efficiency is in line with other CLC–IGCC configurations. - Abstract: Gas Switching Combustion (GSC) is a promising new process concept for energy efficient power production with integrated CO 2 capture. In comparison to conventional Chemical Looping Combustion (CLC) carried out in interconnected fluidized beds, the GSC concept will be substantially easier to design and scale up, especially for pressurized conditions. One potential drawback of the GSC concept is the gradual temperature variation over the transient process cycle, which leads to a drop in electric efficiency of the plant. This article investigates heat management strategies to mitigate this issue both through simulations and experiments. Simulation studies of the GSC concept integrated into an IGCC power plant show that heat management using a nitrogen recycle stream can increase plant efficiency by 3 percentage points to 41.6% while maintaining CO 2 capture ratios close to 90%. Reactive multiphase flow simulations of the GSC reactor also showed that heat management can eliminate fuel slip problems. In addition, the GSC concept offers the potential to remove the need for a nitrogen recycle stream by implementing a concentrated air injection that extracts heat while only a small percentage of oxygen reacts. Experiments have shown that, similar to nitrogen recycle, this strategy reduces transient temperature variations across the cycle and therefore merits further investigation.

  2. 75 FR 34170 - Plastic Omnium Automotive Exteriors, LLC, Anderson, SC; Plastic Omnium Automotive Exteriors, LLC...

    Science.gov (United States)

    2010-06-16

    ... Omnium Automotive Exteriors, LLC, Anderson, SC; Plastic Omnium Automotive Exteriors, LLC, Troy, MI... the Anderson, South Carolina location of Plastic Omnium Automotive Exteriors, LLC, working out of Troy... certification to include workers in support of the Anderson, South Carolina facility working out of Troy...

  3. 4th International Conference on Sustainable Automotive Technologies

    CERN Document Server

    Wellnitz, Jörg; Leary, Martin; Koopmans, Lucien

    2012-01-01

    The book on Sustainable Automotive Technologies aims to draw special attention to the research and practice focused on new technologies and approaches capable of meeting the challenges to sustainable mobility. In particular, the book features incremental and radical technical advancements that are able to meet social, economic and environmental targets in both local and global contexts. These include original solutions to the problems of pollution and congestion, vehicle and public safety, sustainable vehicle design and manufacture, new structures and materials, new power-train technologies and vehicle concepts. In addition to vehicle technologies, the book is also concerned with the broader systemic issues such as sustainable supply chain systems, integrated logistics and telematics, and end-of-life vehicle management. It captures selected peer reviewed papers accepted for presentation at the 4th International Conference on Sustainable Automotive Technologies, ICSAT2012, held at the RMIT, Melbourne, Australi...

  4. DESIGN, FABRICATION, AND TESTING OF AN ADVANCED, NON-POLLUTING TURBINE DRIVE GAS GENERATOR

    International Nuclear Information System (INIS)

    Unknown

    2002-01-01

    The objectives of this report period were to complete the development of the Gas Generator design, which was done; fabricate and test of the non-polluting unique power turbine drive gas Gas Generator, which has been postponed. Focus during this report period has been to complete the brazing and bonding necessary to fabricate the Gas Generator hardware, continue making preparations for fabricating and testing the Gas Generator, and continuing the fabrication of the Gas Generator hardware and ancillary hardware in preparation for the test program. Fabrication is more than 95% complete and is expected to conclude in early May 2002. the test schedule was affected by relocation of the testing to another test supplier. The target test date for hot fire testing is now not earlier than June 15, 2002

  5. Advanced cost-effective surface geochemical techniques for oil/gas/uranium exploration, environmental assessments and pipeline monitoring - a template for India

    International Nuclear Information System (INIS)

    Lafleur, Paul; Chanrasekharan, G.Y.V.N.; Rajender Rao, S.

    2011-01-01

    Advanced geochemical soil gas methods have been successfully developed for the exploration of oil/gas/uranium and for environmental assessments. Application of these cost-effective technologies in India can substantially reduce exploration risk while accelerating the development of oil/gas/uranium onshore resources. A reliable and effective monitoring system using geochemical soil gas surveys ensures that CO 2 Enhanced Oil Recovery operations as well as CO 2 sequestration projects are safe and acceptable for the disposal of CO 2 , Soil gas surveys along with other technologies can also be applied for monitoring of oil/gas pipelines for leakage, especially those that are old or pass through populated regions

  6. Integrated hot fuel gas cleaning for advanced gasification combined cycle process

    Energy Technology Data Exchange (ETDEWEB)

    Nieminen, M.; Kangasmaa, K.; Laatikainen, J.; Staahlberg, P.; Kurkela, E. [VTT Energy, Espoo (Finland). Gasification and Advanced Combustion

    1996-12-01

    The fate of halogens in pressurised fluidized-bed gasification and hot gas filtration is determined. Potential halogen removal sorbents, suitable for integrated hot gas cleaning, are screened and some selected sorbents are tested in bench scale. Finally, halogen removal results are verified using the PDU-scale pressurised fluidized-bed gasification and integrated hot gas cleaning facilities of VTT. The project is part of the JOULE II Extension programme of the European Union. (author)

  7. How did the US economy react to shale gas production revolution? An advanced time series approach

    International Nuclear Information System (INIS)

    Bilgili, Faik; Koçak, Emrah; Bulut, Ümit; Sualp, M. Nedim

    2016-01-01

    This paper aims at examining the impacts of shale gas revolution on industrial production in the US. To this end, this paper, first, throughout literature review, exposes the features of shale gas revolution in the US in terms of energy technology and energy markets. However, the potential influences of shale gas extraction on the US economy are not explicit in the existing literature. Thus, considering mainly the output of shale gas revolution on the US economy in this research, later, the paper conducts econometric models to reveal if there exists significant effect(s) of shale gas revolution on the US economy. Therefore, the paper employs unit root tests and cointegration tests by following relevant US monthly data from January 2008 to December 2013. Then, this paper observes long run impact of shale gas production on industrial production in the US through dynamic ordinary least squares estimation with dummy structural breaks and conducts Granger causality test based on vector error correction model. The dynamic ordinary least squares estimator explores that shale gas production has a positive effect on industrial production. Besides, the Granger causality test presents that shale gas production Granger causes industrial production in the long run. Based on the findings of the long run estimations, the paper yields that industrial production is positively related to shale gas production. Eventually, upon its findings, this paper asserts that (i) the shale gas revolution in the US has considerable positive effects on the US economy within the scope of the validity of the growth hypothesis, (ii) new technologies might be developed to mitigate the possible negative environmental effects of shale gas production, (iii) the countries having shale gas reserves, as in US, may follow energy policies to utilize their shale reserves more in the future to meet their energy demand and to increase their economic welfare. - Highlights: • Explores the US shale gas revolution

  8. Advanced gas turbine cycles a brief review of power generation thermodynamics

    CERN Document Server

    Horlock, JH

    2003-01-01

    Primarily this book describes the thermodynamics of gas turbine cycles. The search for high gas turbine efficiency has produced many variations on the simple ""open circuit"" plant, involving the use of heat exchangers, reheating and intercooling, water and steam injection, cogeneration and combined cycle plants. These are described fully in the text. A review of recent proposals for a number of novel gas turbine cycles is also included. In the past few years work has been directed towards developing gas turbines which produce less carbon dioxide, or plants from which the CO2 can be d

  9. Development of a solid oxide fuel cell (SOFC) automotive auxiliary power unit (APU) fueled by gasoline

    International Nuclear Information System (INIS)

    DeMinco, C.; Mukerjee, S.; Grieve, J.; Faville, M.; Noetzel, J.; Perry, M.; Horvath, A.; Prediger, D.; Pastula, M.; Boersma, R.; Ghosh, D.

    2000-01-01

    This paper describes the design and the development progress of a 3 to 5 auxiliary power unit (APU) based on a gasoline fueled solid oxide fuel cell (SOFC). This fuel cell was supplied reformate gas (reactant) by a partial oxidation (POx) catalytic reformer utilizing liquid gasoline and designed by Delphi Automotive Systems. This reformate gas consists mainly of hydrogen, carbon monoxide and nitrogen and was fed directly in to the SOFC stack without any additional fuel reformer processing. The SOFC stack was developed by Global Thermoelectric and operates around 700 o C. This automotive APU produces power to support future 42 volt vehicle electrical architectures and loads. The balance of the APU, designed by Delphi Automotive Systems, employs a packaging and insulation design to facilitate installation and operation on-board automobiles. (author)

  10. Advancing Knowledge on Fugitive Natural Gas from Energy Resource Development at a Controlled Release Field Observatory

    Science.gov (United States)

    Cahill, A. G.; Chao, J.; Forde, O.; Prystupa, E.; Mayer, K. U.; Black, T. A.; Tannant, D. D.; Crowe, S.; Hallam, S.; Mayer, B.; Lauer, R. M.; van Geloven, C.; Welch, L. A.; Salas, C.; Levson, V.; Risk, D. A.; Beckie, R. D.

    2017-12-01

    Fugitive gas, comprised primarily of methane, can be unintentionally released from upstream oil and gas development either at surface from leaky infrastructure or in the subsurface through failure of energy well bore integrity. For the latter, defective cement seals around energy well casings may permit buoyant flow of natural gas from the deeper subsurface towards shallow aquifers, the ground surface and potentially into the atmosphere. Concerns associated with fugitive gas release at surface and in the subsurface include contributions to greenhouse gas emissions, subsurface migration leading to accumulation in nearby infrastructure and impacts to groundwater quality. Current knowledge of the extent of fugitive gas leakage including how to best detect and monitor over time, and particularly its migration and fate in the subsurface, is incomplete. We have established an experimental field observatory for evaluating fugitive gas leakage in an area of historic and ongoing hydrocarbon resource development within the Montney Resource Play of the Western Canadian Sedimentary Basin, British Columbia, Canada. Natural gas will be intentionally released at surface and up to 25 m below surface at various rates and durations. Resulting migration patterns and impacts will be evaluated through examination of the geology, hydrogeology, hydro-geochemistry, isotope geochemistry, hydro-geophysics, vadose zone and soil gas processes, microbiology, and atmospheric conditions. The use of unmanned aerial vehicles and remote sensors for monitoring and detection of methane will also be assessed for suitability as environmental monitoring tools. Here we outline the experimental design and describe initial research conducted to develop a detailed site conceptual model of the field observatory. Subsequently, results attained from pilot surface and sub-surface controlled natural gas releases conducted in late summer 2017 will be presented as well as results of numerical modelling conducted

  11. Advanced SiC/SiC Ceramic Composites For Gas-Turbine Engine Components

    Science.gov (United States)

    Yun, H. M.; DiCarlo, J. A.; Easler, T. E.

    2004-01-01

    NASA Glenn Research Center (GRC) is developing a variety of advanced SiC/SiC ceramic composite (ASC) systems that allow these materials to operate for hundreds of hours under stress in air at temperatures approaching 2700 F. These SiC/SiC composite systems are lightweight (approximately 30% metal density) and, in comparison to monolithic ceramics and carbon fiber-reinforced ceramic composites, are able to reliably retain their structural properties for long times under aggressive gas-turbine engine environments. The key for the ASC systems is related first to the NASA development of the Sylramic-iBN Sic fiber, which displays higher thermal stability than any other SiC- based ceramic fibers and possesses an in-situ grown BN surface layer for higher environmental durability. This fiber is simply derived from Sylramic Sic fiber type that is currently produced at ATK COI Ceramics (COIC). Further capability is then derived by using chemical vapor infiltration (CVI) and/or polymer infiltration and pyrolysis (PIP) to form a Sic-based matrix with high creep and rupture resistance as well as high thermal conductivity. The objectives of this study were (1) to optimize the constituents and processing parameters for a Sylramic-iBN fiber reinforced ceramic composite system in which the Sic-based matrix is formed at COIC almost entirely by PIP (full PIP approach), (2) to evaluate the properties of this system in comparison to other 2700 F Sylramic-iBN systems in which the matrix is formed by full CVI and CVI + PIP, and (3) to examine the pros and cons of the full PIP approach for fabricating hot-section engine components. A key goal is the development of a composite system with low porosity, thereby providing high modulus, high matrix cracking strength, high interlaminar strength, and high thermal conductivity, a major property requirement for engine components that will experience high thermal gradients during service. Other key composite property goals are demonstration at

  12. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    Energy Technology Data Exchange (ETDEWEB)

    Victor Wong; Tian Tian; Luke Moughon; Rosalind Takata; Jeffrey Jocsak

    2006-03-31

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukesha VGF 18GL engine confirmed total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. This represents a substantial (30-40%) reduction of the ringpack friction alone. The measured FMEP reductions were in good agreement with the model predictions. Further improvements via piston, lubricant, and surface designs offer additional opportunities. Tests of low-friction lubricants are in progress and preliminary results are very promising. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Piston friction studies indicate that a flatter piston with a more flexible skirt, together with optimizing the waviness and film thickness on the piston skirt offer significant friction reduction. Combined with low-friction ring-pack, material and lubricant parameters, a total power cylinder friction

  13. Effect of advanced injection timing on the performance of natural gas ...

    Indian Academy of Sciences (India)

    Recent interest has centred on the use of natural gas in a diesel engine. Natural gas ... temperatures. Fuel was fed to the injector pump under gravity and the volumetric flow rate .... produce very erratic behaviour of the engine. The test results ...

  14. Uncanny natural gas advances change the game for EnCana

    International Nuclear Information System (INIS)

    Petkau, R.

    2010-01-01

    A combination of new technologies is now leading Canada's EnCana Corporation to increase its investment in natural gas production. The corporation recently split itself into 2 companies, with Cenovus Energy taking the heavy oil assets, while the new EnCana is keeping its unconventional gas operations in northeast British Columbia (BC), Alberta, Wyoming, Colorado, Texas, and Louisiana. The division will allow EnCana to focus on becoming the best and lowest-cost producers of natural gas in North America. EnCana believes that long-term gas prices will increase over time. Four of its 8 natural gas key resources are located in Canada. The company is now producing gas from coalbed methane resources in south central Alberta, as well as from the Montney, Cadomin, and Doig geological formations. New hydraulic fracturing and horizontal drilling technologies have enabled the company to provide an estimated 100 years of gas supply in North America. EnCana has also adopted the use of various new technologies that reduce the surface disturbances and environmental impacts associated with drilling. It is hoped that EnCana's production methods will help to reduce imports of natural gas from other countries. 4 figs.

  15. Veranderende automotive wereld vraagt om verandering onderwijs

    NARCIS (Netherlands)

    H.J.C. Nas

    2011-01-01

    Met dit document wil ik de lezer een nieuwe invalshoek tonen op mobiliteit (Driving Guidance) en een andere benadering van automotive hbo onderwijs. De wereld om ons heen verandert en deze nieuwe wereld zal een ander type automotive ingenieur eisen. Dit is een korte weergave van een lezing voor de

  16. Using Technology to Enhance an Automotive Program

    Science.gov (United States)

    Ashton, Denis

    2009-01-01

    Denis Ashton uses technology in his automotive technology program at East Valley Institute of Technology (EVIT) to positively impact student outcomes. Ashton, the department chair for the automotive programs at EVIT, in Mesa, Arizona, says that using an interactive PowerPoint curriculum makes learning fun for students and provides immediate…

  17. Dynamic and Acoustic Characterisation of Automotive Wheels

    Directory of Open Access Journals (Sweden)

    Francesca Curà

    2004-01-01

    Full Text Available The subject of this paper is the dynamic and acoustic characterisation of an automotive wheel. In particular, an experimental research activity previously performed by the authors about the dynamic behaviour of automotive wheels has been extended to the acoustic field.

  18. Brakes Specialist. Teacher Edition. Automotive Service Series.

    Science.gov (United States)

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains teacher's materials for a course on becoming an automotive brakes specialist, based on the National Institute of Automotive Service Excellence task lists. The course consists of three instructional units: service brake hydraulic system and wheel bearings, service drum brakes, and service disc brakes. Depending on the…

  19. Carbon composite manufacturing in automotive volume production

    DEFF Research Database (Denmark)

    Geiger, Raphael; Pahl, Julia

    2017-01-01

    Lightweight constructions are a continuously increasing trend in the automotive industry. Main drivers for that trend are the challenging emission reduction targets regarding combustion engines and increasing ranges in electric mobility. This article presents different composite production methods...... and discusses their ability within mass production giving also an example within the automotive production....

  20. Advancing New 3D Seismic Interpretation Methods for Exploration and Development of Fractured Tight Gas Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    James Reeves

    2005-01-31

    In a study funded by the U.S. Department of Energy and GeoSpectrum, Inc., new P-wave 3D seismic interpretation methods to characterize fractured gas reservoirs are developed. A data driven exploratory approach is used to determine empirical relationships for reservoir properties. Fractures are predicted using seismic lineament mapping through a series of horizon and time slices in the reservoir zone. A seismic lineament is a linear feature seen in a slice through the seismic volume that has negligible vertical offset. We interpret that in regions of high seismic lineament density there is a greater likelihood of fractured reservoir. Seismic AVO attributes are developed to map brittle reservoir rock (low clay) and gas content. Brittle rocks are interpreted to be more fractured when seismic lineaments are present. The most important attribute developed in this study is the gas sensitive phase gradient (a new AVO attribute), as reservoir fractures may provide a plumbing system for both water and gas. Success is obtained when economic gas and oil discoveries are found. In a gas field previously plagued with poor drilling results, four new wells were spotted using the new methodology and recently drilled. The wells have estimated best of 12-months production indicators of 2106, 1652, 941, and 227 MCFGPD. The latter well was drilled in a region of swarming seismic lineaments but has poor gas sensitive phase gradient (AVO) and clay volume attributes. GeoSpectrum advised the unit operators that this location did not appear to have significant Lower Dakota gas before the well was drilled. The other three wells are considered good wells in this part of the basin and among the best wells in the area. These new drilling results have nearly doubled the gas production and the value of the field. The interpretation method is ready for commercialization and gas exploration and development. The new technology is adaptable to conventional lower cost 3D seismic surveys.

  1. STATUS OF TRISO FUEL IRRADIATIONS IN THE ADVANCED TEST REACTOR SUPPORTING HIGH-TEMPERATURE GAS-COOLED REACTOR DESIGNS

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, Michael; Petti, D. A.; Palmer, Joe

    2016-11-01

    The United States Department of Energy’s Advanced Reactor Technologies (ART) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is irradiating up to seven low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The experiments will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of several independent capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and completed in October 2013. The third and fourth experiments have been combined into a single experiment designated (AGR-3/4), which started its irradiation in December 2011 and completed in April 2014. Since the purpose of this experiment was to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment was significantly different from the first two experiments, though the control

  2. Carbon Fiber Composite Materials for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Jr., Robert E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mainka, Hendrik [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-01

    Volkswagen (VW) is internationally recognized for quantity and quality of world-wide vehicle production and the Oak Ridge National Laboratory (ORNL) is internationally recognized in materials research and development. With automotive production ramping up in the recently constructed VW Group of America facility in Chattanooga, Tennessee, ORNL and VW initiated discussions in 2012 concerning opportunities for collaboration around ORNL’s carbon fiber and composites programs. ORNL is conducting an internationally recognized program to develop and implement lower cost carbon fibers and composites for automotive and other “energy missions” for the US Department of Energy. Significant effort is ongoing in selecting, developing, and evaluating alternative precursors, developing and demonstrating advanced conversion techniques, and developing and tailoring surface treatment, sizings, and formatting fiber for specific composite matrices and end-use applications. ORNL already had North America’s most comprehensive suite of tools for carbon fiber research and development and established a semiproduction demonstration line referred to as the Carbon Fiber Technology Facility (CFTF) to facilitate implementation of low cost carbon fiber (LCCF) approaches in early 2013. ORNL and VW agreed to collaborate in a formal Cooperative Research and Development Agreement (NFE-12-03992) specifically focused on evaluating applicability of low cost carbon fiber products for potential vehicle components. The goal of the work outlined in this report was to develop and qualify uses for carbon fiber-reinforced structures in connection with civilian ground transportation. Significant progress was achieved in evaluating and understanding lignin-based precursor materials; however, availability of carbon fiber converted from lignin precursor combined with logistical issues associated with the Visa limitations for the VW participant resulted in significantly shortening of the collaboration

  3. Experimental facilities for gas-cooled reactor safety studies. Task group on Advanced Reactor Experimental Facilities (TAREF)

    International Nuclear Information System (INIS)

    2009-01-01

    In 2007, the NEA Committee on the Safety of Nuclear Installations (CSNI) completed a study on Nuclear Safety Research in OECD Countries: Support Facilities for Existing and Advanced Reactors (SFEAR) which focused on facilities suitable for current and advanced water reactor systems. In a subsequent collective opinion on the subject, the CSNI recommended to conduct a similar exercise for Generation IV reactor designs, aiming to develop a strategy for ' better preparing the CSNI to play a role in the planned extension of safety research beyond the needs set by current operating reactors'. In that context, the CSNI established the Task Group on Advanced Reactor Experimental Facilities (TAREF) in 2008 with the objective of providing an overview of facilities suitable for performing safety research relevant to gas-cooled reactors and sodium fast reactors. This report addresses gas-cooled reactors; a similar report covering sodium fast reactors is under preparation. The findings of the TAREF are expected to trigger internationally funded CSNI projects on relevant safety issues at the key facilities identified. Such CSNI-sponsored projects constitute a means for efficiently obtaining the necessary data through internationally co-ordinated research. This report provides an overview of experimental facilities that can be used to carry out nuclear safety research for gas-cooled reactors and identifies priorities for organizing international co-operative programmes at selected facilities. The information has been collected and analysed by a Task Group on Advanced Reactor Experimental Facilities (TAREF) as part of an ongoing initiative of the NEA Committee on the Safety of Nuclear Installations (CSNI) which aims to define and to implement a strategy for the efficient utilisation of facilities and resources for Generation IV reactor systems. (author)

  4. A model describing intra-granular fission gas behaviour in oxide fuel for advanced engineering tools

    Science.gov (United States)

    Pizzocri, D.; Pastore, G.; Barani, T.; Magni, A.; Luzzi, L.; Van Uffelen, P.; Pitts, S. A.; Alfonsi, A.; Hales, J. D.

    2018-04-01

    The description of intra-granular fission gas behaviour is a fundamental part of any model for the prediction of fission gas release and swelling in nuclear fuel. In this work we present a model describing the evolution of intra-granular fission gas bubbles in terms of bubble number density and average size, coupled to gas release to grain boundaries. The model considers the fundamental processes of single gas atom diffusion, gas bubble nucleation, re-solution and gas atom trapping at bubbles. The model is derived from a detailed cluster dynamics formulation, yet it consists of only three differential equations in its final form; hence, it can be efficiently applied in engineering fuel performance codes while retaining a physical basis. We discuss improvements relative to previous single-size models for intra-granular bubble evolution. We validate the model against experimental data, both in terms of bubble number density and average bubble radius. Lastly, we perform an uncertainty and sensitivity analysis by propagating the uncertainties in the parameters to model results.

  5. Gas

    International Nuclear Information System (INIS)

    1996-01-01

    The French government has decided to modify the conditions of extension of local natural gas authorities to neighbouring districts. The European Union is studying the conditions of internal gas market with the objective of more open markets although considering public service requirements

  6. Petroleum, Convenience, & Automotive Marketing [Student Book and] Answer Book/Teacher's Guide.

    Science.gov (United States)

    Kozek, Ed; Faught, Suzanne G.

    This student manual and answer book/teacher's guide focus on the industry-specific information and skills needed by students who plan to enter, or who may already be receiving, training in a petroleum-related business, such as a full-service gas station, convenience store, or automotive specialty service shop. The student manual contains 16…

  7. TiO2 Nanotubes: Recent Advances in Synthesis and Gas Sensing Properties

    Directory of Open Access Journals (Sweden)

    Giorgio Sberveglieri

    2013-10-01

    Full Text Available Synthesis—particularly by electrochemical anodization-, growth mechanism and chemical sensing properties of pure, doped and mixed titania tubular arrays are reviewed. The first part deals on how anodization parameters affect the size, shape and morphology of titania nanotubes. In the second part fabrication of sensing devices based on titania nanotubes is presented, together with their most notable gas sensing performances. Doping largely improves conductivity and enhances gas sensing performances of TiO2 nanotubes

  8. State Estimation for the Automotive SCR Process

    DEFF Research Database (Denmark)

    Zhou, Guofeng; Huusom, Jakob Kjøbsted; Jørgensen, John Bagterp

    2012-01-01

    Selective catalytic reduction (SCR) of NOx is a widely applied diesel engine exhaust gas aftertreatment technology. For advanced SCR process control, like model predictive control, full state information of the process is required. The ammonia coverage ratio inside the catalyst is difficult to me...

  9. Advanced turbine systems program conceptual design and product development task 5 -- market study of the gas fired ATS. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    Solar Turbines Incorporated (Solar), in partnership with the Department of Energy, will develop a family of advanced gas turbine-based power systems (ATS) for widespread commercialization within the domestic and international industrial marketplace, and to the rapidly changing electric power generation industry. The objective of the jointly-funded Program is to introduce an ATS with high efficiency, and markedly reduced emissions levels, in high numbers as rapidly as possible following introduction. This Topical Report is submitted in response to the requirements outlined in Task 5 of the Department of Energy METC Contract on Advanced Combustion Systems, Contract No, DE AC21-93MC30246 (Contract), for a Market Study of the Gas Fired Advanced Turbine System. It presents a market study for the ATS proposed by Solar, and will examine both the economic and siting constraints of the ATS compared with competing systems in the various candidate markets. Also contained within this report is an examination and analysis of Solar`s ATS and its ability to compete in future utility and industrial markets, as well as factors affecting the marketability of the ATS.

  10. Low-Engine-Friction Technology for Advanced Natural-Gas Reciprocating Engines

    Energy Technology Data Exchange (ETDEWEB)

    Victor Wong; Tian Tian; G. Smedley; L. Moughon; Rosalind Takata; J. Jocsak

    2006-11-30

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis has been followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. In this program, a detailed set of piston and piston-ring dynamic and friction models have been adapted and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukesha VGF 18GL engine confirmed ring-pack friction reduction of 30-40%, which translates to total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. The study on surface textures, including roughness characteristics, cross hatch patterns, dimples and grooves have shown that even relatively small-scale changes can have a large effect on ring/liner friction, in some cases reducing FMEP by as much as 30% from a smooth surface case. The measured FMEP reductions were in good agreement with the model predictions. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Testing of low-friction lubricants showed that total engine FMEP reduced by up to {approx}16.5% from the commercial reference oil without significantly increasing oil consumption or blow-by flow. Piston friction studies

  11. Results from the DOE Advanced Gas Reactor Fuel Development and Qualification Program

    Energy Technology Data Exchange (ETDEWEB)

    David Petti

    2014-06-01

    Modular HTGR designs were developed to provide natural safety, which prevents core damage under all design basis accidents and presently envisioned severe accidents. The principle that guides their design concepts is to passively maintain core temperatures below fission product release thresholds under all accident scenarios. This level of fuel performance and fission product retention reduces the radioactive source term by many orders of magnitude and allows potential elimination of the need for evacuation and sheltering beyond a small exclusion area. This level, however, is predicated on exceptionally high fuel fabrication quality and performance under normal operation and accident conditions. Germany produced and demonstrated high quality fuel for their pebble bed HTGRs in the 1980s, but no U.S. manufactured fuel had exhibited equivalent performance prior to the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The design goal of the modular HTGRs is to allow elimination of an exclusion zone and an emergency planning zone outside the plant boundary fence, typically interpreted as being about 400 meters from the reactor. To achieve this, the reactor design concepts require a level of fuel integrity that is better than that claimed for all prior US manufactured TRISO fuel, by a few orders of magnitude. The improved performance level is about a factor of three better than qualified for German TRISO fuel in the 1980’s. At the start of the AGR program, without a reactor design concept selected, the AGR fuel program selected to qualify fuel to an operating envelope that would bound both pebble bed and prismatic options. This resulted in needing a fuel form that could survive at peak fuel temperatures of 1250°C on a time-averaged basis and high burnups in the range of 150 to 200 GWd/MTHM (metric tons of heavy metal) or 16.4 to 21.8% fissions per initial metal atom (FIMA). Although Germany has demonstrated excellent performance of TRISO-coated UO

  12. Novel Modified Optical Fibers for High Temperature In-Situ Miniaturized Gas Sensors in Advanced Fossil Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Pickrell, Gary [Virginia Polytechnic Institute & State University, Blacksburg, VA (United States); Scott, Brian [Virginia Polytechnic Institute & State University, Blacksburg, VA (United States)

    2014-06-30

    This report covers the technical progress on the program “Novel Modified Optical Fibers for High Temperature In-Situ Miniaturized Gas Sensors in Advanced Fossil Energy Systems”, funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Materials Science & Engineering and Electrical & Computer Engineering Departments at Virginia Tech, and summarizes technical progress from July 1st, 2005 –June 30th, 2014. The objective of this program was to develop novel fiber materials for high temperature gas sensors based on evanescent wave absorption in optical fibers. This project focused on two primary areas: the study of a sapphire photonic crystal fiber (SPCF) for operation at high temperature and long wavelengths, and a porous glass based fiber optic sensor for gas detection. The sapphire component of the project focused on the development of a sapphire photonic crystal fiber, modeling of the new structures, fabrication of the optimal structure, development of a long wavelength interrogation system, testing of the optical properties, and gas and temperature testing of the final sensor. The fabrication of the 6 rod SPCF gap bundle (diameter of 70μm) with a hollow core was successfully constructed with lead-in and lead-out 50μm diameter fiber along with transmission and gas detection testing. Testing of the sapphire photonic crystal fiber sensor capabilities with the developed long wavelength optical system showed the ability to detect CO2 at or below 1000ppm at temperatures up to 1000°C. Work on the porous glass sensor focused on the development of a porous clad solid core optical fiber, a hollow core waveguide, gas detection capabilities at room and high temperature, simultaneous gas species detection, suitable joining technologies for the lead-in and lead-out fibers and the porous sensor, sensor system sensitivity improvement, signal processing improvement, relationship between pore structure and fiber

  13. Natural gas passenger vehicles: challenges and way forward

    International Nuclear Information System (INIS)

    Sahari, B. B.; Hamouda, A. M. S.

    2006-01-01

    Natural gas vehicles have been used in the world for many years: at present, there are about 3 million vehicles running on natural gas and many governments and vehicle manufactures are involved in programs for further developing the market for natural gas vehicles. In comparison to other forms of energy for vehicles, natural gas (NG) engenders low pressures on the environment. At the same time, because of its technical characteristics, NG is very suitable for motor use. The economic advantage of converting a vehicles (NGVs) would be expected to attract the interest of a great number of people, and achieve rapid and widespread diffusion. On the contrary, traditional fuels still dominate the scene, and show no sign of going out of fashion. The use of natural gas as automotive fuel has become of national and worldwide interests particularly so with the recent increase in petrol price, depleting petrol reserves and stringent control of exhaust emission levels. For automotive applications, shifting from petrol to gas needs technological research and development. Within the framework of the reciprocating piston based engine this development is very challenging with technological issues of low range, refueling infrastructure, heavy fuel storage, safety, emissions control and gas operating pressures. Other issues include available expertise and experience in research management. This paper describes the advances being made with passenger vehicles natural gas engines worldwide and in Malaysia more specific. The significant milestones in the development of NGV in Malaysia and the rationale behind the choice of NGV industry including the NGV vehicle population growth, the development of service station as well as the expansion of the sales volume will be illustrated. The presentation presents also development stages and advances in development, fabrication and testing a Compressed Natural Gas Direct Injection vehicle and NGV refueling station. This presentation discuses the

  14. Methane emissions from the global oil and gas supply chain: recent advances and next steps

    Science.gov (United States)

    Zavala Araiza, D.; Herndon, S. C.; Roscioli, J. R.; Yacovitch, T. I.; Knighton, W. B.; Johnson, M.; Tyner, D. R.; Hamburg, S.

    2017-12-01

    A wide body of research has characterized methane emissions from the oil and gas system in the US. In contrast, empirical data is limited for other significant oil and gas producing regions across the world. As a consequence, measuring and characterizing methane emissions across global oil and gas operations will be crucial to the design of effective mitigation strategies. Several countries have announced pledges to reduce methane emissions from this system (e.g., North America, Climate and Clean Air Coalition [CCAC] ministers). In the case of Canada, the federal government recently announced regulations supporting a 40-45% reduction of methane emissions from the oil and gas production systems. For these regulations to be effective, it is critical to understand the current methane emission patterns. We present results from a coordinated multiscale (i.e., airborne-based, ground-based) measurement campaign in Alberta, Canada. We use empirically derived emission estimates to characterize site-level emissions and derive an emissions distribution. Our work shows that many major sources of emissions are unmeasured or underreported. Consistent with previous studies in the US, a small fraction of sites disproportionately account for the majority of emissions: roughly 20% of sites accounted for 75% of emissions. An independent airborne-based regional estimate was 40% lower than the ground-based regional estimate, but not statistically different. Finally, we summarize next steps as part of the CCAC Oil and Gas Methane Study: ongoing work that is targeting oil and gas sectors/production regions with limited empirical data on methane emissions. This work builds on the approach deployed in quantifying methane emissions from the oil and gas supply chain in the US, underscoring the commitment to transparency of the collected data, external review, deployment of multiple methodologies, and publication of results in peer-reviewed journals.

  15. TECHNOLOGICAL ADVANCEMENT OF DEPOSIT WELDING AND GAS LASER CUTTING TO INCREASE THE EFFICIENCY OF THE BIMETALLIC TOOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Burlachenko Oleg Vasil’evich

    2017-08-01

    Full Text Available Deposit welding is the application of a layer of metal on the surface of a product using fusion welding. In this paper, we consider the method of improving the technology of gas laser cutting, which makes it possible to achieve a high productivity of manufacturing a bimetallic tool. The present paper is concerned with the advantages of gas laser cutting which allows to consider this particular process of separating materials as highly-productive, low-waste, and advanced method of removing allowances of weld-deposit high-speed steel on the working surfaces of bimetallic tool. Urgency of the use of deposit welding and gas laser cutting to improve the efficiency of production of bimetallic tool is shown. The comparative analysis of gas-laser cutting and other cutting methods is given according to the geometrical parameters of cutting and surface quality. Analysis of the results of experimental studies has confirmed the high technological attractiveness and economic efficiency of manufacturing composite structures of punches and matrices when applying deposit welding of cutting parts with high-speed steels. The cost of dimensional processing of the welded cutting part is reduced by 4 to 6 times, while the manufacturing time is reduced by 6 to 12 times.

  16. Non-Intrusive, Distributed Gas Sensing Technology for Advanced Spacesuits, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advances in spacesuits are required to support the ISS and future human exploration. Spacesuit development and ground-based testing tasks require sensing and...

  17. Advanced gas-emission anode design for microfluidic fuel cell eliminating bubble accumulation

    International Nuclear Information System (INIS)

    Zhang, Hao; Xuan, Jin; Wang, Huizhi; Leung, Dennis Y C; Xu, Hong; Zhang, Li

    2017-01-01

    A microfluidic fuel cell is a low cost, easily fabricated energy device and is considered a promising energy supplier for portable electronics. However, the currently developed microfluidic fuel cells that are fed with hydrocarbon fuels are confronted with a bubble problem especially when operating at high current density conditions. In this work, a gas-emission anode is presented to eliminate the gas accumulation at the anode. This gas-emission anode is verified as a valid design for discharging gaseous products, which is especially beneficial for stable operation of microfluidic fuel cells. The electrochemical performance of a counter-flow microfluidic fuel cell equipped with a gas-emission anode was measured. The results indicate that the specific design of the gas-emission anode is essential for reducing the oxygen reduction reaction parasitic effect at the anode. Fuel utilization of 76.4% was achieved at a flow rate of 0.35 µ l min −1 . Current–voltage curves of single electrodes were measured and the parasitic effect at the anode was identified as the main performance limiting factor in the presented anode design. (paper)

  18. A review of recent advances in molecular simulation of graphene-derived membranes for gas separation

    Science.gov (United States)

    Fatemi, Seyyed Mahmood; Abbasi, Zeynab; Rajabzadeh, Halimeh; Hashemizadeh, Seyyed Ali; Deldar, Amir Noori

    2017-07-01

    To obtain an ideal membrane for gas separation the following three characteristics should be considered: the membrane should be as thin as possible, be mechanically robust, and have well-defined pore sizes. These features will maximize its solvent flux, preserve it from fracture, and guarantee its selectivity. These attractive properties of graphene-derived membranes introduce them as appropriate candidates for gas separation and gas molecular-sieving processes in nanoscale dimensions. The current effort has focused on two issues, including the review of the most newly progression on drilling holes in single graphene membranes for making ultrathin membranes for gas separation, and studying functionalized nanoporous sheet and graphene-derived membranes, including doped graphene, graphene oxide, fluorographene, and reduced graphene oxide from theoretical perspectives for making functional coatings for nano ultrafiltration for gas separation. We investigated the basic mechanism of separation by membranes derived from graphene and relevant possible applications. Functionalized nanoporous membranes as novel approach are characterized by low energy cost in realizing high throughput molecular-sieving separation.

  19. Nondestructive testing of welds in steam generators for advanced gas cooled reactors at Heyshamm II and Torness

    International Nuclear Information System (INIS)

    Parkin, K.; Bainbridge, A.; Carver, K.; Hammell, R.; Lack, B.J.

    1985-01-01

    The paper concerns non-destructive testing (NDT) of welds in advanced gas cooled steam generators for Heysham II and Torness nuclear power stations. A description is given of the steam generator. The selection of NDT techniques is also outlined, including the factors considered to ascertain the viability of a technique. Examples are given of applied NDT methods which match particular fabrication processes; these include: microfocus radiography, ultrasonic testing of austenitic tube butt welds, gamma-ray isotope projection system, surface crack detection, and automated radiography. Finally, future trends in this field of NDT are highlighted. (UK)

  20. Novel thermocouples for automotive applications

    Directory of Open Access Journals (Sweden)

    P. Gierth

    2018-02-01

    Full Text Available Measurement of temperatures in engine and exhaust systems in automotive applications is necessary for thermal protection of the parts and optimizing of the combustion process. State-of-the-art temperature sensors are very limited in their response characteristic and installation space requirement. Miniaturized sensor concepts with a customizable geometry are needed. The basic idea of this novel sensor concept is to use thick-film technology on component surfaces. Different standardized and especially nonstandard material combinations of thermocouples have been produced for the validation of this technology concept. Application-oriented measurements took place in the exhaust system of a test vehicle and were compared to standard laboratory conditions.

  1. Parametric studies on automotive radiators

    International Nuclear Information System (INIS)

    Oliet, C.; Oliva, A.; Castro, J.; Perez-Segarra, C.D.

    2007-01-01

    This paper presents a set of parametric studies performed on automotive radiators by means of a detailed rating and design heat exchanger model developed by the authors. This numerical tool has been previously verified and validated using a wide experimental data bank. A first part of the analysis focuses on the influence of working conditions on both fluids (mass flows, inlet temperatures) and the impact of the selected coolant fluid. Following these studies, the influence of some geometrical parameters is analysed (fin pitch, louver angle) as well as the importance of coolant flow lay-out on the radiator global performance. This work provides an overall behaviour report of automobile radiators working at usual range of operating conditions, while significant knowledge-based design conclusions have also been reported. The results show the utility of this numerical model as a rating and design tool for heat exchangers manufacturers, being a reasonable compromise between classic ε - NTU methods and CFD

  2. Health aspects of automotive pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Jouan, M

    1973-01-01

    General health aspects of carbon monoxide, lead, nitrogen oxides, unburned hydrocarbons, and aldehydes are described. Unlike spark ignition engines, diesel engines emit but minimal quantities of carbon monoxide. Automotive carbon monoxide may cause chronic poisoning by its combination with hemoglobin. The threshold value beyond which physiological changes occur lies at 2.5 percent carboxyhemoglobin. Nitric oxide, and especially nitrogen dioxide cause pulmonary edema, impaired respiratory function, and chronic bronchitis in very low concentrations. According to regulations implemented in France, a CO concentration of 40 ppM/hr must occur not more than 1 percent of the time on a yearly basis. A level of 15 ppm must not be exceeded for more than 15 percent of the time in any 9-hour period. The maximum allowable 1-hour nitrogen oxide concentration is set at 0.25 ppM. The emission standards implemented, as well as favorable meteorological conditions have resulted in an abatement of the CO concentrations in Paris.

  3. Advanced oxidation technology for H2S odor gas using non-thermal plasma

    Science.gov (United States)

    Tao, ZHU; Ruonan, WANG; Wenjing, BIAN; Yang, CHEN; Weidong, JING

    2018-05-01

    Non-thermal plasma technology is a new type of odor treatment processing. We deal with H2S from waste gas emission using non-thermal plasma generated by dielectric barrier discharge. On the basis of two criteria, removal efficiency and absolute removal amount, we deeply investigate the changes in electrical parameters and process parameters, and the reaction process of the influence of ozone on H2S gas removal. The experimental results show that H2S removal efficiency is proportional to the voltage, frequency, power, residence time and energy efficiency, while it is inversely proportional to the initial concentration of H2S gas, and ozone concentration. This study lays the foundations of non-thermal plasma technology for further commercial application.

  4. Prospects for MEMS in the Automotive Industry

    Directory of Open Access Journals (Sweden)

    Richard DIXON

    2007-12-01

    Full Text Available An automotive sector as a growth market for MEMS sensors is analyzed in the article. The automotive sector accounted for $1.6 billion, making this the second biggest opportunity after IT peripherals and inkjet print heads. By 2011 the market will top $2.2 billion, a CAGR of around 7%. The main applications in revenues terms are, in order, pressure sensors, gyroscopes, accelerometers and flow sensors and this will remain so for the foreseeable future. Automotive companies are forced to innovate as a result of competition and price pressures.

  5. Hierarchical modeling of automotive sensor front-ends for structural diagnosis of aging faults

    NARCIS (Netherlands)

    Kerkhoff, Hans G.; Wan, J.; Zhao, Yong

    2012-01-01

    The semiconductor industry for automotive applications is growing rapidly. This is because advanced electronics is now being developed to monitor and control many vital functions previously handled purely mechanical. In addition hybrid and pure electrical cars are emerging. Parts of these electronic

  6. Ceramic technology for advanced heat engines project: Semiannual progress report for April through September 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    An assessment of needs was completed, and a five-year project plan was developed with extensive input from private industry. Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  7. Numerical microstructural analysis of automotive-grade steels when joined with an array of welding processes

    International Nuclear Information System (INIS)

    Gould, J.E.; Khurana, S.P.; Li, T.

    2004-01-01

    Weld strength, formability, and impact resistance for joints on automotive steels is dependent on the underlying microstructure. A martensitic weld area is often a precursor to reduced mechanical performance. In this paper, efforts are made to predict underlying joint microstructures for a range of processing approaches, steel types, and gauges. This was done first by calculating cooling rates for some typical automotive processes [resistance spot welding (RSW), resistance mash seam welding (RMSEW), laser beam welding (LBW), and gas metal arc welding (GMAW)]. Then, critical cooling rates for martensite formation were calculated for a range of automotive steels using an available thermodynamically based phase transformation model. These were then used to define combinations of process type, steel type, and gauge where welds could be formed avoiding martensite in the weld area microstructure

  8. Estimating the occurrence of foreign material in Advanced Gas-cooled Reactors: A Bayesian Monte Carlo approach

    International Nuclear Information System (INIS)

    Mason, Paolo

    2014-01-01

    Highlights: • The amount of a specific type of foreign material found in UK AGRs has been estimated. • The estimate is based on very few instances of detection in numerous inspections. • A Bayesian Monte Carlo approach was used. • The study supports safety case claims on coolant flow impairment. • The methodology is applicable to any inspection campaign on any plant system. - Abstract: The current occurrence of a particular sort of foreign material in eight UK Advanced Gas-cooled Reactors has been estimated by means of a parametric approach. The study includes both variability, treated in analytic fashion via the combination of standard probability distributions, and the uncertainty in the parameters of the model of choice, whose posterior distribution was inferred in Bayesian fashion by means of a Monte Carlo route consisting in the conditional acceptance of sets of model parameters drawn from a prior distribution based on engineering judgement. The model underlying the present study specifically refers to the re-loading and inspection routines of UK Advanced Gas-cooled Reactors. The approach to inference here presented, however, is of general validity and can be applied to the outcome of any inspection campaign on any plant system, and indeed to any situation in which the outcome of a stochastic process is more easily simulated than described by a probability density or mass function

  9. INFLUENCE OF AUTOMOTIVE CLUSTERS IN REGIONAL DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Constantin BORDEI

    2014-11-01

    Full Text Available This paper proposes an overview of the evolution in the automotive sector in the process of regional development. The fundamental changes made by the component supplier sector improved the regional development and manufacturing process. Automotive industry is one of the modern sectors in many countries that benefits of a high technology impact and creates jobs that reduces unemployment across Europe. The auto industry changed cities, regions and countries into poles of development and it becomes more and more efficient. The high foreign direct investments from the automotive sector play an important role in regional development process. Continuous changes are being made in the economy, society, and company; in conclusion the automotive clusters will always be a subject of analysis.

  10. Nonlinear estimation and control of automotive drivetrains

    CERN Document Server

    Chen, Hong

    2014-01-01

    Nonlinear Estimation and Control of Automotive Drivetrains discusses the control problems involved in automotive drivetrains, particularly in hydraulic Automatic Transmission (AT), Dual Clutch Transmission (DCT) and Automated Manual Transmission (AMT). Challenging estimation and control problems, such as driveline torque estimation and gear shift control, are addressed by applying the latest nonlinear control theories, including constructive nonlinear control (Backstepping, Input-to-State Stable) and Model Predictive Control (MPC). The estimation and control performance is improved while the calibration effort is reduced significantly. The book presents many detailed examples of design processes and thus enables the readers to understand how to successfully combine purely theoretical methodologies with actual applications in vehicles. The book is intended for researchers, PhD students, control engineers and automotive engineers. Hong Chen is a professor at the State Key Laboratory of Automotive Simulation and...

  11. Formalizing correspondence rules for automotive architectural views

    NARCIS (Netherlands)

    Dajsuren, Y.; Gerpheide, C.M.; Serebrenik, A.; Wijs, A.J.; Vasilescu, B.N.; Brand, van den M.G.J.; Seinturier, L.; Bures, T.; McGregor, J.D.

    2014-01-01

    Architecture views have long been used in software industry to systematically model complex systems by representing them from the perspective of related stakeholder concerns. However, consensus has not been reached for the architecture views between automotive architecture description languages and

  12. Energy management for automotive power nets

    NARCIS (Netherlands)

    Kessels, J.T.B.A.

    2007-01-01

    Reducing fuel consumption has always been a major challenge to the automotive industry. Whereas first marketing aspects gave rise to innovative research, today the environmental regulations have become the main driving force behind new technologies. Historically, the research concentrated on

  13. Sustainable automotive energy system in China

    CERN Document Server

    CAERC, Tsinghua University

    2014-01-01

    This book identifies and addresses key issues of automotive energy in China. It covers demography, economics, technology and policy, providing a broad perspective to aid in the planning of sustainable road transport in China.

  14. Fatal exit the automotive black box debate

    CERN Document Server

    Kowalick, Tom

    2005-01-01

    "Fatal Exit: The Automotive Black Box Debate cuts through thirty years of political wrangling and institutional biases to provide an argument for the Motor Vehicle Event Data Recorder (MVEDR). This automotive equivalent of an airplane's flight recorder or black box is intended to solve the mysteries of car crashes and improve the safety of our roads. The reader is taken inside the automotive industry and the government highway safety establishment to foster an understanding of the politics and the positions on all sides of this safety debate. The author takes an unbiased approach, chronologically presenting each argument and uncovering the agendas and mandates of each of the stakeholders." "This publication is essential reading for all consumers who need to have their voices heard on this critical issue, as well as for attorneys, public safety advocates, public policy administrators, engineers, automotive professionals, journalists, and insurance executives."--Jacket.

  15. ADVANCED FRACTURING TECHNOLOGY FOR TIGHT GAS: AN EAST TEXAS FIELD DEMONSTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Mukul M. Sharma

    2005-03-01

    The primary objective of this research was to improve completion and fracturing practices in gas reservoirs in marginal plays in the continental United States. The Bossier Play in East Texas, a very active tight gas play, was chosen as the site to develop and test the new strategies for completion and fracturing. Figure 1 provides a general location map for the Dowdy Ranch Field, where the wells involved in this study are located. The Bossier and other tight gas formations in the continental Unites States are marginal plays in that they become uneconomical at gas prices below $2.00 MCF. It was, therefore, imperative that completion and fracturing practices be optimized so that these gas wells remain economically attractive. The economic viability of this play is strongly dependent on the cost and effectiveness of the hydraulic fracturing used in its well completions. Water-fracs consisting of proppant pumped with un-gelled fluid is the type of stimulation used in many low permeability reservoirs in East Texas and throughout the United States. The use of low viscosity Newtonian fluids allows the creation of long narrow fractures in the reservoir, without the excessive height growth that is often seen with cross-linked fluids. These low viscosity fluids have poor proppant transport properties. Pressure transient tests run on several wells that have been water-fractured indicate a long effective fracture length with very low fracture conductivity even when large amounts of proppant are placed in the formation. A modification to the water-frac stimulation design was needed to transport proppant farther out into the fracture. This requires suspending the proppant until the fracture closes without generating excessive fracture height. A review of fracture diagnostic data collected from various wells in different areas (for conventional gel and water-fracs) suggests that effective propped lengths for the fracture treatments are sometimes significantly shorter than those

  16. SELECTION METHOD FOR AUTOMOTIVE PARTS RECONDITIONING

    Directory of Open Access Journals (Sweden)

    Dan Florin NITOI

    2015-05-01

    Full Text Available Paper presents technological methods for metal deposition, costs calculation and clasification for the main process that helps in automotive technologies to repair or to increase pieces properties. Paper was constructed based on many technological experiments that starts from practicans and returns to them. The main aim is to help young engineers or practicians engineers to choose the proper reconditioning process with the best information in repairing pieces from automotive industry.

  17. Automotive perspective on laser material processing

    International Nuclear Information System (INIS)

    Roessler, D.M.

    1989-01-01

    In this paper a broad review is given of the development and use of laser processing in the automotive industry. a brief introduction to the major types of processing lasers and related systems is followed by a summary of the major processing regimes. Examples are given of the automotive industry's use of lasers in a variety of applications, from heat treating and welding, to cutting and marking

  18. Permitting and solid waste management issues for the Bailly Station wet limestone Advanced Flue Gas Desulfurization (AFGD) system

    International Nuclear Information System (INIS)

    Bolinsky, F.T.; Ross, J.; Dennis, D.S.

    1991-01-01

    Pure Air (a general partnership between Air Products and Chemicals, Inc., and Mitsubishi Heavy Industries America, Inc.). is constructing a wet limestone co-current advanced flue gas desulfurization (AFGD) system that has technological and commercial advantages over conventional FGD systems in the United States. The AFGD system is being installed at the Northern Indiana Public Service Company's Bailly Generating Station near Gary, Indiana. The AFGD system is scheduled to be operational by the Summer, 1992. The AFGD system will remove at least 90 percent of the sulfur dioxide (SO 2 ) in the flue gas from Boilers 7 and 8 at the Station while burning 3.2 percent sulfur coal. Also as part of testing the AFGD system, 95 percent removal of SO 2 will be demonstrated on coals containing up to 4.5 percent sulfur. At the same time that SO 2 is removed from the flue gas, a gypsum by-product will be produced which will be used for wallboard manufacturing. Since the AFGD system is a pollution control device, one would expect its installation to be received favorably by the public and regulatory agencies. Although the project was well received by regulatory agencies, on public group (Save the Dunes Council) was initially concerned since the project is located adjacent to the Indiana Dunes National Lakeshore. The purpose of this paper is to describe the project team's experiences in obtaining permits/approvals from regulatory agencies and in dealing with the public. 1 ref., 1 fig., 2 tabs

  19. Progress in the development of tooling and dismantling methodologies for the Windscale advanced gas cooled reactor (WAGR)

    International Nuclear Information System (INIS)

    Cross, M.T.; Wareing, M.I.; Dixon, C.

    1998-01-01

    Decommissioning of the Windscale Advanced Gas-Cooled Reactor (WAGR) is a major UK reactor decommissioning project co-funded by the UK Government, the European Commission and Magnox Electric. WAGR was a CO 2 cooled, graphite moderated reactor which served as a test bed for the development of Advanced Gas-Cooled Reactor technology in the UK. It operated from 1963 until shutdown in 1981. AEA Technology plc are currently the Managing Agents on behalf of UKAEA for the WAGR decommissioning project and are responsible for the co-ordination of the project up to the point when the contents of the reactor core and associated radioactive materials are removed and either disposed of or packaged for disposal at some time in the future. Decommissioning has progressed to the point where the reactor has been dismantled down to the level of the hot gas collection manifold with the removal of the top biological shield, the refuelling standpipes and the top section of the reactor pressure vessel. The 4 heat exchangers have also been removed and committed to shallow land burial. This paper describes the work carried out by AEA Technology under separate contracts of UKAEA in developing some of the equipment and deployment methods for the next phase of active operations required in preparation for the dismantling of the core structure. Most recent work has concentrated on the development of specialist tooling for removal of items of operational waste stored within the reactor core, equipment for cutting and removal of the highly radioactive stainless steel 'loop' pressure tubes, diamond wire cutting equipment for sectioning large diameter pipework, and equipment for dismantling the reactor neutron shield. The paper emphasises the process of adaptation and extension of existing technologies for cost-effective application in the decommissioning environment, the need for adequate forward planning of decommissioning methodologies together with large-scale 'mock-up' testing of equipment to

  20. Advanced Gas Cooled Reactor Materials Program. Reducing helium impurity depletion in HTGR materials testing

    International Nuclear Information System (INIS)

    Baldwin, D.H.

    1984-08-01

    Moisture depletion in HTGR materials testing rigs has been empirically studied in the GE High Temperature Reactor Materials Testing Laboratory (HTRMTL). Tests have shown that increased helium flow rates and reduction in reactive (oxidizable) surface area are effective means of reducing depletion. Further, a portion of the depletion has been shown to be due to the presence of free C released by the dissociation of CH 4 . This depletion component can be reduced by reducing the helium residence time (increasing the helium flow rate) or by reducing the CH 4 concentration in the test gas. Equipment modifications to reduce depletion have been developed, tested, and in most cases implemented in the HTRMTL to date. These include increasing the Helium Loop No. 1 pumping capacity, conversion of metallic retorts and radiation shields to alumina, isolation of thermocouple probes from the test gas by alumina thermowells, and substitution of non-reactive Mo-TZM for reactive metallic structural components

  1. Advanced Exploration Systems Logistics Reduction and Repurposing Trash-to-Gas and Heat Melt Compactor KSC

    Science.gov (United States)

    Caraccio, Anne J.; Layne, Andrew; Hummerick, Mary

    2013-01-01

    Topics covered: 1. Project Structure 2. "Trash to Gas" 3. "Smashing Trash! The Heat Melt Compactor" 4. "Heat Melt Compaction as an Effective Treatment for Eliminating Microorganisms from Solid Waste" Thermal degradation of trash reduces volume while creating water, carbon dioxide and ash. CO2 can be fed to Sabatier reactor for CH4 production to fuel LOX/LCH4 ascent vehicle. Optimal performance: HFWS, full temperature ramp to 500-600 C. Tar challenges exist. Catalysis: Dolomag did eliminate allene byproducts from the product stream. 2nd Gen Reactor Studies. Targeting power, mass, time efficiency. Gas separation, Catalysis to reduce tar formation. Microgravity effects. Downselect in August will determine where we should spend time optimizing the technology.

  2. [Recent advances in analysis of petroleum geological samples by comprehensive two-dimensional gas chromatography].

    Science.gov (United States)

    Gao, Xuanbo; Chang, Zhenyang; Dai, Wei; Tong, Ting; Zhang, Wanfeng; He, Sheng; Zhu, Shukui

    2014-10-01

    Abundant geochemical information can be acquired by analyzing the chemical compositions of petroleum geological samples. The information obtained from the analysis provides scientifical evidences for petroleum exploration. However, these samples are complicated and can be easily influenced by physical (e. g. evaporation, emulsification, natural dispersion, dissolution and sorption), chemical (photodegradation) and biological (mainly microbial degradation) weathering processes. Therefore, it is very difficult to analyze the petroleum geological samples and they cannot be effectively separated by traditional gas chromatography/mass spectrometry. A newly developed separation technique, comprehensive two-dimensional gas chromatography (GC x GC), has unique advantages in complex sample analysis, and recently it has been applied to petroleum geological samples. This article mainly reviews the research progres- ses in the last five years, the main problems and the future research about GC x GC applied in the area of petroleum geology.

  3. WAG (water-alternating-gas) as a method for petroleum advanced recovering

    International Nuclear Information System (INIS)

    Campozana, Fernando P.; Mato, Luiz F.

    2000-01-01

    Water-Alternating-Gas (WAG) injection is an oil recovery method that has been more and more applied worldwide. Oil recovery has been increased up to 20 % (over conventional waterflooding) in field-scale WAG projects. This additional recovery has been attributed to improved sweep and areal efficiency as well as microscopic displacement efficiency. Field results have shown that not only WAG method combines the advantages of gas and water injection but also leads to more stable fronts and better mobility control. Moreover, three-phase flow usually leads to a lower residual oil saturation when compared to that of two-phase flow. In this study, we show some theoretical aspects of WAG as well as some results obtained from numerical simulation of a pilot project to be implemented in Aracas field, Bahia, Brazil. (author)

  4. Advanced Gas Turbine Rotor Shaft Fault Diagnosis Using Artificial Neural Network

    OpenAIRE

    Ezenwa A. Ogbonnaya; Emmanuel M. Adigio; Hyginus U. Ugwu; Magnus C. Anumiri

    2013-01-01

    The effect of vibration in plant leads to catastrophic failure of a system. This is why vibration monitoring of a system constitutes a very key practice of ensuring power plant availability. Force, Amplitude and Resonance a program written in Visual Basic Programming language was utilized in this study to monitor the vibration level of the Gas Turbine (GT17) in Afam thermal station and to calculate the force causing vibration on the bearing. The program was also run using the data...

  5. Automotive fuels from biomass via gasification

    International Nuclear Information System (INIS)

    Zhang, Wennan

    2010-01-01

    There exists already a market of bio-automotive fuels i.e. bioethanol and biodiesel produced from food crops in many countries. From the viewpoint of economics, environment, land use, water use and chemical fertilizer use, however, there is a strong preference for the use of woody biomass and various forest/agricultural residues as the feedstock. Thus, the production of 2nd generation of bio-automotive fuels i.e. synthetic fuels such as methanol, ethanol, DME, FT-diesel, SNG and hydrogen through biomass gasification seems promising. The technology of producing synthetic fuels is well established based on fossil fuels. For biomass, however, it is fairly new and the technology is under development. Starting from the present market of the 1st generation bio-automotive fuels, this paper is trying to review the technology development of the 2nd generation bio-automotive fuels from syngas platform. The production of syngas is emphasized which suggests appropriate gasifier design for a high quality syngas production. A number of bio-automotive fuel demonstration plant will be presented, which gives the state of the art in the development of BTS (biomass to synthetic fuels) technologies. It can be concluded that the 2nd generation bio-automotive fuels are on the way to a breakthrough in the transport markets of industrial countries especially for those countries with a strong forest industry. (author)

  6. Advances in SAW gas sensors based on the condensate-adsorption effect.

    Science.gov (United States)

    Liu, Jiuling; Wang, Wen; Li, Shunzhou; Liu, Minghua; He, Shitang

    2011-01-01

    A surface-acoustic-wave (SAW) gas sensor with a low detection limit and fast response for volatile organic compounds (VOCs) based on the condensate-adsorption effect detection is developed. In this sensor a gas chromatography (GC) column acts as the separator element and a dual-resonator oscillator acts as the detector element. Regarding the surface effective permittivity method, the response mechanism analysis, which relates the condensate-adsorption effect, is performed, leading to the sensor performance prediction prior to fabrication. New designs of SAW resonators, which act as feedback of the oscillator, are devised in order to decrease the insertion loss and to achieve single-mode control, resulting in superior frequency stability of the oscillator. Based on the new phase modulation approach, excellent short-term frequency stability (±3 Hz/s) is achieved with the SAW oscillator by using the 500 MHz dual-port resonator as feedback element. In a sensor experiment investigating formaldehyde detection, the implemented SAW gas sensor exhibits an excellent threshold detection limit as low as 0.38 pg.

  7. Advanced Off-Gas Control System Design For Radioactive And Mixed Waste Treatment

    International Nuclear Information System (INIS)

    Nick Soelberg

    2005-01-01

    Treatment of radioactive and mixed wastes is often required to destroy or immobilize hazardous constituents, reduce waste volume, and convert the waste to a form suitable for final disposal. These kinds of treatments usually evolve off-gas. Air emission regulations have become increasingly stringent in recent years. Mixed waste thermal treatment in the United States is now generally regulated under the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards. These standards impose unprecedented requirements for operation, monitoring and control, and emissions control. Off-gas control technologies and system designs that were satisfactorily proven in mixed waste operation prior to the implementation of new regulatory standards are in some cases no longer suitable in new mixed waste treatment system designs. Some mixed waste treatment facilities have been shut down rather than have excessively restrictive feed rate limits or facility upgrades to comply with the new standards. New mixed waste treatment facilities in the U. S. are being designed to operate in compliance with the HWC MACT standards. Activities have been underway for the past 10 years at the INL and elsewhere to identify, develop, demonstrate, and design technologies for enabling HWC MACT compliance for mixed waste treatment facilities. Some specific off-gas control technologies and system designs have been identified and tested to show that even the stringent HWC MACT standards can be met, while minimizing treatment facility size and cost

  8. Advances of zeolite based membrane for hydrogen production via water gas shift reaction

    Science.gov (United States)

    Makertihartha, I. G. B. N.; Zunita, M.; Rizki, Z.; Dharmawijaya, P. T.

    2017-07-01

    Hydrogen is considered as a promising energy vector which can be obtained from various renewable sources. However, an efficient hydrogen production technology is still challenging. One technology to produce hydrogen with very high capacity with low cost is through water gas shift (WGS) reaction. Water gas shift reaction is an equilibrium reaction that produces hydrogen from syngas mixture by the introduction of steam. Conventional WGS reaction employs two or more reactors in series with inter-cooling to maximize conversion for a given volume of catalyst. Membrane reactor as new technology can cope several drawbacks of conventional reactor by removing reaction product and the reaction will favour towards product formation. Zeolite has properties namely high temperature, chemical resistant, and low price makes it suitable for membrane reactor applications. Moreover, it has been employed for years as hydrogen selective layer. This review paper is focusing on the development of membrane reactor for efficient water gas shift reaction to produce high purity hydrogen and carbon dioxide. Development of membrane reactor is discussed further related to its modification towards efficient reaction and separation from WGS reaction mixture. Moreover, zeolite framework suitable for WGS membrane reactor will be discussed more deeply.

  9. Waste gas biofiltration: advances and limitations of current approaches in microbiology.

    Science.gov (United States)

    Ralebitso-Senior, T Komang; Senior, Eric; Di Felice, Renzo; Jarvis, Kirsty

    2012-08-21

    As confidence in gas biofiltration efficacy grows, ever more complex malodorant and toxic molecules are ameliorated. In parallel, for many countries, emission control legislation becomes increasingly stringent to accommodate both public health and climate change imperatives. Effective gas biofiltration in biofilters and biotrickling filters depends on three key bioreactor variables: the support medium; gas molecule solubilization; and the catabolic population. Organic and inorganic support media, singly or in combination, have been employed and their key criteria are considered by critical appraisal of one, char. Catabolic species have included fungal and bacterial monocultures and, to a lesser extent, microbial communities. In the absence of organic support medium (soil, compost, sewage sludge, etc.) inoculum provision, a targeted enrichment and isolation program must be undertaken followed, possibly, by culture efficacy improvement. Microbial community process enhancement can then be gained by comprehensive characterization of the culturable and total populations. For all species, support medium attachment is critical and this is considered prior to filtration optimization by water content, pH, temperature, loadings, and nutrients manipulation. Finally, to negate discharge of fungal spores, and/or archaeal and/or bacterial cells, capture/destruction technologies are required to enable exploitation of the mineralization product CO(2).

  10. Degradation of TBC Systems in Environments Relevant to Advanced Gas Turbines for IGCC Systems

    Science.gov (United States)

    Bohna, Nathaniel Allan

    Plasma sprayed (PS) thermal barrier coatings (TBCs) are used to provide thermal insulation for the hottest components in gas turbines. Zirconia stabilized with 7wt% yttria (7YSZ) is the most common ceramic top coat used for turbine blades. The 7YSZ coating can be degraded by the buildup of fly-ash deposits which can arise from the fuel source (coal/biomass) used in the combustion process in gas turbines. Fly-ash from the integrated gasification combined cycle (IGCC) process can result from coal-based syngas and also from ambient air which passes through the system. TBCs are also exposed to harsh gas environments containing CO2, SO2, and steam. As presented in this thesis, degradation from the combined effects of fly-ash and harsh gas atmosphere can severely limit TBC lifetimes. It is well established that degradation at very high temperatures (≥1250°C) from deposits consisting of the oxides CaO-MgO-Al2O3-SiO 2 results from extensive liquid silicate infiltration into the porous top coat of the YSZ. This infiltration causes early failure resulting from chemical and/or mechanical damage to the ceramic layer. Damage resulting from liquid infiltration, however, is not typically considered at relatively lower temperatures around 1100°C because liquid silicates would not be expected to form from the oxides in the deposit. A key focus of this study is to assess the mode and extent of TBC degradation at 1100°C in cases when some amount of liquid forms owing to the presence of K2SO4 as a minor ash constituent. Two types of liquid infiltrations are observed depending on the principal oxide (i.e., CaO or SiO2) in the deposit. The degradation is primarily the result of mechanical damage, which results from infiltration caused by the interaction of liquid K2SO4 with either the CaO or SiO2. The TBCs used in this work are representative of commonly used coatings used in the hottest sections of land-based gas turbines. The specimens consist of 7YSZ top coats deposited on

  11. Energy savings and economics of advanced control strategies for packaged air conditioners with gas heat

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Weimin; Katipamula, Srinivas; Huang, Yunzhi; Brambley, Michael R.

    2013-10-01

    This paper presents an evaluation of the potential energy savings from adding advanced control to existing packaged air conditioners. Advanced control options include air-side economizer, multi-speed fan control, demand control ventilation and staged cooling. The energy and cost savings from the different control strategies individually and in combination are estimated using the EnergyPlus detailed energy simulation program for four building types, namely, a small office building, a stand-alone retail building, a strip mall building and a supermarket building. For each of the four building types, the simulation was run for 16 locations covering all 15 climate zones in the U.S. The maximum installed cost of a replacement controller that provides acceptable payback periods to owners is estimated.

  12. Passive autocatalytic recombiners for combustible gas control in advanced light water reactors

    International Nuclear Information System (INIS)

    Wolff, U.; Sliter, G.

    2004-01-01

    A key aspect of the worldwide effort to develop advanced nuclear power plants is designing to address severe accident phenomena, including the generation of hydrogen during core melt progression (metal-water and core-concrete reactions). This design work not only resolves safety concerns with hydrogen, but also supports the development of a technical basis for simplification of off-site emergency planning. The dominant challenge to any emergency planning approach is a large, early containment failure due to pressure excursions. Among the potential contributors to large and rapid increases in containment pressure is hydrogen combustion. The more improbable a containment-threatening combustion becomes, the more appropriate the argument for significant emergency planning simplification. As discussed in this paper, catalytic recombiners provide a means to passively and reliably limit hydrogen combustion to a continuous oxidation process with virtually no potential for containment failure in passive advanced light water reactors (ALWRs). (author)

  13. New developments in tribomechanical modeling of automotive sheet steel forming

    Science.gov (United States)

    Khandeparkar, Tushar; Chezan, Toni; van Beeck, Jeroen

    2018-05-01

    Forming of automotive sheet metal body panels is a complex process influenced by both the material properties and contact conditions in the forming tooling. Material properties are described by the material constitutive behavior and the material flow into the forming die can be described by the tribological system. This paper investigates the prediction accuracy of the forming process using the Tata Steel state of the art description of the material constitutive behavior in combination with different friction models. A cross-die experiment is used to investigate the accuracy of local deformation modes typically seen in automotive sheet metal forming operations. Results of advanced friction models as well as the classical Coulomb friction description are compared to the experimentally measured strain distribution and material draw-in. Two hot-dip galvanized coated steel forming grades were used for the investigations. The results show that the accuracy of the simulation is not guaranteed by the advanced friction models for the entire investigated blank holder force range, both globally and locally. A measurable difference between the calculated and measured local strains is seen for both studied models even in the case where the global indicator, i.e. the draw-in, is well predicted.

  14. Behaviour of particles in a commercial advanced gas-cooled reactor

    International Nuclear Information System (INIS)

    Garland, J.A.; Wells, A.C.; Hedgecock, J.B.

    1985-01-01

    Certain hypothetical fault conditions cause fission products to escape from a fraction of the fuel to an intact coolant circuit. A significant fraction of the activity, including iodine isotopes, is expected to attach to small particles suspended in the gas coolant, and the fate of the particles may influence the fraction of the activity available to escape to the environment with the small amount of gas that leaks continuously from the coolant circuit. A series of experiments has provided an understanding of the behaviour of such particles. Tracer particles of 0.6, 2, 5 and 17 μm diameter, labelled with 59 Fe, were dispersed as aerosols in the reactor coolant, and the subsequent variation of concentration was observed by measurement of a sequence of filter samples of the coolant gas. The changes in concentration were influenced by mixing processes, but showed clearly that loss processes reduced the burden in the coolant by two or three orders of magnitude within 3 h. The concentration did not follow a simple exponential decrease. Small particles deposited more rapidly than the largest size studied. These observations imply that particles both impact onto, and also bounce and resuspend from, the internal surfaces of the coolant circuit. Although the physical mechanisms of the particle-surface interaction cannot be described in detail, the results clearly demonstrate a large benefit due to deposition reducing the amount of circulating activity. The quantity of particle-borne activity available for escape with leaking coolant during 24 h following a release from fuel is reduced by a factor ranging from several hundred to a few thousand. (author)

  15. Boiler referruling on the Hartlepool and Heysham 1 advanced gas-cooled reactors

    International Nuclear Information System (INIS)

    Newell, J.E.

    1988-01-01

    The Hartlepool and Heysham I reactors each use eight cylindrical boilers having nineteen rows of helical tubes. The advantages of this design are partially offset by the relatively poor radial gas mixing. Some rows of tubing may have an imbalance between heat input from the gas and the flow of feedwater. causing a temperature profile at the upper transition joints. The thermal/hydraulic behaviour meant that the metallurgical constraints limited output. Analysis of the behaviour of these boilers required a new two-dimensional mathematical model, known as PODMIX. This describes the thermal hydraulics in each of the rows of tubing and also in the gas between the rows. Not all of the parameters for the model can be determined from first principles. However, two out of the thirty two pods have thermocouples at some of the upper transition joints and these made back calculation possible. In order to translate this model to other boiler pods, a novel thermocouple rake system was designed for sampling superheated steam temperatures in selected tubes. A result of this analysis was to show that different, individual ferrule patterns were needed for each pod. The characteristics could, in general, best be met using twin orifice ferrules. Unfortunately, the installed system did not permit the replacement of orifices, so that a completely new system had to be developed. In the course of designing this, the opportunity was taken to over come susceptibilities to erosion/corrosion and crevice corrosion. Removal of the old ferrules and replacement with the new ones necessitated the development of high precision, programmable machines to operate under difficult site conditions. These carried out drilling, boring, grinding and polishing operations as well as making face welds and tube bore welds. Modifications have already achieved substantial improvements in performance and output, but an extended, iterative programme still lies ahead. (author)

  16. High temperature corrosion of advanced ceramic materials for hot gas filters. Topical report for part 1 of high temperature corrosion of advanced ceramic materials for hot gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Spear, K.E.; Crossland, C.E.; Shelleman, D.L.; Tressler, R.E. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering

    1997-12-11

    This program consists of two separate research areas. Part 1, for which this report is written, studied the high temperature corrosion of advanced ceramic hot gas filters, while Part 2 studied the long-term durability of ceramic heat exchangers to coal combustion environments. The objectives of Part 1 were to select two candidate ceramic filter materials for flow-through hot corrosion studies and subsequent corrosion and mechanical properties characterization. In addition, a thermodynamic database was developed so that thermochemical modeling studies could be performed to simulate operating conditions of laboratory reactors and existing coal combustion power plants, and to predict the reactions of new filter materials with coal combustion environments. The latter would make it possible to gain insight into problems that could develop during actual operation of filters in coal combustion power plants so that potential problems could be addressed before they arise.

  17. Hypothetical air ingress scenarios in advanced modular high temperature gas cooled reactors

    International Nuclear Information System (INIS)

    Kroeger, P.G.

    1988-01-01

    Considering an extremely hypothetical scenario of complete cross duct failure and unlimited air supply into the reactor vessel of a modular high temperature gas cooled ractor, it is found that the potential air inflow remains limited due to the high friction pressure drop through the active core. All incoming air will be oxidized to CO and some local external burning would be temporarily possible in such a scenario. The accident would have to continue with unlimited air supply for hundreds of hours before the core structural integrity would be jeopardized

  18. Optimization of advanced liquid natural gas-fuelled machineries for a high-speed ferry

    DEFF Research Database (Denmark)

    Tveitaskog, Kari Anne; Haglind, Fredrik

    -based optimization routine are used. The top cycle is modeled as the aero-derivative gas turbine LM2500, while the following five options for bottoming cycles are modeled: ∙ Single pressure steam cycle ∙ Dual-pressure steam cycle ∙ ORC using Toluene as the working fluid with an intermediate oil loop ∙ ABC with inter......This report is aimed at designing and optimizing combined cycles in order to define the most suitable machinery system for the future high-speed Incat ferry operated by Mols-Linien. For this purpose, an in-house numerical simulation tool called DNA (Dynamic Network Analysis) and a genetic algorithm...

  19. Secondary-Postsecondary Curriculum Development in Automotive Mechanics. Automotive Electrical Competencies. Final Report.

    Science.gov (United States)

    Hoepner, Ronald

    Developed as part of a competency-based curriculum in automotive mechanics which is usable by students at both the secondary and postsecondary levels, this learning package focuses on automotive electrical systems. It is the first unit to be published in a series of eight which will cover the eight subject areas on the national certification…

  20. Automotive Electrical and Electronic System II; Automotive Mechanics-Intermediate: 9045.04.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This automotive electrical and electronic system course is an intermediate course designed for the student who has completed automotive Electrical and Electronic System I. The theory and principles of operation of the components of the starting and charging systems and other electrical accessory systems in the automobile will be learned by the…

  1. Automotive Electrical and Electronic Systems I; Automotive Mechanics 2: 9045.03.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    The automotive electrical and electronic system I course is designed as one of a group of quinmester courses offered in the field of automotive mechanics. General information will be given along with technical knowledge, basic skills, attitudes and values that are required for job entry level. The nine week (135 clock hour) course overcomes some…

  2. Advances of orbital gas tungsten arc welding for Brazilian space applications – experimental setup

    Directory of Open Access Journals (Sweden)

    José A. Orlowski de Garcia

    2010-08-01

    Full Text Available The present work describes details of the several steps of the technology involved for the orbital Gas Tungsten Arc Welding (GTAW process of pure commercially titanium tubes. These pieces will be used to connect the several components of the propulsion system of the China-Brazilian Satellite CBERS, and is part of the Brazilian aerospace industry development. The implantation involved the steps of environment control; cut and facing of the base metal; cleaning procedures; piece alignment; choice of the type, geometry and installation of the tungsten electrode; system for the pressure of the purge gas; manual tack welding; choice of the welding parameters; and, finally, the qualification of welding procedures. Three distinct welding programs were studied, using pulsed current with increasing speed, continuous current and pulsed current with decreasing amperage levels. The results showed that the high quality criteria required to the aerospace segment is such that usual welding operations must be carefully designed and executed. The three welding developed programs generated welds free of defects and with adequate morphology, allowing to select the condition that better fits the Brazilian aerospace segment, and to be implanted in the welding of the CBERS Satellite Propulsion System.

  3. The value of advanced technology in meeting 2050 greenhouse gas emissions targets in the United States

    International Nuclear Information System (INIS)

    Kyle, Page; Clarke, Leon; Pugh, Graham; Wise, Marshall; Calvin, Kate; Edmonds, James; Kim, Son

    2009-01-01

    This paper, a contribution to the EMF 22 subgroup on Transition Scenarios, examines the relationship between technology evolution over the next 40 years and the cost, energy, and greenhouse gas emissions consequences of possible U.S. mitigation goals. The paper explores these issues within the context of cumulative emissions targets based on linear reductions in CO 2 -e emissions of 50% and 80% below 1990 levels by 2050. Six technology futures were constructed within the MiniCAM integrated assessment model and then applied to the emissions targets. The paper explores the influence of technology availability and expectations of future technology availability on the economic consequences of emissions mitigation, on the time path of emissions mitigation, and on the evolution of the U.S. energy system over time. One of the strongest themes to emerge from the scenarios in this study is that near-term decision-making depends on the availability of technology decades into the future, when deep emissions reductions are required to meet the cumulative emissions goals. In the scenarios in this paper, it is the expectations about future technology that have the most dramatic effect on greenhouse gas emissions prices and emissions reductions in 2020, as opposed to near-term technology availability. Moreover, it is the nature of technology 20, 30, and 40 years out, rather than availability and deployment of technology in the next decade, that will largely determine the character of the mid-century energy system.

  4. Advanced In-Core Fuel Cycles for the Gas Turbine-Modular Helium Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto

    2006-04-15

    Amid generation IV of nuclear power plants, the Gas Turbine - Modular Helium Reactor, designed by General Atomics, is the only core with an energy conversion efficiency of 50%; the safety aspects, coupled to construction and operation costs lower than ordinary Light Water Reactors, renders the Gas Turbine - Modular Helium reactor rather unequaled. In the present studies we investigated the possibility to operate the GT-MHR with two types of fuels: LWRs waste and thorium; since thorium is made of only fertile {sup 232}Th, we tried to mix it with pure {sup 233}U, {sup 235}U or {sup 239}Pu; ex post facto, only uranium isotopes allow the reactor operation, that induced us to examine the possibility to use a mixture of uranium, enriched 20% in {sup 235}U, and thorium. We performed all calculations by the MCNP and MCB codes, which allowed to model the reactor in a very detailed three-dimensional geometry and to describe the nuclides transmutation in a continuous energy approach; finally, we completed our studies by verifying the influence of the major nuclear data libraries, JEFF, JENDL and ENDF/B, on the obtained results.

  5. Advanced Gas Turbine Rotor Shaft Fault Diagnosis Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Ezenwa A. Ogbonnaya

    2013-01-01

    Full Text Available The effect of vibration in plant leads to catastrophic failure of a system. This is why vibration monitoring of a system constitutes a very key practice of ensuring power plant availability. Force, Amplitude and Resonance a program written in Visual Basic Programming language was utilized in this study to monitor the vibration level of the Gas Turbine (GT17 in Afam thermal station and to calculate the force causing vibration on the bearing. The program was also run using the data obtained from the plant. Results show that vibration velocity amplitude of bearing 2 on weeks 5 and 8 were 6.7mm/s and 6.6mm/s and the forces causing vibration were 2.545x104N and 2.272x104N respectively. The comparison of results obtained with maximum vibration velocity amplitude of the machine (7mm/s showed that the vibration of the machine was tending towards the maximum value. Therefore, proper attention should be given to bearing 2 to avoid failure of the Gas Turbine.

  6. Advanced separation technology for flue gas cleanup. Final report, February 1998

    Energy Technology Data Exchange (ETDEWEB)

    Bhown, A.S.; Alvarado, D.; Pakala, N.; Tagg, T.; Riggs, T.; Ventura, S.; Sirkar, K.K.; Majumdar, S.; Bhaumick, D.

    1998-06-01

    The objective of this work by SRI International was to develop a novel system for regenerable SO{sub 2} and NO{sub x} scrubbing of flue gas that focuses on (1) a novel method for regenerating spent SO{sub 2} scrubbing liquor and (2) novel chemistry for reversible absorption of NO{sub x}. High efficiency, hollow fiber contactors (HFCs) were proposed as the devices for scrubbing the SO{sub 2} and NO{sub x} from the flue gas. The system would be designed to remove more than 95% of the SO{sub 2} and more than 75% of the NO{sub x} from flue gases typical of pulverized coal-fired power plants at a cost that is at least 20% less than combined wet limestone scrubbing of SO{sub x} and selective catalytic reduction of NO{sub x}. In addition, the process would generate only marketable by-products, if any (no waste streams are anticipated). The major cost item in existing technology is capital investment. Therefore, the approach was to reduce the capital cost by using high-efficiency, hollow fiber devices for absorbing and desorbing the SO{sub 2} and NO{sub x}. The authors also introduced new process chemistry to minimize traditionally well-known problems with SO{sub 2} and NO{sub x} absorption and desorption. The process and progress in its development are described.

  7. Sandia's Geothermal Advanced Drill Rig Instrumentation Assists Critical Oil and Gas Drilling Operation

    International Nuclear Information System (INIS)

    Staller, George E.; Whitlow, Gary

    1999-01-01

    On November 23, 1998, an 18,000-foot-deep wild-cat natural gas well being drilled near Bakersfield, CA blew out and caught fire. All attempts to kill this well failed, and the well continues to flow under limited control, producing large volumes of natural gas, salt water, and some oil. The oil and some of the water is being separated and trucked off site, and the remaining gas and water is being burned at the well head. A relief well is being drilled approximately one-quarter mile away in an attempt to intercept the first well. If the relief well is successful, it will be used to cement in and kill the first well. Epoch Wellsite Services, Inc., the mud-logging company for the initial well and the relief well, requested Sandia's rolling float meter (RFM) for these critical drilling operations. The RFM is being used to measure the mud outflow rate and detect kicks while drilling the relief well, which will undoubtedly encounter reservoir conditions similar to those responsible for the blow out. Based on its prior experience with the RFM, Epoch believes that it is the only instrument capable of providing the level of accuracy and response to mudflow needed to quickly detect kicks and minimize the risk of a blowout on this second critical well. In response to the urgent request from industry, Sandia and Epoch technicians installed the RFM on the relief well return line, and completed its initial calibration. The data from the RFM is displayed in real-time for the driller, the companyman, and the toolpusher via Epochs RIGWATCH Drilling Instmmentation System. The RFM has already detected several small kicks while drilling toward the annulus of the blown out well. A conventional paddle meter is located downstream of the RFM to provide redundancy and the opportunity to compare the two meters in an actual drilling operation, The relief well is nearing 14,000 feet deep, targeting an intercept of the first well near 17,600 feet. The relief well is expected to be completed in

  8. Advanced thermal barrier coatings for operation in high hydrogen content fueled gas turbines.

    Energy Technology Data Exchange (ETDEWEB)

    Sampath, Sanjay [Stony Brook Univ., NY (United States)

    2015-04-02

    The Center for Thermal Spray Research (CTSR) at Stony Brook University in partnership with its industrial Consortium for Thermal Spray Technology is investigating science and technology related to advanced metallic alloy bond coats and ceramic thermal barrier coatings for applications in the hot section of gasified coal-based high hydrogen turbine power systems. In conjunction with our OEM partners (GE and Siemens) and through strategic partnership with Oak Ridge National Laboratory (ORNL) (materials degradation group and high temperature materials laboratory), a systems approach, considering all components of the TBC (multilayer ceramic top coat, metallic bond coat & superalloy substrate) is being taken during multi-layered coating design, process development and subsequent environmental testing. Recent advances in process science and advanced in situ thermal spray coating property measurement enabled within CTSR has been incorporated for full-field enhancement of coating and process reliability. The development of bond coat processing during this program explored various aspects of processing and microstructure and linked them to performance. The determination of the bond coat material was carried out during the initial stages of the program. Based on tests conducted both at Stony Brook University as well as those carried out at ORNL it was determined that the NiCoCrAlYHfSi (Amdry) bond coats had considerable benefits over NiCoCrAlY bond coats. Since the studies were also conducted at different cycling frequencies, thereby addressing an associated need for performance under different loading conditions, the Amdry bond coat was selected as the material of choice going forward in the program. With initial investigations focused on the fabrication of HVOF bond coats and the performance of TBC under furnace cycle tests , several processing strategies were developed. Two-layered HVOF bond coats were developed to render optimal balance of density and surface roughness

  9. Investigation of metallurgical coatings for automotive applications

    Science.gov (United States)

    Su, Jun Feng

    Metallurgical coatings have been widely used in the automotive industry from component machining, engine daily running to body decoration due to their high hardness, wear resistance, corrosion resistance and low friction coefficient. With high demands in energy saving, weight reduction and limiting environmental impact, the use of new materials such as light Aluminum/magnesium alloys with high strength-weight ratio for engine block and advanced high-strength steel (AHSS) with better performance in crash energy management for die stamping, are increasing. However, challenges are emerging when these new materials are applied such as the wear of the relative soft light alloys and machining tools for hard AHSS. The protective metallurgical coatings are the best option to profit from these new materials' advantages without altering largely in mass production equipments, machinery, tools and human labor. In this dissertation, a plasma electrolytic oxidation (PEO) coating processing on aluminum alloys was introduced in engine cylinder bores to resist wear and corrosion. The tribological behavior of the PEO coatings under boundary and starve lubrication conditions was studied experimentally and numerically for the first time. Experimental results of the PEO coating demonstrated prominent wear resistance and low friction, taking into account the extreme working conditions. The numerical elastohydrodynamic lubrication (EHL) and asperity contact based tribological study also showed a promising approach on designing low friction and high wear resistant PEO coatings. Other than the fabrication of the new coatings, a novel coating evaluation methodology, namely, inclined impact sliding tester was presented in the second part of this dissertation. This methodology has been developed and applied in testing and analyzing physical vapor deposition (PVD)/ chemical vapor deposition (CVD)/PEO coatings. Failure mechanisms of these common metallurgical hard coatings were systematically

  10. Optical Thin Films for Gas Sensing in Advanced Coal Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ohodnicki, Paul; Brown, Thomas; Baltrus John; Chorpening, Benjamin

    2012-08-09

    Even for existing coal based plants, the opportunity for sensors and controls to improve efficiency is great. A wide range of gas species are of interest for relevant applications. Functional sensor layers for embedded sensing must be compatible with extreme conditions (temperature, pressure, corrosive). Au incorporated metal oxides have been looked at by a number of other authors previously for gas sensing, but have often focused on temperatures below 500{degree}C. Au nanoparticle incorporated metal oxide thin films have shown enhanced gas sensing response. In prior work, we have demonstrated that material systems such as Au nanoparticle incorporated TiO{sub 2} films exhibit a potentially useful optical response to changing gas atmospheres at temperatures up to ~800-850{degree}C. Current work is focused on sputter-deposited Au/TiO{sub 2} films. Au and Ti are multi-layered sputter deposited, followed by a 950{degree}C oxidation step. Increasing Au layer thickness yields larger particles. Interband electronic transitions significantly modify the optical constants of Au as compared to the damped free electron theory. A high temperature oxidation (20%O{sub 2}/N{sub 2}) treatment was performed at 700{degree}C followed by a reduction (4%H{sub 2}/N{sub 2}) treatment to illustrate the shift in both absorption and scattering with exposure to reducing gases. Shift of localized surface plasmon resonance (LSPR) absorption peak in changing gas atmospheres is well documented, but shift in the peak associated with diffuse scattering is a new observation. Increasing Au layer-thickness results in an increase in LSPR absorption and a shift to longer wavelengths. Diffuse scattering associated with the LSPR resonance of Au shows a similar trend with increasing Au thickness. To model the temperature dependence of LSPR, the modification to the plasmon frequency, the damping frequency, and the dielectric constant of the oxide matrix must be accounted for. Thermal expansion of Au causes

  11. Development of advanced fabrication technology for high-temperature gas-cooled reactor fuel. Reduction of coating failure fraction

    International Nuclear Information System (INIS)

    Minato, Kazuo; Kikuchi, Hironobu; Fukuda, Kousaku; Tobita, Tsutomu; Yoshimuta, Sigeharu; Suzuki, Nobuyuki; Tomimoto, Hiroshi; Nishimura, Kazuhisa; Oda, Takafumi

    1998-11-01

    The advanced fabrication technology for high-temperature gas-cooled reactor fuel has been developed to reduce the coating failure fraction of the fuel particles, which leads to an improvement of the reactor safety. The present report reviews the results of the relevant work. The mechanisms of the coating failure of the fuel particles during coating and compaction processes of the fuel fabrication were studied to determine a way to reduce the coating failure fraction of the fuel. The coating process was improved by optimizing the mode of the particle fluidization and by developing the process without unloading and loading of the particles at intermediate coating process. The compaction process was improved by optimizing the combination of the pressing temperature and the pressing speed of the overcoated particles. Through these modifications of the fabrication process, the quality of the fuel was improved outstandingly. (author)

  12. Preparation for Future Defuelling and Decommissioning Works on EDF Energy's UK Fleet of Advanced Gas Cooled Reactors

    International Nuclear Information System (INIS)

    Bryers, John; Ashmead, Simon

    2016-01-01

    EDF Energy/Nuclear Generation is the owner and operator of 14 Advanced Gas cooled Reactors (AGR) and one Pressurised Water Reactor (PWR), on 8 nuclear stations in the UK. EDF Energy/Nuclear Generation is responsible for all the activities associated with the end of life of its nuclear installations: de-fuelling, decommissioning and waste management. As the first AGR is forecast to cease generation within 10 years, EDF Energy has started planning for the decommissioning. This paper covers: - broad outline of the technical strategy and arrangements for future de-fuelling and decommissioning works on the UK AGR fleet, - high level strategic drivers and alignment with wider UK nuclear policy, - overall programme of preparation and initial works, - technical approaches to be adopted during decommissioning. (authors)

  13. Advances in Hydrogen, Carbon Dioxide, and Hydrocarbon Gas Sensor Technology Using GaN and ZnO-Based Devices

    Directory of Open Access Journals (Sweden)

    Jenshan Lin

    2009-06-01

    Full Text Available In this paper, we review our recent results in developing gas sensors for hydrogen using various device structures, including ZnO nanowires and GaN High Electron Mobility Transistors (HEMTs. ZnO nanowires are particularly interesting because they have a large surface area to volume ratio, which will improve sensitivity, and because they operate at low current levels, will have low power requirements in a sensor module. GaN-based devices offer the advantage of the HEMT structure, high temperature operation, and simple integration with existing fabrication technology and sensing systems. Improvements in sensitivity, recoverability, and reliability are presented. Also reported are demonstrations of detection of other gases, including CO2 and C2H4 using functionalized GaN HEMTs. This is critical for the development of lab-on-a-chip type systems and can provide a significant advance towards a market-ready sensor application.

  14. Advances in Hydrogen, Carbon Dioxide, and Hydrocarbon Gas Sensor Technology Using GaN and ZnO-Based Devices.

    Science.gov (United States)

    Anderson, Travis; Ren, Fan; Pearton, Stephen; Kang, Byoung Sam; Wang, Hung-Ta; Chang, Chih-Yang; Lin, Jenshan

    2009-01-01

    In this paper, we review our recent results in developing gas sensors for hydrogen using various device structures, including ZnO nanowires and GaN High Electron Mobility Transistors (HEMTs). ZnO nanowires are particularly interesting because they have a large surface area to volume ratio, which will improve sensitivity, and because they operate at low current levels, will have low power requirements in a sensor module. GaN-based devices offer the advantage of the HEMT structure, high temperature operation, and simple integration with existing fabrication technology and sensing systems. Improvements in sensitivity, recoverability, and reliability are presented. Also reported are demonstrations of detection of other gases, including CO(2) and C(2)H(4) using functionalized GaN HEMTs. This is critical for the development of lab-on-a-chip type systems and can provide a significant advance towards a market-ready sensor application.

  15. Advances in metabolic engineering in the microbial production of fuels and chemicals from C1 gas.

    Science.gov (United States)

    Humphreys, Christopher M; Minton, Nigel P

    2018-04-01

    The future sustainable production of chemicals and fuels from non-petrochemical sources, while at the same time reducing greenhouse gas (GHG) emissions, represent two of society's greatest challenges. Microbial chassis able to grow on waste carbon monoxide (CO) and carbon dioxide (CO 2 ) can provide solutions to both. Ranging from the anaerobic acetogens, through the aerobic chemoautotrophs to the photoautotrophic cyanobacteria, they are able to convert C1 gases into a range of chemicals and fuels which may be enhanced and extended through appropriate metabolic engineering. The necessary improvements will be facilitated by the increasingly sophisticated gene tools that are beginning to emerge as part of the Synthetic Biology revolution. These tools, in combination with more accurate metabolic and genome scale models, will enable C1 chassis to deliver their full potential. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Advanced Acid Gas Separation Technology for Clean Power and Syngas Applications

    Energy Technology Data Exchange (ETDEWEB)

    Amy, Fabrice [Air Products and Chemicals Inc., Allentown, PA (United States); Hufton, Jeffrey [Air Products and Chemicals Inc., Allentown, PA (United States); Bhadra, Shubhra [Air Products and Chemicals Inc., Allentown, PA (United States); Weist, Edward [Air Products and Chemicals Inc., Allentown, PA (United States); Lau, Garret [Air Products and Chemicals Inc., Allentown, PA (United States); Jonas, Gordon [Air Products and Chemicals Inc., Allentown, PA (United States)

    2015-06-30

    Air Products has developed an acid gas removal technology based on adsorption (Sour PSA) that favorably compares with incumbent AGR technologies. During this DOE-sponsored study, Air Products has been able to increase the Sour PSA technology readiness level by successfully operating a two-bed test system on coal-derived sour syngas at the NCCC, validating the lifetime and performance of the adsorbent material. Both proprietary simulation and data obtained during the testing at NCCC were used to further refine the estimate of the performance of the Sour PSA technology when expanded to a commercial scale. In-house experiments on sweet syngas combined with simulation work allowed Air Products to develop new PSA cycles that allowed for further reduction in capital expenditure. Finally our techno economic analysis of the use the Sour PSA technology for both IGCC and coal-to-methanol applications suggests significant improvement of the unit cost of electricity and methanol compared to incumbent AGR technologies.

  17. Diesel engine exhaust gas recirculation--a review on advanced and novel concepts

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Ming E-mail: mzheng@uwindsor.ca; Reader, Graham T.; Hawley, J. Gary

    2004-04-01

    Exhaust gas recirculation (EGR) is effective to reduce nitrogen oxides (NO{sub x}) from Diesel engines because it lowers the flame temperature and the oxygen concentration of the working fluid in the combustion chamber. However, as NO{sub x} reduces, particulate matter (PM) increases, resulting from the lowered oxygen concentration. When EGR further increases, the engine operation reaches zones with higher instabilities, increased carbonaceous emissions and even power losses. In this research, the paths and limits to reduce NO{sub x} emissions from Diesel engines are briefly reviewed, and the inevitable uses of EGR are highlighted. The impact of EGR on Diesel operations is analyzed and a variety of ways to implement EGR are outlined. Thereafter, new concepts regarding EGR stream treatment and EGR hydrogen reforming are proposed.

  18. Recent Advances in Gas and Chemical Detection by Vernier Effect-Based Photonic Sensors

    Directory of Open Access Journals (Sweden)

    Mario La Notte

    2014-03-01

    Full Text Available Recently, the Vernier effect has been proved to be very efficient for significantly improving the sensitivity and the limit of detection (LOD of chemical, biochemical and gas photonic sensors. In this paper a review of compact and efficient photonic sensors based on the Vernier effect is presented. The most relevant results of several theoretical and experimental works are reported, and the theoretical model of the typical Vernier effect-based sensor is discussed as well. In particular, sensitivity up to 460 μm/RIU has been experimentally reported, while ultra-high sensitivity of 2,500 μm/RIU and ultra-low LOD of 8.79 × 10−8 RIU have been theoretically demonstrated, employing a Mach-Zehnder Interferometer (MZI as sensing device instead of an add drop ring resonator.

  19. High temperature corrosion of advanced ceramic materials for hot gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Crossland, C.E.; Shelleman, D.L.; Spear, K.E. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1996-08-01

    A vertical flow-through furnace has been built to study the effect of corrosion on the morphology and mechanical properties of ceramic hot gas filters. Sections of 3M Type 203 and DuPont Lanxide SiC-SiC filter tubes were sealed at one end and suspended in the furnace while being subjected to a simulated coal combustion environment at 870{degrees}C. X-ray diffraction and electron microscopy is used to identify phase and morphology changes due to corrosion while burst testing determines the loss of mechanical strength after exposure to the combustion gases. Additionally, a thermodynamic database of gaseous silicon compounds is currently being established so that calculations can be made to predict important products of the reaction of the environment with the ceramics. These thermodynamic calculations provide useful information concerning the regimes where the ceramic may be degraded by material vaporization. To verify the durability and predict lifetime performance of ceramic heat exchangers in coal combustion environments, long-term exposure testing of stressed (internally pressurized) tubes must be performed in actual coal combustion environments. The authors have designed a system that will internally pressurize 2 inch OD by 48 inch long ceramic heat exchanger tubes to a maximum pressure of 200 psi while exposing the outer surface of the tubes to coal combustion gas at the Combustion and Environmental Research Facility (CERF) at the Pittsburgh Energy and Technology Center. Water-cooled, internal o-ring pressure seals were designed to accommodate the existing 6 inch by 6 inch access panels of the CERF. Tubes will be exposed for up to a maximum of 500 hours at temperatures of 2500 and 2600{degrees}F with an internal pressure of 200 psi. If the tubes survive, their retained strength will be measured using the high temperature tube burst test facility at Penn State University. Fractographic analysis will be performed to identify the failure source(s) for the tubes.

  20. Advanced coal-fueled industrial cogeneration gas turbine system -- combustion development

    Energy Technology Data Exchange (ETDEWEB)

    LeCren, R.T.

    1994-06-01

    This topical report summarizes the combustor development work accomplished under the subject contract. The objective was to develop a combustion system for the Solar 4MW Type H Centaur gas turbine generator set which was to be used to demonstrate the economic, technical and environmental feasibility of a direct coal-fueled gas turbine in a 100 hour proof-of-concept test. This program started with a design configuration derived during the CSC program. The design went through the following evolution: CSC design which had some known shortcomings, redesigned CSC now designated as the Two Stage Slagging Combustor (TSSC), improved TSSC with the PRIS evaluated in the IBSTF, and full scale design. Supporting and complimentary activities included computer modelling, flow visualization, slag removal, SO{sub x} removal, fuel injector development and fuel properties evaluation. Three combustor rigs were utilized: the TSSC, the IBSTF and the full scale rig at Peoria. The TSSC rig, which was 1/10th scale of the proposed system, consisted of a primary and secondary zone and was used to develop the primary zone performance and to evaluate SO{sub x} and slag removal and fuel properties variations. The IBSTF rig which included all the components of the proposed system was also 1/10th scale except for the particulate removal system which was about 1/30th scale. This rig was used to verify combustor performance data obtained on the TSSC and to develop the PRIS and the particulate removal system. The full scale rig initially included the primary and secondary zones and was later modified to incorporate the PRIS. The purpose of the full scale testing was to verify the scale up calculations and to provide a combustion system for the proof-of-concept engine test that was initially planned in the program.

  1. Advanced separation technology for flue gas cleanup. Quarterly technical report No. 11, October 1994--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Bhown, A.S.; Alvarado, D.; Pakala, N. [and others

    1994-12-01

    The objective of this work is to develop a novel system for regenerable SO{sub 2} and NO{sub x} scrubbing of flue gas that focuses on (a) a novel method for regeneration of spent SO{sub 2} scrubbing liquor and (b) novel chemistry for reversible absorption of NO{sub x}. In addition, high efficiency hollow fiber contactors (HFC) are proposed as the devices for scrubbing the SO{sub 2} and NO{sub x} from the flue gas. The system will be designed to remove more than 95% of the SO{sub x} and more than 75% of the NO{sub x} from flue gases typical of pulverized coal-fired power plants at a cost that is at least 20% less than combined wet limestone scrubbing of SO{sub x} and selective catalytic reduction of NO{sub x}. In addition, the process will make only marketable byproducts, if any (no waste streams). The major cost item in existing technology is capital investment. Therefore, our approach is to reduce the capital cost by using high efficiency hollow fiber devices for absorbing and desorbing the SO{sub 2} and NO{sub x}. We will also introduce new process chemistry to minimize traditionally well-known problems with SO{sub 2} and NO{sub x} absorption and desorption. For example, we will extract the SO{sub 2} from the aqueous scrubbing liquor into an oligomer of dimethylaniline to avoid the problem of organic liquid losses in the regeneration of the organic liquid.

  2. Green competitiveness research on Chinese automotive enterprises

    Directory of Open Access Journals (Sweden)

    Yuanhui Li

    2014-05-01

    Full Text Available Purpose: More and more executives of automobileindustry in China start to recognize the concept of green competitiveness recently. However, relatively less research attention has been devoted to the consideration of measurement. This paper aims to find empirical approach to quantify green competitiveness for automotive enterprises. The connotation of green competitiveness is explored and one suite of evaluation index system has been proposed with four dimensions including environmental, resource, capability and knowledge.Design/methodology/approach: By introducing the factor analysis method, green competitiveness has been measured through an empirical analysis of 24 automotive enterprises within China.Findings: The results indicate that those elements, such as enterprise resource possession and utilization; environment, responsibility and knowledge; profitability; management efficiency, have significant effect on the green competitiveness for automotive enterprises. The further analysis also unveils the advantages and disadvantages of green competitiveness for each company and the direction for improvement.Research limitations/implications: Guide regulators and managers of automobile industry to take some measures to enhance their green competitive advantage.Practical implications: Provide practical methods to measure green competitiveness for automotive enterprises.Originality/value: This paper proposes an evaluation index system of green competitiveness for automotive enterprises. The suggestions of our research will be beneficial to enterprise executives and industry regulators.

  3. Current Status of the Advanced Residual Gas Monitor for Heavy Ion Synchrotron Applications

    CERN Document Server

    Liakin, D A; Sergeeva, O; Skachkov, V S

    2005-01-01

    The challenge and complexity of the advanced RGM requires very careful design of each structural component of the monitor and special attention to match the properties of different subsystems. In the present paper the status of the high performance readout electronics is discussed. Single optical decoupled profile measurement channel (one of 100) with 14 bit resolution and 10 MHz bandwidth was tested and step-by-step improved. Special attention had been paid to the noise cancellation and digital data processing algorithms optimization. Another important point is a proper electromagnetic guiding system design. As it is shown, high field homogeneity, which is required for sub-millimeter spatial resolution, can be achieved despite the presence of the field-distorting hole for the light signal transmitting. The low energy (down to 10MeV per nucleon) beam disturbance compensation methods are also discussed. The ionization process and electron dynamics simulations are used for proving this system design.

  4. Status of Technological Advancements for Reducing Aircraft Gas Turbine Engine Pollutant Emissions

    Science.gov (United States)

    Rudey, R. A.

    1975-01-01

    Combustor test rig results indicate that substantial reductions from current emission levels of carbon monoxide (CO), total unburned hydrocarbons (THC), oxides of nitrogen (NOx), and smoke are achievable by employing varying degrees of technological advancements in combustion systems. Minor to moderate modifications to existing conventional combustors produced significant reductions in CO and THC emissions at engine low power (idle/taxi) operating conditions but did not effectively reduce NOx at engine full power (takeoff) operating conditions. Staged combusiton techniques were needed to simultaneously reduce the levels of all the emissions over the entire engine operating range (from idle to takeoff). Emission levels that approached or were below the requirements of the 1979 EPA standards were achieved with the staged combustion systems and in some cases with the minor to moderate modifications to existing conventional combustion systems. Results from research programs indicate that an entire new generation of combustor technology with extremely low emission levels may be possible in the future.

  5. Online analysis of H2S and SO2 via advanced mid-infrared gas sensors.

    Science.gov (United States)

    Petruci, João Flavio da Silveira; Wilk, Andreas; Cardoso, Arnaldo Alves; Mizaikoff, Boris

    2015-10-06

    Volatile sulfur compounds (VSCs) are among the most prevalent emitted pollutants in urban and rural atmospheres. Mainly because of the versatility of sulfur regarding its oxidation state (2- to 6+), VSCs are present in a wide variety of redox-environments, concentration levels, and molar ratios. Among the VSCs, hydrogen sulfide and sulfur dioxide are considered most relevant and have simultaneously been detected within naturally and anthropogenically caused emission events (e.g., volcano emissions, food production and industries, coal pyrolysis, and various biological activities). Next to their presence as pollutants, changes within their molar ratio may also indicate natural anomalies. Prior to analysis, H2S- and SO2-containing samples are usually preconcentrated via solid sorbents and are then detected by gas chromatographic techniques. However, such analytical strategies may be of limited selectivity, and the dimensions and operation modalities of the involved instruments prevent routine field usage. In this contribution, we therefore describe an innovative portable mid-infrared chemical sensor for simultaneously determining and quantifying gaseous H2S and SO2 via coupling a substrate-integrated hollow waveguides (iHWG) serving as a highly miniaturized mid-infrared photon conduit and gas cell with a custom-made preconcentration tube and an in-line UV-converter device. Both species were collected onto a solid sorbent within the preconcentrator and then released by thermal desorption into the UV-device. Hydrogen sulfide is detected by UV-assisted quantitative conversion of the rather weak IR-absorber H2S into SO2, which provides a significantly more pronounced and distinctively detectable rovibrational signature. Modulation of the UV-device system (i.e., UV-lamp on/off) enables discriminating between SO2 generated from H2S conversion and abundant SO2 signals. After optimization of the operational parameters, calibrations in the range of 0.75-10 ppmv with a limit

  6. MOTHER MK II: An advanced direct cycle high temperature gas reactor

    International Nuclear Information System (INIS)

    Hart, R.S.; Kendall, J.M.; Marsden, B.J.

    2003-01-01

    The MOTHER (MOdular Thermal HElium Reactor) power plant concepts employ high temperature gas reactors utilizing TRISO fuel, graphite moderator, and helium coolant, in combination with a direct Brayton cycle for electricity generation. The helium coolant from the reactor vessel passes through a Power Conversion Unit (PCU), which includes a turbine-generator, recuperator, precooler, intercooler and turbine-compressors, before being returned to the reactor vessel. The PCU substitutes for the reactor coolant system pumps and steam generators and most of the Balance Of Plant (BOP), including the steam turbines and condensers, employed by conventional nuclear power plants utilizing water cooled reactors. This provides a compact, efficient, and relatively simple plant configuration. The MOTHER MK I conceptual design, completed in the 1987 - 1989 time frame, was developed to economically meet the energy demands for extracting and processing heavy oil from the tar sands of western Canada. However, considerable effort was made to maximize the market potential beyond this application. Consistent with the remote and very high labour rate environment in the tar sands region, simplification of maintenance procedures and facilitation of 'change-out' in lieu of in situ repair was a design focus. MOTHER MK I had a thermal output of 288 MW and produced 120 MW electrical when operated in the electricity only production mode. An annular Prismatic reactor core was utilized, largely to minimize day-to-day operations activities. Key features of the power conversion system included two Power Conversion Units (144 MW th each), the horizontal orientation of all rotating machinery and major heat exchangers axes, high speed rotating machinery (17,030 rpm for the turbine-compressors and 10,200 rpm for the power turbine-generator), gas (helium) bearings for all rotating machinery, and solid state frequency conversion from 170 cps (at full power) to the grid frequency. Recognizing that the on

  7. Characterization of gas metal arc welded hot rolled DP600 steel

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, K.; Ramazani, A.; Yang, L.; Prahl, U.; Bleck, W. [RWTH Aachen University, Institute for Ferrous Metallurgy (IEHK) (Germany); Reisgen, U.; Schleser, M.; Abdurakhmanov, A. [RWTH Aachen University, Welding and Joining Institute (ISF) (Germany)

    2011-12-15

    Dual-phase (DP) steels are suitable candidates for automotive applications due to their high strength and ductility. These advanced mechanical properties result from the special microstructure of the DP steel with 5{proportional_to}20% martensite phase in a soft ferrite matrix. However, during welding, which is an important process in automotive industry, this special microstructure is destroyed. In this research the characterization of Gas Metal Arc (GMA) welded joining zones was performed by optical microscopy and hardness mapping. Tensile tests were also performed keeping the welded portion in the gauge length. Scanning Electron Microscopy (SEM) was used for the fracture investigation. From the characterization and tensile tests, the soften zones were found, which are caused by the tempered martensite and larger ferrite grain size than that in base metal. Furthermore, GMA welding make a large Heat Affected Zone (HAZ). (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Multi-purpose nuclear heat source for advanced gas-cooled reactor plants

    International Nuclear Information System (INIS)

    McDonald, C.F.

    1993-01-01

    Nuclear power has the potential to be the ultimate green technology in that it could eliminate the need for burning fossil fuels with their polluting combustion products and greenhouse gases. This view is shared by many technologists, but it may be a generation before the public becomes convinced, and that will involve overcoming many safety, institutional, financial, and technical impediments. This paper addresses only the latter topic; a major theme being that for nuclear power to truly be a green technology and significantly benefit society, it must meet the needs of the full energy spectrum. Specifically, it must satisfy energy needs beyond just the electricity generating sector by today's nuclear plants. By virtue of its high temperature capability, the Modular High Temperature Gas-Cooled Reactor (MHTGR) is the only type of reactor that has the potential to meet the wide range of energy needs that will emerge in the future. This paper discusses the nuclear heat source that gives the MHTGR multi-purpose capability, which is recognized today, but will not be implemented until early in the next century

  9. Advanced knowledge system for coatings and the gas turbine MRO industry

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, P.E.; Hall, W.; Shadbolt, N.R.; Alani, H.; Szomszo, M. [Southampton Univ. (United Kingdom)

    2008-07-01

    The growth of data generated within thermal spraying is, for many, a daunting business. Yet, this growing resource represents a largely untapped and potentially valuable asset capable of providing 'knowledge' rather than just 'information'. Many companies already use a range of Web based tools. However, the Web itself is changing and the vision for the future, the 'Semantic Web', is set to revolutionise how business will be done. One important aspect of this Web 'future' is that web pages will be greatly enriched and data will have additional information (tags) which help to describe it and more significantly, put the data into a context. This will enable machine readability and the use of query languages to ask direct questions. Following on from ideas introduced at ITSC 2007, a proof of concept demonstrator has been built for thermal spray coatings used in the Maintenance Repair and Overhaul (MRO) of gas turbines. A system has been built which stores and manipulates a range of data including; aircraft deliveries, RSS feeds of aircraft sales, engine types, MRO business details, thermal spray coatings and market dynamics. This paper presents the development of this system and discusses its future potential. (orig.)

  10. Advanced diagnostics for impact-flash spectroscopy on light-gas guns.

    Energy Technology Data Exchange (ETDEWEB)

    Breiland, William George; Reinhart, William Dodd; Miller, Paul Albert; Brown, Justin L.; Thornhill, Tom Finley, III (,; ); Mangan, Michael A.; Shaner, Eric Arthur; Chhabildas, Lalit Chandra; Grine, Albert D.; Wanke, Michael Clement; Alexander, C. Scott

    2007-03-01

    This study is best characterized as new technology development for implementing new sensors to investigate the optical characteristics of a rapidly expanding debris cloud resulting from hypervelocity impact regimes of 7 to 11 km/s. Our gas guns constitute a unique test bed that match operational conditions relevant to hypervelocity impact encountered in space engagements. We have demonstrated the use of (1) terahertz sensors, (2) silicon diodes for visible regimes, (3) germanium and InGaAs sensors for the near infrared regimes, and (4) the Sandia lightning detectors which are similar to the silicon diodes described in 2. The combination and complementary use of all these techniques has the strong potential of ''thermally'' characterizing the time dependent behavior of the radiating debris cloud. Complementary spectroscopic measurements provide temperature estimates of the impact generated debris by fitting its spectrum to a blackbody radiation function. This debris is time-dependent as its transport/expansion behavior is changing with time. The rapid expansion behavior of the debris cools the cloud rapidly, changing its thermal/temperature characteristics with time. A variety of sensors that span over a wide spectrum, varying from visible regime to THz frequencies, now gives us the potential to cover the impact over a broader temporal regime starting from high pressures (Mbar) high-temperatures (eV) to low pressures (mbar) low temperatures (less than room temperature) as the debris expands and cools.

  11. Advanced Acid Gas Separation Technology for the Utilization of Low Rank Coals

    Energy Technology Data Exchange (ETDEWEB)

    Kloosterman, Jeff

    2012-12-31

    Air Products has developed a potentially ground-breaking technology – Sour Pressure Swing Adsorption (PSA) – to replace the solvent-based acid gas removal (AGR) systems currently employed to separate sulfur containing species, along with CO{sub 2} and other impurities, from gasifier syngas streams. The Sour PSA technology is based on adsorption processes that utilize pressure swing or temperature swing regeneration methods. Sour PSA technology has already been shown with higher rank coals to provide a significant reduction in the cost of CO{sub 2} capture for power generation, which should translate to a reduction in cost of electricity (COE), compared to baseline CO{sub 2} capture plant design. The objective of this project is to test the performance and capability of the adsorbents in handling tar and other impurities using a gaseous mixture generated from the gasification of lower rank, lignite coal. The results of this testing are used to generate a high-level pilot process design, and to prepare a techno-economic assessment evaluating the applicability of the technology to plants utilizing these coals.

  12. Advanced Laser-Based Techniques for Gas-Phase Diagnostics in Combustion and Aerospace Engineering.

    Science.gov (United States)

    Ehn, Andreas; Zhu, Jiajian; Li, Xuesong; Kiefer, Johannes

    2017-03-01

    Gaining information of species, temperature, and velocity distributions in turbulent combustion and high-speed reactive flows is challenging, particularly for conducting measurements without influencing the experimental object itself. The use of optical and spectroscopic techniques, and in particular laser-based diagnostics, has shown outstanding abilities for performing non-intrusive in situ diagnostics. The development of instrumentation, such as robust lasers with high pulse energy, ultra-short pulse duration, and high repetition rate along with digitized cameras exhibiting high sensitivity, large dynamic range, and frame rates on the order of MHz, has opened up for temporally and spatially resolved volumetric measurements of extreme dynamics and complexities. The aim of this article is to present selected important laser-based techniques for gas-phase diagnostics focusing on their applications in combustion and aerospace engineering. Applicable laser-based techniques for investigations of turbulent flows and combustion such as planar laser-induced fluorescence, Raman and Rayleigh scattering, coherent anti-Stokes Raman scattering, laser-induced grating scattering, particle image velocimetry, laser Doppler anemometry, and tomographic imaging are reviewed and described with some background physics. In addition, demands on instrumentation are further discussed to give insight in the possibilities that are offered by laser flow diagnostics.

  13. Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine

    Energy Technology Data Exchange (ETDEWEB)

    David B. Burnett

    2004-09-29

    Produced water is a major waste generated at the oil and natural gas wells in the state of Texas. This water could be a possible source of new fresh water to meet the growing demands of the state after treatment and purification. Treatment of brine generated in oil fields or produced water with an ultrafiltration membranes were the subject of this thesis. The characterization of ultrafiltration membranes for oil and suspended solids removal of produced water, coupled with the reverse osmosis (RO) desalination of brine were studied on lab size membrane testing equipment and a field size testing unit to test whether a viable membrane system could be used to treat produced water. Oil and suspended solids were evaluated using turbidity and oil in water measurements taken periodically. The research considered the effect of pressure and flow rate on membrane performance of produced water treatment of three commercially available membranes for oily water. The study also analyzed the flux through the membrane and any effect it had on membrane performance. The research showed that an ultrafiltration membrane provided turbidity removal of over 99% and oil removal of 78% for the produced water samples. The results indicated that the ultrafiltration membranes would be asset as one of the first steps in purifying the water. Further results on selected RO membranes showed that salt rejection of greater than 97% could be achieved with satisfactory flux and at reasonable operating cost.

  14. Tritium release from advanced beryllium materials after loading by tritium/hydrogen gas mixture

    Energy Technology Data Exchange (ETDEWEB)

    Chakin, Vladimir, E-mail: vladimir.chakin@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rolli, Rolf; Moeslang, Anton; Kurinskiy, Petr; Vladimirov, Pavel [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Dorn, Christopher [Materion Beryllium & Composites, 6070 Parkland Boulevard, Mayfield Heights, OH 44124-4191 (United States); Kupriyanov, Igor [Bochvar Russian Scientific Research Institute of Inorganic Materials, Rogova str., 5, 123098 Moscow (Russian Federation)

    2016-06-15

    Highlights: • A major tritium release peak for beryllium samples occurs at temperatures higher than 1250 K. • A beryllium grade with comparatively smaller grain size has a comparatively higher tritium release compared to the grade with larger grain size. • The pebbles of irregular shape with the grain size of 10–30 μm produced by the crushing method demonstrate the highest tritium release rate. - Abstract: Comparison of different beryllium samples on tritium release and retention properties after high-temperature loading by tritium/hydrogen gas mixture and following temperature-programmed desorption (TPD) tests has been performed. The I-220-H grade produced by hot isostatic pressing (HIP) having the smallest grain size, the pebbles of irregular shape with the smallest grain size (10–30 μm) produced by the crushing method (CM), and the pebbles with 1 mm diameter produced by the fluoride reduction method (FRM) having a highly developed inherent porosity show the highest release rate. Grain size and porosity are considered as key structural parameters for comparison and ranking of different beryllium materials on tritium release and retention properties.

  15. On the comparison of different multiphase flow kernels for gas pipeline real time advanced functions

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Renan Martins; Barbosa Figueiredo, Aline; Bodstein, Gustavo C. R. [Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, (Brazil)

    2010-07-01

    Two-fluid models identify and treat phases independently. These models could be useful for developing high performance tools for leak detection, location and quantification. This paper reports the development of a simplified two-fluid model called SPM-4. Different computer methods were tested (Richtmyer, Force, FCT, TVD/LAX, Rusanov), from first orde centered schemes up to second order characteristics-based schemes. A theoretical scenario was created based on on-field data. A typical two-phase gas pipeline was defined as a test scenario for comparing the simplified two-phase flow simulator based on SPM-4 with the latest version of OLGA, a commercial computerized flow simulator. Also the different selected computer methods for SPM-4 were compared to each other and with the OLGA 2PM-6 models as reference. The final results showed the Richtmyer and FCT are the most consistent methods in terms of accuracy and CPU performance when compared to the benchmark 2PM-6.

  16. Sulphur removal from used automotive lubricating oil by ionizing radiation

    International Nuclear Information System (INIS)

    Scapin, Marcos Antonio; Duarte, Celina Lopes; Sato, Ivone Mulako

    2007-01-01

    Following the worldwide evolution with the purpose of a higher control of vehicular emissions, the specialists have looked for clean technologies and efficient procedures to make vehicular emissions free of pollutants. Much attention is given to the sulphur concentration in the gasoline, diesel and lubricating oils. The ionizing radiation is a promising technology for the removal of this pollutant when compared to other conventional treatment methods. In this work, the ionizing radiation was used to remove in significant levels the presence of sulphur in automotive motor oil. A 1000 mL sample of used automotive lubricating oil from a gas station was collected. This sample was fractioned and irradiated with 10, 20 50, 100, 200 and 500 kGy doses in a 60 Co irradiator (GAMMACELL-220 - 12 kCi). The 50 and 70% (v/v) of MilliQ water and 30% (v/v) of hydrogen peroxide was used to improve the radiolysis The sulphur element before and after the irradiation was determined by X-ray fluorescence technique (WDXRF) using the Fundamental Parameters Method. The results showed approximately 70% sulphur removal at 500 kGy irradiation dose with 70% (v/v) of MilliQ water addition. (author)

  17. Integrating Phase-Change Materials into Automotive Thermoelectric Generators

    Science.gov (United States)

    Klein Altstedde, Mirko; Rinderknecht, Frank; Friedrich, Horst

    2014-06-01

    Because the heat emitted by conventional combustion-engine vehicles during operation has highly transient properties, automotive thermoelectric generators (TEG) are intended for a particular operating state (design point). This, however, leads to two problems. First, whenever the combustion engine runs at low load, the maximum operating temperature cannot be properly utilised; second, a combustion engine at high load requires partial diversion of exhaust gas away from the TEG to protect the thermoelectric modules. An attractive means of stabilising dynamic exhaust behaviour (thereby keeping the TEG operating status at the design point for as long as possible) is use of latent heat storage, also known as phase-change materials (PCM). By positioning PCM between module and exhaust heat conduit, and choosing a material with a phase-change temperature matching the module's optimum operating temperature, it can be used as heat storage. This paper presents results obtained during examination of the effect of integration of latent heat storage on the potential of automotive TEG to convert exhaust heat. The research resulted in the development of a concept based on the initial integration idea, followed by proof of concept by use of a specially created prototype. In addition, the potential amount of energy obtained by use of a PCM-equipped TEG was calculated. The simulations indicated a significant increase in electrical energy was obtained in the selected test cycle.

  18. Fuel saver based on electromagnetic induction for automotive engine

    Science.gov (United States)

    Siregar, Houtman P.; Sibarani, Maradu

    2007-12-01

    In the considered research is designed and analyzed the performance of the fuel saver which is based on electromagnetic induction for automotive diesel engine. The fuel saver which is based on permanent magnet has sold in market and its performance has tested. In comparison to the former fuel saver, in the proposed work is produced fuel saver which is based on electromagnetic induction. The considered research is the continuation of my former work. Performance of the produced fuel saver which is installed in the fuel line of internal combustion engine rig is compared to the performance of the standard internal combustion engine rig Speed of the engine, wire diameter of coil, and number of coil which is coiled in the winding of the the fuel saver are chosen as the testing variables. The considered research has succeeded to design the fuel saver which is based on electromagnetic induction for saving the automotive fuel consumption. Results of the research show that the addition of the fuel saver which is based on electromagnetic induction to the flow of the diesel fuel can significantly save the automative fuel consumption. In addition the designed fuel saver can reduce the opacity of the emission gas.

  19. ROS (Robot Operating System) für Automotive

    OpenAIRE

    Bubeck, Alexander

    2014-01-01

    - Introduction into the Robot Operating System - Open Source in the automotive industries - Application of ROS in the automotive industry - ROS navigation - ROS with real time control - ROS in the embedded world - Outlook: ROS 2.0 - Summary

  20. Ceramic Technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  1. Optimization and optimal control in automotive systems

    CERN Document Server

    Kolmanovsky, Ilya; Steinbuch, Maarten; Re, Luigi

    2014-01-01

    This book demonstrates the use of the optimization techniques that are becoming essential to meet the increasing stringency and variety of requirements for automotive systems. It shows the reader how to move away from earlier  approaches, based on some degree of heuristics, to the use of  more and more common systematic methods. Even systematic methods can be developed and applied in a large number of forms so the text collects contributions from across the theory, methods and real-world automotive applications of optimization. Greater fuel economy, significant reductions in permissible emissions, new drivability requirements and the generally increasing complexity of automotive systems are among the criteria that the contributing authors set themselves to meet. In many cases multiple and often conflicting requirements give rise to multi-objective constrained optimization problems which are also considered. Some of these problems fall into the domain of the traditional multi-disciplinary optimization applie...

  2. Hydrogen: the great debate. 'Power to Gas - how to cope with the challenge of electricity storage?; Hydrogen in energy transition: which challenges to be faced?; Hydrogen, essential today, indispensable tomorrow; Electrolytic hydrogen, a solution for energy transition?; Development of high power electrolysis systems: need and approach; Hydrogen as energy vector, Potential and stakes: a perspective; The Toyota Fuel Cell System: a new era for the automotive industry; Three key factors: production, applications to mobility, and public acceptance; Hydrogen, benevolent fairy or tempting demon

    International Nuclear Information System (INIS)

    Hauet, Jean-Pierre; Boucly, Philippe; Beeker, Etienne; Mauberger, Pascal; Quint, Aliette; Pierre, Helene; Lucchese, Paul; Bouillon-Delporte, Valerie; Chauvet, Bertrand; Brisse, Annabelle; Gautier, Ludmila; Hercberg, Sylvain; De Volder, Marc; Gruson, Jean-Francois; Marion, Pierre; Grellier, Sebastien; Devezeaux, Jean-Guy; Mansilla, Christine; Le Net, Elisabeth; Le Duigou, Alain; Maire, Jacques

    2015-01-01

    This publication proposes a set of contributions which address various issues related to the development of the use of hydrogen as an energy source. More precisely, these contributions discuss how to face the challenge of electricity storage by using the Power-to-Gas technology, the challenges to be faced regarding the role of hydrogen in energy transition, the essential current role of hydrogen and its indispensable role for tomorrow, the possible role of electrolytic hydrogen as a solution for energy transition, the need of and the approach to a development of high power electrolysis systems, the potential and stakes of hydrogen as an energy vector, the Toyota fuel cell system as a sign for new era for automotive industry, the three main factors (production, applications to mobility, and public acceptance) for the use of hydrogen in energy transition, and the role of hydrogen perceived either as a benevolent fairy or a tempting demon

  3. Summary of thermocouple performance during advanced gas reactor fuel irradiation experiments in the advanced test reactor and out-of-pile thermocouple testing in support of such experiments

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, A. J.; Haggard, DC; Herter, J. W.; Swank, W. D.; Knudson, D. L.; Cherry, R. S. [Idaho National Laboratory, P.O. Box 1625, MS 4112, Idaho Falls, ID, (United States); Scervini, M. [University of Cambridge, Department of Material Science and Metallurgy, 27 Charles Babbage Road, CB3 0FS, Cambridge, (United Kingdom)

    2015-07-01

    High temperature gas reactor experiments create unique challenges for thermocouple-based temperature measurements. As a result of the interaction with neutrons, the thermoelements of the thermocouples undergo transmutation, which produces a time-dependent change in composition and, as a consequence, a time-dependent drift of the thermocouple signal. This drift is particularly severe for high temperature platinum-rhodium thermocouples (Types S, R, and B) and tungsten-rhenium thermocouples (Type C). For lower temperature applications, previous experiences with Type K thermocouples in nuclear reactors have shown that they are affected by neutron irradiation only to a limited extent. Similarly, Type N thermocouples are expected to be only slightly affected by neutron fluence. Currently, the use of these nickel-based thermocouples is limited when the temperature exceeds 1000 deg. C due to drift related to phenomena other than nuclear irradiation. High rates of open-circuit failure are also typical. Over the past 10 years, three long-term Advanced Gas Reactor experiments have been conducted with measured temperatures ranging from 700 deg. C - 1200 deg. C. A variety of standard Type N and specialty thermocouple designs have been used in these experiments with mixed results. A brief summary of thermocouple performance in these experiments is provided. Most recently, out-of-pile testing has been conducted on a variety of Type N thermocouple designs at the following (nominal) temperatures and durations: 1150 deg. C and 1200 deg. C for 2,000 hours at each temperature, followed by 200 hours at 1250 deg. C and 200 hours at 1300 deg. C. The standard Type N design utilizes high purity, crushed MgO insulation and an Inconel 600 sheath. Several variations on the standard Type N design were tested, including a Haynes 214 alloy sheath, spinel (MgAl{sub 2}O{sub 4}) insulation instead of MgO, a customized sheath developed at the University of Cambridge, and finally a loose assembly

  4. Summary of Thermocouple Performance During Advanced Gas Reactor Fuel Irradiation Experiments in the Advanced Test Reactor and Out-of-Pile Thermocouple Testing in Support of Such Experiments

    Energy Technology Data Exchange (ETDEWEB)

    A. J. Palmer; DC Haggard; J. W. Herter; M. Scervini; W. D. Swank; D. L. Knudson; R. S. Cherry

    2011-07-01

    High temperature gas reactor experiments create unique challenges for thermocouple based temperature measurements. As a result of the interaction with neutrons, the thermoelements of the thermocouples undergo transmutation, which produces a time dependent change in composition and, as a consequence, a time dependent drift of the thermocouple signal. This drift is particularly severe for high temperature platinum-rhodium thermocouples (Types S, R, and B); and tungsten-rhenium thermocouples (Types C and W). For lower temperature applications, previous experiences with type K thermocouples in nuclear reactors have shown that they are affected by neutron irradiation only to a limited extent. Similarly type N thermocouples are expected to be only slightly affected by neutron fluxes. Currently the use of these Nickel based thermocouples is limited when the temperature exceeds 1000°C due to drift related to phenomena other than nuclear irradiation. High rates of open-circuit failure are also typical. Over the past ten years, three long-term Advanced Gas Reactor (AGR) experiments have been conducted with measured temperatures ranging from 700oC – 1200oC. A variety of standard Type N and specialty thermocouple designs have been used in these experiments with mixed results. A brief summary of thermocouple performance in these experiments is provided. Most recently, out of pile testing has been conducted on a variety of Type N thermocouple designs at the following (nominal) temperatures and durations: 1150oC and 1200oC for 2000 hours at each temperature, followed by 200 hours at 1250oC, and 200 hours at 1300oC. The standard Type N design utilizes high purity crushed MgO insulation and an Inconel 600 sheath. Several variations on the standard Type N design were tested, including Haynes 214 alloy sheath, spinel (MgAl2O4) insulation instead of MgO, a customized sheath developed at the University of Cambridge, and finally a loose assembly thermocouple with hard fired alumina

  5. New market strategies in the automotive industry

    Directory of Open Access Journals (Sweden)

    Kokić Miljko

    2006-01-01

    Full Text Available The world automotive industry has about 30% of excessive capacity. Regardless of that, the new plants are being constantly built. The countries of the East Europe, China and India are selected as suitable areas by almost all world leading car manufactures to build their additional plants in order to make profits. An open world market is subject to an uncompromising striving for each customer. Our manufacturers have to meet the same requirements if want to offer their products in the world market. Finding out of foreign strategic partners is the fastest way to recover a domestic automotive industry and to increase an employment rate.

  6. Fatigue life of automotive rubber jounce bumper

    International Nuclear Information System (INIS)

    Sidhu, R S; Ali, Aidy

    2010-01-01

    It is evident that most rubber components in the automotive industry are subjected to repetitive loading. Vigorous research is needed towards improving the safety and reliability of the components. The study was done on an automotive rubber jounce bumper with a rubber hardness of 60 IRHD. The test was conducted in displacement-controlled environment under compressive load. The existing models by Kim, Harbour, Woo and Li were adopted to predict the fatigue life. The experimental results show strong similarities with the predicted models.

  7. Direct Injection Compression Ignition Diesel Automotive Technology Education GATE Program

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Carl L

    2006-09-25

    The underlying goal of this prqject was to provide multi-disciplinary engineering training for graduate students in the area of internal combustion engines, specifically in direct injection compression ignition engines. The program was designed to educate highly qualified engineers and scientists that will seek to overcome teclmological barriers preventing the development and production of cost-effective high-efficiency vehicles for the U.S. market. Fu1iher, these highly qualified engineers and scientists will foster an educational process to train a future workforce of automotive engineering professionals who are knowledgeable about and have experience in developing and commercializing critical advanced automotive teclmologies. Eight objectives were defmed to accomplish this goal: 1. Develop an interdisciplinary internal co1nbustion engine curriculum emphasizing direct injected combustion ignited diesel engines. 2. Encourage and promote interdisciplinary interaction of the faculty. 3. Offer a Ph.D. degree in internal combustion engines based upon an interdisciplinary cuniculum. 4. Promote strong interaction with indusuy, develop a sense of responsibility with industry and pursue a self sustaining program. 5. Establish collaborative arrangements and network universities active in internal combustion engine study. 6. Further Enhance a First Class educational facility. 7. Establish 'off-campus' M.S. and Ph.D. engine programs of study at various indusuial sites. 8. Extend and Enhance the Graduate Experience.

  8. Passive Two-Phase Cooling of Automotive Power Electronics: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, G.; Jeffers, J. R.; Narumanchi, S.; Bennion, K.

    2014-08-01

    Experiments were conducted to evaluate the use of a passive two-phase cooling strategy as a means of cooling automotive power electronics. The proposed cooling approach utilizes an indirect cooling configuration to alleviate some reliability concerns and to allow the use of conventional power modules. An inverter-scale proof-of-concept cooling system was fabricated, and tests were conducted using the refrigerants hydrofluoroolefin HFO-1234yf and hydrofluorocarbon HFC-245fa. Results demonstrated that the system can dissipate at least 3.5 kW of heat with 250 cm3 of HFC-245fa. An advanced evaporator design that incorporates features to improve performance and reduce size was conceived. Simulation results indicate its thermal resistance can be 37% to 48% lower than automotive dual side cooled power modules. Tests were also conducted to measure the thermal performance of two air-cooled condensers--plain and rifled finned tube designs. The results combined with some analysis were then used to estimate the required condenser size per operating conditions and maximum allowable system (i.e., vapor and liquid) temperatures.

  9. Best Practices in School-to-Careers: The Automotive Industry.

    Science.gov (United States)

    National Employer Leadership Council, Washington, DC.

    This document highlights the school-to-careers (STC) partnerships connecting workplace experiences to classroom learning to prepare students for successful employment in the automotive industry. First, the current state of the automotive industry is reviewed and the role of STC in addressing automotive service needs is explained. Next, the…

  10. Uncertainties in Life Cycle Greenhouse Gas Emissions from Advanced Biomass Feedstock Logistics Supply Chains in Kansas

    Directory of Open Access Journals (Sweden)

    Long Nguyen

    2014-11-01

    Full Text Available To meet Energy Independence and Security Act (EISA cellulosic biofuel mandates, the United States will require an annual domestic supply of about 242 million Mg of biomass by 2022. To improve the feedstock logistics of lignocellulosic biofuels in order to access available biomass resources from areas with varying yields, commodity systems have been proposed and designed to deliver quality-controlled biomass feedstocks at preprocessing “depots”. Preprocessing depots densify and stabilize the biomass prior to long-distance transport and delivery to centralized biorefineries. The logistics of biomass commodity supply chains could introduce spatially variable environmental impacts into the biofuel life cycle due to needing to harvest, move, and preprocess biomass from multiple distances that have variable spatial density. This study examines the uncertainty in greenhouse gas (GHG emissions of corn stover logistics within a bio-ethanol supply chain in the state of Kansas, where sustainable biomass supply varies spatially. Two scenarios were evaluated each having a different number of depots of varying capacity and location within Kansas relative to a central commodity-receiving biorefinery to test GHG emissions uncertainty. The first scenario sited four preprocessing depots evenly across the state of Kansas but within the vicinity of counties having high biomass supply density. The second scenario located five depots based on the shortest depot-to-biorefinery rail distance and biomass availability. The logistics supply chain consists of corn stover harvest, collection and storage, feedstock transport from field to biomass preprocessing depot, preprocessing depot operations, and commodity transport from the biomass preprocessing depot to the biorefinery. Monte Carlo simulation was used to estimate the spatial uncertainty in the feedstock logistics gate-to-gate sequence. Within the logistics supply chain GHG emissions are most sensitive to the

  11. Materials Challenges for Automotive PEM Fuel Cells

    Science.gov (United States)

    Gasteiger, Hubert

    2004-03-01

    Over the past few years, significant R efforts aimed at meeting the challenging cost and performance targets required for the use of Polymer Electrolyte Membrane (PEM) fuel cells in automotive applications. Besides engineering advances in bipolar plate materials and design, the optimization of membrane-electrode assemblies (MEAs) was an important enabler in reducing the cost and performance gaps towards commercial viability for the automotive market. On the one hand, platinum loadings were reduced from several mgPt/cm2MEA [1] to values of 0.5-0.6 mgPt/cm2MEA in current applications and loadings as low as 0.25 mgPt/cm2MEA have been demonstrated on the research level [2]. On the other hand, implementation of thin membranes (20-30 micrometer) [3, 4] as well as improvements in diffusion medium materials, essentially doubled the achievable power density of MEAs to ca. 0.9 W/cm2MEA (at 0.65 V) [5], thereby not only reducing the size of a PEMFC fuel cell system, but also reducing its overall materials cost (controlled to a large extent by membrane and Pt-catalyst cost). While this demonstrated a clear path towards automotive applications, a renewed focus of R efforts is now required to develop materials and fundamental materials understanding to assure long-term durability of PEM fuel cells. This presentation therefore will discuss the state-of-the-art knowledge of catalyst, catalyst-support, and membrane degradation mechanisms. In the area of Pt-catalysts, experience with phosphoric acid fuel cells (PAFCs) has shown that platinum sintering leads to long-term performance losses [6]. While this is less critical at the lower PEMFC operating temperatures (200C), very little is known about the dependence of Pt-sintering on temperature, cell voltage, and catalyst type (i.e., Pt versus Pt-alloys) and will be discussed here. Similarly, carbon-support corrosion can contribute significantly to voltage degradation in PAFCs [7], and even in the PEMFC environment more corrosion

  12. Advancements in Ti Alloy Powder Production by Close-Coupled Gas Atomization

    Energy Technology Data Exchange (ETDEWEB)

    Heidloff, Andy; Rieken, Joel; Anderson, Iver; Byrd, David

    2011-04-01

    As the technology for titanium metal injection molding (Ti-MIM) becomes more readily available, efficient Ti alloy fine powder production methods are required. An update on a novel close-coupled gas atomization system has been given. Unique features of the melting apparatus are shown to have measurable effects on the efficiency and ability to fully melt within the induction skull melting system (ISM). The means to initiate the melt flow were also found to be dependent on melt apparatus. Starting oxygen contents of atomization feedstock are suggested based on oxygen pick up during the atomization and MIM processes and compared to a new ASTM specification. Forming of titanium by metal injection molding (Ti-MIM) has been extensively studied with regards to binders, particle shape, and size distribution and suitable de-binding methods have been discovered. As a result, the visibility of Ti-MIM has steadily increased as reviews of technology, acceptability, and availability have been released. In addition, new ASTM specification ASTM F2885-11 for Ti-MIM for biomedical implants was released in early 2011. As the general acceptance of Ti-MIM as a viable fabrication route increases, demand for economical production of high quality Ti alloy powder for the preparation of Ti-MIM feedstock correspondingly increases. The production of spherical powders from the liquid state has required extensive pre-processing into different shapes thereby increasing costs. This has prompted examination of Ti-MIM with non-spherical particle shape. These particles are produced by the hydride/de-hydride process and are equi-axed but fragmented and angular which is less than ideal. Current prices for MIM quality titanium powder range from $40-$220/kg. While it is ideal for the MIM process to utilize spherical powders within the size range of 0.5-20 {mu}m, titanium's high affinity for oxygen to date has prohibited the use of this powder size range. In order to meet oxygen requirements the top

  13. Carburation automobile. Contribution à l' étude d'un dispositif d'injection de GPL en phase gazeuse Automotive Fuel: Research on a New Gas-Phase Lpg Injection System

    Directory of Open Access Journals (Sweden)

    Dubois J. P.

    2006-11-01

    Full Text Available Les systèmes de carburation traditionnels aux GPL (induction donnent lieu à un certain nombre d'insatisfactions dues, en particulier, aux difficultés de réglages et à une adéquation imparfaite entre matériels et véhicules. Le système d'injection gazeuse mis au point comporte : - un débitmètre à volet mesurant le débit d'air admis au moteur; - un doseur, lié mécaniquement au volet, et fournissant le mélange air-gaz prédéterminé. Un dispositif d'ouverture forcée du volet permet, lorsqu'on fonctionne à l'essence, de ne pas perturber les performances du carburateur; - un vaporiseur détendeur à deux étages dont les fonctions essentielles sont : - la prédétente à 1,5 bar; - la détente finale à 250 mbar; - l'enrichissement à haut régime; - la sécurité intégrée en cas d'arrêt moteur; - un module de démarrage à froid évitant l'envahissement liquide du vaporiseur jusqu'à 10°C Les avantages de ce dispositif sont : - l'universalité : le même modèle est utilisé sur tous véhicules de 60 à 130 ch; - l'absence de réglage : seul le ralenti est à ajuster; - la maîtrise du rapport air/gaz à la valeur choisie; - le bon compromis performances/consommations; - la prise en compte des paramètres réels de fonctionnement. Conventional LPG induction systems used for transportation purposes do not usually work satisfactory, in particular due to adjustment difficulties and to unsuitable equipment/vehicle matching. The LPG injection system that has been developed comprises:(aa flap flowmeter measuring the air flow into the- engine;(b a proportioning device mechanically connected to the flap and supplying the predetermined air/gas mixture (a device forcing the flap open keeps carburettor performances the same when running on gasoline;(c a two-stage pressure regulator having the following main functions:- initial expansion down to 1. 5 bar;- final expansion down to 250 mbar;- high-speed enrichment;- built-in safety in case

  14. Profiles of Major Suppliers to the Automotive Industry : Vol. 5. Multinational Automotive Parts and Components Suppliers

    Science.gov (United States)

    1982-08-01

    This study summarizes extensive information collected over a two-year period (October 1978 to October 1980) on suppliers of parts and components, materials, and machine tools to the automotive industry in the United States. The objective of the study...

  15. Profiles of Major Suppliers to the Automotive Industry : Vol. 6. Foreign Automotive Parts and Components Suppliers.

    Science.gov (United States)

    1982-08-01

    This study summarizes extensive information collected over a two-year period (October 1978 to October 1980) on suppliers of parts and components, materials, and machine tools to the automotive industry in the United States. The objective of the study...

  16. Fuel cell power plants for automotive applications

    Science.gov (United States)

    McElroy, J. F.

    1983-02-01

    While the Solid Polymer Electrolyte (SPE) fuel cell has until recently not been considered competitive with such commercial and industrial energy systems as gas turbine generators and internal combustion engines, electrical current density improvements have markedly improved the capital cost/kW output rating performance of SPE systems. Recent studies of SPE fuel cell applicability to vehicular propulsion have indicated that with adequate development, a powerplant may be produced which will satisfy the performance, size and weight objectives required for viable electric vehicles, and that the cost for such a system would be competitive with alternative advanced power systems.

  17. How to increase and renew the oil and gas reserves? Technology advances and research strategy of IFP

    International Nuclear Information System (INIS)

    2005-01-01

    Technology progresses made to reach new oil and gas resources (heavy crudes, buried deposits, ultra-deep offshore), to better exploit the available reserves (increase of the recovery ratio) and to reduce the costs will allow to enhance the hydrocarbon reserves and to durably extend the limits of the world energy supply. In a context where geopolitical uncertainties, high price rates and pessimistic declarations increase once again the public fear about petroleum reserves, the French institute of petroleum (IFP) wanted to make a status about the essential role that technology can play in this challenge. This document gathers the transparencies and articles presented at this press conference: how to increase and renew oil and gas reserves, technology advances and research strategy of IFP (O. Appert, J. Lecourtier, G. Fries); how to enhance oil recovery from deposits (primary, secondary and tertiary recovery: polymers injection, CO 2 injection, steam injection, in-situ oxidation and combustion, reservoir modeling, monitoring of uncertainties); the heavy crudes (the Orenoque extra-heavy oil, the tar sands of Alberta, the heavy and extra-heavy crudes of Canada, IFP's research); ultra-deep offshore (the weight challenge: mooring lines and risers, the temperature challenge: paraffins and hydrates deposition, immersion of the treatment unit: economical profitability of satellite fields); fields buried beyond 5000 m (technological challenges: seismic surveys, drilling equipment, well logging, drilling mud; prospects of these fields); oil reserves: data that change with technique and economy (proven, probable and possible reserves, proven and declared reserves, three converging evaluations about the world proven reserves, reserves to be discovered, non-conventional petroleum resources, technical progress and oil prices, production depletion at the end of the century). (J.S.)

  18. Recent Advances in the Development and Application of Power Plate Transducers in Dense Gas Extraction and Aerosol Agglomeration Processes

    Science.gov (United States)

    Riera, E.; Cardoni, A.; Gallego-Juárez, J. A.; Acosta, V. M.; Blanco, A.; Rodríguez, G.; Blasco, M.; Herranz, L. E.

    Power ultrasound (PU) is an emerging, innovative, energy saving and environmental friendly technology that is generating a great interest in sectors such as food and pharmaceutical industries, green chemistry, environmental pollution, and other processes, where sustainable and energy efficient methods are required to improve and/or produce specific effects. Two typical effects of PU are the enhancement of mass transfer in gases and liquids, and the induction of particle agglomeration in aerosols. These effects are activated by a variety of mechanisms associated to the nonlinear propagation of high amplitude ultrasonic waves such as diffusion, agitation, entrainment, turbulence, etc. During the last years a great effort has been jointly made by the Spanish National Research Council (CSIC) and the company Pusonics towards introducing novel processes into the market based on airborne ultrasonic plate transducers. This technology was specifically developed for the treatment of gas and multiphasic media characterized by low specific acoustic impedance and high acoustic absorption. Different strategies have been developed to mitigate the effects of the nonlinear dynamic behavior of such ultrasonic piezoelectric transducers in order to enhance and stabilize their response at operational power conditions. This work deals with the latter advances in the mitigation of nonlinear problems found in power transducers; besides it describes two applications assisted by ultrasound developed at semi-industrial and laboratory scales and consisting in extraction via dense gases and particle agglomeration. Dense Gas Extraction (DGE) assisted by PU is a new process with a potential to enhance the extraction kinetics with supercritical CO2. Acoustic agglomeration of fine aerosol particles has a great potential for the treatment of air pollution problems generated by particulate materials. Experimental and numerical results in both processes will be shown and discussed.

  19. Evaluation of materials' corrosion and chemistry issues for advanced gas cooled reactor steam generators using full scale plant simulations

    International Nuclear Information System (INIS)

    Woolsey, I.S.; Rudge, A.J.; Vincent, D.J.

    1998-01-01

    Advanced Gas Cooled Reactors (AGRS) employ once-through steam Generators of unique design to provide steam at approximately 530 degrees C and 155 bar to steam turbines of similar design to those of fossil plants. The steam generators are highly compact, and have either a serpentine or helical tube geometry. The tubes are heated on the outside by hot C0 2 gas, and steam is generated on the inside of the tubes. Each individual steam generator tube consists of a carbon steel feed and primary economiser section, a 9%Cr steel secondary economiser, evaporator and primary superheater, and a Type 316L austenitic stainless steel secondary superheater, all within a single tube pass. The multi-material nature of the individual tube passes, the need to maintain specific thermohydraulic conditions within the different material sections, and the difficulties of steam generator inspection and repair, have required extensive corrosion-chemistry test programmes to ensure waterside corrosion does not present a challenge to their integrity. A major part of these programmes has been the use of a full scale steam generator test facility capable of simulating all aspects of the waterside conditions which exist in the plant. This facility has been used to address a wide variety of possible plant drainage/degradation processes. These include; single- and two-phase flow accelerated corrosion of carbon steel, superheat margins requirements and the stress-corrosion behaviour of the austenitic superheaters, on-load corrosion of the evaporator materials, and iron transport and oxide deposition behaviour. The paper outlines a number of these, and indicates how they have been of value in helping to maintain reliable operation of the plant. (author)

  20. Experimental research on influencing factors of wet removal of NO from coal-fired flue gas by UV/H2O2 advanced oxidation process

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Wet removal of NO from coal-fired flue gas by UV/H2O2 Advanced Oxidation Process (AOP) were investigated in a self-designed UV-bubble reactor. Several main influencing factors (UV intensity, H2O2 initial concentration, initial pH value, solution temperature, NO initial concentration, liquid-gas ratio and O2 percentage content) on the NO removal efficiency were studied. The results showed that UV intensity, H2O2 initial concentration, NO initial concentration and liquid-gas ratio are the main influencing factors. In the best conditions, the highest NO removal efficiency by UV/H2O2 advanced oxidation process could reach 82.9%. Based on the experimental study, the influencing mechanism of the relevant influencing factors were discussed in depth.

  1. An advanced three-dimensional simulation system for safety analysis of gas cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lapins, Janis

    2016-07-01

    The neutron transport programme TORT-TD that solves the neutron transport equation in discrete ordinates for stationary as well as transient problems is used for neutronics calculations. The transient solution of the neutron transport equation is performed by making use of a time-dependent neutron source, xenon/iodine dynamics are implemented as well. The programme ATTICA{sup 3D} applies the porous medium approach for flow in packed beds according to Ergun. This approach uses a quasi-steady state formulation for the momentum equation while time dependent formulations are employed for mass conservation, and energy conservation for both, the solid and gaseous phase. For spatial discretisation of the conservation equations, the finite volume method is used. For material properties, gas densities, heat transfer etc. a set of constitutive equations completes the set of differential equations. Time integration in ATTICA{sup 3D} is realised applying a modified Newton-Raphson method which linearizes and subsequently solves the set of equations. It can automatically adapt the time step width within user specified limits. Within this work, the mass and energy conservation equations are modified so that chemical reactions as consequence of water or air ingress can be simulated, i.e. mass sources for CO, CO{sub 2}, H{sub 2} and sinks for H{sub 2}O and O{sub 2} or heat sources and enthalpy transport. The heat generated by chemical reaction is either added to the solid or the gaseous phase. The corrosion rates were implemented according to experimental findings for fuel and reflector graphite. Steam or air might enter the primary circuit through a break in the steam generator or an opening of the primary circuit. Steam entering the core region will moderate neutrons, reduce the leakage and thereby increase power. The corrosion was validated for the NACOK experiment performed within the RAPHAEL project where temperature evolution under corrosion and total burn-off had to be

  2. PERFORMANCE OF AN AUTOMOTIVE BUMPER FROM LALLOH ...

    African Journals Online (AJOL)

    The work presented here is the production of an automotive Bumper from Lalloh plant (Corchorus tridenL.) fibre reinforced epoxy composite and its performance evaluation using the drop weight test method. An impact test was carried out on the bumper using a test rig modeled after the Dynatup Model 8150 drop weight test ...

  3. International Conference on Vehicle and Automotive Engineering

    CERN Document Server

    Bolló, Betti

    2017-01-01

    This book presents the proceedings of the first vehicle engineering and vehicle industry conference. It captures the outcome of theoretical and practical studies as well as the future development trends in a wide field of automotive research. The themes of the conference include design, manufacturing, economic and educational topics.

  4. Automotive Stirling engine development program: A success

    Science.gov (United States)

    Tabata, W. K.

    1987-01-01

    The original 5-yr Automotive Stirling Engine Development Program has been extended to 10 years due to reduced annual funding levels. With an estimated completion date of April 1988, the technical achievements and the prospectives of meeting the original program objectives are reviewed. Various other applications of this developed Stirling engine technology are also discussed.

  5. Analysis of the Advertising Market Automotive Brands

    OpenAIRE

    Rešlová, Pavlína

    2012-01-01

    The thesis deals with advertising expenditure major automotive brands, which are compared with their marketability. The thesis reflects the strategic marketing process and outlines the components of advertising. The aim of the work is to verify whether the investment in television advertising significantly and directly affects the marketability of vehicles, or there are some other factors.

  6. Automotive Mechanics Occupational Performance Survey. Interim Report.

    Science.gov (United States)

    Borcher, Sidney D.; Leiter, Paul B.

    The purpose of this federally-funded interim report is to present the results of a task inventory analysis survey of automotive mechanics completed by project staff within the Instructional Systems Design Program at the Center for Vocational and Technical Education. Intended for use in curriculum development for vocational education programs in…

  7. Orientation: Automotive Mechanics Instructional Program. Block 1.

    Science.gov (United States)

    O'Brien, Ralph D.

    The first six instructional blocks in automotive mechanics, the lessons and supportive information in the document provide a guide for teachers in planning an instructional program in the basic theory and practice of a beginning course at the secondary and post-secondary level. The material, as organized, is a suggested sequence of instruction…

  8. Basic Automotive Mechanics. Florida Vocational Program Guide.

    Science.gov (United States)

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This program guide identifies primary concerns in the organization, operation, and evaluation of a basic automotive mechanics program. It is designed for local school district and community college administrators, instructors, program advisory committees, and regional coordinating councils. The guide begins with the Dictionary of Occupational…

  9. Techno-economic requirements for automotive composites

    Science.gov (United States)

    Arnold, Scot

    1993-01-01

    New technology generally serves two main goals of the automotive industry: one is to enable vehicles to comply with various governmental regulations and the other is to provide a competitive edge in the market. The latter goal can either be served through improved manufacturing and design capabilities, such as computer aided design and computer aided manufacturing, or through improved product performance, such as anti-lock braking (ABS). Although safety features are sometimes customer driven, such as the increasing use of airbags and ABS, most are determined by regulations as outlined by the Federal Motor Vehicle Safety Standards (FMVSS). Other standards, set by the Environmental Protection Agency, determine acceptable levels of emissions and fuel consumption. State governments, such as in California, are also setting precedent standards, such as requiring manufacturers to offer zero-emission vehicles as a certain fraction of their sales in the state. The drive to apply new materials in the automobile stems from the need to reduce weight and improve fuel efficiency. Topics discussed include: new lightweight materials; types of automotive materials; automotive composite applications; the role for composite materials in automotive applications; advantages and disadvantages of composite materials; material substitution economics; economic perspective; production economics; and composite materials production economics.

  10. Green innovation adoption in automotive supply chain

    DEFF Research Database (Denmark)

    Zailani, Suhaiza; Govindan, Kannan; Iranmanesh, Mohammad

    2015-01-01

    generators of industrial waste that affect the quality of the natural environment. This study aims to investigate the determinants of green innovation adoption and its effect on firm performance. Data were gathered by surveying 153 firms in the Malaysian automotive supply chain industry. Data were analyzed...

  11. Optimization and Optimal Control in Automotive Systems

    NARCIS (Netherlands)

    Waschl, H.; Kolmanovsky, I.V.; Steinbuch, M.; Re, del L.

    2014-01-01

    This book demonstrates the use of the optimization techniques that are becoming essential to meet the increasing stringency and variety of requirements for automotive systems. It shows the reader how to move away from earlier approaches, based on some degree of heuristics, to the use of more and

  12. The evolution of automotive technology : a handbook

    NARCIS (Netherlands)

    Mom, G.P.A.

    2015-01-01

    This book covers one and a quarter century of the automobile, conceived as a cultural history of its technology, aimed at engineering students and all those who wish to have a concise introduction into the basics of automotive technology and its long-term development. Its approach is systemic and

  13. A listening test system for automotive audio

    DEFF Research Database (Denmark)

    Christensen, Flemming; Geoff, Martin; Minnaar, Pauli

    2005-01-01

    This paper describes a system for simulating automotive audio through headphones for the purposes of conducting listening experiments in the laboratory. The system is based on binaural technology and consists of a component for reproducing the sound of the audio system itself and a component...

  14. Modularity analysis of automotive control software

    NARCIS (Netherlands)

    Dajsuren, Y.; Brand, van den M.G.J.; Serebrenik, A.

    2013-01-01

    A design language and tool like MATLAB/Simulink is used for the graphical modelling and simulation of automotive control software. As the functionality based on electronics and software systems increases in motor vehicles, it is becoming increasingly important for system/software architects and

  15. Gear shift strategies for automotive transmissions

    NARCIS (Netherlands)

    Ngo, D.V.

    2012-01-01

    The development history of automotive engineering has shown the essential role of transmissions in road vehicles primarily powered by internal combustion engines. The engine with its physical constraints on the torque and speed requires a transmission to have its power converted to the drive power

  16. Degradation of automotive materials in palm biodiesel

    International Nuclear Information System (INIS)

    Fazal, M.A.; Haseeb, A.S.M.A.; Masjuki, H.H.

    2012-01-01

    As compared to petroleum diesel, biodiesel is more corrosive for automotive materials. Studies on the characterization of corrosion products of fuel exposed automotive materials are scarce. Automotive fuel system and engine components are made from different ferrous and non-ferrous materials. The present study aims to investigate the corrosion products of different types of automotive materials such as copper, brass, aluminum and cast iron upon exposure to diesel and palm biodiesel. Changes in fuel properties due to exposure of different materials were also examined. Degradation of metal surface was characterized by digital camera, SEM/EDS and X-ray diffraction (XRD). Fuel properties were examined by measuring TAN (total acid number), density and viscosity. Among the metal investigated, copper is found to be least resistant in biodiesel and formed comparatively more corrosion products than other metals. Upon exposure of metals in biodiesel, TAN number crosses the limit given by standard while density and viscosity remain within the acceptable range of limit. -- Highlights: ► Order of incompatible metals in palm biodiesel: copper > brass > aluminum > cast iron. ► The possible reactions for the degradation of copper and cast iron have been discussed. ► For metal exposed biodiesel, only TAN number crosses the limit while density and viscosity remain within the limit. ► Copper and copper based alloy (brass) increase TAN number comparatively more than other metals.

  17. Model-based control for automotive applications

    NARCIS (Netherlands)

    Naus, G.J.L.

    2010-01-01

    The number of distributed control systems in modern vehicles has increased exponentially over the past decades. Today’s performance improvements and innovations in the automotive industry are often resolved using embedded control systems. As a result, a modern vehicle can be regarded as a complex

  18. Environmental Innovation Dynamics in the Automotive industry

    NARCIS (Netherlands)

    Kuik, O

    2006-01-01

    This paper addresses the innovation dynamics induced by environmental policy in the automotive industry. It examines car fuel efficiency programs in the EU, the US and Japan. It concludes that existing programs have not yet succeeded in promoting radical and breakthrough technologies, but that, at

  19. Training Issues for the European Automotive Industry

    NARCIS (Netherlands)

    Dankbaar, B.

    1996-01-01

    Provides an overview of the results of an investigation carried out for the European Commission. Aims to identify themes and issues in the field of continuing training in the European automotive industry. A large number of interviews were carried out in all the major car manufacturing countries of

  20. Training issues for the European automotive industry

    NARCIS (Netherlands)

    Dankbaar, B.

    1999-01-01

    Provides an overview of the results of an investigation carried out for the European Commission. Aims to identify themes and issues in the field of continuing training in the European automotive industry. A large number of interviews were carried out in all the major car manufacturing countries of

  1. Comparative study of the influence of the gas injection system on the Nd:yttrium-aluminum-garnet laser cutting of advanced oxide ceramics

    International Nuclear Information System (INIS)

    Quintero, F.; Pou, J.; Lusquinos, F.; Boutinguiza, M.; Soto, R.; Perez-Amor, M.

    2003-01-01

    Cutting of advanced oxide ceramics is still a difficult task. In this work, the possibility to effectively cut them using a Nd:YAG laser guided by an optical fiber is demonstrated. The key points are the aerodynamic interactions of the assist gas jet in the fusion laser cutting of ceramics. A comprehensive study of the influence of these aerodynamic interactions on the laser cutting of advanced oxide ceramics has been carried out. The characteristics of the heat affected zone (HAZ) were studied related to the efficiency of the assist gas to eject the molten material. It has been demonstrated that the HAZ can be avoided with a suitable design of the gas injection system combined with an appropriate selection of the values of the processing parameters. With the aim of improving the efficiency of the assist gas injection system, a new cutting head with an off-axis supersonic nozzle was developed. Furthermore, a comparison between the utilization of a conventional coaxial conical nozzle to inject the assist gas and the new system is presented. The results obtained give clear proof that the use of the new gas injection system leads to a great improvement on the cut quality by means of a more efficient removing of the molten material out of the cutting front. This result is of special interest in the laser fusion cutting of thick ceramic plates at high processing rates

  2. SOI technology for power management in automotive and industrial applications

    Science.gov (United States)

    Stork, Johannes M. C.; Hosey, George P.

    2017-02-01

    Semiconductor on Insulator (SOI) technology offers an assortment of opportunities for chip manufacturers in the Power Management market. Recent advances in the automotive and industrial markets, along with emerging features, the increasing use of sensors, and the ever-expanding "Internet of Things" (IoT) are providing for continued growth in these markets while also driving more complex solutions. The potential benefits of SOI include the ability to place both high-voltage and low-voltage devices on a single chip, saving space and cost, simplifying designs and models, and improving performance, thereby cutting development costs and improving time to market. SOI also offers novel new approaches to long-standing technologies.

  3. Natural gas vehicles in Europe: Commercialization prospects

    International Nuclear Information System (INIS)

    Vettori, P.; Merigo, F.

    1992-01-01

    This paper tables numerous statistical data to evidence that whereas the use of natural gas as an automotive fuel for private and public vehicles is growing in Asia, North and South America, in Europe this trend is currently being followed only in Italy. However, with the relatively recent expansion of the European Communities' natural gas distribution network, coupled with growing interest in this fuel as a cost effective and environmentally compatible alternative to petroleum, the demand for natural gas automotive fuels is expected to increase even in this continent. The trucking industry in particular should derive significant benefits from the switch to natural gas

  4. Advanced ceramic coating development for industrial/utility gas turbines. Final report, 11 Mar 1979-1 Sep 1981

    International Nuclear Information System (INIS)

    Vogan, J.W.; Stetson, A.R.

    1982-01-01

    A program was conducted with the objective of developing advanced thermal barrier coating (TBC) systems. Coating application was by plasma spray. Duplex, triplex and graded coatings were tested. Coating systems incorporated both NiCrAly and CoCrAly bond coats. Four ceramic overlays were tested: ZrO 2 .82O 3 , CaO.TiO 2 , 2CaO.SiO 2 , and MgO.Al 2 O 3 . The best overall results were obtained with a CaO.TiO 2 coating applied to a NiCrAly bond coat. This coating was less sensitive than the ZrO 2 .8Y 2 O 3 coating to process variables and part geometry. Testing with fuels contaminated with compounds containing sulfur, phosphorus and alkali metals showed the zirconia coatings were destabilized. The calcium titanate coatings were not affected by these contaminants. However, when fuels were used containing 50 ppm of vanadium and 150 ppm of magnesium, heavy deposits were formed on the test specimens and combustor components that required frequent cleaning of the test rig. During the program Mars engine first-stage turbine blades were coated and installed for an engine cyclic endurance run with the zirconia, calcium titanate, and calcium silicate coatings. Heavy spalling developed with the calcium silicate system. The zirconia and calcium titanate systems survived the full test duration. It was concluded that these two TBC's showed potential for application in gas turbines

  5. Greenhouse gas accounting of the proposed landfill extension and advanced incineration facility for municipal solid waste management in Hong Kong.

    Science.gov (United States)

    Woon, K S; Lo, Irene M C

    2013-08-01

    The burgeoning of municipal solid waste (MSW) disposal issue and climate change have drawn massive attention from people. On the one hand, Hong Kong is facing a controversial debate over the implementation of proposed landfill extension (LFE) and advanced incineration facility (AIF) to curb the MSW disposal issue. On the other hand, the Hong Kong Special Administrative Region Government is taking concerted efforts to reduce the carbon intensity in this region. This paper discusses the greenhouse gas (GHG) emissions from four proposed waste disposal scenarios, covering the proposed LFE and AIF within a defined system boundary. On the basis of the data collected, assumptions made, and system boundary defined in this study, the results indicate that AIF releases less GHG emissions than LFE. The GHG emissions from LFE are highly contributed by the landfill methane (CH4) emissions but offset by biogenic carbon storage, while the GHG emissions from AIF are mostly due to the stack discharge system but offset by the energy recovery system. Furthermore, parametric sensitivity analyses show that GHG emissions are strongly dependent on the landfill CH4 recovery rate, types of electricity displaced by energy recovery systems, and the heating value of MSW, altering the order of preferred waste disposal scenarios. This evaluation provides valuable insights into the applicability of a policy framework for MSW management practices in reducing GHG emissions. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Advancing national greenhouse gas inventories for agriculture in developing countries: improving activity data, emission factors and software technology

    International Nuclear Information System (INIS)

    Ogle, Stephen M; Hartman, Melannie; Spencer, Shannon; Buendia, Leandro; Butterbach-Bahl, Klaus; Breidt, F Jay; Yagi, Kazuyuki; Nayamuth, Rasack; Wirth, Tom; Smith, Pete

    2013-01-01

    Developing countries face many challenges when constructing national inventories of greenhouse gas (GHG) emissions, such as lack of activity data, insufficient measurements for deriving country-specific emission factors, and a limited basis for assessing GHG mitigation options. Emissions from agricultural production are often significant sources in developing countries, particularly soil nitrous oxide, and livestock enteric and manure methane, in addition to wetland rice methane. Consequently, estimating GHG emissions from agriculture is an important part of constructing developing country inventories. While the challenges may seem insurmountable, there are ways forward such as: (a) efficiently using resources to compile activity data by combining censuses and surveys; (b) using a tiered approach to measure emissions at appropriately selected sites, coupled with modeling to derive country-specific emission factors; and (c) using advanced software systems to guide compilers through the inventory process. With a concerted effort by compilers and assistance through capacity-building efforts, developing country compilers could produce transparent, accurate, complete, consistent and comparable inventories, as recommended by the IPCC (Intergovernmental Panel on Climate Change). In turn, the resulting inventories would provide the foundation for robust GHG mitigation analyses and allow for the development of nationally appropriate mitigation actions and low emission development strategies. (letter)

  7. Fabrication and characterisation of ligand-functionalised ultrapure monodispersed metal nanoparticle nanoassemblies employing advanced gas deposition technique

    Science.gov (United States)

    Geremariam Welearegay, Tesfalem; Cindemir, Umut; Österlund, Lars; Ionescu, Radu

    2018-02-01

    Here, we report for the first time the fabrication of ligand-functionalised ultrapure monodispersed metal nanoparticles (Au, Cu, and Pt) from their pure metal precursors using the advanced gas deposition technique. The experimental conditions during nanoparticle formation were adjusted in order to obtain ultrafine isolated nanoparticles on different substrates. The morphology and surface analysis of the as-deposited metal nanoparticles were investigated using scanning electron microscopy, x-ray diffraction and Fourier transform infra-red spectroscopy, which demonstrated the formation of highly ordered pure crystalline nanoparticles with a relatively uniform size distribution of ∼10 nm (Au), ∼4 nm (Cu) and ∼3 nm (Pt), respectively. A broad range of organic ligands containing thiol or amine functional groups were attached to the nanoparticles to form continuous networks of nanoparticle-ligand nanoassemblies, which were characterised by scanning electron microscopy and x-ray photoelectron spectroscopy. The electrical resistance of the functional nanoassemblies deposited in the gap spacing of two microfabricated parallel Au electrodes patterned on silicon substrates ranged between tens of kΩ and tens of MΩ, which is suitable for use in many applications including (bio)chemical sensors, surface-enhanced Raman spectroscopy and molecular electronic rectifiers.

  8. Vapor Measurement System of Essential Oil Based on MOS Gas Sensors Driven with Advanced Temperature Modulation Technique

    Science.gov (United States)

    Sudarmaji, A.; Margiwiyatno, A.; Ediati, R.; Mustofa, A.

    2018-05-01

    The aroma/vapor of essential oils is complex compound which depends on the content of the gases and volatiles generated from essential oil. This paper describes a design of quick, simple, and low-cost static measurement system to acquire vapor profile of essential oil. The gases and volatiles are captured in a chamber by means of 9 MOS gas sensors which driven with advance temperature modulation technique. A PSoC CY8C28445-24PVXI based-interface unit is built to generate the modulation signal and acquire all sensor output into computer wirelessly via radio frequency serial communication using Digi International Inc., XBee (IEEE 802.15.4) through developed software under Visual.Net. The system was tested to measure 2 kinds of essential oil (Patchouli and Clove Oils) in 4 temperature modulations (without, 0.25 Hz, 1 Hz, and 4 Hz). A cycle measurement consists of reference and sample measurement sequentially which is set during 2 minutes in every 1 second respectively. It is found that the suitable modulation is 0,25Hz; 75%, and the results of Principle Component Analysis show that the system is able to distinguish clearly between Patchouli Oil and Clove Oil.

  9. Product Development in the Automotive Industry – Crucial Success Drivers for Technological Innovations

    DEFF Research Database (Denmark)

    Gerhard, D.; Brem, Alexander; Voigt, K.-I.

    2008-01-01

    Developing new innovative products in the automotive industrymeans investing huge sums in advance, as one does not know if the productwill be successful on the market after launch. Hence, companies are interestedin knowing and measuring the critical success drivers within the developmentsteps...... interesting approaches of best practices, such as the assessment of product advantage in combination with scenario analysis or the identification of appropriate innovations....

  10. Catalysis and automotive pollution control

    International Nuclear Information System (INIS)

    Crucq, A.; Frennet, A.

    1987-01-01

    In these proceedings seven lectures are presented dealing with the effects of exhaust gas on human health and the environment, with the economical and legislative problems associated with the new EEC standards and with the points of view of the oil and motor industries. Three papers deal with catalytic converters and problems such as specific pollution control of diesel engines, synthesis of adequate fuels and additives adapted to catalytic converters. Twentyfour papers are devoted to fundamental and applied studies on catalytic converters, support preparation and base metal catalysts. refs.; figs.; tabs

  11. Essentials of natural gas microturbines

    CERN Document Server

    Boicea, Valentin A

    2013-01-01

    Addressing a field which, until now, has not been sufficiently investigated, Essentials of Natural Gas Microturbines thoroughly examines several natural gas microturbine technologies suitable not only for distributed generation but also for the automotive industry. An invaluable resource for power systems, electrical, and computer science engineers as well as operations researchers, microturbine operators, policy makers, and other industry professionals, the book: Explains the importance of natural gas microturbines and their use in distributed energy resource (DER) systemsDiscusses the histor

  12. Advanced CFD modelling of air and recycled flue gas staging in a waste wood-fired grate boiler for higher combustion efficiency and greater environmental benefits.

    Science.gov (United States)

    Rajh, Boštjan; Yin, Chungen; Samec, Niko; Hriberšek, Matjaž; Kokalj, Filip; Zadravec, Matej

    2018-07-15

    Grate-fired boilers are commonly used to burn biomass/wastes for heat and power production. In spite of the recent breakthrough in integration of advanced secondary air systems in grate boilers, grate-firing technology needs to be advanced for higher efficiency and lower emissions. In this paper, innovative staging of combustion air and recycled flue gas in a 13 MW th waste wood-fired grate boiler is comprehensively studied based on a numerical model that has been previously validated. In particular, the effects of the jet momentum, position and orientation of the combustion air and recycled flue gas streams on in-furnace mixing, combustion and pollutant emissions from the boiler are examined. It is found that the optimized air and recycled flue gas jets remarkably enhance mixing and heat transfer, result in a more uniform temperature and velocity distribution, extend the residence time of the combustibles in the hot zone and improve burnout in the boiler. Optimizing the air and recycled flue gas jet configuration can reduce carbon monoxide emission from the boiler by up to 86%, from the current 41.0 ppm to 5.7 ppm. The findings of this study can serve as useful guidelines for novel design and optimization of the combustion air supply and flue gas recycling for grate boilers of this type. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Design options for automotive batteries in advanced car electrical systems

    Science.gov (United States)

    Peters, K.

    The need to reduce fuel consumption, minimize emissions, and improve levels of safety, comfort and reliability is expected to result in a much higher demand for electric power in cars within the next 5 years. Forecasts vary, but a fourfold increase in starting power to 20 kW is possible, particularly if automatic stop/start features are adopted to significantly reduce fuel consumption and exhaust emissions. Increases in the low-rate energy demand are also forecast, but the use of larger alternators may avoid unacceptable high battery weights. It is also suggested from operational models that the battery will be cycled more deeply. In examining possible designs, the beneficial features of valve-regulated lead-acid batteries made with compressed absorbent separators are apparent. Several of their attributes are considered. They offer higher specific power, improved cycling capability and greater vibration resistance, as well as more flexibility in packaging and installation. Optional circuits considered for dual-voltage supplies are separate batteries for engine starting (36 V) and low-power duties (12 V), and a universal battery (36 V) coupled to a d.c.-d.c. converter for a 12-V equipment. Battery designs, which can be made on commercially available equipment with similar manufacturing costs (per W h and per W) to current products, are discussed. The 36-V battery, made with 0.7 mm thick plates, in the dual-battery system weighs 18.5 kg and has a cold-cranking amp (CCA) rating of 790 A at -18°C to 21.6 V (1080 W kg -1 at a mean voltage of 25.4 V). The associated, cycleable 12-V battery, provides 1.5 kW h and weighs 24.6 kg. Thus, the combined battery weight is 43.1 kg. The single universal battery, with cycling capability, weighs 45.4 kg, has a CCA rating of 810 A (441 W kg -1 at a mean voltage of 24.7 V), and when connected to the d.c.-d.c. converter at 75% efficiency provides a low-power capacity of 1.5 kW h.

  14. Greenhouse gas accounting of the proposed landfill extension and advanced incineration facility for municipal solid waste management in Hong Kong

    Energy Technology Data Exchange (ETDEWEB)

    Woon, K.S.; Lo, Irene M.C., E-mail: cemclo@ust.hk

    2013-08-01

    The burgeoning of municipal solid waste (MSW) disposal issue and climate change have drawn massive attention from people. On the one hand, Hong Kong is facing a controversial debate over the implementation of proposed landfill extension (LFE) and advanced incineration facility (AIF) to curb the MSW disposal issue. On the other hand, the Hong Kong Special Administrative Region Government is taking concerted efforts to reduce the carbon intensity in this region. This paper discusses the greenhouse gas (GHG) emissions from four proposed waste disposal scenarios, covering the proposed LFE and AIF within a defined system boundary. On the basis of the data collected, assumptions made, and system boundary defined in this study, the results indicate that AIF releases less GHG emissions than LFE. The GHG emissions from LFE are highly contributed by the landfill methane (CH{sub 4}) emissions but offset by biogenic carbon storage, while the GHG emissions from AIF are mostly due to the stack discharge system but offset by the energy recovery system. Furthermore, parametric sensitivity analyses show that GHG emissions are strongly dependent on the landfill CH{sub 4} recovery rate, types of electricity displaced by energy recovery systems, and the heating value of MSW, altering the order of preferred waste disposal scenarios. This evaluation provides valuable insights into the applicability of a policy framework for MSW management practices in reducing GHG emissions. Highlights: • AIF is better than LFE with regard to GHG emissions in Hong Kong. • Major individual sub-processes of LFE and AIF for GHG emissions are investigated. • GHG emissions for LFE and AIF are strongly dependent on studied parametric sensitivity analyses. • Findings are valuable for sustainable MSW management and GHG reductions in waste sector.

  15. Effect of horizontal flow on the cooling of the moderator brick in the advanced gas-cooled reactor

    International Nuclear Information System (INIS)

    Ganesan, P.; He, S.; Hamad, F.; Gotts, J.

    2011-01-01

    The paper reports an investigation of the effect of the horizontal cross flow on the temperature of the moderator brick in UK Advanced Gas-cooled Reactor (AGR) using computational fluid dynamics (CFD) with a conjugate heat transfer model for the solid and fluid. The commercial software package of ANSYS Fluent is used for this purpose. The CFD model comprises the full axial length of one-half of a typical fuel channel (assuming symmetry) and part of neighbouring channels on either side. Two sets of simulations have been carried out, namely, one with cross flow and one without cross flow. The effect of cross flow has subsequently been derived by comparing the results from the two groups of simulations. The study shows that a small cross flow can have a significant effect on the cooling of the graphite brick, causing the peak temperature of the brick to reduce significantly. Two mechanisms are identified to be responsible for this. Firstly, the small cross flow causes a significant redistribution of the main axial downward flow and this leads to an enhancement of heat transfer in some of the small clearances, and an impairment in others although overall, the enhancement is dominant leading to a better cooling. Secondly, the cross flow makes effective use of the small clearances between the key/keyway connections which increases the effective heat transfer area, hence increasing the cooling. Under the conditions of no cross flow, these areas remain largely inactive in heat transfer. The study shows that the cooling of the moderator is significantly enhanced by the cross flow perpendicular to the main cooling flow. (author)

  16. Automotive Stirling engine: Mod 2 design report

    Science.gov (United States)

    Nightingale, Noel P.

    1986-01-01

    The design of an automotive Stirling engine that achieves the superior fuel economy potential of the Stirling cycle is described. As the culmination of a 9-yr development program, this engine, designated the Mod 2, also nullifies arguments that Stirling engines are heavy, expensive, unreliable, demonstrating poor performance. Installed in a General Motors Chevrolet Celebrity car, this engine has a predicted combined fuel economy on unleaded gasoline of 17.5 km/l (41 mpg)- a value 50% above the current vehicle fleet average. The Mod 2 Stirling engine is a four-cylinder V-drive design with a single crankshaft. The engine is also equipped with all the controls and auxiliaries necessary for automotive operation.

  17. Lightweight Steel Solutions for Automotive Industry

    International Nuclear Information System (INIS)

    Lee, Hong Woo; Kim, Gyosung; Park, Sung Ho

    2010-01-01

    Recently, improvement in fuel efficiency and safety has become the biggest issue in worldwide automotive industry. Although the regulation of environment and safety has been tightened up more and more, the majority of vehicle bodies are still manufactured from stamped steel components. This means that the optimized steel solutions enable to demonstrate its ability to reduce body weight with high crashworthiness performance instead of expensive light weight materials such as Al, Mg and composites. To provide the innovative steel solutions for automotive industry, POSCO has developed AHSS and its application technologies, which is directly connected to EVI activities. EVI is a technical cooperation program with customer covering all stages of new car project from design to mass production. Integrated light weight solutions through new forming technologies such as TWB, hydroforming and HPF are continuously developed and provided for EVI activities. This paper will discuss the detailed status of these technologies especially light weight steel solutions based on innovative technologies.

  18. Technological measures to improve automotive product quality

    OpenAIRE

    Gladkov, V.; Kruglov, S.

    2010-01-01

    The paper examines the basic technological measures aimed at improving product quality in automotive industry. While paying due attention to solving organizational and technological problems, including the development of certification systems for production processes, it is also necessary to improve the technical standards of specific technologies, equipment and materials as they largely determine product quality. Special emphasis is given to the importance of improving the production of auto...

  19. Lean tool used in the automotive industry

    Directory of Open Access Journals (Sweden)

    Manuela Ingaldi

    2014-10-01

    Full Text Available In the paper basic concepts of Lean Manufacturing were presented. A company specializing in the development of vehicle dynamics, driver assistance systems, brake systems, seat belt sand electronics technology was characterized. The company is engaged in designing and manufacturing world-class products for the automotive market. The Lean tools used in the production hall, such as Yamazumi chart, machine motion analysis, MTM method and timing, were presented.

  20. Directions for computational mechanics in automotive crashworthiness

    Science.gov (United States)

    Bennett, James A.; Khalil, T. B.

    1993-01-01

    The automotive industry has used computational methods for crashworthiness since the early 1970's. These methods have ranged from simple lumped parameter models to full finite element models. The emergence of the full finite element models in the mid 1980's has significantly altered the research direction. However, there remains a need for both simple, rapid modeling methods and complex detailed methods. Some directions for continuing research are discussed.