WorldWideScience

Sample records for adult mice leads

  1. Gestational lead exposure selectively decreases retinal dopamine amacrine cells and dopamine content in adult mice

    International Nuclear Information System (INIS)

    Gestational lead exposure (GLE) produces supernormal scotopic electroretinograms (ERG) in children, monkeys and rats, and a novel retinal phenotype characterized by an increased number of rod photoreceptors and bipolar cells in adult mice and rats. Since the loss of dopaminergic amacrine cells (DA ACs) in GLE monkeys and rats contributes to supernormal ERGs, the retinal DA system was analyzed in mice following GLE. C57BL/6 female mice were exposed to low (27 ppm), moderate (55 ppm) or high (109 ppm) lead throughout gestation and until postnatal day 10 (PN10). Blood [Pb] in control, low-, moderate- and high-dose GLE was ≤ 1, ≤ 10, ∼ 25 and ∼ 40 μg/dL, respectively, on PN10 and by PN30 all were ≤ 1 μg/dL. At PN60, confocal-stereology studies used vertical sections and wholemounts to characterize tyrosine hydroxylase (TH) expression and the number of DA and other ACs. GLE dose-dependently and selectively decreased the number of TH-immunoreactive (IR) DA ACs and their synaptic plexus without affecting GABAergic, glycinergic or cholinergic ACs. Immunoblots and confocal revealed dose-dependent decreases in retinal TH protein expression and content, although monoamine oxidase-A protein and gene expression were unchanged. High-pressure liquid chromatography showed that GLE dose-dependently decreased retinal DA content, its metabolites and DA utilization/release. The mechanism of DA selective vulnerability is unknown. However, a GLE-induced loss/dysfunction of DA ACs during development could increase the number of rods and bipolar cells since DA helps regulate neuronal proliferation, whereas during adulthood it could produce ERG supernormality as well as altered circadian rhythms, dark/light adaptation and spatial contrast sensitivity. -- Highlights: ► Peak [BPb] in control, low-, moderate- and high-dose newborn mice with gestational lead exposure: ≤ 1, ≤ 10, 25 and 40 μg/dL ► Gestational lead exposure dose-dependently decreased the number of TH

  2. Gestational lead exposure selectively decreases retinal dopamine amacrine cells and dopamine content in adult mice

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Donald A., E-mail: dafox@uh.edu [College of Optometry, University of Houston, Houston, TX (United States); Department of Biology and Biochemistry, University of Houston, Houston, TX (United States); Department of Pharmacology and Pharmaceutical Sciences, University of Houston, Houston, TX (United States); Hamilton, W. Ryan [Department of Biology and Biochemistry, University of Houston, Houston, TX (United States); Johnson, Jerry E. [Department of Natural Sciences, University of Houston-Downtown, Houston, TX (United States); Xiao, Weimin [College of Optometry, University of Houston, Houston, TX (United States); Chaney, Shawntay; Mukherjee, Shradha [Department of Biology and Biochemistry, University of Houston, Houston, TX (United States); Miller, Diane B.; O' Callaghan, James P. [Toxicology and Molecular Biology Branch, Health Effects Research Laboratory, Centers for Disease Control and Prevention-NIOSH, Morgantown, WV USA (United States)

    2011-11-15

    Gestational lead exposure (GLE) produces supernormal scotopic electroretinograms (ERG) in children, monkeys and rats, and a novel retinal phenotype characterized by an increased number of rod photoreceptors and bipolar cells in adult mice and rats. Since the loss of dopaminergic amacrine cells (DA ACs) in GLE monkeys and rats contributes to supernormal ERGs, the retinal DA system was analyzed in mice following GLE. C57BL/6 female mice were exposed to low (27 ppm), moderate (55 ppm) or high (109 ppm) lead throughout gestation and until postnatal day 10 (PN10). Blood [Pb] in control, low-, moderate- and high-dose GLE was {<=} 1, {<=} 10, {approx} 25 and {approx} 40 {mu}g/dL, respectively, on PN10 and by PN30 all were {<=} 1 {mu}g/dL. At PN60, confocal-stereology studies used vertical sections and wholemounts to characterize tyrosine hydroxylase (TH) expression and the number of DA and other ACs. GLE dose-dependently and selectively decreased the number of TH-immunoreactive (IR) DA ACs and their synaptic plexus without affecting GABAergic, glycinergic or cholinergic ACs. Immunoblots and confocal revealed dose-dependent decreases in retinal TH protein expression and content, although monoamine oxidase-A protein and gene expression were unchanged. High-pressure liquid chromatography showed that GLE dose-dependently decreased retinal DA content, its metabolites and DA utilization/release. The mechanism of DA selective vulnerability is unknown. However, a GLE-induced loss/dysfunction of DA ACs during development could increase the number of rods and bipolar cells since DA helps regulate neuronal proliferation, whereas during adulthood it could produce ERG supernormality as well as altered circadian rhythms, dark/light adaptation and spatial contrast sensitivity. -- Highlights: Black-Right-Pointing-Pointer Peak [BPb] in control, low-, moderate- and high-dose newborn mice with gestational lead exposure: {<=} 1, {<=} 10, 25 and 40 {mu}g/dL Black

  3. Short-term treatment with bisphenol-A leads to metabolic abnormalities in adult male mice

    OpenAIRE

    Batista, Thiago M.; Alonso-Magdalena, Paloma; Vieira, Elaine; Amaral, Maria Esmeria C.; Cederroth, Christopher R.; Nef, Serge; Quesada, Ivan; Carneiro, Everardo M.; Nadal, Angel

    2012-01-01

    Bisphenol-A (BPA) is one of the most widespread endocrine disrupting chemicals (EDC) used as the base compound in the manufacture of polycarbonate plastics. Although evidence points to consider exposure to BPA as a risk factor for insulin resistance, its actions on whole body metabolism and on insulin-sensitive tissues are still unclear. The aim of the present work was to study the effects of low doses of BPA in insulin-sensitive peripheral tissues and whole body metabolism in adult mice. Adu...

  4. CDKL5 knockout leads to altered inhibitory transmission in the cerebellum of adult mice.

    Science.gov (United States)

    Sivilia, S; Mangano, C; Beggiato, S; Giuliani, A; Torricella, R; Baldassarro, V A; Fernandez, M; Lorenzini, L; Giardino, L; Borelli, A C; Ferraro, L; Calzà, L

    2016-06-01

    Mutations in the X-linked cyclin-dependent kinase-like 5 gene (CDKL5) are associated to severe neurodevelopmental alterations including motor symptoms. In order to elucidate the neurobiological substrate of motor symptoms in CDKL5 syndrome, we investigated the motor function, GABA and glutamate pathways in the cerebellum of CDKL5 knockout female mice. Behavioural data indicate that CDKL5-KO mice displayed impaired motor coordination on the Rotarod test, and altered steps, as measured by the gait analysis using the CatWalk test. A higher reduction in spontaneous GABA efflux, than that in glutamate, was observed in CDKL5-KO mouse cerebellar synaptosomes, leading to a significant increase of spontaneous glutamate/GABA efflux ratio in these animals. On the contrary, there were no differences between groups in K(+) -evoked GABA and glutamate efflux. The anatomical analysis of cerebellar excitatory and inhibitory pathways showed a selective defect of the GABA-related marker GAD67 in the molecular layer in CDKL5-KO mice, while the glutamatergic marker VGLUT1 was unchanged in the same area. Fine cerebellar structural abnormalities such as a reduction of the inhibitory basket 'net' estimated volume and an increase of the pinceau estimated volume were also observed in CDKL5-KO mice. Finally, the BDNF mRNA expression level in the cerebellum, but not in the hippocampus, was reduced compared with WT animals. These data suggest that CDKL5 deletion during development more markedly impairs the establishment of a correct GABAergic cerebellar network than that of glutamatergic one, leading to the behavioural symptoms associated with CDKL5 mutation. PMID:27108663

  5. Dll1 haploinsufficiency in adult mice leads to a complex phenotype affecting metabolic and immunological processes.

    Directory of Open Access Journals (Sweden)

    Isabel Rubio-Aliaga

    Full Text Available BACKGROUND: The Notch signaling pathway is an evolutionary conserved signal transduction pathway involved in embryonic patterning and regulation of cell fates during development and self-renewal. Recent studies have demonstrated that this pathway is integral to a complex system of interactions, involving as well other signal transduction pathways, and implicated in distinct human diseases. Delta-like 1 (Dll1 is one of the known ligands of the Notch receptors. The role of the Notch ligands is less well understood. Loss-of-function of Dll1 leads to embryonic lethality, but reduction of Delta-like 1 protein levels has not been studied in adult stage. METHODOLOGY/PRINCIPAL FINDINGS: Here we present the haploinsufficient phenotype of Dll1 and a missense mutant Dll1 allele (Dll1(C413Y. Haploinsufficiency leads to a complex phenotype with several biological processes altered. These alterations reveal the importance of Dll1 mainly in metabolism, energy balance and in immunology. The animals are smaller, lighter, with altered fat to lean ratio and have increased blood pressure and a slight bradycardia. The animals have reduced cholesterol and triglyceride levels in blood. At the immunological level a subtle phenotype is observed due to the effect and fine-tuning of the signaling network at the different levels of differentiation, proliferation and function of lymphocytes. Moreover, the importance of the proteolytic regulation of the Notch signaling network emphasized. CONCLUSIONS/SIGNIFICANCE: In conclusion, slight alterations in one player of Notch signaling alter the entire organism, emphasizing the fine-tuning character of this pathway in a high number of processes.

  6. Lead encephalopathy in adults

    Directory of Open Access Journals (Sweden)

    Janapareddy Vijaya Bhaskara Rao

    2014-01-01

    Full Text Available Lead poisoning is a common occupational health hazard in developing countries. We report the varied clinical presentation, diagnostic and management issues in two adult patients with lead encephalopathy. Both patients worked in a battery manufacturing unit. Both patients presented with seizures and one patient also complained of abdominal colic and vomiting. Both were anemic and a lead line was present. Blood lead level in both the patients was greater than 25 µg/dl. Magnetic resonance imaging of brain revealed bilateral symmetric involvement of the thalamus, lentiform nucleus in both patients and also the external capsules, sub-cortical white matter in one patient. All these changes, seen as hyperintensities in T2-weighted images suggested demyelination. They were advised avoidance of further exposure to lead and were treated with anti-epileptics; one patient also received D-penicillamine. They improved well on follow-up. Lead encephalopathy is an uncommon but important manifestation of lead toxicity in adults.

  7. Maternal preconceptional nutrition leads to variable fat deposition and gut dimensions of adult offspring mice (C57BL/6JBom)

    DEFF Research Database (Denmark)

    Mortensen, Elna Louise Krogh; Wang, Tobias; Malte, H.; Raubenheimer, D; Mayntz, David

    2010-01-01

    Background:   Maternal nutrition during pregnancy or lactation may affect the chance of offspring becoming obese as adults, but little is known regarding the possible role of maternal nutrition before conception. In this study, we investigate how variable protein and carbohydrate content of the...... taken. Results:   Fat deposition of the offspring was significantly affected by preconceptional maternal nutrition and the effects differed between sexes. Male offspring deposited most fat when mothers were fed the LP diet, whereas female offspring deposited most fat when mothers were fed the ST diet....... The mass and length of the digestive organs were affected by preconceptional maternal nutrition. Total gut from pyloric sphincter to anus was significantly shorter and dry mass was heavier in mice whose mothers were fed LP diets compared with offspring of mothers fed ST diets or HP diets. There was no...

  8. Lead induces similar gene expression changes in brains of gestationally exposed adult mice and in neurons differentiated from mouse embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Francisco Javier Sánchez-Martín

    Full Text Available Exposure to environmental toxicants during embryonic life causes changes in the expression of developmental genes that may last for a lifetime and adversely affect the exposed individual. Developmental exposure to lead (Pb, an ubiquitous environmental contaminant, causes deficits in cognitive functions and IQ, behavioral effects, and attention deficit hyperactivity disorder (ADHD. Long-term effects observed after early life exposure to Pb include reduction of gray matter, alteration of myelin structure, and increment of criminal behavior in adults. Despite growing research interest, the molecular mechanisms responsible for the effects of lead in the central nervous system are still largely unknown. To study the molecular changes due to Pb exposure during neurodevelopment, we exposed mice to Pb in utero and examined the expression of neural markers, neurotrophins, transcription factors and glutamate-related genes in hippocampus, cortex, and thalamus at postnatal day 60. We found that hippocampus was the area where gene expression changes due to Pb exposure were more pronounced. To recapitulate gestational Pb exposure in vitro, we differentiated mouse embryonic stem cells (ESC into neurons and treated ESC-derived neurons with Pb for the length of the differentiation process. These neurons expressed the characteristic neuronal markers Tubb3, Syp, Gap43, Hud, Ngn1, Vglut1 (a marker of glutamatergic neurons, and all the glutamate receptor subunits, but not the glial marker Gafp. Importantly, several of the changes observed in Pb-exposed mouse brains in vivo were also observed in Pb-treated ESC-derived neurons, including those affecting expression of Ngn1, Bdnf exon IV, Grin1, Grin2D, Grik5, Gria4, and Grm6. We conclude that our ESC-derived model of toxicant exposure during neural differentiation promises to be a useful model to analyze mechanisms of neurotoxicity induced by Pb and other environmental agents.

  9. Giardia lamblia infections in adult mice.

    OpenAIRE

    Byrd, L G; Conrad, J T; Nash, T E

    1994-01-01

    An adult mouse-Giardia lamblia model was developed and used to study host-parasite interactions, including antigenic variation. The H7/1 clone of isolate GS infected mice consistently and produced infections in 14 mouse strains tested. Infection patterns were mouse strain and Giardia isolate dependent. Antigenic variation occurred in immunocompetent mice but not in mice with severe combined immunodeficiency.

  10. Effect of Chronic Lead Intoxication on Risky Behavior in Mice

    Directory of Open Access Journals (Sweden)

    L Mohammadyar

    2010-08-01

    Full Text Available Introduction: With industrialization of human societies, pollutants like lead have entered in the life cycle, causing harmful effects on body organs. No sufficient studies have been done on the effects of pollutants on behavior. The aim of this study was to investigate possible effects of lead on some measurable behaviors of an animal model. Methods: Forty eight male adult mice were divided into 4 groups of 12 each. Lead acetate was added at concentrations of 0, 5, 50, or 500 ppm to the drinking water of the animals for 4 weeks (28 days. On day 29, animals were placed on an Elevated Plus maze (EPM for 5 min and the time in sec spent was measured on closed arms, open arms and the end 1/3rd of the open arms. Increased time on open arms, particularly the end 1/3rd was considered to reflect an enhanced risk-accepting behavior. Results: In this study, it was shown that lead exposure caused an increased number of entrance (P=0.006 and time spent (P=0.034 by mice on open arms of the EPM. There was a positive correlation between the concentration of lead acetate and those two effects. Conclusion: The present study demonstrated that lead poisoning may decrease normal anxiety in mice and increase risky behavior in this species. Clinical studies on human subjects with risky behavior are strongly suggested in order to find a possible relation between chronic exposures to lead as well as plasma concentration of lead with the extent of this kind of behavior.

  11. Adult neurogenesis in the four-striped mice (Rhabdomys pumilio)

    Institute of Scientific and Technical Information of China (English)

    Olatunbosun O Olaleye; Amadi O Ihunwo

    2014-01-01

    In this study, we investigated non-captive four-striped mice (Rhabdomys pumilio) for evidence that adult neurogenesis occurs in the adult brain of animal models in natural environment. Ki-67 (a marker for cell proliferation) and doublecortin (a marker for immature neurons) immunos-taining conifrmed that adult neurogenesis occurs in the active sites of subventricular zone of the lateral ventricle with the migratory stream to the olfactory bulb, and the subgranular zone of the dentate gyrus of the hippocampus. No Ki-67 proliferating cells were observed in the striatum substantia nigra, amygdala, cerebral cortex or dorsal vagal complex. Doublecortin-immunore-active cells were observed in the striatum, third ventricle, cerebral cortex, amygdala, olfactory bulb and along the rostral migratory stream but absent in the substantia nigra and dorsal vagal complex. The potential neurogenic sites in the four-striped mouse species could invariably lead to increased neural plasticity.

  12. Adult neurogenesis in the four-striped mice (Rhabdomys pumilio).

    Science.gov (United States)

    Olaleye, Olatunbosun O; Ihunwo, Amadi O

    2014-11-01

    In this study, we investigated non-captive four-striped mice (Rhabdomys pumilio) for evidence that adult neurogenesis occurs in the adult brain of animal models in natural environment. Ki-67 (a marker for cell proliferation) and doublecortin (a marker for immature neurons) immunostaining confirmed that adult neurogenesis occurs in the active sites of subventricular zone of the lateral ventricle with the migratory stream to the olfactory bulb, and the subgranular zone of the dentate gyrus of the hippocampus. No Ki-67 proliferating cells were observed in the striatum substantia nigra, amygdala, cerebral cortex or dorsal vagal complex. Doublecortin-immunoreactive cells were observed in the striatum, third ventricle, cerebral cortex, amygdala, olfactory bulb and along the rostral migratory stream but absent in the substantia nigra and dorsal vagal complex. The potential neurogenic sites in the four-striped mouse species could invariably lead to increased neural plasticity. PMID:25558241

  13. Spatial Cognition in Adult and Aged Mice Exposed to High-Fat Diet.

    Science.gov (United States)

    Kesby, James P; Kim, Jane J; Scadeng, Miriam; Woods, Gina; Kado, Deborah M; Olefsky, Jerrold M; Jeste, Dilip V; Achim, Cristian L; Semenova, Svetlana

    2015-01-01

    Aging is associated with a decline in multiple aspects of cognitive function, with spatial cognition being particularly sensitive to age-related decline. Environmental stressors, such as high-fat diet (HFD) exposure, that produce a diabetic phenotype and metabolic dysfunction may indirectly lead to exacerbated brain aging and promote the development of cognitive deficits. The present work investigated whether exposure to HFD exacerbates age-related cognitive deficits in adult versus aged mice. Adult (5 months old) and aged (15 months old) mice were exposed to control diet or HFD for three months prior to, and throughout, behavioral testing. Anxiety-like behavior in the light-dark box test, discrimination learning and memory in the novel object/place recognition tests, and spatial learning and memory in the Barnes maze test were assessed. HFD resulted in significant gains in body weight and fat mass content with adult mice gaining significantly more weight and adipose tissue due to HFD than aged mice. Weight gain was attributed to food calories sourced from fat, but not total calorie intake. HFD increased fasting insulin levels in all mice, but adult mice showed a greater increase relative to aged mice. Behaviorally, HFD increased anxiety-like behavior in adult but not aged mice without significantly affecting spatial cognition. In contrast, aged mice fed either control or HFD diet displayed deficits in novel place discrimination and spatial learning. Our results suggest that adult mice are more susceptible to the physiological and anxiety-like effects of HFD consumption than aged mice, while aged mice displayed deficits in spatial cognition regardless of dietary influence. We conclude that although HFD induces systemic metabolic dysfunction in both adult and aged mice, overall cognitive function was not adversely affected under the current experimental conditions. PMID:26448649

  14. Spatial Cognition in Adult and Aged Mice Exposed to High-Fat Diet.

    Directory of Open Access Journals (Sweden)

    James P Kesby

    Full Text Available Aging is associated with a decline in multiple aspects of cognitive function, with spatial cognition being particularly sensitive to age-related decline. Environmental stressors, such as high-fat diet (HFD exposure, that produce a diabetic phenotype and metabolic dysfunction may indirectly lead to exacerbated brain aging and promote the development of cognitive deficits. The present work investigated whether exposure to HFD exacerbates age-related cognitive deficits in adult versus aged mice. Adult (5 months old and aged (15 months old mice were exposed to control diet or HFD for three months prior to, and throughout, behavioral testing. Anxiety-like behavior in the light-dark box test, discrimination learning and memory in the novel object/place recognition tests, and spatial learning and memory in the Barnes maze test were assessed. HFD resulted in significant gains in body weight and fat mass content with adult mice gaining significantly more weight and adipose tissue due to HFD than aged mice. Weight gain was attributed to food calories sourced from fat, but not total calorie intake. HFD increased fasting insulin levels in all mice, but adult mice showed a greater increase relative to aged mice. Behaviorally, HFD increased anxiety-like behavior in adult but not aged mice without significantly affecting spatial cognition. In contrast, aged mice fed either control or HFD diet displayed deficits in novel place discrimination and spatial learning. Our results suggest that adult mice are more susceptible to the physiological and anxiety-like effects of HFD consumption than aged mice, while aged mice displayed deficits in spatial cognition regardless of dietary influence. We conclude that although HFD induces systemic metabolic dysfunction in both adult and aged mice, overall cognitive function was not adversely affected under the current experimental conditions.

  15. Adult lead poisoning from a herbal medicine

    International Nuclear Information System (INIS)

    A 56-year-old Indian lady presented with one week history of abdominal pain, jaundice and chronic polyarthralgia. She had evidence of hemolytic anemia and hepatitis. Her blood lead level was high and a peripheral blood film showed dense basophilic stippling. It is believed that the lead toxicity was due to the use of Indian herbal medicine. (author)

  16. Cytomegalovirus infection of adipose tissues induces steatitis in adult mice.

    OpenAIRE

    Price, P; Eddy, K. S.; Papadimitriou, J M; Robertson, T. A.; Shellam, G R

    1990-01-01

    Young adult mice infected with MCMV were shown to develop inflammatory lesions in the peripancreatic and salivary gland adipose tissues. MCMV replication was detected by immunoperoxidase staining and electron microscopy in adipocytes, fibroblasts, endothelial cells and pericytes in brown and white adipose tissues. More infected cells were detected in C3H mice than in BALB/c, BALB.B, BALB.K or C57BL/6 mice. Peripancreatic steatitis consisted of a monocytic infiltrate surrounding focal necrosis...

  17. Adult neurogenesis in the four-striped mice (Rhabdomys pumilio)

    OpenAIRE

    Olaleye, Olatunbosun O.; Ihunwo, Amadi O.

    2014-01-01

    In this study, we investigated non-captive four-striped mice (Rhabdomys pumilio) for evidence that adult neurogenesis occurs in the adult brain of animal models in natural environment. Ki-67 (a marker for cell proliferation) and doublecortin (a marker for immature neurons) immunostaining confirmed that adult neurogenesis occurs in the active sites of subventricular zone of the lateral ventricle with the migratory stream to the olfactory bulb, and the subgranular zone of the dentate gyrus of t...

  18. Adenomatous Polyposis Coli Mutation Leads to Myopia Development in Mice.

    Directory of Open Access Journals (Sweden)

    Zhen Liu

    Full Text Available Myopia incidence in China is rapidly becoming a very serious sight compromising problem in a large segment of the general population. Therefore, delineating the underlying mechanisms leading to myopia will markedly lessen the likelihood of other sight compromising complications. In this regard, there is some evidence that patients afflicted with familial adenomatous polyposis (FAP, havean adenomatous polyposis coli (APC mutation and a higher incidence of myopia. To clarify this possible association, we determined whether the changes in pertinent biometric and biochemical parameters underlying postnatal refractive error development in APCMin mice are relevant for gaining insight into the pathogenesis of this disease in humans. The refraction and biometrics in APCMin mice and age-matched wild-type (WT littermates between postnatal days P28 and P84 were examined with eccentric infrared photorefraction (EIR and customized optical coherence tomography (OCT. Compared with WT littermates, the APCMin mutated mice developed myopia (average -4.64 D on P84 which was associated with increased vitreous chamber depth (VCD. Furthermore, retinal and scleral changes appear in these mice along with: 1 axial length shortening; 2 increased retinal cell proliferation; 3 and decreased tyrosine hydroxylase (TH expression, the rate-limiting enzyme of DA synthesis. Scleral collagen fibril diameters became heterogeneous and irregularly organized in the APCMin mice. Western blot analysis showed that scleral alpha-1 type I collagen (col1α1 expression also decreased whereas MMP2 and MMP9 mRNA expression was invariant. These results indicate that defective APC gene function promotes refractive error development. By characterizing in APCMin mice ocular developmental changes, this approach provides novel insight into underlying pathophysiological mechanisms contributing to human myopia development.

  19. Adenomatous Polyposis Coli Mutation Leads to Myopia Development in Mice

    Science.gov (United States)

    Li, Jing; Zhu, Zhenzhen; Yang, Wenzhao; Zhou, Xiangtian; An, Jianhong; Huang, Furong; Wang, Qiongsi; Reinach, Peter S.; Li, Wei; Chen, Wensheng; Liu, Zuguo

    2015-01-01

    Myopia incidence in China is rapidly becoming a very serious sight compromising problem in a large segment of the general population. Therefore, delineating the underlying mechanisms leading to myopia will markedly lessen the likelihood of other sight compromising complications. In this regard, there is some evidence that patients afflicted with familial adenomatous polyposis (FAP), havean adenomatous polyposis coli (APC) mutation and a higher incidence of myopia. To clarify this possible association, we determined whether the changes in pertinent biometric and biochemical parameters underlying postnatal refractive error development in APCMin mice are relevant for gaining insight into the pathogenesis of this disease in humans. The refraction and biometrics in APCMin mice and age-matched wild-type (WT) littermates between postnatal days P28 and P84 were examined with eccentric infrared photorefraction (EIR) and customized optical coherence tomography (OCT). Compared with WT littermates, the APCMin mutated mice developed myopia (average -4.64 D) on P84 which was associated with increased vitreous chamber depth (VCD). Furthermore, retinal and scleral changes appear in these mice along with: 1) axial length shortening; 2) increased retinal cell proliferation; 3) and decreased tyrosine hydroxylase (TH) expression, the rate-limiting enzyme of DA synthesis. Scleral collagen fibril diameters became heterogeneous and irregularly organized in the APCMin mice. Western blot analysis showed that scleral alpha-1 type I collagen (col1α1) expression also decreased whereas MMP2 and MMP9 mRNA expression was invariant. These results indicate that defective APC gene function promotes refractive error development. By characterizing in APCMin mice ocular developmental changes, this approach provides novel insight into underlying pathophysiological mechanisms contributing to human myopia development. PMID:26495845

  20. Heart regeneration in adult MRL mice

    Science.gov (United States)

    Leferovich, John M.; Bedelbaeva, Khamilia; Samulewicz, Stefan; Zhang, Xiang-Ming; Zwas, Donna; Lankford, Edward B.; Heber-Katz, Ellen

    2001-08-01

    The reaction of cardiac tissue to acute injury involves interacting cascades of cellular and molecular responses that encompass inflammation, hormonal signaling, extracellular matrix remodeling, and compensatory adaptation of myocytes. Myocardial regeneration is observed in amphibians, whereas scar formation characterizes cardiac ventricular wound healing in a variety of mammalian injury models. We have previously shown that the MRL mouse strain has an extraordinary capacity to heal surgical wounds, a complex trait that maps to at least seven genetic loci. Here, we extend these studies to cardiac wounds and demonstrate that a severe transmural, cryogenically induced infarction of the right ventricle heals extensively within 60 days, with the restoration of normal myocardium and function. Scarring is markedly reduced in MRL mice compared with C57BL/6 mice, consistent with both the reduced hydroxyproline levels seen after injury and an elevated cardiomyocyte mitotic index of 10-20% for the MRL compared with 1-3% for the C57BL/6. The myocardial response to injury observed in these mice resembles the regenerative process seen in amphibians.

  1. CHRONIC DEVELOPMENTAL LEAD EXPOSURE REDUCES NEUROGENESIS IN ADULT HIPPOCAMPUS.

    Science.gov (United States)

    CHRONIC DEVELOPMENTAL LEAD EXPOSURE REDUCES NEUROGENESIS IN ADULT HIPPOCAMPUS. ME Gilbert1, ME Kelly2, S. Salant3, T Shafer1, J Goodman3 1Neurotoxicology Div, US EPA, RTP, NC, 27711, 2Children's Hospital, Philadelphia, PA, 19104, 3Helen Hayes Hospital, Haverstraw, NY, 10993. ...

  2. Non-occupational lead exposure and hypertension in Pakistani adults

    Institute of Scientific and Technical Information of China (English)

    RAHMAN Sohaila; KHALID Nasir; ZAIDI Jamshed Hussain; AHMAD Shujaat; IQBAL Mohammad Zafar

    2006-01-01

    Hypertension is one of the most prevalent diseases in the developed and developing countries. Based on the long historical association and the provocative findings of blood pressure effects at low level of lead exposure a study was carried out to determine if an association existed between low blood lead concentration and hypertension. In this study the effects of low-level exposure to lead on blood pressure were examined among 244 adults using atomic absorption spectrometer. For quality assurance purpose certified reference materials i.e., Animal blood A-13, Bovine liver 1577 and cotton cellulose V-9 from IAEA (International Atomic Energy Agency) and NIST (National Institute of Standard Technology) were analyzed under identical experimental conditions. The mean age of hypertensive adults was 52 years (range 43~66). The mean values of systolic and diastolic blood pressure were (209±11.7) (range 170~250) and (117±3.9) (range 105~140) mmHg respectively. Blood lead concentration ranged from 78~201μg/L with a mean of 139 μg/L and 165~497μg/L with a mean of 255 μg/L in normal and hypertensive adults respectively. Increase in systolic blood pressure was significantly predictive with increase in blood lead levels. Body mass index (BMI) and lipid profile including total cholesterol, low density lipoprotein cholesterol, high density lipoprotein cholesterol and triglyceride correlated with blood pressure.

  3. Reduced white fat mass in adult mice bearing a truncated Patched 1

    Directory of Open Access Journals (Sweden)

    Zili Li, Heng Zhang, Leslie A. Denhard, Lan-Hsin Liu, Huaxin Zhou, Zi-Jian Lan

    2008-01-01

    Full Text Available Hedgehog (Hh signaling emerges as a potential pathway contributing to fat formation during postnatal development. In this report, we found that Patched 1 (Ptc1, a negative regulator of Hh signaling, was expressed in the epididymal fat pad of adult mice. Reduced total white fat mass and epididymal adipocyte cell size were observed in naturally occurring spontaneous mesenchymal dysplasia (mes adult mice (Ptc1mes/mes, which carry a deletion of Ptc1 at the carboxyl-terminal cytoplasmic region. Increased expression of truncated Ptc1, Ptc2 and Gli1, the indicators of ectopic activation of Hh signaling, was observed in epididymal fat pads of adult Ptc1mes/mes mice. In contrast, expression of peroxisome proliferator-activated receptor gamma, CCAAT/enhancer binding protein alpha, adipocyte P2 and adipsin were reduced in epididymal fat pads of adult Ptc1mes/mes mice. Taken together, our results indicate that deletion of carboxyl-terminal tail of Ptc1 can lead to the reduction of white fat mass during postnatal development.

  4. Toluene Induces Depression-Like Behaviors in Adult Mice

    OpenAIRE

    Yang, Miyoung; Kim, Sung-Ho; Kim, Jong-Choon; Shin, Taekyun; Moon, Changjong

    2010-01-01

    It has been clinically reported that toluene causes mental depression in humans. However, the detrimental effects of toluene exposure on brain function and the relation between features of mental depression and toluene exposure are poorly understood. This study evaluated depression-like behaviors in adult C57BL/6 mice after administration of toluene, and elucidated the effects of classical antidepressants on the depression-like behaviors. For the estimation of depression-like behaviors, tail ...

  5. Adaptation of enterovirus 71 to adult interferon deficient mice.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Caine

    Full Text Available Non-polio enteroviruses, including enterovirus 71 (EV71, have caused severe and fatal cases of hand, foot and mouth disease (HFMD in the Asia-Pacific region. The development of a vaccine or antiviral against these pathogens has been hampered by the lack of a reliable small animal model. In this study, a mouse adapted EV71 strain was produced by conducting serial passages through A129 (α/β interferon (IFN receptor deficient and AG129 (α/β, γ IFN receptor deficient mice. A B2 sub genotype of EV71 was inoculated intraperitoneally (i.p. into neonatal AG129 mice and brain-harvested virus was subsequently passaged through 12 and 15 day-old A129 mice. When tested in 10 week-old AG129 mice, this adapted strain produced 100% lethality with clinical signs including limb paralysis, eye irritation, loss of balance, and death. This virus caused only 17% mortality in same age A129 mice, confirming that in the absence of a functional IFN response, adult AG129 mice are susceptible to infection by adapted EV71 isolates. Subsequent studies in adult AG129 and young A129 mice with the adapted EV71 virus examined the efficacy of an inactivated EV71 candidate vaccine and determined the role of humoral immunity in protection. Passive transfer of rabbit immune sera raised against the EV71 vaccine provided protection in a dose dependent manner in 15 day-old A129 mice. Intramuscular injections (i.m. in five week-old AG129 mice with the alum adjuvanted vaccine also provided protection against the mouse adapted homologous strain. No clinical signs of disease or mortality were observed in vaccinated animals, which received a prime-and-boost, whereas 71% of control animals were euthanized after exhibiting systemic clinical signs (P<0.05. The development of this animal model will facilitate studies on EV71 pathogenesis, antiviral testing, the evaluation of immunogenicity and efficacy of vaccine candidates, and has the potential to establish correlates of protection

  6. Microglial disruption in young mice with early chronic lead exposure☆

    Science.gov (United States)

    Sobin, Christina; Montoya, Mayra Gisel Flores; Parisi, Natali; Schaub, Tanner; Cervantes, Miguel; Armijos, Rodrigo X.

    2013-01-01

    The mechanisms by which early chronic lead (Pb) exposure alter brain development have not been identified. We examined neuroimmune system effects in C57BL/6J mice with Pb exposure, including levels that may be common among children in lower socioeconomic income environments. Pups were exposed via dams’ drinking water from birth to post-natal day 28 to low, high or no Pb conditions. We compared gene expression of neuroinflammatory markers (study 1); and microglial mean cell body volume and mean cell body number in dentate gyrus, and dentate gyrus volume (study 2). Blood Pb levels in exposed animals at sacrifice (post-natal day 28) ranged from 2.66 to 20.31 μg/dL. Only interleukin-6 (IL6) differed between groups and reductions were dose-dependent. Microglia cell body number also differed between groups and reductions were dose-dependent. As compared with controls, microglia cell body volume was greater but highly variable in only low-dose animals; dentate gyri volumes in low- and high-dose animals were reduced. The results did not support a model of increased neuroinflammation. Instead, early chronic exposure to Pb disrupted microglia via damage to, loss of, or lack of proliferation of microglia in the developing brains of Pb-exposed animals. PMID:23598043

  7. Amelioration of lead induced changes in ovary of mice, by garlic extract

    International Nuclear Information System (INIS)

    Objective: To observe the effects of lead acetate and protective role of garlic extract on the histomorphology of the ovary in an animal model. Methods: The experimental trial was conducted at the Department of Anatomy, Army Medical College Rawalpindi, in association with the National Institute of Health (NIH), Islamabad, from April to June 2013. It comprised 30 adult non-pregnant female mice (BALBc strain) weighing 25-27gms. They were divided into three equal groups of 10 mice each. Group A, taken as control, was given normal diet. Group B was given lead acetate at a dose of 30mg/kg/day. Group C was given lead acetate 30mg/kg/day and garlic extract 500mg/kg/day through oral gavage tube for two months. Animals were dissected a day after the last dose. Size, shape, colour and consistency of the ovary was observed. The right ovary was processed, embedded and stained for histological study. Primary follicles were counted and noted. SPSS 18 was used for statistical analysis. Results: The primary follicular count decreased significantly in Group B while it relatively increased in Group C. Morphology of the ovary was affected after exposure to lead acetate in Group B, while in Group C results were the same as in the Group A controls regarding gross architecture of the ovary. Conclusion: Lead alters the normal histology and affects the physiology of the ovary. It interferes with the development of growing follicles in the ovary. Lead, being a reproductive toxicant, can be a cause of infertility in exposed females. (author)

  8. Growth Hormone Inhibits Hepatic De Novo Lipogenesis in Adult Mice.

    Science.gov (United States)

    Cordoba-Chacon, Jose; Majumdar, Neena; List, Edward O; Diaz-Ruiz, Alberto; Frank, Stuart J; Manzano, Anna; Bartrons, Ramon; Puchowicz, Michelle; Kopchick, John J; Kineman, Rhonda D

    2015-09-01

    Patients with nonalcoholic fatty liver disease (NAFLD) are reported to have low growth hormone (GH) production and/or hepatic GH resistance. GH replacement can resolve the fatty liver condition in diet-induced obese rodents and in GH-deficient patients. However, it remains to be determined whether this inhibitory action of GH is due to direct regulation of hepatic lipid metabolism. Therefore, an adult-onset, hepatocyte-specific, GH receptor (GHR) knockdown (aLivGHRkd) mouse was developed to model hepatic GH resistance in humans that may occur after sexual maturation. Just 7 days after aLivGHRkd, hepatic de novo lipogenesis (DNL) was increased in male and female chow-fed mice, compared with GHR-intact littermate controls. However, hepatosteatosis developed only in male and ovariectomized female aLivGHRkd mice. The increase in DNL observed in aLivGHRkd mice was not associated with hyperactivation of the pathway by which insulin is classically considered to regulate DNL. However, glucokinase mRNA and protein levels as well as fructose-2,6-bisphosphate levels were increased in aLivGHRkd mice, suggesting that enhanced glycolysis drives DNL in the GH-resistant liver. These results demonstrate that hepatic GH actions normally serve to inhibit DNL, where loss of this inhibitory signal may explain, in part, the inappropriate increase in hepatic DNL observed in NAFLD patients. PMID:26015548

  9. Prenatal retinoid deficiency leads to airway hyperresponsiveness in adult mice

    OpenAIRE

    Chen, Felicia; Marquez, Hector; Kim, Youn-Kyung; Qian, Jun; Shao, Fengzhi; Fine, Alan; Cruikshank, William W.; Quadro, Loredana; Wellington V. Cardoso

    2014-01-01

    There is increasing evidence that vitamin A deficiency in utero correlates with abnormal airway smooth muscle (SM) function in postnatal life. The bioactive vitamin A metabolite retinoic acid (RA) is essential for formation of the lung primordium; however, little is known about the impact of early fetal RA deficiency on postnatal lung structure and function. Here, we provide evidence that during murine lung development, endogenous RA has a key role in restricting the airway SM differentiation...

  10. Bone status of adult female butyrylcholinesterase gene-deficient mice.

    Science.gov (United States)

    Haupt, Malte; Kauschke, Vivien; Sender, Jonas; Kampschulte, Marian; Kovtun, Anna; Dürselen, Lutz; Heiss, Christian; Lips, Katrin Susanne

    2015-11-01

    Butyrylcholinesterase (BChE) degrades acetylcholine in addition to acetylcholinesterase (AChE) which is involved in embryonic development of limbs. Since BChE is expressed by osteoblast-like cells we asked whether it is functional in adult bone remodeling. We addressed this issue by analyzing BChE gene-deficient mice (BChE-KO). Bones were extracted from 16-week old female BChE-KO and corresponding wild type mice (WT). Femoral bones were used for biomechanical testing and μCT evaluation of cancellous and cortical bone. Also vertebrae Th12 and L1 were investigated with μCT while L3 was used for tartrate-resistant acidic phosphatase (TRAP) histomorphometry and Th10 for gene expression analysis by means of real-time RT-PCR. BChE-KO did not reveal significant differences in biomechanical bone strength and bone mineral density determined by μCT. Microarchitecture of cancellous and cortical bone showed an increase in μCT parameters like trabecular thickness, trabecular separation, and relative cortical bone area of femoral BChE-KO bone compared to WT. In vertebrae no changes of microstructure and mRNA expression were detected. However, osteoclast histomorphometry with TRAP stained sections demonstrated a significant increase in relative osteoclast number. In conclusion, in adult murine bone the role of BChE is limited to bone specific changes in microarchitecture and to an increase in relative number of bone resorbing osteoclasts whereas the main collagen resorbing enzyme Cathepsin-K (CtsK) was stably expressed. Besides, AChE might be able to compensate the lack of BChE. Thus, further analyses using bone tissue specific AChE BChE cre-lox double knockout mice would be helpful. PMID:26138460

  11. Antagonistic effects of cadmium on lead accumulation in pregnant and non-pregnant mice

    International Nuclear Information System (INIS)

    Highlights: ► We investigate the exposure of pregnant and non-pregnant mice to cadmium (Cd) on lead (Pb) contaminated soil. ► We examine the changes in lead accumulation in mice due to the presence of cadmium in soil. ► Lead accumulation is higher in pregnant compared to non-pregnant mice. ► Cadmium decreases lead accumulation in all mice irrespective of status. - Abstract: People are frequently exposed to combinations of contaminants but there is a paucity of data on the effects of mixed contaminants at low doses. This study investigated the influence of cadmium (Cd) on lead (Pb) accumulation in pregnant and non-pregnant mice following exposure to contaminated soil. Exposure to Pb from contaminated soils increased Pb accumulation in both pregnant and non-pregnant mice compared to unexposed control animals (pregnant and non-pregnant). Lead accumulation in the liver and kidneys of exposure pregnant mice (40 ± 15 mg Pb kg−1) was significantly higher (P −1). The presence of Cd in contaminated soil had a major effect on the Pb and Fe accumulation in the kidneys and liver, respectively. This study shows that Pb uptake is mediated by the presence of Cd in the co-contaminated soil and demonstrates that further research is required to investigate the influence of co-contaminants on human exposure at sub-chronic concentrations.

  12. Delayed expulsion of adult Trichinella spiralis by mast cell-deficient W/Wv mice.

    OpenAIRE

    Ha, T. Y.; Reed, N D; Crowle, P K

    1983-01-01

    Mast cell-deficient W/Wv mice and their mast cell-sufficient littermates were given infections of Trichinella spiralis. W/Wv mice were slower than their littermates to expel adult T. spiralis. Repair of the mast cell deficiency of W/Wv mice by bone marrow grafting was accompanied by accelerated expulsion of T. spiralis.

  13. Effect of acetylsalicylic acid on spermatogenesis in adult albino mice

    International Nuclear Information System (INIS)

    Spermatogenesis in male albino mice. Study Design: Laboratory based randomized controlled trial. Place and Duration of Study: Department of Anatomy University of Health Sciences, Lahore from Apr, 2012 to Dec, 2012. Material and Methods: Thirty nine male albino mice, 6-8 weeks old weighing 30 - 5 gm, were used; these were randomly divided into three groups having thirteen mice in each using random numbers table. Group A served as a control and was given distilled water orally via oral gavage 10 ml per kg for 30 days. Group B was given acetylsalicylic acid 100 mg/kg dissolved in 10 ml distilled orally for a period of 30 days. Group C was given acetylsalicylic acid 25 mg/kg dissolved in 2.5 ml distilled orally for a period of 30 days. Animals were sacrificed 24 hours after the last dose and the testes were removed, fixed in Bouin's fixative for 48 hours. Five microns thick sections of processed tissue were stained with H and E and PAS for calculation of Johnsen score and diameter of seminiferous tubules. Serum testosterone level was measured by testosterone enzyme immunoassay test kits. Results: Microscopic examination demonstrated that ASA treatment lead to statistically significant increase in the mean Johnsen score and mean diameter of seminiferous tubules. Conclusion: It was concluded from the current study that ASA treatment enhances spermatogenesis. (author)

  14. Neurotoxicity of perfluorooctane sulfonate to hippocampal cells in adult mice.

    Directory of Open Access Journals (Sweden)

    Yan Long

    Full Text Available Perfluorooctane sulfonate (PFOS is a ubiquitous pollutant and found in the environment and in biota. The neurotoxicity of PFOS has received much concern among its various toxic effects when given during developing period of brain. However, little is known about the neurotoxic effects and potential mechanisms of PFOS in the mature brain. Our study demonstrated the neurotoxicity and the potential mechanisms of PFOS in the hippocampus of adult mice for the first time. The impairments of spatial learning and memory were observed by water maze studies after exposure to PFOS for three months. Significant apoptosis was found in hippocampal cells after PFOS exposure, accompanied with a increase of glutamate in the hippocampus and decreases of dopamine (DA and 3,4-dihydrophenylacetic acid (DOPAC in Caudate Putamen in the 10.75 mg/kg PFOS group. By two-dimensional fluorescence difference in gel electrophoresis (2D-DIGE analysis, seven related proteins in the hippocampus that responded to PFOS exposure were identified, among which, Mib1 protein (an E3 ubiquitin-protein ligase, Herc5 (hect domain and RLD 5 isoform 2 and Tyro3 (TYRO3 protein tyrosine kinase 3 were found down-regulated, while Sdha (Succinate dehydrogenase flavoprotein subunit, Gzma (Isoform HF1 of Granzyme A precursor, Plau (Urokinase-type plasminogen activator precursor and Lig4 (DNA ligase 4 were found up-regulated in the 10.75 mg/kg PFOS-treated group compare with control group. Furthermore, we also found that (i increased expression of caspase-3 protein and decreased expression of Bcl-2, Bcl-XL and survivin proteins, (ii the increased glutamate release in the hippocampus. All these might contribute to the dysfunction of hippocampus which finally account for the impairments of spatial learning and memory in adult mice.

  15. Impaired Memory in OT-II Transgenic Mice Is Associated with Decreased Adult Hippocampal Neurogenesis Possibly Induced by Alteration in Th2 Cytokine Levels.

    Science.gov (United States)

    Jeon, Seong Gak; Kim, Kyoung Ah; Chung, Hyunju; Choi, Junghyun; Song, Eun Ji; Han, Seung-Yun; Oh, Myung Sook; Park, Jong Hwan; Kim, Jin-Il; Moon, Minho

    2016-08-31

    Recently, an increasing number of studies have focused on the effects of CD4+ T cell on cognitive function. However, the changes of Th2 cytokines in restricted CD4+ T cell receptor (TCR) repertoire model and their effects on the adult hippocampal neurogenesis and memory are not fully understood. Here, we investigated whether and how the mice with restricted CD4+ repertoire TCR exhibit learning and memory impairment by using OT-II mice. OT-II mice showed decreased adult neurogenesis in hippocampus and short- and long- term memory impairment. Moreover, Th2 cytokines in OT-II mice are significantly increased in peripheral organs and IL-4 is significantly increased in brain. Finally, IL-4 treatment significantly inhibited the proliferation of cultured adult rat hippocampal neural stem cells. Taken together, abnormal level of Th2 cytokines can lead memory dysfunction via impaired adult neurogenesis in OT-II transgenic. PMID:27432189

  16. Maternal MDMA administration in mice leads to neonatal growth delay.

    Science.gov (United States)

    Kaizaki, Asuka; Tanaka, Sachiko; Yoshida, Takemi; Numazawa, Satoshi

    2014-02-01

    The psychoactive recreational drug 3,4-methylenedioxymethamphetamine (MDMA) is widely abused. The fact that MDMA induces neurotoxic damage in serotonergic nerve endings is well known. However, the effects of MDMA on pregnant and neonatal animals remain unknown. Therefore, we studied the effects of gestational exposure to MDMA on birth, growth, and behavior of pups. Female BALB/c mice were orally administered either water (10 ml/kg) or MDMA (20 mg/10 ml/kg) from gestational day 1 to postnatal day (P) 21. MDMA did not affect the birth rate, but the survival rate of the pups significantly decreased. A significant reduction in body weight gain was observed in pups from MDMA-administered dams during P3-P21. Maternal MDMA treatment caused an attenuated cliff avoidance reaction and decreased motor function in the pups, as determined by the wire hanging test. These results suggest that MDMA treatment during pregnancy and lactation causes growth retardation and dysfunction of motor neurons in mouse pups. PMID:24418707

  17. Myogenin regulates exercise capacity but is dispensable for skeletal muscle regeneration in adult mdx mice.

    Directory of Open Access Journals (Sweden)

    Eric Meadows

    Full Text Available Duchenne muscular dystrophy (DMD is the most prevalent inherited childhood muscle disorder in humans. mdx mice exhibit a similar pathophysiology to the human disorder allowing for an in-depth investigation of DMD. Myogenin, a myogenic regulatory factor, is best known for its role in embryonic myogenesis, but its role in adult muscle maintenance and regeneration is still poorly understood. Here, we generated an mdx:Myog(flox/flox mouse harboring a tamoxifen-inducible Cre recombinase transgene, which was used to conditionally delete Myog during adult life. After tamoxifen treatment, three groups of mice were created to study the effects of Myog deletion: mdx:Myog(flox/flox mice (mdx, Myog(flox/flox mice (wild-type, and mdx:Myog(floxΔ/floxΔ:Cre-ER mice (mdx:Myog-deleted. mdx:Myog-deleted mice exhibited no adverse phenotype and behaved normally. When run to exhaustion, mdx:Myog-deleted mice demonstrated an enhanced capacity for exercise compared to mdx mice, running nearly as far as wild-type mice. Moreover, these mice showed the same signature characteristics of muscle regeneration as mdx mice. Unexpectedly, we found that myogenin was dispensable for muscle regeneration. Factors associated with muscle fatigue, metabolism, and proteolysis were significantly altered in mdx:Myog-deleted mice, and this might contribute to their increased exercise capacity. Our results reveal novel functions for myogenin in adult muscle and suggest that reducing Myog expression in other muscle disease models may partially restore muscle function.

  18. Adenomatous Polyposis Coli Mutation Leads to Myopia Development in Mice

    OpenAIRE

    Liu, Zhen; Qiu, Fangfang; Li, Jing; Zhu, Zhenzhen; Yang, Wenzhao; Zhou, Xiangtian; An, Jianhong; Huang, Furong; Wang, Qiongsi; Reinach, Peter S.; Li, Wei; Chen, Wensheng; Liu, Zuguo

    2015-01-01

    Myopia incidence in China is rapidly becoming a very serious sight compromising problem in a large segment of the general population. Therefore, delineating the underlying mechanisms leading to myopia will markedly lessen the likelihood of other sight compromising complications. In this regard, there is some evidence that patients afflicted with familial adenomatous polyposis (FAP), havean adenomatous polyposis coli (APC) mutation and a higher incidence of myopia. To clarify this possible ass...

  19. Selection of micronutrients used along with DMSA in the treatment of moderately lead intoxicated mice

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Yingjun [China Medical University, Department of Physiology, School of Basic Medicine, Shenyang, Liaoning (China); Yu, Fei; Zhi, Xuping; An, Li; Yang, Jun [China Medical University, Department of Nutrition and Food Hygiene, School of Public Health, Shenyang, Liaoning (China); Jin, Yaping; Lu, Chunwei; Li, Gexin [China Medical University, Department of Environmental and Occupational Health, School of Public Health, Shenyang, Liaoning (China)

    2008-01-15

    The objective of this study was to explore the optimum combination of micronutrients used with 2,3-dimercaptosuccinic acid (DMSA) in the treatment of moderately lead-intoxicated mice. Experiment was carried out based on the orthogonal design L{sub 8}(2{sup 7}) setting six factors with two different levels of each, and eight groups of mice were needed. Mice were exposed to lead by drinking water contaminated with 0.1% lead acetate for four consecutive weeks, and then supplemented by gavage with different combinations of micronutrients with and without DMSA as designed in the orthogonal table. Lead levels in blood, liver, kidney, brain and bone and activities of blood {delta}-aminolevulinic acid dehydratase (ALAD) were analyzed after cessation of supplementation. The results suggested that DMSA was the only factor which could decrease significantly lead levels in blood, liver, kidney and bone; calcium and ascorbic acid were the notable factors decreasing lead levels in blood, liver, kidney, bone and brain; zinc and calcium were the notable factors reversing the lead-inhibited activities of blood ALAD; taurine was the notable factor decreasing lead levels in kidney and brain; and thiamine was the notable factor decreasing lead levels in brain. The lowest lead level in blood, liver, kidney and bone was shown in the mice supplemented with combination of calcium and ascorbic acid along with DMSA. In conclusion, the optimum combination of micronutrients used with DMSA suggested in present study was calcium and ascorbic acid, which seemed to potentiate the chelating efficacy of DMSA in the treatment of moderately lead intoxicated mice. (orig.)

  20. Hemopoietic precursor-cells in radiation chimeras restored by bone marrow of adult thymectomized mice

    International Nuclear Information System (INIS)

    Radioprotective capacity of bone marrow CFUs of adult thymectomized mice was studied. Lethaly irradiated mice were inoculated with bone marrow of mice thymectomized 8-11 months before. The colony forming capacity and proliferative rate of CFUs were studied 1-7.5 months after obtaining the radiation chimeras. It has been shown that proliferative capacity of bone marrow of adult thymectomized mice was reduced in comparison with that of normal animals. We also found that the content of CFUs in bone of those chimeras was reduced later - after 7.5 months. In this period (1-7.5 months) the cellularity of bone marrow did not change

  1. Systemic Immune Activation Leads to Neuroinflammation and Sickness Behavior in Mice

    OpenAIRE

    Steven Biesmans; Meert, Theo F.; Jan A. Bouwknecht; Acton, Paul D.; Nima Davoodi; Patrick De Haes; Jacobine Kuijlaars; Xavier Langlois; Liam J. R. Matthews; Luc Ver Donck; Niels Hellings; Rony Nuydens

    2013-01-01

    Substantial evidence indicates an association between clinical depression and altered immune function. Systemic administration of bacterial lipopolysaccharide (LPS) is commonly used to study inflammation-associated behavioral changes in rodents. In these experiments, we tested the hypothesis that peripheral immune activation leads to neuroinflammation and depressive-like behavior in mice. We report that systemic administration of LPS induced astrocyte activation in transgenic GFAP-luc mice an...

  2. Hyperprolactinemia induced by hCG leads to metabolic disturbances in female mice.

    Science.gov (United States)

    Ratner, Laura D; Stevens, Guillermina; Bonaventura, Maria Marta; Lux-Lantos, Victoria A; Poutanen, Matti; Calandra, Ricardo S; Huhtaniemi, Ilpo T; Rulli, Susana B

    2016-07-01

    The metabolic syndrome is a growing epidemic; it increases the risk for diabetes, cardiovascular disease, fatty liver, and several cancers. Several reports have indicated a link between hormonal imbalances and insulin resistance or obesity. Transgenic (TG) female mice overexpressing the human chorionic gonadotropin β-subunit (hCGβ+ mice) exhibit constitutively elevated levels of hCG, increased production of testosterone, progesterone and prolactin, and obesity. The objective of this study was to investigate the influence of hCG hypersecretion on possible alterations in the glucose and lipid metabolism of adult TG females. We evaluated fasting serum insulin, glucose, and triglyceride levels in adult hCGβ+ females and conducted intraperitoneal glucose and insulin tolerance tests at different ages. TG female mice showed hyperinsulinemia, hypertriglyceridemia, and dyslipidemia, as well as glucose intolerance and insulin resistance at 6 months of age. A 1-week treatment with the dopamine agonist cabergoline applied on 5-week-old hCGβ+ mice, which corrected hyperprolactinemia, hyperandrogenism, and hyperprogesteronemia, effectively prevented the metabolic alterations. These data indicate a key role of the hyperprolactinemia-induced gonadal dysfunction in the metabolic disturbances of hCGβ+ female mice. The findings prompt further studies on the involvement of gonadotropins and prolactin on metabolic disorders and might pave the way for the development of new therapeutic strategies. PMID:27154336

  3. Toxicity of benzyl alcohol in adult and neonatal mice

    International Nuclear Information System (INIS)

    Benzyl alcohol (BA) is an aromatic alcohol, which is used as a bacteriostat in a variety of parenteral preparations. In 1982, it was implicated as the agent responsible for precipitating The Gasping Syndrome in premature neonates. The investigate further this toxicity, BA was administered, intraperiotoneally, to adult and neonatal CD-1 male mice. Gross behavioral changes were monitored. Low doses produced minimal toxic effects within an initial 4 hour observation period. At the end of this time, the LD50 was determined to be 1000 mg/kg for both age groups. Death was due to respiratory arrest in all cases. Rapid absorption and conversion of BA to its primary metabolite, benzaldehyde, was demonstrated by gas chromatographic analysis of plasma from both experimental groups. The conversion of BA to benzaldehyde was confirmed in in vitro by using both horse-liver and mouse liver ADH. The inhibition of alcohol dehydrogenase (ADH) by pyrazole was similarly demonstrated in both enzyme systems. 14C-labelled BA was utilized to determine the distribution of BA and its metabolites in the body, and to possibly pinpoint a target organ of toxicity

  4. Hemopoietic support capacity of adult mouse liver. Studies in 89Sr marrow-ablated mice

    International Nuclear Information System (INIS)

    The capacity of normal livers in adult mice to support proliferation of pluripotent hemopoietic stem cells (CFU-S) was studied. We assayed CFU-S of the blood and livers of mice with intact marrows and of mice whose marrows had been ablated with 89Sr (4 μCi/g) either before or after removal of their spleens, the major hemopoietic organ in marrow-ablated mice. Splenectomy alone resulted in an increase in the numbers of blood and hepatic CFU-S; since the spleen is an efficient trapper of CFU-S released from the marrow, in the splenectomized mice more CFU-S were available for trapping by the liver. Mice splenectomized 3 days prior to 89Sr injection had virtually no blood or liver CFU-S by the tenth day after 89Sr injection. Fourteen days after injection of 89Sr there were supranormal numbers of CFU-S in both blood and liver of intact mice. One week after such mice were splenectomized, however, CFU-S were virtually absent from both blood and liver. This study suggests that normal livers in adult mice cannot support detectable proliferation of normal CFU-S even if the animal is subjected to severe and relatively prolonged hemopoietic stress. In addition, the results of our studies demonstrate that normal livers of adult mice have the capacity to trap large numbers of CFU-S

  5. Zika Kills Vital Nervous System Cells in Adult Mice, Study Finds

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_160505.html Zika Kills Vital Nervous System Cells in Adult Mice, ... 2016 THURSDAY, Aug. 18, 2016 (HealthDay News) -- The Zika virus kills neural stem cells in the brains ...

  6. Ablation of huntingtin in adult neurons is nondeleterious but its depletion in young mice causes acute pancreatitis.

    Science.gov (United States)

    Wang, Guohao; Liu, Xudong; Gaertig, Marta A; Li, Shihua; Li, Xiao-Jiang

    2016-03-22

    The Huntington's disease (HD) protein, huntingtin (HTT), is essential for early development. Because suppressing the expression of mutantHTTis an important approach to treat the disease, we must first understand the normal function of Htt in adults versus younger animals. Using inducibleHttknockout mice, we found thatHttdepletion does not lead to adult neurodegeneration or animal death at >4 mo of age, which was also verified by selectively depletingHttin neurons. On the other hand, young Htt KO mice die at 2 mo of age of acute pancreatitis due to the degeneration of pancreatic acinar cells. Importantly, Htt interacts with the trypsin inhibitor, serine protease inhibitor Kazal-type 3 (Spink3), to inhibit activation of digestive enzymes in acinar cells in young mice, and transgenicHTTcan rescue the early death of Htt KO mice. These findings point out age- and cell type-dependent vital functions of Htt and the safety of knocking down neuronal Htt expression in adult brains as a treatment. PMID:26951659

  7. Endogenous CNTF mediates stroke-induced adult CNS neurogenesis in mice

    OpenAIRE

    Kang, Seong Su; Keasey, Matthew P.; Arnold, Sheila A.; Reid, Rollie; Geralds, Justin; Hagg, Theo

    2012-01-01

    Focal brain ischemia in adult rats rapidly and robustly induces neurogenesis in the subventricular zone (SVZ) but there are few and inconsistent reports in mice, presenting a hurdle to genetically investigate the endogenous neurogenic regulators such as ciliary neurotrophic factor (CNTF). Here, we first provide a platform for further studies by showing that middle cerebral artery occlusion in adult male C57BL/6 mice robustly enhances neurogenesis in the SVZ only under very specific conditions...

  8. Transcription factors FOXA1 and FOXA2 maintain dopaminergic neuronal properties and control feeding behavior in adult mice.

    Science.gov (United States)

    Pristerà, Alessandro; Lin, Wei; Kaufmann, Anna-Kristin; Brimblecombe, Katherine R; Threlfell, Sarah; Dodson, Paul D; Magill, Peter J; Fernandes, Cathy; Cragg, Stephanie J; Ang, Siew-Lan

    2015-09-01

    Midbrain dopaminergic (mDA) neurons are implicated in cognitive functions, neuropsychiatric disorders, and pathological conditions; hence understanding genes regulating their homeostasis has medical relevance. Transcription factors FOXA1 and FOXA2 (FOXA1/2) are key determinants of mDA neuronal identity during development, but their roles in adult mDA neurons are unknown. We used a conditional knockout strategy to specifically ablate FOXA1/2 in mDA neurons of adult mice. We show that deletion of Foxa1/2 results in down-regulation of tyrosine hydroxylase, the rate-limiting enzyme of dopamine (DA) biosynthesis, specifically in dopaminergic neurons of the substantia nigra pars compacta (SNc). In addition, DA synthesis and striatal DA transmission were reduced after Foxa1/2 deletion. Furthermore, the burst-firing activity characteristic of SNc mDA neurons was drastically reduced in the absence of FOXA1/2. These molecular and functional alterations lead to a severe feeding deficit in adult Foxa1/2 mutant mice, independently of motor control, which could be rescued by L-DOPA treatment. FOXA1/2 therefore control the maintenance of molecular and physiological properties of SNc mDA neurons and impact on feeding behavior in adult mice. PMID:26283356

  9. A ribonuclease inhibitor expresses anti-angiogenic properties and leads to reduced tumor growth in mice.

    OpenAIRE

    Polakowski, I. J.; Lewis, M. K.; Muthukkaruppan, V. R.; Erdman, B.; Kubai, L.; Auerbach, R

    1993-01-01

    Our experiments were designed to determine whether recombinant ribonuclease inhibitor (RNasin) could inhibit angiogenesis and reduce tumor growth in adult mice. We used the Fajardo disc angiogenesis assay as the primary means of measuring new blood vessel growth. This assay measures the penetration of cells into a polyvinyl alcohol sponge with a central core of ELVAX-coated sponge containing test substances. Cell penetration was reduced to 29.3% of control (phosphate-buffered saline; heat-ina...

  10. Simvastatin and artesunate impact the structural organization of adult Schistosoma mansoni in hypercholesterolemic mice.

    Science.gov (United States)

    Alencar, Alba Cristina Miranda de Barros; Santos, Thais da Silva; Neves, Renata Heisler; Lopes Torres, Eduardo José; Nogueira-Neto, José Firmino; Machado-Silva, José Roberto

    2016-08-01

    Experimental data have shown that simvastatin and artesunate possess activity against Schistosoma mansoni worms in mice fed standard chow. However, little is known regarding the roles of these drugs in mice fed high-fat chow. We have extended past studies by measuring the effects of these drugs on the structural organization of adult schistosomes in hypercholesterolemic mice. For this purpose, mice were gavaged with either simvastatin or artesunate at nine weeks post-infection and were euthanized by cervical dislocation at two weeks post-treatment. Adult worms were then collected and examined by conventional light microscopy, morphometry and confocal laser scanning microscopy. Plasma total cholesterol and worm reduction rates were significantly increased in mice fed high-fat chow compared with their respective control groups. Simvastatin and artesunate caused changes in the tegument, tubercles, and reproductive system (testicular lobes, vitelline glands and ovarian cells), particularly when administered to mice fed high-fat chow. In particular, the tegument and tubercles were significantly thinner in artesunate-treated worms in mice fed high-fat chow compared with mice fed standard chow. This study thus demonstrated that simvastatin and artesunate have several novel effects on the structural organization of adult worms. Together, these results show, for the first time, that simvastatin and artesunate display antischistosomal activity in hypercholesterolemic mice. PMID:27228897

  11. Auto-mobilized adult hematopoietic stem cells advance neovasculature in diabetic retinopathy of mice

    Institute of Scientific and Technical Information of China (English)

    TIAN Bei; LI Xiao-xin; SHEN Li; ZHAO Min; YU Wen-zhen

    2010-01-01

    Background Hematopoietic stem cells (HSCs) can be used to deliver functionally active angiostatic molecules to the retinal vasculature by targeting active astrocytes and may be useful in targeting pre-angiogenic retinal lesions. We sought to determine whether HSC mobilization can ameliorate early diabetic retinopathy in mice.Methods Mice were devided into four groups: normal mice control group, normal mice HSC-mobilized group, diabetic mice control group and diabetic mice HSC mobilized group. Murine stem cell growth factor (murine SCF) and recombined human granulocyte colony stimulating factor (rhG-csf) were administered to the mice with diabetes and without diabetes for continuous 5 days to induce autologous HSCs mobilization, and subcutaneous injection of physiological saline was used as control. Immunohistochemical double staining was conducted with anti-mouse rat CD31 monoclonal antibody and anti-BrdU rat antibody.Results Marked HSCs clearly increased after SCF plus G-csf-mobilization. Non-mobilized diabetic mice showed more HSCs than normal mice (P=0.032), and peripheral blood significantly increased in both diabetic and normal mice (P=0.000).Diabetic mice showed more CD31 positive capillary vessels (P=0.000) and accelerated endothelial cell regeneration. Only diabetic HSC-mobilized mice expressed both BrdU and CD31 antigens in the endothelial cells of new capillaries.Conclusion Auto-mobilized adult hematopoietic stem cells advance neovasculature in diabetic retinopathy of mice.

  12. Consumption of lead-shot cervid meat and blood lead concentrations in a group of adult Norwegians.

    Science.gov (United States)

    Meltzer, H M; Dahl, H; Brantsæter, A L; Birgisdottir, B E; Knutsen, H K; Bernhoft, A; Oftedal, B; Lande, U S; Alexander, J; Haugen, M; Ydersbond, T A

    2013-11-01

    Several recent investigations have reported high concentrations of lead in samples of minced cervid meat. This paper describes findings from a Norwegian study performed in 2012 among 147 adults with a wide range of cervid game consumption. The main aim was to assess whether high consumption of lead-shot cervid meat is associated with increased concentration of lead in blood. A second aim was to investigate to what extent factors apart from game consumption explain observed variability in blood lead levels. Median (5 and 95 percentile) blood concentration of lead was 16.6 µg/L (7.5 and 39 µg/L). An optimal multivariate linear regression model for log-transformed blood lead indicated that cervid game meat consumption once a month or more was associated with approximately 31% increase in blood lead concentrations. The increase seemed to be mostly associated with consumption of minced cervid meat, particularly purchased minced meat. However, many participants with high and long-lasting game meat intake had low blood lead concentrations. Cervid meat together with number of bullet shots per year, years with game consumption, self-assembly of bullets, wine consumption and smoking jointly accounted for approximately 25% of the variation in blood lead concentrations, while age and sex accounted for 27% of the variance. Blood lead concentrations increased approximately 18% per decade of age, and men had on average 30% higher blood lead concentrations than women. Hunters who assembled their own ammunition had 52% higher blood lead concentrations than persons not making ammunition. In conjunction with minced cervid meat, wine intake was significantly associated with increased blood lead. Our results indicate that hunting practices such as use of lead-based ammunition, self-assembling of lead containing bullets and inclusion of lead-contaminated meat for mincing to a large extent determine the exposure to lead from cervid game consumption. PMID:24119336

  13. Amelioration of lead induced hepatotoxicity by Allium sativum extracts in Swiss albino mice

    OpenAIRE

    Sharma, Arti; Sharma, Veena; Kansal, Leena

    2010-01-01

    Lead is a blue-gray and highly toxic divalent metal that occurs naturally in the earth’s crust and is spread throughout the environment by various human activities. The efficacy of garlic (Allium sativum) to reduce hepatotoxicity induced by lead nitrate was evaluated experimentally in male mice. Oral treatment with lead nitrate at a dose of 50 mg/kg body weight daily for 40 days (1/45 of LD50) induced a significant increase in the levels of hepatic aspartate aminotransferase, alanine am...

  14. Does visual impairment lead to additional disability in adults with intellectual disabilities?

    NARCIS (Netherlands)

    Sjoukes, L.; Koot, H. M.; Kooijman, A. C.; Evenhuis, H.

    2009-01-01

    This study addresses the question to what extent visual impairment leads to additional disability in adults with intellectual disabilities (ID). In a multi-centre cross-sectional study of 269 adults with mild to profound ID, social and behavioural functioning was assessed with observant-based questi

  15. Does Visual Impairment Lead to Additional Disability in Adults with Intellectual Disabilities?

    Science.gov (United States)

    Evenhuis, Heleen M.; Sjoukes, L.; Koot, H. M.; Kooijman, A. C.

    2009-01-01

    Background: This study addresses the question to what extent visual impairment leads to additional disability in adults with intellectual disabilities (ID). Method: In a multi-centre cross-sectional study of 269 adults with mild to profound ID, social and behavioural functioning was assessed with observant-based questionnaires, prior to expert…

  16. CpG Improves Influenza Vaccine Efficacy in Young Adult but Not Aged Mice.

    Science.gov (United States)

    Ramirez, Alejandro; Co, Mary; Mathew, Anuja

    2016-01-01

    Several studies have shown a reduced efficacy of influenza vaccines in the elderly compared to young adults. In this study, we evaluated the immunogenicity and protective efficacy of a commercially available inactivated influenza vaccine (Fluzone®) in young adult and aged mice. C57/BL6 mice were administered a single or double immunization of Fluzone® with or without CpG and challenged intranasally with H1N1 A/California/09 virus. A double immunization of Fluzone® adjuvanted with CpG elicited the highest level of protection in young adult mice which was associated with increases in influenza specific IgG, elevated HAI titres, reduced viral titres and lung inflammation. In contrast, the vaccine schedule which provided fully protective immunity in young adult mice conferred limited protection in aged mice. Antigen presenting cells from aged mice were found to be less responsive to in vitro stimulation by Fluzone and CpG which may partially explain this result. Our data are supportive of studies that have shown limited effectiveness of influenza vaccines in the elderly and provide important information relevant to the design of more immunogenic vaccines in this age group. PMID:26934728

  17. Validation of K-XRF bone lead measurement in young adults.

    OpenAIRE

    Hoppin, J.A.; Aro, A C; Williams, P L; Hu, H; Ryan, P B

    1995-01-01

    K-X-ray fluorescence (K-XRF) is a useful tool for assessing environmental exposure to lead in occupationally exposed individuals and older adults. This study explores the possibility of using this technique on young adults with low environmental lead exposure. Twenty-three college students, aged 18-21 years, were recruited for 2 hr of bone lead measurement. Bone lead measurements were taken from the mid-shaft tibia for periods of 30 or 60 min. In the analysis, 30-min measurements were combine...

  18. Adult hematopoietic progenitors are pluripotent in chimeric mice

    OpenAIRE

    Pessac, Bernard; K. Nimmagadda, Vamshi; Makar, Tapas; S. Fishman, Paul; T. Bever Jr., Christopher; Trisler, David

    2012-01-01

    18 pages, 7 figures. Embryonic stem cells (ESCs) and adult somatic cells, induced to pluripotency (iPSCs) by genetic manipulation, display high self-­‐renewal potential and the capacity to differentiate into multiple cell lineages. We asked whether there are in adult mammals natural stem cells that are pluripotent. We previously reported that normal adult mammalian bone marrow contains a sub-­‐population of CD34+ cells, that naturally expresses genes characteristic of ESCs and those requir...

  19. A 1-bp deletion in the gammaC-crystallin leads to dominant cataracts in mice.

    Science.gov (United States)

    Zhao, Liya; Li, Kai; Bao, Shimin; Zhou, Yuxun; Liang, Yinming; Zhao, Guoji; Chen, Ye; Xiao, Junhua

    2010-08-01

    To date around 140 genetic alleles have been identified as being responsible for mouse cataract pathology, including Crya, Cryb, Cryg, Maf, Pax6, Pitx3, Sox, Connexins, MIP, and Lim-2. We obtained a dominant cataract mouse model from a spontaneous mutation in the F1 hybrids of outbred strain ICR mice crossed to the inbred strain BALB/cJ mice. Heterozygous and homozygous mutants expressed a nuclear cataract in both eyes. In 8-day-old mice, histological analysis showed that polygon epithelial cells were in the equatorial region and cortex underneath, and vacuole and sponge-like degeneration were in the cortical area underneath the posterior lens capsule. The nucleus of the lens was a deeply stained pink, with the shorter fibers losing their normal arrangement. For the entire eye, there was a blank zone in the equatorial region in 8-day-old mice; however, there was a certain degree of atrophy in cornea tension and retina in the lens in 3-month-old mice. The lens had been serious damaged in the homozygous mutants. For mutation mapping, heterozygous carriers were mated to wild-type C3H/HeJ mice, and offspring (F1 generation) with cataracts were backcrossed to the wild-type C3H/HeJ mice again. N2 mice with cataracts were used for genotyping. Using genome-wide linkage analysis, the mutation was mapped to chromosome 1 and the Cryg gene cluster between two markers was confirmed as the candidate gene. After direct sequencing the cDNA of the Cryg gene cluster, a 1-bp deletion was found in exon 3 of the Crygc gene, leading to a stop codon at the 76th amino acid of exon 3 which results in production of a truncated protein in mutant mice (Leu160Stop). Bioinformatic analysis of the mutant gammaC-crystallin reveals that the COOH-terminal of the mutant protein deletes a beta-sheet, which affects the function of the lens proteins and leads to the development of cataracts. PMID:20686773

  20. Distribution of lead in lactating mice and suckling offspring with special emphasis on the mammary gland

    International Nuclear Information System (INIS)

    The distribution of lead in lactating mice and suckling offspring was studied with whole body autoradiography at 4 and 24 h after a single intravenous injection of 203Pb (50 mmol Pb/kg) to the dams. In the lactating mice on day 14 of lactation, the highest uptake of radioactivity at 4 h after administration was recorded in renal cortex, skeleton and liver. A high uptake was also evident in the mannary gland. At 24 h after administration, the radioactivity had decreased in most organs except in the skeleton. In the suckling pups, exposed to lead only via dams' milk for 24 h, the highest level of radioactivity was present in the intestinal mucosa and a much lower level of radioactivity was present in the skeleton. The mammary glands from mice given three daily intravenous injections of 240 μmol Pb/kg were examined with X-ray microanalysis. At 4 h after the last injection, lead was found associated with casein micelles both inside the alveolar cell and in the milk lumen, indicating that lead is excreted into the milk, bound to casein, via the Golgi secretory system. (orig.)

  1. Increased hippocampal Disrupted-In-Schizophrenia 1 expression in mice exposed prenatally to lead

    Institute of Scientific and Technical Information of China (English)

    Yuanyuan You; Liguang Sun; Bo Peng; Yan Li; Songbin Ben; Shuang Gao

    2012-01-01

    Disrupted-In-Schizophrenia 1 is a susceptibility gene for schizophrenia and other psychiatric disorders.Developmental lead exposure can cause neurological disorders similar to hyperactivity disorder,dyslexia and schizophrenia. In the present study, we examined the impact of developmental lead exposure, administered in vitro and in vivo, on hippocampal Disrupted-In- Schizophrenia 1 expression. Our results show that in cultured hippocampal neurons, in vitro exposure to 0.1-10 μM lead, inhibited neurite growth and increased Disrupted-In-Schizophrenia 1 mRNA and protein expression dose-dependently. In addition, blood lead levels in mice were increased with increasing mouse maternal lead (0.01-1 mM) exposure. Hippocampal neurons from these mice showed a concomitant increase in Disrupted-In-Schizophrenia 1 mRNA and protein expression. Overall our findings suggest that in vivo and in vitro lead exposure increases Disrupted-In-Schizophrenia 1 expression in hippocampal neurons dose-dependently, and consequently may influence synapse formation in newborn neurons.

  2. Overexpression of progesterone receptor A isoform in mice leads to endometrial hyperproliferation, hyperplasia and atypia

    OpenAIRE

    Fleisch, M. C.; Chou, Y C; Cardiff, Robert D; Asaithambi, A.; G Shyamala

    2009-01-01

    A delicate balance in estrogen and progesterone signaling through their cognate receptors is characteristic for the physiologic state of the endometrium, and a shift in receptor isotype expression can be frequently found in human endometrial pathology. In this study, using a transgenic mouse model, we examined the mechanisms whereby alterations in progesterone receptor (PR) isotype expression leads to endometrial pathology. For an experimental model, we used transgenic mice (PR-A transgenics)...

  3. Mechanism of infectivity of a murine leukemia virus in adult mice

    International Nuclear Information System (INIS)

    Infection of adult BALB/c mice with murine leukemia virus (MuLV) induces typical thymic lymphomas. Expression of virus was measured by using a radioimmunoassay for murine P-30, a virion core protein. Nineteen days after injection of MuLV-S into adult mice, there were 0.3μg P-30/ml of serum. X-irradiation permitted the early expression of high levels of viremia, when given before or after MuLV-S administration, and it also hastened the development of lymphomas. Seventeen to 21 days after injection of MuLV-S into x-irradiated (600 rads) adult mice, there were 2.7 μg of P-30/ml of serum. The virus produced by infected adult mice was infectious and oncogenic when given to newborn mice. Several lines of evidence are presented that suggest the mechanism by which x-irradiation permits early expession of virion proteins and lymphomas is not immunosuppression

  4. Sex-specific attentional deficits in adult vitamin D deficient BALB/c mice.

    Science.gov (United States)

    Groves, Natalie J; Burne, Thomas H J

    2016-04-01

    Epidemiological studies have shown an association between vitamin D deficiency and cognitive impairment. However, there is a paucity of preclinical data showing that vitamin D deficiency is a causal factor for impaired cognitive processing. The aim of this study was to assess two cognitive tasks, the 5 choice-serial reaction task and the 5 choice-continuous performance task in adult vitamin D (AVD) deficient BALB/c mice. Ten-week old male and female BALB/c mice were fed a control or vitamin D deficient diet for 10 weeks prior to, and during behavioural testing. We found sex-dependent impairments in attentional processing and showed that male AVD-deficient mice were less accurate, took longer to respond when making a correct choice and were more likely to make an omission, without a change in the motivation to collect reward. By contrast, female AVD-deficient mice had a reduced latency to collect reward, but no changes on any other measures compared to controls. Therefore, we have shown that in otherwise healthy adult mice, vitamin D deficiency led to mild cognitive impairment in male but not female mice and therefore this model will be useful for future investigations into unravelling the mechanism by which vitamin D affects the adult brain and cognitive function. PMID:26836278

  5. Caloric restriction leads to high marrow adiposity and low bone mass in growing mice.

    Science.gov (United States)

    Devlin, Maureen J; Cloutier, Alison M; Thomas, Nishina A; Panus, David A; Lotinun, Sutada; Pinz, Ilka; Baron, Roland; Rosen, Clifford J; Bouxsein, Mary L

    2010-09-01

    The effects of caloric restriction (CR) on the skeleton are well studied in adult rodents and include lower cortical bone mass but higher trabecular bone volume. Much less is known about how CR affects bone mass in young, rapidly growing animals. This is an important problem because low caloric intake during skeletal acquisition in humans, as in anorexia nervosa, is associated with low bone mass, increased fracture risk, and osteoporosis in adulthood. To explore this question, we tested the effect of caloric restriction on bone mass and microarchitecture during rapid skeletal growth in young mice. At 3 weeks of age, we weaned male C57Bl/6J mice onto 30% caloric restriction (10% kcal/fat) or normal diet (10% kcal/fat). Outcomes at 6 (n = 4/group) and 12 weeks of age (n = 8/group) included body mass, femur length, serum leptin and insulin-like growth factor 1 (IGF-1) values, whole-body bone mineral density (WBBMD, g/cm(2)), cortical and trabecular bone architecture at the midshaft and distal femur, bone formation and cellularity, and marrow fat measurement. Compared with the normal diet, CR mice had 52% and 88% lower serum leptin and 33% and 39% lower serum IGF-1 at 6 and 12 weeks of age (p < .05 for all). CR mice were smaller, with lower bone mineral density, trabecular, and cortical bone properties. Bone-formation indices were lower, whereas bone-resorption indices were higher (p < .01 for all) in CR versus normal diet mice. Despite having lower percent of body fat, bone marrow adiposity was elevated dramatically in CR versus normal diet mice (p < .05). Thus we conclude that caloric restriction in young, growing mice is associated with impaired skeletal acquisition, low leptin and IGF-1 levels, and high marrow adiposity. These results support the hypothesis that caloric restriction during rapid skeletal growth is deleterious to cortical and trabecular bone mass and architecture, in contrast to potential skeletal benefits of CR in aging animals

  6. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer

    OpenAIRE

    Bernardes de Jesus, Bruno; Vera, Elsa; Schneeberger, Kerstin; Tejera, Agueda M.; Ayuso, Eduard; Bosch, Fatima; Blasco, Maria A.

    2012-01-01

    A major goal in aging research is to improve health during aging. In the case of mice, genetic manipulations that shorten or lengthen telomeres result, respectively, in decreased or increased longevity. Based on this, we have tested the effects of a telomerase gene therapy in adult (1 year of age) and old (2 years of age) mice. Treatment of 1- and 2-year old mice with an adeno associated virus (AAV) of wide tropism expressing mouse TERT had remarkable beneficial effects on health and fitness,...

  7. Effect of chronic social defeat stress on behaviors and dopamine receptor in adult mice.

    Science.gov (United States)

    Huang, Guang-Biao; Zhao, Tong; Gao, Xiao-Lei; Zhang, Hong-Xing; Xu, Yu-Ming; Li, Hao; Lv, Lu-Xian

    2016-04-01

    Victims of bullying often undergo depression, low self-esteem, high anxiety and post-traumatic stress disorder symptoms. The social defeat model has become widely accepted for studying experimental animal behavior changes associated with bullying; however, differences in the effects in susceptible and unsusceptible individuals have not been well studied. The present study investigated the effects of social defeat stress on behavior and the expression of dopamine receptors D1 and D2 in the brains of adult mice. Adult mice were divided into susceptible and unsusceptible groups after 10days of social defeat stress. Behavioral tests were conducted, and protein levels in the brains were assessed by Western blotting. The results indicate that all mice undergo decreased locomotion and increased anxiety behavior. However, decreased social interaction and impaired memory performance were only observed in susceptible mice. A significantly decreased expression of D1 was observed in the prefrontal cortex and amygdala of susceptible mice only. No significant differences in D2 expression were shown between control and defeated mice in any area studied. These data indicate that depression-like behavior and cognition impairment caused by social defeat stress in susceptible mice may be related to changes in the dopamine receptor D1. PMID:26655446

  8. Early postnatal motor experience shapes the motor properties of C57BL/6J adult mice.

    Science.gov (United States)

    Serradj, Nadjet; Picquet, Florence; Jamon, Marc

    2013-11-01

    This study aimed to evaluate the long-term consequences of early motor training on the muscle phenotype and motor output of middle-aged C57BL/6J mice. Neonatal mice were subjected to a variety of motor training procedures, for 3 weeks during the period of acquisition of locomotion. These procedures are widely used for motor training in adults; they include enriched environment, forced treadmill, chronic centrifugation, and hindlimb suspension. At 9 months, the mice reared in the enriched environment showed a slower type of fibre in slow muscles and a faster type in fast muscles, improved performance in motor tests, and a modified gait and body posture while walking. The proportion of fibres in the postural muscles of centrifuged mice did not change, but these mice showed improved resistance to fatigue. The suspended mice showed increased persistence of immature hybrid fibres in the tibialis, with a slower shift in the load-bearing soleus, without any behavioural changes. The forced treadmill was very stressful for the mice, but had limited effects on motor output, although a slower profile was observed in the tibialis. These results support the hypothesis that motor experience during a critical period of motor development shapes muscle phenotype and motor output. The different impacts of the various training procedures suggest that motor performance in adults can be optimized by appropriate training during a defined period of motor development. PMID:23869740

  9. Systemic Immune Activation Leads to Neuroinflammation and Sickness Behavior in Mice

    Directory of Open Access Journals (Sweden)

    Steven Biesmans

    2013-01-01

    Full Text Available Substantial evidence indicates an association between clinical depression and altered immune function. Systemic administration of bacterial lipopolysaccharide (LPS is commonly used to study inflammation-associated behavioral changes in rodents. In these experiments, we tested the hypothesis that peripheral immune activation leads to neuroinflammation and depressive-like behavior in mice. We report that systemic administration of LPS induced astrocyte activation in transgenic GFAP-luc mice and increased immunoreactivity against the microglial marker ionized calcium-binding adapter molecule 1 in the dentate gyrus of wild-type mice. Furthermore, LPS treatment caused a strong but transient increase in cytokine levels in the serum and brain. In addition to studying LPS-induced neuroinflammation, we tested whether sickness could be separated from depressive-like behavior by evaluating LPS-treated mice in a panel of behavioral paradigms. Our behavioral data indicate that systemic LPS administration caused sickness and mild depressive-like behavior. However, due to the overlapping time course and mild effects on depression-related behavior per se, it was not possible to separate sickness from depressive-like behavior in the present rodent model.

  10. Drebrin A regulates hippocampal LTP and hippocampus-dependent fear learning in adult mice.

    Science.gov (United States)

    Kojima, N; Yasuda, H; Hanamura, K; Ishizuka, Y; Sekino, Y; Shirao, T

    2016-06-01

    Structural plasticity of dendritic spines, which underlies higher brain functions including learning and memory, is dynamically regulated by the actin cytoskeleton and its associated proteins. Drebrin A is an F-actin-binding protein preferentially expressed in the brain and localized in the dendritic spines of mature neurons. Isoform conversion from drebrin E to drebrin A and accumulation of the latter in dendritic spines occurs during synapse maturation. We have previously demonstrated that drebrin A plays a pivotal role in spine morphogenesis and plasticity. However, it is unclear whether drebrin A plays a specific role in processes required for structural plasticity, and whether drebrin E can substitute in this role. To answer these questions, we analyzed mutant mice (named DAKO mice), in which isoform conversion from drebrin E to drebrin A is disrupted. In DAKO mouse brain, drebrin E continues to be expressed throughout life instead of drebrin A. Electrophysiological studies using hippocampal slices revealed that long-term potentiation of CA1 synapses was impaired in adult DAKO mice, but not in adolescents. In parallel with this age-dependent impairment, DAKO mice exhibited impaired hippocampus-dependent fear learning in an age-dependent manner; the impairment was evident in adult mice, but not in adolescents. In addition, histological investigation revealed that the spine length of the apical dendrite of CA1 pyramidal cells was significantly longer in adult DAKO mice than in wild-type mice. Our data indicate that the roles of drebrin E and drebrin A in brain function are different from each other, that the isoform conversion of drebrin is critical, and that drebrin A is indispensable for normal synaptic plasticity and hippocampus-dependent fear memory in the adult brain. PMID:26970584

  11. Allogenic inhibition of the stem hemopoietic cells in the bone marrow and embryonic liver in adult mice

    International Nuclear Information System (INIS)

    The maternal effect was shown to influence the degree of allogenic inhibition of stem hemopoietic cells of the embryonic liver and adult bone marrow in CBA and C57Bl/6 mice. The display of allogenic inhibition of stem cells of the embryonic liver and adult bone marrow proved to be similar in C57Bl/6 mice and dissimilar in CBA

  12. Suppression of Adult Neurogenesis Leads to an Increased HPA Axis Response

    OpenAIRE

    Schloesser, Robert J.; Manji, Husseini K.; Martinowich, Keri

    2009-01-01

    Stress and glucocorticoids are among the strongest inhibitors of adult hippocampal neurogenesis. Despite the known role of the hippocampus in negative feedback regulation of the hypothalamo-pituitary adrenal axis, whether loss of hippocampal neurogenesis affects this inhibition has not been examined. Here we tested whether suppression of adult neurogenesis affected the hypothalamo-pituitary-adrenal axis response. Our results show that suppression of neurogenesis leads to a potentiated hypotha...

  13. Chronic Sleep Fragmentation Promotes Obesity in Young Adult Mice

    OpenAIRE

    Wang, Yang; Carreras, Alba; Lee, Seunghoon; Hakim, Fahed; Zhang, Shelley X.; Nair, Deepti; Ye, Honggang; Gozal, David

    2013-01-01

    Objectives Short sleep confers a higher risk of obesity in humans. Restricted sleep increases appetite, promotes higher calorie intake from fat and carbohydrate sources, and induces insulin resistance. However, the effects of fragmented sleep (SF), such as occurs in sleep apnea, on body weight, metabolic rates, and adipose tissue distribution are unknown. Design and Methods C57BL/6 mice were exposed to SF for 8 weeks. Their body weight, food consumption, and metabolic expenditure were monitor...

  14. Specific Inflammatory Stimuli Lead to Distinct Platelet Responses in Mice and Humans.

    Directory of Open Access Journals (Sweden)

    Lea M Beaulieu

    Full Text Available Diverse and multi-factorial processes contribute to the progression of cardiovascular disease. These processes affect cells involved in the development of this disease in varying ways, ultimately leading to atherothrombosis. The goal of our study was to compare the differential effects of specific stimuli--two bacterial infections and a Western diet--on platelet responses in ApoE-/- mice, specifically examining inflammatory function and gene expression. Results from murine studies were verified using platelets from participants of the Framingham Heart Study (FHS; n = 1819 participants.Blood and spleen samples were collected at weeks 1 and 9 from ApoE-/- mice infected with Porphyromonas gingivalis or Chlamydia pneumoniae and from mice fed a Western diet for 9 weeks. Transcripts based on data from a Western diet in ApoE-/- mice were measured in platelet samples from FHS using high throughput qRT-PCR.At week 1, both bacterial infections increased circulating platelet-neutrophil aggregates. At week 9, these cells individually localized to the spleen, while Western diet resulted in increased platelet-neutrophil aggregates in the spleen only. Microarray analysis of platelet RNA from infected or Western diet-fed mice at week 1 and 9 showed differential profiles. Genes, such as Serpina1a, Ttr, Fgg, Rpl21, and Alb, were uniquely affected by infection and diet. Results were reinforced in platelets obtained from participants of the FHS.Using both human studies and animal models, results demonstrate that variable sources of inflammatory stimuli have the ability to influence the platelet phenotype in distinct ways, indicative of the diverse function of platelets in thrombosis, hemostasis, and immunity.

  15. Acute Multiple Organ Failure in Adult Mice Deleted for the Developmental Regulator Wt1

    Science.gov (United States)

    Chau, You-Ying; Brownstein, David; Mjoseng, Heidi; Lee, Wen-Chin; Buza-Vidas, Natalija; Nerlov, Claus; Jacobsen, Sten Eirik; Perry, Paul; Berry, Rachel; Thornburn, Anna; Sexton, David; Morton, Nik; Hohenstein, Peter; Freyer, Elisabeth; Samuel, Kay; van't Hof, Rob; Hastie, Nicholas

    2011-01-01

    There is much interest in the mechanisms that regulate adult tissue homeostasis and their relationship to processes governing foetal development. Mice deleted for the Wilms' tumour gene, Wt1, lack kidneys, gonads, and spleen and die at mid-gestation due to defective coronary vasculature. Wt1 is vital for maintaining the mesenchymal–epithelial balance in these tissues and is required for the epithelial-to-mesenchyme transition (EMT) that generates coronary vascular progenitors. Although Wt1 is only expressed in rare cell populations in adults including glomerular podocytes, 1% of bone marrow cells, and mesothelium, we hypothesised that this might be important for homeostasis of adult tissues; hence, we deleted the gene ubiquitously in young and adult mice. Within just a few days, the mice suffered glomerulosclerosis, atrophy of the exocrine pancreas and spleen, severe reduction in bone and fat, and failure of erythropoiesis. FACS and culture experiments showed that Wt1 has an intrinsic role in both haematopoietic and mesenchymal stem cell lineages and suggest that defects within these contribute to the phenotypes we observe. We propose that glomerulosclerosis arises in part through down regulation of nephrin, a known Wt1 target gene. Protein profiling in mutant serum showed that there was no systemic inflammatory or nutritional response in the mutant mice. However, there was a dramatic reduction in circulating IGF-1 levels, which is likely to contribute to the bone and fat phenotypes. The reduction of IGF-1 did not result from a decrease in circulating GH, and there is no apparent pathology of the pituitary and adrenal glands. These findings 1) suggest that Wt1 is a major regulator of the homeostasis of some adult tissues, through both local and systemic actions; 2) highlight the differences between foetal and adult tissue regulation; 3) point to the importance of adult mesenchyme in tissue turnover. PMID:22216009

  16. Nonhematopoietic Nrf2 dominantly impedes adult progression of sickle cell anemia in mice

    Science.gov (United States)

    Ghosh, Samit; Ihunnah, Chibueze A.; Hazra, Rimi; Walker, Aisha L.; Hansen, Jason M.; Archer, David R.; Owusu-Ansah, Amma T.; Ofori-Acquah, Solomon F.

    2016-01-01

    The prevention of organ damage and early death in young adults is a major clinical concern in sickle cell disease (SCD). However, mechanisms that control adult progression of SCD during the transition from adolescence are poorly defined with no cognate prophylaxis. Here, we demonstrate in a longitudinal cohort of homozygous SCD (SS) mice a link between intravascular hemolysis, vascular inflammation, lung injury, and early death. Prophylactic Nrf2 activation in young SS mice stabilized intravascular hemolysis, reversed vascular inflammation, and attenuated lung edema in adulthood. Enhanced Nrf2 activation in endothelial cells in vitro concurred with the dramatic effect on vascular inflammation in the mice. BM chimeric SS mice lacking Nrf2 expression in nonhematopoietic tissues were created to dissect the role of nonerythroid Nrf2 in SCD progression. The SS chimeras developed severe intravascular hemolysis despite having erythroid Nrf2. In addition, they developed premature vascular inflammation and pulmonary edema and died younger than donor littermates with intact nonhematopoietic Nrf2. Our results reveal a dominant protective role for nonhematopoietic Nrf2 against tissue damage in both erythroid and nonerythroid tissues in SCD. Furthermore, we show that prophylactic augmentation of Nrf2-coordinated cytoprotection effectively impedes onset of the severe adult phenotype of SCD in mice. PMID:27158670

  17. Embryonic caffeine exposure acts via A1 adenosine receptors to alter adult cardiac function and DNA methylation in mice.

    Directory of Open Access Journals (Sweden)

    Daniela L Buscariollo

    Full Text Available Evidence indicates that disruption of normal prenatal development influences an individual's risk of developing obesity and cardiovascular disease as an adult. Thus, understanding how in utero exposure to chemical agents leads to increased susceptibility to adult diseases is a critical health related issue. Our aim was to determine whether adenosine A1 receptors (A1ARs mediate the long-term effects of in utero caffeine exposure on cardiac function and whether these long-term effects are the result of changes in DNA methylation patterns in adult hearts. Pregnant A1AR knockout mice were treated with caffeine (20 mg/kg or vehicle (0.09% NaCl i.p. at embryonic day 8.5. This caffeine treatment results in serum levels equivalent to the consumption of 2-4 cups of coffee in humans. After dams gave birth, offspring were examined at 8-10 weeks of age. A1AR+/+ offspring treated in utero with caffeine were 10% heavier than vehicle controls. Using echocardiography, we observed altered cardiac function and morphology in adult mice exposed to caffeine in utero. Caffeine treatment decreased cardiac output by 11% and increased left ventricular wall thickness by 29% during diastole. Using DNA methylation arrays, we identified altered DNA methylation patterns in A1AR+/+ caffeine treated hearts, including 7719 differentially methylated regions (DMRs within the genome and an overall decrease in DNA methylation of 26%. Analysis of genes associated with DMRs revealed that many are associated with cardiac hypertrophy. These data demonstrate that A1ARs mediate in utero caffeine effects on cardiac function and growth and that caffeine exposure leads to changes in DNA methylation.

  18. NEUROPHYSIOLOGICAL STUDY ON THE EFFECT OF ARTIFICIAL FOOD COLOUR AND SWEETENER IN ADULT MALE ALBINO MICE

    International Nuclear Information System (INIS)

    This study aims to investigate the effect of aspartame (artificial sweetener) and sunset yellow (artificial colour) on monoamines content in different brain areas of the adult male albino mice (cerebellum, brain stem, striatum, hypothalamus and cerebral cortex), and also on testosterone level in serum.The present study showed that the daily intraperitoneal injection of aspartame with dose of 200 mg/kg caused significant increase in monoamines content and testosterone level at most experimental periods. The elevation of monoamines content may be due to increase in phenylalanine concentration which leading to increase the synthesis of monoamines. The elevation of testosterone level may be due to the increment of DA content in hypothalamus which led to increase the release of LHRH. On the other hand, the daily intraperitoneal injection of sunset yellow with a dose of 2.5 mg/kg caused significant decrease in monoamines content and non-significant change in serum testosterone level at most experimental periods. The decrement in monoamines content may be due to the decrease in its uptake by the neurotransmitters or decrease in its synthesis

  19. Nutritional intervention restores muscle but not kidney phenotypes in adult calcineurin aα null mice

    DEFF Research Database (Denmark)

    Madsen, Kirsten; Reddy, Ramesh N; Price, S Russ;

    2013-01-01

    Mice lacking the α isoform of the catalytic subunit of calcineurin (CnAα) were first reported in 1996 and have been an important model to understand the role of calcineurin in the brain, immune system, bones, muscle, and kidney. Research using the mice has been limited, however, by failure to...... deprivation is known to significantly alter development, it is imperative that previous conclusions based on CnAα-/- mice are revisited to determine which aspects of the phenotype were attributable to caloric restriction versus a direct role for CnAα. In this study, we find that defects in renal development......, loss of CnAα likely alters insulin response due to a reduction in insulin receptor substrate-2 (IRS2) expression and signaling in muscle. This study illustrates the importance of re-examining the phenotypes of CnAα-/- mice and the advances that are now possible with the use of adult, rescued knockout...

  20. Overexpression of Shox2 Leads to Congenital Dysplasia of the Temporomandibular Joint in Mice

    Directory of Open Access Journals (Sweden)

    Xihai Li

    2014-07-01

    Full Text Available Our previous study reported that inactivation of Shox2 led to dysplasia and ankylosis of the temporomandibular joint (TMJ, and that replacing Shox2 with human Shox partially rescued the phenotype with a prematurely worn out articular disc. However, the mechanisms of Shox2 activity in TMJ development remain to be elucidated. In this study, we investigated the molecular and cellular basis for the congenital dysplasia of TMJ in Wnt1-Cre; pMes-stop Shox2 mice. We found that condyle and glenoid fossa dysplasia occurs primarily in the second week after the birth. The dysplastic TMJ of Wnt1-Cre; pMes-stop Shox2 mice exhibits a loss of Collagen type I, Collagen type II, Ihh and Gli2. In situ zymography and immunohistochemistry further demonstrate an up-regulation of matrix metalloproteinases (MMPs, MMP9 and MMP13, accompanied by a significantly increased cell apoptosis. In addition, the cell proliferation and expressions of Sox9, Runx2 and Ihh are no different in the embryonic TMJ between the wild type and mutant mice. Our results show that overexpression of Shox2 leads to the loss of extracellular matrix and the increase of cell apoptosis in TMJ dysplasia by up-regulating MMPs and down-regulating the Ihh signaling pathway.

  1. The Epidemiology of Lead Toxicity in Adults: Measuring Dose and Consideration of Other Methodologic Issues

    OpenAIRE

    Hu, Howard; Shih, Regina; Rothenberg, Stephen; Schwartz, Brian S.

    2006-01-01

    We review several issues of broad relevance to the interpretation of epidemiologic evidence concerning the toxicity of lead in adults, particularly regarding cognitive function and the cardiovascular system, which are the subjects of two systematic reviews that are also part of this mini-monograph. Chief among the recent developments in methodologic advances has been the refinement of concepts and methods for measuring individual lead dose in terms of appreciating distinctions between recent ...

  2. Conditional expression of Wnt4 during chondrogenesis leads to dwarfism in mice.

    Directory of Open Access Journals (Sweden)

    Hu-Hui Lee

    Full Text Available Wnts are expressed in the forming long bones, suggesting roles in skeletogenesis. To examine the action of Wnts in skeleton formation, we developed a genetic system to conditionally express Wnt4 in chondrogenic tissues of the mouse. A mouse Wnt4 cDNA was introduced into the ubiquitously expressed Rosa26 (R26 locus by gene targeting in embryonic stem (ES cells. The expression of Wnt4 from the R26 locus was blocked by a neomycin selection cassette flanked by loxP sites (floxneo that was positioned between the Rosa26 promoter and the Wnt4 cDNA, creating the allele designated R26(floxneoWnt4. Wnt4 expression was activated during chondrogenesis using Col2a1-Cre transgenic mice that express Cre recombinase in differentiating chondrocytes. R26(floxneoWnt4; Col2a1-Cre double heterozygous mice exhibited a growth deficiency, beginning approximately 7 to 10 days after birth, that resulted in dwarfism. In addition, they also had craniofacial abnormalities, and delayed ossification of the lumbar vertebrae and pelvic bones. Histological analysis revealed a disruption in the organization of the growth plates and a delay in the onset of the primary and secondary ossification centers. Molecular studies showed that Wnt4 overexpression caused decreased proliferation and altered maturation of chondrocytes. In addition, R26(floxneoWnt4; Col2a1-Cre mice had decreased expression of vascular endothelial growth factor (VEGF. These studies demonstrate that Wnt4 overexpression leads to dwarfism in mice. The data indicate that Wnt4 levels must be regulated in chondrocytes for normal growth plate development and skeletogenesis. Decreased VEGF expression suggests that defects in vascularization may contribute to the dwarf phenotype.

  3. Mitigating effects of Jambul against lead induced toxicity in epididymis and vas deferens of mice

    Science.gov (United States)

    Abbas, Tahir; Ahmad, Khawaja Raees; Ullah, Asmat; Iqbal, Samreen; Raees, Kausar

    2015-01-01

    Background: Precious fruits like jambul are neglected and wasted while environmental pollutants like lead intake remain overlooked. Objective: The aim of this study was to investigate the effects of the Jambul pulp extract on lead detrimental effects in pseudostratified epithelium and the stereocilia of mice epididymis and vas deferens. Materials and Methods: Thirty young males mice (Mus musculus) were distributed randomly in 3 groups (n= 10) called control, Pb (Lead) and Pb-J (Lead-Jambul). The Pb and Pb-J were provided 50ppm Pb in drinking water ad libitum for 15 days and Pb free water for the next 5 days. The Pb-J group received 0.2ml jambul pulp extract on 12 hourly bases. Control group was not given any treatment. Organs (epididymis and vas deference) were recovered on 21st day after euthanasia. The organs were finally processed for histological and micrometric studies. Results: Marked histologic and micrometric changes in both organs were noted in Pb group. These include significant (P ≤ 0.05) decrease in cross sectional area of caput and cauda epididymis folding tubing along with evident alterations of their endothelial thickness. Prominent signs of apoptosis (vacuolations) in the corpus pseudostratified endothelium and the destruction of stereocilia of the epididymis and vas deferens in Pb compared to control group were observed. Evident signs of recovery, in both organs, such as proliferation and rearrangements in pseudostratified endothelium and the stereocilia along with convincing recovery in micrometric parameters were observed in Pb-J group. Conclusion: The results indicate that epididymis and vas deferens are highly sensitive to Pb exposure while Jambul pulp extract has shown rich mitigating potentials against such histopathologies. PMID:26730248

  4. Morphometric study of Schistosoma mansoni adult worms recovered from undernourished infected mice

    Directory of Open Access Journals (Sweden)

    Sheilla A Oliveira

    2003-07-01

    Full Text Available Some unfavourable effects of malnutrition of the host on Schistosoma mansoni worm biology and structure have been reported based upon brigthfield microscopy. This paper aims to study by morphometric techniques, some morphological parameters in male and female adult worms recovered from undernourished albino mice in comparison with parasites recovered from well-fed infected mice. Undernourished animals were fed a multideficient and essentially low protein diet (RBD diet and compared to well-fed control mice fed with the commercial diet NUVILAB. Seventy-five days post-infection with 80 cercarie (BL strain animals were sacrificed. All adult worms were fixed in 10% formalin and stained with carmine chloride. One hundred male and 60 female specimens from each group (undernourished and control were examined using an image system analysis Leica Quantimet 500C and the Sigma Scan Measurement System. The following morphometrical parameters were studied: body length and width, oral and ventral suckers, number and area of testicular lobes, length and width of ovary and uterine egg. For statistical analysis, the Student's t test for unpaired samples was applied. Significant differences (p < 0.05 were detected in body length and width, in parameters of suckers, uterine egg width, ovary length and area of testicular lobes, with lower values for specimens from undernourished mice. The nutritional status of the host has negative influence on S. mansoni adult worms, probably through unavailability of essential nutrients to the parasites.

  5. Human-derived neural progenitors functionally replace astrocytes in adult mice

    Science.gov (United States)

    Chen, Hong; Qian, Kun; Chen, Wei; Hu, Baoyang; Blackbourn, Lisle W.; Du, Zhongwei; Ma, Lixiang; Liu, Huisheng; Knobel, Karla M.; Ayala, Melvin; Zhang, Su-Chun

    2015-01-01

    Astrocytes are integral components of the homeostatic neural network as well as active participants in pathogenesis of and recovery from nearly all neurological conditions. Evolutionarily, compared with lower vertebrates and nonhuman primates, humans have an increased astrocyte-to-neuron ratio; however, a lack of effective models has hindered the study of the complex roles of human astrocytes in intact adult animals. Here, we demonstrated that after transplantation into the cervical spinal cords of adult mice with severe combined immunodeficiency (SCID), human pluripotent stem cell–derived (PSC-derived) neural progenitors migrate a long distance and differentiate to astrocytes that nearly replace their mouse counterparts over a 9-month period. The human PSC-derived astrocytes formed networks through their processes, encircled endogenous neurons, and extended end feet that wrapped around blood vessels without altering locomotion behaviors, suggesting structural, and potentially functional, integration into the adult mouse spinal cord. Furthermore, in SCID mice transplanted with neural progenitors derived from induced PSCs from patients with ALS, astrocytes were generated and distributed to a similar degree as that seen in mice transplanted with healthy progenitors; however, these mice exhibited motor deficit, highlighting functional integration of the human-derived astrocytes. Together, these results indicate that this chimeric animal model has potential for further investigating the roles of human astrocytes in disease pathogenesis and repair. PMID:25642771

  6. Reducing Igf-1r levels leads to paradoxical and sexually dimorphic effects in HD mice.

    Directory of Open Access Journals (Sweden)

    Silvia Corrochano

    Full Text Available Many of the neurodegenerative diseases that afflict people in later life are associated with the formation of protein aggregates. These so-called "proteinopathies" include Alzheimer's disease (AD and Huntington's disease (HD. The insulin/insulin-like growth factor signalling (IIS pathway has been proposed to modulate such diseases in model organisms, as well as the general ageing process. In this pathway, insulin-like growth factor binds to insulin-like growth factor receptors, such as the insulin-like growth factor 1 receptor (IGF-1R. Heterozygous deletion of Igf-1r has been shown to lead to increased lifespan in mice. Reducing the activity of this pathway had benefits in a HD C. elegans model, and some of these may be attributed to the expected inhibition of mTOR activity resulting in an increase in autophagy, which would enhance mutant huntingtin clearance. Thus, we tested if heterozygous deletion of Igf-1r would lead to benefits in HD related phenotypes in the mouse. Surprisingly, reducing Igf-1r levels led to some beneficial effects in HD females, but also led to some detrimental effects in HD males. Interestingly, Igf-1r deficiency had no discernible effects on downstream mTOR signalling in HD mice. These results do not support a broad beneficial effect of diminishing the IIS pathway in HD pathology in a mammalian system.

  7. Global gene expression patterns in the post-pneumonectomy lung of adult mice

    Directory of Open Access Journals (Sweden)

    Ingenito Edward P

    2009-10-01

    Full Text Available Abstract Background Adult mice have a remarkable capacity to regenerate functional alveoli following either lung resection or injury that exceeds the regenerative capacity observed in larger adult mammals. The molecular basis for this unique capability in mice is largely unknown. We examined the transcriptomic responses to single lung pneumonectomy in adult mice in order to elucidate prospective molecular signaling mechanisms used in this species during lung regeneration. Methods Unilateral left pneumonectomy or sham thoracotomy was performed under general anesthesia (n = 8 mice per group for each of the four time points. Total RNA was isolated from the remaining lung tissue at four time points post-surgery (6 hours, 1 day, 3 days, 7 days and analyzed using microarray technology. Results The observed transcriptomic patterns revealed mesenchymal cell signaling, including up-regulation of genes previously associated with activated fibroblasts (Tnfrsf12a, Tnc, Eln, Col3A1, as well as modulation of Igf1-mediated signaling. The data set also revealed early down-regulation of pro-inflammatory cytokine transcripts and up-regulation of genes involved in T cell development/function, but few similarities to transcriptomic patterns observed during embryonic or post-natal lung development. Immunohistochemical analysis suggests that early fibroblast but not myofibroblast proliferation is important during lung regeneration and may explain the preponderance of mesenchymal-associated genes that are over-expressed in this model. This again appears to differ from embryonic alveologenesis. Conclusion These data suggest that modulation of mesenchymal cell transcriptome patterns and proliferation of S100A4 positive mesenchymal cells, as well as modulation of pro-inflammatory transcriptome patterns, are important during post-pneumonectomy lung regeneration in adult mice.

  8. Lepidium meyenii (Maca increases litter size in normal adult female mice

    Directory of Open Access Journals (Sweden)

    Gasco Manuel

    2005-05-01

    Full Text Available Abstract Background Lepidium meyenii, known as Maca, grows exclusively in the Peruvian Andes over 4000 m altitude. It has been used traditionally to increase fertility. Previous scientific studies have demonstrated that Maca increases spermatogenesis and epididymal sperm count. The present study was aimed to investigate the effects of Maca on several fertility parameters of female mice at reproductive age. Methods Adult female Balb/C mice were divided at random into three main groups: i Reproductive indexes group, ii Implantation sites group and iii Assessment of uterine weight in ovariectomized mice. Animals received an aqueous extract of lyophilized Yellow Maca (1 g/Kg BW or vehicle orally as treatment. In the fertility indexes study, animals received the treatment before, during and after gestation. The fertility index, gestation index, post-natal viability index, weaning viability index and sex ratio were calculated. Sexual maturation was evaluated in the female pups by the vaginal opening (VO day. In the implantation study, females were checked for implantation sites at gestation day 7 and the embryos were counted. In ovariectomized mice, the uterine weight was recorded at the end of treatment. Results Implantation sites were similar in mice treated with Maca and in controls. All reproductive indexes were similar in both groups of treatment. The number of pups per dam at birth and at postnatal day 4 was significantly higher in the group treated with Maca. VO day occurred earlier as litter size was smaller. Maca did not affect VO day. In ovariectomized mice, the treatment with Maca increased significantly the uterine weights in comparison to their respective control group. Conclusion Administration of aqueous extract of Yellow Maca to adult female mice increases the litter size. Moreover, this treatment increases the uterine weight in ovariectomized animals. Our study confirms for the first time some of the traditional uses of Maca to

  9. Impairment in Spatial Memory in adult Rats following developmental Low Lead Exposure

    Directory of Open Access Journals (Sweden)

    Rajashekar Rao Barkur

    2012-11-01

    Full Text Available The present study was aimed to investigate the effect of environmentally relevant levels of lead exposure during gestational and early postnatal period on hippocampal dependent spatial memory in rats during adulthood. The pregnant rats were allowed to drink either normal water (control group or 0.2% lead acetate solution (Leadtreated group during pregnancy and lactation. Thus rats pups of lead treated group where exposed to lead indirectly through their mothers during this period. At weaning pups of lead treated group were allowed to drink normal water till they attain the adult hood. Blood lead level was estimated on postnatal day 22 and 120. Birth weight and weight gain of the rat pups as they grew were measured at regular intervals. Both the control and lead treated groups of rats were subjected to water maze test on postnatal day 30 and 120. Results showed that lead treatment had no effect on birth weight or weight gain. Blood lead level on postnatal day 22 was significantly high in treated group compared to the control group and it was normalized by end of four months. The rats born to lead treated mothers showed impaired in spatial memory during water maze test both on postnatal day 36 and 126. These data suggests that exposure to environmentally relevant levels of lead during intrauterine and early postnatal period of brain development causes impairment in spatial memory not only during infancy but also lasts till adulthood.

  10. Cellulose supplementation early in life ameliorates colitis in adult mice.

    Directory of Open Access Journals (Sweden)

    Dorottya Nagy-Szakal

    Full Text Available Decreased consumption of dietary fibers, such as cellulose, has been proposed to promote the emergence of inflammatory bowel diseases (IBD: Crohn disease [CD] and ulcerative colitis [UC] where intestinal microbes are recognized to play an etiologic role. However, it is not known if transient fiber consumption during critical developmental periods may prevent consecutive intestinal inflammation. The incidence of IBD peaks in young adulthood indicating that pediatric environmental exposures may be important in the etiology of this disease group. We studied the effects of transient dietary cellulose supplementation on dextran sulfate sodium (DSS colitis susceptibility during the pediatric period in mice. Cellulose supplementation stimulated substantial shifts in the colonic mucosal microbiome. Several bacterial taxa decreased in relative abundance (e.g., Coriobacteriaceae [p = 0.001], and other taxa increased in abundance (e.g., Peptostreptococcaceae [p = 0.008] and Clostridiaceae [p = 0.048]. Some of these shifts persisted for 10 days following the cessation of cellulose supplementation. The changes in the gut microbiome were associated with transient trophic and anticolitic effects 10 days following the cessation of a cellulose-enriched diet, but these changes diminished by 40 days following reversal to a low cellulose diet. These findings emphasize the transient protective effect of dietary cellulose in the mammalian large bowel and highlight the potential role of dietary fibers in amelioration of intestinal inflammation.

  11. Round and Round and Round We Go: Behavior of Adult Female Mice on the ISS

    Science.gov (United States)

    Ronca, April E.

    2016-01-01

    The NASA Decadal Survey (2011) emphasized the importance of long duration rodent experiments on the International Space Station (ISS). To accomplish this objective, flight hardware and science capabilities supporting mouse studies in space were developed at Ames Research Center. Here we present a video-based behavioral analysis of ten C57BL6 female adult mice exposed to a total of 37 days in space compared with identically housed Ground Controls. Flight and Control mice exhibited the same range of behaviors, including feeding, drinking, exploratory behavior, grooming, and social interactions. Mice propelled themselves freely and actively throughout the Habitat using their forelimbs to push off or by floating from one cage area to another. Overall activity was greater in Flt as compared to GC mice. Spontaneous, organized circling or race-tracking behavior emerged within the first few days of flight and encompassed the primary dark cycle activity for the remainder of the experiment. I will summarize qualitative observations and quantitative comparisons of mice in microgravity and 1g conditions. Behavioral phenotyping revealed important insights into the overall health and adaptation of mice to the space environment, and identified unique behaviors that can guide future habitat development and research on rodents in space.

  12. Establishment of a tamoxifen-inducible Cre-driver mouse strain for widespread and temporal genetic modification in adult mice.

    Science.gov (United States)

    Ichise, Hirotake; Hori, Akiko; Shiozawa, Seiji; Kondo, Saki; Kanegae, Yumi; Saito, Izumu; Ichise, Taeko; Yoshida, Nobuaki

    2016-07-29

    Temporal genetic modification of mice using the ligand-inducible Cre/loxP system is an important technique that allows the bypass of embryonic lethal phenotypes and access to adult phenotypes. In this study, we generated a tamoxifen-inducible Cre-driver mouse strain for the purpose of widespread and temporal Cre recombination. The new line, named CM32, expresses the GFPneo-fusion gene in a wide variety of tissues before FLP recombination and tamoxifen-inducible Cre after FLP recombination. Using FLP-recombined CM32 mice (CM32Δ mice) and Cre reporter mouse lines, we evaluated the efficiency of Cre recombination with and without tamoxifen administration to adult mice, and found tamoxifen-dependent induction of Cre recombination in a variety of adult tissues. In addition, we demonstrated that conditional activation of an oncogene could be achieved in adults using CM32Δ mice. CM32Δ;T26 mice, which harbored a Cre recombination-driven, SV40 large T antigen-expressing transgene, were viable and fertile. No overt phenotype was found in the mice up to 3 months after birth. Although they displayed pineoblastomas (pinealoblastomas) and/or thymic enlargement due to background Cre recombination by 6 months after birth, they developed epidermal hyperplasia when administered tamoxifen. Collectively, our results suggest that the CM32Δ transgenic mouse line can be applied to the assessment of adult phenotypes in mice with loxP-flanked transgenes. PMID:26923756

  13. Pannexin 1 regulates bidirectional hippocampal synaptic plasticity in adult mice

    Science.gov (United States)

    Ardiles, Alvaro O.; Flores-Muñoz, Carolina; Toro-Ayala, Gabriela; Cárdenas, Ana M.; Palacios, Adrian G.; Muñoz, Pablo; Fuenzalida, Marco; Sáez, Juan C.; Martínez, Agustín D.

    2014-01-01

    The threshold for bidirectional modification of synaptic plasticity is known to be controlled by several factors, including the balance between protein phosphorylation and dephosphorylation, postsynaptic free Ca2+ concentration and NMDA receptor (NMDAR) composition of GluN2 subunits. Pannexin 1 (Panx1), a member of the integral membrane protein family, has been shown to form non-selective channels and to regulate the induction of synaptic plasticity as well as hippocampal-dependent learning. Although Panx1 channels have been suggested to play a role in excitatory long-term potentiation (LTP), it remains unknown whether these channels also modulate long-term depression (LTD) or the balance between both types of synaptic plasticity. To study how Panx1 contributes to excitatory synaptic efficacy, we examined the age-dependent effects of eliminating or blocking Panx1 channels on excitatory synaptic plasticity within the CA1 region of the mouse hippocampus. By using different protocols to induce bidirectional synaptic plasticity, Panx1 channel blockade or lack of Panx1 were found to enhance LTP, whereas both conditions precluded the induction of LTD in adults, but not in young animals. These findings suggest that Panx1 channels restrain the sliding threshold for the induction of synaptic plasticity and underlying brain mechanisms of learning and memory. PMID:25360084

  14. Infection with influenza a virus leads to flu antigen-induced cutaneous anaphylaxis in mice.

    Science.gov (United States)

    Grunewald, Susanne M; Hahn, Christian; Wohlleben, Gisela; Teufel, Martin; Major, Tamas; Moll, Heidrun; Bröcker, Eva-B; Erb, Klaus J

    2002-04-01

    It is well established, that viral infections may trigger urticaria or allergic asthma; however, as viral infections induce T helper 1 polarized responses, which lead to the inhibition of T helper 2 cell development, the opposite would be plausible. We wanted to investigate how viral infections may mediate allergic symptoms in a mouse model; therefore, we infected BALB/C mice with influenza A virus intranasally. Histologic analyses of lung sections and bronchoalveolar lavages were performed. In addition, cells from the mediastinal lymph nodes were restimulated in vitro to analyze which types of cytokines were induced by the flu infection. Furthermore, flu-specific antibody titers were determined and local anaphylaxis was measured after rechallenge with flu antigen. We found that airways inflammation consisted predominately of macrophages and lymphocytes, whereas only a few eosinophils were observed. interferon-gamma but no interleukin-4 and little interleukin-5 could be detected in the culture supernatants from in vitro restimulated T cells from the draining lymph nodes. The antibody response was characterized by high levels of virus-specific IgG2a, IgG2b, and IgG1 and, surprisingly, low levels of virus-specific IgE antibodies. Interestingly, flu-infected mice developed active and passive cutaneous anaphylaxis after rechallenge with flu-antigen. As the passive cutaneous anaphylaxis reaction persisted over 48 h and was significantly lower after passive transfer of the serum, which was IgE depleted, local anaphylaxis seemed to be mediated predominately by specific IgE antibodies. Taken together, our results demonstrate that mice infected with flu virus develop virus-specific mast cell degranulation in the skin. Our results may also have implications for the pathogenesis of urticaria or other atopic disorders in humans. PMID:11918711

  15. Increased adult hippocampal neurogenesis is not necessary for wheel running to abolish conditioned place preference for cocaine in mice.

    Science.gov (United States)

    Mustroph, M L; Merritt, J R; Holloway, A L; Pinardo, H; Miller, D S; Kilby, C N; Bucko, P; Wyer, A; Rhodes, J S

    2015-01-01

    Recent evidence suggests that wheel running can abolish conditioned place preference (CPP) for cocaine in mice. Running significantly increases the number of new neurons in the hippocampus, and new neurons have been hypothesised to enhance plasticity and behavioral flexibility. Therefore, we tested the hypothesis that increased neurogenesis was necessary for exercise to abolish cocaine CPP. Male nestin-thymidine kinase transgenic mice were conditioned with cocaine, and then housed with or without running wheels for 32 days. Half of the mice were fed chow containing valganciclovir to induce apoptosis in newly divided neurons, and the other half were fed standard chow. For the first 10 days, mice received daily injections of bromodeoxyuridine (BrdU) to label dividing cells. On the last 4 days, mice were tested for CPP, and then euthanized for measurement of adult hippocampal neurogenesis by counting the number of BrdU-positive neurons in the dentate gyrus. Levels of running were similar in mice fed valganciclovir-containing chow and normal chow. Valganciclovir significantly reduced the numbers of neurons (BrdU-positive/NeuN-positive) in the dentate gyrus of both sedentary mice and runner mice. Valganciclovir-fed runner mice showed similar levels of neurogenesis as sedentary, normal-fed controls. However, valganciclovir-fed runner mice showed the same abolishment of CPP as runner mice with intact neurogenesis. The results demonstrate that elevated adult hippocampal neurogenesis resulting from running is not necessary for running to abolish cocaine CPP in mice. PMID:25393660

  16. How does long-term odor deprivation affect the olfactory capacity of adult mice?

    Directory of Open Access Journals (Sweden)

    Coppola David M

    2010-05-01

    Full Text Available Abstract Background Unilateral naris occlusion (UNO has been the most common method of effecting stimulus deprivation in studies of olfactory plasticity. However, despite the large corpus on the effects of this manipulation, dating back to the 19th century, little is known about its behavioral sequela. Here we report the results of standard olfactory habituation and discrimination studies on adult mice that had undergone perinatal UNO followed by adult contralateral olfactory bulbectomy (bulb-x. Methods The olfactory performance of UNO mice was compared to matched controls that had unilateral bulb-x but open nares. Both habituation and discrimination (operant experiments employed a protocol in which after successful dishabituation or discrimination to dilute individual odors (A = 0.01% isoamyl acetate; B = 0.01% ethyl butyrate; each v/v in mineral oil, mice were challenged with a single odor versus a mixture comparison (A vs. A + B. In a series of tests the volume portion of Odor B in the mixture was systematically decreased until dishabituation or discrimination thresholds were reached. Results For the habituation experiment, UNOs (n = 10 and controls (n = 9 dishabituated to a 10% mixture of Odor B in Odor A after being habituated to A alone, while both groups failed to show differential responding to a 2% mixture of B in A. However, the UNO group's increased investigation durations for the 2% mixture approached significance (p Conclusions Adult mice relying on an olfactory system deprived of odor by naris occlusion from near the time of birth display enhanced olfactory capacity compared to control mice. This counterintuitive result suggests that UNO is neither an absolute method of deprivation nor does it diminish olfactory capabilities. Enhanced olfactory capacity, as observed in the current study, that is a consequence of deprivation, is consistent with recent molecular and physiological evidence that stimulus deprivation triggers

  17. Neonatal colon insult alters growth factor expression and TRPA1 responses in adult mice.

    Science.gov (United States)

    Christianson, Julie A; Bielefeldt, Klaus; Malin, Sacha A; Davis, Brian M

    2010-11-01

    Inflammation or pain during neonatal development can result in long-term structural and functional alterations of nociceptive pathways, ultimately altering pain perception in adulthood. We have developed a mouse model of neonatal colon irritation (NCI) to investigate the plasticity of pain processing within the viscerosensory system. Mouse pups received an intracolonic administration of 2% mustard oil (MO) on postnatal days 8 and 10. Distal colons were processed at subsequent timepoints for myeloperoxidase (MPO) activity and growth factor expression. Adult mice were assessed for visceral hypersensitivity by measuring the visceromotor response during colorectal distension. Dorsal root ganglion (DRG) neurons from adult mice were retrogradely labeled from the distal colon and calcium imaging was used to measure transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1) responses to acute application of capsaicin and MO, respectively. Despite the absence of inflammation (as indicated by MPO activity), neonatal exposure to intracolonic MO transiently maintained a higher expression level of growth factor messenger RNA (mRNA). Adult NCI mice displayed significant visceral hypersensitivity, as well as increased sensitivity to mechanical stimulation of the hindpaw, compared to control mice. The percentage of TRPA1-expressing colon afferents was significantly increased in NCI mice, however they displayed no increase in the percentage of TRPV1-immunopositive or capsaicin-sensitive colon DRG neurons. These results suggest that early neonatal colon injury results in a long-lasting visceral hypersensitivity, possibly driven by an early increase in growth factor expression and maintained by permanent changes in TRPA1 function. PMID:20850221

  18. Developmental lead acetate exposure induces embryonic toxicity and memory deficit in adult zebrafish.

    Science.gov (United States)

    Chen, Jiangfei; Chen, Yuanhong; Liu, Wei; Bai, Chenglian; Liu, Xuexia; Liu, Kai; Li, Rong; Zhu, Jian-Hong; Huang, Changjiang

    2012-01-01

    Lead is a persistent metal and commonly present in our living environment. The present study was aimed to investigate lead-induced embryonic toxicity, behavioral responses, and adult learning/memory deficit in zebrafish. Lead acetate (PbAc) induced malformations such as uninflated swim bladder, bent spine and yolk-sac edema with an EC₅₀ of 0.29 mg/L at 120 h post fertilization (hpf). Spontaneous movement as characterized by tail bend frequency was significantly altered in zebrafish embryos following exposure to PbAc. Behavior assessment demonstrated that lead exposure changed behavioral responses in zebrafish larvae, as hyperactivity was detected within the first minute of light-to-dark transition in the fish exposed to PbAc from 6 to 96 hpf, and a different dose-dependent change was found in swimming speeds in the dark and in the light at 120 hpf following lead exposure. Learning/memory task assay showed that embryos exposed to PbAc from 6 to 120 hpf developed learning/memory deficit at adulthood as exhibited by a significant decrease in accuracy rate to find the food and a significant increase in finding time. Overall, our results suggested that low dose of developmental lead exposure resulted in embryonic toxicity, behavioral alteration, and adult learning/memory deficit in zebrafish. PMID:22975620

  19. Differential effects of lead and zinc on inhibitory avoidance learning in mice

    Directory of Open Access Journals (Sweden)

    F.S. de Oliveira

    2001-01-01

    Full Text Available We studied the effects of chronic intoxication with the heavy metals lead (Pb2+ and zinc (Zn2+ on memory formation in mice. Animals were intoxicated through drinking water during the pre- and postnatal periods and then tested in the step-through inhibitory avoidance memory task. Chronic postnatal intoxication with Pb2+ did not change the step-through latency values recorded during the 4 weeks of the test (ANOVA, P>0.05. In contrast, mice intoxicated during the prenatal period showed significantly reduced latency values when compared to the control group (day 1: q = 4.62, P<0.05; day 7: q = 4.42, P<0.05; day 14: q = 5.65, P<0.05; day 21: q = 3.96, P<0.05, and day 28: q = 6.09, P<0.05. Although chronic postnatal intoxication with Zn2+ did not alter a memory retention test performed 24 h after training, we noticed a gradual decrease in latency at subsequent 4-week intervals (F = 3.07, P<0.05, an effect that was not observed in the control or in the Pb2+-treated groups. These results suggest an impairment of memory formation by Pb2+ when the animals are exposed during the critical period of neurogenesis, while Zn2+ appears to facilitate learning extinction.

  20. Cellular origins of cold-induced brown adipocytes in adult mice

    OpenAIRE

    Lee, Yun-Hee; Petkova, Anelia P.; Konkar, Anish A.; Granneman, James G.

    2014-01-01

    This work investigated how cold stress induces the appearance of brown adipocytes (BAs) in brown and white adipose tissues (WATs) of adult mice. In interscapular brown adipose tissue (iBAT), cold exposure increased proliferation of endothelial cells and interstitial cells expressing platelet-derived growth factor receptor, α polypeptide (PDGFRα) by 3- to 4-fold. Surprisingly, brown adipogenesis and angiogenesis were largely restricted to the dorsal edge of iBAT. Although cold stress did not i...

  1. Behavioral responses to and brain distribution of morphine in mature adult and aged mice

    International Nuclear Information System (INIS)

    Mature adult (3-6 mo old) and aged (2 yr old) male ICR mice were injected with 10 to 100 mg/kg morphine, s.c. The ED50 values for running behavior (as measured using Stoelting activity monitors and having each mouse serve as its own control) representing 5 times control activity was approximately 7.5 mg/kg for aged mice and approximately 17.5 mg/kg for the mature adults. The ED50 values for analgesia 1 hr after morphine administration using the tail-flick method (max. response time = 8 sec) were approx. 70 mg/kg for the aged mice and 15 mg/kg for the mature adults. One hour after injecting 3H-morphine at doses of 30 and 100 mg/kg, 0.13 and 0.14% of the doses appeared in brains of aged and mature adult mice, respectively. Regional distribution of the morphine was the same for both age groups. Expressed as percent of total brain morphine, it was as follows: cortex, 30%; midbrain, 18%; cerebellum, 17%; medulla, 12%; pons, 9%; striatum, 8% and periaqueductal gray, 6%. Expressed as g morphine/g tissue for the 2 doses, the distribution was; periaqueductal gray, 30 and 80; striatum, 9 and 34; medulla, 6 and 20 pons; 5 and 19; cerebellum, 4 and 13; midbrain 2.5 and 8.5 and cortex, 2 and 8. These results suggest that the differences in response to morphine by the two age groups were due to age-related differences in opioid receptor populations and/or affinities

  2. Behavioral responses to and brain distribution of morphine in mature adult and aged mice

    Energy Technology Data Exchange (ETDEWEB)

    Burton, C.K.; Ho, I.K.; Hoskins, B.

    1986-03-01

    Mature adult (3-6 mo old) and aged (2 yr old) male ICR mice were injected with 10 to 100 mg/kg morphine, s.c. The ED50 values for running behavior (as measured using Stoelting activity monitors and having each mouse serve as its own control) representing 5 times control activity was approximately 7.5 mg/kg for aged mice and approximately 17.5 mg/kg for the mature adults. The ED50 values for analgesia 1 hr after morphine administration using the tail-flick method (max. response time = 8 sec) were approx. 70 mg/kg for the aged mice and 15 mg/kg for the mature adults. One hour after injecting /sup 3/H-morphine at doses of 30 and 100 mg/kg, 0.13 and 0.14% of the doses appeared in brains of aged and mature adult mice, respectively. Regional distribution of the morphine was the same for both age groups. Expressed as percent of total brain morphine, it was as follows: cortex, 30%; midbrain, 18%; cerebellum, 17%; medulla, 12%; pons, 9%; striatum, 8% and periaqueductal gray, 6%. Expressed as g morphine/g tissue for the 2 doses, the distribution was; periaqueductal gray, 30 and 80; striatum, 9 and 34; medulla, 6 and 20 pons; 5 and 19; cerebellum, 4 and 13; midbrain 2.5 and 8.5 and cortex, 2 and 8. These results suggest that the differences in response to morphine by the two age groups were due to age-related differences in opioid receptor populations and/or affinities.

  3. Neonatal oxygen adversely affects lung function in adult mice without altering surfactant composition or activity

    OpenAIRE

    Yee, Min; Chess, Patricia R.; McGrath-Morrow, Sharon A.; Wang, Zhengdong; Gelein, Robert; Zhou, Rui; Dean, David A.; Notter, Robert H.; O'Reilly, Michael A.

    2009-01-01

    Despite its potentially adverse effects on lung development and function, supplemental oxygen is often used to treat premature infants in respiratory distress. To understand how neonatal hyperoxia can permanently disrupt lung development, we previously reported increased lung compliance, greater alveolar simplification, and disrupted epithelial development in adult mice exposed to 100% inspired oxygen fraction between postnatal days 1 and 4. Here, we investigate whether oxygen-induced changes...

  4. Below background levels of blood lead impact cytokine levels in male and female mice

    International Nuclear Information System (INIS)

    A number of studies have documented that Pb exerts immunotoxic effects on T lymphocytes. In studies designed to explore this general response over a broad dose range, female Swiss mice were administered six different diets containing Pb acetate 1 day after mating. During lactation, the mothers received the same feed given during pregnancy, and the same diets were administered to the offspring for 9 months after weaning. At the end of exposure, blood Pb level in the offspring was determined, and possible changes in two type 1 cytokines (IL-2, INF-γ) and one type 2 cytokine (IL-4) in the serum were measured. At higher dietary Pb levels (40 and 400 ppm), a significant increase in IL-4 production was associated with a profound decrease in INF-γ and IL-2 production. At the lowest Pb diet level (0.02 ppm), which resulted in a blood lead level of (0.8 μg/dL), which is below background (2-3 μg/dL) values in humans, increases in INF-γ and IL-2 production along with a significant decrease in IL-4 production were observed. The findings provide evidence of a reversal of lead-induced cytokine skewing depending on the blood lead concentration. As blood lead concentration increases, there is a notable skewing toward Th2, while the pattern is reversed favoring Th1 development at lower blood lead values. The present findings are also notable since they indicate the potential for dietary Pb to have significant biological effects below normal background concentrations

  5. Garlic ameliorates histological changes in the uterine epithelium of lead induced mice

    International Nuclear Information System (INIS)

    To evaluate the protective role of garlic extract on the histology of the uterine epithelium exposed to lead acetate in an animal model. Study Design: Laboratory based randomized control trial. Place and Duration of Study: Department of Anatomy, Army Medical College in collaboration with National Institute of health from April to June 2013. Material and Methods: Thirty female BALBc mice were selected. Ten animals were placed in each group. Group A being the control was given normal diet. Group B was given lead acetate at a dose of 30 mg/kg/day. Group C was given lead acetate 30 mg/kg/day and garlic extract 500 mg/kg/day through oral gavage tube for 60 days. Animals were sacrificed and dissected at the end of 60 days. Right uterine horn was processed, embedded and stained for histological study. Height of epithelium was measured. It was taken from apical to basal end of the cells. Results: There was increase in height of the lining epithelium of uterus in group B, mean value 19.70 ± 4.81 meu m when compared to Group A, with mean value 13.25 ± 2.37 meu m. The height of the epithelium was relatively reduced in group C, with mean value 14.50 ± 2.30 meu m when compared with group B. In group C results were same as Group A. The p values were 0.001 when group A was compared to group B, 0.688 when group A was compared to group C and 0.005 when group B was compared to group C. Conclusion: The height of epithelium was markedly increased in lead acetate treated group which returned to normal when co treated with garlic extract. Hence garlic ameliorated the changes induced by lead. (author)

  6. Repeated inhalation of crack-cocaine affects spermatogenesis in young and adult mice.

    Science.gov (United States)

    Pires, A; Pieri, P; Hage, M; Santos, A B G; Medeiros, M C R; Garcia, R C T; Yonamine, M; Hallak, J; Saldiva, P H N; Zorzetto, J C; Bueno, H M S

    2012-06-01

    To investigate the effects of repeated crack-cocaine inhalation on spermatogenesis of pubertal and mature Balb/c mice, ten young (Y(ex)) and ten adult (A(ex)) Balb/c mice were exposed to the smoke from 5 g of crack with 57.7% of pure cocaine in an inhalation chamber, 5 days/week for 2 months. The young (Y(c)) and adult (A(c)) control animals (n = 10) were kept in a specially built and controlled animal house facility. The morphologic analysis of both testes of all animals included the analysis of quantitative and qualitative histologic parameters to assess the effect of crack-cocaine on spermatogenesis and Leydig cells. Apoptosis was determined by immunolabeling with caspase-3 antibodies. Compared to the Y(c) animals, Y(ex) animals showed a significant reduction in the number of stage VII tubules per testis (p = 0.02), Sertoli cells (p cocaine smoke inhalation induced spermatogenesis disruption in chronically exposed mice, particularly in pubertal mice. PMID:22642293

  7. Theory of hantavirus infection spread incorporating localized adult and itinerant juvenile mice

    Science.gov (United States)

    Kenkre, V. M.; Giuggioli, L.; Abramson, G.; Camelo-Neto, G.

    2007-02-01

    A generalized model of the spread of the Hantavirus in mice populations is presented on the basis of recent observational findings concerning the movement characteristics of the mice that carry the infection. The factual information behind the generalization is based on mark-recapture observations reported in Giuggioli et al. [Bull. Math. Biol. 67, 1135 (2005)] that have necessitated the introduction of home ranges in the simple model of Hantavirus spread presented by Abramson and Kenkre [Phys. Rev. E 66, 11912 (2002)]. The essential feature of the model presented here is the existence of adult mice that remain largely confined to locations near their home ranges, and itinerant juvenile mice that are not so confined, and, during their search for their own homes, move and infect both other juveniles and adults that they meet during their movement. The model is presented at three levels of description: mean field, kinetic and configuration. Results of calculations are shown explicitly from the mean field equations and the simulation rules, and are found to agree in some respects and to differ in others. The origin of the differences is shown to lie in spatial correlations. It is indicated how mark-recapture observations in the field may be employed to verify the applicability of the theory.

  8. Flt3 Ligand Regulates the Development of Innate Lymphoid Cells in Fetal and Adult Mice.

    Science.gov (United States)

    Baerenwaldt, Anne; von Burg, Nicole; Kreuzaler, Matthias; Sitte, Selina; Horvath, Edit; Peter, Annick; Voehringer, David; Rolink, Antonius G; Finke, Daniela

    2016-03-15

    Flt3 ligand (Flt3L) promotes survival of lymphoid progenitors in the bone marrow and differentiation of dendritic cells (DCs), but its role in regulating innate lymphoid cells (ILCs) during fetal and adult life is not understood. By using Flt3L knockout and transgenic mice, we demonstrate that Flt3L controls ILC numbers by regulating the pool of α4β7(-) and α4β7(+) lymphoid tissue inducer cell progenitors in the fetal liver and common lymphoid progenitors in the bone marrow. Deletion of flt3l severely reduced the number of fetal liver progenitors and lymphoid tissue inducer cells in the neonatal intestine, resulting in impaired development of Peyer's patches. In the adult intestine, NK cells and group 2 and 3 ILCs were severely reduced. This effect occurred independently of DCs as ILC numbers were normal in mice in which DCs were constitutively deleted. Finally, we could show that administration of Flt3L increased the number of NKp46(-) group 3 ILCs in wild-type and even in Il7(-/-) mice, which generally have reduced numbers of ILCs. Taken together, Flt3L significantly contributes to ILC and Peyer's patches development by targeting lymphoid progenitor cells during fetal and adult life. PMID:26851220

  9. Urinary bladder hypersensitivity and dysfunction in female mice following early life and adult stress.

    Science.gov (United States)

    Pierce, Angela N; Di Silvestro, Elizabeth R; Eller, Olivia C; Wang, Ruipeng; Ryals, Janelle M; Christianson, Julie A

    2016-05-15

    Early adverse events have been shown to increase the incidence of interstitial cystitis/painful bladder syndrome in adulthood. Despite high clinical relevance and reports of stress-related symptom exacerbation, animal models investigating the contribution of early life stress to female urological pain are lacking. We examined the impact of neonatal maternal separation (NMS) on bladder sensitivity and visceral neuroimmune status both prior-to, and following, water avoidance stress (WAS) in adult female mice. The visceromotor response to urinary bladder distension was increased at baseline and 8d post-WAS in NMS mice, while colorectal sensitivity was transiently increased 1d post-WAS only in naïve mice. Bladder micturition rate and output, but not fecal output, were also significantly increased following WAS in NMS mice. Changes in gene expression involved in regulating the stress response system were observed at baseline and following WAS in NMS mice, and WAS reduced serum corticosterone levels. Cytokine and growth factor mRNA levels in the bladder, and to a lesser extent in the colon, were significantly impacted by NMS and WAS. Peripheral mRNA levels of stress-responsive receptors were differentially influenced by early life and adult stress in bladder, but not colon, of naïve and NMS mice. Histological evidence of mast cell degranulation was increased in NMS bladder, while protein levels of protease activated receptor 2 (PAR2) and transient receptor potential ankyrin 1 (TRPA1) were increased by WAS. Together, this study provides new insight into mechanisms contributing to stress associated symptom onset or exacerbation in patients exposed to early life stress. PMID:26940840

  10. Effects of Kerack used in addict Iranian people on fertility of adult mice

    Directory of Open Access Journals (Sweden)

    Mehdi Amini

    2013-08-01

    Full Text Available Background: Infertility is one of the most serious social problems. Illicit drug use can be an important cause of male factor infertility. Kerack which its use is rising up in Iran refers to a high purity street-level heroin (heroin Kerack. Heroin Kerack used in Iran is an opioid and has harmful effects on body organs. The aim of this study is to investigate the effects of Kerack used in Iran on fertility adult mice.Methods: In this study, 25 male mice were divided into five groups (control, sham and three experimental. Experimental groups of Kerack-dependent mice (received ascend-ing dose of Kerack for seven days were divided into three categories, experimental I, II and III. Experimental I was given Kerack at a dose of 5 mg/kg, experimental II 35 mg/kg and experimental III 70 mg/kg, intraperitoneally twice a day for a period of 35 days. The sham group received normal saline and lemon juice (2.6 µl/ml whilst the control group just received water and food. Mice were then scarified and sperm removed from cauda epididymis were analyzed for sperm count, motility, morphology (normal/abnormal and viability. Testes were also removed, weighed and processed for light microscopic studies.Results: The results showed that fertility were significantly decreased in addicted mice compared with control groups (P≤0.05. Epididymal sperm parameters and thickness of seminiferous epithelium were significantly decreased in experimental groups (dose-dependent compared with sham and control groups (P≤0.05. Gonadosomatic index was significantly reduced with high dose Kerack injected (70 mg/kg in comparison with control testes (P≤0.05.Conclusion: This study has shown the deleterious effects of Kerack used in addicted Iranian people on fertility for the first time. This effect is especially on epididymal sperm parameters in adult mice.

  11. High Throughput Screening Identifies Novel Lead Compounds with Activity against Larval, Juvenile and Adult Schistosoma mansoni.

    Science.gov (United States)

    Mansour, Nuha R; Paveley, Ross; Gardner, J Mark F; Bell, Andrew S; Parkinson, Tanya; Bickle, Quentin

    2016-04-01

    An estimated 600 million people are affected by the helminth disease schistosomiasis caused by parasites of the genus Schistosoma. There is currently only one drug recommended for treating schistosomiasis, praziquantel (PZQ), which is effective against adult worms but not against the juvenile stage. In an attempt to identify improved drugs for treating the disease, we have carried out high throughput screening of a number of small molecule libraries with the aim of identifying lead compounds with balanced activity against all life stages of Schistosoma. A total of almost 300,000 compounds were screened using a high throughput assay based on motility of worm larvae and image analysis of assay plates. Hits were screened against juvenile and adult worms to identify broadly active compounds and against a mammalian cell line to assess cytotoxicity. A number of compounds were identified as promising leads for further chemical optimization. PMID:27128493

  12. Developmental Exposure to Xenoestrogens at Low Doses Alters Femur Length and Tensile Strength in Adult Mice1

    OpenAIRE

    Pelch, Katherine E.; Carleton, Stephanie M.; Phillips, Charlotte L.; Nagel, Susan C.

    2011-01-01

    Developmental exposure to high doses of the synthetic xenoestrogen diethylstilbestrol (DES) has been reported to alter femur length and strength in adult mice. However, it is not known if developmental exposure to low, environmentally relevant doses of xenoestrogens alters adult bone geometry and strength. In this study we investigated the effects of developmental exposure to low doses of DES, bisphenol A (BPA), or ethinyl estradiol (EE2) on bone geometry and torsional strength. C57BL/6 mice ...

  13. Changes in adult olfactory bulb neurogenesis in mice expressing the A30P mutant form of alpha-synuclein.

    Science.gov (United States)

    Marxreiter, Franz; Nuber, Silke; Kandasamy, Mahesh; Klucken, Jochen; Aigner, Robert; Burgmayer, Ralf; Couillard-Despres, Sebastien; Riess, Olaf; Winkler, Jürgen; Winner, Beate

    2009-03-01

    In familial and sporadic forms of Parkinson's disease (PD), alpha-synuclein pathology is present in the brain stem nuclei and olfactory bulb (OB) long before Lewy bodies are detected in the substantia nigra. The OB is an active region of adult neurogenesis, where newly generated neurons physiologically integrate. While accumulation of wild-type alpha-synuclein is one of the pathogenic hallmarks of non-genetic forms of PD, the A30P alpha-synuclein mutation results in an earlier disease onset and a severe clinical phenotype. Here, we study the regulation of adult neurogenesis in the subventricular zone (SVZ)/OB system in a tetracycline-suppressive (tet-off) transgenic model of synucleinopathies, expressing human mutant A30P alpha-synuclein under the control of the calcium/calmodulin-dependent protein kinase II alpha (CaMK) promoter. In A30P transgenic mice alpha-synuclein was abundant at the site of integration in the glomerular cell layer of the OB. Without changes in proliferation in the SVZ, significantly fewer newly generated neurons were observed in the OB granule cell and glomerular layers of A30P transgenic mice than in controls, most probably due to increased cell death. By tetracycline-dependent abrogation of A30P alpha-synuclein expression, OB neurogenesis and programmed cell death was restored to control levels. Our results indicate that, using A30P conditional (tet-off) mice, A30P alpha-synuclein has a negative impact on olfactory neurogenesis and suppression of A30P alpha-synuclein enhances survival of newly generated neurons. This finding suggests that interfering with alpha-synuclein pathology can rescue newly generated neurons, possibly leading to new targets for therapeutic interventions in synucleinopathies. PMID:19291219

  14. A Biomonitoring Study of Lead, Cadmium, and Mercury in the Blood of New York City Adults

    OpenAIRE

    McKelvey, Wendy; Gwynn, R. Charon; Jeffery, Nancy; Kass, Daniel; Thorpe, Lorna E.; Garg, Renu K.; Palmer, Christopher D.; Parsons, Patrick J.

    2007-01-01

    Objectives We assessed the extent of exposure to lead, cadmium, and mercury in the New York City (NYC) adult population. Methods We measured blood metal concentrations in a representative sample of 1,811 NYC residents as part of the NYC Health and Nutrition Examination Survey, 2004. Results The geometric mean blood mercury concentration was 2.73 μg/L [95% confidence interval (CI), 2.58–2.89]; blood lead concentration was 1.79 μg/dL (95% CI, 1.73–1.86); and blood cadmium concentration was 0.77...

  15. Milk lacking α-casein leads to permanent reduction in body size in mice.

    Directory of Open Access Journals (Sweden)

    Andreas F Kolb

    Full Text Available The major physiological function of milk is the transport of amino acids, carbohydrates, lipids and minerals to mammalian offspring. Caseins, the major milk proteins, are secreted in the form of a micelle consisting of protein and calcium-phosphate.We have analysed the role of the milk protein α-casein by inactivating the corresponding gene in mice. Absence of α-casein protein significantly curtails secretion of other milk proteins and calcium-phosphate, suggesting a role for α-casein in the establishment of casein micelles. In contrast, secretion of albumin, which is not synthesized in the mammary epithelium, into milk is not reduced. The absence of α-casein also significantly inhibits transcription of the other casein genes. α-Casein deficiency severely delays pup growth during lactation and results in a life-long body size reduction compared to control animals, but has only transient effects on physical and behavioural development of the pups. The data support a critical role for α-casein in casein micelle assembly. The results also confirm lactation as a critical window of metabolic programming and suggest milk protein concentration as a decisive factor in determining adult body weight.

  16. Sex-specific positive and negative consequences of avoidance training during childhood on adult active avoidance learning in mice

    Directory of Open Access Journals (Sweden)

    Almuth Spröwitz

    2013-10-01

    The experiments revealed a clear sex difference in the group of late-adolescent mice: female mice showed better avoidance learning during late adolescence compared to males, and the beneficial impact of late-adolescent pretraining on adult learning was more pronounced in females compared to males.

  17. Association of lead and cadmium exposure with frailty in US older adults

    Energy Technology Data Exchange (ETDEWEB)

    García-Esquinas, Esther, E-mail: esthergge@gmail.com [Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid/ IdiPAZ, Madrid (Spain); CIBER of Epidemiology and Public Health (CIBERESP), Madrid (Spain); Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (United States); Navas-Acien, Ana [Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (United States); Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (United States); Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (United States); Pérez-Gómez, Beatriz [CIBER of Epidemiology and Public Health (CIBERESP), Madrid (Spain); Environmental Epidemiology and Cancer Unit, National Center for Epidemiology, Carlos III Institute of Health, Madrid (Spain); Artalejo, Fernando Rodríguez [Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid/ IdiPAZ, Madrid (Spain); CIBER of Epidemiology and Public Health (CIBERESP), Madrid (Spain)

    2015-02-15

    Background: Environmental lead and cadmium exposure is associated with higher risk of several age-related chronic diseases, including cardiovascular disease, chronic kidney disease and osteoporosis. These diseases may lead to frailty, a geriatric syndrome characterized by diminished physiologic reserve in multiple systems with decreased ability to cope with acute stressors. However, no previous study has evaluated the association between lead or cadmium exposure and frailty. Methods: Cross-sectional study among individuals aged ≥60 years who participated in the third U.S. National Health and Nutrition Examination Survey and had either blood lead (N=5272) or urine cadmium (N=4887) determinations. Frailty was ascertained with a slight modification of the Fried criteria, so that individuals meeting ≥3 of 5 pre-defined criteria (exhaustion, low body weight, low physical activity, weakness and slow walking speed), were considered as frail. The association between lead and cadmium with frailty was evaluated using logistic regression with adjustment for relevant confounders. Results: Median (intertertile range) concentrations of blood lead and urine cadmium were 3.9 µg/dl (2.9–4.9) and 0.62 µg/l (0.41–0.91), respectively. The prevalence of frailty was 7.1%. The adjusted odds ratios (95% confidence interval) of frailty comparing the second and third to the lowest tertile of blood lead were, respectively, 1.40 (0.96–2.04) and 1.75 (1.33–2.31). Lead concentrations were also associated with the frequency of exhaustion, weakness and slowness. The corresponding odds ratios (95% confidence interval) for cadmium were, respectively, 0.97 (0.68–1.39) and 1.55 (1.03–2.32), but this association did not hold after excluding participants with reduced glomerular filtration rate: 0.70 (0.43–1.14) and 1.09 (0.56–2.11), respectively. Conclusions: In the US older adult population, blood lead but not urine cadmium concentrations showed a direct dose

  18. Association of lead and cadmium exposure with frailty in US older adults

    International Nuclear Information System (INIS)

    Background: Environmental lead and cadmium exposure is associated with higher risk of several age-related chronic diseases, including cardiovascular disease, chronic kidney disease and osteoporosis. These diseases may lead to frailty, a geriatric syndrome characterized by diminished physiologic reserve in multiple systems with decreased ability to cope with acute stressors. However, no previous study has evaluated the association between lead or cadmium exposure and frailty. Methods: Cross-sectional study among individuals aged ≥60 years who participated in the third U.S. National Health and Nutrition Examination Survey and had either blood lead (N=5272) or urine cadmium (N=4887) determinations. Frailty was ascertained with a slight modification of the Fried criteria, so that individuals meeting ≥3 of 5 pre-defined criteria (exhaustion, low body weight, low physical activity, weakness and slow walking speed), were considered as frail. The association between lead and cadmium with frailty was evaluated using logistic regression with adjustment for relevant confounders. Results: Median (intertertile range) concentrations of blood lead and urine cadmium were 3.9 µg/dl (2.9–4.9) and 0.62 µg/l (0.41–0.91), respectively. The prevalence of frailty was 7.1%. The adjusted odds ratios (95% confidence interval) of frailty comparing the second and third to the lowest tertile of blood lead were, respectively, 1.40 (0.96–2.04) and 1.75 (1.33–2.31). Lead concentrations were also associated with the frequency of exhaustion, weakness and slowness. The corresponding odds ratios (95% confidence interval) for cadmium were, respectively, 0.97 (0.68–1.39) and 1.55 (1.03–2.32), but this association did not hold after excluding participants with reduced glomerular filtration rate: 0.70 (0.43–1.14) and 1.09 (0.56–2.11), respectively. Conclusions: In the US older adult population, blood lead but not urine cadmium concentrations showed a direct dose

  19. Early life stress differentially modulates distinct forms of brain plasticity in young and adult mice.

    Directory of Open Access Journals (Sweden)

    Inga Herpfer

    Full Text Available BACKGROUND: Early life trauma is an important risk factor for many psychiatric and somatic disorders in adulthood. As a growing body of evidence suggests that brain plasticity is disturbed in affective disorders, we examined the short-term and remote effects of early life stress on different forms of brain plasticity. METHODOLOGY/PRINCIPAL FINDINGS: Mice were subjected to early deprivation by individually separating pups from their dam in the first two weeks after birth. Distinct forms of brain plasticity were assessed in the hippocampus by longitudinal MR volumetry, immunohistochemistry of neurogenesis, and whole-cell patch-clamp measurements of synaptic plasticity. Depression-related behavior was assessed by the forced swimming test in adult animals. Neuropeptides and their receptors were determined by real-time PCR and immunoassay. Early maternal deprivation caused a loss of hippocampal volume, which returned to normal in adulthood. Adult neurogenesis was unaffected by early life stress. Long-term synaptic potentiation, however, was normal immediately after the end of the stress protocol but was impaired in adult animals. In the forced swimming test, adult animals that had been subjected to early life stress showed increased immobility time. Levels of substance P were increased both in young and adult animals after early deprivation. CONCLUSION: Hippocampal volume was affected by early life stress but recovered in adulthood which corresponded to normal adult neurogenesis. Synaptic plasticity, however, exhibited a delayed impairment. The modulation of synaptic plasticity by early life stress might contribute to affective dysfunction in adulthood.

  20. Excretory/secretory products from Trichinella spiralis adult worms ameliorate DSS-induced colitis in mice.

    Directory of Open Access Journals (Sweden)

    Xiaodi Yang

    Full Text Available BACKGROUND: Many evidences show the inverse correlation between helminth infection and allergic or autoimmune diseases. Identification and characterization of the active helminth-derived products responsible for the beneficial effects on allergic or inflammatory diseases will provide another feasible approach to treat these diseases. METHODS AND FINDINGS: Colitis was induced in C57BL/6 mice by giving 3% DSS orally for 7 days. During this period, the mice were treated daily with the excretory/secretory products from T. spiralis adult worms (AES intraperitoneally. The severity of colitis was monitored by measuring body weight, stool consistency or bleeding, colon length and inflammation. To determine the T. spiralis AES product-induced immunological response, Th1, Th2, Th17 and regulatory cytokine profiles were measured in lymphocytes isolated from colon, mesenteric lymph nodes (MLN, and the spleen of treated mice. The CD4+ CD25+ FOXP3+ regulatory T cells (Tregs were also measured in the spleens and MLN of treated mice. Mice treated with AES significantly ameliorated the severity of the DSS-induced colitis indicated by the reduced disease manifestations, improved macroscopic and microscopic inflammation correlated with the up-regulation of Treg response (increased regulatory cytokines IL-10, TGF-beta and regulatory T cells and down-regulation of pro-inflammatory cytokines (IFN-gamma, IL-6 and IL-17 in the spleens, MLN and colon of treated mice. CONCLUSIONS: Our results provide direct evidences that T. spiralis AES have a therapeutic potential for alleviating inflammatory colitis in mice. This effect is possibly mediated by the immunomodulation of regulatory T cells to produce regulatory and anti-inflammatory cytokines and inhibit pro-inflammatory cytokines.

  1. Re-expression of IGF-II is important for beta cell regeneration in adult mice.

    Directory of Open Access Journals (Sweden)

    Luxian Zhou

    Full Text Available BACKGROUND: The key factors which support re-expansion of beta cell numbers after injury are largely unknown. Insulin-like growth factor II (IGF-II plays a critical role in supporting cell division and differentiation during ontogeny but its role in the adult is not known. In this study we investigated the effect of IGF-II on beta cell regeneration. METHODOLOGY/PRINCIPAL FINDINGS: We employed an in vivo model of 'switchable' c-Myc-induced beta cell ablation, pIns-c-MycER(TAM, in which 90% of beta cells are lost following 11 days of c-Myc (Myc activation in vivo. Importantly, such ablation is normally followed by beta cell regeneration once Myc is deactivated, enabling functional studies of beta cell regeneration in vivo. IGF-II was shown to be re-expressed in the adult pancreas of pIns-c-MycER(TAM/IGF-II(+/+ (MIG mice, following beta cell injury. As expected in the presence of IGF-II beta cell mass and numbers recover rapidly after ablation. In contrast, in pIns-c-MycER(TAM/IGF-II(+/- (MIGKO mice, which express no IGF-II, recovery of beta cell mass and numbers were delayed and impaired. Despite failure of beta cell number increase, MIGKO mice recovered from hyperglycaemia, although this was delayed. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that beta cell regeneration in adult mice depends on re-expression of IGF-II, and supports the utility of using such ablation-recovery models for identifying other potential factors critical for underpinning successful beta cell regeneration in vivo. The potential therapeutic benefits of manipulating the IGF-II signaling systems merit further exploration.

  2. Dietary stearic acid leads to a reduction of visceral adipose tissue in athymic nude mice.

    Directory of Open Access Journals (Sweden)

    Ming-Che Shen

    Full Text Available Stearic acid (C18:0 is a long chain dietary saturated fatty acid that has been shown to reduce metastatic tumor burden. Based on preliminary observations and the growing evidence that visceral fat is related to metastasis and decreased survival, we hypothesized that dietary stearic acid may reduce visceral fat. Athymic nude mice, which are used in models of human breast cancer metastasis, were fed a stearic acid, linoleic acid (safflower oil, or oleic acid (corn oil enriched diet or a low fat diet ad libitum. Total body weight did not differ significantly between dietary groups over the course of the experiment. However visceral fat was reduced by ∼70% in the stearic acid fed group compared to other diets. In contrast total body fat was only slightly reduced in the stearic acid diet fed mice when measured by dual-energy x-ray absorptiometry and quantitative magnetic resonance. Lean body mass was increased in the stearic acid fed group compared to all other groups by dual-energy x-ray absorptiometry. Dietary stearic acid significantly reduced serum glucose compared to all other diets and increased monocyte chemotactic protein-1 (MCP-1 compared to the low fat control. The low fat control diet had increased serum leptin compared to all other diets. To investigate possible mechanisms whereby stearic acid reduced visceral fat we used 3T3L1 fibroblasts/preadipocytes. Stearic acid had no direct effects on the process of differentiation or on the viability of mature adipocytes. However, unlike oleic acid and linoleic acid, stearic acid caused increased apoptosis (programmed cell death and cytotoxicity in preadipocytes. The apoptosis was, at least in part, due to increased caspase-3 activity and was associated with decreased cellular inhibitor of apoptosis protein-2 (cIAP2 and increased Bax gene expression. In conclusion, dietary stearic acid leads to dramatically reduced visceral fat likely by causing the apoptosis of preadipocytes.

  3. Haemoprotective effects of Emblica officinalis Linn. against radiation and lead induced toxicity in Swiss albino mice

    International Nuclear Information System (INIS)

    Radiation is known to cause cell death, mainly due to its ability to produce reactive oxygen species in cells. Lead is a serious public health problem in many parts of the world. Emblica officinalis is closely linked to its protective properties against free radicals attack. The hematopoietic system plays an important role in maintaining the vitality of animals. Therefore, the purpose of present study was haemoprotective effects of Emblica officinalis Linn. against radiation and lead induced toxicity in Swiss albino mice. For the study, Animals were divided into seven groups. The Emblica was administered seven days prior to irradiation or lead acetate treatment. The animals were autopsied from all the experimental groups at each post treatment intervals of 1, 2, 4, 7, 14 and 28 days. The value of RBC, WBC, PCV, haemoglobin were found to decrease up to day-14 in non-drug treated groups (II, III and IV), thereafter it increased on day-28. In Emblica treated groups (V, VI and VII) the value decreased up to day-7 then it increased up to day-28. The decrease in values was lesser in Emblica treated groups. The value of MCV also showed an increasing trend. The increase in the value of MCR was lesser in Emblica treated groups as compared to non-drug treated groups. Besides this values of MCRC decreased in all the groups at various intervals but the values were lower in the Emblica treated groups. Thus, it may be concluded that Emblica has the ability of inhibiting oxidative stress and substantially protect blood from radiation and heavy metal toxicity. (author)

  4. Effect of voluntary running on adult hippocampal neurogenesis in cholinergic lesioned mice

    Directory of Open Access Journals (Sweden)

    Dawe Gavin S

    2009-06-01

    Full Text Available Abstract Background Cholinergic neuronal dysfunction of the basal forebrain is observed in patients with Alzheimer's disease and dementia, and has been linked to decreased neurogenesis in the hippocampus, a region involved in learning and memory. Running is a robust inducer of adult hippocampal neurogenesis. This study aims to address the effect of running on hippocampal neurogenesis in lesioned mice, where septohippocampal cholinergic neurones have been selectively eliminated in the medial septum and diagonal band of Broca of the basal forebrain by infusion of mu-p75-saporin immunotoxin. Results Running increased the number of newborn cells in the dentate gyrus of the hippocampus in cholinergic denervated mice compared to non-lesioned mice 24 hours after injection of bromodeoxyuridine (BrdU. Although similar levels of surviving cells were present in cholinergic depleted animals and their respective controls four weeks after injection of BrdU, the majority of progenitors that proliferate in response to the initial period of running were not able to survive beyond one month without cholinergic input. Despite this, the running-induced increase in the number of surviving neurones was not affected by cholinergic depletion. Conclusion The lesion paradigm used here models aspects of the cholinergic deficits associated with Alzheimer's Disease and aging. We showed that running still increased the number of newborn cells in the adult hippocampal dentate gyrus in this model of neurodegenerative disease.

  5. Constrained tibial vibration does not produce an anabolic bone response in adult mice.

    Science.gov (United States)

    Christiansen, Blaine A; Kotiya, Akhilesh A; Silva, Matthew J

    2009-10-01

    and exposure to anesthesia was associated with significant loss of trabecular and cortical bone. We conclude that direct vibrational loading of bone in anesthetized, adult mice is not anabolic. PMID:19576309

  6. Abnormal motor phenotype at adult stages in mice lacking type 2 deiodinase.

    Directory of Open Access Journals (Sweden)

    Soledad Bárez-López

    Full Text Available BACKGROUND: Thyroid hormones have a key role in both the developing and adult central nervous system and skeletal muscle. The thyroid gland produces mainly thyroxine (T4 but the intracellular concentrations of 3,5,3'-triiodothyronine (T3; the transcriptionally active hormone in the central nervous system and skeletal muscle are modulated by the activity of type 2 deiodinase (D2. To date no neurological syndrome has been associated with mutations in the DIO2 gene and previous studies in young and juvenile D2-knockout mice (D2KO did not find gross neurological alterations, possibly due to compensatory mechanisms. AIM: This study aims to analyze the motor phenotype of 3-and-6-month-old D2KO mice to evaluate the role of D2 on the motor system at adult stages in which compensatory mechanisms could have failed. RESULTS: Motor abilities were explored by validated tests. In the footprint test, D2KO showed an altered global gait pattern (mice walked slower, with shorter strides and with a hindlimb wider base of support than wild-type mice. No differences were detected in the balance beam test. However, a reduced latency to fall was found in the rotarod, coat-hanger and four limb hanging wire tests indicating impairment on coordination and prehensile reflex and a reduction of muscle strength. In histological analyses of cerebellum and skeletal muscle, D2KO mice did not present gross structural abnormalities. Thyroid hormones levels and deiodinases activities were also determined. In D2KO mice, despite euthyroid T3 and high T4 plasma levels, T3 levels were significantly reduced in cerebral cortex (48% reduction and skeletal muscle (33% reduction, but not in the cerebellum where other deiodinase (type 1 is expressed. CONCLUSIONS: The motor alterations observed in D2KO mice indicate an important role for D2 in T3 availability to maintain motor function and muscle strength. Our results suggest a possible implication of D2 in motor disorders.

  7. Influenza A facilitates sensitization to house dust mite in infant mice leading to an asthma phenotype in adulthood.

    Science.gov (United States)

    Al-Garawi, A; Fattouh, R; Botelho, F; Walker, T D; Goncharova, S; Moore, C-L; Mori, M; Erjefalt, J S; Chu, D K; Humbles, A A; Kolbeck, R; Stampfli, M R; O'Byrne, P M; Coyle, A J; Jordana, M

    2011-11-01

    The origins of allergic asthma, particularly in infancy, remain obscure. Respiratory viral infections and allergen sensitization in early life have been associated with asthma in young children. However, a causal link has not been established. We investigated whether an influenza A infection in early life alters immune responses to house dust mite (HDM) and promotes an asthmatic phenotype later in life. Neonatal (8-day-old) mice were infected with influenza virus and 7 days later, exposed to HDM for 3 weeks. Unlike adults, neonatal mice exposed to HDM exhibited negligible immune responsiveness to HDM, but not to influenza A. HDM responsiveness in adults was associated with distinct Ly6c+ CD11b+ inflammatory dendritic cell and CD8α+ plasmacytoid (pDC) populations that were absent in HDM-exposed infant mice, suggesting an important role in HDM-mediated inflammation. Remarkably, HDM hyporesponsiveness was overcome when exposure occurred concurrently with an acute influenza infection; young mice now displayed robust allergen-specific immunity, allergic inflammation, and lung remodeling. Remodeling persisted into early adulthood, even after prolonged discontinuation of allergen exposure and was associated with marked impairment of lung function. Our data demonstrate that allergen exposure coincident with acute viral infection in early life subverts constitutive allergen hyporesponsiveness and imprints an asthmatic phenotype in adulthood. PMID:21881572

  8. Influenza A facilitates sensitization to house dust mite in infant mice leading to an asthma phenotype in adulthood

    KAUST Repository

    Al-Garawi, A

    2011-08-31

    The origins of allergic asthma, particularly in infancy, remain obscure. Respiratory viral infections and allergen sensitization in early life have been associated with asthma in young children. However, a causal link has not been established. We investigated whether an influenza A infection in early life alters immune responses to house dust mite (HDM) and promotes an asthmatic phenotype later in life. Neonatal (8-day-old) mice were infected with influenza virus and 7 days later, exposed to HDM for 3 weeks. Unlike adults, neonatal mice exposed to HDM exhibited negligible immune responsiveness to HDM, but not to influenza A. HDM responsiveness in adults was associated with distinct Ly6c + CD11b + inflammatory dendritic cell and CD8α + plasmacytoid (pDC) populations that were absent in HDM-exposed infant mice, suggesting an important role in HDM-mediated inflammation. Remarkably, HDM hyporesponsiveness was overcome when exposure occurred concurrently with an acute influenza infection; young mice now displayed robust allergen-specific immunity, allergic inflammation, and lung remodeling. Remodeling persisted into early adulthood, even after prolonged discontinuation of allergen exposure and was associated with marked impairment of lung function. Our data demonstrate that allergen exposure coincident with acute viral infection in early life subverts constitutive allergen hyporesponsiveness and imprints an asthmatic phenotype in adulthood.

  9. Comparison of catalase immunoreactivity in the hippocampus between young, adult and aged mice and rats.

    Science.gov (United States)

    Ahn, Ji Hyeon; Chen, Bai Hui; Shin, Bich-Na; Lee, Tae-Kyeong; Cho, Jeong Hwi; Kim, In Hye; Park, Joon Ha; Lee, Jae-Chul; Tae, Hyun-Jin; Lee, Choong-Hyun; Won, Moo-Ho; Lee, Yun Lyul; Choi, Soo Young; Hong, Seongkweon

    2016-07-01

    Catalase (CAT) is an important antioxidant enzyme and is crucial in modulating synaptic plasticity in the brain. In this study, CAT expression as well as neuronal distribution was compared in the hippocampus among young, adult and aged mice and rats. Male ICR mice and Sprague Dawley rats were used at postnatal month (PM) 1, PM 6 and PM 24 as the young, adult and aged groups, respectively (n=14/group). CAT expression was examined by immunohistochemistry and western blot analysis. In addition, neuronal distribution was examined by NeuN immunohistochemistry. In the present study, the mean number of NeuN‑immunoreactive neurons was marginally decreased in mouse and rat hippocampi during aging, although this change was not identified to be significantly different. However, CAT immunoreactivity was significantly increased in pyramidal and granule neurons in the adult mouse and rat hippocampi and was significantly decreased in the aged mouse and rat hippocampi compared with that in the young animals. CAT protein levels in the hippocampus were also lowest in the aged mouse and rat hippocampus. These results indicate that CAT expression is significantly decreased in the hippocampi of aged animals and decreased CAT expression may be closely associated with aging. PMID:27221506

  10. Effects of postnatal alcohol exposure on hippocampal gene expression and learning in adult mice.

    Science.gov (United States)

    Lee, Dong Hoon; Moon, Jihye; Ryu, Jinhyun; Jeong, Joo Yeon; Roh, Gu Seob; Kim, Hyun Joon; Cho, Gyeong Jae; Choi, Wan Sung; Kang, Sang Soo

    2016-04-28

    Fetal alcohol syndrome (FAS) is a condition resulting from excessive drinking by pregnant women. Symptoms of FAS include abnormal facial features, stunted growth, intellectual deficits and attentional dysfunction. Many studies have investigated FAS, but its underlying mechanisms remain unknown. This study evaluated the relationship between alcohol exposure during the synaptogenesis period in postnatal mice and subsequent cognitive function in adult mice. We delivered two injections, separated by 2 h, of ethanol (3 g/kg, ethanol/saline, 20% v/v) to ICR mice on postnatal day 7. After 10 weeks, we conducted a behavioral test, sacrificed the animals, harvested brain tissue and analyzed hippocampal gene expression using a microarray. In ethanol-treated mice, there was a reduction in brain size and decreased neuronal cell number in the cortex, and also cognitive impairment. cDNA microarray results indicated that 1,548 genes showed a > 2-fold decrease in expression relative to control, whereas 974 genes showed a > 2-fold increase in expression relative to control. Many of these genes were related to signal transduction, synaptogenesis and cell membrane formation, which are highlighted in our findings. PMID:26960969

  11. Development of the adult neurogenic niche in the hippocampus of mice

    Directory of Open Access Journals (Sweden)

    Zeina eNicola

    2015-05-01

    Full Text Available When does adult hippocampal neurogenesis begin? We describe the development of the neurogenic niche in the subgranular zone (SGZ of the hippocampal dentate gyrus. We did so from the perspective of the situation in the adult.Ontogeny of the dentate gyrus is complex and results in an ectopic neurogenic niche that lifelong generates new granule cells. Neurogenesis during the fetal and early postnatal periods builds the dentate gyrus and gives way to activity-dependent adult neurogenesis. We used markers most relevant to adult neurogenesis research to describe this transition: Nestin, Sox2, BLBP, GFAP, Tbr2, Doublecortin (DCX, NeuroD1 and Prox1. We found that massive changes and a local condensation of proliferating precursor cells occurs between postnatal day 7 (P7, near the peak in proliferation, and P14. Before and around P7, the spatial distribution of cells and the co-localization of markers were distinct from the situation in the adult. Unlike the adult SGZ, the marker pair Nestin/Sox2 and the radial glial marker BLBP were not overlapping during embryonic development, presumably indicating different types of radial glia-like cells. Before P7 GFAP-positive cells in the hilus lacked the radial orientation that is characteristic of the adult type-1 cells. DCX, which is concentrated in type-2b and type-3 progenitor cells and early postmitotic neurons in the adult, showed diffuse expression before P7. Intermediate progenitor cell marker Tbr2 became restricted to the SGZ but was found in the granule cell layer and hilus before. Lineage markers NeuroD1 and Prox1 confirmed this pattern.We conclude that the neurogenic niche of adult neurogenesis is in place well before true adulthood. This might indicate that consistent with the hypothesized function of adult neurogenesis in activity-dependent plasticity, the early transition from postnatal neurogenesis to adult neurogenesis coincides with the time, when the young mice start to become active themselves.

  12. Protective effects of chitosan and its water-soluble derivatives against lead-induced oxidative stress in mice.

    Science.gov (United States)

    Wang, Zhihua; Yan, Yongbin; Yu, Xiaohua; Li, Wei; Li, Bojie; Qin, Caiqin

    2016-02-01

    Lead-induced oxidative stress was generated in mice under lead exposure, and the antioxidant activity of chitosan (CS) and its water-soluble derivatives was compared in vivo. The results indicated that there was significant difference (Pchitosan (HPCS) and quaternary ammonium salt of chitosan (HACC). And the changed biochemical variables showed recovery with different degrees, which indicated that CS and its derivatives were helpful for alleviating lead-induced oxidation damage in vivo. But the antioxidant activity for different CS was different, followed by HPCS>HACC>carboxymethyl chitosan (CMCS)>CS, which was in close with the introduction of different substituent groups. In particular, for the dietary of HPCS, there was significant recovery for the changed biochemical variables (P<0.05) in mice after lead exposure, except GSSG in kidney and MDA in brain. PMID:26454108

  13. CD4+ T lymphocytes injected into severe combined immunodeficient (SCID) mice lead to an inflammatory and lethal bowel disease

    DEFF Research Database (Denmark)

    Claesson, Mogens Helweg; Rudolphi, A; Kofoed, S;

    1996-01-01

    Transfer of 2 x 10(5) congenic or semiallogenic purified TCR alphabeta+ CD4+ T cells to SCID mice leads to an infiltration of the recipient gut lamina propria and epithelium with a donor-derived CD4+ T cell subset which induces a lethal inflammatory bowel disease (IBD) in the recipients. In contr...

  14. Evaluation of antioxidant effects of crocin on sperm quality in cyclophosphamide treated adult mice

    OpenAIRE

    Bakhtiary, Zahra; Shahrooz, Rasoul; Ahmadi, Abbas; Zarei, Leila

    2014-01-01

    Cyclophosphamide (CP) is one of the anti-neoplastic drugs. Despite its numerous clinical applications, it has devastating effects on the testicles and declines the sperm quality in treated patients. This study was aimed to investigate the protective effect of crocin in improving the toxicity induced by CP in reproductive system. In this study, 24 male adult mice (6 to 8 weeks) were randomly divided into three groups, control group received normal saline (0.1 mL, IP, daily), the CP group recei...

  15. Distinct Effects of Chronic Dopaminergic Stimulation on Hippocampal Neurogenesis and Striatal Doublecortin Expression in Adult Mice

    Science.gov (United States)

    Salvi, Rachele; Steigleder, Tobias; Schlachetzki, Johannes C. M.; Waldmann, Elisabeth; Schwab, Stefan; Winner, Beate; Winkler, Jürgen; Kohl, Zacharias

    2016-01-01

    While adult neurogenesis is considered to be restricted to the hippocampal dentate gyrus (DG) and the subventricular zone (SVZ), recent studies in humans and rodents provide evidence for newly generated neurons in regions generally considered as non-neurogenic, e.g., the striatum. Stimulating dopaminergic neurotransmission has the potential to enhance adult neurogenesis in the SVZ and the DG most likely via D2/D3 dopamine (DA) receptors. Here, we investigated the effect of two distinct preferential D2/D3 DA agonists, Pramipexole (PPX), and Ropinirole (ROP), on adult neurogenesis in the hippocampus and striatum of adult naïve mice. To determine newly generated cells in the DG incorporating 5-bromo-2′-deoxyuridine (BrdU) a proliferation paradigm was performed in which two BrdU injections (100 mg/kg) were applied intraperitoneally within 12 h after a 14-days-DA agonist treatment. Interestingly, PPX, but not ROP significantly enhanced the proliferation in the DG by 42% compared to phosphate buffered saline (PBS)-injected control mice. To analyze the proportion of newly generated cells differentiating into mature neurons, we quantified cells co-expressing BrdU and Neuronal Nuclei (NeuN) 32 days after the last of five BrdU injections (50 mg/kg) applied at the beginning of 14-days DA agonist or PBS administration. Again, PPX only enhanced neurogenesis in the DG significantly compared to ROP- and PBS-injected mice. Moreover, we explored the pro-neurogenic effect of both DA agonists in the striatum by quantifying neuroblasts expressing doublecortin (DCX) in the entire striatum, as well as in the dorsal and ventral sub-regions separately. We observed a significantly higher number of DCX+ neuroblasts in the dorsal compared to the ventral sub-region of the striatum in PPX-injected mice. These results suggest that the stimulation of hippocampal and dorsal striatal neurogenesis may be up-regulated by PPX. The increased generation of neural cells, both in constitutively active

  16. Distinct effects of chronic dopaminergic stimulation on hippocampal neurogenesis and striatal doublecortin expression in adult mice

    Directory of Open Access Journals (Sweden)

    Rachele eSalvi

    2016-03-01

    Full Text Available While adult neurogenesis is considered to be restricted to the hippocampal dentate gyrus (DG and the subventricular zone (SVZ, recent studies in humans and rodents provide evidence for newly generated neurons in regions generally considered as non-neurogenic, e.g. the striatum. Stimulating dopaminergic neurotransmission has the potential to enhance adult neurogenesis in the SVZ and the DG most likely via D2/D3 dopamine (DA receptors. Here, we investigated the effect of two distinct preferential D2/D3 DA agonists, Pramipexole (PPX and Ropinirole (ROP, on adult neurogenesis in the hippocampus and striatum of adult naïve mice. To determine newly generated cells in the DG incorporating 5-bromo-2'-deoxyuridine (BrdU a proliferation paradigm was performed in which two BrdU injections (100 mg/kg were applied intraperitoneally within 12 hours after a 14-day-DA agonist treatment. Interestingly, PPX, but not ROP significantly enhanced the proliferation in the DG by 42% compared to phosphate buffered saline (PBS-injected control mice. To analyze the proportion of newly generated cells differentiating into mature neurons, we quantified cells co-expressing BrdU and NeuN 32 days after the last of five BrdU injections (50 mg/kg applied at the beginning of 14-day DA agonist or PBS administration. Again, PPX only enhanced neurogenesis in the DG significantly compared to ROP- and PBS-injected mice. Moreover, we explored the pro-neurogenic effect of both DA agonists in the striatum by quantifying neuroblasts expressing doublecortin (DCX in the entire striatum, as well as in the dorsal and ventral sub-regions separately. We observed a significantly higher number of DCX+ neuroblasts in the dorsal compared to the ventral sub-region of the striatum in PPX-injected mice. These results suggest that the stimulation of hippocampal and dorsal striatal neurogenesis may be up-regulated by PPX. The increased generation of neural cells, both in constitutively active and

  17. Distinct Effects of Chronic Dopaminergic Stimulation on Hippocampal Neurogenesis and Striatal Doublecortin Expression in Adult Mice.

    Science.gov (United States)

    Salvi, Rachele; Steigleder, Tobias; Schlachetzki, Johannes C M; Waldmann, Elisabeth; Schwab, Stefan; Winner, Beate; Winkler, Jürgen; Kohl, Zacharias

    2016-01-01

    While adult neurogenesis is considered to be restricted to the hippocampal dentate gyrus (DG) and the subventricular zone (SVZ), recent studies in humans and rodents provide evidence for newly generated neurons in regions generally considered as non-neurogenic, e.g., the striatum. Stimulating dopaminergic neurotransmission has the potential to enhance adult neurogenesis in the SVZ and the DG most likely via D2/D3 dopamine (DA) receptors. Here, we investigated the effect of two distinct preferential D2/D3 DA agonists, Pramipexole (PPX), and Ropinirole (ROP), on adult neurogenesis in the hippocampus and striatum of adult naïve mice. To determine newly generated cells in the DG incorporating 5-bromo-2'-deoxyuridine (BrdU) a proliferation paradigm was performed in which two BrdU injections (100 mg/kg) were applied intraperitoneally within 12 h after a 14-days-DA agonist treatment. Interestingly, PPX, but not ROP significantly enhanced the proliferation in the DG by 42% compared to phosphate buffered saline (PBS)-injected control mice. To analyze the proportion of newly generated cells differentiating into mature neurons, we quantified cells co-expressing BrdU and Neuronal Nuclei (NeuN) 32 days after the last of five BrdU injections (50 mg/kg) applied at the beginning of 14-days DA agonist or PBS administration. Again, PPX only enhanced neurogenesis in the DG significantly compared to ROP- and PBS-injected mice. Moreover, we explored the pro-neurogenic effect of both DA agonists in the striatum by quantifying neuroblasts expressing doublecortin (DCX) in the entire striatum, as well as in the dorsal and ventral sub-regions separately. We observed a significantly higher number of DCX(+) neuroblasts in the dorsal compared to the ventral sub-region of the striatum in PPX-injected mice. These results suggest that the stimulation of hippocampal and dorsal striatal neurogenesis may be up-regulated by PPX. The increased generation of neural cells, both in constitutively active

  18. Regulation of plasma lipid homeostasis by hepatic lipoprotein lipase in adult mice.

    Science.gov (United States)

    Liu, Gan; Xu, Jun-Nan; Liu, Dong; Ding, Qingli; Liu, Meng-Na; Chen, Rong; Fan, Mengdi; Zhang, Ye; Zheng, Chao; Zou, Da-Jin; Lyu, Jianxin; Zhang, Weiping J

    2016-07-01

    LPL is a pivotal rate-limiting enzyme to catalyze the hydrolysis of TG in circulation, and plays a critical role in regulating lipid metabolism. However, little attention has been paid to LPL in the adult liver due to its relatively low expression. Here we show that endogenous hepatic LPL plays an important physiological role in plasma lipid homeostasis in adult mice. We generated a mouse model with the Lpl gene specifically ablated in hepatocytes with the Cre/LoxP approach, and found that specific deletion of hepatic Lpl resulted in a significant decrease in plasma LPL contents and activity. As a result, the postprandial TG clearance was markedly impaired, and plasma TG and cholesterol levels were significantly elevated. However, deficiency of hepatic Lpl did not change the liver TG and cholesterol contents or glucose homeostasis. Taken together, our study reveals that hepatic LPL is involved in the regulation of plasma LPL activity and lipid homeostasis. PMID:27234787

  19. Lead

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This is one of a series of reports made on industrial pollutants by the Expert Panel on Air Quality Standards to advise the United Kingdom Government on air quality standards. It describes the main sources of lead exposure, including the relative contribution of lead in the air and lead in the diet, and the methods by which it is measured in air. The Panel also considers the airborne concentrations recorded to date in the United Kingdom, ways in which lead is handled in by the body, and its toxic effects on people. The dominant source of airborne lead is petrol combustion. Other source include coal combustion, the production of non-ferrous metals and waste treatment and disposal. The justification of an air quality standard for lead is set down. The Panel recommends an air quality standard for lead in the United Kingdom of 0.25 {mu}g/m{sup 3} measured as an annual average. This is intended to protect young children, the group most vulnerable to impairment of brain function. 17 refs., 3 figs., 2 tabs.

  20. Osteoblast-specific overexpression of amphiregulin leads to transient increase in femoral cancellous bone mass in mice.

    Science.gov (United States)

    Vaidya, Mithila; Lehner, Diana; Handschuh, Stephan; Jay, Freya F; Erben, Reinhold G; Schneider, Marlon R

    2015-12-01

    The epidermal growth factor receptor ligand amphiregulin (AREG) has been implicated in bone physiology and in bone anabolism mediated by intermittent parathyroid hormone treatment. However, the functions of AREG in bone have been only incipiently evaluated in vivo. Here, we generated transgenic mice overexpressing AREG specifically in osteoblasts (Col1-Areg). pQCT analysis of the femoral metaphysis revealed increased trabecular bone mass at 4, 8, and 10weeks of age in Col1-Areg mice compared to control littermates. However, the high bone mass phenotype was transient and disappeared in older animals. Micro-CT analysis of the secondary spongiosa confirmed increased trabecular bone volume and trabecular number in the distal femur of 4-week-old AREG-tg mice compared to control littermates. Furthermore, μ-CT analysis of the primary spongiosa revealed unaltered production of new bone trabeculae in distal femora of Col1-Areg mice. Histomorphometric analysis revealed a reduced number of osteoclasts in 4-week-old Col1-Areg mice, but not at later time points. Cancellous bone formation rate remained unchanged in Col1-Areg mice at all time points. In addition, bone mass and bone turnover in lumbar vertebral bodies were similar in Col1-Areg and control mice at all ages examined. Proliferation and differentiation of osteoblasts isolated from neonatal calvariae did not differ between Col1-Areg and control mice. Taken together, these data suggest that AREG overexpression in osteoblasts induces a transient high bone mass phenotype in the trabecular compartment of the appendicular skeleton by a growth-related, non-cell autonomous mechanism, leading to a positive bone balance with unchanged bone formation and lowered bone resorption. PMID:26103093

  1. Spontaneous tumor development in bone marrow-rescued DNA-PKcs(3A/3A) mice due to dysfunction of telomere leading strand deprotection.

    Science.gov (United States)

    Zhang, S; Matsunaga, S; Lin, Y-F; Sishc, B; Shang, Z; Sui, J; Shih, H-Y; Zhao, Y; Foreman, O; Story, M D; Chen, D J; Chen, B P C

    2016-07-28

    Phosphorylation of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) at the Thr2609 cluster is essential for its complete function in DNA repair and tissue stem cell homeostasis. This phenomenon is demonstrated by congenital bone marrow failure occurring in DNA-PKcs(3A/3A) mutant mice, which require bone marrow transplantation (BMT) to prevent early mortality. Surprisingly, an increased incidence of spontaneous tumors, especially skin cancer, was observed in adult BMT-rescued DNA-PKcs(3A/3A) mice. Upon further investigation, we found that spontaneous γH2AX foci occurred in DNA-PKcs(3A/3A) skin biopsies and primary keratinocytes and that these foci overlapped with telomeres during mitosis, indicating impairment of telomere replication and maturation. Consistently, we observed significantly elevated frequencies of telomere fusion events in DNA-PKcs(3A/3A) cells as compared with wild-type and DNA-PKcs-knockout cells. In addition, a previously identified DNA-PKcs Thr2609Pro mutation, found in breast cancer, also induces a similar impairment of telomere leading-end maturation. Taken together, our current analyses indicate that the functional DNA-PKcs T2609 cluster is required to facilitate telomere leading strand maturation and prevention of genomic instability and cancer development. PMID:26616856

  2. Redox proteomic analysis of the gastrocnemius muscle from adult and old mice.

    Science.gov (United States)

    McDonagh, Brian; Sakellariou, Giorgos K; Smith, Neil T; Brownridge, Philip; Jackson, Malcolm J

    2015-09-01

    The data provides information in support of the research article, "Differential Cysteine Labeling and Global Label-Free Proteomics Reveals an Altered Metabolic State in Skeletal Muscle Aging", Journal of Proteome Research, 2014, 13 (11), 2008-21 [1]. Raw data is available from ProteomeXchange [2] with identifier PDX001054. The proteome of gastrocnemius muscle from adult and old mice was analyzed by global label-free proteomics and the relative quantification of specific reduced and reversibly oxidized Cysteine (Cys) residues was performed using Skyline [3]. Briefly, reduced Cysteine (Cys) containing peptides was alkylated using N-ethylmalemide (d0-NEM). Samples were desalted and reversibly oxidized Cys residues were reduced using tris(2-carboxyethyl)phosphine (TCEP) and the newly formed reduced Cys residues were labeled with heavy NEM( d5-NEM). Label-free analysis of the global proteome of adult (n=5) and old (n=4) gastrocnemius muscles was performed using Peaks7™ mass spectrometry data analysis software [4]. Relative quantification of Cys containing peptides that were identified as reduced (d(0) NEM labeled) and reversibly oxidized d(5)-NEM labeled was performed using the intensity of their precursor ions in Skyline. Results indicate that muscles from old mice show reduced redox flexibility particularly in proteins involved in the generation of precursor metabolites and energy metabolism, indicating a loss in the flexibility of the redox energy response. PMID:26217813

  3. Perinatal exposure to methoxychlor enhances adult cognitive responses and hippocampal neurogenesis in mice.

    Directory of Open Access Journals (Sweden)

    Mariangela eMartini

    2014-06-01

    Full Text Available During perinatal life, sex steroids, such as estradiol, have marked effects on the development and function of the nervous system. Environmental estrogens or xenoestrogens are man-made chemicals, which animal and human population encounter in the environment and which are able to disrupt the functioning of the endocrine system. Scientific interest in the effects of exposure to xenoestrogens has focused more on fertility and reproductive behaviors, while the effects on cognitive behaviors have received less attention. Therefore, the present study explored whether the organochlorine insecticide Methoxychlor (MXC, with known xenoestrogens properties, administered during the perinatal period (from gestational day 11 to postnatal day 8 to pregnant-lactating females, at an environmentally relevant dose (20µg/kg (body weight/day, would also affect learning and memory functions depending on the hippocampus of male and female offspring mice in adulthood. When tested in adulthood, MXC perinatal exposure led to an increase in anxiety-like behavior and in short-term spatial working memory in both sexes. Emotional learning was also assessed using a contextual fear paradigm and MXC treated male and female mice showed an enhanced freezing behavior compared to controls. These results were correlated with an increased survival of adult generated cells in the adult hippocampus. In conclusion, our results show that perinatal exposure to an environmentally relevant dose of MXC has an organizational effect on hippocampus-dependent memory and emotional behaviors.

  4. The impact of Ly6Clow monocytes after cerebral hypoxia-ischemia in adult mice

    Science.gov (United States)

    Michaud, Jean-Philippe; Pimentel-Coelho, Pedro Moreno; Tremblay, Yannick; Rivest, Serge

    2014-01-01

    After an ischemic stroke, mononuclear phagocytic cells such as microglia, macrophages, and monocytes migrate to the lesion site and coordinate an immune response. Monocytes, which are recruited from the bloodstream after ischemic brain injury, can be categorized into two subsets in mice: inflammatory and patrolling monocytes. Although inflammatory monocytes (Ly6Chi) seem to have a protective role in stroke progression, the impact of patrolling monocytes (Ly6Clow) is unknown. To address the role of Ly6Clow monocytes in stroke, we generated bone marrow chimeric mice in which their hematopoietic system was replaced by Nr4a1−/− cells, allowing the complete and permanent ablation of Ly6Clow monocytes without affecting the Ly6Chi subset. We then subjected adult mice to cerebral hypoxia-ischemia using the Levine/Vannucci model. Functional outcomes after stroke such as body weight change, neurologic score, motor functions and spatial learning were not affected. Moreover, depletion in Ly6Clow monocytes did not change significantly the total infarct size, cell loss, atrophy, the number, or the activation state of microglia/macrophages at the lesion site. These data suggest that Ly6Clow patrolling monocytes are redundant in the progression and recovery of ischemic stroke. PMID:24780898

  5. Kidney-specific inactivation of the Pkd1 gene induces rapid cyst formation in developing kidneys and a slow onset of disease in adult mice.

    Science.gov (United States)

    Lantinga-van Leeuwen, Irma S; Leonhard, Wouter N; van der Wal, Annemieke; Breuning, Martijn H; de Heer, Emile; Peters, Dorien J M

    2007-12-15

    Autosomal dominant polycystic kidney disease, caused by mutations in the PKD1 gene, is characterized by progressive deterioration of kidney function due to the formation of thousands of cysts leading to kidney failure in mid-life or later. How cysts develop and grow is currently unknown, although extensive research revealed a plethora of cellular changes in cyst lining cells. We have constructed a tamoxifen-inducible, kidney epithelium-specific Pkd1-deletion mouse model. Upon administration of tamoxifen to these mice, a genomic fragment containing exons 2-11 of the Pkd1-gene is specifically deleted in the kidneys and cysts are formed. Interestingly, the timing of Pkd1-deletion has strong effects on the phenotype. At 1 month upon gene disruption, adult mice develop only a very mild cystic phenotype showing some small cysts and dilated tubules. Young mice, however, show massive cyst formation. In these mice, at the moment of gene disruption, cell proliferation takes place to elongate the nephron. Our data indicate that Pkd1 gene deficiency does not initiate sufficient autonomous cell proliferation leading to cyst formation and that additional stimuli are required. Furthermore, we show that one germ-line mutation of Pkd1 is already associated with increased proliferation. PMID:17932118

  6. Characteristics of Multi-Organ Lymphangiectasia Resulting from Temporal Deletion of Calcitonin Receptor-Like Receptor in Adult Mice

    OpenAIRE

    Hoopes, Samantha L.; Willcockson, Helen H.; Caron, Kathleen M.

    2012-01-01

    Adrenomedullin (AM) and its receptor complexes, calcitonin receptor-like receptor (Calcrl) and receptor activity modifying protein 2/3, are highly expressed in lymphatic endothelial cells and are required for embryonic lymphatic development. To determine the role of Calcrl in adulthood, we used an inducible Cre-loxP system to temporally and ubiquitously delete Calcrl in adult mice. Following tamoxifen injection, Calcrlfl/fl/CAGGCre-ER™ mice rapidly developed corneal edema and inflammation tha...

  7. Diet-induced obesity alters bone remodeling leading to decreased femoral trabecular bone mass in mice.

    Science.gov (United States)

    Cao, Jay J; Sun, Li; Gao, Hongwei

    2010-03-01

    Obesity-derived body mass may be detrimental to bone health through not well-defined mechanisms. In this study we determined changes in bone structure and serum cytokines related to bone metabolism in diet-induced obese mice. Mice fed a high-fat diet (HFD) had higher serum tartrate-resistant acid phosphatase (TRAP) and leptin but lower osteocalcin concentrations than those fed the normal-fat diet. The HFD increased multinucleated TRAP-positive osteoclasts in bone marrow compared to the control diet. Despite being much heavier, mice fed the HFD had lower femoral bone volume, trabecular number, and connectivity density and higher trabecular separation than mice on the control diet. These findings suggest that obesity induced by a HFD increases bone resorption that may blunt any positive effects of increased body weight on bone. PMID:20392249

  8. Delayed and transient increase of adult hippocampal neurogenesis by physical exercise in DBA/2 mice.

    Directory of Open Access Journals (Sweden)

    Rupert W Overall

    Full Text Available This study builds on the findings that physical activity, such as wheel running in mice, enhances cell proliferation and neurogenesis in the adult hippocampus of the common mouse strain C57BL/6, and that the baseline level of neurogenesis varies by strain, being considerably lower in DBA/2. Because C57BL/6 and DBA/2 are important as the parental strains of the BXD recombinant inbred cross which allows the detection of genetic loci regulating phenotypes such as adult neurogenesis, we performed the current study to investigate the gene x environment interactions regulating neurogenesis. At equal distances and times run DBA/2J mice lacked the acute increase in precursor cell proliferation known from C57BL/6. In DBA/2J proliferation even negatively correlated with the distance run. This was neither due to a stress response (to running itself or single housing nor differences in estrous cycle. DBA/2 animals exhibited a delayed and weaker pro-neurogenic response with a significant increase in numbers of proliferating cells first detectable after more than a week of wheel running. The proliferative response to running was transient in both strains, the effect being undetectable by 6 weeks. There was also a small transient increase in the production of new neurons in DBA/2J, although these extra cells did not survive. These findings indicate that the comparison between C57BL/6 and DBA/2, and by extension the BXD genetic reference population derived from these strains, should provide a powerful tool for uncovering the complex network of modifier genes affecting the activity-dependent regulation of adult hippocampal neurogenesis. More generally, our findings also describe how the external physical environment interacts with the internal genetic environment to produce different responses to the same behavioral stimuli.

  9. Immunohistochemical localization of keratin 5 in the submandibular gland in adult and postnatal developing mice.

    Science.gov (United States)

    Yamamoto, Miyuki; Nakata, Hiroki; Kumchantuek, Tewarat; Sakulsak, Natthiya; Iseki, Shoichi

    2016-03-01

    Keratin 5 (K5) is a marker of basal progenitor cells in the epithelia of a number of organs. During prenatal development of the submandibular gland (SMG) in mice, K5(+) progenitor cells in the developing epithelia play important roles in its organogenesis. Although K5(+) cells are also present in the adult mouse SMG and may function in tissue regeneration, their histological localization has not yet investigated in detail. In the present study, we examined the immunohistochemical localization of K5 in the SMG in adult and postnatal developing mice. At birth, K5 immunoreactivity was detected in the entire duct system, in which it was localized in the basal cells of a double-layered epithelium, but was not detected in the terminal tubule or myoepithelial cells. At postnatal weeks 1-3, with the development of intercalated ducts (ID), striated ducts (SD), and excretory ducts (ED), K5-immunoreactive basal cells were gradually restricted to the ED and the proximal double-layered portions of the ID connecting to the SD. At the same time, K5 immunoreactivity appeared in myoepithelial cells, in which its positive ratio gradually increased. In adults, K5 immunoreactivity was localized to most myoepithelial cells, most basal cells in the ED, and a small number of ID cells at the boundary between the ID and SD in the female SMG or between the ID and granular convoluted tubules in the male SMG. These results suggest that K5 is a marker of differentiated myoepithelial cells and duct progenitor cells in the mouse SMG. PMID:26671786

  10. Ischemic stroke induces gut permeability and enhances bacterial translocation leading to sepsis in aged mice

    Science.gov (United States)

    Verma, Rajkumar; Venna, Venugopal R.; Liu, Fudong; Chauhan, Anjali; Koellhoffer, Edward; Patel, Anita; Ricker, Austin; Maas, Kendra; Graf, Joerg; McCullough, Louise D.

    2016-01-01

    Aging is an important risk factor for post-stroke infection, which accounts for a large proportion of stroke-associated mortality. Despite this, studies evaluating post-stroke infection rates in aged animal models are limited. In addition, few studies have assessed gut microbes as a potential source of infection following stroke. Therefore we investigated the effects of age and the role of bacterial translocation from the gut in post-stroke infection in young (8-12 weeks) and aged (18-20 months) C57Bl/6 male mice following transient middle cerebral artery occlusion (MCAO) or sham surgery. Gut permeability was examined and peripheral organs were assessed for the presence of gut-derived bacteria following stroke. Furthermore, sickness parameters and components of innate and adaptive immunity were examined. We found that while stroke induced gut permeability and bacterial translocation in both young and aged mice, only young mice were able to resolve infection. Bacterial species seeding peripheral organs also differed between young (Escherichia) and aged (Enterobacter) mice. Consequently, aged mice developed a septic response marked by persistent and exacerbated hypothermia, weight loss, and immune dysfunction compared to young mice following stroke. PMID:27115295

  11. Adolescent mice are less sensitive to the effects of acute nicotine on context pre-exposure than adults.

    Science.gov (United States)

    Kutlu, Munir Gunes; Braak, David C; Tumolo, Jessica M; Gould, Thomas J

    2016-07-01

    Adolescence is a critical developmental period associated with both increased vulnerability to substance abuse and maturation of certain brain regions important for learning and memory such as the hippocampus. In this study, we employed a hippocampus-dependent learning context pre-exposure facilitation effect (CPFE) paradigm in order to test the effects of acute nicotine on contextual processing during adolescence (post-natal day (PND) 38) and adulthood (PND 53). In Experiment 1, adolescent or adult C57BL6/J mice received either saline or one of three nicotine doses (0.09, 0.18, and 0.36mg/kg) prior to contextual pre-exposure and testing. Our results demonstrated that both adolescent and adult mice showed CPFE in the saline groups. However, adolescent mice only showed acute nicotine enhancement of CPFE with the highest nicotine dose whereas adult mice showed the enhancing effects of acute nicotine with all three doses. In Experiment 2, to determine if the lack of nicotine's effects on CPFE shown by adolescent mice is specific to the age when they are tested, mice were either given contextual pre-exposure during adolescence or adulthood and received immediate shock and testing during adulthood after a 15day delay. We found that both adolescent and adult mice showed CPFE in the saline groups when tested during adulthood. However, like Experiment 1, mice that received contextual pre-exposure during adolescence did not show acute nicotine enhancement except at the highest dose (0.36mg/kg) whereas both low (0.09mg/kg) and high (0.36mg/kg) doses enhanced CPFE in adult mice. Finally, we showed that the enhanced freezing response found with 0.36mg/kg nicotine in the 15-day experiment may be a result of decreased locomotor activity as mice that received this dose of nicotine traveled shorter distances in an open field paradigm. Overall, our results indicate that while adolescent mice showed normal contextual processing when tested both during adolescence and adulthood, they

  12. Adult Behavior in Male Mice Exposed to E-Cigarette Nicotine Vapors during Late Prenatal and Early Postnatal Life.

    Directory of Open Access Journals (Sweden)

    Dani Smith

    Full Text Available Timed-pregnant C57BL/6J mice were exposed to 2.4% nicotine in propylene glycol (PG or 0% nicotine /PG once a day from gestational day 15 until delivery. After delivery, offspring and mothers were exposed to E-cigarette vapors for an additional 14 days from postnatal day 2 through 16. Following their last exposure serum cotinine levels were measured in female juvenile mice. Male mice underwent behavioral testing at 14 weeks of age to assess sensorimotor, affective, and cognitive functional domains.Adult male mice exposed to 2.4% nicotine/PG E-cigarette vapors had significantly more head dips in the zero maze test and higher levels of rearing activity in the open field test compared to 0% nicotine/PG exposed mice and untreated controls. In the water maze test after reversal training, the 2.4% nicotine/PG mice spent more than 25% of time in the new location whereas the other groups did not.Adult male mice exhibited increased levels of activity in the zero maze and open field tests when exposed to E-cigarette vapor containing nicotine during late prenatal and early postnatal life. These findings indicate that nicotine exposure from E-cigarettes may cause persistent behavioral changes when exposure occurs during a period of rapid brain growth.

  13. Transcription factors FOXA1 and FOXA2 maintain dopaminergic neuronal properties and control feeding behavior in adult mice

    OpenAIRE

    Pristerà, A; Lin, W.; Kaufmann, AK; Brimblecombe, KR; Threlfell, S.; Dodson, PD; Magill, PJ; Fernandes, C; Cragg, SJ; Ang, SL

    2015-01-01

    Midbrain dopaminergic (mDA) neurons are implicated in cognitive functions, neuropsychiatric disorders, and pathological conditions; hence understanding genes regulating their homeostasis has medical relevance. Transcription factors FOXA1 and FOXA2 (FOXA1/2) are key determinants of mDA neuronal identity during development, but their roles in adult mDA neurons are unknown. We used a conditional knockout strategy to specifically ablate FOXA1/2 in mDA neurons of adult mice. We show that deletion ...

  14. Transcription factors FOXA1 and FOXA2 maintain dopaminergic neuronal properties and control feeding behavior in adult mice.

    OpenAIRE

    Pristerà, A; Lin, W.; Kaufmann, AK; Brimblecombe, KR; Threlfell, S.; Dodson, PD; Magill, PJ; Fernandes, C; Cragg, SJ; Ang, SL

    2015-01-01

    Midbrain dopaminergic (mDA) neurons are implicated in cognitive functions, neuropsychiatric disorders, and pathological conditions; hence understanding genes regulating their homeostasis has medical relevance. Transcription factors FOXA1 and FOXA2 (FOXA1/2) are key determinants of mDA neuronal identity during development, but their roles in adult mDA neurons are unknown. We used a conditional knockout strategy to specifically ablate FOXA1/2 in mDA neurons of adult mice. We show that deletion ...

  15. Defective microtubule-dependent podosome organization in osteoclasts leads to increased bone density in Pyk2−/− mice

    OpenAIRE

    Gil-Henn, Hava; Destaing, Olivier; Sims, Natalie A.; Aoki, Kazuhiro; Alles, Neil; Neff, Lynn; Sanjay, Archana; Bruzzaniti, Angela; De Camilli, Pietro; Baron, Roland; Schlessinger, Joseph

    2007-01-01

    The protein tyrosine kinase Pyk2 is highly expressed in osteoclasts, where it is primarily localized in podosomes. Deletion of Pyk2 in mice leads to mild osteopetrosis due to impairment in osteoclast function. Pyk2-null osteoclasts were unable to transform podosome clusters into a podosome belt at the cell periphery; instead of a sealing zone only small actin rings were formed, resulting in impaired bone resorption. Furthermore, in Pyk2-null osteoclasts, Rho activity was enhanced while microt...

  16. Overproduction of Upper-Layer Neurons in the Neocortex Leads to Autism-like Features in Mice

    OpenAIRE

    Wei-Qun Fang; Wei-Wei Chen; Liwen Jiang; Kai Liu(Graduate University of Chinese Academy of Sciences, Beijing, P. R. China); Wing-Ho Yung; Amy K.Y. Fu; Nancy Y. Ip

    2014-01-01

    The functional integrity of the neocortex depends upon proper numbers of excitatory and inhibitory neurons; however, the consequences of dysregulated neuronal production during the development of the neocortex are unclear. As excess cortical neurons are linked to the neurodevelopmental disorder autism, we investigated whether the overproduction of neurons leads to neocortical malformation and malfunction in mice. We experimentally increased the number of pyramidal neurons in the upper neocort...

  17. Vitamin E attenuates liver injury induced by exposure to lead, mercury, cadmium and copper in albino mice

    OpenAIRE

    Al-Attar, Atef M.

    2011-01-01

    Water pollution is the contamination of water resources by harmful wastes or toxins. Both community and private sources of drinking water are susceptible to a myriad of chemical contaminants. Heavy metals pollution of surface water can create health risks. The present study was aimed to investigate the effect of vitamin E supplementation on male mice exposed to a mixture of some heavy metals (lead, mercury, cadmium and copper) in their drinking water for seven weeks. Significant increases of ...

  18. Protective Effect of Porcine Cerebral Hydrolysate Peptides on Learning and Memory Deficits and Oxidative Stress in Lead-Exposed Mice.

    Science.gov (United States)

    Zou, Ye; Feng, Weiwei; Wang, Wei; Chen, Yao; Zhou, Zhaoxiang; Li, Qian; Zhao, Ting; Mao, Guanghua; Wu, Xiangyang; Yang, Liuqing

    2015-12-01

    In this study, lead acetate solution and porcine cerebral hydrolysate peptides (PCHPs) were administered to developing mice. Porcine cerebral protein pretreated by ultrasound was hydrolyzed with alcalase, and 11 peptide fragments were obtained by Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of PCHPs. Our data showed that PCHPs significantly decreased Pb2+-induced spontaneous locomotor activity, latencies to reach the platform, and the time in target quadrant. It also decreased the accumulation of lead in the blood and brain of Pb2+-exposed developing mice. Co-administration of PCHPs and dimercaptosuccinic acid (DMSA) did not only reduce the accumulation of lead in blood but also increased the absorption of zinc and iron in Pb2+-exposed mice. Administration of PCHPs individually significantly enhanced hematopoietic parameters compared with the Pb2+-exposed group. PCHPs significantly reduced the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) but increased glutathione (GSH) content and anti-oxidant enzymes and nitric oxide synthase (NOS) activities in Pb2+-exposed brain. Our findings suggest that PCHPs have the ability to protect against Pb2+-exposed learning and memory deficits and oxidative damage. PMID:25956150

  19. Potential Association of Lead Exposure During Early Development of Mice With Alteration of Hippocampus Nitric Oxide Levels and Learning Memory

    Institute of Scientific and Technical Information of China (English)

    LI SUN; ZHENG-YAN ZHAO; JIAN HU; XIE-LAI ZHOU

    2005-01-01

    Objective Chronic lead (Pb) exposure during development is known to produce learning deficits. Nitric oxide participates in the synaptic mechanisms involved in certain forms of learning and memory. This study was designed to clarify whether Pb-induced impairment in learning and memory was associated with the changes of nitric oxide levels in mice brains.Methods Sixty Balb/c mice aged 10 days were chosen. A model of lead exposure was established by drinking 0.025%, 0.05%,0.075% lead acetate, respectively for 8 weeks. The controls were orally given distilled water. The ability to learn and memorize was examined by open field test, T-water maze test. In parallel with the behavioral data, NO level of hippocampus tissue was detected by biochemical assay. Results Compared with control groups, (1) the weight of 0.075% group was significantly reduced (P<0.05); (2) The number of times in mice attaining the required standards in T-water maze test was lower in 0.075%group (P<0.01). No significant difference was found between experimental and control groups in open field test (P>0.05); (3)NO level of mouse hippocampus tissue was decreased in 0.075% group (P<0.01). Conclusions The findings suggest that decreased hippocampus NO level may contribute to the Pb-induced deficits in learning and memory processes.

  20. Ku86 deficiency leads to reduced intrachromosomal homologous recombination in vivo in mice.

    Science.gov (United States)

    Reliene, Ramune; Bishop, Alexander J R; Li, Gloria; Schiestl, Robert H

    2004-02-01

    Ku70 and Ku86 together with DNA-PKcs form the DNA-dependent protein kinase (DNA-PK) complex that is involved in DNA double-strand break repair by nonhomologous end joining. We investigated the effect of Ku86 mutation on intrachromosomal homologous recombination (HR) resulting in deletions in vivo in mice. We quantified such deletion events using a phenotypic pigmentation assay. Deletion of one copy of a 70 kb DNA duplication in the pink-eyed unstable (pun) allele results in reversion to the wildtype pink-eyed dilution (p) gene, allowing black pigment accumulation in cells of the retinal pigment epithelium (RPE). We found that the frequency of homologous recombination was significantly reduced in Ku86 deficient mice. Furthermore, the proliferation of cells in which recombination events occurred was reduced and developmentally delayed in the Ku86 deficient mice. These data indicate a role for Ku86 directly or indirectly in homologous recombination in vivo. PMID:14706343

  1. Ablation of NG2 proteoglycan leads to deficits in brown fat function and to adult onset obesity.

    Directory of Open Access Journals (Sweden)

    Yunchao Chang

    Full Text Available Obesity is a major health problem worldwide. We are studying the causes and effects of obesity in C57Bl/6 mice following genetic ablation of NG2, a chondroitin sulfate proteoglycan widely expressed in progenitor cells and also in adipocytes. Although global NG2 ablation delays early postnatal adipogenesis in mouse skin, adult NG2 null mice are paradoxically heavier than wild-type mice, exhibiting larger white fat deposits. This adult onset obesity is not due to NG2-dependent effects on CNS function, since specific ablation of NG2 in oligodendrocyte progenitors yields the opposite phenotype; i.e. abnormally lean mice. Metabolic analysis reveals that, while activity and food intake are unchanged in global NG2 null mice, O(2 consumption and CO(2 production are decreased, suggesting a decrease in energy expenditure. Since brown fat plays important roles in regulating energy expenditure, we have investigated brown fat function via cold challenge and high fat diet feeding, both of which induce the adaptive thermogenesis that normally occurs in brown fat. In both tests, body temperatures in NG2 null mice are reduced compared to wild-type mice, indicating a deficit in brown fat function in the absence of NG2. In addition, adipogenesis in NG2 null brown pre-adipocytes is dramatically impaired compared to wild-type counterparts. Moreover, mRNA levels for PR domain containing 16 (PRDM16 and peroxisome proliferator-activated receptor γ coactivator (PGC1-α, proteins important for brown adipocyte differentiation, are decreased in NG2 null brown fat deposits in vivo and NG2 null brown pre-adipocytes in vitro. Altogether, these results indicate that brown fat dysfunction in NG2 null mice results from deficits in the recruitment and/or development of brown pre-adipocytes. As a consequence, obesity in NG2 null mice may occur due to disruptions in brown fat-dependent energy homeostasis, with resulting effects on lipid storage in white adipocytes.

  2. Multiple Events Lead to Dendritic Spine Loss in Triple Transgenic Alzheimer's Disease Mice

    OpenAIRE

    Tobias Bittner; Martin Fuhrmann; Steffen Burgold; Ochs, Simon M.; Nadine Hoffmann; Gerda Mitteregger; Hans Kretzschmar; LaFerla, Frank M.; Jochen Herms

    2010-01-01

    The pathology of Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β (Aβ) peptide, hyperphosphorylated tau protein, neuronal death, and synaptic loss. By means of long-term two-photon in vivo imaging and confocal imaging, we characterized the spatio-temporal pattern of dendritic spine loss for the first time in 3xTg-AD mice. These mice exhibit an early loss of layer III neurons at 4 months of age, at a time when only soluble Aβ is abundant. Later on, dendritic spines ar...

  3. Inactivation of a novel FGF23 regulator, FAM20C, leads to hypophosphatemic rickets in mice.

    Directory of Open Access Journals (Sweden)

    Xiaofang Wang

    Full Text Available Family with sequence similarity 20,-member C (FAM20C is highly expressed in the mineralized tissues of mammals. Genetic studies showed that the loss-of-function mutations in FAM20C were associated with human lethal osteosclerotic bone dysplasia (Raine Syndrome, implying an inhibitory role of this molecule in bone formation. However, in vitro gain- and loss-of-function studies suggested that FAM20C promotes the differentiation and mineralization of mouse mesenchymal cells and odontoblasts. Recently, we generated Fam20c conditional knockout (cKO mice in which Fam20c was globally inactivated (by crossbreeding with Sox2-Cre mice or inactivated specifically in the mineralized tissues (by crossbreeding with 3.6 kb Col 1a1-Cre mice. Fam20c transgenic mice were also generated and crossbred with Fam20c cKO mice to introduce the transgene in the knockout background. In vitro gain- and loss-of-function were examined by adding recombinant FAM20C to MC3T3-E1 cells and by lentiviral shRNA-mediated knockdown of FAM20C in human and mouse osteogenic cell lines. Surprisingly, both the global and mineralized tissue-specific cKO mice developed hypophosphatemic rickets (but not osteosclerosis, along with a significant downregulation of osteoblast differentiation markers and a dramatic elevation of fibroblast growth factor 23 (FGF23 in the serum and bone. The mice expressing the Fam20c transgene in the wild-type background showed no abnormalities, while the expression of the Fam20c transgene fully rescued the skeletal defects in the cKO mice. Recombinant FAM20C promoted the differentiation and mineralization of MC3T3-E1 cells. Knockdown of FAM20C led to a remarkable downregulation of DMP1, along with a significant upregulation of FGF23 in both human and mouse osteogenic cell lines. These results indicate that FAM20C is a bone formation "promoter" but not an "inhibitor" in mouse osteogenesis. We conclude that FAM20C may regulate osteogenesis through its direct role in

  4. Skeletal myofiber VEGF regulates contraction-induced perfusion and exercise capacity but not muscle capillarity in adult mice.

    Science.gov (United States)

    Knapp, Amy E; Goldberg, Daniel; Delavar, Hamid; Trisko, Breanna M; Tang, Kechun; Hogan, Michael C; Wagner, Peter D; Breen, Ellen C

    2016-07-01

    A single bout of exhaustive exercise signals expression of vascular endothelial growth factor (VEGF) in the exercising muscle. Previous studies have reported that mice with life-long deletion of skeletal myofiber VEGF have fewer capillaries and a severe reduction in endurance exercise. However, in adult mice, VEGF gene deletion conditionally targeted to skeletal myofibers limits exercise capacity without evidence of capillary regression. To explain this, we hypothesized that adult skeletal myofiber VEGF acutely regulates skeletal muscle perfusion during muscle contraction. A tamoxifen-inducible skeletal myofiber-specific VEGF gene deletion mouse (skmVEGF-/-) was used to reduce skeletal muscle VEGF protein by 90% in adult mice. Three weeks after inducing deletion of the skeletal myofiber VEGF gene, skmVEGF-/- mice exhibited diminished maximum running speed (-10%, P < 0.05) and endurance capacity (-47%; P < 0.05), which did not persist after 8 wk. In skmVEGF-/- mice, gastrocnemius complex time to fatigue measured in situ was 71% lower than control mice. Contraction-induced perfusion measured by optical imaging during a period of electrically stimulated muscle contraction was 85% lower in skmVEGF-/- than control mice. No evidence of capillary rarefication was detected in the soleus, gastrocnemius, and extensor digitorum longus (EDL) up to 8 wk after tamoxifen-induced VEGF ablation, and contractility and fatigue resistance of the soleus measured ex vivo were also unchanged. The force-frequency of the EDL showed a small right shift, but fatigue resistance did not differ between EDL from control and skmVEGF-/- mice. These data suggest myofiber VEGF is required for regulating perfusion during periods of contraction and may in this manner affect endurance capacity. PMID:27225953

  5. Dispase rapidly and effectively purifies Schwann cells from newborn mice and adult rats

    Institute of Scientific and Technical Information of China (English)

    Jiaxue Zhu; Jinbao Qin; Zunli Shen; James D. Kretlow; Xiaopan Wang; Zhangyin Liu; Yuqing Jin

    2012-01-01

    In the present study, Schwann cells were isolated from the sciatic nerve of neonatal mice and purified using dispase and collagenase. Results showed that after the first round of purification with dispase, most of the Schwann cells appeared round in shape and floated in culture solution after 15 minutes. In addition, cell yield and cell purity were higher when compared to the collagenase group. After the second round of purification, the final cell yield for the dispase group was higher than that for the collagenase group, but no significant difference was found in cell purity. Moreover, similar results in cell quantity and purity were observed in adult Sprague-Dawley rats. These findings indicate that purification with dispase can result in the rapid isolation of Schwann cells with a high yield and purity.

  6. Memory-enhancing effects of Cuscuta japonica Choisy via enhancement of adult hippocampal neurogenesis in mice.

    Science.gov (United States)

    Moon, Minho; Jeong, Hyun Uk; Choi, Jin Gyu; Jeon, Seong Gak; Song, Eun Ji; Hong, Seon-Pyo; Oh, Myung Sook

    2016-09-15

    It is generally accepted that functional and structural changes within the hippocampus are involved in learning and memory and that adult neurogenesis in this region may modulate cognition. The extract of Cuscuta japonica Choisy (CJ) is a well-known traditional Chinese herbal medicine that has been used since ancient times as a rejuvenation remedy. The systemic effects of this herb are widely known and can be applied for the treatment of a number of physiological diseases, but there is a lack of evidence describing its effects on brain function. Thus, the present study investigated whether CJ would enhance memory function and/or increase hippocampal neurogenesis using mice orally administered with CJ water extract or vehicle for 21days. Performance on the novel object recognition and passive avoidance tests revealed that treatment with CJ dose-dependently improved the cognitive function of mice. Additionally, CJ increased the Ki-67-positive proliferating cells and the number of doublecortin-stained neuroblasts in the dentate gyrus (DG) of the hippocampus, and double labeling with 5-bromo-2-deoxyuridine and neuronal specific nuclear protein showed that CJ increased the number of mature neurons in the DG. Finally, CJ resulted in the upregulated expression of neurogenic differentiation factor, which is essential for the maturation and differentiation of granule cells in the hippocampus. Taken together, the present findings indicate that CJ stimulated neuronal cell proliferation, differentiation, and maturation, which are all processes associated with neurogenesis. Additionally, these findings suggest that CJ may improve learning and memory via the enhancement of adult hippocampal neurogenesis. PMID:27185736

  7. Dynamics of cell proliferation in the adult dentate gyrus of two inbred strains of mice

    Science.gov (United States)

    Hayes, N. L.; Nowakowski, R. S.

    2002-01-01

    The output potential of proliferating populations in either the developing or the adult nervous system is critically dependent on the length of the cell cycle (T(c)) and the size of the proliferating population. We developed a new approach for analyzing the cell cycle, the 'Saturate and Survive Method' (SSM), that also reveals the dynamic behaviors in the proliferative population and estimates of the size of the proliferating population. We used this method to analyze the proliferating population of the adult dentate gyrus in 60 day old mice of two inbred strains, C57BL/6J and BALB/cByJ. The results show that the number of cells labeled by exposure to BUdR changes dramatically with time as a function of the number of proliferating cells in the population, the length of the S-phase, cell division, the length of the cell cycle, dilution of the S-phase label, and cell death. The major difference between C57BL/6J and BALB/cByJ mice is the size of the proliferating population, which differs by a factor of two; the lengths of the cell cycle and the S-phase and the probability that a newly produced cell will die within the first 10 days do not differ in these two strains. This indicates that genetic regulation of the size of the proliferating population is independent of the genetic regulation of cell death among those newly produced cells. The dynamic changes in the number of labeled cells as revealed by the SSM protocol also indicate that neither single nor repeated daily injections of BUdR accurately measure 'proliferation.'.

  8. COX-2 disruption leads to increased central vasopressin stores and impaired urine concentrating ability in mice

    DEFF Research Database (Denmark)

    Nørregaard, Rikke; Madsen, Kirsten; Hansen, Pernille B L;

    2011-01-01

    It was hypothesized that cyclooxygenase-2 (COX-2) activity promotes urine concentrating ability through stimulation of vasopressin (AVP) release after water deprivation (WD). COX-2-deficient (COX-2(-/-), C57BL/6) and wild-type (WT) mice were water deprived for 24 h, and water balance, central AVP m...

  9. Effect of lead acetate on follicular count of mice ovary and the protective role of garlic extract

    International Nuclear Information System (INIS)

    Objective: The study was conducted to evaluate the effects of lead acetate and protective role of garlic extract on the histomorphology of the ovarian follicles in an animal model. Study Design: Laboratory based randomized control trial Place and Duration of Study: Department of Anatomy, Army Medical College in collaboration with National Institute of Health from April-June 2013 Material and Methods: Thirty female BALBc mice were selected. Mice were randomly divided into three groups. 10 animals were placed in each group. Group A being the control was given normal diet. Group B was given lead acetate at a dose of 30 mg/kg/day. Group C was given lead acetate 30mg/kg/day and garlic extract 500 mg/kg/day through oral lavage tube for 60 days. Animals were sacrificed and dissected at the end of 60th day. Length and width of the ovary were measured, right ovary was processed, embedded and stained for histological study. Primary, secondary and graafian follicles were counted and noted. Results: There was reduction in the number of primary and graafian follicles in group B when compared to group A. In group C there was relatively increase in number of follicles, when compared to group B. Number of secondary follicles was almost same in all the groups. The length of ovary was higher in group A as compared to group B. In group C results were same as group A regarding length of the ovary. Width of ovary was same between the respective groups. Conclusion: The follicular count was markedly affected in lead acetate treated group which improved when co treated with garlic extract in experimental group C. Hence, garlic had a protective role against lead induced changes in mice ovary. (author)

  10. Adult but Not Aged C57BL/6 Male Mice Are Capable of Using Geometry for Orientation

    Science.gov (United States)

    Schachner, Melitta; Morellini, Fabio; Fellini, Laetitia

    2006-01-01

    Geometry, e.g., the shape of the environment, can be used by numerous animal species to orientate, but data concerning the mouse are lacking. We addressed the question of whether mice are capable of using geometry for navigating. To test whether aging could affect searching strategies, we compared adult (3- to 5-mo old) and aged (20- to 21-mo old)…

  11. Efficiency of AUY922 in mice with adult T-cell leukemia/lymphoma

    Science.gov (United States)

    ISHIKAWA, CHIE; SENBA, MASACHIKA; MORI, NAOKI

    2016-01-01

    Adult T-cell leukemia/lymphoma (ATLL) is an aggressive malignancy caused by human T-cell leukemia virus type 1 (HTLV-1). ATLL is associated with poor prognosis mainly due to resistance to chemotherapy, which highlights the requirement for alternative therapies. The chaperone heat shock protein (HSP) 90 assist proteins involved in the onset and progression of ATLL. In the present study, the efficacy of a second generation HSP90 inhibitor termed AUY922 was investigated in ATLL. In vitro, AUY922 induced marked inhibition of cell viability in the HTLV-1-infected T-cell lines HUT-102 and MT-4. In immunodeficient mice bearing HUT-102 xenotransplants, AUY922 markedly retarded tumor growth, compared with the control group. Apoptosis was evident in hematoxylin and eosin stained- and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling-labeled tissue sections from AUY922-treated mice. In addition, AUY922 significantly reduced the serum levels of the surrogate tumor markers soluble interleukin-2 receptor and soluble cluster of differentiation 30. Overall, the present results demonstrate that AUY922 has potent anti-ATLL activity, thus providing a rationale for continuing the clinical development of HSP90 inhibitors in clinical trials for the treatment of patients with ATLL. PMID:27347156

  12. Dopaminergic Modulation of Excitatory Transmission in the Anterior Cingulate Cortex of Adult Mice.

    Science.gov (United States)

    Darvish-Ghane, Soroush; Yamanaka, Manabu; Zhuo, Min

    2016-01-01

    Dopamine (DA) possesses potent neuromodulatory properties in the central nervous system. In the anterior cingulate cortex, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPAR) are key ion channels in mediating nerve injury induced long-term potentiation (LTP) and chronic pain phenotype. In the present study, we reported the effects of DA on glutamate mediated excitatory post-synaptic currents (EPSCs) in pyramidal neurons of layer II/III of the ACC in adult mice. Bath application of DA (50 μM) caused a significant, rapid and reversible inhibition of evoked EPSCs (eEPSC). This inhibitory effect is dose-related and was absent in lower concentration of DA (5 μM). Furthermore, selective postsynaptic application of GDP-β-S (1.6 mM) in the internal solution completely abolished the inhibitory effects of DA (50 μM). We also investigated modulation of spontaneous EPSCs (sEPSCs) and TTX sensitive, miniature EPSCs (mEPSCs) by DA. Our results indicated mixed effects of potentiation and inhibition of frequency and amplitude for sEPSCs and mEPSCs. Furthermore, high doses of SCH23390 (100 μM) and sulpiride (100 μM) revealed that, inhibition of eEPSCs is mediated by postsynaptic D2-receptors (D2R). Our finding posits a pre- and postsynaptic mode of pyramidal neuron EPSC modulation in mice ACC by DA. PMID:27317578

  13. Cellular origins of cold-induced brown adipocytes in adult mice.

    Science.gov (United States)

    Lee, Yun-Hee; Petkova, Anelia P; Konkar, Anish A; Granneman, James G

    2015-01-01

    This work investigated how cold stress induces the appearance of brown adipocytes (BAs) in brown and white adipose tissues (WATs) of adult mice. In interscapular brown adipose tissue (iBAT), cold exposure increased proliferation of endothelial cells and interstitial cells expressing platelet-derived growth factor receptor, α polypeptide (PDGFRα) by 3- to 4-fold. Surprisingly, brown adipogenesis and angiogenesis were largely restricted to the dorsal edge of iBAT. Although cold stress did not increase proliferation in inguinal white adipose tissue (ingWAT), the percentage of BAs, defined as multilocular adipocytes that express uncoupling protein 1, rose from undetectable to 30% of total adipocytes. To trace the origins of cold-induced BAs, we genetically tagged PDGFRα(+) cells and adipocytes prior to cold exposure, using Pdgfra-Cre recombinase estrogen receptor T2 fusion protein (CreER(T2)) and adiponectin-CreER(T2), respectively. In iBAT, cold stress triggered the proliferation and differentiation of PDGFRα(+) cells into BAs. In contrast, all newly observed BAs in ingWAT (5207 out of 5207) were derived from unilocular adipocytes tagged by adiponectin-CreER(T2)-mediated recombination. Surgical denervation of iBAT reduced cold-induced brown adipogenesis by >85%, whereas infusion of norepinephrine (NE) mimicked the effects of cold in warm-adapted mice. NE-induced de novo brown adipogenesis in iBAT was eliminated in mice lacking β1-adrenergic receptors. These observations identify a novel tissue niche for brown adipogenesis in iBAT and further define depot-specific mechanisms of BA recruitment. PMID:25392270

  14. An inducible hepatocellular carcinoma model for preclinical evaluation of antiangiogenic therapy in adult mice.

    Science.gov (United States)

    Runge, Anja; Hu, Junhao; Wieland, Matthias; Bergeest, Jan-Philip; Mogler, Carolin; Neumann, André; Géraud, Cyrill; Arnold, Bernd; Rohr, Karl; Komljenovic, Dorde; Schirmacher, Peter; Goerdt, Sergij; Augustin, Hellmut G

    2014-08-01

    The limited availability of experimental tumor models that faithfully mimic the progression of human tumors and their response to therapy remains a major bottleneck to the clinical translation and application of novel therapeutic principles. To address this challenge in hepatocellular carcinoma (HCC), one of the deadliest and most common cancers in the world, we developed and validated an inducible model of hepatocarcinogenesis in adult mice. Tumorigenesis was triggered by intravenous adenoviral delivery of Cre recombinase in transgenic mice expressing the hepatocyte-specific albumin promoter, a loxP-flanked stop cassette, and the SV40 large T-antigen (iAST). Cre recombinase-mediated excision of the stop cassette led to a transient viral hepatitis and resulted in multinodular tumorigenesis within 5 to 8 weeks. Tumor nodules with histologic characteristics of human HCC established a functional vasculature by cooption, remodeling, and angiogenic expansion of the preexisting sinusoidal liver vasculature with increasing signs of vascular immaturity during tumor progression. Treatment of mice with sorafenib rapidly resulted in the induction of vascular regression, inhibition of tumor growth, and enhanced overall survival. Vascular regression was characterized by loss of endothelial cells leaving behind avascular type IV collagen-positive empty sleeves with remaining pericytes. Sorafenib treatment led to transcriptional changes of Igf1, Id1, and cMet over time, which may reflect the emergence of potential escape mechanisms. Taken together, our results established the iAST model of inducible hepatocarcinogenesis as a robust and versatile preclinical model to study HCC progression and validate novel therapies. PMID:24906623

  15. DKK1 mediated inhibition of Wnt signaling in postnatal mice leads to loss of TEC progenitors and thymic degeneration.

    Directory of Open Access Journals (Sweden)

    Masako Osada

    Full Text Available BACKGROUND: Thymic epithelial cell (TEC microenvironments are essential for the recruitment of T cell precursors from the bone marrow, as well as the subsequent expansion and selection of thymocytes resulting in a mature self-tolerant T cell repertoire. The molecular mechanisms, which control both the initial development and subsequent maintenance of these critical microenvironments, are poorly defined. Wnt signaling has been shown to be important to the development of several epithelial tissues and organs. Regulation of Wnt signaling has also been shown to impact both early thymocyte and thymic epithelial development. However, early blocks in thymic organogenesis or death of the mice have prevented analysis of a role of canonical Wnt signaling in the maintenance of TECs in the postnatal thymus. METHODOLOGY/PRINCIPAL FINDINGS: Here we demonstrate that tetracycline-regulated expression of the canonical Wnt inhibitor DKK1 in TECs localized in both the cortex and medulla of adult mice, results in rapid thymic degeneration characterized by a loss of DeltaNP63(+ Foxn1(+ and Aire(+ TECs, loss of K5K8DP TECs thought to represent or contain an immature TEC progenitor, decreased TEC proliferation and the development of cystic structures, similar to an aged thymus. Removal of DKK1 from DKK1-involuted mice results in full recovery, suggesting that canonical Wnt signaling is required for the differentiation or proliferation of TEC populations needed for maintenance of properly organized adult thymic epithelial microenvironments. CONCLUSIONS/SIGNIFICANCE: Taken together, the results of this study demonstrate that canonical Wnt signaling within TECs is required for the maintenance of epithelial microenvironments in the postnatal thymus, possibly through effects on TEC progenitor/stem cell populations. Downstream targets of Wnt signaling, which are responsible for maintenance of these TEC progenitors may provide useful targets for therapies aimed at

  16. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult.

    Directory of Open Access Journals (Sweden)

    Vinicius S Carreira

    Full Text Available The Developmental Origins of Health and Disease (DOHaD Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR, either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr-/- and in utero TCDD-exposed Ahr+/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr-/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease.

  17. Co-Occurrence of Leading Lifestyle-Related Chronic Conditions Among Adults in the United States, 2002-2009

    OpenAIRE

    Ford, Earl S.; Croft, Janet B.; Posner, Samuel F.; Goodman, Richard A.; Giles, Wayne H.

    2013-01-01

    Introduction Public health and clinical strategies for meeting the emerging challenges of multiple chronic conditions must address the high prevalence of lifestyle-related causes. Our objective was to assess prevalence and trends in the chronic conditions that are leading causes of disease and death among adults in the United States that are amenable to preventive lifestyle interventions. Methods We used self-reported data from 196,240 adults aged 25 years or older who participated in the Nat...

  18. Glutathione restores the mechanism of synaptic plasticity in aged mice to that of the adult.

    Directory of Open Access Journals (Sweden)

    Julie M Robillard

    Full Text Available Glutathione (GSH, the major endogenous antioxidant produced by cells, can modulate the activity of N-methyl-D-aspartate receptors (NMDARs through its reducing functions. During aging, an increase in oxidative stress leads to decreased levels of GSH in the brain. Concurrently, aging is characterized by calcium dysregulation, thought to underlie impairments in hippocampal NMDAR-dependent long-term potentiation (LTP, a form of synaptic plasticity thought to represent a cellular model for memory. Here we show that orally supplementing aged mice with N-acetylcysteine, a precursor for the formation of glutathione, reverses the L-type calcium channel-dependent LTP seen in aged animals to NMDAR-dependent LTP. In addition, introducing glutathione in the intrapipette solution during whole-cell recordings restores LTP obtained in whole-cell conditions in the aged hippocampus. We conclude that aging leads to a reduced redox potential in hippocampal neurons, triggering impairments in LTP.

  19. Taste Bud Labeling in Whole Tongue Epithelial Sheet in Adult Mice.

    Science.gov (United States)

    Venkatesan, Nandakumar; Boggs, Kristin; Liu, Hong-Xiang

    2016-04-01

    Molecular labeling in whole-mount tissues provides an efficient way to obtain general information about the formation, maintenance, degeneration, and regeneration of many organs and tissues. However, labeling of lingual taste buds in whole tongue tissues in adult mice has been problematic because of the strong permeability barrier of the tongue epithelium. In this study, we present a simple method for labeling taste buds in the intact tongue epithelial sheet of an adult mouse. Following intralingual protease injection and incubation, immediate fixation of the tongue on mandible in 4% paraformaldehyde enabled the in situ shape of the tongue epithelium to be well maintained after peeling. The peeled epithelium was accessible to taste bud labeling with a pan-taste cell marker, keratin 8, and a type II taste cell marker, α-gustducin, in all three types of taste papillae, that is, fungiform, foliate, and circumvallate. Overnight incubation of tongue epithelial sheets with primary and secondary antibodies was sufficient for intense labeling of taste buds with both fluorescent and DAB visualizations. Labeled individual taste buds were easy to identify and quantify. This protocol provides an efficient way for phenotypic analyses of taste buds, especially regarding distribution pattern and number. PMID:26701416

  20. Maternal immune activation differentially impacts mature and adult-born hippocampal neurons in male mice.

    Science.gov (United States)

    Zhang, Zhi; van Praag, Henriette

    2015-03-01

    Schizophrenia is associated with deficits in the hippocampus, a brain area important for learning and memory. The dentate gyrus (DG) of the hippocampus develops both before and after birth. To study the relative contribution of mature and adult-born DG granule cells to disease etiology, we compared both cell populations in a mouse model of psychiatric illness resulting from maternal immune activation. Polyriboinosinic-polyribocytidilic acid (PolyIC, 5mg/kg) or saline was given on gestation day 15 to pregnant female C57Bl/6 mice. Male offspring (n=105), was administered systemic bromodeoxyuridine (BrdU, 50mg/kg) (n=52) or intracerebral retroviral injection into the DG (n=53), to label dividing cells at one month of age. Two months later behavioral tests were performed to evaluate disease phenotype. Immunohistochemistry and whole-cell patch clamping were used to assess morphological and physiological characteristics of DG cells. Three-month-old PolyIC exposed male offspring exhibited deficient pre-pulse inhibition, spatial maze performance and motor coordination, as well as increased depression-like behavior. Histological analysis showed reduced DG volume and parvalbumin positive interneuron number. Both mature and new hippocampal neurons showed modifications in intrinsic properties such as increased input resistance and lower current threshold, and decreased action potential number. Reduced GABAergic inhibitory transmission was observed only in mature DG neurons. Differential impairments in mature DG cells and adult-born new neurons may have implications for behavioral deficits associated with maternal immune activation. PMID:25449671

  1. Successful small intestine colonization of adult mice by Vibrio cholerae requires ketamine anesthesia and accessory toxins.

    Directory of Open Access Journals (Sweden)

    Verena Olivier

    Full Text Available Vibrio cholerae colonizes the small intestine of adult C57BL/6 mice. In this study, the physical and genetic parameters that facilitate this colonization were investigated. Successful colonization was found to depend upon anesthesia with ketamine-xylazine and neutralization of stomach acid with sodium bicarbonate, but not streptomycin treatment. A variety of common mouse strains were colonized by O1, O139, and non-O1/non-O139 strains. All combinations of mutants in the genes for hemolysin, the multifunctional, autoprocessing RTX toxin (MARTX, and hemagglutinin/protease were assessed, and it was found that hemolysin and MARTX are each sufficient for colonization after a low dose infection. Overall, this study suggests that, after intragastric inoculation, V. cholerae encounters barriers to infection including an acidic environment and an immediate immune response that is circumvented by sodium bicarbonate and the anti-inflammatory effects of ketamine-xylazine. After initial adherence in the small intestine, the bacteria are subjected to additional clearance mechanisms that are evaded by the independent toxic action of hemolysin or MARTX. Once colonization is established, it is suggested that, in humans, these now persisting bacteria initiate synthesis of the major virulence factors to cause cholera disease. This adult mouse model of intestinal V. cholerae infection, now well-characterized and fully optimized, should serve as a valuable tool for studies of pathogenesis and testing vaccine efficacy.

  2. Genetically induced oxidative stress in mice causes thrombocytosis, splenomegaly and placental angiodysplasia that leads to recurrent abortion

    Directory of Open Access Journals (Sweden)

    Takamasa Ishii

    2014-01-01

    Full Text Available Historical data in the 1950s suggests that 7%, 11%, 33%, and 87% of couples were infertile by ages 30, 35, 40 and 45, respectively. Up to 22.3% of infertile couples have unexplained infertility. Oxidative stress is associated with male and female infertility. However, there is insufficient evidence relating to the influence of oxidative stress on the maintenance of a viable pregnancy, including pregnancy complications and fetal development. Recently, we have established Tet-mev-1 conditional transgenic mice, which can express the doxycycline-induced mutant SDHCV69E transgene and experience mitochondrial respiratory chain dysfunction leading to intracellular oxidative stress. In this report, we demonstrate that this kind of abnormal mitochondrial respiratory chain-induced chronic oxidative stress affects fertility, pregnancy and delivery rates as well as causes recurrent abortions, occasionally resulting in maternal death. Despite this, spermatogenesis and early embryogenesis are completely normal, indicating the mutation's effects to be rather subtle. Female Tet-mev-1 mice exhibit thrombocytosis and splenomegaly in both non-pregnant and pregnant mice as well as placental angiodysplasia with reduced Flt-1 protein leading to hypoxic conditions, which could contribute to placental inflammation and fetal abnormal angiogenesis. Collectively these data strongly suggest that chronic oxidative stress caused by mitochondrial mutations provokes spontaneous abortions and recurrent miscarriage resulting in age-related female infertility.

  3. Protective efficacy of Emblica against radiation and lead induced biochemical changes in the kidney of Swiss albino mice

    International Nuclear Information System (INIS)

    Ionizing radiation kills cells in the area being treated (the target tissue) as well as other surrounding healthy cells. The damaging effects of ionizing radiation on healthy tissue create a major barrier in effective treatment of common human cancers. Thus there is a need to find a safe and highly effective avenue to reduce normal cell damage during cancer therapy, plants have been used in the traditional healthcare system from time immemorial, and phyto products continue to play an essential role in medicine. Emblica, is reported to have an excellent radio protective activity, antioxidant and a free radical scavenger. In light of above, the present study was aimed to evaluate the protective effect of Emblica against radiation and lead induced biochemical alterations in the kidney of Swiss albino mice. The animals were exposed to 6.0 Gy of gamma rays with or without Lead acetate treatment. The Emblica was administered seven days prior to irradiation or Lead Acetate treatment. The animals from all experimental groups were sacrificed by cervical dislocation at each post treatment intervals of 1, 2, 4, 7, 14 and 28 days. After sacrificing the animals, pieces of the kidney were taken out and kept at - 20 deg C for different biochemical parameters. For the study the animals were exposed to 6.0 Gy of gamma rays with or without Lead acetate treatments. In the experimental groups the Emblica juice was given seven days prior to the radiation or lead acetate treatment. The various biochemical parameters viz, total proteins, glycogen, cholesterol, acid phosphatase and alkaline phosphatase activities, DNA and RNA were estimated. The values were observed in the form of increase or decrease. After combined treatment of radiation and lead acetate the changes were more severe showing synergistic effect of both the agent. An early and fast recovery was also noticed in Emblica pre-treated animals. Thus it appears that Emblica is potent enough to check Lead and Radiation induced

  4. A study of chemopreventive effects of Emblica officinalis Linn. against radiation and lead induced haematological changes in Swiss albino mice

    International Nuclear Information System (INIS)

    The vast potential of radiant energy opens vistas of new horizons as its use in various fields of science, technology, therapeutics and diagnosis. However its also exposes the global population to the hazards of nuclear accidents and radiation injury. In this era of nuclear science it has become a prerequisite to know the effects of radiation on mankind and to develop effective countermeasures for minimizing the damages of radiation exposure. Heavy metals like lead can cause deleterious effects when its concentration goes beyond the limit in ecosystem. The combined effects of radiation and lead further increases the causation of damages to organs and tissues. Amla is found to be a non toxic, inexpensive, easily available herbal drug. Therefore present study was pertain to evaluate the chemo preventive role of Amla against radiation and lead induced changes in blood of Swiss albino mice. The animals were exposed to 6.0 Gy of gamma rays and with or without lead acetate which was given to them adlibitum. The Emblica was administered seven days prior to irradiation or lead acetate treatment. Three animals were sacrificed from all the experimental group at each post treatment intervals of 1, 2, 4, 7, 14 and 28 days by cervical dislocation . The blood was collected in heparinised tube for estimating various haematological parameters. The value of RBC, WBC, PCV, Hemoglobin, and MCV decreased up to day-14 in non drug treated groups and day-7 in drug treated groups, thereafter the value increased. When the animals treated with radiation and lead simultaneously synergistic effects were observed. The Amla treated groups showed early and fast recovery thus, it may deduce from above observation that Amla has potential to check the alteration produced by radiation and lead in the blood of Swiss albino mice. (author)

  5. Postnatal overnutrition in mice leads to impaired pulmonary mechanics in response to salbutamol.

    Science.gov (United States)

    Teixeira, Vanessa P; Cervilha, Daniela A B; Cabral, Layla D M; Oliveira, Luiz M; Incerpi, Erika K; Novaes, Rômulo D; Ionta, Marisa; Soncini, Roseli

    2016-05-01

    Obesity increases the risk of respiratory disease, which is associated with airway hyperresponsiveness. Although the molecular underpinnings of this phenomenon are not well established, lung remodeling is known as an important factor in this process and could potentially explain compromised lung functions. In the present study, the obesity was induced by postnatal overnutrition in Swiss mice and we investigated the pulmonary mechanics after aerosolization of saline, methacholine, and salbutamol. The lungs were prepared for morphometric analysis. Obese animals showed bronchoconstriction in response to methacholine, as evidenced by airway and tissue resistance, tissue elastance, and hysteresivity. Salbutamol was effective at recovering the response only for airway resistance but not for tissue mechanics. We suggest that this impaired response in obese mice is related to collapsed alveolar, to inflammatory cells, and to elevated deposition collagen fibers in parenchymal tissue. PMID:26497334

  6. Expression of truncated PITX3 in the developing lens leads to microphthalmia and aphakia in mice.

    Directory of Open Access Journals (Sweden)

    Kenta Wada

    Full Text Available Microphthalmia is a severe ocular disorder, and this condition is typically caused by mutations in transcription factors that are involved in eye development. Mice carrying mutations in these transcription factors would be useful tools for defining the mechanisms underlying developmental eye disorders. We discovered a new spontaneous recessive microphthalmos mouse mutant in the Japanese wild-derived inbred strain KOR1/Stm. The homozygous mutant mice were histologically characterized as microphthalmic by the absence of crystallin in the lens, a condition referred to as aphakia. By positional cloning, we identified the nonsense mutation c.444C>A outside the genomic region that encodes the homeodomain of the paired-like homeodomain transcription factor 3 gene (Pitx3 as the mutation responsible for the microphthalmia and aphakia. We examined Pitx3 mRNA expression of mutant mice during embryonic stages using RT-PCR and found that the expression levels are higher than in wild-type mice. Pitx3 over-expression in the lens during developmental stages was also confirmed at the protein level in the microphthalmos mutants via immunohistochemical analyses. Although lens fiber differentiation was not observed in the mutants, strong PITX3 protein signals were observed in the lens vesicles of the mutant lens. Thus, we speculated that abnormal PITX3, which lacks the C-terminus (including the OAR domain as a result of the nonsense mutation, is expressed in mutant lenses. We showed that the expression of the downstream genes Foxe3, Prox1, and Mip was altered because of the Pitx3 mutation, with large reductions in the lens vesicles in the mutants. Similar profiles were observed by immunohistochemical analysis of these proteins. The expression profiles of crystallins were also altered in the mutants. Therefore, we speculated that the microphthalmos/aphakia in this mutant is caused by the expression of truncated PITX3, resulting in the abnormal expression of

  7. Endoplasmic Reticulum Thiol Oxidase Deficiency Leads to Ascorbic Acid Depletion and Noncanonical Scurvy in Mice

    OpenAIRE

    Zito, Ester; Hansen, Henning Gram; Yeo, Giles S.H.; Fujii, Junichi; Ron, David

    2012-01-01

    Summary Endoplasmic reticulum (ER) thiol oxidases initiate a disulfide relay to oxidatively fold secreted proteins. We found that combined loss-of-function mutations in genes encoding the ER thiol oxidases ERO1α, ERO1β, and PRDX4 compromised the extracellular matrix in mice and interfered with the intracellular maturation of procollagen. These severe abnormalities were associated with an unexpectedly modest delay in disulfide bond formation in secreted proteins but a profound, 5-fold lower pr...

  8. Defective microtubule-dependent podosome organization in osteoclasts leads to increased bone density in Pyk2−/− mice

    Science.gov (United States)

    Gil-Henn, Hava; Destaing, Olivier; Sims, Natalie A.; Aoki, Kazuhiro; Alles, Neil; Neff, Lynn; Sanjay, Archana; Bruzzaniti, Angela; De Camilli, Pietro; Baron, Roland; Schlessinger, Joseph

    2007-01-01

    The protein tyrosine kinase Pyk2 is highly expressed in osteoclasts, where it is primarily localized in podosomes. Deletion of Pyk2 in mice leads to mild osteopetrosis due to impairment in osteoclast function. Pyk2-null osteoclasts were unable to transform podosome clusters into a podosome belt at the cell periphery; instead of a sealing zone only small actin rings were formed, resulting in impaired bone resorption. Furthermore, in Pyk2-null osteoclasts, Rho activity was enhanced while microtubule acetylation and stability were significantly reduced. Rescue experiments by ectopic expression of wild-type or a variety of Pyk2 mutants in osteoclasts from Pyk2−/− mice have shown that the FAT domain of Pyk2 is essential for podosome belt and sealing zone formation as well as for bone resorption. These experiments underscore an important role of Pyk2 in microtubule-dependent podosome organization, bone resorption, and other osteoclast functions. PMID:17846174

  9. Defective microtubule-dependent podosome organization in osteoclasts leads to increased bone density in Pyk2(-/-) mice.

    Science.gov (United States)

    Gil-Henn, Hava; Destaing, Olivier; Sims, Natalie A; Aoki, Kazuhiro; Alles, Neil; Neff, Lynn; Sanjay, Archana; Bruzzaniti, Angela; De Camilli, Pietro; Baron, Roland; Schlessinger, Joseph

    2007-09-10

    The protein tyrosine kinase Pyk2 is highly expressed in osteoclasts, where it is primarily localized in podosomes. Deletion of Pyk2 in mice leads to mild osteopetrosis due to impairment in osteoclast function. Pyk2-null osteoclasts were unable to transform podosome clusters into a podosome belt at the cell periphery; instead of a sealing zone only small actin rings were formed, resulting in impaired bone resorption. Furthermore, in Pyk2-null osteoclasts, Rho activity was enhanced while microtubule acetylation and stability were significantly reduced. Rescue experiments by ectopic expression of wild-type or a variety of Pyk2 mutants in osteoclasts from Pyk2(-/-) mice have shown that the FAT domain of Pyk2 is essential for podosome belt and sealing zone formation as well as for bone resorption. These experiments underscore an important role of Pyk2 in microtubule-dependent podosome organization, bone resorption, and other osteoclast functions. PMID:17846174

  10. Overproduction of Upper-Layer Neurons in the Neocortex Leads to Autism-like Features in Mice

    Directory of Open Access Journals (Sweden)

    Wei-Qun Fang

    2014-12-01

    Full Text Available The functional integrity of the neocortex depends upon proper numbers of excitatory and inhibitory neurons; however, the consequences of dysregulated neuronal production during the development of the neocortex are unclear. As excess cortical neurons are linked to the neurodevelopmental disorder autism, we investigated whether the overproduction of neurons leads to neocortical malformation and malfunction in mice. We experimentally increased the number of pyramidal neurons in the upper neocortical layers by using the small molecule XAV939 to expand the intermediate progenitor population. The resultant overpopulation of neurons perturbs development of dendrites and spines of excitatory neurons and alters the laminar distribution of interneurons. Furthermore, these phenotypic changes are accompanied by dysregulated excitatory and inhibitory synaptic connection and balance. Importantly, these mice exhibit behavioral abnormalities resembling those of human autism. Thus, our findings collectively suggest a causal relationship between neuronal overproduction and autism-like features, providing developmental insights into the etiology of autism.

  11. Mitochondrial Pyruvate Carrier 2 Hypomorphism in Mice Leads to Defects in Glucose-Stimulated Insulin Secretion

    Directory of Open Access Journals (Sweden)

    Patrick A. Vigueira

    2014-06-01

    Full Text Available Carrier-facilitated pyruvate transport across the inner mitochondrial membrane plays an essential role in anabolic and catabolic intermediary metabolism. Mitochondrial pyruvate carrier 2 (Mpc2 is believed to be a component of the complex that facilitates mitochondrial pyruvate import. Complete MPC2 deficiency resulted in embryonic lethality in mice. However, a second mouse line expressing an N-terminal truncated MPC2 protein (Mpc2Δ16 was viable but exhibited a reduced capacity for mitochondrial pyruvate oxidation. Metabolic studies demonstrated exaggerated blood lactate concentrations after pyruvate, glucose, or insulin challenge in Mpc2Δ16 mice. Additionally, compared with wild-type controls, Mpc2Δ16 mice exhibited normal insulin sensitivity but elevated blood glucose after bolus pyruvate or glucose injection. This was attributable to reduced glucose-stimulated insulin secretion and was corrected by sulfonylurea KATP channel inhibitor administration. Collectively, these data are consistent with a role for MPC2 in mitochondrial pyruvate import and suggest that Mpc2 deficiency results in defective pancreatic β cell glucose sensing.

  12. Thymoquinone supplementation ameliorates lead-induced testis function impairment in adult rats.

    Science.gov (United States)

    Mabrouk, Aymen; Ben Cheikh, Hassen

    2016-06-01

    This study was realized to investigate the possible beneficial effect of thymoquinone (TQ), the major active component of volatile oil of Nigella sativa seeds, against lead (Pb)-induced inhibition of rat testicular functions. Adult rats were randomized into four groups: a control group receiving no treatment; a Pb group exposed to 2000 parts per million (ppm) of Pb acetate in drinking water; a Pb-TQ group co-treated with Pb (as in Pb group) plus TQ (5 mg/kg body weight (b.w.)/day, per orally (p.o.)); and a TQ group receiving TQ (5 mg/kg b.w./day, p.o.). All treatments were for 5 weeks. No significant differences were observed for the body weight gain or for relative testes weight among the four groups of animals. Testicular Pb content significantly increased in metal-intoxicated rats compared with that in control rats. TQ supplementation had no effect on this testicular Pb accumulation. Interestingly, when coadministrated with Pb, TQ significantly improved the low plasma testosterone level and the decreased epididymal sperm count caused by Pb. In conclusion, the results suggest, for the first time, that TQ protects against Pb-induced impairment of testicular steroidogenic and spermatogenic functions. This study will open new perspectives for the clinical use of TQ in Pb intoxication. PMID:25216800

  13. Long-Term Intermittent Hypoxia Elevates Cobalt Levels in the Brain and Injures White Matter in Adult Mice

    Science.gov (United States)

    Veasey, Sigrid C.; Lear, Jessica; Zhu, Yan; Grinspan, Judith B.; Hare, Dominic J.; Wang, SiHe; Bunch, Dustin; Doble, Philip A.; Robinson, Stephen R.

    2013-01-01

    Study Objectives: Exposure to the variable oxygenation patterns in obstructive sleep apnea (OSA) causes oxidative stress within the brain. We hypothesized that this stress is associated with increased levels of redox-active metals and white matter injury. Design: Participants were randomly allocated to a control or experimental group (single independent variable). Setting: University animal house. Participants: Adult male C57BL/6J mice. Interventions: To model OSA, mice were exposed to long-term intermittent hypoxia (LTIH) for 10 hours/day for 8 weeks or sham intermittent hypoxia (SIH). Measurements and Results: Laser ablation-inductively coupled plasma-mass spectrometry was used to quantitatively map the distribution of the trace elements cobalt, copper, iron, and zinc in forebrain sections. Control mice contained 62 ± 7 ng cobalt/g wet weight, whereas LTIH mice contained 5600 ± 600 ng cobalt/g wet weight (P < 0.0001). Other elements were unchanged between conditions. Cobalt was concentrated within white matter regions of the brain, including the corpus callosum. Compared to that of control mice, the corpus callosum of LTIH mice had significantly more endoplasmic reticulum stress, fewer myelin-associated proteins, disorganized myelin sheaths, and more degenerated axon profiles. Because cobalt is an essential component of vitamin B12, serum methylmalonic acid (MMA) levels were measured. LTIH mice had low MMA levels (P < 0.0001), indicative of increased B12 activity. Conclusions: Long-term intermittent hypoxia increases brain cobalt, predominantly in the white matter. The increased cobalt is associated with endoplasmic reticulum stress, myelin loss, and axonal injury. Low plasma methylmalonic acid levels are associated with white matter injury in long-term intermittent hypoxia and possibly in obstructive sleep apnea. Citation: Veasey SC; Lear J; Zhu Y; Grinspan JB; Hare DJ; Wang S; Bunch D; Doble PA; Robinson SR. Long-term intermittent hypoxia elevates cobalt

  14. Maneb disturbs expression of superoxide dismutase and glutathione peroxidase, increases reactive oxygen species production, and induces genotoxicity in liver of adult mice.

    Science.gov (United States)

    Ben Amara, Ibtissem; Ben Saad, Hajer; Hamdaoui, Latifa; Karray, Aida; Boudawara, Tahia; Ben Ali, Yassine; Zeghal, Najiba

    2015-08-01

    Maneb (MB), a fungicide largely used in agriculture throughout the world including Tunisia, protects many vegetables, fruits and field crops against a wide spectrum of fungal diseases. However there is a lack of informations regarding the risks arising from MB exposure on non target organisms, especially mammals. The aim of this study was to investigate the morphological, biochemical and molecular aspects of liver injury after exposure of mice to MB. Four doses of MB corresponding to 1/8 (group D1), 1/6 (group D2), 1/4 (group D3), and 1/2 (group D4) of lethal dose (DL50 = 1500 mg/kg body weight) were administered to adult mice. Oxidative stress parameters were also objectified by molecular and histological endpoints in the liver. Maneb caused hepatotoxicity as characterized by the significant increase in the levels of malondialdehyde and protein oxidation marker, advanced oxidation protein products (AOPP). The activities of catalase, glutathione peroxidase, superoxide dismutase and the levels of glutathione decreased significantly in all treated mice, while vitamin C levels decreased only in group D4. We also noted a significant decrease in gene expression of superoxide dismutase and glutathione peroxidase enzymes. Maneb caused nucleic acids degradation testifying its genotoxicity. Yet, biochemical markers in plasma showed a decrease in total protein and an increase in aspartate, alanine amino transferases and bilirubin levels in all treatment groups. Moreover, plasma levels of cholesterol, triglycerides and low density lipoprotein-cholesterol significantly increased, while those of high density lipoprotein-cholesterol decreased. These biochemical alterations were correlated with significantly histological changes. Our data showed, for the first time, that intraperitoneal injection of very high non environmentally relevant MB concentrations to adult mice resulted in oxidative stress leading to hepatotoxicity and the impairment of defense systems, confirming the

  15. Adolescent intake of caffeinated energy drinks does not affect adult alcohol consumption in C57BL/6 and BALB/c mice.

    Science.gov (United States)

    Robins, Meridith T; DeFriel, Julia N; van Rijn, Richard M

    2016-08-01

    The rise in marketing and mass consumption of energy drink products by adolescents poses a largely unknown risk on adolescent development and drug reward. Yet, with increasing reports of acute health issues present in young adults who ingest large quantities of energy drinks alone or in combination with alcohol, the need to elucidate these potential risks is pressing. Energy drinks contain high levels of caffeine and sucrose; therefore, exposure to energy drinks may lead to changes in drug-related behaviors since caffeine and sucrose consumption activates similar brain pathways engaged by substances of abuse. With a recent study observing that adolescent caffeine consumption increased cocaine sensitivity, we sought to investigate how prolonged energy drink exposure in adolescence alters alcohol use and preference in adulthood. To do so, we utilized three different energy drink exposure paradigms and two strains of male mice (C57BL/6 and BALB/c) to monitor the effect of caffeine exposure via energy drinks in adolescence on adult alcohol intake. These paradigms included two models of volitional consumption of energy drinks or energy drink-like substances and one model of forced consumption of sucrose solutions with different caffeine concentrations. Following adolescent exposure to these solutions, alcohol intake was monitored in a limited-access, two-bottle choice between water and increasing concentrations of alcohol during adulthood. In none of the three models or two strains of mice did we observe that adolescent 'energy drink' consumption or exposure was correlated with changes in adult alcohol intake or preference. While our current preclinical results suggest that exposure to large amounts of caffeine does not alter future alcohol intake, differences in caffeine metabolism between mice and humans need to be considered before translating these results to humans. PMID:27565749

  16. Lead and radiation induced hepatic lesions in Swiss albino mice and their inhibition by vitamin E

    International Nuclear Information System (INIS)

    The present study has been carried out to access the protective role of vitamin E against hepato-toxicity induced by lead and radiation. The present study demonstrates that the application of vitamin E prior to lead and gamma radiation exposure is quite potential to provide protection against hepatic lesions induced by such teratogens

  17. Ubiquitous Gasp1 overexpression in mice leads mainly to a hypermuscular phenotype

    Directory of Open Access Journals (Sweden)

    Monestier Olivier

    2012-10-01

    Full Text Available Abstract Background Myostatin, a member of the TGFβ superfamily, is well known as a potent and specific negative regulator of muscle growth. Targeting the myostatin signalling pathway may offer promising therapeutic strategies for the treatment of muscle-wasting disorders. In the last decade, various myostatin-binding proteins have been identified to be able to inhibit myostatin activity. One of these is GASP1 (Growth and Differentiation Factor-Associated Serum Protein-1, a protein containing a follistatin domain as well as multiple domains associated with protease inhibitors. Despite in vitro data, remarkably little is known about in vivo functions of Gasp1. To further address the role of GASP1 during mouse development and in adulthood, we generated a gain-of-function transgenic mouse model that overexpresses Gasp1 under transcriptional control of the human cytomegalovirus immediate-early promoter/enhancer. Results Overexpression of Gasp1 led to an increase in muscle mass observed not before day 15 of postnatal life. The surGasp1 transgenic mice did not display any other gross abnormality. Histological and morphometric analysis of surGasp1 rectus femoris muscles revealed an increase in myofiber size without a corresponding increase in myofiber number. Fiber-type distribution was unaltered. Interestingly, we do not detect a change in total fat mass and lean mass. These results differ from those for myostatin knockout mice, transgenic mice overexpressing the myostatin propeptide or follistatin which exhibit both muscle hypertrophy and hyperplasia, and show minimal fat deposition. Conclusions Altogether, our data give new insight into the in vivo functions of Gasp1. As an extracellular regulatory factor in the myostatin signalling pathway, additional studies on GASP1 and its homolog GASP2 are required to elucidate the crosstalk between the different intrinsic inhibitors of the myostatin.

  18. Loss of P2X7 nucleotide receptor function leads to abnormal fat distribution in mice

    OpenAIRE

    Beaucage, Kim L.; Xiao, Andrew; Pollmann, Steven I.; Grol, Matthew W.; Beach, Ryan J.; Holdsworth, David W.; Sims, Stephen M.; Darling, Mark R.; Dixon, S. Jeffrey

    2013-01-01

    The P2X7 receptor is an ATP-gated cation channel expressed by a number of cell types. We have shown previously that disruption of P2X7 receptor function results in downregulation of osteogenic markers and upregulation of adipogenic markers in calvarial cell cultures. In the present study, we assessed whether loss of P2X7 receptor function results in changes to adipocyte distribution and lipid accumulation in vivo. Male P2X7 loss-of-function (KO) mice exhibited significantly greater body weigh...

  19. Milk Lacking α-Casein Leads to Permanent Reduction in Body Size in Mice

    OpenAIRE

    Kolb, Andreas F.; Huber, Reinhard C.; Simon G. Lillico; Carlisle, Ailsa; Robinson, Claire J.; Neil, Claire; Petrie, Linda; Sorensen, Dorte B.; Olsson, I. Anna S.; Whitelaw, C. Bruce A

    2011-01-01

    The major physiological function of milk is the transport of amino acids, carbohydrates, lipids and minerals to mammalian offspring. Caseins, the major milk proteins, are secreted in the form of a micelle consisting of protein and calcium-phosphate. We have analysed the role of the milk protein α-casein by inactivating the corresponding gene in mice. Absence of α-casein protein significantly curtails secretion of other milk proteins and calcium-phosphate, suggesting a role for α-casein in the...

  20. Immunosuppression in early postnatal days induces persistent and allergen-specific immune tolerance to asthma in adult mice.

    Science.gov (United States)

    Chen, Yan; Zhang, Jin; Lu, Yong; Wang, Libo

    2015-01-01

    Bronchial asthma is a chronic airway inflammatory condition with high morbidity, and effective treatments for asthma are limited. Allergen-specific immunotherapy can only induce peripheral immune tolerance and is not sustainable. Exploring new therapeutic strategies is of great clinical importance. Recombinant adenovirus (rAdV) was used as a vector to make cells expressing cytotoxic T lymphocyte-associated antigen-4-immunoglobulin (CTLA4Ig) a soluble CTLA4 immunoglobulin fusion protein. Dendritic cells (DCs) were modified using the rAdVs together with allergens. Then these modified DCs were transplanted to mice before allergen sensitization. The persistence and specificity of immune tolerance were evaluated in mice challenged with asthma allergens at 3 and 7 months. DCs modified by CTLA4Ig showed increased IL-10 secretion, decreased IL-12 secretion, and T cell stimulation in vitro. Mice treated with these DCs in the early neonatal period developed tolerance against the allergens that were used to induce asthma in the adult stage. Asthma symptoms, lung damage, airway reactivity, and inflammatory response all improved. Humoral immunity indices showed that this therapeutic strategy strongly suppressed mice immune responses and was maintained for as long as 7 months. Furthermore, allergen cross-sensitization and challenge experiments demonstrated that this immune tolerance was allergen-specific. Treatment with CTLA4Ig modified DCs in the early neonatal period, inducing persistent and allergen-specific immune tolerance to asthma in adult mice. Our results suggest that it may be possible to develop a vaccine for asthma. PMID:25860995

  1. Protective potential of Emblica Officinalis Linn. against radiation and lead induced hepatic lesion in Swiss albino mice

    International Nuclear Information System (INIS)

    Exposure of living systems to ionizing radiation causes a variety of damages to DNA and membranes due to generation of free radicals and reactive oxygen species. So there is a need of hour is to search for an ideal radioprotector which could minimize the deleterious and damaging effects caused by ionizing radiation. Radioprotectors are agents which reduce the radiation effects on cell when applied prior to exposure of radiation. The aim of this study was to access the efficacy of Emblica officinalis in reducing radiation and lead induced changes in mice liver. For the present experiment, healthy male Swiss albino mice (6-8 weeks) were selected and maintained under standard conditions of temperature and light. Fruit extract of Emblica was fed orally at the dose of 0.01 ml/animal/day.The animal were divided into seven groups according to the treatment i.e. lead acetate solution as drinking water (group-II) or exposed to 3.5 or 7.0 Gy gamma radiation (group-III) or combined treatment of radiation and lead acetate (group-IV). The animals of experimental groups were administered Emblica extract seven days prior to radiation or lead acetate treatment (group V, VI and VII) respectively. The animals from all the groups were sacrificed by cervical dislocation at each post-treatment intervals of 1, 2, 4, 7, 14 and 28 days. After sacrificing the animals pieces of liver were taken out and some of them were kept at -20℃ for different biochemical parameters. The histopathological changes included cytoplasmic degranulation, vacuolation, hyperaemia, pycnotic and crenated nuclei. The changes observed in the control groups were compared with the respective experimental groups. An increase in the value of total proteins, glycogen, acid phosphatase, alkaline phosphatase activity and RNA was observed up to day - 14 in the non drug treated group and day 7 in the Emblica treated groups, thereafter value declined up to day - 28 without reaching to normal. Whereas the value of

  2. Multiple events lead to dendritic spine loss in triple transgenic Alzheimer's disease mice.

    Directory of Open Access Journals (Sweden)

    Tobias Bittner

    Full Text Available The pathology of Alzheimer's disease (AD is characterized by the accumulation of amyloid-β (Aβ peptide, hyperphosphorylated tau protein, neuronal death, and synaptic loss. By means of long-term two-photon in vivo imaging and confocal imaging, we characterized the spatio-temporal pattern of dendritic spine loss for the first time in 3xTg-AD mice. These mice exhibit an early loss of layer III neurons at 4 months of age, at a time when only soluble Aβ is abundant. Later on, dendritic spines are lost around amyloid plaques once they appear at 13 months of age. At the same age, we observed spine loss also in areas apart from amyloid plaques. This plaque independent spine loss manifests exclusively at dystrophic dendrites that accumulate both soluble Aβ and hyperphosphorylated tau intracellularly. Collectively, our data shows that three spatio-temporally independent events contribute to a net loss of dendritic spines. These events coincided either with the occurrence of intracellular soluble or extracellular fibrillar Aβ alone, or the combination of intracellular soluble Aβ and hyperphosphorylated tau.

  3. Sex and laterality differences in medial amygdala neurons and astrocytes of adult mice.

    Science.gov (United States)

    Pfau, Daniel R; Hobbs, Nicholas J; Breedlove, S Marc; Jordan, Cynthia L

    2016-08-15

    The posterodorsal aspect of the medial amygdala (MePD) in rats is sexually dimorphic, being larger and containing more and larger neurons in males than in females. It is also highly lateralized, with the right MePD larger than the left in both sexes, but with the smaller left MePD actually containing more and larger neurons than the larger right. Astrocytes are also strikingly sexually differentiated, with male-biased numbers and lateralized favoring the right in the rat MePD. However, comparable information is scant for mice where genetic tools offer greater experimental power. Hence, we examined the MePD from adult male and female C57Bl/6(J) mice. We now report that the MePD is larger in males than in females, with the MePD in males containing more astrocytes and neurons than in females. However, we did not find sex differences in astrocyte complexity or overall glial number nor effects of laterality in either measure. While the mouse MePD is generally less lateralized than in rats, we did find that the sex difference in astrocyte number is only on the right because of a significant lateralization in females, with significantly fewer astrocytes on the right than the left but only in females. A sex difference in neuronal soma size favoring males was also evident, but only on the left. Sex differences in the number of neurons and astrocytes common to both rodent species may represent core morphological features that critically underlie the expression of sex-specific behaviors that depend on the MePD. J. Comp. Neurol. 524:2492-2502, 2016. © 2016 Wiley Periodicals, Inc. PMID:26780286

  4. Low-level environmental lead exposure in childhood and adult intellectual function: a follow-up study

    Directory of Open Access Journals (Sweden)

    Gregas Matthew

    2011-03-01

    Full Text Available Abstract Background Early life lead exposure might be a risk factor for neurocognitive impairment in adulthood. Objectives We sought to assess the relationship between early life environmental lead exposure and intellectual function in adulthood. We also attempted to identify which time period blood-lead concentrations are most predictive of adult outcome. Methods We recruited adults in the Boston area who had participated as newborns and young children in a prospective cohort study that examined the relationship between lead exposure and childhood intellectual function. IQ was measured using the Wechsler Abbreviated Scale of Intelligence (WASI. The association between lead concentrations and IQ scores was examined using linear regression. Results Forty-three adults participated in neuropsychological testing. Childhood blood-lead concentration (mean of the blood-lead concentrations at ages 4 and 10 years had the strongest relationship with Full-Scale IQ (β = -1.89 ± 0.70, p = 0.01. Full-scale IQ was also significantly related to blood-lead concentration at age 6 months (β = -1.66 ± 0.75, p = 0.03, 4 years (β = -0.90 ± 0.41, p = 0.03 and 10 years (β = -1.95 ± 0.80, p = 0.02. Adjusting for maternal IQ altered the significance of the regression coefficient. Conclusions Our study suggests that lead exposure in childhood predicts intellectual functioning in young adulthood. Our results also suggest that school-age lead exposure may represent a period of increased susceptibility. Given the small sample size, however, the potentially confounding effects of maternal IQ cannot be excluded and should be evaluated in a larger study.

  5. Pharmacological reduction of adult hippocampal neurogenesis modifies functional brain circuits in mice exposed to a cocaine conditioned place preference paradigm.

    Science.gov (United States)

    Castilla-Ortega, Estela; Blanco, Eduardo; Serrano, Antonia; Ladrón de Guevara-Miranda, David; Pedraz, María; Estivill-Torrús, Guillermo; Pavón, Francisco Javier; Rodríguez de Fonseca, Fernando; Santín, Luis J

    2016-05-01

    We investigated the role of adult hippocampal neurogenesis in cocaine-induced conditioned place preference (CPP) behaviour and the functional brain circuitry involved. Adult hippocampal neurogenesis was pharmacologically reduced with temozolomide (TMZ), and mice were tested for cocaine-induced CPP to study c-Fos expression in the hippocampus and in extrahippocampal addiction-related areas. Correlational and multivariate analysis revealed that, under normal conditions, the hippocampus showed widespread functional connectivity with other brain areas and strongly contributed to the functional brain module associated with CPP expression. However, the neurogenesis-reduced mice showed normal CPP acquisition but engaged an alternate brain circuit where the functional connectivity of the dentate gyrus was notably reduced and other areas (the medial prefrontal cortex, accumbens and paraventricular hypothalamic nucleus) were recruited instead of the hippocampus. A second experiment unveiled that mice acquiring the cocaine-induced CPP under neurogenesis-reduced conditions were delayed in extinguishing their drug-seeking behaviour. But if the inhibited neurons were generated after CPP acquisition, extinction was not affected but an enhanced long-term CPP retention was found, suggesting that some roles of the adult-born neurons may differ depending on whether they are generated before or after drug-contextual associations are established. Importantly, cocaine-induced reinstatement of CPP behaviour was increased in the TMZ mice, regardless of the time of neurogenesis inhibition. The results show that adult hippocampal neurogenesis sculpts the addiction-related functional brain circuits, and reduction of the adult-born hippocampal neurons increases cocaine seeking in the CPP model. PMID:25870909

  6. Chronic minocycline treatment improves social recognition memory in adult male Fmr1 knockout mice.

    Science.gov (United States)

    Yau, Suk Yu; Chiu, Christine; Vetrici, Mariana; Christie, Brian R

    2016-10-01

    Fragile X syndrome (FXS) is caused by a mutation in the Fmr1 gene that leads to silencing of the gene and a loss of its gene product, Fragile X mental retardation protein (FMRP). Some of the key behavioral phenotypes for FXS include abnormal social anxiety and sociability. Here we show that Fmr1 knock-out (KO) mice exhibit impaired social recognition when presented with a novel mouse, and they display normal social interactions in other sociability tests. Administering minocycline to Fmr1 KO mice throughout critical stages of neural development improved social recognition memory in the novel mouse recognition task. To determine if synaptic changes in the prefrontal cortex (PFC) could have played a role in this improvement, we examined PSD-95, a member of the membrane-associated guanylate kinase family, and signaling molecules (ERK1/2, and Akt) linked to synaptic plasticity in the PFC. Our analyses indicated that while minocycline treatment can enhance behavioral performance, it does not enhance expression of PSD-95, ERK1/2 or Akt in the PFC. PMID:27291517

  7. Protective effects of vitamin E and Cornus mas fruit extract on methotrexate-induced cytotoxicity in sperms of adult mice

    OpenAIRE

    Zarei, Leila; Sadrkhanlou, Rajabali; Shahrooz, Rasoul; Malekinejad, Hassan; Eilkhanizadeh, Behroz; Ahmadi, Abbas

    2014-01-01

    This study was aimed to assess the protective effects of Cornus mas fruit extract (CMFE) and vitamin E (Vit E) on sperm quality parameters in the methotrexate (MTX)-treated mice. Forty-eight young adult male mice (8-12 weeks) were randomly divided into six groups including control and test groups. The control group received normal saline orally , and the test groups were treated MTX (20 mg kg-1, ip, once weekly), MTX + CMFE (250 mg kg-1), MTX + CMFE (500 mg kg-1), MTX + CMFE (1000 mg kg-1), a...

  8. Additive effects of physical exercise and environmental enrichment on adult hippocampal neurogenesis in mice

    Directory of Open Access Journals (Sweden)

    Klaus Fabel

    2009-11-01

    Full Text Available Voluntary physical exercise (wheel running, RUN and environmental enrichment (ENR both stimulate adult hippocampal neurogenesis but do so by different mechanisms. RUN induces precursor cell proliferation, whereas ENR exerts a survival-promoting effect on newborn cells. In addition, continued RUN prevented the physiologically occurring age-related decline in precursor cell in the dentate gyrus but did not lead to a corresponding increase in net neurogenesis. We hypothesized that in the absence of appropriate cognitive stimuli the potential for neurogenesis could not be realized but that an increased potential by proliferating precursor cells due to RUN could actually lead to more adult neurogenesis if an appropriate survival-promoting stimulus follows the exercise. We thus asked whether a sequential combination of RUN and ENR (RUNENR would show additive effects that are distinct from the application of either paradigm alone. We found that the effects of 10 days of RUN followed by 35 days of ENR were additive in that the combined stimulation yielded an approximately 30% greater increase in new neurons than either stimulus alone, which also increased neurogenesis. Surprisingly, this result indicates that although overall the amount of proliferating cells in the dentate gyrus is poorly predictive of net adult neurogenesis, an increased neurogenic potential nevertheless provides the basis for a greater efficiency of the same survival-promoting stimulus. We thus propose that physical activity can “prime” the neurogenic region of the dentate gyrus for increased neurogenesis in the case the animal is exposed to an additional cognitive stimulus, here represented by the enrichment paradigm.

  9. Behavioral disturbances in adult mice following neonatal virus infection or kynurenine treatment--role of brain kynurenic acid.

    Science.gov (United States)

    Liu, Xi-Cong; Holtze, Maria; Powell, Susan B; Terrando, Niccolò; Larsson, Markus K; Persson, Anna; Olsson, Sara K; Orhan, Funda; Kegel, Magdalena; Asp, Linnea; Goiny, Michel; Schwieler, Lilly; Engberg, Göran; Karlsson, Håkan; Erhardt, Sophie

    2014-02-01

    Exposure to infections in early life is considered a risk-factor for developing schizophrenia. Recently we reported that a neonatal CNS infection with influenza A virus in mice resulted in a transient induction of the brain kynurenine pathway, and subsequent behavioral disturbances in immune-deficient adult mice. The aim of the present study was to investigate a potential role in this regard of kynurenic acid (KYNA), an endogenous antagonist at the glycine site of the N-methyl-D-aspartic acid (NMDA) receptor and at the cholinergic α7 nicotinic receptor. C57BL/6 mice were injected i.p. with neurotropic influenza A/WSN/33 virus (2400 plaque-forming units) at postnatal day (P) 3 or with L-kynurenine (2×200 mg/kg/day) at P7-16. In mice neonatally treated with L-kynurenine prepulse inhibition of the acoustic startle, anxiety, and learning and memory were also assessed. Neonatally infected mice showed enhanced sensitivity to D-amphetamine-induced (5 mg/kg i.p.) increase in locomotor activity as adults. Neonatally L-kynurenine treated mice showed enhanced sensitivity to D-amphetamine-induced (5 mg/kg i.p.) increase in locomotor activity as well as mild impairments in prepulse inhibition and memory. Also, D-amphetamine tended to potentiate dopamine release in the striatum in kynurenine-treated mice. These long-lasting behavioral and neurochemical alterations suggest that the kynurenine pathway can link early-life infection with the development of neuropsychiatric disturbances in adulthood. PMID:24140727

  10. Combination Therapy for the Cardiovascular Effects of Perinatal Lead Exposure in Young and Adult Rats

    Energy Technology Data Exchange (ETDEWEB)

    Gaspar, Andréia Fresneda [Departamento de Farmacologia, Instituto de Biociências - Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil); Faculdade da Alta Paulista (FAP), Tupã, SP (Brazil); Cordellini, Sandra, E-mail: cordelli@ibb.unesp.br [Departamento de Farmacologia, Instituto de Biociências - Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil)

    2014-09-15

    Combination therapy can play a significant role in the amelioration of several toxic effects of lead (Pb) and recovery from associated cardiovascular changes. To investigate the effects of combination therapy on the cardiovascular effects of perinatal lead exposure in young and adult rats Female Wistar rats received drinking water with or without 500 ppm of Pb during pregnancy and lactation. Twenty-two- and 70-day-old rat offspring who were or were not exposed to Pb in the perinatal period received meso-dimercaptosuccinic acid (DMSA), L-arginine, or enalapril and a combination of these compounds for 30 additional days. Noradrenaline response curves were plotted for intact and denuded aortas from 23-, 52-, 70-, and 100-day-old rats stratified by perinatal Pb exposure (exposed/unexposed) and treatment received (treated/untreated). Systolic blood pressure was evaluated and shown to be higher in the 23-, 52-, 70-, and 100-day age groups with Pb exposure than in the corresponding control age groups: 117.8 ± 3.9*, 135.2 ± 1.3*, 139.6 ± 1.6*, and 131.7 ± 2.8*, respectively and 107.1 ± 1.8, 118.8 ± 2.1, 126.1 ± 1.1, and 120.5 ± 2.2, respectively (p < 0.05). Increased reactivity to noradrenaline was observed in intact, but not denuded, aortas from 52-, 70-, and 100-day-old exposed rats, and the maximum responses (g of tension) in the respective Pb-exposed and control age groups were as follows: 3.43 ± 0.16*, 4.32 ± 0.18*, and 4.21 ± 0.23*, respectively and 2.38 ± 0.33, 3.37 ± 0.13, and 3.22 ± 0.21, respectively (p < 0.05). All treatments reversed the changes in vascular reactivity to noradrenaline in rats perinatally exposed to Pb. The combination therapy resulted in an earlier restoration of blood pressure in Pb-exposed rats compared with the monotherapies, except for enalapril therapy in young rats. These findings represent a new approach to the development of therapeutic protocols for the treatment of Pb-induced hypertension.

  11. Epithelial cell stretching and luminal acidification lead to a retarded development of stria vascularis and deafness in mice lacking pendrin.

    Directory of Open Access Journals (Sweden)

    Hyoung-Mi Kim

    Full Text Available Loss-of-function mutations of SLC26A4/pendrin are among the most prevalent causes of deafness. Deafness and vestibular dysfunction in the corresponding mouse model, Slc26a4(-/-, are associated with an enlargement and acidification of the membranous labyrinth. Here we relate the onset of expression of the HCO(3 (- transporter pendrin to the luminal pH and to enlargement-associated epithelial cell stretching. We determined expression with immunocytochemistry, cell stretching by digital morphometry and pH with double-barreled ion-selective electrodes. Pendrin was first expressed in the endolymphatic sac at embryonic day (E 11.5, in the cochlear hook-region at E13.5, in the utricle and saccule at E14.5, in ampullae at E16.5, and in the upper turn of the cochlea at E17.5. Epithelial cell stretching in Slc26a4(-/- mice began at E14.5. pH changes occurred first in the cochlea at E15.5 and in the endolymphatic sac at E17.5. At postnatal day 2, stria vascularis, outer sulcus and Reissner's membrane epithelial cells, and utricular and saccular transitional cells were stretched, whereas sensory cells in the cochlea, utricle and saccule did not differ between Slc26a4(+/- and Slc26a4(-/- mice. Structural development of stria vascularis, including vascularization, was retarded in Slc26a4(-/- mice. In conclusion, the data demonstrate that the enlargement and stretching of non-sensory epithelial cells precedes luminal acidification in the cochlea and the endolymphatic sac. Stretching and luminal acidification may alter cell-to-cell communication and lead to the observed retarded development of stria vascularis, which may be an important step on the path to deafness in Slc26a4(-/- mice, and possibly in humans, lacking functional pendrin expression.

  12. Antibiotic-induced dysbiosis alters host-bacterial interactions and leads to colonic sensory and motor changes in mice.

    Science.gov (United States)

    Aguilera, M; Cerdà-Cuéllar, M; Martínez, V

    2015-01-01

    Alterations in the composition of the commensal microbiota (dysbiosis) seem to be a pathogenic component of functional gastrointestinal disorders, mainly irritable bowel syndrome (IBS), and might participate in the secretomotor and sensory alterations observed in these patients.We determined if a state antibiotics-induced intestinal dysbiosis is able to modify colonic pain-related and motor responses and characterized the neuro-immune mechanisms implicated in mice. A 2-week antibiotics treatment induced a colonic dysbiosis (increments in Bacteroides spp, Clostridium coccoides and Lactobacillus spp and reduction in Bifidobacterium spp). Bacterial adherence was not affected. Dysbiosis was associated with increased levels of secretory-IgA, up-regulation of the antimicrobial lectin RegIIIγ, and toll-like receptors (TLR) 4 and 7 and down-regulation of the antimicrobial-peptide Resistin-Like Molecule-β and TLR5. Dysbiotic mice showed less goblet cells, without changes in the thickness of the mucus layer. Neither macroscopical nor microscopical signs of inflammation were observed. In dysbiotic mice, expression of the cannabinoid receptor 2 was up-regulated, while the cannabinoid 1 and the mu-opioid receptors were down-regulated. In antibiotic-treated mice, visceral pain-related responses elicited by intraperitoneal acetic acid or intracolonic capsaicin were significantly attenuated. Colonic contractility was enhanced during dysbiosis. Intestinal dysbiosis induce changes in the innate intestinal immune system and modulate the expression of pain-related sensory systems, an effect associated with a reduction in visceral pain-related responses. Commensal microbiota modulates gut neuro-immune sensory systems, leading to functional changes, at least as it relates to viscerosensitivity. Similar mechanisms might explain the beneficial effects of antibiotics or certain probiotics in the treatment of IBS. PMID:25531553

  13. Transgenic expression of an expanded (GCG)13 repeat PABPN1 leads to weakness and coordination defects in mice.

    Science.gov (United States)

    Dion, Patrick; Shanmugam, Vijayalakshmi; Gaspar, Claudia; Messaed, Christiane; Meijer, Inge; Toulouse, André; Laganiere, Janet; Roussel, Julie; Rochefort, Daniel; Laganiere, Simon; Allen, Carol; Karpati, George; Bouchard, Jean-Pierre; Brais, Bernard; Rouleau, Guy A

    2005-04-01

    Oculopharyngeal muscular dystrophy (OPMD) is a late-onset disorder caused by a (GCG)n trinucleotide repeat expansion in the poly(A) binding protein nuclear-1 (PABPN1) gene, which in turn leads to an expanded polyalanine tract in the protein. We generated transgenic mice expressing either the wild type or the expanded form of human PABPN1, and transgenic animals with the expanded form showed clear signs of abnormal limb clasping, muscle weakness, coordination deficits, and peripheral nerves alterations. Analysis of mitotic and postmitotic tissues in those transgenic animals revealed ubiquitinated PABPN1-positive intranuclear inclusions (INIs) in neuronal cells. This latter observation led us to test and confirm the presence of similar INIs in postmortem brain sections from an OPMD patient. Our results indicate that expanded PABPN1, presumably via the toxic effects of its polyalanine tract, can lead to inclusion formation and neurodegeneration in both the mouse and the human. PMID:15755680

  14. The loss of local HGF, an endogenous gastrotrophic factor, leads to mucosal injuries in the stomach of mice

    International Nuclear Information System (INIS)

    The stomach is constantly exposed to mechanical and chemical stresses. Under persistent damages, epithelial cell proliferation is required to maintain mucosal integrity. Nevertheless, which ligand system(s) is physiologically involved in gastric defense remains unclear. Herein, we provide evidence that HGF is a key 'natural ligand' to reverse gastric injury. The injection of cisplatin in mice led to the loss of HGF in the gastric interstitium, associated with the decrease in proliferating epithelium and the progression of mucotitis. When c-Met tyrosine phosphorylation was abolished by anti-HGF IgG, mucosal cell proliferation became faint, leading to delayed recovery from mucotitis, and vice versa in cases of HGF supplementation. Our findings indicate that: (1) HGF/c-Met signal on mucosa is needed to restore gastric injuries; and (2) the loss of local HGF leads to manifestation of gastric lesions. This study provides a rationale that explains why HGF supplement is useful for reversing gastric diseases

  15. Effects of blood lead levels on airflow limitations in Korean adults: Findings from the 5th KNHNES 2011

    International Nuclear Information System (INIS)

    This study aimed to examine whether blood levels of heavy metals, such as lead, mercury and cadmium, are related with pulmonary function in Korean adults. This investigation included 870 Korean adults (≥40 years) who received pulmonary function testing in the Korea National Health and Nutrition Examination Survey (KNHANES) V-2, 2011. Data of blood levels of heavy metals, pulmonary function tests and anthropometric measurements were acquired. Blood lead levels showed inverse correlations with the FEV1/FVC ratio before (r=−0.276, p<0.001) and after adjustment of multiple compounding factors (r=−0.115, p=0.001). A logistic multiple regression analysis revealed that blood lead levels were a significant influencing factor for the FEV1/FVC ratio (β=−0.017, p=0.001, adjusted R2=0.267). The odds ratios (ORs) for the FEV1/FVC ratio were significantly lower in the highest tertile group of the blood lead levels than in the lowest tertile group in Model 1 (OR=0.007, 95% CI=0.000−0.329) and Model 2 (OR=0.006, 95% CI=0.000−0.286). These findings imply that environmental exposure to lead might be an important factor that may cause airflow limitations in Korean adults. - Highlights: • Blood lead levels showed inverse correlations with the FEV1/FVC ratio. • Blood lead level was a significant influencing factor for the FEV1/FVC ratio. • ORs for FEV1/FVC were lower in the highest blood lead group than in the lowest group. • Environmental exposure to lead might be an important factor for airflow limitations

  16. Effects of blood lead levels on airflow limitations in Korean adults: Findings from the 5th KNHNES 2011

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hye Kyung [Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul 120-749 (Korea, Republic of); Chang, Yoon Soo, E-mail: yschang@yuhs.ac [Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120-749 (Korea, Republic of); Ahn, Chul Woo [Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul 120-749 (Korea, Republic of); Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120-749 (Korea, Republic of)

    2015-01-15

    This study aimed to examine whether blood levels of heavy metals, such as lead, mercury and cadmium, are related with pulmonary function in Korean adults. This investigation included 870 Korean adults (≥40 years) who received pulmonary function testing in the Korea National Health and Nutrition Examination Survey (KNHANES) V-2, 2011. Data of blood levels of heavy metals, pulmonary function tests and anthropometric measurements were acquired. Blood lead levels showed inverse correlations with the FEV{sub 1}/FVC ratio before (r=−0.276, p<0.001) and after adjustment of multiple compounding factors (r=−0.115, p=0.001). A logistic multiple regression analysis revealed that blood lead levels were a significant influencing factor for the FEV{sub 1}/FVC ratio (β=−0.017, p=0.001, adjusted R{sup 2}=0.267). The odds ratios (ORs) for the FEV{sub 1}/FVC ratio were significantly lower in the highest tertile group of the blood lead levels than in the lowest tertile group in Model 1 (OR=0.007, 95% CI=0.000−0.329) and Model 2 (OR=0.006, 95% CI=0.000−0.286). These findings imply that environmental exposure to lead might be an important factor that may cause airflow limitations in Korean adults. - Highlights: • Blood lead levels showed inverse correlations with the FEV{sub 1}/FVC ratio. • Blood lead level was a significant influencing factor for the FEV{sub 1}/FVC ratio. • ORs for FEV{sub 1}/FVC were lower in the highest blood lead group than in the lowest group. • Environmental exposure to lead might be an important factor for airflow limitations.

  17. Uterine dysfunction in biglycan and decorin deficient mice leads to dystocia during parturition.

    Directory of Open Access Journals (Sweden)

    Zhiping Wu

    Full Text Available Cesarean birth rates are rising. Uterine dysfunction, the exact mechanism of which is unknown, is a common indication for Cesarean delivery. Biglycan and decorin are two small leucine-rich proteoglycans expressed in the extracellular matrix of reproductive tissues and muscle. Mice deficient in biglycan display a mild muscular dystrophy, and, along with mice deficient in decorin, are models of Ehlers-Danlos Syndrome, a connective tissue anomaly associated with uterine rupture. As a variant of Ehlers-Danlos Syndrome is caused by a genetic mutation resulting in abnormal biglycan and decorin secretion, we hypothesized that biglycan and decorin play a role in uterine function. Thus, we assessed wild-type, biglycan, decorin and double knockout pregnancies for timing of birth and uterine function. Uteri were harvested at embryonic days 12, 15 and 18. Nonpregnant uterine samples of the same genotypes were assessed for tissue failure rate and spontaneous and oxytocin-induced contractility. We discovered that biglycan/decorin mixed double-knockout dams displayed dystocia, were at increased risk of delayed labor onset, and showed increased tissue failure in a predominantly decorin-dependent manner. In vitro spontaneous uterine contractile amplitude and oxytocin-induced contractile force were decreased in all biglycan and decorin knockout genotypes compared to wild-type. Notably, we found no significant compensation between biglycan and decorin using quantitative real time PCR or immunohistochemistry. We conclude that the biglycan/decorin mixed double knockout mouse is a model of dystocia and delayed labor onset. Moreover, decorin is necessary for uterine function in a dose-dependent manner, while biglycan exhibits partial compensatory mechanisms in vivo. Thus, this model is poised for use as a model for testing novel targets for preventive or therapeutic manipulation of uterine dysfunction.

  18. The protein kinase KIS impacts gene expression during development and fear conditioning in adult mice.

    Directory of Open Access Journals (Sweden)

    Valérie Manceau

    Full Text Available The brain-enriched protein kinase KIS (product of the gene UHMK1 has been shown to phosphorylate the human splicing factor SF1 in vitro. This phosphorylation in turn favors the formation of a U2AF(65-SF1-RNA complex which occurs at the 3' end of introns at an early stage of spliceosome assembly. Here, we analyzed the effects of KIS knockout on mouse SF1 phosphorylation, physiology, adult behavior, and gene expression in the neonate brain. We found SF1 isoforms are differently expressed in KIS-ko mouse brains and fibroblasts. Re-expression of KIS in fibroblasts restores a wild type distribution of SF1 isoforms, confirming the link between KIS and SF1. Microarray analysis of transcripts in the neonate brain revealed a subtle down-regulation of brain specific genes including cys-loop ligand-gated ion channels and metabolic enzymes. Q-PCR analyses confirmed these defects and point to an increase of pre-mRNA over mRNA ratios, likely due to changes in splicing efficiency. While performing similarly in prepulse inhibition and most other behavioral tests, KIS-ko mice differ in spontaneous activity and contextual fear conditioning. This difference suggests that disregulation of gene expression due to KIS inactivation affects specific brain functions.

  19. MicroRNA-210 promotes sensory axon regeneration of adult mice in vivo and in vitro.

    Science.gov (United States)

    Hu, Yi-Wen; Jiang, Jing-Jing; Yan-Gao; Wang, Rui-Ying; Tu, Guan-Jun

    2016-05-27

    Axon regeneration as a critical step in nerve repairing and remodeling after peripheral nerve injury relies on regulation of gene expression. MicroRNAs are emerging to be important epigenetic regulators of gene expression to control axon regeneration. Here we used a novel in vivo electroporation approach to transfect microRNA-210 (miR-210) or siRNAs to adult mice dorsal root ganglion (DRG) neurons, measured the axon length 3days after sciatic nerve crush or dissociated DRG cultures in vitro to detect the effect of miR-210 in sensory axon regeneration. Importantly, we found that miR-210 overexpression could promote sensory axon regeneration and inhibit apoptsosis by ephrin-A3 (EFNA3). In addition, inhibition of endogenous miR-210 in DRG neurons impaired axon regeneration in vitro and in vivo, the regulatory effect of miR-210 was mediated by increased expression of EFNA3 because downregulation of EFNA3 fully rescued axon regeneration. We thus demonstrate that miR-210 is a new physiological regulator of sensory axon regeneration, and EFNA3 may be the functional target of miR-210. We conclude that miR-210 may play an important role in sensory axon regeneration. PMID:27102143

  20. Mass mortality of adult male subantarctic fur seals: are alien mice the culprits?

    Directory of Open Access Journals (Sweden)

    P J Nico de Bruyn

    Full Text Available BACKGROUND: Mass mortalities of marine mammals due to infectious agents are increasingly reported. However, in contrast to previous die-offs, which were indiscriminate with respect to sex and age, here we report a land-based mass mortality of Subantarctic fur seals with apparent exclusivity to adult males. An infectious agent with a male-predilection is the most plausible explanation for this die-off. Although pathogens with gender-biased transmission and pathologies are unusual, rodents are known sources of male-biased infectious agents and the invasive Mus musculus house mouse, occurs in seal rookeries. METHODOLOGY/ PRINCIPAL FINDINGS: Molecular screening for male-biased pathogens in this potential rodent reservoir host revealed the absence of Cardiovirus and Leptospirosis genomes in heart and kidney samples, respectively, but identified a novel Streptococcus species with 30% prevalence in mouse kidneys. CONCLUSIONS/ SIGNIFICANCE: Inter-species transmission through environmental contamination with this novel bacterium, whose congenerics display male-bias and have links to infirmity in seals and terrestrial mammals (including humans, highlights the need to further evaluate disease risks posed by alien invasive mice to native species, on this and other islands.

  1. The effect of lead and cadmium nanoparticles on immune response of nanoparticle-inhaling mice

    Czech Academy of Sciences Publication Activity Database

    Čapka, Lukáš; Tulinská, J.; Kebis, A.; Lišková, A.; Kuricová, M.; Mikuška, Pavel; Večeřa, Zbyněk; Dočekal, Bohumil; Křůmal, Kamil; Coufalík, Pavel

    Dublin: QualityNano Research Infrastructure, 2015. s. 59-59. [Final QualityNano Conference 'Current Status and Future Plans of Nanosafety Research and Implementation’. 15.07.2015-17.07.2015, Heraklion] Institutional support: RVO:68081715 Keywords : nanoparticles * lead * cadmium Subject RIV: CB - Analytical Chemistry, Separation

  2. TNF-like weak inducer of apoptosis (TWEAK promotes beta cell neogenesis from pancreatic ductal epithelium in adult mice.

    Directory of Open Access Journals (Sweden)

    Fei Wu

    Full Text Available AIM/HYPOTHESIS: The adult mammalian pancreas has limited ability to regenerate in order to restore adequate insulin production from multipotent progenitors, the identity and function of which remain poorly understood. Here we test whether the TNF family member TWEAK (TNF-like weak inducer of apoptosis promotes β-cell neogenesis from proliferating pancreatic ductal epithelium in adult mice. METHODS: C57Bl/6J mice were treated with Fc-TWEAK and pancreas harvested at different time points for analysis by histology and immunohistochemistry. For lineage tracing, 4 week old double transgenic mice CAII-CreER(TM: R26R-eYFP were implanted with tamoxifen pellet, injected with Fc-TWEAK or control Ig twice weekly and analyzed at day 18 for TWEAK-induced duct cell progeny by costaining for insulin and YFP. The effect of TWEAK on pancreatic regeneration was determined by pancytokeratin immunostaining of paraffin embedded sections from wildtype and TWEAK receptor (Fn14 deficient mice after Px. RESULTS: TWEAK stimulates proliferation of ductal epithelial cells through its receptor Fn14, while it has no mitogenic effect on pancreatic α- or β-cells or acinar cells. Importantly, TWEAK induces transient expression of endogenous Ngn3, a master regulator of endocrine cell development, and induces focal ductal structures with characteristics of regeneration foci. In addition, we identify by lineage tracing TWEAK-induced pancreatic β-cells derived from pancreatic duct epithelial cells. Conversely, we show that Fn14 deficiency delays formation of regenerating foci after Px and limits their expansion. CONCLUSIONS/INTERPRETATION: We conclude that TWEAK is a novel factor mediating pancreatic β-cell neogenesis from ductal epithelium in normal adult mice.

  3. Neonatal Whisker Trimming Impairs Fear/Anxiety-Related Emotional Systems of the Amygdala and Social Behaviors in Adult Mice.

    Directory of Open Access Journals (Sweden)

    Hitomi Soumiya

    Full Text Available Abnormalities in tactile perception, such as sensory defensiveness, are common features in autism spectrum disorder (ASD. While not a diagnostic criterion for ASD, deficits in tactile perception contribute to the observed lack of social communication skills. However, the influence of tactile perception deficits on the development of social behaviors remains uncertain, as do the effects on neuronal circuits related to the emotional regulation of social interactions. In neonatal rodents, whiskers are the most important tactile apparatus, so bilateral whisker trimming is used as a model of early tactile deprivation. To address the influence of tactile deprivation on adult behavior, we performed bilateral whisker trimming in mice for 10 days after birth (BWT10 mice and examined social behaviors, tactile discrimination, and c-Fos expression, a marker of neural activation, in adults after full whisker regrowth. Adult BWT10 mice exhibited significantly shorter crossable distances in the gap-crossing test than age-matched controls, indicating persistent deficits in whisker-dependent tactile perception. In contrast to controls, BWT10 mice exhibited no preference for the social compartment containing a conspecific in the three-chamber test. Furthermore, the development of amygdala circuitry was severely affected in BWT10 mice. Based on the c-Fos expression pattern, hyperactivity was found in BWT10 amygdala circuits for processing fear/anxiety-related responses to height stress but not in circuits for processing reward stimuli during whisker-dependent cued learning. These results demonstrate that neonatal whisker trimming and concomitant whisker-dependent tactile discrimination impairment severely disturbs the development of amygdala-dependent emotional regulation.

  4. Neonatal Whisker Trimming Impairs Fear/Anxiety-Related Emotional Systems of the Amygdala and Social Behaviors in Adult Mice

    Science.gov (United States)

    Soumiya, Hitomi; Godai, Ayumi; Araiso, Hiromi; Mori, Shingo; Furukawa, Shoei; Fukumitsu, Hidefumi

    2016-01-01

    Abnormalities in tactile perception, such as sensory defensiveness, are common features in autism spectrum disorder (ASD). While not a diagnostic criterion for ASD, deficits in tactile perception contribute to the observed lack of social communication skills. However, the influence of tactile perception deficits on the development of social behaviors remains uncertain, as do the effects on neuronal circuits related to the emotional regulation of social interactions. In neonatal rodents, whiskers are the most important tactile apparatus, so bilateral whisker trimming is used as a model of early tactile deprivation. To address the influence of tactile deprivation on adult behavior, we performed bilateral whisker trimming in mice for 10 days after birth (BWT10 mice) and examined social behaviors, tactile discrimination, and c-Fos expression, a marker of neural activation, in adults after full whisker regrowth. Adult BWT10 mice exhibited significantly shorter crossable distances in the gap-crossing test than age-matched controls, indicating persistent deficits in whisker-dependent tactile perception. In contrast to controls, BWT10 mice exhibited no preference for the social compartment containing a conspecific in the three-chamber test. Furthermore, the development of amygdala circuitry was severely affected in BWT10 mice. Based on the c-Fos expression pattern, hyperactivity was found in BWT10 amygdala circuits for processing fear/anxiety-related responses to height stress but not in circuits for processing reward stimuli during whisker-dependent cued learning. These results demonstrate that neonatal whisker trimming and concomitant whisker-dependent tactile discrimination impairment severely disturbs the development of amygdala-dependent emotional regulation. PMID:27362655

  5. Activity of Artemether and Mefloquine against Juvenile and Adult Schistosoma mansoni in Athymic and Immunocompetent NMRI Mice

    OpenAIRE

    Keiser, Jennifer; Vargas, Mireille; Doenhoff, Michael J.

    2010-01-01

    Immune effector mechanisms can enhance the activity of antischistosomal drugs. We examined the in vivo effect of single oral doses of the antimalarials artemether (400 mg/kg) and mefloquine (200 mg/kg), recently described to have promising antischistosomal properties, against juvenile and adult Schistosoma mansoni in T cell-deficient and in comparably infected age- and sex-matched immunologically intact control mice. Artemether and mefloquine are equally effective in athymic and immunocompete...

  6. Functional Analysis of Neurovascular Adaptations to Exercise in the Dentate Gyrus of Young Adult Mice Associated With Cognitive Gain

    OpenAIRE

    Clark, Peter J.; Brzezinska, Weronika J.; Puchalski, Emily K.; Krone, David A.; Rhodes, Justin S.

    2009-01-01

    The discovery that aerobic exercise increases adult hippocampal neurogenesis and can enhance cognitive performance holds promise as a model for regenerative medicine. This study adds two new pieces of information to the rapidly growing field. First, we tested whether exercise increases vascular density in the granular layer of the dentate gyrus, whole hippocampus, and striatum in C57BL/6J mice known to display procognitive effects of exercise. Second, we determined the extent to which new neu...

  7. Exercise training and antioxidant supplementation independently improve cognitive function in adult male and female GFAP-APOE mice

    Directory of Open Access Journals (Sweden)

    Kiran Chaudhari

    2014-09-01

    Conclusion: Exercise was the most effective treatment at improving cognitive function in both genotypes and sex, while antioxidants seemed to be effective only in the APOE4. In young adult mice only non-spatial learning and memory were improved. The combination of the two treatments did not yield further improvement in cognition, and there was no antagonistic action of the antioxidant supplementation on the beneficial effects of exercise.

  8. An autoradiographic study of new fat cell formation in adipose tissue in adult mice during malnutrition and refeeding

    International Nuclear Information System (INIS)

    The renewal of adipose cells in adult mice has been autoradiographically studied. The number of adipose cells was diminished by eighty percent during malnutrition and the same number of adipose cells proliferated during the refeeding stage. The results of our study showed that adipose tissue, which had previously been believed to be stable in cell number, has the capacity for cell proliferation according to changes in nutritional status. (author)

  9. Chronic hemodynamic unloading regulates the morphologic development of newborn mouse hearts transplanted into the ear of isogeneic adult mice.

    OpenAIRE

    Rossi, M. A.

    1992-01-01

    The morphologic development of newborn mouse hearts transplanted into the pinna of the ears of isogeneic adult mice was assessed in comparison to in situ ventricular myocardium of recipients. The grafted hearts became vascularized from the auricular artery at the base of the ear, and although these preparations appeared not to be intrinsically innervated, most of them showed grossly visible pulsatile activity. Since they were not subjected to hemodynamic load due to working against a pressure...

  10. Adolescent, but not adult, binge ethanol exposure leads to persistent global reductions of choline acetyltransferase expressing neurons in brain.

    Directory of Open Access Journals (Sweden)

    Ryan P Vetreno

    Full Text Available During the adolescent transition from childhood to adulthood, notable maturational changes occur in brain neurotransmitter systems. The cholinergic system is composed of several distinct nuclei that exert neuromodulatory control over cognition, arousal, and reward. Binge drinking and alcohol abuse are common during this stage, which might alter the developmental trajectory of this system leading to long-term changes in adult neurobiology. In Experiment 1, adolescent intermittent ethanol (AIE; 5.0 g/kg, i.g., 2-day on/2-day off from postnatal day [P] 25 to P55 treatment led to persistent, global reductions of choline acetyltransferase (ChAT expression. Administration of the Toll-like receptor 4 agonist lipopolysaccharide to young adult rats (P70 produced a reduction in ChAT+IR that mimicked AIE. To determine if the binge ethanol-induced ChAT decline was unique to the adolescent, Experiment 2 examined ChAT+IR in the basal forebrain following adolescent (P28-P48 and adult (P70-P90 binge ethanol exposure. Twenty-five days later, ChAT expression was reduced in adolescent, but not adult, binge ethanol-exposed animals. In Experiment 3, expression of ChAT and vesicular acetylcholine transporter expression was found to be significantly reduced in the alcoholic basal forebrain relative to moderate drinking controls. Together, these data suggest that adolescent binge ethanol decreases adult ChAT expression, possibly through neuroimmune mechanisms, which might impact adult cognition, arousal, or reward sensitivity.

  11. Therapeutic Effects of Allium sativum on Lead-induced Biochemical changes in Soft tissues of Swiss Albino Mice

    Directory of Open Access Journals (Sweden)

    Arti Sharma

    2009-01-01

    Full Text Available Allium sativum (Meaning pungent belongs to the Alliaceae family and genus Allium, is generally known in the developing world for its characteristic flavor, a medicinal plant and a source of vegetable oil. Besides, the plant is reported to have various biological activities including hypocholesterolemic, antiatherosclerotic, anticoagulant, antibacterial, antifungal, anti-diabetic, anti-tumor agent; used for treating various disease such as inflammation, cardiovascular and liver diseases. The objective of this study is to investigate the therapeutic effects of Allium sativum on lead induced toxicity in mice. Chronic dose of lead (2 mg/Kg body weight, i.p., showed significant decrease in antioxidant enzymes such as superoxide dismutase (SOD, catalase (CAT and the nonenzymatic antioxidant as glutathione (GSH and total protein content in the liver, kidney and brain. This decrease was accompanied with significant increase in lipid peroxidation and cholesterol level. Also, there were disturbances in the liver, kidney and brain functions manifested by significant changes in their functional markers. Efficacy of garlic to reduce tissue lead concentration was also evaluated. Mostly, all of the investigated parameters were restored nearly to the normal values after raw garlic extract treatment. In conclusion, garlic exerts its effects not only as an antioxidant but also as a sulfur donor. So, garlic has a promising role and it is worth to be considered as a natural chelating agent for lead intoxication.

  12. Impaired selenoprotein expression in brain triggers striatal neuronal loss leading to coordination defects in mice

    Science.gov (United States)

    Seeher, Sandra; Carlson, Bradley A.; Miniard, Angela C.; Wirth, Eva K.; Mahdi, Yassin; Hatfield, Dolph L.; Driscoll, Donna M.; Schweizer, Ulrich

    2014-01-01

    Selenocysteine Insertion Sequence (SECIS)-Binding Protein 2 (Secisbp2) binds to SECIS elements located in the 3′-untranslated region of eukaryotic selenoprotein mRNAs. It facilitates incorporation of the rare amino acid selenocysteine in response to UGA codons. Inactivation of Secisbp2 in hepatocytes greatly reduced selenoprotein levels. Neuron-specific inactivation of Secisbp2 (CamK-Cre; Secisbp2fl/fl) reduced cerebral expression of selenoproteins to a lesser extent than inactivation of tRNA[Ser]Sec. This allowed us to study the development of cortical parvalbumin-positive (PV+) interneurons, which are completely lost in tRNA[Ser]Sec mutants. PV+ interneuron density was reduced in the somatosensory cortex, hippocampus, and striatum. In situ-hybridization for Gad67 confirmed the reduction of GABAergic interneurons. Because of the obvious movement phenotype involving a broad, dystonic gait, we suspected basal ganglia dysfunction. Tyrosine hydroxylase expression was normal in substantia nigra neurons and their striatal terminals. However the densities of striatal PV+ and Gad67+ neurons were decreased by 65% and 49%, respectively. Likewise, the density of striatal cholinergic neurons was reduced by 68%. Our observations demonstrate that several classes of striatal interneurons depend on selenoprotein expression. These findings may offer an explanation for the movement phenotype of selenoprotein P-deficient mice and the movement disorder and mental retardation described in a patient carrying SECISBP2 mutations. PMID:24844465

  13. Gastrointestinal absorption of plutonium and uranium in fed and fasted adult baboons and mice: application to humans

    International Nuclear Information System (INIS)

    Gastrointestinal (GI) absorption values of plutonium and uranium were determined in fed and fasted adult baboons and mice. For both baboons and mice, the GI absorptions of plutonium and uranium were 10 to 20 times higher in 24 h fasted animals than in fed ones. For plutonium, GI absorption values in baboons were almost identical to those in mice for both fed and fasted conditions, and values for fed animals agreed with estimates for humans. For uranium, GI absorption values in fed and fasted baboons were 6 to 7 times higher than those in mice, and agreed well with those fed and fasted humans. For one baboon that was not given its morning meal, plutonium absorption 2 h after the start of the active phase was the same as that in the 24 h fasted animals. In contrast, for baboons that received a morning meal, plutonium absorption did not rise to the value of 24 h fasted baboons even 8 h after the meal. We conclude that GI absorption values for plutonium and uranium in adult baboons are good estimates of the values in humans and that the values for the fasted condition should be used to set standards for oral exposure of persons in the workplace. (author)

  14. Non-occupational lead and cadmium exposure of adult women in Bangkok, Thailand

    International Nuclear Information System (INIS)

    This survey was conducted to examine the extent of the exposure of Bangkok citizens to lead (Pb) and cadmium (Cd), and to evaluate the role of rice as the source of these heavy metals. In practice, 52 non-smoking adult women in an institution in the vicinity of Bangkok, volunteered to offer blood, spot urine, boiled rice and 24-h total food duplicate samples. Samples were wet-ashed, and then analyzed for Pb and Cd by ICP-MS. Geometric means for the levels in blood (Pb-B and Cd-B) and urine (Pb-U and Cd-U as corrected for creatinine concentration), and also for dietary intake (Pb-F and Cd-F) were 32.3 μg/l for Pb-B, 0.41 μg/l for Cd-B, 2.06 μg/g creatinine for Pb-U, 1.40 μg/g creatinine for Cd-U, 15.1 μg/day for Pb-F and 7.1 μg/day for Cd-F. Rice contributed 30% and 4% of dietary Cd and Pb burden, respectively. When compared with the counterpart values obtained in four neighboring cities in southeast Asia (i.e. Nanning, Tainan, Manila, and Kuala Lumpur), dietary Pb burden of the women in Bangkok was middle in the order among the values for the five cities. Pb level in the blood was the lowest of the levels among the five cities and Pb in urine was also among the low group. This apparent discrepancy in the order between Pb-B (i.e. the fifth) and Pb-F (the third) might be attributable to recent reduction of Pb levels in the atmosphere in Bangkok. Regarding Cd exposure, Cd levels in blood and urine as well as dietary Cd burden of Bangkok women were either the lowest or the next lowest among those in the five cities. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  15. Prospective associations between childhood low-level lead exposure and adult mental health problems: the Port Pirie cohort study.

    Science.gov (United States)

    McFarlane, Alexander C; Searle, Amelia K; Van Hooff, Miranda; Baghurst, Peter A; Sawyer, Michael G; Galletly, Cherrie; Sim, Malcolm R; Clark, Levina S

    2013-12-01

    Low-level environmental lead exposure during childhood is associated with poorer emotional/behavioural functioning in later childhood and adolescence. Scarce research has examined whether these apparent effects persist into adulthood. This study is the first to examine prospective associations between lead exposure across early childhood and several common adult mental health problems. Childhood data (including blood lead concentrations) and adult data (from mental health questionnaires and psychiatric interviews) were available for 210 participants (44% males, mean age=26.3 years) from the Port Pirie cohort study (1979-1982 birth cohort). Participants had a mean childhood (to 7 years) average blood lead concentration of 17.2μg/dL. Among females, childhood blood lead showed small significant positive associations with lifetime diagnoses of drug and alcohol abuse and social phobia, and with anxiety, somatic and antisocial personality problems. For example: for a 10μg/dL blood lead increase, females were 2.84 times (95% CI 1.10, 7.30) more likely to have an alcohol abuse diagnosis. However, adjustment for childhood covariates - particularly stimulation within the home environment - rendered these associations non-significant. No significant or sizeable unadjusted or adjusted associations were seen for males. The associations between early lead exposure and emotional/behavioural functioning in children might persist into adulthood, at least for females. However, it is unclear whether such results arise from residual confounding, or other mechanisms. Interventions that focus on improving the childhood home environment may have a long-term positive impact on adult mental health outcomes. However, more prospective research using large and representative samples is needed to substantiate these results. PMID:23958641

  16. Effect of Infection Duration on Habitat Selection and Morphology of Adult Echinostoma caproni (Digenea: Echinostomatidae) in ICR Mice.

    Science.gov (United States)

    Platt, Thomas R; Zelmer, Derek A

    2016-02-01

    The course of infection of Echinostoma caproni was followed in female ICR mice, a permissive laboratory host, from infection to natural termination. Twenty-one mice were infected with 20 metacercariae via oral intubation and housed 3 per cage. Three mice from a randomly selected cage were necropsied at 1 mo intervals. A second group of 15 mice was infected approximately 1 yr later to replace mice negative at necropsy in the first group. Mice in the second group were examined weekly for the presence of eggs in the feces. Mice negative for eggs on consecutive days were killed and necropsied. The location of individual worms and worm clusters were located in 20 segments of the small intestine. Adult worms were killed and fixed in hot formalin, stained, and prepared as whole mounts. Standard measurements were taken using a compound microscope fitted with an ocular micrometer. The infection spontaneously resolved in 10 mice from 7 to 32 wk PI, indicating the host response is highly variable and extending the maximum recorded length of E. caproni infections in ICR mice to 31 wk. A moribund worm was found in the feces of an animal that continued to pass eggs for an additional 2 mo indicating individual variation in worm responses. Worms located preferentially in the ileum (segments 11-13) during the first 3 mo of the infection but shifted to the jejunum (segments 8-9) during weeks 4-6. Morphologically, worms of different ages clustered together in multivariate space, with substantial overlap between the 3- and 4-mo-old infrapopulations and between the 5- and 6-mo-old infrapopulations. Muscular structures increased in size throughout the experiment, while the gonads increased in size for the first 3 mo and then declined during the last 3 mo. The relationship between E. caproni and ICR mice is more nuanced than previously reported. The reduction in gonad size and the shift from the ileum to the jejunum in the last 3 mo likely are related. These changes might be attributable

  17. Monoacylglycerol lipase inhibition by organophosphorus compounds leads to elevation of brain 2-arachidonoylglycerol and the associated hypomotility in mice

    International Nuclear Information System (INIS)

    Three components of the cannabinoid system are sensitive to selected organophosphorus (OP) compounds: monoacylglycerol (MAG) lipase that hydrolyzes the major endogenous agonist 2-arachidonoylglycerol (2-AG); fatty acid amide hydrolase (FAAH) that cleaves the agonist anandamide present in smaller amounts; the CB1 receptor itself. This investigation considers which component of the cannabinoid system is the most likely contributor to OP-induced hypomotility in mice. Structure-activity studies by our laboratory and others rule against major involvement of a direct toxicant-CB1 receptor interaction for selected OPs. Attention was therefore focused on the OP sensitivities of MAG lipase and FAAH, assaying 19 structurally diverse OP chemicals (pesticides, their metabolites and designer compounds) for in vitro inhibition of both enzymes. Remarkably high potency and low selectivity is observed with three O-alkyl (C1, C2, C3) alkylphosphonofluoridates (C8, C12) (IC50 0.60-3.0 nM), five S-alkyl (C5, C7, C9) and alkyl (C1, C12) benzodioxaphosphorin oxides (IC50 0.15-5.7 nM) and one OP insecticide metabolite (chlorpyrifos oxon, IC50 34-40 nM). In ip-treated mice, the OPs at 1-30 mg/kg more potently inhibit brain FAAH than MAG lipase, but FAAH inhibition is not correlated with hypomotility. However, the alkylphosphonofluoridate-treated mice show dose-dependent increases in severity of hypomotility, inhibition of MAG lipase activity and elevation of 2-AG. Moderate to severe hypomotility is accompanied by 64 to 86% MAG lipase inhibition and about 6-fold elevation of brain 2-AG level. It therefore appears that OP-induced MAG lipase inhibition leads to elevated 2-AG and the associated hypomotility

  18. Cerebral cell renewal in adult mice controls the onset of obesity.

    Directory of Open Access Journals (Sweden)

    Alexandra Gouazé

    Full Text Available The hypothalamus plays a crucial role in the control of the energy balance and also retains neurogenic potential into adulthood. Recent studies have reported the severe alteration of the cell turn-over in the hypothalamus of obese animals and it has been proposed that a neurogenic deficiency in the hypothalamus could be involved in the development of obesity. To explore this possibility, we examined hypothalamic cell renewal during the homeostatic response to dietary fat in mice, i.e., at the onset of diet-induced obesity. We found that switching to high-fat diet (HFD accelerated cell renewal in the hypothalamus through a local, rapid and transient increase in cell proliferation, peaking three days after introducing the HFD. Blocking HFD-induced cell proliferation by central delivery of an antimitotic drug prevented the food intake normalization observed after HFD introduction and accelerated the onset of obesity. This result showed that HFD-induced dividing brain cells supported an adaptive anorectic function. In addition, we found that the percentage of newly generated neurons adopting a POMC-phenotype in the arcuate nucleus was increased by HFD. This observation suggested that the maturation of neurons in feeding circuits was nutritionally regulated to adjust future energy intake. Taken together, these results showed that adult cerebral cell renewal was remarkably responsive to nutritional conditions. This constituted a physiological trait required to prevent severe weight gain under HFD. Hence this report highlighted the amazing plasticity of feeding circuits and brought new insights into our understanding of the nutritional regulation of the energy balance.

  19. Zika Virus Disrupts Neural Progenitor Development and Leads to Microcephaly in Mice.

    Science.gov (United States)

    Li, Cui; Xu, Dan; Ye, Qing; Hong, Shuai; Jiang, Yisheng; Liu, Xinyi; Zhang, Nana; Shi, Lei; Qin, Cheng-Feng; Xu, Zhiheng

    2016-07-01

    The link between Zika virus (ZIKV) infection and microcephaly has raised urgent global alarm. The historical African ZIKV MR766 was recently shown to infect cultured human neural precursor cells (NPCs), but unlike the contemporary ZIKV strains, it is not believed to cause microcephaly. Here we investigated whether the Asian ZIKV strain SZ01 could infect NPCs in vivo and affect brain development. We found that SZ01 replicates efficiently in embryonic mouse brain by directly targeting different neuronal linages. ZIKV infection leads to cell-cycle arrest, apoptosis, and inhibition of NPC differentiation, resulting in cortical thinning and microcephaly. Global gene expression analysis of infected brains reveals upregulation of candidate flavirus entry receptors and dysregulation of genes associated with immune response, apoptosis, and microcephaly. Our model provides evidence for a direct link between Zika virus infection and microcephaly, with potential for further exploration of the underlying mechanisms and management of ZIKV-related pathological effects during brain development. PMID:27179424

  20. Protective efficacy of Emblica against radiation and lead induced changes in the Jejunum of Swiss Albino mice

    International Nuclear Information System (INIS)

    Recently, increased interest has developed on search for potential drugs of plant origin which can quench the radiation induced free radicals and eliminate oxygen with minimum side effects. In view of the fact, present study was planned to evaluate the protective efficacy of Emblica against radiation and lead induced changes in jejunum of mice. For the purpose, six to eight weeks old male Swiss albino mice were selected and divided into seven groups on the basis of radiation, lead, combined treatment and drug treated. The values of total proteins, cholesterol, acid phosphatase activity, alkaline phosphatase activity, DNA and RNA were estimated. The values of total proteins, cholesterol, DNA and RNA decreased whereas acid phosphatase and alkaline phosphatase activity increased. After irradiation with various doses of gamma rays, histological changes depend upon the dose of radiation delivered. The important radio-lesions were looseness of musculatrue, hydropic degeneration in submucosa and lamina propria, hyperaemia and haemorrhage in submucosa, pyknotic cells, cytoplasmic degranulation and vacuolation, abnormal mitotic figures. Karyolysis, karyorrhexis and chromatolysis were also observed in crypt cells. Shortening and breaking of villus tips, leucocytic infiltration in lamina propria and cell debris in intestinal lumen were also noted. The number of goblet cells per crypt section also decreased in all the experimental groups. The value of the experimental groups was significantly lower than that of the control group. The biochemical finding indicated the drug treated section of living tissue showed slightly/no degenerative changes. The drug treated groups demonstrating the ability of Aloe vera to inhibit oxidative stress thus preventing tissue injury. (author)

  1. Genetic pharmacotherapy as an early CNS drug development strategy: testing glutaminase inhibition for schizophrenia treatment in adult mice

    Directory of Open Access Journals (Sweden)

    Susana eMingote

    2016-01-01

    Full Text Available Genetic pharmacotherapy is an early drug development strategy for the identification of novel CNS targets in mouse models prior to the development of specific ligands. Here for the first time, we have implemented this strategy to address the potential therapeutic value of a glutamate-based pharmacotherapy for schizophrenia involving inhibition of the glutamate recycling enzyme phosphate-activated glutaminase. Mice constitutively heterozygous for GLS1, the gene encoding glutaminase, manifest a schizophrenia resilience phenotype, a key dimension of which is an attenuated locomotor response to propsychotic amphetamine challenge. If resilience is due to glutaminase deficiency in adulthood, then glutaminase inhibitors should have therapeutic potential. However, this has been difficult to test given the dearth of neuroactive glutaminase inhibitors. So, we used genetic pharmacotherapy to test the therapeutic potential of glutaminase inhibition. We specifically asked whether adult induction of GLS1 heterozygosity would attenuate amphetamine responsiveness. We generated conditional floxGLS1 mice and crossed them with global CAG ERT2 cre/+ mice to produce GLS1 iHET mice, susceptible to tamoxifen induction of GLS1 heterozygosity. One month after tamoxifen treatment of adult GLS1 iHET mice, we found a 50% reduction in GLS1 allelic abundance and glutaminase mRNA levels in the brain. While GLS1 iHET mice showed some recombination prior to tamoxifen, there was no impact on mRNA levels. We then asked whether induction of GLS heterozygosity would attenuate the locomotor response to propsychotic amphetamine challenge. Before tamoxifen, control and GLS1 iHET mice did not differ in their response to amphetamine. One month after tamoxifen treatment, amphetamine-induced hyperlocomotion was blocked in GLS1 iHET mice. The block was largely maintained after 5 months. Thus, a genetically induced glutaminase reduction — mimicking pharmacological inhibition — strongly

  2. Natural suppressor (NS) cells found in the spleen of neonatal mice and adult mice given total lymphoid irradiation (TLI) express the null surface phenotype

    International Nuclear Information System (INIS)

    The authors studied the surface markers of suppressor cells of the mixed leukocyte reaction (MLR) that are transiently present in the spleens of neonatal mice after birth and of adult mice after total lymphoid irradiation (TLI). Approximately 80% of the mononuclear cells in the spleen, within the first few days after birth or after TLI, express neither the Thy-1 antigen nor surface immunoglobulin (Ig). After 30 days, less than 20% of mononuclear cells bear this null phenotype. With the use of the panning technique, they showed that the suppressors of the MLR are confined to the null cell population. The null suppressor cells are not macrophages because they did not carry macrophage markers identified by the monoclonal antibodies anti-MAC-1 and F4/80. In addition, the suppressor cells did not stain for nonspecific esterase and did not adhere firmly to plastic or glass. Spleen cells from TLI-treated mice maintained their suppressive capacity after culture in vitro for 6 to 8 wk. The cultured suppressor cells did not develop mature T cell, B cell, or macrophage markers during this time interval. Thus, the suppressor cells did not appear to be precursors of the latter cells. The suppressor cells are similar to NK cells in that both are found in the absence of antigenic challenge, lack antigen specificity, and bear the null surface phenotype. Thus, they have termed the former cells natural suppressor (NS) cells

  3. Methionine restriction restores a younger metabolic phenotype in adult mice with alterations in fibroblast growth factor 21.

    Science.gov (United States)

    Lees, Emma K; Król, Elżbieta; Grant, Louise; Shearer, Kirsty; Wyse, Cathy; Moncur, Eleanor; Bykowska, Aleksandra S; Mody, Nimesh; Gettys, Thomas W; Delibegovic, Mirela

    2014-10-01

    Methionine restriction (MR) decreases body weight and adiposity and improves glucose homeostasis in rodents. Similar to caloric restriction, MR extends lifespan, but is accompanied by increased food intake and energy expenditure. Most studies have examined MR in young animals; therefore, the aim of this study was to investigate the ability of MR to reverse age-induced obesity and insulin resistance in adult animals. Male C57BL/6J mice aged 2 and 12 months old were fed MR (0.172% methionine) or control diet (0.86% methionine) for 8 weeks or 48 h. Food intake and whole-body physiology were assessed and serum/tissues analyzed biochemically. Methionine restriction in 12-month-old mice completely reversed age-induced alterations in body weight, adiposity, physical activity, and glucose tolerance to the levels measured in healthy 2-month-old control-fed mice. This was despite a significant increase in food intake in 12-month-old MR-fed mice. Methionine restriction decreased hepatic lipogenic gene expression and caused a remodeling of lipid metabolism in white adipose tissue, alongside increased insulin-induced phosphorylation of the insulin receptor (IR) and Akt in peripheral tissues. Mice restricted of methionine exhibited increased circulating and hepatic gene expression levels of FGF21, phosphorylation of eIF2a, and expression of ATF4, with a concomitant decrease in IRE1α phosphorylation. Short-term 48-h MR treatment increased hepatic FGF21 expression/secretion and insulin signaling and improved whole-body glucose homeostasis without affecting body weight. Our findings suggest that MR feeding can reverse the negative effects of aging on body mass, adiposity, and insulin resistance through an FGF21 mechanism. These findings implicate MR dietary intervention as a viable therapy for age-induced metabolic syndrome in adult humans. PMID:24935677

  4. Presynaptic size of associational/commissural CA3 synapses is controlled by fibroblast growth factor 22 in adult mice.

    Science.gov (United States)

    Pasaoglu, Taliha; Schikorski, Thomas

    2016-02-01

    Associational/commissural CA3-CA3 synapses define the recurrent CA3 network that generates the input to CA1 pyramidal neurons. We quantified the fine structure of excitatory synapses in the stratum radiatum of the CA3d area in adult wild type (WT) and fibroblast growth factor 22 knock-out (FGF22KO) mice by using serial 3D electron microscopy. WT excitatory CA3 synapses are rather small yet range 10 fold in size. Spine size, however, was small and uniform and did not correlate with the size of the synaptic junction. To reveal mechanisms that regulate presynaptic structure, we investigated the role of FGF22, a target-derived signal specific for the distal part of area CA3 (CA3d). In adult FGF22KO mice, postsynaptic properties of associational CA3 synapses were unaltered. Presynaptically, the number of synaptic vesicles (SVs), the bouton volume, and the number of vesicles in axonal regions (the super pool) were reduced. This concurrent decrease suggests concerted control by FGF22 of presynaptic size. This hypothesis is supported by the finding that WT presynapses in the proximal part of area CA3 (CA3p) that do not receive FGF22 signaling in WT mice were smaller than presynapses in CA3d in WT but of comparable size in CA3d of FGF22KO mice. Docked SV density was decreased in CA1, CA3d, and CA3p in FGF22KO mice. Because CA1 and CA3p are not directly affected by the loss of FGF22, the smaller docked SV density may be an adaptation to activity changes in the CA3 network. Thus, docked SV density potentially is a long-term regulator for the synaptic release probability and/or the strength of short-term depression in vivo. PMID:26222899

  5. Immunosuppression in early postnatal days induces persistent and allergen-specific immune tolerance to asthma in adult mice.

    Directory of Open Access Journals (Sweden)

    Yan Chen

    Full Text Available Bronchial asthma is a chronic airway inflammatory condition with high morbidity, and effective treatments for asthma are limited. Allergen-specific immunotherapy can only induce peripheral immune tolerance and is not sustainable. Exploring new therapeutic strategies is of great clinical importance. Recombinant adenovirus (rAdV was used as a vector to make cells expressing cytotoxic T lymphocyte-associated antigen-4-immunoglobulin (CTLA4Ig a soluble CTLA4 immunoglobulin fusion protein. Dendritic cells (DCs were modified using the rAdVs together with allergens. Then these modified DCs were transplanted to mice before allergen sensitization. The persistence and specificity of immune tolerance were evaluated in mice challenged with asthma allergens at 3 and 7 months. DCs modified by CTLA4Ig showed increased IL-10 secretion, decreased IL-12 secretion, and T cell stimulation in vitro. Mice treated with these DCs in the early neonatal period developed tolerance against the allergens that were used to induce asthma in the adult stage. Asthma symptoms, lung damage, airway reactivity, and inflammatory response all improved. Humoral immunity indices showed that this therapeutic strategy strongly suppressed mice immune responses and was maintained for as long as 7 months. Furthermore, allergen cross-sensitization and challenge experiments demonstrated that this immune tolerance was allergen-specific. Treatment with CTLA4Ig modified DCs in the early neonatal period, inducing persistent and allergen-specific immune tolerance to asthma in adult mice. Our results suggest that it may be possible to develop a vaccine for asthma.

  6. Learning and Leading for Growth: Preparing Leaders to Support Adult Development in Our Schools

    Science.gov (United States)

    Drago-Severson, Eleanor; Blum-Destefano, Jessica; Asghar, Anila

    2013-01-01

    Currently, scholars and practitioners seek to improve leadership programs so that educational leaders can more effectively support adult development--especially since it is connected to improved student achievement. Interview findings presented here stem from a larger mixed methods study. This research investigated how a university course on…

  7. Recql4 haploinsufficiency in mice leads to defects in osteoblast progenitors: Implications for low bone mass phenotype

    International Nuclear Information System (INIS)

    The cellular and molecular mechanisms that underlie skeletal abnormalities in defective Recql4-related syndromes are poorly understood. Our objective in this study was to explore the function of Recql4 in osteoblast biology both in vitro and in vivo. Immunohistochemistry on adult mouse bone showed Recql4 protein localization in active osteoblasts around growth plate, but not in fully differentiated osteocytes. Consistent with this finding, Recql4 gene expression was high in proliferating mouse osteoblastic MC3T3.E1 cells and decreased as cells progressively lost their proliferation activity during differentiation. Recql4 overexpression in osteoblastic cells exhibited higher proliferation activity, while its depletion impeded cell growth. In addition, bone marrow stromal cells from male Recql4+/- mice had fewer progenitor cells, including osteoprogenitors, indicated by reduced total fibroblast colony forming units (CFU-f) and alkaline phosphatase-positive CFU-f colonies concomitant with reduced bone mass. These findings provide evidence that Recql4 functions as a regulatory protein during osteoprogenitor proliferation, a critical cellular event during skeleton development

  8. Environmental Enrichment Reduces the Likelihood of Alopecia in Adult C57BL/6J Mice

    OpenAIRE

    Bechard, Allison; Meagher, Rebecca; Mason, Georgia

    2011-01-01

    Barbering (incessant grooming) is an abnormal behavior causing alopecia and commonly affects various strains of laboratory mice, including C57BL/6J. Barbering-induced alopecia is a potential symptom of brain impairment and can indicate a stressful environment. We compared alopecia prevalence and severity in mice housed in enriched or standard cages. Providing an enriched environment delayed the onset and reduced the prevalence and overall severity of alopecia in C57BL/6J mice. Husbandry metho...

  9. Deletion of the last five C-terminal amino acid residues of connexin43 leads to lethal ventricular arrhythmias in mice without affecting coupling via gap junction channels.

    Science.gov (United States)

    Lübkemeier, Indra; Requardt, Robert Pascal; Lin, Xianming; Sasse, Philipp; Andrié, René; Schrickel, Jan Wilko; Chkourko, Halina; Bukauskas, Feliksas F; Kim, Jung-Sun; Frank, Marina; Malan, Daniela; Zhang, Jiong; Wirth, Angela; Dobrowolski, Radoslaw; Mohler, Peter J; Offermanns, Stefan; Fleischmann, Bernd K; Delmar, Mario; Willecke, Klaus

    2013-05-01

    The cardiac intercalated disc harbors mechanical and electrical junctions as well as ion channel complexes mediating propagation of electrical impulses. Cardiac connexin43 (Cx43) co-localizes and interacts with several of the proteins located at intercalated discs in the ventricular myocardium. We have generated conditional Cx43D378stop mice lacking the last five C-terminal amino acid residues, representing a binding motif for zonula occludens protein-1 (ZO-1), and investigated the functional consequences of this mutation on cardiac physiology and morphology. Newborn and adult homozygous Cx43D378stop mice displayed markedly impaired and heterogeneous cardiac electrical activation properties and died from severe ventricular arrhythmias. Cx43 and ZO-1 were co-localized at intercalated discs in Cx43D378stop hearts, and the Cx43D378stop gap junction channels showed normal coupling properties. Patch clamp analyses of isolated adult Cx43D378stop cardiomyocytes revealed a significant decrease in sodium and potassium current densities. Furthermore, we also observed a significant loss of Nav1.5 protein from intercalated discs in Cx43D378stop hearts. The phenotypic lethality of the Cx43D378stop mutation was very similar to the one previously reported for adult Cx43 deficient (Cx43KO) mice. Yet, in contrast to Cx43KO mice, the Cx43 gap junction channel was still functional in the Cx43D378stop mutant. We conclude that the lethality of Cx43D378stop mice is independent of the loss of gap junctional intercellular communication, but most likely results from impaired cardiac sodium and potassium currents. The Cx43D378stop mice reveal for the first time that Cx43 dependent arrhythmias can develop by mechanisms other than impairment of gap junction channel function. PMID:23558439

  10. Neonatal Bacillus Calmette-Guérin vaccination alleviates lipopolysaccharide-induced neurobehavioral impairments and neuroinflammation in adult mice.

    Science.gov (United States)

    Yang, Junhua; Qi, Fangfang; Yao, Zhibin

    2016-08-01

    The Bacillus Calmette-Guérin (BCG) vaccine is routinely administered to human neonates worldwide. BCG has recently been identified as a neuroprotective immune mediator in several neuropathological conditions, exerting neuroprotection in a mouse model of Parkinson's disease and slowing the progression of clinically isolated syndrome in patients with multiple sclerosis. The immune system is significantly involved in brain development, and several types of neonatal immune activations exert influences on the brain and behavior following a secondary immune challenge in adulthood. However, whether the neonatal BCG vaccination affects the brain in adulthood remains to be elucidated. In the present study, newborn C57BL/6 mice were injected subcutaneously with BCG (105 colony forming units) or phosphate‑buffered saline (PBS). A total of 12 weeks later, the mice were injected intraperitoneally with 330 µg/kg lipopolysaccharide (LPS) or PBS. The present study reported that the neonatal BCG vaccination alleviated sickness, anxiety and depression‑like behavior, lessened the impairments in hippocampal cell proliferation and downregulated the proinflammatory responses in the serum and brain that were induced by the adult LPS challenge. However, BCG vaccination alone had no evident influence on the brain and behavior in adulthood. In conclusion, the neonatal BCG vaccination alleviated the neurobehavioral impairments and neuroinflammation induced by LPS exposure in adult mice, suggesting a potential neuroprotective role of the neonatal BCG vaccination in adulthood. PMID:27357155

  11. Effect of acute lead poisoning on pathological damage in mice testis%急性铅中毒对小鼠睾丸病理损伤研究

    Institute of Scientific and Technical Information of China (English)

    孙相和; 孔令芸; 李冲; 陈玲丽; 宁红梅; 葛亚明

    2014-01-01

    为了研究急性铅中毒对小鼠睾丸病理变化的影响,通过对小鼠饲喂含有醋酸铅的去离子水建立铅负荷小鼠模型.处理10 d后取材,分析体质量、睾丸指数和睾丸病理剖检变化.结果显示:与对照组相比,铅中毒组小鼠体质量无明显变化,睾丸指数降低,且差异显著(P<0.05);小鼠睾丸中支持细胞、生精细胞和间质细胞数量减少.铅对小鼠睾丸具有显著损害作用,从而影响小鼠的生殖健康.%To investigate the effect of acute lead poisoning on pathological changes in mice testis,mice were orally administered with lead acetate for 10 days to establish a lead poisoning mice model.After 10 days,some indexes,such as body weight,testis index,necropsy and histopathology,were analyzed.The results showed that the body weight change of mice was not relevant significantly to the dosage of lead acetate.Compared with the control group,the difference of testis relative index in dosage group was significant (P<0.05).The amount of sertoli cells,germ cells and Leydig’s cells in mice tesis was decreased.The results suggested that lead could damage mice testis significantly and then affect the reproductive health of mice.

  12. Blocking glucocorticoid receptors at adolescent age prevents enhanced freezing between repeated cue-exposures after conditioned fear in adult mice raised under chronic early life stress.

    Science.gov (United States)

    Arp, J Marit; Ter Horst, Judith P; Loi, Manila; den Blaauwen, Jan; Bangert, Eline; Fernández, Guillén; Joëls, Marian; Oitzl, Melly S; Krugers, Harm J

    2016-09-01

    Early life adversity can have long-lasting impact on learning and memory processes and increase the risk to develop stress-related psychopathologies later in life. In this study we investigated (i) how chronic early life stress (ELS) - elicited by limited nesting and bedding material from postnatal day 2 to 9 - affects conditioned fear in adult mice and (ii) whether these effects can be prevented by blocking glucocorticoid receptors (GRs) at adolescent age. In adult male and female mice, ELS did not affect freezing behavior to the first tone 24h after training in an auditory fear-conditioning paradigm. Exposure to repeated tones 24h after training also resulted in comparable freezing behavior in ELS and control mice, both in males and females. However, male (but not female) ELS compared to control mice showed significantly more freezing behavior between the tone-exposures, i.e. during the cue-off periods. Intraperitoneal administration of the GR antagonist RU38486 during adolescence (on postnatal days 28-30) fully prevented enhanced freezing behavior during the cue-off period in adult ELS males. Western blot analysis revealed no effects of ELS on hippocampal expression of glucocorticoid receptors, neither at postnatal day 28 nor at adult age, when mice were behaviorally tested. We conclude that ELS enhances freezing behavior in adult mice in a potentially safe context after cue-exposure, which can be normalized by brief blockade of glucocorticoid receptors during the critical developmental window of adolescence. PMID:27246249

  13. Circadian cycle-dependent EEG biomarkers of pathogenicity in adult mice following prenatal exposure to in utero inflammation.

    Science.gov (United States)

    Adler, D A; Ammanuel, S; Lei, J; Dada, T; Borbiev, T; Johnston, M V; Kadam, S D; Burd, I

    2014-09-01

    Intrauterine infection or inflammation in preterm neonates is a known risk for adverse neurological outcomes, including cognitive, motor and behavioral disabilities. Our previous data suggest that there is acute fetal brain inflammation in a mouse model of intrauterine exposure to lipopolysaccharides (LPS). We hypothesized that the in utero inflammation induced by LPS produces long-term electroencephalogram (EEG) biomarkers of neurodegeneration in the exposed mice that could be determined by using continuous quantitative video/EEG/electromyogram (EMG) analyses. A single LPS injection at E17 was performed in pregnant CD1 dams. Control dams were injected with same volumes of saline (LPS n=10, Control n=8). At postnatal age of P90-100, 24-h synchronous video/EEG/EMG recordings were done using a tethered recording system and implanted subdural electrodes. Behavioral state scoring was performed blind to treatment group, on each 10s EEG epoch using synchronous video, EMG and EEG trace signatures to generate individual hypnograms. Automated EEG power spectrums were analyzed for delta and theta-beta power ratios during wake vs. sleep cycles. Both control and LPS hypnograms showed an ultradian wake/sleep cycling. Since rodents are nocturnal animals, control mice showed the expected diurnal variation with significantly longer time spent in wake states during the dark cycle phase. In contrast, the LPS-treated mice lost this circadian rhythm. Sleep microstructure also showed significant alteration in the LPS mice specifically during the dark cycle, caused by significantly longer average non-rapid eye movement (NREM) cycle durations. No significance was found between treatment groups for the delta power data; however, significant activity-dependent changes in theta-beta power ratios seen in controls were absent in the LPS-exposed mice. In conclusion, exposure to in utero inflammation in CD1 mice resulted in significantly altered sleep architecture as adults that were circadian

  14. Effect of insulin supplementation on in vitro maturation of pre-antral follicles from adult and pre-pubertal mice.

    Science.gov (United States)

    Nath, Amar; Hakim, Bilal Ahmad; Rajender, Singh; Singh, Kavita; Sachdev, Monika; Konwar, Rituraj

    2016-05-01

    This study was aimed to determine the impact of insulin concentrations on in vitro pre-antral follicle growth, survival, antrum formation rate, and retrieval of mature oocytes in mice. Mice pre-antral follicle growth were recorded on days 2, 4, 6, 8, 10, and 12 in α-modified essential media (α-MEM) supplemented with insulin concentrations of 6, 8, and 10 μg/ml along with 10% FBS, 100 mIU/ml follicle stimulating hormone, 10 mIU/ml luteinizing hormone, 100 μg/ml penicillin, and 50 μg/ml streptomycin. After 12 d of growth in vitro, follicles were allowed to mature for 16-18 h in α-MEM supplemented with 1.5 IU/ml human chorionic gonadotrophin (hCG) and 5 ng/ml epidermal growth factor (EGF). The initial diameter (54.86 ± 2.5 μm) of mice oocyte progressively increased in all the three insulin concentration groups and attained a maximum size on day 12 (71.90 ± 2.8 μm). Supplementation with higher concentrations of insulin (both 8 and 10 μg/ml) significantly enhanced antrum formation without effecting the oocyte diameter and percent retrieval of mature oocyte in all the three concentration groups. Both in vitro cultured as well as in vivo collected follicles and oocytes showed similar localization and expression of oocyte maturation markers SAS1B and GDF9. Insulin concentration of 8 μg/ml was found to be optimal for in vitro follicle culture of adult mice (42-49 d). Optimized follicle culture conditions were also assessed successfully with pre-pubertal mice (12-14 d); however, adult mice showed higher follicle survival, antrum formation, and more mature oocytes production in comparison to pre-pubertal mice. PMID:26956357

  15. Chronic early postnatal scream sound stress induces learning deficits and NMDA receptor changes in the hippocampus of adult mice.

    Science.gov (United States)

    Hu, Lili; Han, Bo; Zhao, Xiaoge; Mi, Lihua; Song, Qiang; Wang, Jue; Song, Tusheng; Huang, Chen

    2016-04-13

    Chronic scream sounds during adulthood affect spatial learning and memory, both of which are sexually dimorphic. The long-term effects of chronic early postnatal scream sound stress (SSS) during postnatal days 1-21 (P1-P21) on spatial learning and memory in adult mice as well as whether or not these effects are sexually dimorphic are unknown. Therefore, the present study examines the performance of adult male and female mice in the Morris water maze following exposure to chronic early postnatal SSS. Hippocampal NR2A and NR2B levels as well as NR2A/NR2B subunit ratios were tested using immunohistochemistry. In the Morris water maze, stress males showed greater impairment in spatial learning and memory than background males; by contrast, stress and background females performed equally well. NR2B levels in CA1 and CA3 were upregulated, whereas NR2A/NR2B ratios were downregulated in stressed males, but not in females. These data suggest that chronic early postnatal SSS influences spatial learning and memory ability, levels of hippocampal NR2B, and NR2A/NR2B ratios in adult males. Moreover, chronic early stress-induced alterations exert long-lasting effects and appear to affect performance in a sex-specific manner. PMID:27015584

  16. Acute Parvovirus B19 Infection Leading to Severe Aplastic Anemia in a Previously Healthy Adult Female

    OpenAIRE

    Rajput, Rajesh; Sehgal, Ashish; Jain, Deepak; Sen, Rajeev; Gupta, Abhishek

    2011-01-01

    Human Parvovirus B19 has been linked to a variety of diseases. One of the most common complications is transient aplastic crisis in patients with chronic hemolytic anemia. Very few case reports have implicated this virus as a putative etiology behind hepatitis and severe aplastic anemia in immuno competent individuals. We report a case of severe aplastic anemia in a previously healthy adult female due to acute parvovirus B19 infection. Laboratory examination showed pancytopenia in peripheral ...

  17. Transient Treg-cell depletion in adult mice results in persistent self-reactive CD4(+) T-cell responses.

    Science.gov (United States)

    Nyström, Sofia N; Bourges, Dorothée; Garry, Sarah; Ross, Ellen M; van Driel, Ian R; Gleeson, Paul A

    2014-12-01

    Depletion of Foxp3(+) CD4(+) regulatory T cells (Treg) in adults results in chronic inflammation and autoimmune disease. However, the impact of transient Treg-cell depletion on self-reactive responses is poorly defined. Here, we studied the effect of transient depletion of Treg cells on CD4(+) T-cell responses to endogenous self-antigens. Short-term ablation of Treg cells in mice resulted in rapid activation of CD4(+) T cells, increased percentage of IFN-γ(+) and Th17 cells in lymphoid organs, and development of autoimmune gastritis. To track self-reactive responses, we analyzed the activation of naïve gastric-specific CD4(+) T cells. There was a dramatic increase in proliferation and acquisition of effector function of gastric-specific T cells in the stomach draining LNs of Treg-cell-depleted mice, compared with untreated mice, either during Treg-cell depletion or after Treg-cell reconstitution. Moreover, the hyperproliferation of gastric-specific T cells in the Treg-cell-ablated mice was predominantly antigen-dependent. Transient depletion of Treg cells resulted in a shift in the ratio of peripheral:thymic Treg cells in the reemerged Treg-cell population, indicating an altered composition of Treg cells. These findings indicate that transient Treg-cell depletion results in ongoing antigen-driven self-reactive T-cell responses and emphasize the continual requirement for an intact Treg-cell population. PMID:25231532

  18. Chronic social defeat stress increases dopamine D2 receptor dimerization in the prefrontal cortex of adult mice.

    Science.gov (United States)

    Bagalkot, T R; Jin, H-M; Prabhu, V V; Muna, S S; Cui, Y; Yadav, B K; Chae, H-J; Chung, Y-C

    2015-12-17

    The present study aimed to examine the effects of chronic social defeat stress on the dopamine receptors and proteins involved in post-endocytic trafficking pathways. Adult mice were divided into susceptible and unsusceptible groups after 10 days of social defeat stress. Western blot analysis was used to measure the protein expression levels of dopamine D2 receptors (D2Rs), a short (D2S) and a long form (D2L) and, D2R monomers and dimers, dopamine D1 receptors (D1Rs), neuronal calcium sensor-1 (NCS-1) and G protein-coupled receptor-associated sorting protein-1 (GASP-1), and reverse transcription-polymerase chain reaction (RT-PCR) was used to measure the mRNA expression levels of D2S, D2L, D2R monomers and dimers, and D1Rs in different brain areas. We observed increased expression of D2S, D2L and D2Rs dimers in the prefrontal cortex (PFC) of susceptible and/or unsusceptible mice compared with controls. The only significant findings with regard to mRNA expression levels were lower expression of D2S mRNA in the amygdala (AMYG) of susceptible and unsusceptible mice compared with controls. The present study demonstrated that chronic social defeat stress induced increased expression of D2S, D2L, and D2R dimers in the PFC of susceptible and/or unsusceptible mice. PMID:26484605

  19. Expression of Autoactivated Stromelysin-1 in Mammary Glands of Transgenic Mice Leads to a Reactive Stroma During Early Development

    Energy Technology Data Exchange (ETDEWEB)

    Thomasset, N.; Lochter, A.; Sympson, C.J.; Lund, L.R.; Williams, D.R.; Behrendtsen, O.; Werb, Z.; Bissell, M.J.

    1998-04-24

    cells produce fibronectin, collagens, proteoglycans, and some components of the BM, as well as a number of proteinases that can effectively degrade BM constituents. Stromal and epithelial cells of the mammary gland interact to regulate BM synthesis and degradation and, thus, mammary function. Matrix metalloproteinases (MMPs) are extracellular matrix (ECM)-degrading enzymes involved in mammary gland morphogenesis and involution. During late pregnancy and lactation, when the gland becomes fully functional, the expression of MMPs is low however, during involution, when the gland loses function and is remodeled, synthesis of ECM-degrading proteinases increases dramatically.11 Disturbance of the balance between MMPs and MMP inhibitors leads to either unscheduled involution or prolonged lactation. Mammary glands of virgin mice expressing an autoactivating stromelysin-1 (SL-1) transgene display supernumerary branches and precocious alveolar development, accompanied by the synthesis of {beta}-casein at levels found normally only during early pregnancy. During late pregnancy, increased expression of the SL-1 transgene leads to a reduction in expression of pregnancy-specific genes. Later in life, some SL-1 transgenic mice develop hyperplastic, dysplastic, and ductal carcinoma in situ-like lesions, as well as malignant tumors. Little is known about the sequence of changes that occurs before formation of an overt reactive stroma in breast cancer. In the present study, we address the question of whether and how the stromal compartment is altered as a consequence of inappropriate SL-1 transgene expression in the epithelium.

  20. Leptin-independent programming of adult body weight and adiposity in mice.

    Science.gov (United States)

    Cottrell, Elizabeth C; Martin-Gronert, Malgorzata S; Fernandez-Twinn, Denise S; Luan, Jian'an; Berends, Lindsey M; Ozanne, Susan E

    2011-02-01

    Low birth weight and rapid postnatal weight gain are independent and additive risk factors for the subsequent development of metabolic disease. Despite an abundance of evidence for these associations, mechanistic data are lacking. The hormone leptin has received significant interest as a potential programming factor, because differences in the profile of leptin in early life have been associated with altered susceptibility to obesity. Whether leptin alone is a critical factor for programming obesity has, until now, remained unclear. Using the leptin-deficient ob/ob mouse, we show that low birth weight followed by rapid catch-up growth during lactation (recuperated offspring) leads to a persistent increase in body weight in adult life, both in wild-type and ob/ob animals. Furthermore, recuperated offspring are hyperphagic and epididymal fat pad weights are significantly increased, reflecting greater adiposity. These results show definitively that factors other than leptin are crucial in the programming of energy homeostasis in this model and are powerful enough to alter adiposity in a genetically obese strain. PMID:21209019

  1. Pubertal exposure to di-(2-ethylhexyl) phthalate influences social behavior and dopamine receptor D2 of adult female mice.

    Science.gov (United States)

    Wang, Ran; Xu, Xiaohong; Zhu, Qingjie

    2016-02-01

    DEHP, one of the most commonly phthalates used in plastics and many other products, is an environmental endocrine disruptor (EED). Puberty is another critical period for the brain development besides the neonatal period and is sensitive to EEDs. Social behavior is organized during puberty, so the present study is to investigate whether pubertal exposure to DEHP influenced social behavior of adult female mice. The results showed that pubertal exposure to DEHP for 2 weeks did not change the serum level of 17β-estradiol and the weight of uterus of adult females, but decreased the number of grid crossings and the frequency of rearing, and increased grooming in open field. DEHP reduced the open arm entries and the time spent in open arms in the elevated plus maze. DEHP reduced mutual sniffing and grooming between unfamiliar conspecifics in social play task and reduced the right chamber (containing unfamiliar female mouse) entries and the frequency of sniffing unfamiliar female mouse. DEHP at 1 mg kg(-1) d(-1) reduced the time spent in right chamber. Furthermore, Western blot analyses showed that DEHP decreased the levels of estrogen receptor β (ERβ), dopamine receptor D2, and the phosphorylation of ERKs in striatum. These results suggest that pubertal exposure to DEHP impaired social investigation and sociability and influenced anxiety-like state of adult female mice. The decreased activity of ERK1/2, and the down-regulated D2 and ERβ in striatum may be associated with the DEHP-induced changes of emotional and social behavior in mice. PMID:26524146

  2. Unusual Repertoire of Vocalizations in Adult BTBR T+tf/J Mice During Three Types of Social Encounters

    Science.gov (United States)

    Scattoni, Maria Luisa; Ricceri, Laura; Crawley, Jacqueline N.

    2010-01-01

    BTBR T+tf/J (BTBR) is an inbred mouse strain that displays social deficits and repetitive behaviors analogous to the first and third diagnostic symptoms of autism. We previously reported an unusual pattern of ultrasonic vocalizations in BTBR pups that may represent a behavioral homologue to the second diagnostic symptom of autism, impaired communication. The present study investigated the social and vocal repertoire in adult BTBR mice, to evaluate the role of ultrasonic vocalizations in multiple social situations at the adult stage of development. Three different social contexts were considered: male-female, male-male (resident-intruder) and female-female interactions. Behavioral responses and ultrasonic vocalizations were recorded for BTBR and for the highly social control strain C57BL/6J (B6). No episodes of overt fighting or mating were observed during the short durations of the three different experimental encounters. BTBR displayed lower levels of vocalizations and social investigation in all three social contexts as compared to B6. In addition, the correlation analyses between social investigation and USVs emission rate revealed that in B6 mice the two variables were positively correlated in all the three different social settings, whereas in BTBR mice the positive correlation was significant only in the male-female interactions. These findings strongly support the value of simultaneously recording two aspects of the mouse social repertoire, social motivation and bioacoustic communication. Moreover, our findings in adults are consistent with previous results in pups, showing an unusual vocal repertoire in BTBR as compared to B6. PMID:20618443

  3. Selective Life-Long Skeletal Myofiber-Targeted VEGF Gene Ablation Impairs Exercise Capacity in Adult Mice.

    Science.gov (United States)

    Tang, Kechun; Gu, Yusu; Dalton, Nancy D; Wagner, Harrieth; Peterson, Kirk L; Wagner, Peter D; Breen, Ellen C

    2016-02-01

    Exercise is dependent on adequate oxygen supply for mitochondrial respiration in both cardiac and locomotor muscle. To determine whether skeletal myofiber VEGF is critical for regulating exercise capacity, independent of VEGF function in the heart, ablation of the VEGF gene was targeted to skeletal myofibers (skmVEGF-/-) during embryogenesis (∼ E9.5), leaving intact VEGF expression by all other cells in muscle. In adult mice, VEGF levels were decreased in the soleus (by 65%), plantaris (94%), gastrocnemius (74%), EDL (99%) and diaphragm (64%) (P exercise capacity. PMID:26201683

  4. Long-term exposure to decabrominated diphenyl ether impairs CD8 T-cell function in adult mice

    OpenAIRE

    Zeng, Weihong; Wang, Ying; Liu, Zhicui; Khanniche, Asma; Hu, Qingliang; Feng, Yan; Ye, Weiyi; Yang, Jianglong; Wang, Shujun; Zhou, Lin; Shen, Hao; Wang, Yan

    2014-01-01

    Polybrominated diphenyl ethers (PBDEs) are ubiquitous environmental pollutants that accumulate to high levels in human populations that are subject to occupational or regional industry exposure. PBDEs have been shown to affect human neuronal, endocrine and reproductive systems, but their effect on the immune system is not well understood. In this study, experimental adult mice were intragastrically administered 2,2′,3,3′,4,4′,5,5′,6,6′-decabromodiphenyl ether (BDE-209) at doses of 8, 80 or 80...

  5. Methionine restriction restores a younger metabolic phenotype in adult mice with alterations in fibroblast growth factor 21

    OpenAIRE

    Lees, Emma K.; Król, Elżbieta; Grant, Louise; Shearer, Kirsty; Wyse, Cathy; Moncur, Eleanor; Bykowska, Aleksandra S; Mody, Nimesh; Gettys, Thomas W.; Delibegovic, Mirela

    2014-01-01

    Methionine restriction (MR) decreases body weight and adiposity and improves glucose homeostasis in rodents. Similar to caloric restriction, MR extends lifespan, but is accompanied by increased food intake and energy expenditure. Most studies have examined MR in young animals; therefore, the aim of this study was to investigate the ability of MR to reverse age-induced obesity and insulin resistance in adult animals. Male C57BL/6J mice aged 2 and 12 months old were fed MR (0.172% methionine) o...

  6. Molecular Mechanisms Mediating a Deficit in Recall of Fear Extinction in Adult Mice Exposed to Cocaine In Utero

    OpenAIRE

    Kabir, Zeeba D.; Katzman, Aaron C.; Kosofsky, Barry E.

    2013-01-01

    Prenatal cocaine exposure has been shown to alter cognitive processes of exposed individuals, presumed to be a result of long-lasting molecular alterations in the brain. In adult prenatal cocaine exposed (PCOC) mice we have identified a deficit in recall of fear extinction, a behavior that is dependent on the medial prefrontal cortex (mPFC) and the hippocampus. While we observed no change in the constitutive expression of brain derived neurotrophic factor (BDNF) protein and mRNA in the mPFC a...

  7. Red Palm Oil Attenuates Lead Acetate Induced Testicular Damage in Adult Male Sprague-Dawley Rats

    Directory of Open Access Journals (Sweden)

    A. I. Jegede

    2015-01-01

    Full Text Available To study the protective effect of Red Palm Oil (RPO on testicular damage induced by administration of lead acetate on male Sprague-Dawley rats, 28 rats divided into four groups of 7 animals each were used. They were administered orally with RPO (1 mL and 2 mL and lead acetate (i.p. 6 mg/kg body weight/day, respectively. Treatment was conducted for 8 weeks, and 24 hrs after the last treatment the rats were sacrificed using cervical dislocation. Sperms collected from epididymis were used for seminal fluid analyses; while the testes sample was used for ROS and oxidative enzyme activities assessment. Statistical analysis was carried out using GraphPad Prism 5.02 statistical analysis package. Administration of lead acetate increased generation of reactive oxygen species (ROS significantly (p<0.05 as evidenced by the elevated value of H2O2 and LPO and decreased GSH level. Also there was reduced epididymal sperm count, poor grade of sperm motility, and lower percentage of normal sperm morphology significantly. Coadministration with RPO, however, has a protective effect against lead toxicity by decreasing H2O2 production, increased GSH level, and increased sperm qualities especially. This shows that RPO has a potential to attenuate the toxic effect of lead on testicular cells preventing possible resultant male infertility.

  8. Red Palm Oil Attenuates Lead Acetate Induced Testicular Damage in Adult Male Sprague-Dawley Rats

    Science.gov (United States)

    Jegede, A. I.; Offor, U.; Azu, O. O.; Akinloye, O.

    2015-01-01

    To study the protective effect of Red Palm Oil (RPO) on testicular damage induced by administration of lead acetate on male Sprague-Dawley rats, 28 rats divided into four groups of 7 animals each were used. They were administered orally with RPO (1 mL and 2 mL) and lead acetate (i.p.) 6 mg/kg body weight/day, respectively. Treatment was conducted for 8 weeks, and 24 hrs after the last treatment the rats were sacrificed using cervical dislocation. Sperms collected from epididymis were used for seminal fluid analyses; while the testes sample was used for ROS and oxidative enzyme activities assessment. Statistical analysis was carried out using GraphPad Prism 5.02 statistical analysis package. Administration of lead acetate increased generation of reactive oxygen species (ROS) significantly (p < 0.05) as evidenced by the elevated value of H2O2 and LPO and decreased GSH level. Also there was reduced epididymal sperm count, poor grade of sperm motility, and lower percentage of normal sperm morphology significantly. Coadministration with RPO, however, has a protective effect against lead toxicity by decreasing H2O2 production, increased GSH level, and increased sperm qualities especially. This shows that RPO has a potential to attenuate the toxic effect of lead on testicular cells preventing possible resultant male infertility. PMID:26516332

  9. Behavioural disturbances in adult CD-1 mice and absence of effects on their offspring upon SO{sub 2} exposure

    Energy Technology Data Exchange (ETDEWEB)

    Petruzzi, S. [Section of Behavioural Pathophysiology, Laboratorio di Fisiopatologia di Organo e di Sistema, Istituto Superiore di Sanita, Roma (Italy); Dell`Omo, G. [Section of Behavioural Pathophysiology, Laboratorio di Fisiopatologia di Organo e di Sistema, Istituto Superiore di Sanita, Roma (Italy); Fiore, M. [Section of Behavioural Pathophysiology, Laboratorio di Fisiopatologia di Organo e di Sistema, Istituto Superiore di Sanita, Roma (Italy); Chiarotti, F. [Section of Behavioural Pathophysiology, Laboratorio di Fisiopatologia di Organo e di Sistema, Istituto Superiore di Sanita, Roma (Italy); Bignami, G. [Section of Behavioural Pathophysiology, Laboratorio di Fisiopatologia di Organo e di Sistema, Istituto Superiore di Sanita, Roma (Italy); Alleva, E. [Section of Behavioural Pathophysiology, Laboratorio di Fisiopatologia di Organo e di Sistema, Istituto Superiore di Sanita, Roma (Italy)

    1996-09-01

    Adult male and female CD-1 mice were exposed to different SO{sub 2} concentrations (0, 5, 12, or 30 ppm) for 24 days, from 9 days before the formation of breeding pairs to pregnancy day 12-14. This exposure was near-continuous, covering about 80% of the total time. The offspring of exposed dams were cross-fostered shortly after birth to dams not previously exposed. Videorecordings of the adult subjects` activities during the first hour after the start of exposure showed marked, acute transient behavioural effects such as increase of rearing and social interactions, which were more pronounced in males than in females. Subsequent activity tests on exposure days 3, 6, and 9 showed subacute effects including a dose-dependent decrease of grooming and an increase of digging as well as changes in chamber crossing and wall-rearing which were not dose-dependent; most of these effects were more pronounced in females than in males. Food and water consumption and body weight declined in a dose-dependent fashion only after the formation of breeding pairs, when consummatory responses were enhanced in the controls. Reproductive performance as well as postnatal somatic and neurobehavioural development of the offspring (the latter assessed by an observational test battery including eight reflexes and responses) were not affected by SO{sub 2}. Passive avoidance acquisition and retention at the young adult stage (60 days) and response changes produced by repeated apparatus exposure in non-reinforced animals (habituation) were similarly unaffected. The data indicate that SO{sub 2} produces transient, acute behavioural disturbances and more subtle subacute response changes in adult mice which may be due, at least partly, to a functional interference with olfactory modulation of mouse behaviour. The absence of effects on reproductive performance and neurobehavioural development of the offspring suggests that the risk to the developing organism from gestational SO{sub 2} exposure is low.

  10. Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice.

    Directory of Open Access Journals (Sweden)

    Budd A Tucker

    Full Text Available This study was designed to determine whether adult mouse induced pluripotent stem cells (iPSCs, could be used to produce retinal precursors and subsequently photoreceptor cells for retinal transplantation to restore retinal function in degenerative hosts. iPSCs were generated using adult dsRed mouse dermal fibroblasts via retroviral induction of the transcription factors Oct4, Sox2, KLF4 and c-Myc. As with normal mouse ES cells, adult dsRed iPSCs expressed the pluripotency genes SSEA1, Oct4, Sox2, KLF4, c-Myc and Nanog. Following transplantation into the eye of immune-compromised retinal degenerative mice these cells proceeded to form teratomas containing tissue comprising all three germ layers. At 33 days post-differentiation a large proportion of the cells expressed the retinal progenitor cell marker Pax6 and went on to express the photoreceptor markers, CRX, recoverin, and rhodopsin. When tested using calcium imaging these cells were shown to exhibit characteristics of normal retinal physiology, responding to delivery of neurotransmitters. Following subretinal transplantation into degenerative hosts differentiated iPSCs took up residence in the retinal outer nuclear layer and gave rise to increased electro retinal function as determined by ERG and functional anatomy. As such, adult fibroblast-derived iPSCs provide a viable source for the production of retinal precursors to be used for transplantation and treatment of retinal degenerative disease.

  11. Protocol to isolate a large amount of functional oligodendrocyte precursor cells from the cerebral cortex of adult mice and humans.

    Directory of Open Access Journals (Sweden)

    Eva María Medina-Rodríguez

    Full Text Available During development, oligodendrocytes are generated from oligodendrocyte precursor cells (OPCs, a cell type that is a significant proportion of the total cells (3-8% in the adult central nervous system (CNS of both rodents and humans. Adult OPCs are responsible for the spontaneous remyelination that occurs in demyelinating diseases like Multiple Sclerosis (MS and they constitute an interesting source of cells for regenerative therapy in such conditions. However, there is little data regarding the neurobiology of adult OPCs isolated from mice since an efficient method to isolate them has yet to be established. We have designed a protocol to obtain viable adult OPCs from the cerebral cortex of different mouse strains and we have compared its efficiency with other well-known methods. In addition, we show that this protocol is also useful to isolate functional OPCs from human brain biopsies. Using this method we can isolate primary cortical OPCs in sufficient quantities so as to be able to study their survival, maturation and function, and to facilitate an evaluation of their utility in myelin repair.

  12. Periostin Deficiency Increases Bone Damage and Impairs Injury Response to Fatigue Loading in Adult Mice

    OpenAIRE

    Bonnet, Nicolas; Gineyts, Evelyne; Ammann, Patrick; Conway, Simon J; Garnero, Patrick; Ferrari, Serge Livio

    2013-01-01

    Bone damage removal and callus formation in response to fatigue loading are essential to prevent fractures. Periostin (Postn) is a matricellular protein that mediates adaptive response of cortical bone to loading. Whether and how periostin influences damage and the injury response to fatigue remains unknown. We investigated the skeletal response of Postn -/- and Postn +/+ mice after fatigue stimulus by axial compression of their tibia. In Postn +/+ mice, cracks number and surface (CsNb, CsS) ...

  13. Long-term voluntary running improves diet-induced adiposity in young adult mice

    Science.gov (United States)

    The present study investigated the effects of long-term voluntary running on diet-induced adiposity in male C57BL/6 mice. Four-week old mice (n = 15 per group) were fed the AIN93G diet or a 45% high-fat diet (% kcal.) with or without access to in-cage activity wheels for 14 weeks. The high-fat die...

  14. Xylitol Affects the Intestinal Microbiota and Metabolism of Daidzein in Adult Male Mice

    OpenAIRE

    Motoi Tamura; Chigusa Hoshi; Sachiko Hori

    2013-01-01

    This study examined the effects of xylitol on mouse intestinal microbiota and urinary isoflavonoids. Xylitol is classified as a sugar alcohol and used as a food additive. The intestinal microbiota seems to play an important role in isoflavone metabolism. Xylitol feeding appears to affect the gut microbiota. We hypothesized that dietary xylitol changes intestinal microbiota and, therefore, the metabolism of isoflavonoids in mice. Male mice were randomly divided into two groups: those fed a 0....

  15. Chondrocyte-Specific Inhibition of β-Catenin Signaling Leads to Dysplasia of the Caudal Vertebrae in Mice

    OpenAIRE

    Shu, Bing; Li, Tian-Fang; Li, Xiao-Feng; Tang, De-Zhi; Zhang, Yejia; Shi, Qi; Wang, Yong-Jun; Chen, Di

    2013-01-01

    Study Design. To inhibit β-catenin specifically signaling in chondrocytes Col2-ICAT transgenic mice were generated. Anomalies in caudal vertebrae were detected during embryonic and postnatal stages of Col2-ICAT transgenic mice. Objective. To determine the role of canonical β-catenin signaling in caudal vertebral development. Summary of Background Data. β-catenin signaling plays a critical role in skeletal development. Col2-ICAT transgenic mice were generated to selectively block β-catenin sig...

  16. Prenatal stress causes alterations in the morphology of microglia and the inflammatory response of the hippocampus of adult female mice

    Directory of Open Access Journals (Sweden)

    Diz-Chaves Yolanda

    2012-04-01

    Full Text Available Abstract Background Stress during fetal life increases the risk of affective and immune disorders later in life. The altered peripheral immune response caused by prenatal stress may impact on brain function by the modification of local inflammation. In this study we have explored whether prenatal stress results in alterations in the immune response in the hippocampus of female mice during adult life. Methods Pregnant C57BL/6 mice were subjected three times/day during 45 minutes to restraint stress from gestational Day 12 to delivery. Control non-stressed pregnant mice remained undisturbed. At four months of age, non-stressed and prenatally stressed females were ovariectomized. Fifteen days after surgery, mice received an i.p. injection of vehicle or of 5 mg/kg of lipopolysaccharide (LPS. Mice were sacrificed 20 hours later by decapitation and the brains were removed. Levels of interleukin-1β (IL1β, interleukin-6 (IL-6, tumor necrosis factor α (TNF-α, interferon γ-inducible protein 10 (IP10, and toll-like receptor 4 mRNA were assessed in the hippocampus by quantitative real-time polymerase chain reaction. Iba1 immunoreactivity was assessed by immunocytochemistry. Statistical significance was determined by one-way or two-way analysis of variance. Results Prenatal stress, per se, increased IL1β mRNA levels in the hippocampus, increased the total number of Iba1-immunoreactive microglial cells and increased the proportion of microglial cells with large somas and retracted cellular processes. In addition, prenatally stressed and non-stressed animals showed different responses to peripheral inflammation induced by systemic administration of LPS. LPS induced a significant increase in mRNA levels of IL-6, TNF-α and IP10 in the hippocampus of prenatally stressed mice but not of non-stressed animals. In addition, after LPS treatment, prenatally stressed animals showed a higher proportion of Iba1-immunoreactive cells in the hippocampus with

  17. A case report of adult lead toxicity following use of Ayurvedic herbal medication

    OpenAIRE

    Breeher, Laura; Gerr, Fred; Fuortes, Laurence

    2013-01-01

    Introduction Ayurvedic medications consist of herbs that may be intentionally combined with metals, such as lead, mercury, iron, and zinc. Ayurvedic practitioners and their patients believe that the toxic properties of the metals are reduced or eliminated during preparation and processing. Case report A 69 year old Caucasian male retired professional with a prior history of stroke presented for evaluation of new onset depression, fatigue, generalized weakness, constipation, anorexia, and weig...

  18. Disruption of NBS1 gene leads to early embryonic lethality in homozygous null mice and induces specific cancer in heterozygous mice

    Energy Technology Data Exchange (ETDEWEB)

    Kurimasa, Akihiro; Burma, Sandeep; Henrie, Melinda; Ouyang, Honghai; Osaki, Mitsuhiko; Ito, Hisao; Nagasawa, Hatsumi; Little, John B.; Oshimura, Mitsuo; Li, Gloria C.; Chen, David J.

    2002-04-15

    Nijmegen breakage syndrome (NBS) is a rare autosomal recessive chromosome instability syndrome characterized by microcephaly, growth retardation, immunodeficiency, and cancer predisposition, with cellular features similar to that of ataxia telangiectasia (AT). NBS results from mutations in the mammalian gene Nbs1 that codes for a 95-kDa protein called nibrin, NBS1, or p95. To establish an animal model for NBS, we attempted to generate NBS1 knockout mice. However, NBS1 gene knockouts were lethal at an early embryonic stage. NBS1 homozygous(-/-) blastocyst cells cultured in vitro showed retarded growth and subsequently underwent growth arrest within 5 days of culture. Apoptosis, assayed by TUNEL staining, was observed in NBSI homozygous(-/-) blastocyst cells cultured for four days. NBSI heterozygous(+/-) mice were normal, and exhibited no specific phenotype for at least one year. However, fibroblast cells from NBSI heterozygous(+/-) mice displayed an enhanced frequency of spontaneous transformation to anchorage-independent growth as compared to NBS1 wild-type(+/+) cells. Furthermore, heterozygous(+/-) mice exhibited a high incidence of hepatocellular carcinoma after one year compared to wild-type mice, even though no significant differences in the incidence of other tumors such as lung adenocarcinoma and lymphoma were observed. Taken together, these results strongly suggest that NBS1 heterozygosity and reduced NBSI expression induces formation of specific tumors in mice.

  19. Gestational exposure to diethylstilbestrol alters cardiac structure/function, protein expression and DNA methylation in adult male mice progeny

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Rami, E-mail: rami.haddad@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec, Canada H3A 1A2 (Canada); Kasneci, Amanda, E-mail: amanda.kasneci@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); Mepham, Kathryn, E-mail: katherine.mepham@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec, Canada H3A 1A2 (Canada); Sebag, Igal A., E-mail: igal.sebag@mcgill.ca [Division of Cardiology, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); and others

    2013-01-01

    Pregnant women, and thus their fetuses, are exposed to many endocrine disruptor compounds (EDCs). Fetal cardiomyocytes express sex hormone receptors making them potentially susceptible to re-programming by estrogenizing EDCs. Diethylstilbestrol (DES) is a proto-typical, non-steroidal estrogen. We hypothesized that changes in adult cardiac structure/function after gestational exposure to the test compound DES would be a proof in principle for the possibility of estrogenizing environmental EDCs to also alter the fetal heart. Vehicle (peanut oil) or DES (0.1, 1.0 and 10.0 μg/kg/da.) was orally delivered to pregnant C57bl/6n dams on gestation days 11.5–14.5. At 3 months, male progeny were left sedentary or were swim trained for 4 weeks. Echocardiography of isoflurane anesthetized mice revealed similar cardiac structure/function in all sedentary mice, but evidence of systolic dysfunction and increased diastolic relaxation after swim training at higher DES doses. The calcium homeostasis proteins, SERCA2a, phospholamban, phospho-serine 16 phospholamban and calsequestrin 2, are important for cardiac contraction and relaxation. Immunoblot analyses of ventricle homogenates showed increased expression of SERCA2a and calsequestrin 2 in DES mice and greater molecular remodeling of these proteins and phospho-serine 16 phospholamban in swim trained DES mice. DES increased cardiac DNA methyltransferase 3a expression and DNA methylation in the CpG island within the calsequestrin 2 promoter in heart. Thus, gestational DES epigenetically altered ventricular DNA, altered cardiac function and expression, and reduced the ability of adult progeny to cardiac remodel when physically challenged. We conclude that gestational exposure to estrogenizing EDCs may impact cardiac structure/function in adult males. -- Highlights: ► Gestational DES changes cardiac SERCA2a and CASQ2 expression. ► Echocardiography identified systolic dysfunction and increased diastolic relaxation. ► DES

  20. Hypoxia during pregnancy in rats leads to the changes of the cerebral white matter in adult offspring

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lingxing; Cai, Ruowei [Department of Neurology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian (China); Lv, Guorong, E-mail: lxingwan502@gmail.com [Department of Ultrasound, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian (China); Huang, Ziyang; Wang, Zhenhua [Department of Cardiology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian (China)

    2010-05-28

    The aim of the present study is to evaluate the effect of reduced fetal oxygen supply on cerebral white matter in the adult offspring and further assess its susceptibility to postnatal hypoxia and high-fat diet. Based on a 3 x 2 full factorial design consisting of three factors of maternal hypoxia, postnatal high-fat diet, and postnatal hypoxia, the ultrastructure of myelin, axon and capillaries were observed, and the expression of myelin basic protein (MBP), neurofilament-H+L(NF-H+L), and glial fibrillary acidic protein (GFAP) was analyzed in periventricular white matter of 16-month-old offspring. Demyelination, injured axon and damaged microvasculars were observed in maternal hypoxia offspring. The main effect of maternal hypoxia lead to decreased expression of MBP or NF-H+L, and increased expression of GFAP (all P < 0.05). Moreover, there was positive three-way interaction among maternal hypoxia, high-fat diet and postnatal hypoxia on MBP, NF-H+L or GFAP expression (all P < 0.05). In summary, our results indicated that maternal hypoxia during pregnancy in rats lead to changes of periventricular white matter in adult offspring, including demyelination, damaged axon and proliferated astroglia. This effect was amplified by high-fat diet and postnatal hypoxia.

  1. Hypoxia during pregnancy in rats leads to the changes of the cerebral white matter in adult offspring

    International Nuclear Information System (INIS)

    The aim of the present study is to evaluate the effect of reduced fetal oxygen supply on cerebral white matter in the adult offspring and further assess its susceptibility to postnatal hypoxia and high-fat diet. Based on a 3 x 2 full factorial design consisting of three factors of maternal hypoxia, postnatal high-fat diet, and postnatal hypoxia, the ultrastructure of myelin, axon and capillaries were observed, and the expression of myelin basic protein (MBP), neurofilament-H+L(NF-H+L), and glial fibrillary acidic protein (GFAP) was analyzed in periventricular white matter of 16-month-old offspring. Demyelination, injured axon and damaged microvasculars were observed in maternal hypoxia offspring. The main effect of maternal hypoxia lead to decreased expression of MBP or NF-H+L, and increased expression of GFAP (all P < 0.05). Moreover, there was positive three-way interaction among maternal hypoxia, high-fat diet and postnatal hypoxia on MBP, NF-H+L or GFAP expression (all P < 0.05). In summary, our results indicated that maternal hypoxia during pregnancy in rats lead to changes of periventricular white matter in adult offspring, including demyelination, damaged axon and proliferated astroglia. This effect was amplified by high-fat diet and postnatal hypoxia.

  2. The Effect of Orally Administered L-carnitine on Testis Tissue Sperm Parameters and Daily Sperm Production in Adult Mice

    Directory of Open Access Journals (Sweden)

    Zohre Zare

    2010-01-01

    Full Text Available Introduction: The purpose of this study was to evaluate body and testis weight, testis tissue,counts, motility, viability, morphology, and chromatin quality of epididymal sperm, aswell as the testicular spermatid number (TSN per gram of testis, and daily sperm production(DSP in L-carnitine treated mice.Materials and Methods: In the present study, adult male NMRI mice (mean age of 4weeks were administered L-carnitine by gavage for two weeks. The experimental groupsreceived 1mg L-carnitine/100 μl deionized water and 10 mg L-carnitine/100 μl deionizedwater, respectively. The control group did not receive L-carnitine. All samples were assessedaccording to World Health Organization (WHO criteria. Sperm morphology wasassessed with papanicula staining. Sperm chromatin quality was assessed using anilinebluestaining.The left testes were fixed in Bouins solution for histological examination and the end sliceswere stained with hematoxilin and eosin (H&E. The right testis was homogenized, andTSN and DSP were calculated with an improved neubauer haemocytometer and respectiveformula.Results: Administration of L-carnitine induced significant reduction in body weight (p<0.05and an increase in tchromatine quality (p<0.05. Amongst the other parameters no significantdifferences were observed in all groups.Conclusion: These results show that oral administration of L-carnitine to mice with normalspermatogenesis does not have any significant effect on the reproductive systems.Thus, L-carnitine seems to be ineffective in normospermic animals.

  3. Chronic treatment with fluoxetine for more than 6 weeks decreases neurogenesis in the subventricular zone of adult mice

    Directory of Open Access Journals (Sweden)

    Ohira Koji

    2011-03-01

    Full Text Available Abstract Background Recent studies indicate that chronic treatment with serotonergic antidepressants upregulates adult neurogenesis of the dentate gyrus (DG. In contrast, some studies claimed that there was very little alteration of neurogenesis in the subventricular zone (SVZ by the antidepressants. Since almost all of those studies treated animals with drugs for 2 to 4 weeks as chronic treatment models of antidepressants, it is possible that antidepressant treatments for longer periods would affect adult neurogenesis in the SVZ. Results In the present study, we examined the effects of long-term (up to 9 weeks administration of fluoxetine (FLX, a selective serotonin reuptake inhibitor, on cell proliferation and survival in the DG and the SVZ of adult mice. As reported previously, in the DG of mice treated with FLX for 3, 6, or 9 weeks that were also injected with 5-bromodeoxyuridine (BrdU in the last 3 days before perfusion, the numbers of Ki67- and BrdU-positive cells, which are cell proliferation markers, were significantly upregulated even at 3 weeks after the onset of the FLX treatments, and these increases were sustained in mice treated with FLX for 9 weeks. On the other hand, in the SVZ, we found a small, insignificant decrease in the numbers of Ki67- and BrdU-positive cells at 3 weeks, followed by highly significant decreases in the numbers of Ki67- and BrdU-positive cells at both 6 and 9 weeks. Furthermore, among olfactory newly generated cells that survived for 3 weeks after BrdU injection, the number of new cells was decreased at 9 weeks of FLX treatment. Conclusions These results demonstrate that long-term (more than 6 weeks treatment with FLX has the opposite effect on neurogenesis in the SVZ than it does in the DG. The results also suggest that the decrease in neurogenesis in the SVZ might be involved in some aspects of the drugs' therapeutic effects on depression. In addition, our findings raise the possibility that some of the

  4. Apple pectin affects the efficacy of epigallocatechin gallate on oral sucrose tolerance test in adult mice.

    Science.gov (United States)

    Tamura, M; Hori, S

    2011-11-01

    Epigallocatechin gallate (EGCg), a dietary polyphenol and a major tea catechin, is a known sucrase inhibitor. Since dietary pectin is known to modulate some of the functions of the gastrointestinal tract, we investigated whether it could specifically affect the efficacy of EGCg on an oral sucrose tolerance test in mice. Male Crj:CD-1 (ICR) mice (seven weeks old) were randomly divided into two groups and fed a 5 % apple pectin (PE) or 5 % cellulose (CE) diet (control diet) for 28 days. After the experimental diet period, all mice were fasted overnight. A volume of 0.2 mL EGCg (20 mg/mL) was orally administered to all the mice by stainless steel feeding needle via injection syringe and a sucrose tolerance test was performed. The blood glucose levels were measured in blood collected from the tail vein using the OneTouch® Ultra® blood glucose monitoring system. Blood glucose levels at 30 minutes and 60 minutes after sucrose loading in the PE group were significantly higher than initial blood glucose levels. However, blood glucose levels at 30 minutes, 60 minutes, and 120 minutes after sucrose loading in the CE group were not significantly higher than initial blood glucose levels. After laparotomy, plasma lipids were also measured. Plasma triglyceride concentrations were significantly greater in the PE group than in the CE (control) group. This demonstrates that dietary pectin can affect the efficacy of EGCg on the oral sucrose tolerance test in mice. PMID:22673921

  5. The p38α MAPK function in osteoprecursors is required for bone formation and bone homeostasis in adult mice.

    Directory of Open Access Journals (Sweden)

    Edgardo Rodríguez-Carballo

    Full Text Available p38 MAPK activity plays an important role in several steps of the osteoblast lineage progression through activation of osteoblast-specific transcription factors and it is also essential for the acquisition of the osteoblast phenotype in early development. Although reports indicate p38 signalling plays a role in early skeletal development, its specific contributions to adult bone remodelling are still to be clarified.We evaluated osteoblast-specific deletion of p38α to determine its significance in early skeletogenesis, as well as for bone homeostasis in adult skeleton. Early p38α deletion resulted in defective intramembranous and endochondral ossification in both calvaria and long bones. Mutant mice showed reduction of trabecular bone volume in distal femurs, associated with low trabecular thickness. In addition, knockout mice also displayed decreased femoral cortical bone volume and thickness. Deletion of p38α did not affect osteoclast function. Yet it impaired osteoblastogenesis and osteoblast maturation and activity through decreased expression of osteoblast-specific transcription factors and their targets. Furthermore, the inducible Cre system allowed us to control the onset of p38α disruption after birth by removal of doxycycline. Deletion of p38α at three or eight weeks postnatally led to significantly lower trabecular and cortical bone volume after 6 or 12 months.Our data demonstrates that, in addition to early skeletogenesis, p38α is essential for osteoblasts to maintain their function in mineralized adult bone, as bone anabolism should be sustained throughout life. Moreover, our data also emphasizes that clinical development of p38 inhibitors should take into account their potential bone effects.

  6. Spectrographic analysis of the ultrasonic vocalisations of adult male and female BALB/c mice

    Science.gov (United States)

    Gourbal, Benjamin E. F.; Barthelemy, Mathieu; Petit, Gilles; Gabrion, Claude

    In this study, a spectrographic analysis was designed to improve the description of the shape, the modulations, the rate, length and frequencies of BALB/c mouse calls in different behavioural situations. Male and female calls emitted during investigation of cages with clean bedding, soiled with male or female bedding, and during same-sex encounters, were recorded and described. BALB/c male mice uttered different types of vocalisations both when investigating counterpart odour cues and when interacting with same-sex counterparts. BALB/c female mice vocalised solely during same-sex counterpart encounters and it appeared that calls were uttered mainly by the resident females. Male and female mice present a complex array of calls, which seem to be linked to particular behavioural situations. Further studies using this technology may help to improve our understanding of the role of vocal communication in natural rodent populations.

  7. Maternal choline supplementation differentially alters the basal forebrain cholinergic system of young-adult Ts65Dn and disomic mice

    Science.gov (United States)

    Kelley, Christy M.; Powers, Brian E.; Velazquez, Ramon; Ash, Jessica A.; Ginsberg, Stephen D.; Strupp, Barbara J.; Mufson, Elliott J.

    2014-01-01

    Down syndrome (DS), trisomy 21, is a multifaceted condition marked by intellectual disability and early presentation of Alzheimer’s disease (AD) neuropathological lesions including degeneration of the basal forebrain cholinergic neuron (BFCN) system. While DS is diagnosable during gestation, there is no treatment option for expectant mothers or DS individuals. Using the Ts65Dn mouse model of DS that displays age-related degeneration of the BFCN system, we investigated the effects of maternal choline supplementation on the BFCN system in adult Ts65Dn mice and disomic (2N) littermates at 4.3–7.5 mos of age. Ts65Dn dams were maintained on a choline supplemented diet (5.1 g/kg choline chloride) or a control, unsupplemented diet with adequate amounts of choline (1 g/kg choline chloride) from conception until weaning of offspring; postweaning, offspring were fed the control diet. Mice were transcardially perfused with paraformaldehyde, brains were sectioned, and immunolabeled for choline acetyltransferase (ChAT) or p75-neurotrophin receptor (p75NTR). BFCN number and size, the area of the regions, and the intensity of hippocampal labeling were determined. Ts65Dn unsupplemented mice displayed region- and immunolabel-dependent increased BFCN number, larger areas, smaller BFCNs, and overall increased hippocampal ChAT intensity compared with 2N unsupplemented mice. These effects were partially normalized by maternal choline supplementation. Taken together, the results suggest a developmental imbalance in the Ts65Dn BFCN system. Early maternal-diet choline supplementation attenuates some of the genotype-dependent alterations in the BFCN system, suggesting this naturally occurring nutrient as a treatment option for pregnant mothers with knowledge that their offspring is trisomy 21. PMID:24178831

  8. The Nuclear Progesterone Receptor Reduces Post-Sigh Apneas during Sleep and Increases the Ventilatory Response to Hypercapnia in Adult Female Mice

    OpenAIRE

    Marcouiller, François; Boukari, Ryma; Laouafa, Sofien; Lavoie, Raphaël; Joseph, Vincent

    2014-01-01

    We tested the hypothesis that the nuclear progesterone receptor (nPR) is involved in respiratory control and mediates the respiratory stimulant effect of progesterone. Adult female mice carrying a mutation in the nPR gene (PRKO mice) and wild-type controls (WT) were implanted with an osmotic pump delivering vehicle or progesterone (4 mg/kg/day). The mice were instrumented with EEG and neck EMG electrodes connected to a telemetry transmitter. The animals were placed in a whole body plethysmogr...

  9. Effects of fetal exposure to gamma rays on aggressive behavior in adult male mice

    International Nuclear Information System (INIS)

    Aggressive behavior (AB) in first generation (F1) hybrid male C57BL/6 x C3H mice irradiated on the 14th day of gestation was studied at 100-135 days of age. Gravid female mice were irradiated with 1.0 or 2.0 Gy of gamma rays to the whole body. The AB of pairs of mice were recorded with a capacitance-induction motility monitor and on videotape. Recordings were continued for 90 min, starting at 2:00 PM. Vigorous wrestling, boxing and biting were regarded as AB. Data recorded at 15-min intervals were stored on micro-computer discs. The body weight for the irradiated group was significantly lower than that for the control group. The number of instances of AB was significantly higher in the irradiated group. The AB of the 2.0 Gy group was significantly more intensive than that of the control group. No difference in the duration of AB was found for the 2 irradiated and the control groups. Results demonstrate that male mice irradiated prenatally show increased aggressiveness. (author)

  10. Neurexin Dysfunction in Adult Neurons Results in Autistic-like Behavior in Mice

    Directory of Open Access Journals (Sweden)

    Luis G. Rabaneda

    2014-07-01

    Full Text Available Autism spectrum disorders (ASDs comprise a group of clinical phenotypes characterized by repetitive behavior and social and communication deficits. Autism is generally viewed as a neurodevelopmental disorder where insults during embryonic or early postnatal periods result in aberrant wiring and function of neuronal circuits. Neurexins are synaptic proteins associated with autism. Here, we generated transgenic βNrx1ΔC mice in which neurexin function is selectively impaired during late postnatal stages. Whole-cell recordings in cortical neurons show an impairment of glutamatergic synaptic transmission in the βNrx1ΔC mice. Importantly, mutant mice exhibit autism-related symptoms, such as increased self-grooming, deficits in social interactions, and altered interaction for nonsocial olfactory cues. The autistic-like phenotype of βNrx1ΔC mice can be reversed after removing the mutant protein in aged animals. The defects resulting from disruption of neurexin function after the completion of embryonic and early postnatal development suggest that functional impairment of mature circuits can trigger autism-related phenotypes.

  11. Evaluation of response to restraint stress by salivary corticosterone levels in adult male mice

    Science.gov (United States)

    NOHARA, Masakatsu; TOHEI, Atsushi; SATO, Takumi; AMAO, Hiromi

    2016-01-01

    Saliva as a sampling method is a low invasive technique for the detection of physiologically active substances, as opposed to sampling the plasma or serum. In this study, we obtained glucocorticoids transferred from the blood to the saliva from mice treated with 2.0 mg/kg via an intraperitoneal injection of cortisol. Next, to evaluate the effect of restraint stress using mouse saliva—collected under anesthesia by mixed anesthetic agents—we measured plasma and salivary corticosterone levels at 60 min after restraint stress. Moreover, to evaluate salivary corticosterone response to stress in the same individual mouse, an adequate recovery period (1, 3 and 7 days) after anesthesia was examined. The results demonstrate that exogenous cortisol was detected in the saliva and the plasma, in mice treated with cortisol. Restraint stress significantly increased corticosterone levels in both the plasma and saliva (P<0.001). Monitoring the results of individual mice showed that restraint stress significantly increased salivary corticosterone levels in all three groups (1-, 3- and 7-day recovery). However, the statistical evidence of corticosterone increase is stronger in the 7-day recovery group (P<0.001) than in the others (P<0.05). These results suggest that the corticosterone levels in saliva reflect its levels in the plasma, and salivary corticosterone is a useful, less-invasive biomarker of physical stress in mice. The present study may contribute to concepts of Reduction and Refinement of the three Rs in small animal experiments. PMID:26852731

  12. Periostin deficiency increases bone damage and impairs injury response to fatigue loading in adult mice.

    Science.gov (United States)

    Bonnet, Nicolas; Gineyts, Evelyne; Ammann, Patrick; Conway, Simon J; Garnero, Patrick; Ferrari, Serge

    2013-01-01

    Bone damage removal and callus formation in response to fatigue loading are essential to prevent fractures. Periostin (Postn) is a matricellular protein that mediates adaptive response of cortical bone to loading. Whether and how periostin influences damage and the injury response to fatigue remains unknown. We investigated the skeletal response of Postn(-/-) and Postn(+/+) mice after fatigue stimulus by axial compression of their tibia. In Postn(+/+) mice, cracks number and surface (CsNb, CsS) increased 1h after fatigue, with a decrease in strength compared to non-fatigued tibia. At 15 days, CsNb had started to decline, while CtTV and CtBV increased in fatigued vs non-fatigued tibia, reflecting a woven bone response that was present in 75% of the fatigued bones. Cortical porosity and remodelling also prominently increased in the fatigued tibia of Postn(+/+) mice. At 30 days, paralleling a continuous removal of cortical damage, strength of the fatigued tibia was similar to the non-fatigue tibia. In Postn(-/-) mice, cracks were detectable even in the absence of fatigue, while the amount of collagen crosslinks and tissue hardness was decreased compared to Postn(+/+). Fatigue significantly increased CsNb and CsS in Postn(-/-), but was not associated with changes in CtTV and CtBV, as only 16% of the fatigued bones formed some woven bone. Cortical porosity and remodelling did not increase either after fatigue in Postn(-/-), and the level of damage remained high even after 30 days. As a result, strength remained compromised in Postn(-/-) mice. Contrary to Postn(+/+), which osteocytic lacunae showed a change in the degree of anisotropy (DA) after fatigue, Postn(-/-) showed no DA change. Hence periostin appears to influence bone materials properties, damage accumulation and repair, including local modeling/remodeling processes in response to fatigue. These observations suggest that the level of periostin expression could influence the propensity to fatigue fractures. PMID

  13. Periostin deficiency increases bone damage and impairs injury response to fatigue loading in adult mice.

    Directory of Open Access Journals (Sweden)

    Nicolas Bonnet

    Full Text Available Bone damage removal and callus formation in response to fatigue loading are essential to prevent fractures. Periostin (Postn is a matricellular protein that mediates adaptive response of cortical bone to loading. Whether and how periostin influences damage and the injury response to fatigue remains unknown. We investigated the skeletal response of Postn(-/- and Postn(+/+ mice after fatigue stimulus by axial compression of their tibia. In Postn(+/+ mice, cracks number and surface (CsNb, CsS increased 1h after fatigue, with a decrease in strength compared to non-fatigued tibia. At 15 days, CsNb had started to decline, while CtTV and CtBV increased in fatigued vs non-fatigued tibia, reflecting a woven bone response that was present in 75% of the fatigued bones. Cortical porosity and remodelling also prominently increased in the fatigued tibia of Postn(+/+ mice. At 30 days, paralleling a continuous removal of cortical damage, strength of the fatigued tibia was similar to the non-fatigue tibia. In Postn(-/- mice, cracks were detectable even in the absence of fatigue, while the amount of collagen crosslinks and tissue hardness was decreased compared to Postn(+/+. Fatigue significantly increased CsNb and CsS in Postn(-/-, but was not associated with changes in CtTV and CtBV, as only 16% of the fatigued bones formed some woven bone. Cortical porosity and remodelling did not increase either after fatigue in Postn(-/-, and the level of damage remained high even after 30 days. As a result, strength remained compromised in Postn(-/- mice. Contrary to Postn(+/+, which osteocytic lacunae showed a change in the degree of anisotropy (DA after fatigue, Postn(-/- showed no DA change. Hence periostin appears to influence bone materials properties, damage accumulation and repair, including local modeling/remodeling processes in response to fatigue. These observations suggest that the level of periostin expression could influence the propensity to fatigue fractures.

  14. A comparison of osteoclast-rich and osteoclast-poor osteopetrosis in adult mice sheds light on the role of the osteoclast in coupling bone resorption and bone formation

    DEFF Research Database (Denmark)

    Thudium, Christian S; Moscatelli, Ilana; Flores, Carmen; Thomsen, Jesper Skovhus; Brüel, Annemarie; Gudmann, Natasja Stæhr; Hauge, Ellen Margrethe; Karsdal, Morten A; Richter, Johan; Henriksen, Kim

    2014-01-01

    formation rate (54 %) in trabecular bone, while RANK KO recipients showed only minor trends compared to control recipients. We here show that maintaining non-resorbing osteoclasts, as opposed to reducing the osteoclasts, leads to increased bone formation, bone volume, and ultimately higher bone strength in......Osteopetrosis due to lack of acid secretion by osteoclasts is characterized by abolished bone resorption, increased osteoclast numbers, but normal or even increased bone formation. In contrast, osteoclast-poor osteopetrosis appears to have less osteoblasts and reduced bone formation, indicating......-poor adult osteopetrosis model. We used fetal liver HSCs from (1) oc/oc mice, (2) RANK KO mice, and (3) compared these to wt control cells. TRAP5b activity, a marker of osteoclast number and size, was increased in the oc/oc recipients, while a significant reduction was seen in the RANK KO recipients. In...

  15. Effects of aluminum sulfate on delta-aminolevulinate dehydratase from kidney, brain, and liver of adult mice

    Directory of Open Access Journals (Sweden)

    Schetinger M.R.C.

    1999-01-01

    Full Text Available The purpose of the present study was to investigate the in vitro and in vivo effects of aluminum sulfate on delta-aminolevulinic acid dehydratase (ALA-D activity from the brain, liver and kidney of adult mice (Swiss albine. In vitro experiments showed that the aluminum sulfate concentration needed to inhibit the enzyme activity was 1.0-5.0 mM (N = 3 in brain, 4.0-5.0 mM (N = 3 in liver and 0.0-5.0 mM (N = 3 in kidney. The in vivo experiments were performed on three groups for one month: 1 control animals (N = 8; 2 animals treated with 1 g% (34 mM sodium citrate (N = 8 and 3 animals treated with 1 g% (34 mM sodium citrate plus 3.3 g% (49.5 mM aluminum sulfate (N = 8. Exposure to aluminum sulfate in drinking water inhibited ALA-D activity in kidney (23.3 ± 3.7%, mean ± SEM, P<0.05 compared to control, but enhanced it in liver (31.2 ± 15.0%, mean ± SEM, P<0.05. The concentrations of aluminum in the brain, liver and kidney of adult mice were determined by graphite furnace atomic absorption spectrometry. The aluminum concentrations increased significantly in the liver (527 ± 3.9%, mean ± SEM, P<0.05 and kidney (283 ± 1.7%, mean ± SEM, P<0.05 but did not change in the brain of aluminum-exposed mice. One of the most important and striking observations was the increase in hepatic aluminum concentration in the mice treated only with 1 g% sodium citrate (34 mM (217 ± 1.5%, mean ± SEM, P<0.05 compared to control. These results show that aluminum interferes with delta-aminolevulinate dehydratase activity in vitro and in vivo. The accumulation of this element was in the order: liver > kidney > brain. Furthermore, aluminum had only inhibitory properties in vitro, while in vivo it inhibited or stimulated the enzyme depending on the organ studied.

  16. Vitamin A supplementation leads to increases in regulatory CD4+Foxp3+LAP+ T cells in mice.

    Science.gov (United States)

    Medeiros, Samara R; Pinheiro-Rosa, Natalia; Lemos, Luisa; Loli, Flavia G; Pereira, Alline G; Santiago, Andrezza F; Pinter, Ester C; Alves, Andrea C; Oliveira, Jamil S; Cara, Denise C; Maioli, Tatiani U; Faria, Ana Maria C

    2015-10-01

    Dietary compounds, including micronutrients such as vitamin A and its metabolite retinoic acid, directly influence the development and function of the immune system. In this study, we show that either dietary deficiency of or supplementation with vitamin A had immunologic effects in mice that were fed these diets during their development (for 8 wk during the postweaning period). Deficient mice presented higher levels of interferon-γ, interleukin (IL)-6, transforming growth factor-β, IL-17, and IL-10 in the gut-associated lymphoid tissues and draining lymph nodes, indicating a proinflammatory shift in the gut mucosa. Serum immunoglobulin G levels also were elevated in these mice. Conversely, supplemented mice showed higher frequencies of CD4+Foxp3+LAP+ regulatory T cells in gut lymphoid tissues and spleen, suggesting that vitamin A supplementation in the diet may be beneficial in pathologic situations such as inflammatory bowel diseases. PMID:26004193

  17. Loss of the Metalloprotease ADAM9 Leads to Cone-Rod Dystrophy in Humans and Retinal Degeneration in Mice

    OpenAIRE

    Parry, David A.; Toomes, Carmel; Bida, Lina; Danciger, Michael; Towns, Katherine V.; McKibbin, Martin; Jacobson, Samuel G.; Logan, Clare V.; Ali, Manir; Bond, Jacquelyn; Chance, Rebecca; Swendeman, Steven; Daniele, Lauren L.; Springell, Kelly; Adams, Matthew

    2009-01-01

    Cone-rod dystrophy (CRD) is an inherited progressive retinal dystrophy affecting the function of cone and rod photoreceptors. By autozygosity mapping, we identified null mutations in the ADAM metallopeptidase domain 9 (ADAM9) gene in four consanguineous families with recessively inherited early-onset CRD. We also found reduced photoreceptor responses in Adam9 knockout mice, previously reported to be asymptomatic. In 12-month-old knockout mice, photoreceptors appear normal, but the apical proc...

  18. ATP differentially upregulates fibroblast growth factor 2 and transforming growth factor α in neonatal and adult mice: effect on neuroproliferation.

    Science.gov (United States)

    Jia, C; Cussen, A R; Hegg, C C

    2011-03-17

    Multiple neurotrophic factors play a role in proliferation, differentiation and survival in the olfactory epithelium (OE); however, the signaling cascade has not been fully elucidated. We tested the hypotheses that ATP induces the synthesis and secretion of two neurotrophic factors, fibroblast growth factor 2 (FGF2) and transforming growth factor alpha (TGFα), and that these neurotrophic factors have a role in inducing proliferation. Protein levels of FGF2 and TGFα were increased 20 h post-intranasal instillation of ATP compared to vehicle control in adult Swiss Webster mice. Pre-intranasal treatment with purinergic receptor antagonist pyridoxal-phosphate-6-azophenyl-20,40-disulfonic acid (PPADS) significantly blocked this ATP-induced increase, indicating that upregulation of FGF2 and TGFα expression is mediated by purinergic receptor activation. However, in neonatal mouse, intranasal instillation of ATP significantly increased the protein levels of FGF2, but not TGFα. Likewise, ATP evoked the secretion of FGF2, but not TGFα, from neonatal mouse olfactory epithelial slices and PPADS significantly blocked ATP-evoked FGF2 release. To determine the role of FGF2 and TGFα in inducing proliferation, 5-bromo-2-deoxyuridine (BrdU) incorporation was examined in adult olfactory epithelium. Intranasal treatment with FGF receptor inhibitor PD173074 or epidermal growth factor receptor inhibitor AG1478 following ATP instillation significantly blocked ATP-induced BrdU incorporation. Collectively, these data demonstrate that ATP induces proliferation in adult mouse olfactory epithelium by promoting FGF2 and TGFα synthesis and activation of their receptors. These data suggest that different mechanisms regulate neurogenesis in neonatal and adult OE, and FGF2 and TGFα may have different roles throughout development. PMID:21187124

  19. ATP differentially upregulates growth factors FGF2 and TGFα in neonatal and adult mice: Effect on neuroproliferation

    Science.gov (United States)

    Jia, Cuihong; Cussen, Amber R.; Hegg, Colleen Cosgrove

    2011-01-01

    Multiple neurotrophic factors play a role in proliferation, differentiation and survival in the olfactory epithelium; however, the signaling cascade has not been fully elucidated. We tested the hypotheses that ATP induces the synthesis and secretion of two neurotrophic factors, fibroblast growth factor 2 (FGF2) and transforming growth factor alpha (TGFα), and that these neurotrophic factors have a role in inducing proliferation. Protein levels of FGF2 and TGFα were increased 20 h post-intranasal instillation of ATP compared to vehicle control in adult Swiss Webster mice. Pre-intranasal treatment with purinergic receptor antagonist pyridoxalphosphate-6-azophenyl-20,40-disulfonic acid (PPADS) significantly blocked this ATP-induced increase, indicating that upregulation of FGF2 and TGFα expression is mediated by purinergic receptor activation. However, in neonatal mouse, intranasal instillation of ATP significantly increased the protein levels of FGF2, but not TGFα. Likewise, ATP evoked the secretion of FGF2, but not TGFα, from neonatal mouse olfactory epithelial slices and PPADS significantly blocked ATP-evoked FGF2 release. To determine the role of FGF2 and TGFα in inducing proliferation, 5-bromo-2-deoxyuridine (BrdU) incorporation was examined in adult olfactory epithelium. Intranasal treatment with FGF receptor inhibitor PD173074 or epidermal growth factor receptor inhibitor AG1478 following ATP instillation significantly blocked ATP-induced BrdU incorporation. Collectively, these data demonstrate that ATP induces proliferation in adult mouse olfactory epithelium by promoting FGF2 and TGFα synthesis and activation of their receptors. These data suggest that different mechanisms regulate neurogenesis in neonatal and adult OE, and FGF2 and TGFα may have different roles throughout development. PMID:21187124

  20. Properties of doublecortin-(DCX-expressing cells in the piriform cortex compared to the neurogenic dentate gyrus of adult mice.

    Directory of Open Access Journals (Sweden)

    Friederike Klempin

    Full Text Available The piriform cortex receives input from the olfactory bulb and (via the entorhinal cortex sends efferents to the hippocampus, thereby connecting the two canonical neurogenic regions of the adult rodent brain. Doublecortin (DCX is a cytoskeleton-associated protein that is expressed transiently in the course of adult neurogenesis. Interestingly, the adult piriform cortex, which is usually considered non-neurogenic (even though some reports exist that state otherwise, also contains an abundant population of DCX-positive cells. We asked how similar these cells would be to DCX-positive cells in the course of adult hippocampal neurogenesis. Using BAC-generated transgenic mice that express GFP under the DCX promoter, we studied DCX-expression and electrophysiological properties of DCX-positive cells in the mouse piriform cortex in comparison with the dentate gyrus. While one class of cells in the piriform cortex indeed showed features similar to newly generated immature granule neurons, the majority of DCX cells in the piriform cortex was mature and revealed large Na+ currents and multiple action potentials. Furthermore, when proliferative activity was assessed, we found that all DCX-expressing cells in the piriform cortex were strictly postmitotic, suggesting that no DCX-positive "neuroblasts" exist here as they do in the dentate gyrus. We conclude that DCX in the piriform cortex marks a unique population of postmitotic neurons with a subpopulation that retains immature characteristics associated with synaptic plasticity. DCX is thus, per se, no marker of neurogenesis but might be associated more broadly with plasticity.

  1. β-Cells Are Not Generated in Pancreatic Duct Ligation–Induced Injury in Adult Mice

    OpenAIRE

    Rankin, Matthew M.; Wilbur, Christopher J.; Rak, Kimberly; Shields, Emily J.; Granger, Anne; Kushner, Jake A.

    2013-01-01

    The existence of adult β-cell progenitors remains the most controversial developmental biology topic in diabetes research. It has been reported that β-cell progenitors can be activated by ductal ligation–induced injury of adult mouse pancreas and apparently act in a cell-autonomous manner to double the functional β-cell mass within a week by differentiation and proliferation. Here, we demonstrate that pancreatic duct ligation (PDL) does not activate progenitors to contribute to β-cell mass ex...

  2. Heterozygous Hfe gene deletion leads to impaired glucose homeostasis, but not liver injury in mice fed a high-calorie diet.

    Science.gov (United States)

    Britton, Laurence; Jaskowski, Lesley; Bridle, Kim; Santrampurwala, Nishreen; Reiling, Janske; Musgrave, Nick; Subramaniam, V Nathan; Crawford, Darrell

    2016-06-01

    Heterozygous mutations of the Hfe gene have been proposed as cofactors in the development and progression of nonalcoholic fatty liver disease (NAFLD). Homozygous Hfe deletion previously has been shown to lead to dysregulated hepatic lipid metabolism and accentuated liver injury in a dietary mouse model of NAFLD We sought to establish whether heterozygous deletion of Hfe is sufficient to promote liver injury when mice are exposed to a high-calorie diet (HCD). Eight-week-old wild-type and Hfe(+/-) mice received 8 weeks of a control diet or HCD Liver histology and pathways of lipid and iron metabolism were analyzed. Liver histology demonstrated that mice fed a HCD had increased NAFLD activity score (NAS), steatosis, and hepatocyte ballooning. However, liver injury was unaffected by Hfe genotype. Hepatic iron concentration (HIC) was increased in Hfe(+/-) mice of both dietary groups. HCD resulted in a hepcidin-independent reduction in HIC Hfe(+/-) mice demonstrated raised fasting serum glucose concentrations and HOMA-IR score, despite unaltered serum adiponectin concentrations. Downstream regulators of hepatic de novo lipogenesis (pAKT, SREBP-1, Fas, Scd1) and fatty acid oxidation (AdipoR2, Pparα, Cpt1) were largely unaffected by genotype. In summary, heterozygous Hfe gene deletion is associated with impaired iron and glucose metabolism. However, unlike homozygous Hfe deletion, heterozygous gene deletion did not affect lipid metabolism pathways or liver injury in this model. PMID:27354540

  3. Postanesthetic Effects of Isoflurane on Behavioral Phenotypes of Adult Male C57BL/6J Mice

    OpenAIRE

    Yonezaki, Kumiko; Uchimoto, Kazuhiro; Miyazaki, Tomoyuki; Asakura, Ayako; Kobayashi, Ayako; Takase, Kenkichi; Goto, Takahisa

    2015-01-01

    Isoflurane was previously the major clinical anesthetic agent but is now mainly used for veterinary anesthesia. Studies have reported widespread sites of action of isoflurane, suggesting a wide array of side effects besides sedation. In the present study, we phenotyped isoflurane-treated mice to investigate the postanesthetic behavioral effects of isoflurane. We applied comprehensive behavioral test batteries comprising sensory test battery, motor test battery, anxiety test battery, depressio...

  4. Harvesting the maximum length of sciatic nerve from adult mice: a step-by-step approach

    OpenAIRE

    Bala, Usman; Tan, Kai-Leng; Ling, King-Hwa; Cheah, Pike-See

    2014-01-01

    Background Over the past several decades, many studies concerning peripheral nerve damage or regeneration have been performed. Mice have been widely used for many of these studies, with the sciatic nerve being the most targeted and preferred nerve. Therefore, techniques for harvesting mouse sciatic nerves of a maximum length that is sufficient for different analyses will be highly valuable. Here we describe a simple step-by-step guide for harvesting the maximum length of mouse sciatic nerve a...

  5. Aberrant Neural Stem Cell Proliferation and Increased Adult Neurogenesis in Mice Lacking Chromatin Protein HMGB2

    OpenAIRE

    Abraham, Ariel B; Robert Bronstein; Avanish S Reddy; Mirjana Maletic-Savatic; Adan Aguirre; Tsirka, Stella E.

    2013-01-01

    Neural stem and progenitor cells (NSCs/NPCs) are distinct groups of cells found in the mammalian central nervous system (CNS). Previously we determined that members of the High Mobility Group (HMG) B family of chromatin structural proteins modulate NSC proliferation and self-renewal. Among them HMGB2 was found to be dynamically expressed in proliferating and differentiating NSCs, suggesting that it may regulate NSC maintenance. We report now that Hmgb2(-/-) mice exhibit SVZ hyperproliferation...

  6. Ethyl Pyruvate Ameliorates The Damage Induced by Cyclophosphamide on Adult Mice Testes

    OpenAIRE

    Zahra Bakhtiary; Rasoul Shahrooz; Abbas Ahmadiooz; Farhad Soltanalinejad

    2016-01-01

    Background: Cyclophosphamide (CP) is a chemotherapy drug which causes deleterious effects on testicular tissue and increases free radicals in the body. The aim of this study is to investigate the protective effects of ethyl pyruvate (EP) on testicular improvement in CP treated animals. Materials and Methods: In this experimental study, 15 male mice (6-8 weeks) were divided into 3 groups. The control group received normal saline (0.1 ml/day), intraperitoneal (IP), CP group re...

  7. Repopulation of adult and neonatal mice with human hepatocytes: A chimeric animal model

    OpenAIRE

    Bissig, Karl-Dimiter; Le, Tam T.; Woods, Niels-Bjarne; Verma, Inder M.

    2007-01-01

    We report the successful transplantation of human hepatocytes in immunodeficient, fumarylacetoacetate hydrolase-deficient (fah−/−) mice. Engraftment occurs over the entire liver acinus upon transplantation. A few weeks after transplantation, increasing concentrations of human proteins (e.g., human albumin and human C3a) can be measured in the blood of the recipient mouse. No fusion between mouse and human hepatocytes can be detected. Three months after transplantation, up to 20% of the mouse ...

  8. Neurexin Dysfunction in Adult Neurons Results in Autistic-like Behavior in Mice

    OpenAIRE

    Luis G. Rabaneda; Estefanía Robles-Lanuza; José Luis Nieto-González; Francisco G. Scholl

    2014-01-01

    Autism spectrum disorders (ASDs) comprise a group of clinical phenotypes characterized by repetitive behavior and social and communication deficits. Autism is generally viewed as a neurodevelopmental disorder where insults during embryonic or early postnatal periods result in aberrant wiring and function of neuronal circuits. Neurexins are synaptic proteins associated with autism. Here, we generated transgenic βNrx1ΔC mice in which neurexin function is selectively impaired during late postnat...

  9. CX3 chemokine receptor 1 deficiency leads to reduced dendritic complexity and delayed maturation of newborn neurons in the adult mouse hippocampus

    Institute of Scientific and Technical Information of China (English)

    Feng Xiao; Jun-mei Xu; Xing-hua Jiang

    2015-01-01

    Previous studies have shown that microglia impact the proliferation and differentiation of neu-rons during hippocampal neurogenesisvia the fractalkine/CX3 chemokine receptor 1 (CX3CR1) signaling pathway. However, whether microglia can influence the maturation and dendritic growth of newborn neurons during hippocampal neurogenesis remains unclear. In the present study, we found that the number of doublecortin-positive cells in the hippocampus was decreased, and the dendritic length and number of intersections in newborn neurons in the hippocampus were reduced in transgenic adult mice with CX3CR1 deifciency (CX3CR1GFP/GFP). Furthermore, after experimental seizures were induced with kainic acid in these CX3CR1-deifcient mice, the expression of c-fos, a marker of neuronal activity, was reduced compared with wild-type mice. Collectively, the experimental ifndings indicate that the functional maturation of newborn neu-rons during hippocampal neurogenesis in adult mice is delayed by CX3CR1 deifciency.

  10. Subchronic phencyclidine treatment in adult mice increases GABAergic transmission and LTP threshold in the hippocampus.

    Science.gov (United States)

    Nomura, Toshihiro; Oyamada, Yoshihiro; Fernandes, Herman B; Remmers, Christine L; Xu, Jian; Meltzer, Herbert Y; Contractor, Anis

    2016-01-01

    Repeated administration of non-competitive N-methyl-d-aspartate (NMDA) receptor antagonists such as phencyclidine (PCP) to rodents causes long-lasting deficits in cognition and memory, and has effects on behaviors that have been suggested to be models of the cognitive impairment associated with schizophrenia (CIAS). Despite this being a widely studied animal model, little is known about the long lasting changes in synapses and circuits that underlie the altered behaviors. Here we examined synaptic transmission ex-vivo in the hippocampus of mice after a subchronic PCP (scPCP) administration regime. We found that after at least one week of drug free washout period when mice have impaired cognitive function, the threshold for long-term potentiation (LTP) of CA1 excitatory synapses was elevated. This elevated LTP threshold was directly related to increased inhibitory input to CA1 pyramidal cells through increased activity of GABAergic neurons. These results suggest repeated PCP administration causes a long-lasting metaplastic change in the inhibitory circuits in the hippocampus that results in impaired LTP, and could contribute to the deficits in hippocampal-dependent memory in PCP-treated mice. Changes in GABA signaling have been described in patients with schizophrenia, therefore our results support using scPCP as a model of CIAS. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'. PMID:25937215

  11. Ah receptor expression in cardiomyocytes protects adult female mice from heart dysfunction induced by TCDD exposure.

    Science.gov (United States)

    Kurita, Hisaka; Carreira, Vinicius S; Fan, Yunxia; Jiang, Min; Naticchioni, Mindi; Koch, Sheryl; Rubinstein, Jack; Puga, Alvaro

    2016-04-29

    Epidemiological studies in humans and experimental work in rodents suggest that exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a persistent environmental toxicant, is associated with incidence of heart disease. Although TCDD toxicity depends by and large on the aryl hydrocarbon receptor (AHR), the role of the cardiac AHR in TCDD induced cardiovascular disease is not well defined. To determine whether the Ahr gene mediates disruption of heart function by TCDD, we generated a cardiomyocyte-specific Ahr knockout mouse by crossing Ahr(fx/fx) mice with βMhc:cre/+ mice, in which expression of Cre recombinase is driven by the promoter of the βMhc (myosin heavy chain-beta) gene. Starting at three months of age, mice with cardiomyocyte-specific Ahr ablation were exposed to 1μg/kg/week of TCDD or control vehicle by oral gavage for an additional three months. Relative to unexposed controls, TCDD-exposure induced cardiomyocyte Ahr-independent changes in males but not females, including a significant increase in body weight, blood pressure, and cardiac hypertrophy and a decrease in cardiac ejection fraction. TCDD exposure also induced cardiomyocyte Ahr-dependent changes in fibrosis and calcium signaling gene expression in both males and females. TCDD exposure appears to cause sexually dimorphic effects on heart function and induce fibrosis and changes in calcium signaling in both males and females through activation of the cardiomyocyte-specific Ahr. PMID:27163630

  12. Desensitization and Incomplete Recovery of Hepatic Target Genes After Chronic Thyroid Hormone Treatment and Withdrawal in Male Adult Mice.

    Science.gov (United States)

    Ohba, Kenji; Leow, Melvin Khee-Shing; Singh, Brijesh Kumar; Sinha, Rohit Anthony; Lesmana, Ronny; Liao, Xiao-Hui; Ghosh, Sujoy; Refetoff, Samuel; Sng, Judy Chia Ghee; Yen, Paul Michael

    2016-04-01

    Clinical symptoms may vary and not necessarily reflect serum thyroid hormone (TH) levels during acute and chronic hyperthyroidism as well as recovery from hyperthyroidism. We thus examined changes in hepatic gene expression and serum TH/TSH levels in adult male mice treated either with a single T3 (20 μg per 100 g body weight) injection (acute T3) or daily injections for 14 days (chronic T3) followed by 10 days of withdrawal. Gene expression arrays from livers harvested at these time points showed that among positively-regulated target genes, 320 were stimulated acutely and 429 chronically by T3. Surprisingly, only 69 of 680 genes (10.1%) were induced during both periods, suggesting desensitization of the majority of acutely stimulated target genes. About 90% of positively regulated target genes returned to baseline expression levels after 10 days of withdrawal; however, 67 of 680 (9.9%) did not return to baseline despite normalization of serum TH/TSH levels. Similar findings also were observed for negatively regulated target genes. Chromatin immunoprecipitation analysis of representative positively regulated target genes suggested that acetylation of H3K9/K14 was associated with acute stimulation, whereas trimethylation of H3K4 was associated with chronic stimulation. In an in vivo model of chronic intrahepatic hyperthyroidism since birth, adult male monocarboxylate transporter-8 knockout mice also demonstrated desensitization of most acutely stimulated target genes that were examined. In summary, we have identified transcriptional desensitization and incomplete recovery of gene expression during chronic hyperthyroidism and recovery. Our findings may be a potential reason for discordance between clinical symptoms and serum TH levels observed in these conditions. PMID:26866609

  13. Loss of CD24 in Mice Leads to Metabolic Dysfunctions and a Reduction in White Adipocyte Tissue.

    Directory of Open Access Journals (Sweden)

    Nicholas A Fairbridge

    Full Text Available CD24 is a glycophosphatidylinositol (GPI-linked cell surface receptor that is involved in regulating the survival or differentiation of several different cell types. CD24 has been used to identify pre-adipocytes that are able to reconstitute white adipose tissue (WAT in vivo. Moreover, we recently found that the dynamic upregulation of CD24 in vitro during early phases of adipogenesis is necessary for mature adipocyte development. To determine the role of CD24 in adipocyte development in vivo, we evaluated the development of the inguinal and interscapular subcutaneous WAT and the epididymal visceral WAT in mice with a homozygous deletion of CD24 (CD24KO. We observed a significant decrease in WAT mass of 40% to 74% in WAT mass from both visceral and subcutaneous depots in male mice, with no significant effect in female mice, compared to wild-type (WT sex- and age-matched controls. We also found that CD24KO mice had increased fasting glucose and free fatty acids, decreased fasting insulin, and plasma leptin. No major differences were observed in the sensitivity to insulin or glucose, or in circulating triglycerides, total cholesterol, HDL-cholesterol, or LDL-cholesterol levels between WT and CD24KO mice. Challenging the CD24KO mice with either high sucrose (35% or high fat (45% diets that promote increased adiposity, increased WAT mass and fasting insulin, adiponectin and leptin levels, as well as reduced the sensitivity to insulin and glucose, to the levels of WT mice on the same diets. The CD24-mediated reduction in fat pad size was due to a reduction in adipocyte cell size in all depots with no significant reduction pre-adipocyte or adipocyte cell number. Thus, we have clearly demonstrated that the global absence of CD24 affects adipocyte cell size in vivo in a sex- and diet-dependent manner, as well as causing metabolic disturbances in glucose homeostasis and free fatty acid levels.

  14. Prophylactic Role of Oral Melatonin Administration on Neurogenesis in Adult Balb/C Mice during REM Sleep Deprivation.

    Science.gov (United States)

    López-Armas, Gabriela; Flores-Soto, Mario Eduardo; Chaparro-Huerta, Verónica; Jave-Suarez, Luis Felipe; Soto-Rodríguez, Sofía; Rusanova, Iryna; Acuña-Castroviejo, Dario; González-Perez, Oscar; González-Castañeda, Rocío Elizabeth

    2016-01-01

    Purpose. The aim of this study was to assess the effect of melatonin in the proliferation of neural progenitors, melatonin concentration, and antiapoptotic proteins in the hippocampus of adult mice exposed to 96 h REM sleep deprivation (REMSD) prophylactic administration of melatonin for 14 days. Material and Methods. Five groups of Balb/C mice were used: (1) control, (2) REMSD, (3) melatonin (10 mg/kg) plus REMSD, (4) melatonin and intraperitoneal luzindole (once a day at 5 mg/kg) plus REMSD, and (5) luzindole plus REMSD. To measure melatonin content in hippocampal tissue we used HPLC. Bcl-2 and Bcl-xL proteins were measured by Western Blot and neurogenesis was determined by injecting 5-bromo-2-deoxyuridine (BrdU) and BrdU/nestin expressing cells in the subgranular zone of the dentate gyrus were quantified by epifluorescence. Results. The melatonin-treated REMSD group showed an increased neural precursor in 44% with respect to the REMSD group and in 28% when contrasted with the control group (P expression of Bcl-2 and Bcl-xL as compared to the rest of the groups. Conclusion. The exogenous administration of melatonin restores the tissue levels of sleep-deprived group and appears to be an efficient neuroprotective agent against the deleterious effects of REMSD. PMID:27579149

  15. Prophylactic Role of Oral Melatonin Administration on Neurogenesis in Adult Balb/C Mice during REM Sleep Deprivation

    Science.gov (United States)

    Flores-Soto, Mario Eduardo; Chaparro-Huerta, Verónica; Soto-Rodríguez, Sofía; González-Perez, Oscar

    2016-01-01

    Purpose. The aim of this study was to assess the effect of melatonin in the proliferation of neural progenitors, melatonin concentration, and antiapoptotic proteins in the hippocampus of adult mice exposed to 96 h REM sleep deprivation (REMSD) prophylactic administration of melatonin for 14 days. Material and Methods. Five groups of Balb/C mice were used: (1) control, (2) REMSD, (3) melatonin (10 mg/kg) plus REMSD, (4) melatonin and intraperitoneal luzindole (once a day at 5 mg/kg) plus REMSD, and (5) luzindole plus REMSD. To measure melatonin content in hippocampal tissue we used HPLC. Bcl-2 and Bcl-xL proteins were measured by Western Blot and neurogenesis was determined by injecting 5-bromo-2-deoxyuridine (BrdU) and BrdU/nestin expressing cells in the subgranular zone of the dentate gyrus were quantified by epifluorescence. Results. The melatonin-treated REMSD group showed an increased neural precursor in 44% with respect to the REMSD group and in 28% when contrasted with the control group (P < 0.021). The melatonin-treated REMSD group also showed the highest expression of Bcl-2 and Bcl-xL as compared to the rest of the groups. Conclusion. The exogenous administration of melatonin restores the tissue levels of sleep-deprived group and appears to be an efficient neuroprotective agent against the deleterious effects of REMSD.

  16. Proliferation of Estrogen Receptor alpha Positive Mammary Epithelial Cells is Restrained by TGFbeta1 in Adult Mice

    Energy Technology Data Exchange (ETDEWEB)

    Ewan, Kenneth B.R.; Oketch-Rabah, Hellen A.; Ravani, Shraddha A.; Shyamala, G.; Moses, Harold L.; Barcellos-Hoff, Mary Helen

    2005-03-03

    Transforming growth factor {beta}1 (TGF{beta}1) is a potent inhibitor of mammary epithelial proliferation. In human breast, estrogen receptor {alpha} (ER{alpha}) cells rarely co-localize with markers of proliferation, but their increased frequency correlates with breast cancer risk. To determine whether TGF{beta}1 is necessary for the quiescence of ER{alpha}-positive population, we examined mouse mammary epithelial gland at estrus. Approximately 35% of cells showed TGF{beta}1 activation, which co-localized with nuclear receptor-phosphorylated Smad 2/3, indicating that TGF{beta} signaling is autocrine. Furthermore, nuclear Smad co-localized with nuclear ER{alpha}. To test whether TGF{beta} was functional, we examined genetically engineered mice with different levels of TGF{beta}1. ER{alpha} co-localization with markers of proliferation (i.e. Ki-67 or BrdU) at estrus was significantly increased in the mammary glands of Tgf{beta}1 C57/bl/129SV heterozygote mice. This relationship was maintained following pregnancy, but was absent at puberty. Conversely, mammary epithelial expression of constitutively active TGF{beta}1 via the MMTV promoter suppressed proliferation of ER{alpha} positive cells. Thus, TGF{beta}1 activation functionally restrains ER{alpha} positive cells from proliferating in adult mammary gland. Accordingly, we propose that TGF{beta}1 dysregulation may promote proliferation of ER{alpha} positive cells associated with breast cancer risk in humans.

  17. Influence of 90Sr, adult thymectomy and antilymphocyteglobulin on haematopoietic tissues and peripheral blood leucocytes in CBA mice

    International Nuclear Information System (INIS)

    The role or long-time immune suppression in carcinogenesis induced by the long-lived internal emitter 90Sr, is investigated in an ongoing study. The experimental design is based on the assumption that impaired immune responsiveness, by other means than 90Sr, might increase the neoplastic response in exposed individuals, and thus reflect a protective function, if existing. Intercomparison is made of the tumour yield in mice exposed to different single doses of 90Sr and simultaneously subjected or not to long-term immune suppression by adult thymectomy (ATx) and/or antilymphocyteglobulin (ALG) treatment. Information on the general condition and responsiveness of the immune system, in the respective models, during tumour expectancy time, is essential for a conclusive evaluation of the results. To meet theses demands the present paper reports on histopathologic alternations in immune organs and changes in white blood cell counts, induced by the different combinations of 90Sr, ATx + ALG treatment. The results confirm the prediction, that ATx + ALG is an efficient and, with respect to the purpose of the study, suitable treatment for additive long-term depression of the immune system in 90Sr irradiated mice, evidenced in particular by increased depletion of monomorphonuclear cells (MNC) in lymphoid organs and peripheral blood. Subsequent reports will deal with functional immune parameters. (orig.)

  18. Does radioadaptive response also apply to the case of heavy-ion irradiations in fetal and adult mice?

    International Nuclear Information System (INIS)

    Possible induction of adaptive response (AR) by the high linear energy transfer (LET) accelerated heavy ion irradiations (HI) is being attempted both in young adult female mice and in fetal mice of C57BL/6J Jms strain, using growth delay, hematopoietic damage and reduced survival in vivo, prenatal growth delay, malformation and death in utero as endpoints. In this fiscal year, using carbon, silicon, neon, and iron ion irradiations and X-rays, we demonstrated that 1) in the in utero studies, the priming low dose X-irradiations could induce protective effects against the detrimental effects from the high LET heavy-ion challenging irradiations from neon but not from iron beams; 2) in the in vivo studies, the priming low dose X-irradiations could induce protective effects against the detrimental effects from the high LET heavy-ion challenging irradiations from neon beams; 3) also in the in vivo studies, priming low dose of high LET iron ions did not show any protective effects against challenging dose from X-rays while priming low dose of high LET carbon ions could induce protective effects against the detrimental effects from the high LET heavy-ion challenging irradiations from neon beams. (author)

  19. Effect of intermittent exposure to ethanol and MDMA during adolescence on learning and memory in adult mice

    Directory of Open Access Journals (Sweden)

    Vidal-Infer Antonio

    2012-06-01

    Full Text Available Abstract Background Heavy binge drinking is increasingly frequent among adolescents, and consumption of 3,4-methylenedioxymethamphetamine (MDMA is often combined with ethanol (EtOH. The long-lasting effects of intermittent exposure to EtOH and MDMA during adolescence on learning and memory were evaluated in adult mice using the Hebb-Williams maze. Methods Adolescent OF1 mice were exposed to EtOH (1.25 g/kg on two consecutive days at 48-h intervals over a 14-day period (from PD 29 to 42. MDMA (10 or 20 mg/kg was injected twice daily at 4-h intervals over two consecutive days, and this schedule was repeated six days later (PD 33, 34, 41 and 42, resulting in a total of eight injections. Animals were initiated in the Hebb-Williams maze on PND 64. The concentration of brain monoamines in the striatum and hippocampus was then measured. Results At the doses employed, both EtOH and MDMA, administered alone or together, impaired learning in the Hebb-Williams maze, as treated animals required more time to reach the goal than their saline-treated counterparts. The groups treated during adolescence with EtOH, alone or plus MDMA, also presented longer latency scores and needed more trials to reach the acquisition criterion score. MDMA induced a decrease in striatal DA concentration, an effect that was augmented by the co-administration of EtOH. All the treatment groups displayed an imbalance in the interaction DA/serotonin. Conclusions The present findings indicate that the developing brain is highly vulnerable to the damaging effects of EtOH and/or MDMA, since mice receiving these drugs in a binge pattern during adolescence exhibit impaired learning and memory in adulthood.

  20. Increased adipogenesis in cultured embryonic chondrocytes and in adult bone marrow of dominant negative Erg transgenic mice.

    Directory of Open Access Journals (Sweden)

    Sébastien Flajollet

    Full Text Available In monolayer culture, primary articular chondrocytes have an intrinsic tendency to lose their phenotype during expansion. The molecular events underlying this chondrocyte dedifferentiation are still largely unknown. Several transcription factors are important for chondrocyte differentiation. The Ets transcription factor family may be involved in skeletal development. One family member, the Erg gene, is mainly expressed during cartilage formation. To further investigate the potential role of Erg in the maintenance of the chondrocyte phenotype, we isolated and cultured chondrocytes from the rib cartilage of embryos of transgenic mice that express a dominant negative form of Erg (DN-Erg during cartilage formation. DN-Erg expression in chondrocytes cultured for up to 20 days did not affect the early dedifferentiation usually observed in cultured chondrocytes. However, lipid droplets accumulated in DN-Erg chondrocytes, suggesting adipocyte emergence. Transcriptomic analysis using a DNA microarray, validated by quantitative RT-PCR, revealed strong differential gene expression, with a decrease in chondrogenesis-related markers and an increase in adipogenesis-related gene expression in cultured DN-Erg chondrocytes. These results indicate that Erg is involved in either maintaining the chondrogenic phenotype in vitro or in cell fate orientation. Along with the in vitro studies, we compared adipocyte presence in wild-type and transgenic mice skeletons. Histological investigations revealed an increase in the number of adipocytes in the bone marrow of adult DN-Erg mice even though no adipocytes were detected in embryonic cartilage or bone. These findings suggest that the Ets transcription factor family may contribute to the homeostatic balance in skeleton cell plasticity.

  1. Dermal dysplasia, hypotrichosis, and dorsal skin ulcers in adult NMRI-mice after X-irradiation in utero

    International Nuclear Information System (INIS)

    Prenatal X-irradiation in mice leads to a marked incidence of hypotrichosis and alopecia in offspring, when irradiation occurs during the stage of late organogenesis (day 11-13 p.c.). In addition, severe ulcerative dermatitis occurs in offspring starting at 2 months of age, with marked preference for those animals which have been irradiated at least during days 11-13 p.c. This occurs without any dose dependence; application of doses between 2.4 Gy and 7.2 Gy results in approximately similar incidence rates of skin ulcers (range between 39.1 and 48.0%). There is no sex preference and no dependence on housing. At autopsy no special abnormalities were found in the internal organs with the exception of frequent signs of amyloidosis. This disease pattern could also be produced in germ-free animals. The intracutanous administration of skin extracts from affected animals into unirradiated mice leads to a marked infiltration of leukocytes. It is therefore suggested that prenatal X-irradiation induces a distinct dysplasia of the epidermis, which is followed by an endogenous leukotactic activity. (orig.)

  2. Multiple phenotypes in adult mice following inactivation of the Coxsackievirus and Adenovirus Receptor (Car gene.

    Directory of Open Access Journals (Sweden)

    Ahmad Pazirandeh

    Full Text Available To determine the normal function of the Coxsackievirus and Adenovirus Receptor (CAR, a protein found in tight junctions and other intercellular complexes, we constructed a mouse line in which the CAR gene could be disrupted at any chosen time point in a broad spectrum of cell types and tissues. All knockouts examined displayed a dilated intestinal tract and atrophy of the exocrine pancreas with appearance of tubular complexes characteristic of acinar-to-ductal metaplasia. The mice also exhibited a complete atrio-ventricular block and abnormal thymopoiesis. These results demonstrate that CAR exerts important functions in the physiology of several organs in vivo.

  3. Cytogenetic damage in adult and newborn mice exposed to Elf magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Ieradi, L.A. [Istituto per lo Studio degli Ecosistemi, CNR, Rome (Italy); Udroiu, I.; Chiuchiarelli, G.; Migliorini, D.; Cristaldi, M. [Universite La Sapienza, Dipt. di Biologia Animale e dell' Uomo, Rome (Italy); Tanzarella, C. [Roma Univ., Dipt. di Biologia (Italy)

    2006-07-01

    Data obtained in newborn mice show that the chronic exposure during intra-uterine life to a 50 Hz, 650 {mu}T E.L.F. magnetic field induce a genetic damage. Nevertheless, the increase of DNA strand break in brain and in micronuclei frequency in peripheral blood and liver disagree with the data obtained by Abramsson-Zetterberg and Grawe (13) which did not find any genetic alterations in mice exposed to extremely low frequency (E.L.F.) magnetic field. In any case, along with other dissimilarities in the experimental design, the intensity of the field (14 {mu}T) and the time of sampling (35 days) were different. It is important to underline the four-fold increase in C.R.E.S.T.+ micronuclei frequency in circulating erythrocytes in the exposed group in comparison with the control group. Even though this value is quite low, it could indicate that E.L.F. magnetic fields may have different properties to damage the genome integrity. This stresses the need for further investigation on the possible link between electromagnetic fields and aneuploidy in order to elucidate the relationship with carcinogenesis. Preliminary data obtained with sperm abnormality assay show a significant increase of sperm abnormalities in mice exposed to E.L.F. magnetic fields and suggest a possible alteration to the spermatogenic process after exposure. This data agrees with data obtained by Tablado et al. (1998), in mice exposed continually for 35 days to a field of 1 T. Regarding the palatal ridges alterations assay, the results obtained show that the development of the secondary palate is not affected by E.L.F. magnetic field (50 Hz, 0,65 T). Nevertheless further studies at different frequency and intensity should be carried out to detect the possible epigenetic damage induced by E.L.F. exposure (Migliorini, 2005). With regard to the mechanism of action, it is generally believed that the damage induced by the magnetic field is an oxidative damage and that free radicals are involved. Some authors

  4. Cytogenetic damage in adult and newborn mice exposed to Elf magnetic fields

    International Nuclear Information System (INIS)

    Data obtained in newborn mice show that the chronic exposure during intra-uterine life to a 50 Hz, 650 μT E.L.F. magnetic field induce a genetic damage. Nevertheless, the increase of DNA strand break in brain and in micronuclei frequency in peripheral blood and liver disagree with the data obtained by Abramsson-Zetterberg and Grawe (13) which did not find any genetic alterations in mice exposed to extremely low frequency (E.L.F.) magnetic field. In any case, along with other dissimilarities in the experimental design, the intensity of the field (14 μT) and the time of sampling (35 days) were different. It is important to underline the four-fold increase in C.R.E.S.T.+ micronuclei frequency in circulating erythrocytes in the exposed group in comparison with the control group. Even though this value is quite low, it could indicate that E.L.F. magnetic fields may have different properties to damage the genome integrity. This stresses the need for further investigation on the possible link between electromagnetic fields and aneuploidy in order to elucidate the relationship with carcinogenesis. Preliminary data obtained with sperm abnormality assay show a significant increase of sperm abnormalities in mice exposed to E.L.F. magnetic fields and suggest a possible alteration to the spermatogenic process after exposure. This data agrees with data obtained by Tablado et al. (1998), in mice exposed continually for 35 days to a field of 1 T. Regarding the palatal ridges alterations assay, the results obtained show that the development of the secondary palate is not affected by E.L.F. magnetic field (50 Hz, 0,65 T). Nevertheless further studies at different frequency and intensity should be carried out to detect the possible epigenetic damage induced by E.L.F. exposure (Migliorini, 2005). With regard to the mechanism of action, it is generally believed that the damage induced by the magnetic field is an oxidative damage and that free radicals are involved. Some authors

  5. Haematologic changes in young adult Swiss albino mice after tritiated water administration

    International Nuclear Information System (INIS)

    Tritiated water (HTO) injected intraperitoneally to Swiss albino mice at the rate of 370 kBq (10 μCi)/g body weight has been found to cause certain alterations in blood parameters 1, 5, 7 and 15 days post injectionem. Leukocyte count dropped significantly post treatment. Differential leukocyte counting showed lymphocytes to be most affected which were reduced by 38.29% on 5th day p.i. Erythrocyte count, haemoglobin and haematocrit values though showed no significant changes at early intervals, these values were significantly lower at later intervals than those of control. (author)

  6. High-fat diet leads to tissue-specific changes reflecting risk factors for diseases in DBA/2J mice

    OpenAIRE

    Hageman, Rachael S.; Wagener, Asja; Hantschel, Claudia; Svenson, Karen L.; Churchill, Gary A; Brockmann, Gudrun A., 1958-

    2010-01-01

    The aim of this study was to characterize the responses of individual tissues to high-fat feeding as a function of mass, fat composition, and transcript abundance. We examined a panel of eight tissues [5 white adipose tissues (WAT), brown adipose tissue (BAT), liver, muscle] obtained from DBA/2J mice on either a standard breeding diet (SBD) or a high-fat diet (HFD). HFD led to weight gain, decreased insulin sensitivity, and tissue-specific responses, including inflammation, in these mice. The...

  7. Overexpression of human low density lipoprotein receptors leads to accelerated catabolism of Lp(a) lipoprotein in transgenic mice.

    OpenAIRE

    Hofmann, S L; Eaton, D L; Brown, M. S.; McConathy, W J; Goldstein, J L; Hammer, R. E.

    1990-01-01

    Lp(a) lipoprotein purified from human plasma bound with high affinity to isolated bovine LDL receptors on nitrocellulose blots and in a solid-phase assay. Lp(a) also competed with 125I-LDL for binding to human LDL receptors in intact fibroblasts. Binding led to cellular uptake of Lp(a) with subsequent stimulation of cholesterol esterification. After intravenous injection, human Lp(a) was cleared slowly from the plasma of normal mice. The clearance was markedly accelerated in transgenic mice t...

  8. Human-derived neural progenitors functionally replace astrocytes in adult mice

    OpenAIRE

    Chen, Hong; Qian, Kun; Chen, Wei; Hu, Baoyang; Blackbourn, Lisle W.; Du, Zhongwei; Ma, Lixiang; Liu, Huisheng; Knobel, Karla M.; Ayala, Melvin; Zhang, Su-Chun

    2015-01-01

    Astrocytes are integral components of the homeostatic neural network as well as active participants in pathogenesis of and recovery from nearly all neurological conditions. Evolutionarily, compared with lower vertebrates and nonhuman primates, humans have an increased astrocyte-to-neuron ratio; however, a lack of effective models has hindered the study of the complex roles of human astrocytes in intact adult animals. Here, we demonstrated that after transplantation into the cervical spinal co...

  9. Maternal antioxidant blocks programmed cardiovascular and behavioural stress responses in adult mice

    OpenAIRE

    Roghair, Robert D.; Wemmie, John A.; Volk, Kenneth A.; Scholz, Thomas D.; Lamb, Fred S.; Jeffrey L. Segar

    2011-01-01

    Intra-uterine growth restriction is an independent risk factor for adult psychiatric and cardiovascular diseases. In humans, intra-uterine growth restriction is associated with increased placental and fetal oxidative stress, as well as down-regulation of placental 11β-HSD (11β-hydroxysteroid dehydrogenase). Decreased placental 11β-HSD activity increases fetal exposure to maternal glucocorticoids, further increasing fetal oxidative stress. To explore the developmental origins of co-morbid hype...

  10. Skin-derived neural precursors competitively generate functional myelin in adult demyelinated mice

    OpenAIRE

    Mozafari, Sabah; Laterza, Cecilia; Roussel, Delphine; Bachelin, Corinne; Marteyn, Antoine; Deboux, Cyrille; Martino, Gianvito; Evercooren, Anne Baron-Van

    2015-01-01

    Induced pluripotent stem cell–derived (iPS-derived) neural precursor cells may represent the ideal autologous cell source for cell-based therapy to promote remyelination and neuroprotection in myelin diseases. So far, the therapeutic potential of reprogrammed cells has been evaluated in neonatal demyelinating models. However, the repair efficacy and safety of these cells has not been well addressed in the demyelinated adult CNS, which has decreased cell plasticity and scarring. Moreover, it i...

  11. Enhanced dopamine D1 and BDNF signaling in the adult dorsal striatum but not nucleus accumbens of prenatal cocaine treated mice

    Directory of Open Access Journals (Sweden)

    Thomas F. Tropea

    2011-12-01

    Full Text Available Previous work from our group and others utilizing animal models have demonstrated long lasting structural and functional alterations in the meso-cortico-striatal dopamine pathway following prenatal cocaine treatment. We have shown that prenatal cocaine treatment results in augmented D1 -induced cyclic AMP (cAMP and cocaine-induced immediate-early gene expression in the striatum of adult mice. In this study we further examined basal as well as cocaine or D1-induced activation of a set of molecules known to be mediators of neuronal plasticity following psychostimulant treatment, with emphasis in the dorsal striatum (Str and nucleus accumbens (NAc of adult mice exposed to cocaine in utero. Basally, in the striatum of prenatal cocaine treated (PCOC mice there were significantly higher levels of a number of the transcription factors studied. Following acute administration of cocaine (15 mg/kg, i.p. or D1 agonist (SKF 82958; 1 mg/kg, i.p. there were significantly higher levels of Ser133 P-CREB, Thr34 P-DARPP-32, and Thr202/Tyr204 P-ERK2 in the Str, that were significantly augmented in PCOC mice. In sharp contrast, in the NAc of those mice, we found increased P-CREB and P-ERK2 in PSAL mice, a response that was not evident in PCOC mice. Examination of Ser 845 P-GluA1 revealed increased levels in PSAL mice, but significantly decreased levels in PCOC mice in both the Str and NAc following acute administration of cocaine or D1 agonist. We also found significantly higher levels of the BDNF precursor, pro-BDNF and one of its receptors, TrkB in the Str of PCOC mice. These results suggest a persistent up-regulation of molecules critical to D1 and BDNF signaling in the Str of adult mice exposed to cocaine in utero. These molecular adaptations may underlie components of the behavioral deficits evident in exposed animals and a subset of exposed humans, and may represent a therapeutic target for ameliorating aspects of the prenatal cocaine-induced phenotype.

  12. Xylitol Affects the Intestinal Microbiota and Metabolism of Daidzein in Adult Male Mice

    Science.gov (United States)

    Tamura, Motoi; Hoshi, Chigusa; Hori, Sachiko

    2013-01-01

    This study examined the effects of xylitol on mouse intestinal microbiota and urinary isoflavonoids. Xylitol is classified as a sugar alcohol and used as a food additive. The intestinal microbiota seems to play an important role in isoflavone metabolism. Xylitol feeding appears to affect the gut microbiota. We hypothesized that dietary xylitol changes intestinal microbiota and, therefore, the metabolism of isoflavonoids in mice. Male mice were randomly divided into two groups: those fed a 0.05% daidzein with 5% xylitol diet (XD group) and those fed a 0.05% daidzein-containing control diet (CD group) for 28 days. Plasma total cholesterol concentrations were significantly lower in the XD group than in the CD group (p < 0.05). Urinary amounts of equol were significantly higher in the XD group than in the CD group (p < 0.05). The fecal lipid contents (% dry weight) were significantly greater in the XD group than in the CD group (p < 0.01). The cecal microbiota differed between the two dietary groups. The occupation ratios of Bacteroides were significantly greater in the CD than in the XD group (p < 0.05). This study suggests that xylitol has the potential to affect the metabolism of daidzein by altering the metabolic activity of the intestinal microbiota and/or gut environment. Given that equol affects bone health, dietary xylitol plus isoflavonoids may exert a favorable effect on bone health. PMID:24336061

  13. Xylitol Affects the Intestinal Microbiota and Metabolism of Daidzein in Adult Male Mice

    Directory of Open Access Journals (Sweden)

    Motoi Tamura

    2013-12-01

    Full Text Available This study examined the effects of xylitol on mouse intestinal microbiota and urinary isoflavonoids. Xylitol is classified as a sugar alcohol and used as a food additive. The intestinal microbiota seems to play an important role in isoflavone metabolism. Xylitol feeding appears to affect the gut microbiota. We hypothesized that dietary xylitol changes intestinal microbiota and, therefore, the metabolism of isoflavonoids in mice. Male mice were randomly divided into two groups: those fed a 0.05% daidzein with 5% xylitol diet (XD group and those fed a 0.05% daidzein-containing control diet (CD group for 28 days. Plasma total cholesterol concentrations were significantly lower in the XD group than in the CD group (p < 0.05. Urinary amounts of equol were significantly higher in the XD group than in the CD group (p < 0.05. The fecal lipid contents (% dry weight were significantly greater in the XD group than in the CD group (p < 0.01. The cecal microbiota differed between the two dietary groups. The occupation ratios of Bacteroides were significantly greater in the CD than in the XD group (p < 0.05. This study suggests that xylitol has the potential to affect the metabolism of daidzein by altering the metabolic activity of the intestinal microbiota and/or gut environment. Given that equol affects bone health, dietary xylitol plus isoflavonoids may exert a favorable effect on bone health.

  14. Newly generated cells are increased in hippocampus of adult mice lacking a serine protease inhibitor

    Directory of Open Access Journals (Sweden)

    Sticker Melanie

    2010-06-01

    Full Text Available Abstract Background Neurogenesis in the hippocampal dentate gyrus and the subventricular zone occurs throughout the life of mammals and newly generated neurons can integrate functionally into established neuronal circuits. Neurogenesis levels in the dentate gyrus are modulated by changes in the environment (enrichment, exercise, hippocampal-dependent tasks, NMDA receptor (NMDAR activity, sonic hedgehog (SHH and/or other factors. Results previously, we showed that Protease Nexin-1 (PN-1, a potent serine protease inhibitor, regulates the NMDAR availability and activity as well as SHH signaling. Compared with wild-type (WT, we detected a significant increase in BrdU-labeled cells in the dentate gyrus of mice lacking PN-1 (PN-1 -/- both in controls and after running exercise. Patched homologue 1 (Ptc1 and Gli1 mRNA levels were higher and Gli3 down-regulated in mutant mice under standard conditions and to a lesser extent after running exercise. However, the number of surviving BrdU-positive cells did not differ between WT and PN-1 -/- animals. NMDAR availability was altered in the hippocampus of mutant animals after exercise. Conclusion All together our results indicate that PN-1 controls progenitors proliferation through an effect on the SHH pathway and suggest an influence of the serpin on the survival of newly generated neurons through modulation of NMDAR availability.

  15. Aniracetam does not alter cognitive and affective behavior in adult C57BL/6J mice.

    Directory of Open Access Journals (Sweden)

    Thomas W Elston

    Full Text Available There is a growing community of individuals who self-administer the nootropic aniracetam for its purported cognitive enhancing effects. Aniracetam is believed to be therapeutically useful for enhancing cognition, alleviating anxiety, and treating various neurodegenerative conditions. Physiologically, aniracetam enhances both glutamatergic neurotransmission and long-term potentiation. Previous studies of aniracetam have demonstrated the cognition-restoring effects of acute administration in different models of disease. No previous studies have explored the effects of aniracetam in healthy subjects. We investigated whether daily 50 mg/kg oral administration improves cognitive performance in naïve C57BL/6J mice in a variety of aspects of cognitive behavior. We measured spatial learning in the Morris water maze test; associative learning in the fear conditioning test; motor learning in the accelerating rotarod test; and odor discrimination. We also measured locomotion in the open field test, anxiety through the elevated plus maze test and by measuring time in the center of the open field test. We measured repetitive behavior through the marble burying test. We detected no significant differences between the naive, placebo, and experimental groups across all measures. Despite several studies demonstrating efficacy in impaired subjects, our findings suggest that aniracetam does not alter behavior in normal healthy mice. This study is timely in light of the growing community of healthy humans self-administering nootropic drugs.

  16. Aniracetam does not alter cognitive and affective behavior in adult C57BL/6J mice.

    Science.gov (United States)

    Elston, Thomas W; Pandian, Ashvini; Smith, Gregory D; Holley, Andrew J; Gao, Nanjing; Lugo, Joaquin N

    2014-01-01

    There is a growing community of individuals who self-administer the nootropic aniracetam for its purported cognitive enhancing effects. Aniracetam is believed to be therapeutically useful for enhancing cognition, alleviating anxiety, and treating various neurodegenerative conditions. Physiologically, aniracetam enhances both glutamatergic neurotransmission and long-term potentiation. Previous studies of aniracetam have demonstrated the cognition-restoring effects of acute administration in different models of disease. No previous studies have explored the effects of aniracetam in healthy subjects. We investigated whether daily 50 mg/kg oral administration improves cognitive performance in naïve C57BL/6J mice in a variety of aspects of cognitive behavior. We measured spatial learning in the Morris water maze test; associative learning in the fear conditioning test; motor learning in the accelerating rotarod test; and odor discrimination. We also measured locomotion in the open field test, anxiety through the elevated plus maze test and by measuring time in the center of the open field test. We measured repetitive behavior through the marble burying test. We detected no significant differences between the naive, placebo, and experimental groups across all measures. Despite several studies demonstrating efficacy in impaired subjects, our findings suggest that aniracetam does not alter behavior in normal healthy mice. This study is timely in light of the growing community of healthy humans self-administering nootropic drugs. PMID:25099639

  17. Reduced TET2 function leads to T-cell lymphoma with follicular helper T-cell-like features in mice

    International Nuclear Information System (INIS)

    TET2 (Ten Eleven Translocation 2) is a dioxygenase that converts methylcytosine (mC) to hydroxymethylcytosine (hmC). TET2 loss-of-function mutations are highly frequent in subtypes of T-cell lymphoma that harbor follicular helper T (Tfh)-cell-like features, such as angioimmunoblastic T-cell lymphoma (30–83%) or peripheral T-cell lymphoma, not otherwise specified (10–49%), as well as myeloid malignancies. Here, we show that middle-aged Tet2 knockdown (Tet2gt/gt) mice exhibit Tfh-like cell overproduction in the spleen compared with control mice. The Tet2 knockdown mice eventually develop T-cell lymphoma with Tfh-like features after a long latency (median 67 weeks). Transcriptome analysis revealed that these lymphoma cells had Tfh-like gene expression patterns when compared with splenic CD4-positive cells of wild-type mice. The lymphoma cells showed lower hmC densities around the transcription start site (TSS) and higher mC densities at the regions of the TSS, gene body and CpG islands. These epigenetic changes, seen in Tet2 insufficiency-triggered lymphoma, possibly contributed to predated outgrowth of Tfh-like cells and subsequent lymphomagenesis. The mouse model described here suggests that TET2 mutations play a major role in the development of T-cell lymphoma with Tfh-like features in humans

  18. Estrogen deficiency leads to telomerase inhibition,telomere shortening and reduced cell proliferation in the adrenal gland of mice

    Institute of Scientific and Technical Information of China (English)

    Sharyn Bayne; Margaret EE Jones; He Li; Alex R Pinto; Evan R Simpson; Jun-Ping Liu

    2008-01-01

    Estrogen deficiency mediates aging, but the underlying mechanism remains to be fully determined. We report here that estrogen deficiency caused by targeted disruption of aromatase in mice results in significant inhibition oftelomerase activity in the adrenal gland in vivo. Gene expression analysis showed that, in the absence of estrogen, telomerase reverse transcriptase (TERT) gene expression is reduced in association with compromised cell proliferation in the adrenal gland cortex and adrenal atrophy. Stem cells positive in c-kit are identified to populate in the parenchyma of adrenal cortex. Analysis of telomeres revealed that estrogen deficiency results in significantly shorter telomeres in the adrenal cortex than that in wild-type (WT) control mice. To further establish the causal effects of estrogen, we conducted an estrogen replacement therapy in these estrogen-deficient animals. Administration of estrogen for 3 weeks restores TERT gene expression, telomerase activity and cell proliferation in estrogen-deficient mice. Thus, our data show for the first time that estrogen deficiency causes inhibitions of TERT gene expression, telomerase activity, telomere maintenance, and cell proliferation in the adrenal gland of mice in vivo, suggesting that telomerase inhibition and telomere shortening may mediate cell proliferation arrest in the adrenal gland, thus contributing to estrogen deficiency-induced aging under physiological conditions.

  19. The nuclear progesterone receptor reduces post-sigh apneas during sleep and increases the ventilatory response to hypercapnia in adult female mice.

    Science.gov (United States)

    Marcouiller, François; Boukari, Ryma; Laouafa, Sofien; Lavoie, Raphaël; Joseph, Vincent

    2014-01-01

    We tested the hypothesis that the nuclear progesterone receptor (nPR) is involved in respiratory control and mediates the respiratory stimulant effect of progesterone. Adult female mice carrying a mutation in the nPR gene (PRKO mice) and wild-type controls (WT) were implanted with an osmotic pump delivering vehicle or progesterone (4 mg/kg/day). The mice were instrumented with EEG and neck EMG electrodes connected to a telemetry transmitter. The animals were placed in a whole body plethysmograph 7 days after surgery to record ventilation, metabolic rate, EEG and neck EMGs for 4 consecutive hours. The animals were exposed to hypercapnia (5% CO2), hypoxia (12% O2) and hypoxic-hypercapnia (5% CO2+12% O2-5 min each) to assess chemoreflex responses. EEG and EMG signals were used to characterize vigilance states (e.g., wake, non-REM, and REM sleep). PRKO mice exhibited similar levels of minute ventilation during non-REM and REM sleep, and higher frequencies of sighs and post-sigh apneas during non-REM sleep compared to WT. Progesterone treatment increased minute ventilation and metabolic rate in WT and PRKO mice during non-REM sleep. In WT mice, but not in PRKO mice, the ventilation under hypercapnia and hypoxic hypercapnia was enhanced after progesterone treatment. We conclude that the nPR reduces apnea frequency during non-REM sleep and enhances chemoreflex responses to hypercapnia after progesterone treatment. These results also suggest that mechanisms other than nPR activation increase metabolic rate in response to progesterone treatment in adult female mice. PMID:24945655

  20. Hematopoietic deletion of transferrin receptor 2 in mice leads to a block in erythroid differentiation during iron-deficient anemia.

    Science.gov (United States)

    Rishi, Gautam; Secondes, Eriza S; Wallace, Daniel F; Subramaniam, V Nathan

    2016-08-01

    Iron metabolism and erythropoiesis are inherently interlinked physiological processes. Regulation of iron metabolism is mediated by the iron-regulatory hormone hepcidin. Hepcidin limits the amount of iron released into the blood by binding to and causing the internalization of the iron exporter, ferroportin. A number of molecules and physiological stimuli, including erythropoiesis, are known to regulate hepcidin. An increase in erythropoietic demand decreases hepcidin, resulting in increased bioavailable iron in the blood. Transferrin receptor 2 (TFR2) is involved in the systemic regulation of iron metabolism. Patients and mice with mutations in TFR2 develop hemochromatosis due to inappropriate hepcidin levels relative to body iron. Recent studies from our laboratory and others have suggested an additional role for TFR2 in response to iron-restricted erythropoiesis. These studies used mouse models with perturbed systemic iron metabolism: anemic mice lacking matriptase-2 and Tfr2, or bone marrow transplants from iron-loaded Tfr2 null mice. We developed a novel transgenic mouse model which lacks Tfr2 in the hematopoietic compartment, enabling the delineation of the role of Tfr2 in erythroid development without interfering with its role in systemic iron metabolism. We show that in the absence of hematopoietic Tfr2 immature polychromatic erythroblasts accumulate with a concordant reduction in the percentage of mature erythroid cells in the spleen and bone marrow of anemic mice. These results demonstrate that erythroid Tfr2 is essential for an appropriate erythropoietic response in iron-deficient anemia. These findings may be of relevance in clinical situations in which an immediate and efficient erythropoietic response is required. Am. J. Hematol. 91:812-818, 2016. © 2016 Wiley Periodicals, Inc. PMID:27169626

  1. Loss of dysbindin-1, a risk gene for schizophrenia, leads to impaired group 1 metabotropic glutamate receptor function in mice.

    Directory of Open Access Journals (Sweden)

    Sanjeev K Bhardwaj

    2015-03-01

    Full Text Available The expression of dysbindin-1, a protein coded by the risk gene dtnbp1, is reduced in the brains of schizophrenia patients. Evidence indicates a role of dysbindin-1 in dopaminergic and glutamatergic transmission. Glutamatergic transmission and plasticity at excitatory synapses is critically regulated by G-protein coupled metabotropic glutamate receptor (mGluR family members, that have been implicated in schizophrenia. Here, we report a role of dysbindin-1 in hippocampal group 1 mGluR (mGluRI function in mice. In hippocampal synaptoneurosomal preparations from sandy (sdy mice, that have a loss of function mutation in dysbindin-1 gene, we observed a striking reduction in mGluRI agonist [(S-3,5-dihydroxyphenylglycine] (DHPG-induced phosphorylation of extracellular signal regulated kinase 1/2 (ERK1/2. This mGluR-ERK1/2 deficit occurred in the absence of significant changes in protein levels of the two members of the mGluRI family (i.e., mGluR1 and mGluR5 or in another mGluRI signaling pathway, i.e., protein kinase C (PKC. Aberrant mGluRI-ERK1/2 signaling affected hippocampal synaptic plasticity in the sdy mutants as DHPG-induced long-term depression (LTD at CA1 excitatory synapses was significantly reduced. Behavioral data suggest that the mGluRI hypofunction may underlie some of the cognitive abnormalities described in sdy mice as the administration of CDPPB (3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl benzamide, a positive allosteric modulator of mGluR5, rescued short-term object recognition and spatial learning and memory deficits in these mice. Taken together, our data suggest a novel role of dysbindin-1 in regulating mGluRI functions.

  2. Trypanosoma brucei gambiense Infections in Mice Lead to Tropism to the Reproductive Organs, and Horizontal and Vertical Transmission.

    Science.gov (United States)

    Biteau, Nicolas; Asencio, Corinne; Izotte, Julien; Rousseau, Benoit; Fèvre, Muriel; Pillay, Davita; Baltz, Théo

    2016-01-01

    Trypanosoma brucei gambiense, transmitted by the tsetse fly, is the main causative agent of Human African trypanosomosis in West Africa and poses a significant health risk to 70 million people. Disease progression varies depending on host immunity, but usually begins with a haemo-lymphatic phase, followed by parasite invasion of the central nervous system. In the current study, the tropism of T. b. gambiense 1135, causing a low level chronic 'silent' infection, was monitored in a murine model using bioluminescence imaging and PCR. A tropism to the reproductive organs, in addition to the central nervous system, after 12-18 months of infection was observed. Bioluminescent analysis of healthy females crossed with infected males showed that 50%, 62.5% and 37.5% of the female mice were subsequently positive for parasites in their ovaries, uteri and brain respectively. Although PCR confirmed the presence of parasites in the uterus of one of these mice, the blood of all mice was negative by PCR and LAMP. Subsequently, bioluminescent imaging of the offspring of infected female mice crossed with healthy males indicated parasites were present in the reproductive organs of both male (80%) and female (60%) offspring. These findings imply that transmission of T. b. gambiense 1135 occurs horizontally, most probably via sexual contact, and vertically in a murine model, which raises the possibility of a similar transmission in humans. This has wide reaching implications. Firstly, the observations made in this study are likely to be valid for wild animals acting as a reservoir for T. b. gambiense. Also, the reproductive organs may act as a refuge for parasites during drug treatment in a similar manner to the central nervous system. This could leave patients at risk of a relapse, ultimately allowing them to act as a reservoir for subsequent transmission by tsetse and possibly, horizontally and vertically. PMID:26735855

  3. Does radioadaptive response also apply to the case of heavy-ion irradiations in fetal and adult mice?

    International Nuclear Information System (INIS)

    Possible induction of adaptive response (AR) by the high LET accelerated heavy ion irradiations (HI) is being attempted both in young adult female mice and in fetal mice of C57BL/6J Jms strain, using growth delay, hematopoietic damage and reduced survival in utero, prenatal growth delay, malformation and death in utero as endpoints. Investigations are to verify if priming dose from low LET X-irradiation could induce an AR against the detrimental effects from the high challenging dose of HI, if priming dose from HI could induce an AR against the high challenging dose from low LET X-irradiations, and if an AR could be induced when both priming and challenging doses are from HI. Three kinds of HI are being examined: carbon, silicon and iron, with the LET values of about 15, 55, and 200 keV/micrometer, respectively. Results show, at whole body level for the first time, that priming dose of low LET X-irradiations could induce AR both in vivo and in utero against the challenging dose from high LET HI, and priming dose from high LET HI could induce AR against the challenging dose from low LET X-irradiations in vivo. The remaining questions that if priming dose from HI could induce an AR against the challenging dose from low LET X-irradiations in ulero, if an AR could be induced both in vivo and in utero when both priming and challenging doses are from HI, and if there is any LET dependency in AR induction at whole body level, are still to be answered by further intensive investigations. (author)

  4. Does radioadaptive response also apply to the case of heavy-ion irradiations in fetal and adult mice?

    International Nuclear Information System (INIS)

    Possible induction of adaptive response (AR) by the high linear energy transfer (LET) accelerated heavy ion irradiations (HI) is being attempted both in young adult female mice and in fetal mice of C57BL/6J Jms strain, using growth delay, hematopoietic damage and reduced survival in vivo, prenatal growth delay, malformation and death in utero as endpoints. Investigations are to verify if priming dose from low LET X-irradiation could induce an AR against the detrimental effects from the high challenging dose of HI, if priming dose from HI could induce an AR against the high challenging dose from low LET X-irradiations, and if an AR could be induced when both priming and challenging doses are from HI. Four kinds of HI are being examined: carbon, neon, silicon and iron, with the LET values of about 15, 30, 55, and 200 keV/micrometer, respectively. Results show that the priming low dose X-irradiations could induce AR against high LET heavy-ion challenging irradiations from carbon and silicon beams in vivo and in utero, but not iron ions in vivo; the priming low dose carbon-ion irradiations could induce AR against the high challenging irradiations in vivo from X-rays or carbon ions, but not silicon and iron ions; priming dose from carbon, silicon or iron ions could not induce any AR against challenging dose from X-rays in utero. It seems that AR induction at whole body level is radiation quality-related event. Further investigations are needed to answer if this event is of LET- or/and nuclide-dependency. (author)

  5. Deficient production of reactive oxygen species leads to severe chronic DSS-induced colitis in Ncf1/p47phox-mutant mice.

    Directory of Open Access Journals (Sweden)

    Tiago Rodrigues-Sousa

    Full Text Available BACKGROUND: Colitis is a common clinical complication in chronic granulomatous disease (CGD, a primary immunodeficiency caused by impaired oxidative burst. Existing experimental data from NADPH-oxidase knockout mice propose contradictory roles for the involvement of reactive oxygen species in colitis chronicity and severity. Since genetically controlled mice with a point-mutation in the Ncf1 gene are susceptible to chronic inflammation and autoimmunity, we tested whether they presented increased predisposition to develop chronic colitis. METHODS: Colitis was induced in Ncf1-mutant and wild-type mice by a 1st 7-days cycle of dextran sulfate sodium (DSS, intercalated by a 7-days resting period followed by a 2nd 7-days DSS-cycle. Cytokines were quantified locally in the colon inflammatory infiltrates and in the serum. Leukocyte infiltration and morphological alterations of the colon mucosa were assessed by immunohistochemistry. RESULTS: Clinical scores demonstrated a more severe colitis in Ncf1-mutant mice than controls, with no recovery during the resting period and a severe chronic colitis after the 2nd cycle, confirmed by histopathology and presence of infiltrating neutrophils, macrophages, plasmocytes and lymphocytes in the colon. Severe colitis was mediated by increased local expression of cytokines (IL-6, IL-10, TNF-α, IFN-γ and IL-17A and phosphorylation of Leucine-rich repeat kinase 2 (LRRK2. Serological cytokine titers of those inflammatory cytokines were more elevated in Ncf1-mutant than control mice, and were accompanied by systemic changes in functional subsets of monocytes, CD4+ T and B cells. CONCLUSION: This suggests that an ineffective oxidative burst leads to severe chronic colitis through local accumulation of peroxynitrites, pro-inflammatory cytokines and lymphocytes and systemic immune deregulation similar to CGD.

  6. Pronounced susceptibility to infection by Salmonella enterica serovar Typhimurium in mice chronically exposed to lead correlates with a shift to Th2-type immune responses

    International Nuclear Information System (INIS)

    Persistent exposure to inorganic lead (Pb) is known to adversely affect the immune system. In the present study, we assessed the effect of chronic Pb exposure on susceptibility to infection by the facultative intracellular pathogen Salmonella enterica serovar Typhimurium. Mice were exposed to 10 mM Pb-acetate in drinking water for ∼ 16 weeks, resulting in a significant level of Pb in the blood (106.2 ± 8.9 μg/dl). Pb exposure rendered mice susceptible to Salmonella infection, manifested by increased bacterial burden in target organs and heightened mortality. Flow cytometric analysis of the splenic cellular composition in normal and Pb-exposed mice revealed no gross alteration in the ratios of B and T lymphocytes or myeloid cells. Similarly, the capacity of B and T cells to upregulate the expression of activation antigens in response to mitogenic or inflammatory stimuli was not hindered by Pb exposure. Analysis of the ability of ex vivo-cultured splenocytes to secrete cytokines demonstrated a marked reduction in IFN-γ and IL-12p40 production associated with Pb exposure. In contrast, secretion of IL-4 by splenocytes of Pb-treated mice was 3- to 3.6-fold higher than in normal mice. The increased capacity to produce IL-4 correlated with a shift in the in vivo anti-Salmonella antibody response from the protective IgG2a isotype to the Th2-induced IgG1 isotype. We conclude that chronic exposure to high levels of Pb results in a state of immunodeficiency which is not due to an overt cytotoxic or immunosuppressive mechanism, but rather is largely caused by a shift in immune responsiveness to Th2-type reactions

  7. Temporal and spatial patterns of transgene expression in aging adult mice provide insights about the origins, organization, and differentiation of the intestinal epithelium.

    OpenAIRE

    Cohn, S. M.; Roth, K A; Birkenmeier, E H; Gordon, J I

    1991-01-01

    We have used liver fatty acid-binding protein/human growth hormone (L-FABP/hGH) fusion genes to explore the temporal and spatial differentiation of intestinal epithelial cells in 1- to 12-month-old transgenic mice. The intact, endogenous L-FABP gene (Fabpl) was not expressed in the colon at any time. Young adult transgenic mice containing nucleotides -596 to +21 of the rat L-FABP gene linked to the hGH gene (minus its 5' nontranscribed domain) demonstrated inappropriate expression of hGH in e...

  8. Seipin knockout in mice impairs stem cell proliferation and progenitor cell differentiation in the adult hippocampal dentate gyrus via reduced levels of PPARγ

    Directory of Open Access Journals (Sweden)

    Guoxi Li

    2015-12-01

    Full Text Available The seipin gene (BSCL2 was originally identified in humans as a loss-of-function gene associated with congenital generalized lipodystrophy type 2 (CGL2. Neuronal seipin-knockout (seipin-nKO mice display a depression-like phenotype with a reduced level of hippocampal peroxisome proliferator-activated receptor gamma (PPARγ. The present study investigated the influence of seipin deficiency on adult neurogenesis in the hippocampal dentate gyrus (DG and the underlying mechanisms of the effects. We show that the proliferative capability of stem cells in seipin-nKO mice was substantially reduced compared to in wild-type (WT mice, and that this could be rescued by the PPARγ agonist rosiglitazone (rosi. In seipin-nKO mice, neuronal differentiation of progenitor cells was inhibited, with the enhancement of astrogliogenesis; both of these effects were recovered by rosi treatment during early stages of progenitor cell differentiation. In addition, rosi treatment could correct the decline in hippocampal ERK2 phosphorylation and cyclin A mRNA level in seipin-nKO mice. The MEK inhibitor U0126 abolished the rosi-rescued cell proliferation and cyclin A expression in seipin-nKO mice. In seipin-nKO mice, the hippocampal Wnt3 protein level was less than that in WT mice, and there was a reduction of neurogenin 1 (Neurog1 and neurogenic differentiation 1 (NeuroD1 mRNA, levels of which were corrected by rosi treatment. STAT3 phosphorylation (Tyr705 was enhanced in seipin-nKO mice, and was further elevated by rosi treatment. Finally, rosi treatment for 10 days could alleviate the depression-like phenotype in seipin-nKO mice, and this alleviation was blocked by the MEK inhibitor U0126. The results indicate that, by reducing PPARγ, seipin deficiency impairs proliferation and differentiation of neural stem and progenitor cells, respectively, in the adult DG, which might be responsible for the production of the depression-like phenotype in seipin-nKO mice.

  9. High Fetal Estrogen Concentrations: Correlation with Increased Adult Sexual Activity and Decreased Aggression in Male Mice

    Science.gov (United States)

    Vom Saal, Frederick S.; Grant, William M.; McMullen, Carol W.; Laves, Kurt S.

    1983-06-01

    In the house mouse (Mus musculus), fetuses may develop in utero next to siblings of the same or opposite sex. The amniotic fluid of the female fetuses contains higher concentrations of estradiol than that of male fetuses. Male fetuses that developed in utero between female fetuses had higher concentrations of estradiol in their amniotic fluid than males that were located between other male fetusesw during intrauterine development. They were also more sexually active as adults, less aggressive, and had smaller seminal vesicles than males that had developed between other male fetuses in utero. These findings raise the possibility that during fetal life circulating estrogens may interact with circulating androgens both in regulating the development of sex differences between males and females and in producing variation in phenotype among males and among females.

  10. Protective effects of crocin on testes of adult cyclophosphamide treated mice

    Directory of Open Access Journals (Sweden)

    2014-04-01

    Full Text Available Background & aim: The side effect of cyclophosphamide is to reduce fertility or even sterility in men treated with these medications. This study was performed to improve these side effects. Methods: In the present experimental study, 15 male mice (20-25 g were divided into three groups. The control group was treated with 0.1cc of saline daily. The sham group received 15 mg/kg cyclophosphamide once a week and the experimental group was treated with 200 mg/kg Crocin intraperitoneally along with cyclophosphamide. Five weeks after injection total antioxidant capacity of serum was measured. The testes were studied for histological and morphometric parameters. The collected data was analyzed by ANOVA. Results: Histomorphometrical study indicated that epithelial thickness, diameter of seminiferous tubules and Leydig cells of experimental group was significantly greater than sham controls (p<0.05. Mean distribution of mast cells in the sham group compared to the experimental group showed a significant increase (p<0.05. Additionally, positive PAS reaction, alkaline phosphatase and vegetable fat in the cytoplasm of Leydig cells of sham control were observed, whereas in the other groups not seen. In addition, total antioxidant capacity of sham group decreased significantly compared to the control and experimental groups with the sham control and experimental groups ((p<0.05. Conclusion: in general Crocin could significantly prevent the side effects of cyclophosphamide therapy.

  11. Anxiety- and Depression-Like States Lead to Pronounced Olfactory Deficits and Impaired Adult Neurogenesis in Mice.

    OpenAIRE

    Siopi, Eleni; Denizet, Marie; Gabellec, Marie-Madeleine; De Chaumont, Fabrice; Olivo-Marin, Jean-Christophe; Guilloux, Jean-Philippe; Lledo, Pierre-Marie; Lazarini, Françoise

    2016-01-01

    International audience Numerous clinical reports underscore the frequency of olfactory impairments in patients suffering from major depressive disorders (MDDs), yet the underlying physiopathological mechanisms remain poorly understood. We hypothesized that one key link between olfactory deficits and MDD lies in hypercortisolemia, a cardinal symptom of MDD. Corticosterone (CORT) is known to negatively correlate with hippocampal neurogenesis, yet its effects on olfactory neurogenesis and olf...

  12. Expression profiling reveals novel hypoxic biomarkers in peripheral blood of adult mice exposed to chronic hypoxia.

    Directory of Open Access Journals (Sweden)

    Matias Mosqueira

    Full Text Available Hypoxia induces a myriad of changes including an increase in hematocrit due to erythropoietin (EPO mediated erythropoiesis. While hypoxia is of importance physiologically and clinically, lacunae exist in our knowledge of the systemic and temporal changes in gene expression occurring in blood during the exposure and recovery from hypoxia. To identify these changes expression profiling was conducted on blood obtained from cohorts of C57Bl-10 wild type mice that were maintained at normoxia (NX, exposed for two weeks to normobaric chronic hypoxia (CH or two weeks of CH followed by two weeks of normoxic recovery (REC. Using stringent bioinformatic cut-offs (0% FDR, 2 fold change cut-off, 230 genes were identified and separated into four distinct temporal categories. Class I contained 1 transcript up-regulated in both CH and REC; Class II contained 202 transcripts up-regulated in CH but down-regulated after REC; Class III contained 9 transcripts down-regulated both in CH and REC; Class IV contained 18 transcripts down-regulated after CH exposure but up-regulated after REC. Profiling was independently validated and extended by analyzing expression levels of selected genes as novel biomarkers from our profile (e.g. spectrin alpha-1, ubiquitin domain family-1 and pyrroline-5-carboxylate reductase-1 by performing qPCR at 7 different time points during CH and REC. Our identification and characterization of these genes define transcriptome level changes occurring during chronic hypoxia and normoxic recovery as well as novel blood biomarkers that may be useful in monitoring a variety of physiological and pathological conditions associated with hypoxia.

  13. Silencing of microRNA-155 in mice during acute inflammatory response leads to derepression of c/ebp Beta and down-regulation of G-CSF

    OpenAIRE

    Worm, Jesper; Stenvang, Jan; Petri, Andreas; Frederiksen, Klaus Stensgaard; Obad, Susanna; Elmén, Joacim; Hedtjärn, Maj; Straarup, Ellen Marie; Hansen, Jens Bo; Kauppinen, Sakari

    2009-01-01

    microRNA-155 (miR-155) has been implicated as a central regulator of the immune system, but its function during acute inflammatory responses is still poorly understood. Here we show that exposure of cultured macrophages and mice to lipopolysaccharide (LPS) leads to up-regulation of miR-155 and that the transcription factor c/ebp Beta is a direct target of miR-155. Interestingly, expression profiling of LPS-stimulated macrophages combined with overexpression and silencing of miR-155 in murine ...

  14. Lead Poisoning

    Science.gov (United States)

    ... has also been associated with juvenile delinquency and criminal behavior. In adults, lead can increase blood pressure ... and-forth manner, but rather from left to right (or vise-versa), or from the top of ...

  15. Impact of Environmental Microbes on the Composition of the Gut Microbiota of Adult BALB/c Mice

    Science.gov (United States)

    Li, Na; Bai, Zhiyu; Zhang, Liling; Xue, Zhencheng; Jiang, Haitao; Song, Yuan; Zhou, Dongrui

    2016-01-01

    To investigate the impact of microbes within the living environment on the gut microbiota of adults, we raised three groups of BALB/c mice from 3–4 weeks age in the same specific-pathogen-free animal room for 8 weeks. The control group lived in cages with sterilized bedding (pelletized cardboard), the probiotics group had three probiotics added to the sterilized bedding, and the intestinal microbes (IM) group had the intestinal microbes of a healthy goat added to the bedding. All other variables such as diet, age, genetic background, physiological status, original gut microbiota, and living room were controlled. Using high-throughput sequencing of the 16S rRNA gene, we observed that the control and probiotics groups had similar diversity and richness of gut microbiota. The two groups had significantly lower diversity than the IM group. We also observed that the IM group had a specific structure of gut microbial community compared with the control and probiotics groups. However, the dominate bacteria changed slightly upon exposure to intestinal microbes, and the abundance of the non-dominate species changed significantly. In addition, exposure to intestinal microbes inhibited DNFB-induced elevation of serum IgE levels. Our results provide new evidence in support of the microflora and hygiene hypotheses. PMID:27518814

  16. Increases in the numerical density of GAT-1 positive puncta in the barrel cortex of adult mice after fear conditioning.

    Directory of Open Access Journals (Sweden)

    Ewa Siucinska

    Full Text Available Three days of fear conditioning that combines tactile stimulation of a row of facial vibrissae (conditioned stimulus, CS with a tail shock (unconditioned stimulus, UCS expands the representation of "trained" vibrissae, which can be demonstrated by labeling with 2-deoxyglucose in layer IV of the barrel cortex. We have also shown that functional reorganization of the primary somatosensory cortex (S1 increases GABAergic markers in the hollows of "trained" barrels of the adult mouse. This study investigated how whisker-shock conditioning (CS+UCS affected the expression of puncta of a high-affinity GABA plasma membrane transporter GAT-1 in the barrel cortex of mice 24 h after associative learning paradigm. We found that whisker-shock conditioning (CS+UCS led to increase expression of neuronal and astroglial GAT-1 puncta in the "trained" row compared to controls: Pseudoconditioned, CS-only, UCS-only and Naïve animals. These findings suggest that fear conditioning specifically induces activation of systems regulating cellular levels of the inhibitory neurotransmitter GABA.

  17. Impact of Environmental Microbes on the Composition of the Gut Microbiota of Adult BALB/c Mice.

    Science.gov (United States)

    Bai, Zhimao; Zhang, Honglin; Li, Na; Bai, Zhiyu; Zhang, Liling; Xue, Zhencheng; Jiang, Haitao; Song, Yuan; Zhou, Dongrui

    2016-01-01

    To investigate the impact of microbes within the living environment on the gut microbiota of adults, we raised three groups of BALB/c mice from 3-4 weeks age in the same specific-pathogen-free animal room for 8 weeks. The control group lived in cages with sterilized bedding (pelletized cardboard), the probiotics group had three probiotics added to the sterilized bedding, and the intestinal microbes (IM) group had the intestinal microbes of a healthy goat added to the bedding. All other variables such as diet, age, genetic background, physiological status, original gut microbiota, and living room were controlled. Using high-throughput sequencing of the 16S rRNA gene, we observed that the control and probiotics groups had similar diversity and richness of gut microbiota. The two groups had significantly lower diversity than the IM group. We also observed that the IM group had a specific structure of gut microbial community compared with the control and probiotics groups. However, the dominate bacteria changed slightly upon exposure to intestinal microbes, and the abundance of the non-dominate species changed significantly. In addition, exposure to intestinal microbes inhibited DNFB-induced elevation of serum IgE levels. Our results provide new evidence in support of the microflora and hygiene hypotheses. PMID:27518814

  18. [Reinnervation of central visual areas and recovery of visual functions following optic nerve regeneration in adult mice].

    Science.gov (United States)

    Koriyama, Yoshiki; Kurimoto, Takuji; de Lima, Silmara; Benowitz, Larry

    2014-03-01

    The optic nerve has been widely studied in search for insights into mechanisms that suppress or promote axon regeneration after injury. Like other CNS neurons, adult retinal ganglion cells (RGCs) normally fail to regenerate their axons after optic nerve injury. Recent studies have identified molecular pathways able to allow partial regeneration of damaged RGCs axons in mature rodents; however, it is still unknown, whether regrowing optic axons can re-enter the brain in large numbers, innervate the correct target areas, and thus restore vision. We investigated these questions by using three manipulations that synergistically increase regeneration far above the level induced by any of the three used alone. Oncomodulin is a calcium-binding protein secreted by activated macrophages and neutrophils and stimulates RGCs to regenerate axons. Its ability to bind to RGCs and activate a downstream response is enhanced by elevating intracellular cAMP. Studies were carried out in mice with a conditional deletion of the gene encoding PTEN, a phosphatase and tensin homolog that suppresses signaling through the Akt/mTOR/S6K pathway. Our results showed that intraocular inflammation, deletion of the PTEN gene and elevation of intracellular cAMP exert synergistic effects that enable RGCs to regenerate the full length of axons, form synapses, and restore simple visual functions. These results demonstrate the feasibility of reconstructing central circuitry for vision after optic nerve damage in mature mammals. PMID:24607951

  19. Activation of the Wnt/β-catenin signaling pathway is associated with glial proliferation in the adult spinal cord of ALS transgenic mice

    International Nuclear Information System (INIS)

    Highlights: ► Wnt3a and Cyclin D1 were upregulated in the spinal cord of the ALS mice. ► β-catenin translocated from the cell membrane to the nucleus in the ALS mice. ► Wnt3a, β-catenin and Cyclin D1 co-localized for astrocytes were all increased. ► BrdU/Cyclin D1 double-positive cells were increased in the spinal cord of ALS mice. ► BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. -- Abstract: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive and fatal loss of motor neurons. In ALS, there is a significant cell proliferation in response to neurodegeneration; however, the exact molecular mechanisms of cell proliferation and differentiation are unclear. The Wnt signaling pathway has been shown to be involved in neurodegenerative processes. Wnt3a, β-catenin, and Cyclin D1 are three key signaling molecules of the Wnt/β-catenin signaling pathway. We determined the expression of Wnt3a, β-catenin, and Cyclin D1 in the adult spinal cord of SOD1G93A ALS transgenic mice at different stages by RT-PCR, Western blot, and immunofluorescence labeling techniques. We found that the mRNA and protein of Wnt3a and Cyclin D1 in the spinal cord of the ALS mice were upregulated compared to those in wild-type mice. In addition, β-catenin translocated from the cell membrane to the nucleus and subsequently activated transcription of the target gene, Cyclin D1. BrdU and Cyclin D1 double-positive cells were increased in the spinal cord of these mice. Moreover, Wnt3a, β-catenin, and Cyclin D1 were also expressed in both neurons and astrocytes. The expression of Wnt3a, β-catenin or Cyclin D1 in mature GFAP+ astrocytes increased. Moreover, BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. Our findings suggest that neurodegeneration activates the Wnt/β-catenin signaling pathway, which is associated with glial proliferation in the adult spinal cord of ALS transgenic mice. This

  20. Activation of the Wnt/{beta}-catenin signaling pathway is associated with glial proliferation in the adult spinal cord of ALS transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yanchun [Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong (China); Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong (China); Guan, Yingjun, E-mail: guanyj@wfmc.edu.cn [Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong (China); Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong (China); Liu, Huancai [Department of Orthopedic, Affiliated Hospital, Weifang Medical University, Weifang, Shandong (China); Wu, Xin; Yu, Li; Wang, Shanshan; Zhao, Chunyan; Du, Hongmei [Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong (China); Wang, Xin, E-mail: xwang@rics.bwh.harvard.edu [Department of Neurosurgery, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States)

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer Wnt3a and Cyclin D1 were upregulated in the spinal cord of the ALS mice. Black-Right-Pointing-Pointer {beta}-catenin translocated from the cell membrane to the nucleus in the ALS mice. Black-Right-Pointing-Pointer Wnt3a, {beta}-catenin and Cyclin D1 co-localized for astrocytes were all increased. Black-Right-Pointing-Pointer BrdU/Cyclin D1 double-positive cells were increased in the spinal cord of ALS mice. Black-Right-Pointing-Pointer BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. -- Abstract: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive and fatal loss of motor neurons. In ALS, there is a significant cell proliferation in response to neurodegeneration; however, the exact molecular mechanisms of cell proliferation and differentiation are unclear. The Wnt signaling pathway has been shown to be involved in neurodegenerative processes. Wnt3a, {beta}-catenin, and Cyclin D1 are three key signaling molecules of the Wnt/{beta}-catenin signaling pathway. We determined the expression of Wnt3a, {beta}-catenin, and Cyclin D1 in the adult spinal cord of SOD1{sup G93A} ALS transgenic mice at different stages by RT-PCR, Western blot, and immunofluorescence labeling techniques. We found that the mRNA and protein of Wnt3a and Cyclin D1 in the spinal cord of the ALS mice were upregulated compared to those in wild-type mice. In addition, {beta}-catenin translocated from the cell membrane to the nucleus and subsequently activated transcription of the target gene, Cyclin D1. BrdU and Cyclin D1 double-positive cells were increased in the spinal cord of these mice. Moreover, Wnt3a, {beta}-catenin, and Cyclin D1 were also expressed in both neurons and astrocytes. The expression of Wnt3a, {beta}-catenin or Cyclin D1 in mature GFAP{sup +} astrocytes increased. Moreover, BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. Our findings suggest that

  1. Periowave demonstrates bactericidal activity against periopathogens and leads to improved clinical outcomes in the treatment of adult periodontitis

    Science.gov (United States)

    Street, Cale N.; Andersen, Roger; Loebel, Nicolas G.

    2009-02-01

    Periodontitis affects half of the U.S. population over 50, and is the leading cause of tooth loss after 35. It is believed to be caused by growth of complex bacterial biofilms on the tooth surface below the gumline. Photodynamic therapy, a technology used commonly in antitumor applications, has more recently been shown to exhibit antimicrobial efficacy. We have demonstrated eradication of the periopathogens Porphyromonas gingivalis, Fusobacterium nucleatum, and Aggregatibacter actinomycetemcomitans in vitro using PeriowaveTM; a commercial photodisinfection system. In addition, several clinical studies have now demonstrated the efficacy of this treatment. A pilot study in the U.S. showed that 68% of patients treated with PeriowaveTM adjunctively to scaling and root planing (SRP) showed clinical attachment level increase of >1 mm, as opposed to 30% with SRP alone. In a subsequent larger study, a second PeriowaveTM treatment 6 weeks after initial treatment led to pocket depth improvements of >1.5 mm in 89% of patients. Finally, in the most recent multicenter, randomized, examiner-blinded study conducted on 121 subjects in Canada, PeriowaveTM treatment produced highly significant gains in attachment level (0.88 mm vs. 0.57 mm; p=0.003) and pocket depth (0.87 mm vs. 0.63 mm; p=0.01) as compared to SRP alone. In summary, PeriowaveTM demonstrated strong bactericidal activity against known periopathogens, and treatment of periodontitis using this system produced significantly better clinical outcomes than SRP alone. This, along with the absence of any adverse events in patients treated to date demonstrates that PDT is a safe and effective treatment for adult chronic periodontitis.

  2. Exercise prevents high-fat diet-induced impairment of flexible memory expression in the water maze and modulates adult hippocampal neurogenesis in mice.

    Science.gov (United States)

    Klein, C; Jonas, W; Iggena, D; Empl, L; Rivalan, M; Wiedmer, P; Spranger, J; Hellweg, R; Winter, Y; Steiner, B

    2016-05-01

    Obesity is currently one of the most serious threats to human health in the western civilization. A growing body of evidence suggests that obesity is associated with cognitive dysfunction. Physical exercise not only improves fitness but it has also been shown in human and animal studies to increase hippocampus-dependent learning and memory. High-fat diet (HFD)-induced obesity and physical exercise both modulate adult hippocampal neurogenesis. Adult neurogenesis has been demonstrated to play a role in hippocampus-dependent learning and memory, particularly flexible memory expression. Here, we investigated the effects of twelve weeks of HFD vs. control diet (CD) and voluntary physical activity (wheel running; -R) vs. inactivity (sedentary; -S) on hippocampal neurogenesis and spatial learning and flexible memory function in female C57Bl/6 mice assessed in the Morris water maze. HFD was initiated either in adolescent mice combined with long-term concurrent exercise (preventive approach) or in young adult mice with 14days of subsequent exercise (therapeutic approach). HFD resulted in impaired flexible memory expression only when initiated in adolescent (HFD-S) but not in young adult mice, which was successfully prevented by concurrent exercise (HFD-R). Histological analysis revealed a reduction of immature neurons in the hippocampus of the memory-impaired HFD-S mice of the preventive approach. Long-term physical exercise also led to accelerated spatial learning during the acquisition period, which was accompanied by increased numbers of newborn mature neurons (HFD-R and CD-R). Short-term exercise of 14days in the therapeutic group was not effective in improving spatial learning or memory. We show that (1) alterations in learning and flexible memory expression are accompanied by changes in the number of neuronal cells at different maturation stages; (2) these neuronal cells are in turn differently affected by HFD; (3) adolescent mice are specifically susceptible to the

  3. Transgenic overexpression of the alpha-synuclein interacting protein synphilin-1 leads to behavioral and neuropathological alterations in mice.

    Science.gov (United States)

    Nuber, Silke; Franck, Thomas; Wolburg, Hartwig; Schumann, Ulrike; Casadei, Nicolas; Fischer, Kristina; Calaminus, Carsten; Pichler, Bernd J; Chanarat, Sittinan; Teismann, Peter; Schulz, Jörg B; Luft, Andreas R; Tomiuk, Jürgen; Wilbertz, Johannes; Bornemann, Antje; Krüger, Rejko; Riess, Olaf

    2010-02-01

    Synphilin-1 has been identified as an interacting protein of alpha-synuclein, Parkin, and LRRK2, proteins which are mutated in familial forms of Parkinson disease (PD). Subsequently, synphilin-1 has also been shown to be an intrinsic component of Lewy bodies in sporadic PD. In order to elucidate the role of synphilin-1 in the pathogenesis of PD, we generated transgenic mice overexpressing wild-type and mutant (R621C) synphilin-1 driven by a mouse prion protein promoter. Transgenic expression of both wild-type and the R621C variant synphilin-1 resulted in increased dopamine levels of the nigrostriatal system in 3-month-old mice. Furthermore, we found pathological ubiquitin-positive inclusions in cerebellar sections and dark-cell degeneration of Purkinje cells. Both transgenic mouse lines showed significant reduction of motor skill learning and motor performance. These findings suggest a pathological role of overexpressed synphilin-1 in vivo and will help to further elucidate the mechanisms of protein aggregation and neuronal cell death. PMID:19760259

  4. Age-Dependent Decrease in Chaperone Activity Impairs MANF Expression, Leading to Purkinje Cell Degeneration in Inducible SCA17 Mice

    Science.gov (United States)

    Yang, Su; Huang, Shanshan; Gaertig, Marta A.; Li, Xiao-Jiang; Li, Shihua

    2016-01-01

    SUMMARY Although protein-misfolding-mediated neurodegenerative diseases have been linked to aging, how aging contributes to selective neurodegeneration remains unclear. We established spinocerebellar ataxia 17 (SCA17) knockin mice that inducibly express one copy of mutant TATA box binding protein (TBP) at different ages by tamoxifen-mediated Cre recombination. We find that more mutant TBP accumulates in older mouse and that this accumulation correlates with age-related decreases in Hsc70 and chaperone activity. Consistently, older SCA17 mice experienced earlier neurological symptom onset and more severe Purkinje cell degeneration. Mutant TBP shows decreased association with XBP1s, resulting in the reduced transcription of mesencephalic astrocyte-derived neurotrophic factor (MANF), which is enriched in Purkinje cells. Expression of Hsc70 improves the TBP-XBP1s interaction and MANF transcription, and overexpression of MANF ameliorates mutant TBP-mediated Purkinje cell degeneration via protein kinase C (PKC)-dependent signaling. These findings suggest that the age-related decline in chaperone activity affects polyglutamine protein function that is important for the viability of specific types of neurons. PMID:24462098

  5. Cd59a deficiency in mice leads to preferential innate immune activation in the retinal pigment epithelium-choroid with age.

    Science.gov (United States)

    Herrmann, Philipp; Cowing, Jill A; Cristante, Enrico; Liyanage, Sidath E; Ribeiro, Joana; Duran, Yanai; Abelleira Hervas, Laura; Carvalho, Livia S; Bainbridge, James W B; Luhmann, Ulrich F O; Ali, Robin R

    2015-09-01

    Dysregulation of the complement system has been implicated in the pathogenesis of age-related macular degeneration. To investigate consequences of altered complement regulation in the eye with age, we examined Cd59a complement regulator deficient (Cd59a(-/-)) mice between 4 and 15 months. In vivo imaging revealed an increased age-related accumulation of autofluorescent spots in Cd59a(-/-) mice, a feature that reflects accumulation of subretinal macrophages and/or microglia. Despite this activation of myeloid cells in the eye, Cd59a(-/-) mice showed normal retinal histology and function as well as normal choroidal microvasculature. With age, they revealed increased expression of activators of the alternative complement pathway (C3, Cfb, Cfd), in particular in the retinal pigment epithelium (RPE)-choroid but less in the retina. This molecular response was not altered by moderately-enhanced light exposure. Cd59a deficiency therefore leads to a preferential age-related dysregulation of the complement system in the RPE-choroid, that alone or in combination with light as a trigger, is not sufficient to cause choroidal vascular changes or retinal degeneration and dysfunction. This data emphasizes the particular vulnerability of the RPE-choroidal complex to dysregulation of the alternative complement pathway during aging. PMID:26234657

  6. Voluntary Running in Young Adult Mice Reduces Anxiety-Like Behavior and Increases the Accumulation of Bioactive Lipids in the Cerebral Cortex

    OpenAIRE

    Santos-Soto, Iván J.; Chorna, Nataliya; Carballeira, Néstor M.; Vélez-Bartolomei, José G.; Méndez-Merced, Ana T.; Chornyy, Anatoliy P.; de Ortiz, Sandra Peña

    2013-01-01

    Combinatorial therapies using voluntary exercise and diet supplementation with polyunsaturated fatty acids have synergistic effects benefiting brain function and behavior. Here, we assessed the effects of voluntary exercise on anxiety-like behavior and on total FA accumulation within three brain regions: cortex, hippocampus, and cerebellum of running versus sedentary young adult male C57/BL6J mice. The running group was subjected to one month of voluntary exercise in their home cages, while t...

  7. Altered gene expression and spine density in nucleus accumbens of adolescent and adult male mice exposed to emotional and physical stress.

    Science.gov (United States)

    Warren, Brandon L; Sial, Omar K; Alcantara, Lyonna F; Greenwood, Maria A; Brewer, Jacob S; Rozofsky, John P; Parise, Eric M; Bolaños-Guzmán, Carlos A

    2014-01-01

    Stressful early life experiences are implicated in lifelong health. However, little is known about the consequences of emotional stress (ES) or physical stress (PS) on neurobiology. Therefore, the following set of experiments was designed to assess changes in transcription and translation of key proteins within the nucleus accumbens (NAc). Male adolescent (postnatal day 35) or adult (8-week-old) mice were exposed to ES or PS using a witness social defeat paradigm. Then, 24 h after the last stress session, we measured levels of specific mRNAs and proteins within the NAc. Spine density was also assessed in separate groups of mice. Exposure to ES or PS disrupted extracellular signal-related kinase 2 (ERK2), reduced transcription of ΔFosB and had no effect on cAMP response element-binding protein (CREB) mRNA. Western blots revealed that exposure to ES or PS decreased ERK2 phosphorylation in adolescents, whereas the same stress regimen increased ERK2 phosphorylation in adults. Exposure to ES or PS had no effect on ΔFosB or CREB phosphorylation. ES and PS increased spine density in the NAc of adolescent exposed mice, but only exposure to PS increased spine density in adults. Together, these findings demonstrate that exposure to ES or PS is a potent stressor in adolescent and adult mice and can disturb the integrity of the NAc by altering transcription and translation of important signaling molecules in an age-dependent manner. Furthermore, exposure to ES and PS induces substantial synaptic plasticity of the NAc. PMID:24943326

  8. Protective Effects of Royal Jelly and Vitamin C against Experimental Hemolytic Anemia on Sex Hormones and Histochemical Testicle Tissue Histochemistry of Adult Mice

    OpenAIRE

    H Anbara; R Shahrooz; H Malekinejad; S Saadati

    2016-01-01

    Introduction: Phenylhydrazine (PHZ) is a well-known hemolytic compound inducing intoxication in erythrocytes. Therefore, the present study aimed to evaluate the protective effects of royal jelly and vitamin C against phenylhydrazine-induced damages in mouse testicles. Methods: In this study, 64 adult male mice were randomly and equally assigned to eight groups. The first group received normal saline (0.1ml) intraperitoneally. The second group received PHZ (6 mg/100 gr) intraperitoneally i...

  9. Epigallocatechin-3-gallate rescues LPS-impaired adult hippocampal neurogenesis through suppressing the TLR4-NF-κB signaling pathway in mice.

    Science.gov (United States)

    Seong, Kyung-Joo; Lee, Hyun-Gwan; Kook, Min Suk; Ko, Hyun-Mi; Jung, Ji-Yeon; Kim, Won-Jae

    2016-01-01

    Adult hippocampal dentate granule neurons are generated from neural stem cells (NSCs) in the mammalian brain, and the fate specification of adult NSCs is precisely controlled by the local niches and environment, such as the subventricular zone (SVZ), dentate gyrus (DG), and Toll-like receptors (TLRs). Epigallocatechin-3-gallate (EGCG) is the main polyphenolic flavonoid in green tea that has neuroprotective activities, but there is no clear understanding of the role of EGCG in adult neurogenesis in the DG after neuroinflammation. Here, we investigate the effect and the mechanism of EGCG on adult neurogenesis impaired by lipopolysaccharides (LPS). LPS-induced neuroinflammation inhibited adult neurogenesis by suppressing the proliferation and differentiation of neural stem cells in the DG, which was indicated by the decreased number of Bromodeoxyuridine (BrdU)-, Doublecortin (DCX)- and Neuronal Nuclei (NeuN)-positive cells. In addition, microglia were recruited with activatingTLR4-NF-κB signaling in the adult hippocampus by LPS injection. Treating LPS-injured mice with EGCG restored the proliferation and differentiation of NSCs in the DG, which were decreased by LPS, and EGCG treatment also ameliorated the apoptosis of NSCs. Moreover, pro-inflammatory cytokine production induced by LPS was attenuated by EGCG treatment through modulating the TLR4-NF-κB pathway. These results illustrate that EGCG has a beneficial effect on impaired adult neurogenesis caused by LPSinduced neuroinflammation, and it may be applicable as a therapeutic agent against neurodegenerative disorders caused by inflammation. PMID:26807022

  10. Cholecystokinin expression in the β-cell leads to increased β-cell area in aged mice and protects from streptozotocin-induced diabetes and apoptosis.

    Science.gov (United States)

    Lavine, Jeremy A; Kibbe, Carly R; Baan, Mieke; Sirinvaravong, Sirinart; Umhoefer, Heidi M; Engler, Kimberly A; Meske, Louise M; Sacotte, Kaitlyn A; Erhardt, Daniel P; Davis, Dawn Belt

    2015-11-15

    Cholecystokinin (CCK) is a peptide hormone produced in the gut and brain with beneficial effects on digestion, satiety, and insulin secretion. CCK is also expressed in pancreatic β-cells, but only in models of obesity and insulin resistance. Whole body deletion of CCK in obese mice leads to reduced β-cell mass expansion and increased apoptosis. We hypothesized that islet-derived CCK is important in protection from β-cell apoptosis. To determine the specific role of β-cell-derived CCK in β-cell mass dynamics, we generated a transgenic mouse that expresses CCK in the β-cell in the lean state (MIP-CCK). Although this transgene contains the human growth hormone minigene, we saw no expression of human growth hormone protein in transgenic islets. We examined the ability of MIP-CCK mice to maintain β-cell mass when subjected to apoptotic stress, with advanced age, and after streptozotocin treatment. Aged MIP-CCK mice have increased β-cell area. MIP-CCK mice are resistant to streptozotocin-induced diabetes and exhibit reduced β-cell apoptosis. Directed CCK overexpression in cultured β-cells also protects from cytokine-induced apoptosis. We have identified an important new paracrine/autocrine effect of CCK in protection of β-cells from apoptotic stress. Understanding the role of β-cell CCK adds to the emerging knowledge of classic gut peptides in intraislet signaling. CCK receptor agonists are being investigated as therapeutics for obesity and diabetes. While these agonists clearly have beneficial effects on body weight and insulin sensitivity in peripheral tissues, they may also directly protect β-cells from apoptosis. PMID:26394663

  11. Lessons from Hepatocyte-Specific Cyp51 Knockout Mice: Impaired Cholesterol Synthesis Leads to Oval Cell-Driven Liver Injury

    Science.gov (United States)

    Lorbek, Gregor; Perše, Martina; Jeruc, Jera; Juvan, Peter; Gutierrez-Mariscal, Francisco M.; Lewinska, Monika; Gebhardt, Rolf; Keber, Rok; Horvat, Simon; Björkhem, Ingemar; Rozman, Damjana

    2015-03-01

    We demonstrate unequivocally that defective cholesterol synthesis is an independent determinant of liver inflammation and fibrosis. We prepared a mouse hepatocyte-specific knockout (LKO) of lanosterol 14α-demethylase (CYP51) from the part of cholesterol synthesis that is already committed to cholesterol. LKO mice developed hepatomegaly with oval cell proliferation, fibrosis and inflammation, but without steatosis. The key trigger was reduced cholesterol esters that provoked cell cycle arrest, senescence-associated secretory phenotype and ultimately the oval cell response, while elevated CYP51 substrates promoted the integrated stress response. In spite of the oval cell-driven fibrosis being histologically similar in both sexes, data indicates a female-biased down-regulation of primary metabolism pathways and a stronger immune response in males. Liver injury was ameliorated by dietary fats predominantly in females, whereas dietary cholesterol rectified fibrosis in both sexes. Our data place defective cholesterol synthesis as a focus of sex-dependent liver pathologies.

  12. High-protein diet in lactation leads to a sudden infant death-like syndrome in mice.

    Directory of Open Access Journals (Sweden)

    Thomas Walther

    Full Text Available BACKGROUND: It is well accepted that reduced foetal growth and development resulting from maternal malnutrition are associated with a number of chronic conditions in later life. On the other hand such generation-transcending effects of over-nutrition and of high-protein consumption in pregnancy and lactation, a proven fact in all developed societies, are widely unknown. Thus, we intended to describe the generation-transcending effects of a high-protein diet, covering most relevant topics of human life like embryonic mortality, infant death, and physical health in later life. METHODS: Female mice received control food (21% protein or were fed a high protein diet (42% protein during mating. After fertilisation, females stayed on their respective diet until weaning. At birth, pups were put to foster mothers who were fed with standard food or with HP diet. After weaning, control diet was fed to all mice. All offspring were monitored up to 360 days after birth. We determined glucose-tolerance and measured cardiovascular parameters using a tip-catheter. Finally, abdominal fat amount was measured. RESULTS AND CONCLUSIONS: We identified a worried impact of high-protein diet during pregnancy on dams' body weight gain, body weight of newborns, number of offspring, and also survival in later life. Even more important is the discovery that high-protein diet during lactation caused a more than eight-fold increase in offspring mortality. The observed higher newborn mortality during lactation is a hitherto non-described, unique link to the still incompletely understood human sudden infant death syndrome (SIDS. Thus, although offspring of lactating mothers on high-protein diet might have the advantage of lower abdominal fat within the second half of life, this benefit seems not to compensate the immense risk of an early sudden death during lactation. Our data may implicate that both pregnant women and lactating mothers should not follow classical high

  13. Improved function and proliferation of adult human beta cells engrafted in diabetic immunodeficient NOD-scid IL2rγnull mice treated with alogliptin

    Directory of Open Access Journals (Sweden)

    Jurczyk A

    2013-12-01

    Full Text Available Agata Jurczyk,1 Philip diIorio,1 Dean Brostowin,1 Linda Leehy,1 Chaoxing Yang,1 Fumihiko Urano,2 David M Harlan,3 Leonard D Shultz,4 Dale L Greiner,1 Rita Bortell1 1Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 2Department of Medicine, Washington University School of Medicine, St Louis, MO, 3Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 4The Jackson Laboratory, Bar Harbor, ME, USA Purpose: Dipeptidyl-peptidase-4 (DPP-4 inhibitors are known to increase insulin secretion and beta cell proliferation in rodents. To investigate the effects on human beta cells in vivo, we utilize immunodeficient mice transplanted with human islets. The study goal was to determine the efficacy of alogliptin, a DPP-4 inhibitor, to enhance human beta cell function and proliferation in an in vivo context using diabetic immunodeficient mice engrafted with human pancreatic islets. Methods: Streptozotocin-induced diabetic NOD-scid IL2rγnull (NSG mice were transplanted with adult human islets in three separate trials. Transplanted mice were treated daily by gavage with alogliptin (30 mg/kg/day or vehicle control. Islet graft function was compared using glucose tolerance tests and non-fasting plasma levels of human insulin and C-peptide; beta cell proliferation was determined by bromodeoxyuridine (BrdU incorporation. Results: Glucose tolerance tests were significantly improved by alogliptin treatment for mice transplanted with islets from two of the three human islet donors. Islet-engrafted mice treated with alogliptin also had significantly higher plasma levels of human insulin and C-peptide compared to vehicle controls. The percentage of insulin+BrdU+ cells in human islet grafts from alogliptin-treated mice was approximately 10-fold more than from vehicle control mice, consistent with a significant increase in human beta cell proliferation. Conclusion: Human islet-engrafted immunodeficient mice

  14. The Intrauterine and Nursing Period Is a Window of Susceptibility for Development of Obesity and Intestinal Tumorigenesis by a High Fat Diet in Min/+ Mice as Adults

    Directory of Open Access Journals (Sweden)

    Ha Thi Ngo

    2015-01-01

    Full Text Available We studied how obesogenic conditions during various life periods affected obesity and intestinal tumorigenesis in adult C57BL/6J-Min (multiple intestinal neoplasia/+ mice. The mice were given a 10% fat diet throughout life (negative control or a 45% fat diet in utero, during nursing, during both in utero and nursing, during adult life, or during their whole life-span, and terminated at 11 weeks for tumorigenesis (Min/+ or 23 weeks for obesogenic effect (wild-type. Body weight at 11 weeks was increased after a 45% fat diet during nursing, during both in utero and nursing, and throughout life, but had normalized at 23 weeks. In the glucose tolerance test, the early exposure to a 45% fat diet in utero, during nursing, or during both in utero and nursing, did not affect blood glucose, whereas a 45% fat diet given to adults or throughout life did. However, a 45% fat diet during nursing or during in utero and nursing increased the number of small intestinal tumors. So did exposures to a 45% fat diet in adult life or throughout life, but without increasing the tumor numbers further. The intrauterine and nursing period is a window of susceptibility for dietary fat-induced obesity and intestinal tumor development.

  15. Calcium/calmodulin-dependent kinase IV contributes to translation-dependent early synaptic potentiation in the anterior cingulate cortex of adult mice

    Directory of Open Access Journals (Sweden)

    Toyoda Hiroki

    2010-09-01

    Full Text Available Abstract Calcium/calmodulin-dependent kinase IV (CaMKIV phosphorylates the major transcription factor, cyclic AMP-responsive element binding protein (CREB, which plays key roles in synaptic plasticity and memory consolidation. Our previous study showed that long-term potentiation (LTP in the anterior cingulate cortex (ACC was significantly enhanced in transgenic mice overexpressing CaMKIV. Considering that the CaMKIV-CREB pathway plays a central role in the protein synthesis-dependent LTP, it is possible that upregulation of CaMKIV contributes to enhancement of LTP by promoting protein synthesis. To test this possibility, we examined the effects of transcription and translation inhibitors on synaptic potentiation induced by pairing of synaptic activity with postsynaptic depolarization (paired training in ACC pyramidal neurons of wild-type and CaMKIV transgenic mice. We found that synaptic potentiation induced by paired training was partially inhibited by transcription or translation inhibitors both in wild-type and CaMKIV transgenic mice; the extent of inhibition was markedly larger in the CaMKIV transgenic mice than in the wild-type mice. Biochemical and immunohistochemical studies revealed that CaMKIV was distributed in the membrane, cytosol and nucleus of ACC neurons. Our results reveal in the first time a transcription- and translation-dependent component of early synaptic LTP in adult ACC synapses, and demonstrate that CaMKIV enhances early synaptic potentiation by activating new protein synthesis.

  16. Dietary early-life exposure to contaminated eels does not impair spatial cognitive performances in adult offspring mice as assessed in the Y-maze and the Morris water maze.

    Science.gov (United States)

    Dridi, Imen; Leroy, Delphine; Guignard, Cédric; Scholl, Georges; Bohn, Torsten; Landoulsi, Ahmed; Thomé, Jean-Pierre; Eppe, Gauthier; Soulimani, Rachid; Bouayed, Jaouad

    2014-12-01

    Many environmental contaminants are introduced via the diet and may act as neurotoxins and endocrine disrupters, especially influencing growing organisms in early life. The purpose of this study was to examine whether dietary exposure of dams to fish naturally contaminated with xenobiotics, especially with polychlorinated biphenyls (PCBs) and heavy metals (e.g., mercury and lead), resulted in cognitive function deficits in adult offspring mice. Daily, four groups of dams (n = 10/group) ingested standard diet plus paste with/without eels, during gestation and lactation, from gestational day (GD) six until post natal day (PND) 21 (weaning). Dams orally ingested a standardized amount of eel (0.8 mg kg(-1) d(-1)) containing the six non-dioxin-like (NDL) PCBs (Σ6 NDL-PCBs: 28, 52, 101, 138, 153, and 180) at 0, 85, 216, and 400 ng kg(-1) d(-1). Results showed that early-life exposure to contaminated eels did not (compared to non-exposed controls) impair immediate working memory in the Y-maze in the offspring assessed at PND 38. Furthermore, it did not significantly impact spatial learning and retention memory as measured in the Morris water maze in adult offspring mice (PND 120-123). Our results suggest that perinatal exposure to contaminated eels does not affect spatial cognitive performances, as assessed by the Y-maze and Morris water maze at adult age. Adverse effects of xenobiotics reported earlier might be camouflaged by beneficial eel constituents, such as n-3 fatty acids. However, additional studies are needed to differentiate between potential positive and negative effects following consumption of food items both rich in nutrients and contaminants. PMID:25476192

  17. Adolescent and adult responsiveness to the incentive value of cocaine reward in mice: role of neuronal nitric oxide synthase (nNOS) gene.

    Science.gov (United States)

    Balda, Mara A; Anderson, Karen L; Itzhak, Yossef

    2006-08-01

    A major concern in adolescent psychostimulant abuse is the long-term consequence of this practice, because early drug exposure may cause long-term adaptations, which render the organism more susceptible to drug abuse later in life. The incentive value of drug and natural reward in rodents is commonly assessed by the conditioned place preference (CPP) paradigm, which involves Pavlovian learning. The aims of the present study were to investigate: a) the acquisition, expression, maintenance and reinstatement of cocaine CPP from periadolescence (PD24-45) through adulthood (PD70); b) potential sexual dimorphism in adolescence and adulthood in response to cocaine-induced CPP; and c) the role of the neuronal nitric oxide synthase (nNOS) gene in long-term neural plasticity underlying responsiveness to cocaine and cocaine-associated cues. Adolescent wild type (WT) mice acquired significant cocaine (20 mg/kg) CPP that was maintained from PD24 through PD43. Upon extinction, CPP was reinstated in adulthood (PD70) following a priming injection of cocaine (5 mg/kg). In contrast, cocaine CPP acquired between PD26 and PD31 in adolescent nNOS knockout (KO) mice, was neither maintained nor reinstated by cocaine. There was no sexual dimorphism in adolescent WT and KO mice. Genotype differences and sexual dimorphism were observed in adult mice. Cocaine CPP in adult WT males (PD89-94) was maintained for 4 weeks post training, and subsequently reinstated by cocaine priming; the magnitude of CPP in adult WT males was lower than in female counterparts. CPP in adult KO males (PD88-93) was neither maintained nor reinstated by cocaine priming; in contrast, CPP in adult KO females was not significantly different from adult WT females. Results suggest that the nNOS gene is essential during adolescence of both sexes for the development of long-term neural plasticity underlying responsiveness to the incentive value of cocaine reward. Sexual dimorphism in response to cocaine CPP emerges in

  18. Social defeat leads to changes in the endocannabinoid system: An overexpression of calreticulin and motor impairment in mice.

    Science.gov (United States)

    Tomas-Roig, J; Piscitelli, F; Gil, V; Del Río, J A; Moore, T P; Agbemenyah, H; Salinas-Riester, G; Pommerenke, C; Lorenzen, S; Beißbarth, T; Hoyer-Fender, S; Di Marzo, V; Havemann-Reinecke, U

    2016-04-15

    Prolonged and sustained stimulation of the hypothalamo-pituitary-adrenal axis have adverse effects on numerous brain regions, including the cerebellum. Motor coordination and motor learning are essential for animal and require the regulation of cerebellar neurons. The G-protein-coupled cannabinoid CB1 receptor coordinates synaptic transmission throughout the CNS and is of highest abundance in the cerebellum. Accordingly, the aim of this study was to investigate the long-lasting effects of chronic psychosocial stress on motor coordination and motor learning, CB1 receptor expression, endogenous cannabinoid ligands and gene expression in the cerebellum. After chronic psychosocial stress, motor coordination and motor learning were impaired as indicated the righting reflex and the rota-rod. The amount of the endocannabinoid 2-AG increased while CB1 mRNA and protein expression were downregulated after chronic stress. Transcriptome analysis revealed 319 genes differentially expressed by chronic psychosocial stress in the cerebellum; mainly involved in synaptic transmission, transmission of nerve impulse, and cell-cell signaling. Calreticulin was validated as a stress candidate gene. The present study provides evidence that chronic stress activates calreticulin and might be one of the pathological mechanisms underlying the motor coordination and motor learning dysfunctions seen in social defeat mice. PMID:26815100

  19. Doxorubicin and cyclophosphamide lead to long-lasting impairment of spatial memory in female, but not male mice.

    Science.gov (United States)

    Philpot, Rex M; Ficken, Melissa; Wecker, Lynn

    2016-07-01

    Self-reports of chemotherapy-related cognitive deficits (CRCDs) are more prevalent among women than men, suggesting that women may be more vulnerable to the cognitive-impairing effects of chemotherapy. However, there have been no direct comparisons of females and males using objective measures of cognitive function either during or following exposure to the same chemotherapeutic regimen. The present study used an animal model, and a prospective longitudinal design, to assess sex differences in the manifestation and persistence of spatial memory deficits resulting from exposure to doxorubicin (DOX) and cyclophosphamide (CYP), commonly used anticancer drugs. The spatial memory of female and male BALB/C mice was assessed using the Morris water maze prior to, during and following 4 weekly intravenous injections of DOX (2.5mg/kg) and CYP (25mg/kg) or vehicle. Females receiving DOX+CYP experienced significant deficits in spatial memory during and following injections when compared to baseline or females receiving vehicle. These deficits persisted for at least 34 days following the final injection. In contrast, males receiving DOX+CYP injections did not exhibit alterations in spatial memory relative to baseline or males receiving vehicle. These findings indicate that females may be more vulnerable than males to the cognitive-impairing effects of DOX+CYP and demonstrate that deficits in females persist for at least several weeks following drug exposure. Preclinical studies of CRCDs should parallel clinical work by including females and examine sex specific factors as potential mechanisms. PMID:27083301

  20. Prenatal nicotine exposure enhances Cx43 and Panx1 unopposed channel activity in brain cells of adult offspring mice fed a high-fat/cholesterol diet

    Directory of Open Access Journals (Sweden)

    Juan Andrés Orellana

    2014-12-01

    Full Text Available Nicotine, the most important neuroteratogen of tobacco smoke, can reproduce brain and cognitive disturbances per se when administered prenatally. However, it is still unknown if paracrine signaling among brain cells participates in prenatal nicotine-induced brain impairment of adult offspring. Paracrine signaling is partly mediated by unopposed channels formed by connexins (hemichannels and pannexins serving as aqueous pores permeable to ions and small signaling molecules, allowing exchange between the intra- and extracellular milieus. Our aim was to address whether prenatal nicotine exposure changes the activity of those channels in adult mice offspring under control conditions or subjected to a second challenge during young ages: high-fat/cholesterol (HFC diet. To induce prenatal exposure to nicotine, osmotic minipumps were implanted in CF1 pregnant mice at gestational day 5 to deliver nicotine bitartrate or saline (control solutions. After weaning, offspring of nicotine-treated or untreated pregnant mice were fed ad libitum with chow or HFC diets for 8 weeks. The functional state of Cx43 and Panx1 unopposed channels was evaluated by dye uptake experiments in hippocampal slices from 11-week-old mice. We found that prenatal nicotine increased the opening of Cx43 hemichannels in astrocytes, and Panx1 channels in microglia and neurons only if offspring mice were fed with HFC diet. Blockade of iNOS, COX2 and EP1, P2X7 and NMDA receptors, showed differential inhibition of prenatal nicotine-induced channel opening in glial cells and neurons. Importantly, inhibition of the above mentioned enzymes and receptors, or blockade of Cx43 and Panx1 unopposed channels greatly reduced ATP and glutamate release from hippocampal slices of prenatally nicotine-exposed offspring. We propose that unregulated gliotransmitter release through Cx43 and Panx1 unopposed channels may participate in brain alterations observed in offspring of mothers exposed to tobacco smoke

  1. Depletion of nucleus accumbens dopamine leads to impaired reward and aversion processing in mice: Relevance to motivation pathologies.

    Science.gov (United States)

    Bergamini, Giorgio; Sigrist, Hannes; Ferger, Boris; Singewald, Nicolas; Seifritz, Erich; Pryce, Christopher R

    2016-10-01

    Dopamine (DA) neurotransmission, particularly the ventral tegmental area-nucleus accumbens (VTA-NAcc) projection, underlies reward and aversion processing, and deficient DA function could underlie motivational impairments in psychiatric disorders. 6-hydroxydopamine (6-OHDA) injection is an established method for chronic DA depletion, principally applied in rat to study NAcc DA regulation of reward motivation. Given the increasing focus on studying environmental and genetic regulation of DA function in mouse models, it is important to establish the effects of 6-OHDA DA depletion in mice, in terms of reward and aversion processing. This mouse study investigated effects of 6-OHDA-induced NAcc DA depletion using the operant behavioural test battery of progressive ratio schedule (PRS), learned non-reward (LNR), learned helplessness (LH), treadmill, and in addition Pavlovian fear conditioning. 6-OHDA NAcc DA depletion, confirmed by ex vivo HPLC-ED, reduced operant responding: for gustatory reward under effortful conditions in the PRS test; to a stimulus recently associated with gustatory non-reward in the LNR test; to escape footshock recently experienced as uncontrollable in the LH test; and to avoid footshock by physical effort in the treadmill test. Evidence for specificity of effects to NAcc DA was provided by lack of effect of medial prefrontal cortex DA depletion in the LNR and LH tests. These findings add significantly to the evidence that NAcc DA is a major regulator of behavioural responding, particularly at the motivational level, to both reward and aversion. They demonstrate the suitability of mouse models for translational study of causation and reversal of pathophysiological DA function underlying motivation psychopathologies. PMID:27036890

  2. Transgenic Expression of a Single Transcription Factor Pdx1 Induces Transdifferentiation of Pancreatic Acinar Cells to Endocrine Cells in Adult Mice.

    Science.gov (United States)

    Miyazaki, Satsuki; Tashiro, Fumi; Miyazaki, Jun-Ichi

    2016-01-01

    A promising approach to new diabetes therapies is to generate β cells from other differentiated pancreatic cells in vivo. Because the acinar cells represent the most abundant cell type in the pancreas, an attractive possibility is to reprogram acinar cells into β cells. The transcription factor Pdx1 (Pancreas/duodenum homeobox protein 1) is essential for pancreatic development and cell lineage determination. Our objective is to examine whether exogenous expression of Pdx1 in acinar cells of adult mice might induce reprogramming of acinar cells into β cells. We established a transgenic mouse line in which Pdx1 and EGFP (enhanced green fluorescent protein) could be inducibly expressed in the acinar cells. After induction of Pdx1, we followed the acinar cells for their expression of exocrine and endocrine markers using cell-lineage tracing with EGFP. The acinar cell-specific expression of Pdx1 in adult mice reprogrammed the acinar cells as endocrine precursor cells, which migrated into the pancreatic islets and differentiated into insulin-, somatostatin-, or PP (pancreatic polypeptide)-producing endocrine cells, but not into glucagon-producing cells. When the mice undergoing such pancreatic reprogramming were treated with streptozotocin (STZ), the newly generated insulin-producing cells were able to ameliorate STZ-induced diabetes. This paradigm of in vivo reprogramming indicates that acinar cells hold promise as a source for new islet cells in regenerative therapies for diabetes. PMID:27526291

  3. Transgenic Expression of a Single Transcription Factor Pdx1 Induces Transdifferentiation of Pancreatic Acinar Cells to Endocrine Cells in Adult Mice

    Science.gov (United States)

    Miyazaki, Satsuki; Tashiro, Fumi; Miyazaki, Jun-ichi

    2016-01-01

    A promising approach to new diabetes therapies is to generate β cells from other differentiated pancreatic cells in vivo. Because the acinar cells represent the most abundant cell type in the pancreas, an attractive possibility is to reprogram acinar cells into β cells. The transcription factor Pdx1 (Pancreas/duodenum homeobox protein 1) is essential for pancreatic development and cell lineage determination. Our objective is to examine whether exogenous expression of Pdx1 in acinar cells of adult mice might induce reprogramming of acinar cells into β cells. We established a transgenic mouse line in which Pdx1 and EGFP (enhanced green fluorescent protein) could be inducibly expressed in the acinar cells. After induction of Pdx1, we followed the acinar cells for their expression of exocrine and endocrine markers using cell-lineage tracing with EGFP. The acinar cell-specific expression of Pdx1 in adult mice reprogrammed the acinar cells as endocrine precursor cells, which migrated into the pancreatic islets and differentiated into insulin-, somatostatin-, or PP (pancreatic polypeptide)-producing endocrine cells, but not into glucagon-producing cells. When the mice undergoing such pancreatic reprogramming were treated with streptozotocin (STZ), the newly generated insulin-producing cells were able to ameliorate STZ-induced diabetes. This paradigm of in vivo reprogramming indicates that acinar cells hold promise as a source for new islet cells in regenerative therapies for diabetes. PMID:27526291

  4. Silencing of microRNA-155 in mice during acute inflammatory response leads to derepression of c/ebp Beta and down-regulation of G-CSF.

    Science.gov (United States)

    Worm, Jesper; Stenvang, Jan; Petri, Andreas; Frederiksen, Klaus Stensgaard; Obad, Susanna; Elmén, Joacim; Hedtjärn, Maj; Straarup, Ellen Marie; Hansen, Jens Bo; Kauppinen, Sakari

    2009-09-01

    microRNA-155 (miR-155) has been implicated as a central regulator of the immune system, but its function during acute inflammatory responses is still poorly understood. Here we show that exposure of cultured macrophages and mice to lipopolysaccharide (LPS) leads to up-regulation of miR-155 and that the transcription factor c/ebp Beta is a direct target of miR-155. Interestingly, expression profiling of LPS-stimulated macrophages combined with overexpression and silencing of miR-155 in murine macrophages and human monocytic cells uncovered marked changes in the expression of granulocyte colony-stimulating factor (G-CSF), a central regulator of granulopoiesis during inflammatory responses. Consistent with these data, we show that silencing of miR-155 in LPS-treated mice by systemically administered LNA-antimiR results in derepression of the c/ebp Beta isoforms and down-regulation of G-CSF expression in mouse splenocytes. Finally, we report for the first time on miR-155 silencing in vivo in a mouse inflammation model, which underscores the potential of miR-155 antagonists in the development of novel therapeutics for treatment of chronic inflammatory diseases. PMID:19596814

  5. Disruption of the regulatory beta subunit of protein kinase CK2 in mice leads to a cell-autonomous defect and early embryonic lethality

    DEFF Research Database (Denmark)

    Buchou, Thierry; Vernet, Muriel; Blond, Olivier; Jensen, Hans H; Pointu, Hervé; Olsen, Birgitte B; Cochet, Claude; Issinger, Olaf-Georg; Boldyreff, Brigitte

    2003-01-01

    Protein kinase CK2 is a ubiquitous protein kinase implicated in proliferation and cell survival. Its regulatory beta subunit, CK2beta, which is encoded by a single gene in mammals, has been suspected of regulating other protein kinases. In this work, we show that knockout of the CK2beta gene in...... mice leads to postimplantation lethality. Mutant embryos were reduced in size at embryonic day 6.5 (E6.5). They did not exhibit signs of apoptosis but did show reduced cell proliferation. Mutant embryos were resorbed at E7.5. In vitro, CK2beta(-/-) morula development stopped after the blastocyst stage....... Attempts to generate homozygous embryonic stem (ES) cells failed. By using a conditional knockout approach, we show that lack of CK2beta is deleterious for mouse ES cells and primary embryonic fibroblasts. This is in contrast to what occurs with yeast cells, which can survive without functional CK2beta...

  6. Combination of fluoxetine and extinction treatments forms a unique synaptic protein profile that correlates with long-term fear reduction in adult mice.

    Science.gov (United States)

    Popova, Dina; Ágústsdóttir, Arna; Lindholm, Jesse; Mazulis, Ulams; Akamine, Yumiko; Castrén, Eero; Karpova, Nina N

    2014-07-01

    The antidepressant fluoxetine induces synaptic plasticity in the visual and fear networks and promotes the structural remodeling of neuronal circuits, which is critical for experience-dependent plasticity in response to an environmental stimulus. We recently demonstrated that chronic fluoxetine administration together with extinction training in adult mice reduced fear in a context-independent manner. Fear conditioning and extinction alter excitatory and inhibitory transmissions within the fear circuitry. In this study, we investigated whether fluoxetine, extinction or their combination produced distinct long-lasting changes in the synaptic protein profile in the amygdala, hippocampus and prefrontal cortex of conditioned mice. We determined that extinction induced synaptophysin expression and down-regulated the GluA1:GluA2 ratio throughout the fear network in water- and fluoxetine-treated mice, suggesting a common fluoxetine-independent mechanism for increased synaptic transmission and re-arrangement of AMPA-receptors by extinction training. In contrast to common changes, the presynaptic vesicular neurotransmitter transporters VGAT and Vglut1 were upregulated after extinction in water- and fluoxetine-treated mice, respectively. The cortical levels of the GABA transporter Gat1 were reduced in high-freezing water-drinking mice, suggesting a maladaptive increase of GABA spillover at cortical inhibitory synapses. Fear conditioning decreased, and extinction induced the expression of GABA-receptor alpha1 and alpha2 subunits in water- and fluoxetine-treated mice, respectively. Only a combination of fluoxetine with extinction enhanced GluN2A expression in the amygdala and hippocampus, emphasizing the role of this NMDA-receptor subunit in the successful erasure of fear memories. Our finding provides novel data that may become helpful in developing beneficial pharmacological fear-reducing treatment strategies. PMID:24837571

  7. The bed nucleus of the stria terminalis has developmental and adult forms in mice, with the male bias in the developmental form being dependent on testicular AMH.

    Science.gov (United States)

    Wittmann, Walter; McLennan, Ian S

    2013-09-01

    Canonically, the sexual dimorphism in the brain develops perinatally, with adult sexuality emerging due to the activating effects of pubescent sexual hormones. This concept does not readily explain why children have a gender identity and exhibit sex-stereotypic behaviours. These phenomena could be explained if some aspects of the sexual brain networks have childhood forms, which are transformed at puberty to generate adult sexuality. The bed nucleus of stria terminalis (BNST) is a dimorphic nucleus that is sex-reversed in transsexuals but not homosexuals. We report here that the principal nucleus of the BNST (BNSTp) of mice has developmental and adult forms that are differentially regulated. In 20-day-old prepubescent mice, the male bias in the principal nucleus of the BNST (BNSTp) was moderate (360 ± 6 vs 288 ± 12 calbindin(+ve) neurons, p social development. The reported observations provide a rationale for examining AMH levels in children with gender identity disorders and disorders of socialization that involve a male bias. PMID:24012942

  8. Two weeks of predatory stress induces anxiety-like behavior with co-morbid depressive-like behavior in adult male mice.

    Science.gov (United States)

    Burgado, Jillybeth; Harrell, Constance S; Eacret, Darrell; Reddy, Renuka; Barnum, Christopher J; Tansey, Malú G; Miller, Andrew H; Wang, Huichen; Neigh, Gretchen N

    2014-12-15

    Psychological stress can have devastating and lasting effects on a variety of behaviors, especially those associated with mental illnesses such as anxiety and depression. Animal models of chronic stress are frequently used to elucidate the mechanisms underlying the relationship between stress and mental health disorders and to develop improved treatment options. The current study expands upon a novel chronic stress paradigm for mice: predatory stress. The predatory stress model incorporates the natural predator-prey relationship that exists among rats and mice and allows for greater interaction between the animals, in turn increasing the extent of the stressful experience. In this study, we evaluated the behavioral effects of exposure to 15 days of predatory stress on an array of behavioral indices. Up to 2 weeks after the end of stress, adult male mice showed an increase of anxiety-like behaviors as measured by the open field and social interaction tests. Animals also expressed an increase in depressive-like behavior in the sucrose preference test. Notably, performance on the novel object recognition task, a memory test, improved after predatory stress. Taken as a whole, our results indicate that 15 exposures to this innovative predatory stress paradigm are sufficient to elicit robust anxiety-like behaviors with evidence of co-morbid depressive-like behavior, as well as changes in cognitive behavior in male mice. PMID:25200517

  9. Sertoli Cells Modulate Testicular Vascular Network Development, Structure, and Function to Influence Circulating Testosterone Concentrations in Adult Male Mice

    Science.gov (United States)

    Rebourcet, Diane; Wu, Junxi; Cruickshanks, Lyndsey; Smith, Sarah E.; Milne, Laura; Fernando, Anuruddika; Wallace, Robert J.; Gray, Calum D.; Hadoke, Patrick W. F.; Mitchell, Rod T.; O'Shaughnessy, Peter J.

    2016-01-01

    The testicular vasculature forms a complex network, providing oxygenation, micronutrients, and waste clearance from the testis. The vasculature is also instrumental to testis function because it is both the route by which gonadotropins are delivered to the testis and by which T is transported away to target organs. Whether Sertoli cells play a role in regulating the testicular vasculature in postnatal life has never been unequivocally demonstrated. In this study we used models of acute Sertoli cell ablation and acute germ cell ablation to address whether Sertoli cells actively influence vascular structure and function in the adult testis. Our findings suggest that Sertoli cells play a key role in supporting the structure of the testicular vasculature. Ablating Sertoli cells (and germ cells) or germ cells alone results in a similar reduction in testis size, yet only the specific loss of Sertoli cells leads to a reduction in total intratesticular vascular volume, the number of vascular branches, and the numbers of small microvessels; loss of germ cells alone has no effect on the testicular vasculature. These perturbations to the testicular vasculature leads to a reduction in fluid exchange between the vasculature and testicular interstitium, which reduces gonadotropin-stimulated circulating T concentrations, indicative of reduced Leydig cell stimulation and/or reduced secretion of T into the vasculature. These findings describe a new paradigm by which the transport of hormones and other factors into and out of the testis may be influenced by Sertoli cells and highlights these cells as potential targets for enhancing this endocrine relationship. PMID:27145015

  10. Protective effect of royal jelly on the sperm parameters and testosterone level and lipid peroxidation in adult mice treated with oxymetholone

    Directory of Open Access Journals (Sweden)

    Ensieh Zahmatkesh

    2014-01-01

    Full Text Available Objectives: The aim of the present study was to evaluate protective effect of royal jelly on sperm parameters, testosterone level, and malondialdehyde (MDA production in mice. Materials and Methods: Thirty-two adult male NMRI mice weighing 30±2 g were used. All the animals were divided into 4 groups. Control group: received saline 0.1 ml/mouse/day orally for 30 days. Royal Jelly group (RJ: received royal jelly at dose of 100 mg/kg daily for 30 days orally. Oxymetholone group: the received Oxymetholone (OX at dose of 5 mg/kg daily for 30 days orally. Royal Jelly+Oxymetholone group: received royal jelly at dose of 100 mg/kg/day orally concomitant with OX administration. Sperm count, sperm motility, viability, maturity, and DNA integrity were analyzed. Furthermore, serum testosterone and MDA concentrations were determined. Results: In Oxymetholone group, sperm count, motility as well as testosterone concentration reduced significantly (p

  11. Exposure to hypergravity during specific developmental periods differentially affects metabolism and vestibular reactions in adult C57BL /6j mice.

    Science.gov (United States)

    Bojados, Mickael; Jamon, Marc

    2011-12-01

    The development of the posturo-motor control of movement is conditioned by Earth's gravity. Missing or altered gravity during the critical periods of development delays development and induces durable changes in the vestibular, cerebellar, or muscular structures, but these are not consistently mirrored at a functional level. The differences in the time schedule of vestibular and motor development could contribute to this inconstancy. To investigate the influence of gravity on the development of vestibular and locomotor functions, we analysed the performance of adult mice subjected to hypergravity during the time covering either the vestibular or locomotor development. The mice were centrifuged at 2 g from embryonic day (E) 0 to postnatal day (P) 10 (PRE), from P10 to P30 (POST), from E0 to P30 (FULL), and from E7 to P21. Their muscular force, anxiety level, vestibular reactions, and aerobic capacity during treadmill training were then evaluated at the age of 2 and 6 months. The performance of young adults varied in relation to the period of exposure to hypergravity. The mice that acquired locomotion in hypergravity (POST and FULL) showed a lower forelimb force and delayed vestibular reactions. The mice centrifuged from conception to P10 (PRE) showed a higher aerobic capacity during treadmill training. The differences in muscular force and vestibular reactions regressed with age, but the metabolic changes persisted. These results confirmed that early exposure to hypergravity induces qualitative changes depending on the period of exposure. They validated, at a functional level, the existence of several critical periods for adaptation to gravity. PMID:22122506

  12. Allocation of Attentional Resources toward a Secondary Cognitive Task Leads to Compromised Ankle Proprioceptive Performance in Healthy Young Adults

    OpenAIRE

    Kazuhiro Yasuda; Yuki Sato; Naoyuki Iimura; Hiroyasu Iwata

    2014-01-01

    The objective of the present study was to determine whether increased attentional demands influence the assessment of ankle joint proprioceptive ability in young adults. We used a dual-task condition, in which participants performed an ankle ipsilateral position-matching task with and without a secondary serial auditory subtraction task during target angle encoding. Two experiments were performed with two different cohorts: one in which the auditory subtraction task was easy (experiment 1a) a...

  13. Signals leading to the activation of NF-kappa B transcription factor are stronger in neonatal than adult T lymphocytes.

    Science.gov (United States)

    Kilpinen, S; Henttinen, T; Lahdenpohja, N; Hulkkonen, J; Hurme, M

    1996-07-01

    The molecular background of the defects in the immune reactivity of human neonates has not been fully elucidated. As the NF-kappa B transcription factor has a central role in the control of transcription of several genes involved in immune and inflammatory responses, the authors have analysed the activation of NF-kappa B in human umbilical cord T lymphocytes. The activity was tested by quantitating the nuclear proteins binding to an oligonucleotide containing the consensus kappa B binding sequence (electrophoretic mobility shift assay). The data obtained demonstrate that phorbol dibutyrate/calcium ionophore A23187 (PDBu/iono) combination induced a clearly higher nuclear translocation of NF-kappa B in neonatal than adult T cells. This higher NF-kappa B activity was restricted to the CD4+ T-cell subset. Analysis of the nuclear extracts with antibodies directed against the major components of NF-kappa B the p50 and RelA (p65) proteins, indicated that the composition of NF-kappa B was similar in neonatal and adult cells. These results suggest that neonatal T cells are exposed to oxidative stress-inducing signals during delivery and/or are inherently more sensitive to NF-kappa B activating signals than adult T cells. PMID:8693296

  14. An anxiogenic drug, FG 7142, induced an increase in mRNA of Btg2 and Adamts1 in the hippocampus of adult mice

    Directory of Open Access Journals (Sweden)

    Kurumaji Akeo

    2012-08-01

    Full Text Available Abstract Background Anxiety and stress-related disorders are among the most common psychiatric disorders. The hippocampus is a crucial brain area involved in the neural circuits of the pathophysiology of anxiety and stress-related disorders, and GABA is one of most important neurotransmitters related to these disorders. An anxiogenic drug and a pharmacological stressor, FG7142 (N-methyl-ß-carboline-3-carboxamide, produces anxiety in humans and experimental animals, acting at the benzodiazepine sites of the GABAA receptors as a partial inverse agonist. This drug as well as immobilization stress produced an increased mRNA in a number of genes, e.g., Btg2 and Adamsts1, in the cortex of rodents. The present study was carried out to clarify the effect of the anxiogenic drug on the gene expressions in the hippocampus and to obtain a new insight into the GABAergic system involved in the pathophysiology of the disorders. Method We examined the effects of FG7142 on the gene expression of Btg2 and Adamts1 in the hippocampus of mice using a quantitative RT-PCR method as well as an in situ hybridization method. Results The intraperitoneal administration of FG7142 at a dose of 20 mg/kg, but not 10 mg/kg, induced a statistically significant increase in the hippocampal mRNA of both genes in adult mice (postnatal days 56, being blocked by co-administrations of flumazenil (twice of 10 mg/kg, i.p., an antagonist at the benzodiazepine binding site, while FG7142 failed to produce any change in the gene expressions in infant mice (postnatal days 8. In addition, the in situ hybridization experiment demonstrated an upregulation of the gene expressions restricted to the dentate gyrus of the hippocampus in adult mice. Conclusions The present study suggests a functional coupling between the GABAergic system and the transcriptional regulation of the two genes (Btg2 and Adamsts1 in the hippocampus of adult mice, which may play a role in the brain function related to

  15. Adolescent Social Defeat Induced Alterations in Social Behavior and Cognitive Flexibility in Adult Mice: Effects of Developmental Stage and Social Condition

    Science.gov (United States)

    Zhang, Fan; Yuan, Sanna; Shao, Feng; Wang, Weiwen

    2016-01-01

    Negative social experiences during adolescence increase the risk of psychiatric disorders in adulthood. Using “resident-intruder” stress, the present study aimed to investigate the effects of adolescent social defeat on emotional and cognitive symptoms associated with psychiatric disorders during adulthood and the effects of the developmental stage and social condition on this process. In Experiment 1, animals were exposed to social defeat or manipulation for 10 days during early adolescence (EA, postnatal days [PND] 28–37), late adolescence (LA, PND 38–47), and adulthood (ADULT, PND 70–79) and then singly housed until the behavioral tests. Behaviors, including social avoidance of the defeat context and cortically mediated cognitive flexibility in an attentional set-shifting task (AST), were assessed during the week following stress or after 6 weeks during adulthood. We determined that social defeat induced significant and continuous social avoidance across age groups at both time points. The mice that experienced social defeat during adulthood exhibited short-term impairments in reversal learning (RL) on the AST that dissipated after 6 weeks. In contrast, social defeat during EA but not LA induced a delayed deficit in extra-dimensional set-shifting (EDS) in adulthood but not during adolescence. In Experiment 2, we further examined the effects of social condition (isolation or social housing after stress) on the alterations induced by social defeat during EA in adult mice. The adult mice that had experienced stress during EA exhibited social avoidance similar to the avoidance identified in Experiment 1 regardless of the isolation or social housing after the stress. However, social housing after the stress ameliorated the cognitive flexibility deficits induced by early adolescent social defeat in the adult mice, and the social condition had no effect on cognitive function. These findings suggest that the effects of social defeat on emotion and cognitive

  16. Cardiac and non-cardiac causes of T-wave inversion in the precordial leads in adult subjects: A Dutch case series and review of the literature

    Institute of Scientific and Technical Information of China (English)

    Salah; AM; Said; Rene; Bloo; Ramon; de; Nooijer; Andries; Slootweg

    2015-01-01

    AIM: To describe the electrocardiographic(ECG) phenomena characterized by T-wave inversion in the precordial leads in adults and to highlight its differential diagnosis. METHODS: A retrospective chart review of 8 adult patients who were admitted with ECG T-wave inversion in the anterior chest leads with or without prolongation of corrected QT(QTc) interval. They had different clinical conditions. Each patient underwent appropriate clinical assessment including investigation for myocardial involvement. Single and multimodality noninvasive, semi-invasive and invasive diagnostic approach were used to ascertain the diagnosis. The diagnostic assessment included biochemical investigation, cardiac and abdominal ultrasound, cerebral and chest computed tomography, nuclear medicine and coronary angiography.RESULTS: Eight adult subjects(5 females) with a mean age of 66 years(range 51 to 82) are analyzed. The etiology of T-wave inversion in the precordial leads were diverse. On admission, all patients had normal blood pressure and the ECG showed sinus rhythm. Five patients showed marked prolongation of the QTc interval. The longest QTc interval(639 ms) was found in the patient with pheochromocytoma. Giant T-wave inversion(≥ 10 mm) was found in pheochromocytoma followed by electroconvulsive therapy and finally ischemic heart disease. The deepest T-wave was measured in lead V3(5 ×). In 3 patients presented with mild T-wave inversion(patients 1, 5 and 4 mm), the QTc interval was not prolonged(432, 409 and 424 msec), respectively.CONCLUSION: T-wave inversion associated with or without QTc prolongation requires meticulous history taking, physical examination and tailored diagnostic modalities to reach rapid and correct diagnosis to establish appropriate therapeutic intervention.

  17. Conditional deletion of Abca3 in alveolar type II cells alters surfactant homeostasis in newborn and adult mice

    OpenAIRE

    Besnard, Valérie; Matsuzaki, Yohei; Clark, Jean; Xu, Yan; Wert, Susan E.; Ikegami, Machiko; Stahlman, Mildred T.; Weaver, Timothy E.; Hunt, Alan N.; Postle, Anthony D.; Whitsett, Jeffrey A.

    2010-01-01

    ATP-binding cassette A3 (ABCA3) is a lipid transport protein required for synthesis and storage of pulmonary surfactant in type II cells in the alveoli. Abca3 was conditionally deleted in respiratory epithelial cells (Abca3Δ/Δ) in vivo. The majority of mice in which Abca3 was deleted in alveolar type II cells died shortly after birth from respiratory distress related to surfactant deficiency. Approximately 30% of the Abca3Δ/Δ mice survived after birth. Surviving Abca3Δ/Δ mice developed emphys...

  18. Low birth weight leads to obesity, diabetes and increased leptin levels in adults: the CoLaus study.

    OpenAIRE

    Jornayvaz F.R.; Vollenweider P; Bochud M; Mooser V.; Waeber G.; Marques-Vidal P

    2016-01-01

    BACKGROUND: Low birth weight is associated with increased rates of obesity, insulin resistance and type 2 diabetes, but the precise mechanisms for this association remain unclear. We aimed to assess the relationships between birth weight and markers of glucose homeostasis or obesity in adults. METHODS: Cross-sectional population-based study on 1458 women and 1088 men aged 35-75 years living in Lausanne, Switzerland. Birth weight was self-reported and categorized into ≤2.5, 2.6-3.5, 3.6-...

  19. Low birth weight leads to obesity, diabetes and increased leptin levels in adults: the CoLaus study

    OpenAIRE

    Jornayvaz F.R.; Vollenweider P; Bochud M; Mooser V; Waeber G.; Marques-Vidal P.

    2016-01-01

    Background Low birth weight is associated with increased rates of obesity, insulin resistance and type 2 diabetes, but the precise mechanisms for this association remain unclear. We aimed to assess the relationships between birth weight and markers of glucose homeostasis or obesity in adults. Methods Cross-sectional population-based study on 1458 women and 1088 men aged 35–75 years living in Lausanne, Switzerland. Birth weight was self-reported and categorized into ≤2.5, 2.6–3.5, 3.6–4.0 and ...

  20. Anti-acids lead to immunological and morphological changes in the intestine of BALB/c mice similar to human food allergy.

    Science.gov (United States)

    Pali-Schöll, Isabella; Yildirim, Ali O; Ackermann, Ute; Knauer, Tanja; Becker, Christoph; Garn, Holger; Renz, Harald; Jensen-Jarolim, Erika; Fehrenbach, Heinz

    2008-08-01

    We have shown that anti-acid medication for treating dyspeptic disorders can block protein digestion and induce a higher risk for food sensitization. This mechanism was confirmed in human and animal studies on the humoral as well as the cellular level. Here we aimed to investigate the outcome of the treatment with the anti-acid drug sucralfate on the intestine in our murine model, assuming that morphological and immunological changes will occur. BALB/c mice were fed codfish extract plus sucralfate. Antibodies were examined in ELISA, RBL assay and Western blot. Quantitative morphological analysis of the intestine was performed by design-based stereology, focussing on epithelium, lamina propria, smooth muscle, eosinophils and CD3(+) cells. Histological analyses were performed after H&E-, PAS- and Congo red-staining, while immune histochemistry was done for detection of CD3(+) cells. Codfish-specific IgE and its activity in RBL assay confirmed the Th2-response after treatment with sucralfate. The reactivity pattern of murine IgE in Western blot was similar to allergic patients' IgE. Histological examination showed more slender villi in the duodenum, and increased goblet cell mucus in the cecum after sucralfate treatment. Stereological analyses of the intestine revealed higher eosinophil/CD3(+) ratios, decreased mean thickness of the epithelium of duodenum and cecum, and thinner smooth muscle cell layer in the colon of food allergic mice. Anti-acid treatment with sucralfate induces changes in the structure of epithelium and villi, and an increase in eosinophils and mucus-producing cells in the intestine. Therefore, this medication leads to sensitization against food with changes typical for food allergy also in the intestine. PMID:18524557

  1. Increased adult hippocampal neurogenesis is not necessary for wheel running to abolish conditioned place preference for cocaine in mice

    OpenAIRE

    Mustroph, M.L.; Merritt, J R; Holloway, A.L.; Pinardo, H.; Miller, D S; Kilby, C.N.; Bucko, P.; Wyer, A.; Rhodes, J S

    2014-01-01

    Recent evidence suggests wheel running can abolish conditioned place preference (CPP) for cocaine in mice. Running significantly increases the number of new neurons in the hippocampus, and new neurons have been hypothesized to enhance plasticity and behavioral flexibility. Therefore, we tested the hypothesis that increased neurogenesis was necessary for exercise to abolish cocaine CPP. Male nestin thymidine kinase transgenic mice were conditioned with cocaine, and then housed with or without ...

  2. Deletion of fibroblast growth factor 22 (FGF22) causes a depression-like phenotype in adult mice.

    Science.gov (United States)

    Williams, Aislinn J; Yee, Patricia; Smith, Mitchell C; Murphy, Geoffrey G; Umemori, Hisashi

    2016-07-01

    Specific growth factors induce formation and differentiation of excitatory and inhibitory synapses, and are essential for brain development and function. Fibroblast growth factor 22 (FGF22) is important for specifying excitatory synapses during development, including in the hippocampus. Mice with a genetic deletion of FGF22 (FGF22KO) during development subsequently have fewer hippocampal excitatory synapses in adulthood. As a result, FGF22KO mice are resistant to epileptic seizure induction. In addition to playing a key role in learning, the hippocampus is known to mediate mood and anxiety. Here, we explored whether loss of FGF22 alters affective, anxiety or social cognitive behaviors in mice. We found that relative to control mice, FGF22KO mice display longer duration of floating and decreased latency to float in the forced swim test, increased immobility in the tail suspension test, and decreased preference for sucrose in the sucrose preference test, which are all suggestive of a depressive-like phenotype. No differences were observed between control and FGF22KO mice in other behavioral assays, including motor, anxiety, or social cognitive tests. These results suggest a novel role for FGF22 specifically in affective behaviors. PMID:27036645

  3. New facets of keratin K77: interspecies variations of expression and different intracellular location in embryonic and adult skin of humans and mice.

    Science.gov (United States)

    Langbein, Lutz; Reichelt, Julia; Eckhart, Leopold; Praetzel-Wunder, Silke; Kittstein, Walter; Gassler, Nikolaus; Schweizer, Juergen

    2013-12-01

    The differential expression of keratins is central to the formation of various epithelia and their appendages. Structurally, the type II keratin K77 is closely related to K1, the prototypical type II keratin of the suprabasal epidermis. Here, we perform a developmental study on K77 expression in human and murine skin. In both species, K77 is expressed in the suprabasal fetal epidermis. While K77 appears after K1 in the human epidermis, the opposite is true for the murine tissue. This species-specific pattern of expression is also found in conventional and organotypic cultures of human and murine keratinocytes. Ultrastructure investigation shows that, in contrast to K77 intermediate filaments of mice, those of the human ortholog are not attached to desmosomes. After birth, K77 disappears without deleterious consequences from human epidermis while it is maintained in the adult mouse epidermis, where its presence has so far gone unnoticed. After targeted Krt1 gene deletion in mice, K77 is normally expressed but fails to functionally replace K1. Besides the epidermis, both human and mouse K77 are present in luminal duct cells of eccrine sweat glands. The demonstration of a K77 ortholog in platypus but not in non-mammalian vertebrates identifies K77 as an evolutionarily ancient component of the mammalian integument that has evolved different patterns of intracellular distribution and adult tissue expression in primates. PMID:24057875

  4. The scent of stress: environmental challenge in the peripartum environment of mice affects emotional behaviours of the adult offspring in a sex-specific manner.

    Science.gov (United States)

    Lerch, S; Dormann, C; Brandwein, C; Gass, P; Chourbaji, S

    2016-06-01

    Early adverse experiences are known to influence the risk of developing psychiatric disorders later. To shed further light on the development of laboratory mice, we systematically examined the influence of a prenatal or postnatal olfactory stressor, namely unfamiliar male mouse faeces, presented to pregnant or nursing mouse dams. Maternal and offspring behaviours were then examined. Maternal behaviours relative to controls revealed changes in nest building by the pregnant dams exposed to the unfamiliar faeces. There were no differences among groups on pup retrieval or exploration by the dams. Behavioural phenotyping of male and female offspring as adults included measures of exploration, anxiety, social and depressive-like behaviours. Additionally, serum corticosterone was assessed as a marker of physiological stress response. Group differences were dependent on the sex of the adult offspring. Males raised by dams that were stressed during pregnancy presented elevated emotionality as indicated by increased numbers of faecal boluses in the open field paradigm. Consistent with the effects of prenatal stress on the males only the prenatally stressed females had higher body weights than their respective controls. Indeed, males in both experimental groups had higher circulating corticosterone levels. By contrast, female offspring of dams exposed to the olfactory stressor after parturition were more anxious in the O-maze as indicated by increased latencies in entering the exposed areas of the maze. These findings emphasize the necessity for researchers to consider the pre- and postnatal environments, even of mice with almost identical genetic backgrounds, in designing experiments and interpreting their data. PMID:26408077

  5. Multiple roads lead to Rome: combined high-intensity aerobic and strength training vs. gross motor activities leads to equivalent improvement in executive functions in a cohort of healthy older adults.

    Science.gov (United States)

    Berryman, Nicolas; Bherer, Louis; Nadeau, Sylvie; Lauzière, Séléna; Lehr, Lora; Bobeuf, Florian; Lussier, Maxime; Kergoat, Marie Jeanne; Vu, Thien Tuong Minh; Bosquet, Laurent

    2014-01-01

    The effects of physical activity on cognition in older adults have been extensively investigated in the last decade. Different interventions such as aerobic, strength, and gross motor training programs have resulted in improvements in cognitive functions. However, the mechanisms underlying the relationship between physical activity and cognition are still poorly understood. Recently, it was shown that acute bouts of exercise resulted in reduced executive control at higher relative exercise intensities. Considering that aging is characterized by a reduction in potential energy ([Formula: see text] max - energy cost of walking), which leads to higher relative walking intensity for the same absolute speed, it could be argued that any intervention aimed at reducing the relative intensity of the locomotive task would improve executive control while walking. The objective of the present study was to determine the effects of a short-term (8 weeks) high-intensity strength and aerobic training program on executive functions (single and dual task) in a cohort of healthy older adults. Fifty-one participants were included and 47 (age, 70.7 ± 5.6) completed the study which compared the effects of three interventions: lower body strength + aerobic training (LBS-A), upper body strength + aerobic training (UBS-A), and gross motor activities (GMA). Training sessions were held 3 times every week. Both physical fitness (aerobic, neuromuscular, and body composition) and cognitive functions (RNG) during a dual task were assessed before and after the intervention. Even though the LBS-A and UBS-A interventions increased potential energy to a higher level (Effect size: LBS-A-moderate, UBS-A-small, GMA-trivial), all groups showed equivalent improvement in cognitive function, with inhibition being more sensitive to the intervention. These findings suggest that different exercise programs targeting physical fitness and/or gross motor skills may lead to equivalent improvement in

  6. The long-term consequences of the exposure to increasing gravity levels on the muscular, vestibular and cognitive functions in adult mice.

    Science.gov (United States)

    Bojados, Mickael; Jamon, Marc

    2014-05-01

    Adult male mice C57Bl6/J were exposed to gravity levels between 1G and 4G during three weeks, and the long-term consequences on muscular, vestibular, emotional, and cognitive abilities were evaluated at the functional level to test the hypothesis of a continuum in the response to the increasing gravitational force. In agreement with the hypothesis, the growth of body mass slowed down in relation with the gravity level during the centrifugation, and weight recovery was inversely proportional. On the other hand, the long-term consequences on muscular, vestibular, emotional, and cognitive abilities did not fit the hypothesis of a continuum in the response to the gravity level. The hypergravity acted as endurance training on muscle force until 3G, then became deleterious at 4G. The vestibular reactions were not affected until 4G. Persistent emotional reactions appeared at 3G, and particularly 4G. The mice centrifuged at 3G and 4G showed an impaired spatial learning, probably in relation with the increased level of anxiety, but a greater difficulty was also observed in mice exposed at 2G, suggesting another cause for the impairment of spatial memory. The long-term response to the hypergravity was shown to depend on both the level of gravity and the duration of exposition, with different importance depending on the function considered. PMID:24509308

  7. CYP1B1 deficiency ameliorates obesity and glucose intolerance induced by high fat diet in adult C57BL/6J mice.

    Science.gov (United States)

    Liu, Xiaocong; Huang, Tingting; Li, Lu; Tang, Yumeng; Tian, Yatao; Wang, Suqing; Fan, Cuifang

    2015-01-01

    Cytochrome P450 1B1 (CYP1B1) expression increases in multi-potential mesenchymal stromal cells C3H10T1/2 during adipogenesis, which parallel with PPARγ, a critical transcriptional factor in adipogenic process. To assess the role of CYP1B1 in fatty acid metabolism, adult C57BL/6J wild-type and CYP1B1 deficiency mice were fed with high fat diets (HFD) for 6 weeks. CYP1B1 deficiency attenuated HFD-induced obesity when compared with their wild type counterparts, and improve glucose tolerance. The reduction in body weight gain and white adipose tissue in CYP1B1 deficient mice exhibited coordinate decreases in fatty acid synthesis (PPARγ, CD36, FAS, SCD-1) and increases in fatty acid oxidation (UCP-2, CPT-1a) when compared with wild type ones. Lower hepatocyte TG contents were consistent with hepatic Oil-Red-O staining in the CYP1B1 deficiency mice. AMPK, a nutrient sensors for energy homeostasis, was activated in both fat pad and liver by CYP1B1 deficiency. However, in vitro system, knock down CYP1B1 in C3H10T1/2 cells does not abolish adipogenesis induced by adipogenic agents IDM (Insulin, Dexamethasone, Methylisobutylxanthine). Our in vivo and in vitro findings of CYP1B1 deficiency in fat metabolism suggest a complex regulation network between CYP1B1 and energy homeostasis. PMID:26064443

  8. Shigella IpaB and IpaD displayed on L. lactis bacterium-like particles induce protective immunity in adult and infant mice.

    Science.gov (United States)

    Heine, Shannon J; Franco-Mahecha, Olga L; Chen, Xiaotong; Choudhari, Shyamal; Blackwelder, William C; van Roosmalen, Maarten L; Leenhouts, Kees; Picking, Wendy L; Pasetti, Marcela F

    2015-08-01

    Shigella spp. are among the enteric pathogens with the highest attributable incidence of moderate-to-severe diarrhea in children under 5 years of age living in endemic areas. There are no vaccines available to prevent this disease. In this work, we investigated a new Shigella vaccine concept consisting of nonliving, self-adjuvanted, Lactococcus lactis bacterium-like particles (BLP) displaying Shigella invasion plasmid antigen (Ipa) B and IpaD and examined its immunogenicity and protective efficacy in adult and newborn/infant mice immunized via the nasal route. Unique advantages of this approach include the potential for broad protection due to the highly conserved structure of the Ipas and the safety and practicality of a probiotic-based mucosal/adjuvant delivery platform. Immunization of adult mice with BLP-IpaB and BLP-IpaD (BLP-IpaB/D) induced high levels of Ipa-specific serum IgG and stool IgA in a dose-dependent manner. Immune responses and protection were enhanced by BLP delivery. Vaccine-induced serum antibodies exhibited opsonophagocytic and cytotoxic neutralizing activity, and IpaB/D IgG titers correlated with increased survival post-challenge. Ipa-specific antibody secreting cells were detected in nasal tissue and lungs, as well as IgG in bronchoalveolar lavage. Bone marrow cells produced IpaB/D-specific antibodies and contributed to protection after adoptive transfer. The BLP-IpaB/D vaccine conferred 90% and 80% protection against S. flexneri and S. sonnei, respectively. Mice immunized with BLP-IpaB/D as newborns also developed IpaB and IpaD serum antibodies; 90% were protected against S. flexneri and 44% against S. sonnei. The BLP-IpaB/D vaccine is a promising candidate for safe, practical and potentially effective immunization of children against shigellosis. PMID:25776843

  9. Odor-enriched environment rescues long-term social memory, but does not improve olfaction in social isolated adult mice.

    Science.gov (United States)

    Gusmão, Isabela D; Monteiro, Brisa M M; Cornélio, Guilherme O S; Fonseca, Cristina S; Moraes, Márcio F D; Pereira, Grace S

    2012-03-17

    Prolonged permanence of animals under social isolation (SI) arouses a variety of psychological symptoms like aggression, stress, anxiety and depression. However, short-term SI is commonly used to evaluate social memory. Interestingly, the social memory cannot be accessed with delays higher than 30min in SI mice. Our hypothesis is that SI with intermediate duration, like one week (1w), impairs the long-term storage of new social information (S-LTM), without affecting anxiety or other types of memories, because the SI compromises the olfactory function of the animal. Our results demonstrated that SI impaired S-LTM, without affecting other kinds of memory or anxiety. In addition, the SI increased the latency in the buried-food finding task, but did not affect the habituation or the discrimination of odors. Next, we postulated that if continuous input to the olfactory system is fundamental for the maintenance of the olfactory function and social memory persistence, isolated mice under odor-enriched environment (OEE) should behave like group-housed (GH) animals. In fact, the OEE prevented the S-LTM deficit imposed by the SI. However, OEE did not restore the SI mice olfaction to the GH mice level. Our results suggest that SI modulates olfaction and social memory persistence, probably, by independent mechanisms. We also showed for the first time that OEE rescued S-LTM in SI mice through a mechanism not necessarily involved with olfaction. PMID:22226622

  10. Exercise Enhances Learning and Hippocampal Neurogenesis in Aged Mice

    OpenAIRE

    van Praag, Henriette; Shubert, Tiffany; Zhao, Chunmei; GAGE, FRED H.

    2005-01-01

    Aging causes changes in the hippocampus that may lead to cognitive decline in older adults. In young animals, exercise increases hippocampal neurogenesis and improves learning. We investigated whether voluntary wheel running would benefit mice that were sedentary until 19 months of age. Specifically, young and aged mice were housed with or without a running wheel and injected with bromodeoxyuridine or retrovirus to label newborn cells. After 1 month, learning was tested in the Morris water ma...

  11. Does Marriage Lead to Specialization? An Evaluation of Swedish Trends in Adult Earnings Before and After Marriage

    OpenAIRE

    Sundström, Marianne; Ginther, Donna K.

    2010-01-01

    We examine whether marriage leads to specialization in Sweden by implementing a model that differentiates specialization in the household by cohabitation and marriage. Our paper evaluates this model using panel data to analyze trends in earnings before and after marriage between 1985 and 1995 for married and long-term cohabiting Swedish couples with children. To identify the effect of marriage on earnings we use the reform of the widow’s pension system that resulted in a marriage boom in Swed...

  12. Ketogenic diet exposure during the juvenile period increases social behaviors and forebrain neural activation in adult Engrailed 2 null mice.

    Science.gov (United States)

    Verpeut, Jessica L; DiCicco-Bloom, Emanuel; Bello, Nicholas T

    2016-07-01

    Prolonged consumption of ketogenic diets (KD) has reported neuroprotective benefits. Several studies suggest KD interventions could be useful in the management of neurological and developmental disorders. Alterations in the Engrailed (En) genes, specifically Engrailed 2 (En2), have neurodevelopmental consequences and produce autism-related behaviors. The following studies used En2 knockout (KO; En2(-/-)), and wild-type (WT; En2(+/+)), male mice fed either KD (80% fat, 0.1% carbohydrates) or control diet (CD; 10% fat, 70% carbohydrates). The objective was to determine whether a KD fed from weaning at postnatal day (PND) 21 to adulthood (PND 60) would alter brain monoamines concentrations, previously found dysregulated, and improve social outcomes. In WT animals, there was an increase in hypothalamic norepinephrine content in the KD-fed group. However, regional monoamines were not altered in KO mice in KD-fed compared with CD-fed group. In order to determine the effects of juvenile exposure to KD in mice with normal blood ketone levels, separate experiments were conducted in mice removed from the KD or CD and fed standard chow for 2days (PND 62). In a three-chamber social test with a novel mouse, KO mice previously exposed to the KD displayed similar social and self-grooming behaviors compared with the WT group. Groups previously exposed to a KD, regardless of genotype, had more c-Fos-positive cells in the cingulate cortex, lateral septal nuclei, and anterior bed nucleus of the stria terminalis. In the novel object condition, KO mice previously exposed to KD had similar behavioral responses and pattern of c-Fos immunoreactivity compared with the WT group. Thus, juvenile exposure to KD resulted in short-term consequences of improving social interactions and appropriate exploratory behaviors in a mouse model that displays autism-related behaviors. Such findings further our understanding of metabolic-based therapies for neurological and developmental disorders. PMID

  13. Absence of Respiratory Burst in X-linked Chronic Granulomatous Disease Mice Leads to Abnormalities in Both Host Defense and Inflammatory Response to Aspergillus fumigatus

    OpenAIRE

    Morgenstern, David E.; Gifford, Mary A.C.; Li, Ling Lin; Doerschuk, Claire M.; Dinauer, Mary C.

    1997-01-01

    Mice with X-linked chronic granulomatous disease (CGD) generated by targeted disruption of the gp91 phox subunit of the NADPH–oxidase complex (X-CGD mice) were examined for their response to respiratory challenge with Aspergillus fumigatus. This opportunistic fungal pathogen causes infection in CGD patients due to the deficient generation of neutrophil respiratory burst oxidants important for damaging A. fumigatus hyphae. Alveolar macrophages from X-CGD mice were found to kill A. fumigatus co...

  14. Delayed Reduction of Hippocampal Synaptic Transmission and Spines Following Exposure to Repeated Subclinical Doses of Organophosphorus Pesticide in Adult Mice

    OpenAIRE

    Speed, Haley E.; Blaiss, Cory A.; Kim, Ahleum; Haws, Michael E.; Melvin, Neal R.; Jennings, Michael; Eisch, Amelia J.; Powell, Craig M.

    2011-01-01

    Agricultural and household organophosphorus (OP) pesticides inhibit acetylcholinesterase (AchE), resulting in increased acetylcholine (Ach) in the central nervous system. In adults, acute and prolonged exposure to high doses of AchE inhibitors causes severe, clinically apparent symptoms, followed by lasting memory impairments and cognitive dysfunction. The neurotoxicity of repeated environmental exposure to lower, subclinical doses of OP pesticides in adults is not as well studied. However, r...

  15. Morphological aspects of Schistosoma mansoni adult worms isolated from nourished and undernourished mice: a comparative analysis by confocal laser scanning microscopy

    Directory of Open Access Journals (Sweden)

    Neves Renata Heisler

    2001-01-01

    Full Text Available Malnutrition hampers the course of schistosomiasis mansoni infection just as normal growth of adult worms. A comparative morphometric study on adult specimens (male and female recovered from undernourished (fed with a low protein diet - regional basic diet and nourished (rodent commercial laboratory food, NUVILAB white mice was performed. Tomographic images and morphometric analysis of the oral and ventral suckers, reproductive system and tegument were obtained by means of confocal laser scanning microscopy. Undernourished male specimens presented smaller morphometric values (length and width of the reproductive system (first, third and last testicular lobes and thickness of the tegument than controls. Besides that, it was demonstrated that the dorsal surface of the male worms bears large tubercles unevenly distributed, but kept grouped and flat. At the subtegumental region, vacuolated areas were detected. It was concluded that the inadequate nutritional status of the vertebrate host has a negative influence mainly in the reproductive system and topographical somatic development of male adult Schistosoma mansoni, inducing some alterations on the structure of the parasite.

  16. Adipose-derived mesenchymal stem cell transplantation promotes adult neurogenesis in the brains of Alzheimer’s disease mice

    Institute of Scientific and Technical Information of China (English)

    Yufang Yan; Tuo Ma; Kai Gong; Qiang Ao; Xiufang Zhang; Yandao Gong

    2014-01-01

    In the present study, we transplanted adipose-derived mesenchymal stem cells into the hippo-campi of APP/PS1 transgenic Alzheimer’s disease model mice. Immunofluorescence staining revealed that the number of newly generated (BrdU+) cells in the subgranular zone of the dentate gyrus in the hippocampus was signiifcantly higher in Alzheimer’s disease mice after adipose-de-rived mesenchymal stem cell transplantation, and there was also a significant increase in the number of BrdU+/DCX+neuroblasts in these animals. Adipose-derived mesenchymal stem cell transplantation enhanced neurogenic activity in the subventricular zone as well. Furthermore, adipose-derived mesenchymal stem cell transplantation reduced oxidative stress and alleviated cognitive impairment in the mice. Based on these ifndings, we propose that adipose-derived mes-enchymal stem cell transplantation enhances endogenous neurogenesis in both the subgranular and subventricular zones in APP/PS1 transgenic Alzheimer’s disease mice, thereby facilitating functional recovery.

  17. The effect of ficus carica l. (anjir) leaf extract on gentamicin induced nephrotoxicity in adult male albino mice

    International Nuclear Information System (INIS)

    Gentamicin is an aminoglycoside isolated from Micromonospora purpurea known for its nephrotoxicity. Ficus carica L is known to treat many ailments. This study was designed to investigate the effects of Ficus carica L. (Anjir) leaf extract on renal oxidative stress induced by gentamicin in albino mice. Methods: In this laboratory based experimental study 30 mice were divided into three groups, containing 10 mice each. Group A being the control; groups B and C were experimental and treated with gentamicin 200 mg/kg/day intraperitoneally and, Ficus carica L. leaf extract 400 mg/kg/day orally with gentamicin 200 mg/kg/day intraperitoneally respectively for a period of 8 days. Blood samples were taken 24 hours after completion of the experimental period by cardiac puncture under anesthesia and kidneys of each mouse were taken out for microscopic examination. Results: Gentamicin treatment increased serum urea and creatinine levels (group B). Ficus carica L. leaf extract treated animals showed significant reduction in biochemical markers of kidney functions in group C. The histopathological examination of group A showed normal renal structure which was deranged in group B treated with only gentamicin, whereas, group C exhibited marked improvement in histological structure. Conclusion: Ficus carica L. leaf extract is effective in preventing gentamicin induced functional and structural changes in kidney of albino mice. (author)

  18. Vulnerability to chronic subordination stress-induced depression-like disorders in adult 129SvEv male mice.

    Science.gov (United States)

    Dadomo, Harold; Sanghez, Valentina; Di Cristo, Luisana; Lori, Andrea; Ceresini, Graziano; Malinge, Isabelle; Parmigiani, Stefano; Palanza, Paola; Sheardown, Malcolm; Bartolomucci, Alessandro

    2011-08-01

    Exposure to stressful life events is intimately linked with vulnerability to neuropsychiatric disorders such as major depression. Pre-clinical animal models offer an effective tool to disentangle the underlying molecular mechanisms. In particular, the 129SvEv strain is often used to develop transgenic mouse models but poorly characterized as far as behavior and neuroendocrine functions are concerned. Here we present a comprehensive characterization of 129SvEv male mice's vulnerability to social stress-induced depression-like disorders and physiological comorbidities. We employed a well characterized mouse model of chronic social stress based on social defeat and subordination. Subordinate 129SvEv mice showed body weight gain, hyperphagia, increased adipose fat pads weight and basal plasma corticosterone. Home cage phenotyping revealed a suppression of spontaneous locomotor activity and transient hyperthermia. Subordinate 129SvEv mice also showed marked fearfulness, anhedonic-like response toward a novel but palatable food, increased anxiety in the elevated plus maze and social avoidance of an unfamiliar male mouse. A direct measured effect of the stressfulness of the living environment, i.e. the amount of daily aggression received, predicted the degree of corticosterone level and locomotor activity but not of the other parameters. This is the first study validating a chronic subordination stress paradigm in 129SvEv male mice. Results demonstrated remarkable stress vulnerability and establish the validity to use this mouse strain as a model for depression-like disorders. PMID:21093519

  19. Nutritional and supranutritional levels of selenate differentially suppress prostate tumor growth in adult but not young nude mice

    Science.gov (United States)

    Selenium (Se) is known to regulate carcinogenesis and immunity at nutritional and 26 supranutritional levels. Because the immune system provides critical defenses against 27 cancer and the athymic, immune-deficient NU/J nude mice are known to gradually develop 28 CD8+ and CD4+ T cells extrathymicall...

  20. Environmental cadmium and lead exposures and age-related macular degeneration in U.S. adults: The National Health and Nutrition Examination Survey 2005 to 2008

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Erin W. [Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI (United States); Schaumberg, Debra A. [Division of Preventive Medicine, Brigham and Women' s Hospital, Harvard Medical School and Department of Epidemiology, Harvard School of Public Health, Boston, MA (United States); Center for Translational Medicine, Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT (United States); Park, Sung Kyun, E-mail: sungkyun@umich.edu [Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI (United States); Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI (United States)

    2014-08-15

    Age-related macular degeneration (AMD) is a complex disease resulting from the interplay of genetic predisposition and environmental exposures, and has been linked to oxidative stress and inflammatory mechanisms. Lead and cadmium can accumulate in human retinal tissues and may damage the retina through oxidative stress, and may thereby play a role in the development of AMD. We examined associations between blood lead, blood cadmium, and urinary cadmium concentrations and the presence of AMD in 5390 participants aged 40 years and older with blood lead and blood cadmium measures and a subsample of 1548 with urinary cadmium measures in the 2005–2008 National Health and Nutrition Examination Surveys. AMD was identified by grading retinal photographs with a modification of the Wisconsin Age-Related Maculopathy Grading System. The weighted prevalence of AMD was 6.6% (n=426). Controlling for age, gender, race/ethnicity, education and body mass index, adults in the highest blood cadmium quartile had higher odds of AMD compared to the lowest quartile (odds ratio [OR], 1.56; 95% CI, 1.02–2.40), with a significant trend across quartiles (p-trend=0.02). After further adjustment for pack-years of cigarette smoking, estimates were somewhat attenuated (OR, 1.43; 95% CI, 0.91–2.27; p-trend=0.08). Similar associations were found with urinary cadmium. The association between urinary cadmium and AMD was stronger in non-Hispanic whites (NHW) than in non-Hispanic blacks (NHB) (OR, 3.31; 95% CI, 1.37–8.01 for levels above versus below the median among NHW; OR,1.45; 95% CI, 0.40–5.32 for levels above versus below the median among NHB; p-interaction=0.03). We found no association between blood lead levels and AMD. Higher cadmium body burden may increase risk of AMD, particularly among non-Hispanic white individuals; however, additional studies are needed before firm conclusions can be drawn. - Highlights: • We examined the association of cadmium and lead with age

  1. Environmental cadmium and lead exposures and age-related macular degeneration in U.S. adults: The National Health and Nutrition Examination Survey 2005 to 2008

    International Nuclear Information System (INIS)

    Age-related macular degeneration (AMD) is a complex disease resulting from the interplay of genetic predisposition and environmental exposures, and has been linked to oxidative stress and inflammatory mechanisms. Lead and cadmium can accumulate in human retinal tissues and may damage the retina through oxidative stress, and may thereby play a role in the development of AMD. We examined associations between blood lead, blood cadmium, and urinary cadmium concentrations and the presence of AMD in 5390 participants aged 40 years and older with blood lead and blood cadmium measures and a subsample of 1548 with urinary cadmium measures in the 2005–2008 National Health and Nutrition Examination Surveys. AMD was identified by grading retinal photographs with a modification of the Wisconsin Age-Related Maculopathy Grading System. The weighted prevalence of AMD was 6.6% (n=426). Controlling for age, gender, race/ethnicity, education and body mass index, adults in the highest blood cadmium quartile had higher odds of AMD compared to the lowest quartile (odds ratio [OR], 1.56; 95% CI, 1.02–2.40), with a significant trend across quartiles (p-trend=0.02). After further adjustment for pack-years of cigarette smoking, estimates were somewhat attenuated (OR, 1.43; 95% CI, 0.91–2.27; p-trend=0.08). Similar associations were found with urinary cadmium. The association between urinary cadmium and AMD was stronger in non-Hispanic whites (NHW) than in non-Hispanic blacks (NHB) (OR, 3.31; 95% CI, 1.37–8.01 for levels above versus below the median among NHW; OR,1.45; 95% CI, 0.40–5.32 for levels above versus below the median among NHB; p-interaction=0.03). We found no association between blood lead levels and AMD. Higher cadmium body burden may increase risk of AMD, particularly among non-Hispanic white individuals; however, additional studies are needed before firm conclusions can be drawn. - Highlights: • We examined the association of cadmium and lead with age

  2. AgRP Neuron-Specific Deletion of Glucocorticoid Receptor Leads to Increased Energy Expenditure and Decreased Body Weight in Female Mice on a High-Fat Diet.

    Science.gov (United States)

    Shibata, Miyuki; Banno, Ryoichi; Sugiyama, Mariko; Tominaga, Takashi; Onoue, Takeshi; Tsunekawa, Taku; Azuma, Yoshinori; Hagiwara, Daisuke; Lu, Wenjun; Ito, Yoshihiro; Goto, Motomitsu; Suga, Hidetaka; Sugimura, Yoshihisa; Oiso, Yutaka; Arima, Hiroshi

    2016-04-01

    Agouti-related protein (AgRP) expressed in the arcuate nucleus is a potent orexigenic neuropeptide, which increases food intake and reduces energy expenditure resulting in increases in body weight (BW). Glucocorticoids, key hormones that regulate energy balance, have been shown in rodents to regulate the expression of AgRP. In this study, we generated AgRP-specific glucocorticoid receptor (GR)-deficient (knockout [KO]) mice. Female and male KO mice on a high-fat diet (HFD) showed decreases in BW at the age of 6 weeks compared with wild-type mice, and the differences remained significant until 16 weeks old. The degree of resistance to diet-induced obesity was more robust in female than in male mice. On a chow diet, the female KO mice showed slightly but significantly attenuated weight gain compared with wild-type mice after 11 weeks, whereas there were no significant differences in BW in males between genotypes. Visceral fat pad mass was significantly decreased in female KO mice on HFD, whereas there were no significant differences in lean body mass between genotypes. Although food intake was similar between genotypes, oxygen consumption was significantly increased in female KO mice on HFD. In addition, the uncoupling protein-1 expression in the brown adipose tissues was increased in KO mice. These data demonstrate that the absence of GR signaling in AgRP neurons resulted in increases in energy expenditure accompanied by decreases in adiposity in mice fed HFD, indicating that GR signaling in AgRP neurons suppresses energy expenditure under HFD conditions. PMID:26889940

  3. B-cell-specific conditional expression of Myd88p.L252P leads to the development of diffuse large B-cell lymphoma in mice.

    Science.gov (United States)

    Knittel, Gero; Liedgens, Paul; Korovkina, Darya; Seeger, Jens M; Al-Baldawi, Yussor; Al-Maarri, Mona; Fritz, Christian; Vlantis, Katerina; Bezhanova, Svetlana; Scheel, Andreas H; Wolz, Olaf-Oliver; Reimann, Maurice; Möller, Peter; López, Cristina; Schlesner, Matthias; Lohneis, Philipp; Weber, Alexander N R; Trümper, Lorenz; Staudt, Louis M; Ortmann, Monika; Pasparakis, Manolis; Siebert, Reiner; Schmitt, Clemens A; Klatt, Andreas R; Wunderlich, F Thomas; Schäfer, Stephan C; Persigehl, Thorsten; Montesinos-Rongen, Manuel; Odenthal, Margarete; Büttner, Reinhard; Frenzel, Lukas P; Kashkar, Hamid; Reinhardt, H Christian

    2016-06-01

    The adaptor protein MYD88 is critical for relaying activation of Toll-like receptor signaling to NF-κB activation. MYD88 mutations, particularly the p.L265P mutation, have been described in numerous distinct B-cell malignancies, including diffuse large B-cell lymphoma (DLBCL). Twenty-nine percent of activated B-cell-type DLBCL (ABC-DLBCL), which is characterized by constitutive activation of the NF-κB pathway, carry the p.L265P mutation. In addition, ABC-DLBCL frequently displays focal copy number gains affecting BCL2 Here, we generated a novel mouse model in which Cre-mediated recombination, specifically in B cells, leads to the conditional expression of Myd88(p.L252P) (the orthologous position of the human MYD88(p.L265P) mutation) from the endogenous locus. These mice develop a lymphoproliferative disease and occasional transformation into clonal lymphomas. The clonal disease displays the morphologic and immunophenotypical characteristics of ABC-DLBCL. Lymphomagenesis can be accelerated by crossing in a further novel allele, which mediates conditional overexpression of BCL2 Cross-validation experiments in human DLBCL samples revealed that both MYD88 and CD79B mutations are substantially enriched in ABC-DLBCL compared with germinal center B-cell DLBCL. Furthermore, analyses of human DLBCL genome sequencing data confirmed that BCL2 amplifications frequently co-occurred with MYD88 mutations, further validating our approach. Finally, in silico experiments revealed that MYD88-mutant ABC-DLBCL cells in particular display an actionable addiction to BCL2. Altogether, we generated a novel autochthonous mouse model of ABC-DLBCL that could be used as a preclinical platform for the development and validation of novel therapeutic approaches for the treatment of ABC-DLBCL. PMID:27048211

  4. Circadian cycle dependent EEG biomarkers of pathogenicity in adult mice following prenatal exposure to in utero inflammation

    OpenAIRE

    Adler, Daniel A; Ammanuel, Simon; Lei, Jun; Dada, Tahani; Borbiev, Talaibek; Johnston, Michael V.; Kadam, Shilpa D.; Burd, Irina

    2014-01-01

    Intrauterine infection or inflammation in preterm neonates is a known risk for adverse neurological outcomes, including cognitive, motor and behavioral disabilities. Our previous data suggest that there is acute fetal brain inflammation in a mouse model of intrauterine exposure to lipopolysaccharides (LPS). We hypothesized that the in utero inflammation induced by LPS produces long-term EEG biomarkers of neurodegeneration in the exposed mice that could be determined by using continuous quanti...

  5. Pubertal immune challenge blocks the ability of estradiol to enhance performance on cognitive tasks in adult female mice

    OpenAIRE

    Ismail, Nafissa; Blaustein, Jeffrey D.

    2012-01-01

    Puberty is a period characterized by brain reorganization that contributes to the development of neural and behavioral responses to gonadal steroids. Previously, we have shown that a single injection of the bacterial endotoxin, lipopolysaccharide (LPS; 1.5mg/kg IP), during the pubertal period (around 6 weeks old) in mice decreases sexual receptivity in response to estradiol and progesterone in adulthood. These findings suggest that pubertal immune challenge has an enduring effect of decreasin...

  6. Evaluation of toxic effects of CdTe quantum dots on the reproductive system in adult male mice.

    Science.gov (United States)

    Li, Xiaohui; Yang, Xiangrong; Yuwen, Lihui; Yang, Wenjing; Weng, Lixing; Teng, Zhaogang; Wang, Lianhui

    2016-07-01

    Fluorescent quantum dots (QDs) are highly promising nanomaterials for various biological and biomedical applications because of their unique optical properties, such as robust photostability, strong photoluminescence, and size-tunable fluorescence. Several studies have reported the in vivo toxicity of QDs, but their effects on the male reproduction system have not been examined. In this study, we investigated the reproductive toxicity of cadmium telluride (CdTe) QDs at a high dose of 2.0 nmol per mouse and a low dose of 0.2 nmol per mouse. Body weight measurements demonstrated there was no overt toxicity for both dose at day 90 after exposure, but the high dose CdTe affected body weight up to 15 days after exposure. CdTe QDs accumulated in the testes and damaged the tissue structure for both doses on day 90. Meanwhile, either of two CdTe QDs treatments did not significantly affect the quantity of sperm, but the high dose CdTe significantly decreased the quality of sperm on day 60. The serum levels of three major sex hormones were also perturbed by CdTe QDs treatment. However, the pregnancy rate and delivery success of female mice that mated with the treated male mice did not differ from those mated with untreated male mice. These results suggest that CdTe QDs can cause testes toxicity in a dose-dependent manner. The low dose of CdTe QDs is relatively safe for the reproductive system of male mice. Our preliminary result enables better understanding of the reproductive toxicity induced by cadmium-containing QDs and provides insight into the safe use of these nanoparticles in biological and environmental systems. PMID:27135714

  7. Mgat5 modulates the effect of early life stress on adult behavior and physical health in mice.

    Science.gov (United States)

    Feldcamp, Laura; Doucet, Jean-Sebastien; Pawling, Judy; Fadel, Marc P; Fletcher, Paul J; Maunder, Robert; Dennis, James W; Wong, Albert H C

    2016-10-01

    Psychosocial adversity in early life increases the likelihood of mental and physical illness, but the underlying mechanisms are poorly understood. Mgat5 is an N-acetylglucosaminyltransferase in the Golgi pathway that remodels the N-glycans of glycoproteins at the cell surface. Mice lacking Mgat5 display conditional phenotypes in behaviour, immunity, metabolism, aging and cancer susceptibility. Here we investigated potential gene-environment interactions between Mgat5 and early life adversity on behaviour and physiological measures of physical health. Mgat5(-/-) mutant and Mgat5(+/+) wild-type C57Bl/6 littermates were subject to maternal separation or foster rearing as an early life stressor, in comparison to control mice reared normally. We found an interaction between Mgat5 genotype and maternal rearing condition in which Mgat5(-/-) mice subjected to early life stress had lower glucose levels and higher bone density. Mgat5(-/-) genotype was also associated with less immobility in the forced swim test and greater sucrose consumption, consistent with a less depression-like phenotype. Cortical neuron dendrite spine density and branching was altered by Mgat5 deletion as well. In general, Mgat5 genotype affects both behaviour and physical outcomes in response to early life stress, suggesting some shared pathways for both in this model. These results provide a starting point for studying the mechanisms by which protein N-glycosylation mediates the effects of early life adversity. PMID:27329152

  8. Establishment of a murine model for radiation-induced bone loss using micro-computed tomography in adult C3H/HeN mice

    International Nuclear Information System (INIS)

    Bone changes are common sequela of radiation therapy for cancer. The purpose of this study was to establish an experimental model of radiation-induced bone loss in adult mice using micro-computed tomography (µCT). The extent of changes following 2 Gy gamma irradiation (2 Gy/min) was studied at 4, 8, 12 or 16 weeks after exposure. Adult mice that received 1, 2, 4 or 6 Gy of gamma-rays were examined 12 weeks after irradiation. Tibiae were analyzed using µCT. Serum markers and biomechanical properties were measured and the osteoclast surface was examined. A significant loss of trabecular bone in tibiae was evident 12 weeks after exposure. Measurements performed after irradiation showed a dose-related decrease in trabecular bone volume fraction (BV/TV) and bone mineral density (BMD), respectively. The best-fitting dose-response curves were linear-quadratic. Taking the controls into accounts, the lines of best fit were as follows: BV/TV (%)= -0.071D(2)-1.799D+18.835 (r (2)=0.968, D=dose in Gy) and BMD (mg/cm(3)) = -3.547D(2)-14.8D+359.07 (r (2)=0.986, D=dose in Gy). Grip strength and body weight did not differ among the groups. No dose-dependent differences were apparent among the groups with regard to mechanical and anatomical properties of tibia, serum biochemical markers and osteoclast activity. The findings provide the basis required for better understanding of the results that will be obtained in any further studies of radiation-induced bone responses. (author)

  9. Over-Expression of Porcine Myostatin Missense Mutant Leads to A Gender Difference in Skeletal Muscle Growth between Transgenic Male and Female Mice

    Directory of Open Access Journals (Sweden)

    Dezun Ma

    2015-08-01

    Full Text Available Myostatin, a transforming growth factor-β family member, is a negative regulator of skeletal muscle development and growth. Piedmontese cattle breeds have a missense mutation, which results in a cysteine to tyrosine substitution in the mature myostatin protein (C313Y. This loss-of-function mutation in myostatin results in a double-muscled phenotype in cattle. Myostatin propeptide is an inhibitor of myostatin activity and is considered a potential agent to stimulate muscle growth in livestock. In this study, we generated transgenic mice overexpressing porcine myostatin missense mutant (pmMS, C313Y, and wild-type porcine myostatin propeptide (ppMS, respectively, to examine their effects on muscle growth in mice. Enhanced muscle growth was observed in both pmMS and ppMS transgenic female mice and also in ppMS transgenic male mice. However, there was no enhanced muscle growth observed in pmMS transgenic male mice. To explore why there is such a big difference in muscle growth between pmMS and ppMS transgenic male mice, the expression level of androgen receptor (AR mutant AR45 was measured by Western blot. Results indicated that AR45 expression significantly increased in pmMS transgenic male mice while it decreased dramatically in ppMS transgenic male mice. Our data demonstrate that both pmMS and ppMS act as myostatin inhibitors in the regulation of muscle growth, but the effect of pmMS in male mice is reversed by an increased AR45 expression. These results provide useful insight and basic theory to future studies on improving pork quality by genetically manipulating myostatin expression or by regulating myostatin activity.

  10. Over-Expression of Porcine Myostatin Missense Mutant Leads to A Gender Difference in Skeletal Muscle Growth between Transgenic Male and Female Mice.

    Science.gov (United States)

    Ma, Dezun; Gao, Pengfei; Qian, Lili; Wang, Qingqing; Cai, Chunbo; Jiang, Shengwang; Xiao, Gaojun; Cui, Wentao

    2015-01-01

    Myostatin, a transforming growth factor-β family member, is a negative regulator of skeletal muscle development and growth. Piedmontese cattle breeds have a missense mutation, which results in a cysteine to tyrosine substitution in the mature myostatin protein (C313Y). This loss-of-function mutation in myostatin results in a double-muscled phenotype in cattle. Myostatin propeptide is an inhibitor of myostatin activity and is considered a potential agent to stimulate muscle growth in livestock. In this study, we generated transgenic mice overexpressing porcine myostatin missense mutant (pmMS), C313Y, and wild-type porcine myostatin propeptide (ppMS), respectively, to examine their effects on muscle growth in mice. Enhanced muscle growth was observed in both pmMS and ppMS transgenic female mice and also in ppMS transgenic male mice. However, there was no enhanced muscle growth observed in pmMS transgenic male mice. To explore why there is such a big difference in muscle growth between pmMS and ppMS transgenic male mice, the expression level of androgen receptor (AR) mutant AR45 was measured by Western blot. Results indicated that AR45 expression significantly increased in pmMS transgenic male mice while it decreased dramatically in ppMS transgenic male mice. Our data demonstrate that both pmMS and ppMS act as myostatin inhibitors in the regulation of muscle growth, but the effect of pmMS in male mice is reversed by an increased AR45 expression. These results provide useful insight and basic theory to future studies on improving pork quality by genetically manipulating myostatin expression or by regulating myostatin activity. PMID:26305245

  11. Production of the first offspring from oocytes derived from fresh and cryopreserved pre-antral follicles of adult mice

    DEFF Research Database (Denmark)

    Kagawa, Norika; Kuwayama, Masashige; Nakata, Kumiko;

    2007-01-01

    , as well as in women who wish to delay pregnancy and child raising until they are older. This study reports the birth of 10 healthy mouse pups derived from oocytes obtained from pre-antral follicles after adult ovary tissue cryopreservation and allotransplantation. High in-vitro maturation (55...

  12. Connective tissue growth factor is critical for proper β-cell function and pregnancy-induced β-cell hyperplasia in adult mice.

    Science.gov (United States)

    Pasek, Raymond C; Dunn, Jennifer C; Elsakr, Joseph M; Aramandla, Mounika; Matta, Anveetha R; Gannon, Maureen

    2016-09-01

    During pregnancy, maternal β-cells undergo compensatory changes, including increased β-cell mass and enhanced glucose-stimulated insulin secretion. Failure of these adaptations to occur results in gestational diabetes mellitus. The secreted protein connective tissue growth factor (CTGF) is critical for normal β-cell development and promotes regeneration after partial β-cell ablation. During embryogenesis, CTGF is expressed in pancreatic ducts, vasculature, and β-cells. In adult pancreas, CTGF is expressed only in the vasculature. Here we show that pregnant mice with global Ctgf haploinsufficiency (Ctgf(LacZ/+)) have an impairment in maternal β-cell proliferation; no difference was observed in virgin Ctgf(LacZ/+) females. Using a conditional CTGF allele, we found that mice with a specific inactivation of CTGF in endocrine cells (Ctgf(ΔEndo)) develop gestational diabetes during pregnancy, but this is due to a reduction in glucose-stimulated insulin secretion rather than impaired maternal β-cell proliferation. Moreover, virgin Ctgf(ΔEndo) females also display impaired GSIS with glucose intolerance, indicating that underlying β-cell dysfunction precedes the development of gestational diabetes in this animal model. This is the first time a role for CTGF in β-cell function has been reported. PMID:27460898

  13. Neuronal death and synapse elimination in the olivocerebellar system. II. Cell counts in the inferior olive of adult x-irradiated rats and weaver and reeler mutant mice

    International Nuclear Information System (INIS)

    Cell death in the developing rat inferior olive precedes the regression of the polyneuronal innervation of Purkinje cells by olivary axons (i.e., climbing fibers), suggesting that the involution of the redundant olivocerebellar contacts is caused by a withdrawal of supernumerary axonal collaterals rather than by degeneration of the parent cell. However, a subsequent apparent increase of the olivary population occurs, which could eventually mask a residual presynaptic cell death taking place at the same time. Therefore, cell counts were performed in the inferior olive of adult rodents in which the multiple innervation of Purkinje cells by olivary axons is maintained, with the idea that if cell death plays a role in the regression of supernumerary climbing fibers, the number of olivary cells should be higher in these animals than in their controls. The results show that the size of the cell population in the inferior olive of weaver and reeler mutant mice and rats degranulated by early postnatal x-irradiation does not differ significantly from that of their controls. Similarly, the distribution of the cells in the four main olivary subnuclei is not modified in weaver mice and x-irradiated rats. The present data further support the assumption that the regression of the polyneuronal innervation of Purkinje cells occurs independently of cell death in the presynaptic population

  14. The Effect of Ethanol Extract of Aerial Parts of the Mentha piperita in the Acquisition, Tolerance Expression and Dependence to Morphine in Adult Male Mice

    Directory of Open Access Journals (Sweden)

    N Khajeh

    2015-04-01

    Full Text Available Background & aim: Morphine dependence is a compulsive pattern of drug taking, resulting from the positive reinforcement of the rewarding effects of drug taking and the negative reinforcement of withdrawal syndrome that accompanies the cessation of drug taking. The objective of this study was to investigate the effect of ethanol extract of aerial parts of the Mentha piperita in the acquisition, tolerance expression and dependence to morphine in adult male mice Methods: In the present study, 75 NMRI mice were divided into fifiteen groups. The Hot-plate test was used to survey the morphine activity. Morphine was injected (2.5, 5, 10, 20, 40 mg/kg, i.p. twice daily for seven days, except in 8th day in which morphine was administrated at a single dose (50 mg/kg. The extract (50, 75, 100 mg/kg was injected for eight days. The control animals were intact, and sham animals only received morphine. Naloxone was injected (10 mg/kg five hours after the final dose of morphine and the withdrawal signs were recorded during a 30 minute period. The data were expressed as mean values ± SEM and tested, using analysis of one-way ANOVA test. Results: Peppermint extract at doses of 75 and 100 kg significantly improved the tolerance expression and dependence to morphine in animals and significantly reduced the symptoms of withdrawal. Conclusion: Peppermint extract was commuted morphine tolerance and dependence in mice.The plant contained component(s that alleviate morphine withdrawal syndrome. The extract possibly be effective in improving tolerance to morphine.

  15. Hepatic PPARγ Is Not Essential for the Rapid Development of Steatosis After Loss of Hepatic GH Signaling, in Adult Male Mice.

    Science.gov (United States)

    Kineman, Rhonda D; Majumdar, Neena; Subbaiah, Papasani V; Cordoba-Chacon, Jose

    2016-05-01

    Our group has previously reported de novo lipogenesis (DNL) and hepatic triglyceride content increases in chow-fed male mice within 7 days of hepatocyte-specific GH receptor knockdown (aLivGHRkd). Here, we report that these changes are associated with an increase in hepatic expression of peroxisome proliferator-activated receptor γ (PPARγ), consistent with previous reports showing steatosis is associated with an increase in PPARγ expression in mice with congenital loss of hepatic GH signaling. PPARγ is thought to be an important driver of steatosis by enhancing DNL, as well as increasing the uptake and esterification of extrahepatic fatty acids (FAs). In order to determine whether hepatic PPARγ is critical for the rapid development of steatosis in the aLivGHRkd mouse model, we have generated aLivGHRkd mice, with or without PPARγ (ie, adult-onset, hepatocyte-specific double knockout of GHR and PPARγ). Hepatic PPARγ was not required for the rapid increase in liver triglyceride content or FA indexes of DNL (16:0/18:2 and 16:1/16:0). However, loss of hepatic PPARγ blunted the rise in fatty acid translocase/CD36 and monoacylglycerol acyltransferase 1 expression induced by aLivGHRkd, and this was associated with a reduction in the hepatic content of 18:2. These results suggest that the major role of PPARγ is to enhance pathways critical in uptake and reesterification of extrahepatic FA. Because FAs have been reported to directly increase PPARγ expression, we speculate that in the aLivGHRkd mouse, the FA produced by DNL enhances the expression of PPARγ, which in turn increases extrahepatic FA uptake, thereby further enhancing PPARγ activity and exacerbating steatosis overtime. PMID:26950202

  16. Greater neurobehavioral deficits occur in adult mice after repeated, as compared to single, mild traumatic brain injury (mTBI).

    Science.gov (United States)

    Nichols, Jessica N; Deshane, Alok S; Niedzielko, Tracy L; Smith, Cory D; Floyd, Candace L

    2016-02-01

    Mild traumatic brain injury (mTBI) accounts for the majority of all brain injuries and affected individuals typically experience some extent of cognitive and/or neuropsychiatric deficits. Given that repeated mTBIs often result in worsened prognosis, the cumulative effect of repeated mTBIs is an area of clinical concern and on-going pre-clinical research. Animal models are critical in elucidating the underlying mechanisms of single and repeated mTBI-associated deficits, but the neurobehavioral sequelae produced by these models have not been well characterized. Thus, we sought to evaluate the behavioral changes incurred after single and repeated mTBIs in mice utilizing a modified impact-acceleration model. Mice in the mTBI group received 1 impact while the repeated mTBI group received 3 impacts with an inter-injury interval of 24h. Classic behavior evaluations included the Morris water maze (MWM) to assess learning and memory, elevated plus maze (EPM) for anxiety, and forced swim test (FST) for depression/helplessness. Additionally, species-typical behaviors were evaluated with the marble-burying and nestlet shredding tests to determine motivation and apathy. Non-invasive vibration platforms were used to examine sleep patterns post-mTBI. We found that the repeated mTBI mice demonstrated deficits in MWM testing and poorer performance on species-typical behaviors. While neither single nor repeated mTBI affected behavior in the EPM or FST, sleep disturbances were observed after both single and repeated mTBI. Here, we conclude that behavioral alterations shown after repeated mTBI resemble several of the deficits or disturbances reported by patients, thus demonstrating the relevance of this murine model to study repeated mTBIs. PMID:26542813

  17. piRNA biogenesis during adult spermatogenesis in mice is independent of the ping-pong mechanism

    Institute of Scientific and Technical Information of China (English)

    Ergin Beyret; Na Liu; Haifan Lin

    2012-01-01

    piRNAs,a class of small non-coding RNAs associated with PIWI proteins,have broad functions in germline development,transposon silencing,and epigenetic regulation.In diverse organisms,a subset of piRNAs derived from repeat sequences are produced via the interplay between two PIWI proteins.This mechanism,termed "ping-pong"cycle,operates among the PIWI proteins of the primordial mouse testis; however,its involvement in postnatal testes remains elusive.Here we show that adult testicular piRNAs are produced independent of the ping-pong mechanism.We identified and characterized large populations of piRNAs in the adult and postnatal developing testes associated with MILI and MIWI,the only PIWI proteins detectable in these testes.No interaction between MILI and MIWI or sequence feature for the ping-pong mechanism among their piRNAs was detected in the adult testis.The majority of MILI-and MIWI-associated piRNAs originate from the same DNA strands within the same loci.Both populations of piRNAs are biased for 5′ Uracil but not for Adenine on the 10th nucleotide position,and display no complementarity.Furthermore,in Miwi mutants,MILI-associated piRNAs are not downregulated,but instead upregulated.These results indicate that the adult testicular piRNAs are predominantly,if not exclusively,produced by a primary processing mechanism instead of the ping-pong mechanism.In this primary pathway,biogenesis of MILI-and MIWI-associated piRNAs may compete for the same precursors; the types of piRNAs produced tend to be non-selectively dictated by the available precursors in the cell; and precursors with introns tend to be spliced before processed into piRNAs.

  18. Sleep fragmentation during late gestation induces metabolic perturbations and epigenetic changes in adiponectin gene expression in male adult offspring mice.

    Science.gov (United States)

    Khalyfa, Abdelnaby; Mutskov, Vesco; Carreras, Alba; Khalyfa, Ahamed A; Hakim, Fahed; Gozal, David

    2014-10-01

    Sleep fragmentation (SF) is a common condition among pregnant women, particularly during late gestation. Gestational perturbations promote the emergence of adiposity and metabolic disease risk in offspring, most likely through epigenetic modifications. Adiponectin (AdipoQ) expression inversely correlates with obesity and insulin resistance. The effects of SF during late gestation on metabolic function and AdipoQ expression in visceral white adipose tissue (VWAT) of offspring mice are unknown. Male offspring mice were assessed at 24 weeks after dams were exposed to SF or control sleep during late gestation. Increased food intake, body weight, VWAT mass, and insulin resistance, with reductions in AdipoQ expression in VWAT, emerged in SF offspring. Increased DNMT3a and -b and global DNA methylation and reduced histone acetyltransferase activity and TET1, -2, and -3 expression were detected in VWAT of SF offspring. Reductions in 5-hydroxymethylcytosine and H3K4m3 and an increase in DNA 5-methylcytosine and H3K9m2 in the promoter and enhancer regions of AdipoQ emerged in adipocytes from VWAT and correlated with AdipoQ expression. SF during late gestation induces epigenetic modifications in AdipoQ in male offspring mouse VWAT adipocytes along with a metabolic syndrome-like phenotype. Thus, altered gestational environments elicited by SF impose the emergence of adverse, long-lasting metabolic consequences in the next generation. PMID:24812424

  19. Overexpression of γ-aminobutyric acid transporter subtype I leads to susceptibility to kainic acid-induced seizure in transgenic mice

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    γ-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter,and the GABAergic synaptic transmission is normally terminated by the rapid uptake through GABA transporters.With transgenic mice ubiquitously overexpressing GABA transporter subtype I (GAT1),the present study explored the pathophysiological role of GAT1 in epileptogenesis.Though displaying no spontaneous seizure activity,these mice exhibit altered electroencephalographic patterns and increased susceptibility to seizure induced by kainic acid.In addition,the GABAA receptor and glutamate transporters are up-regulated in transgenic mice,which perhaps reflects a compensatory or corrective change to the elevated level of GAT1.These preliminary findings support the hypothesis that excitatory and inhibitory neurotransmission,and seizure susceptibility can be altered by neurotransmitter transporters.

  20. Loss of CABLES1, a cyclin-dependent kinase-interacting protein that inhibits cell cycle progression, results in germline expansion at the expense of oocyte quality in adult female mice.

    Science.gov (United States)

    Lee, Ho-Joon; Sakamoto, Hideo; Luo, Hongwei; Skaznik-Wikiel, Malgorzata E; Friel, Anne M; Niikura, Teruko; Tilly, Jacqueline C; Niikura, Yuichi; Klein, Rachael; Styer, Aaron K; Zukerberg, Lawrence R; Tilly, Jonathan L; Rueda, Bo R

    2007-11-01

    Recent studies have shown that cell cycle inhibitors encoded by the Ink4a gene locus constrain the self-renewing activity of adult stem cells of the hematopoietic and nervous systems. Here we report that knockout (KO) of the Cables1 [cyclin-dependent kinase (CDK)-5 and ABL enzyme substrate 1] cell cycle-regulatory gene in mice has minimal to no effect on hematopoietic stem cell (HSC) dynamics. However, female Cables1-null mice exhibit a significant expansion of germ cell (oocyte) numbers throughout adulthood. This is accompanied by a dramatic elevation in the number of atretic immature oocytes within the ovaries and an increase in the incidence of degenerating oocytes retrieved following superovulation of CABLES1-deficient females. These outcomes are not observed in mice lacking p16INK4a alone or both p16INK4a and p19ARF. These data support recent reports that adult female mice can generate new oocytes and follicles but the enhancement of postnatal oogenesis by Cables1 KO appears offset by a reduction in oocyte quality, as reflected by increased elimination of these additional germ cells via apoptosis. This work also reveals cell lineage specificity with respect to the role that specific CDK-interacting proteins play in restraining the activity of adult germline versus somatic stem cells. PMID:17912041

  1. The structural alteration of gut microbiota in low-birth-weight mice undergoing accelerated postnatal growth.

    Science.gov (United States)

    Wang, Jingjing; Tang, Huang; Wang, Xiaoxin; Zhang, Xu; Zhang, Chenhong; Zhang, Menghui; Zhao, Yufeng; Zhao, Liping; Shen, Jian

    2016-01-01

    The transient disruption of gut microbiota in infancy by antibiotics causes adult adiposity in mice. Accelerated postnatal growth (A) leads to a higher risk of adult metabolic syndrome in low birth-weight (LB) humans than in normal birth-weight (NB) individuals, but the underlying mechanism remains unclear. Here, we set up an experiment using LB + A mice, NB + A mice, and control mice with NB and normal postnatal growth. At 24 weeks of age (adulthood), while NB + A animals had a normal body fat content and glucose tolerance compared with controls, LB + A mice exhibited excessive adiposity and glucose intolerance. In infancy, more fecal bacteria implicated in obesity were increased in LB + A pups than in NB + A pups, including Desulfovibrionaceae, Enterorhabdus, and Barnesiella. One bacterium from the Lactobacillus genus, which has been implicated in prevention of adult adiposity, was enhanced only in NB + A pups. Besides, LB + A pups, but not NB + A pups, showed disrupted gut microbiota fermentation activity. After weaning, the fecal microbiota composition of LB + A mice, but not that of NB + A animals, became similar to that of controls by 24 weeks. In infancy, LB + A mice have a more dysbiotic gut microbiome compared to NB + A mice, which might increase their risk of adult metabolic syndrome. PMID:27277748

  2. Maternal Microchimerism Leads to the Presence of Interleukin-2 in Interleukin-2 Knock Out Mice: Implications for the Role of Interleukin-2 in Thymic Function

    OpenAIRE

    Wrenshall, Lucile E.; Stevens, Elliot T.; Smith, Deandra R.; Miller, John D.

    2007-01-01

    The role of interleukin-2 (IL-2) in thymic development is uncertain. Not surprisingly, IL-2 knockout (KO) mice have been used to address this question. However, as we report here, such mice are chimeric, containing both IL-2 KO cells and IL-2-expressing cells transferred in utero from their heterozygous mothers. These cells produce IL-2 in amounts detectable by conventional means, and their presence in lymphoid tissues confounds efforts to define the true IL-2 KO phenotype. To minimize the am...

  3. Fusion of a viral antigen to invariant chain leads to augmented T-cell immunity and improved protection in gene-gun DNA-vaccinated mice

    DEFF Research Database (Denmark)

    Grujic, Mirjana; Holst, Peter J; Christensen, Jan P;

    2009-01-01

    against lethal peripheral challenge. The current study questioned whether the same strategy, i.e. linkage of GP to an Ii chain, could be applied to a naked DNA vaccine. Following gene-gun immunization with the linked construct (DNA-IiGP), GP-specific CD4(+) T cells could not be detected by flow cytometry...... with the unlinked construct. In contrast, substantial protection against peripheral challenge was not observed. Additional experiments with T-cell subset-depleted or perforin-deficient mice revealed that virus control in vaccinated mice depends critically on cytotoxic CD8(+) T cells. Finally, priming...

  4. Cardiac-Specific Overexpression of SCN5A Gene Leads to Shorter P Wave Duration and PR Interval in Transgenic Mice

    OpenAIRE

    Zhang, Teng; Yong, Sandro L.; Tian, Xiao-Li; Wang, Qing K.

    2007-01-01

    SCN5A plays a critical role in cardiac electrophysiology and its mutations, either gain- or loss-of-functions, are associated with lethal arrhythmias. In this study we investigated the effect of overexpression of SCN5A on the cardiac phenotype in a transgenic mouse model (TG-WT L10). Compared to NTG mice, heart rate, QRS duration and QT intervals remained unchanged in TG-WT mice. Moreover, no spontaneous ventricular arrhythmias were detected in TG-WT hearts. Despite these results, a mild, irr...

  5. Tissue distribution of 35S-labelled perfluorooctane sulfonate in adult mice after oral exposure to a low environmentally relevant dose or a high experimental dose

    International Nuclear Information System (INIS)

    The widespread environmental pollutant perfluorooctane sulfonate (PFOS), detected in most animal species including the general human population, exerts several effects on experimental animals, e.g., hepatotoxicity, immunotoxicity and developmental toxicity. However, detailed information on the tissue distribution of PFOS in mammals is scarce and, in particular, the lack of available information regarding environmentally relevant exposure levels limits our understanding of how mammals (including humans) may be affected. Accordingly, we characterized the tissue distribution of this compound in mice, an important experimental animal for studying PFOS toxicity. Following dietary exposure of adult male C57/BL6 mice for 1-5 days to an environmentally relevant (0.031 mg/kg/day) or a 750-fold higher experimentally relevant dose (23 mg/kg/day) of 35S-PFOS, most of the radioactivity administered was recovered in liver, bone (bone marrow), blood, skin and muscle, with the highest levels detected in liver, lung, blood, kidney and bone (bone marrow). Following high daily dose exposure, PFOS exhibited a different distribution profile than with low daily dose exposure, which indicated a shift in distribution from the blood to the tissues with increasing dose. Both scintillation counting (with correction for the blood present in the tissues) and whole-body autoradiography revealed the presence of PFOS in all 19 tissues examined, with identification of thymus as a novel site for localization for PFOS and bone (bone marrow), skin and muscle as significant body compartments for PFOS. These findings demonstrate that PFOS leaves the bloodstream and enters most tissues in a dose-dependent manner.

  6. Developmental minocycline treatment reverses the effects of neonatal immune activation on anxiety- and depression-like behaviors, hippocampal inflammation, and HPA axis activity in adult mice.

    Science.gov (United States)

    Majidi, Jafar; Kosari-Nasab, Morteza; Salari, Ali-Akbar

    2016-01-01

    Neonatal infection is associated with increased lifetime risk for neuropsychiatric disorders including anxiety and depression, with evidence showing that dysregulation of the hypothalamic-pituitary-adrenal-(HPA)-axis system may be partly responsible. Preclinical and clinical studies demonstrate that minocycline exhibits antidepressant effects through inhibition of microglial activation and anti-inflammatory actions, and of interest is that recent studies suggest that minocycline alleviates the behavioral abnormalities induced by early-life insults. The current study was designed to determine if developmental minocycline treatment attenuates the neonatal immune activation-induced anxiety- and depression-like symptoms and HPA-axis-dysregulation later in life. To this end, neonatal mice were treated to either lipopolysaccharide or saline on postnatal days (PND) 3-5, then dams during lactation (PND 6-20) and male offspring during adolescence (PND 21-40) received oral administration of minocycline or water via regular drinking bottles. Anxiety- and depression-like behaviors, HPA-axis-reactivity (corticosterone), and hippocampal inflammation (TNF-α and IL-1β) after exposure to stress were evaluated. The results indicated that neonatal immune activation resulted in increased anxiety and depression-like symptoms, HPA-axis-hyperactivity, and elevated the levels of TNF-α and IL-1β in the hippocampus in response to stress in adulthood. Interestingly, developmental minocycline treatment significantly reduced the abnormalities induced by neonatal inflammation in adult mice. In addition, minocycline, regardless of postnatal inflammation, did not have any detrimental effects on the above measured parameters. Considering that minocycline is currently under exploration as an alternative or adjunctive therapy for reducing the symptoms of neurological disorders, our findings suggest that minocycline during development can decrease the behavioral abnormalities induced by early

  7. Geissoschizine methyl ether, an alkaloid from the Uncaria hook, improves remyelination after cuprizone-induced demyelination in medial prefrontal cortex of adult mice.

    Science.gov (United States)

    Morita, Shoko; Tatsumi, Kouko; Makinodan, Manabu; Okuda, Hiroaki; Kishimoto, Toshifumi; Wanaka, Akio

    2014-01-01

    Accumulating evidence indicates that the medial prefrontal cortex (mPFC) is a site of myelin and oligodendrocyte abnormalities that contribute to psychotic symptoms of schizophrenia. The development of therapeutic approaches to enhance remyelination, a regenerative process in which new myelin sheaths are formed on demyelinated axons, may be an attractive remedial strategy. Geissoschizine methyl ether (GM) in the Uncaria hook, a galenical constituent of the traditional Japanese medicine yokukansan (Yi-gan san), is one of the active components responsible for the psychotropic effects of yokukansan, though little is known about the mechanisms underlying the effects of either that medicine or GM itself. In the present study, we employed a cuprizone (CPZ)-induced demyelination model and examined the cellular changes in response to GM administration during the remyelination phase in the mPFC of adult mice. Using the mitotic marker 5-bromo-2'-deoxyuridine (BrdU), we demonstrated that CPZ treatment significantly increased the number of BrdU-positive NG2 cells, as well as microglia and mature oligodendrocytes in the mPFC. Newly formed oligodendrocytes were increased by GM administration after CPZ exposure. In addition, GM attenuated a decrease in myelin basic protein immunoreactivity caused by CPZ administration. Taken together, our findings suggest that GM administration ameliorated the myelin deficit by mature oligodendrocyte formation and remyelination in the mPFC of CPZ-fed mice. The present findings provide experimental evidence supporting the role for GM and its possible use as a remedy for schizophrenia symptoms by promoting the differentiation of progenitor cells to and myelination by oligodendrocytes. PMID:24190599

  8. Zinc-Oxide Nanoparticles Exhibit Genotoxic, Clastogenic, Cytotoxic and Actin Depolymerization Effects by Inducing Oxidative Stress Responses in Macrophages and Adult Mice.

    Science.gov (United States)

    Pati, Rashmirekha; Das, Ishani; Mehta, Ranjit Kumar; Sahu, Rojalin; Sonawane, Avinash

    2016-04-01

    Zinc oxide nanoparticles (ZnO-NPs) have wide biological applications, which have raised serious concerns about their impact on the health and environment. Although, various studies have shown ZnO-NP toxicity on different cells underin vitroconditions, sufficient information is lacking regarding toxicity and underlying mechanisms underin vivoconditions. In this work, we investigated genotoxic, clastogenic, and cytotoxic effects of ZnO-NPs on macrophages and in adult mice. ZnO-NP-treated mice showed signs of toxicity such as loss in body weight, passive behavior and reduced survival. Further mechanistic studies revealed that administration of higher dose caused severe DNA damage in peripheral blood and bone marrow cells as evident by the formation of COMET tail, micronuclei, chromosomal fragmentation, and phosphorylation of H2A histone family member X. Moreover, ZnO-NPs inhibited DNA repair mechanism by downregulating the expression offen-1andpolBproteins. Histopathological examinations showed severe inflammation and damage to liver, lungs, and kidneys. Cell viability and wound healing assays revealed that ZnO-NPs killed macrophages in a dose-dependent manner, caused severe wounds and inhibited cellular migration by irreversible actin depolymerization and degradation. Reduction in the viability of macrophages was due to the arrest of the cell cycle at the G0/G1 phase, inhibition of superoxide dismutase and catalase and eventually reactive oxygen species. Furthermore, treatment with an antioxidant drug N-acetyl cysteine significantly reduced the ZnO-NP induced genotoxicity bothin vitroandin vivo Altogether, this study gives detailed pathological insights of ZnO-NP that impair cellular functions, thus will enable to arbitrate their biological applications. PMID:26794139

  9. Silencing of microRNA-155 in mice during acute inflammatory response leads to derepression of c/ebp Beta and down-regulation of G-CSF

    DEFF Research Database (Denmark)

    Worm, Jesper; Stenvang, Jan; Petri, Andreas;

    2009-01-01

    -stimulating factor (G-CSF), a central regulator of granulopoiesis during inflammatory responses. Consistent with these data, we show that silencing of miR-155 in LPS-treated mice by systemically administered LNA-antimiR results in derepression of the c/ebp Beta isoforms and down-regulation of G-CSF expression...

  10. Prolonged TSH receptor A subunit immunization of female mice leads to a long-term model of Graves' disease, tachycardia, and cardiac hypertrophy.

    Science.gov (United States)

    Holthoff, Hans-Peter; Goebel, Sylvia; Li, Zhongmin; Faßbender, Julia; Reimann, Andreas; Zeibig, Stefan; Lohse, Martin J; Münch, Götz; Ungerer, Martin

    2015-04-01

    A transient model for human Graves' disease was successfully established in mice using up to 3 immunizations with recombinant adenovirus expressing the extracellular A-subunit of the human TSH receptor (TSHR) (Ad-TSHR). We studied extension of adenovirally induced TSHR A-subunit immunization in mice by using a novel protocol of long-term 3- and 4-weekly injections. Generation of TSHR binding stimulatory antibodies (capacity to stimulate cAMP activity in TSHR-expressing test cells), goiter, and histological thyroid alterations were maintained for at least 9 months in all Ad-TSHR-immunized mice. In response to injection of 10(10) plaque-forming units of Ad-TSHR, also elevated mean serum T4 levels were observed throughout the study. Moreover, cardiac organ involvement (tachycardia and hypertrophy) were consistently observed in these mice. Higher doses of Ad-TSHR (10(11) plaque-forming units) did not produce consistent elevation of T4 and were not associated with a clear increase in heart rate vs controls, probably because these high doses provoked an immune response-induced tachycardia on their own. In summary, a long-term model of Graves' disease induced by a relatively simple protocol of continuing monthly immunizations should allow to investigate long-term disease mechanisms and may possibly obviate the need for more complicated disease models. Moreover, the clinical outcome predictor of tachycardia and cardiac involvement was reliably detected in the model. PMID:25562617

  11. Pulmonary instillation of low doses of titanium dioxide nanoparticles in mice leads to particle retention and gene expression changes in the absence of inflammation

    DEFF Research Database (Denmark)

    Husain, Mainul; Saber, Anne Thoustrup; Guo, Charles;

    2013-01-01

    We investigated gene expression, protein synthesis, and particle retention in mouse lungs following intratracheal instillation of varying doses of nano-sized titanium dioxide (nano-TiO2). Female C57BL/6 mice were exposed to rutile nano-TiO2 via single intratracheal instillations of 18, 54, and 162...

  12. Moderate neonatal stress decreases within-group variation in behavioral, immune and HPA responses in adult mice.

    Directory of Open Access Journals (Sweden)

    Simone Macrì

    Full Text Available BACKGROUND: The significance of behavioral neuroscience and the validity of its animal models of human pathology largely depend on the possibility to replicate a given finding across different laboratories. Under the present test and housing conditions, this axiom fails to resist the challenge of experimental validation. When several mouse strains are tested on highly standardized behavioral test batteries in different laboratories, significant strain x lab interactions are often detected. This limitation, predominantly due to elevated within-group variability observed in control subjects, increases the number of animals needed to address fine experimental questions. Laboratory rodents display abnormal stress and fear reactions to experimental testing, which might depend on the discrepancy between the stability of the neonatal environment and the challenging nature of the adult test and housing conditions. METHODOLOGY/PRINCIPAL FINDINGS: Stimulating neonatal environments (e.g. brief maternal separations, increased foraging demands or maternal corticosterone supplementation reduce stress and fear responses in adulthood. Here we tested whether reduced fearfulness associated with experimental testing would also reduce inter-individual variation. In line with our predictions, we show that a moderate elevation in neonatal corticosterone through maternal milk significantly reduces fear responses and inter-individual variability (average 44% in adult mouse offspring. CONCLUSIONS/SIGNIFICANCE: We observed reduced variation in pain perception, novelty preference, hormonal stress response and resistance to pathogen infection. This suggests that the results of this study may apply to a relatively broad spectrum of neuro-behavioral domains. Present findings encourage a reconsideration of the basic principles of neonatal housing systems to improve the validity of experimental models and reduce the number of animals used.

  13. Cryptococcus neoformans Infection in Mice Lacking Type I Interferon Signaling Leads to Increased Fungal Clearance and IL-4-Dependent Mucin Production in the Lungs.

    Directory of Open Access Journals (Sweden)

    Ko Sato

    Full Text Available Type I interferons (IFNs are secreted by many cell types upon stimulation via pattern recognition receptors and bind to IFN-α/β receptor (IFNAR, which is composed of IFNAR1 and IFNAR2. Although type I IFNs are well known as anti-viral cytokines, limited information is available on their role during fungal infection. In the present study, we addressed this issue by examining the effect of IFNAR1 defects on the host defense response to Cryptococcus neoformans. In IFNAR1KO mice, the number of live colonies was lower and the host immune response mediated not only by Th1 but also by Th2 and Th17-related cytokines was more accelerated in the infected lungs than in WT mice. In addition, mucin production by bronchoepithelial cells and expression of MUC5AC, a major core protein of mucin in the lungs, were significantly higher in IFNAR1KO mice than in WT mice. This increase in mucin and MUC5AC production was significantly inhibited by treatment with neutralizing anti-IL-4 mAb. In contrast, administration of recombinant IFN-αA/D significantly suppressed the production of IL-4, but not of IFN-γ and IL-17A, in the lungs of WT mice after cryptococcal infection. These results indicate that defects of IFNAR1 led to improved clearance of infection with C. neoformans and enhanced synthesis of IFN-γ and the IL-4-dependent production of mucin. They also suggest that type I IFNs may be involved in the negative regulation of early host defense to this infection.

  14. Consequences of changes in BDNF levels on serotonin neurotransmission, 5-HT transporter expression and function: studies in adult mice hippocampus.

    Science.gov (United States)

    Deltheil, Thierry; Guiard, Bruno P; Guilloux, Jean-Philippe; Nicolas, Lorelei; Deloménie, Claudine; Repérant, Christelle; Le Maitre, Erwan; Leroux-Nicollet, Isabelle; Benmansour, Saloua; Coudoré, François; David, Denis J; Gardier, Alain M

    2008-08-01

    In vivo intracerebral microdialysis is an important neurochemical technique that has been applied extensively in genetic and pharmacological studies aimed at investigating the relationship between neurotransmitters. Among the main interests of microdialysis application is the infusion of drugs through the microdialysis probe (reverse dialysis) in awake, freely moving animals. As an example of the relevance of intracerebral microdialysis, this review will focus on our recent neurochemical results showing the impact of Brain-Derived Neurotrophic Factor (BDNF) on serotonergic neurotransmission in basal and stimulated conditions. Indeed, although the elevation of 5-HT outflow induced by chronic administration of selective serotonin reuptake inhibitors (SSRIs) causes an increase in BDNF protein levels and expression (mRNA) in the hippocampus of rodents, the reciprocal interaction has not been demonstrated yet. Thus, the neurochemical sight of this question will be addressed here by examining the consequences of either a constitutive decrease or increase in brain BDNF protein levels on hippocampal extracellular levels of 5-HT in conscious mice. PMID:17980409

  15. Spatial learning and memory deficits in young adult mice exposed to a brief intense noise at postnatal age

    Institute of Scientific and Technical Information of China (English)

    Shan Tao; Lijie Liu; Lijuan Shi; Xiaowei Li; Pei Shen; Qingying Xun; Xiaojing Guo; Zhiping Yu; Jian Wang

    2015-01-01

    Noise pollution is a major hazardous factor to human health and is likely harmful for vulnerable groups such as pre-term infants under life-support system in an intensive care unit. Previous studies have suggested that noise exposure impairs children's learning ability and cognitive performance and cognitive functions in animal models in which the effect is mainly attributed to the oxidant stress of noise on the cognitive brain. The potential role of noise induced hearing loss (NIHL), rather than the oxidant stress, has also been indicated by a depression of neurogenesis in the hippocampus long after a brief noise exposure, which produces only a tentative oxidant stress. It is not clear if noise exposure and NIHL during early development exerts a long term impact on cognitive function and neurogenesis towards adulthood. In the present study, a brief noise exposure at high sound level was performed in neonatal C57BL/6J mice (15 days after birth) to produce a significant amount of permanent hearing loss as proved 2 months after the noise. At this age, the noise-exposed animals showed deteriorated spatial learning and memory abilities and a reduction of hippocampal neurogenesis as compared with the control. The averaged hearing threshold was found to be strongly correlated with the scores for spatial learning and memory. We consider the effects observed are largely due to the loss of hearing sensitivity, rather than the oxidant stress, due to the long interval between noise exposure and the observations.

  16. Vanillin mitigates potassium bromate-induced molecular, biochemical and histopathological changes in the kidney of adult mice.

    Science.gov (United States)

    Ben Saad, Hajer; Driss, Dorra; Ellouz Chaabouni, Samia; Boudawara, Tahia; Zeghal, Khaled Mounir; Hakim, Ahmed; Ben Amara, Ibtissem

    2016-05-25

    The present study aimed to explore the ability of vanillin to ameliorate the adverse effects induced by potassium bromate (KBrO3) in the renal tissue. Our results showed a significant increase in hydrogen peroxide, superoxide anion, malondialdehyde, advanced oxidation protein product and protein carbonyl levels in the kidney of KBrO3 treated mice, compared with the control group. Nephrotoxicity was evidenced by a decrease in plasma uric acid and kidney glutathione levels, Na(+)-K(+)-ATPase, lactate dehydrogenase and catalase activities. Additionally, creatinine and urea levels significantly increased in the plasma and declined in the urine. Also, Kidney glutathione peroxidase, superoxide dismutase, metallothionein (MT1 and MT2) mRNA expression remarkably increased. These modifications in biochemical and molecular values were substantiated by histopathological data. Co-treatment with vanillin restored these parameters to near control values. Interestingly, vanillin proved to possess, in vitro, a stronger scavenging radical activity than vitamin C and Trolox. Thus, vanillin inhibited KBrO3-induced damage via its antioxidant and antiradical activities as well as its capacity to protect genes expression and histopathological changes. PMID:27074584

  17. The programming effects of nutrition-induced catch-up growth on gut microbiota and metabolic diseases in adult mice.

    Science.gov (United States)

    Zheng, Jia; Xiao, Xinhua; Zhang, Qian; Yu, Miao; Xu, Jianping; Qi, Cuijuan; Wang, Tong

    2016-04-01

    Substantial evidence indicated that catch-up growth could increase the susceptibility to obesity, insulin resistance, and type 2 diabetes mellitus in adulthood. However, investigations into the "programming" effects of catch-up growth on gut microbiota in the offspring are limited. C57/BL6 mice were fed on either low protein (LP) or normal chow (NC) diet throughout gestation and lactation. Then, the offspring were randomly weaned to either NC or high fat (HF) diet until 32 weeks of age, generating four experimental groups: NC-NC, NC-HF, LP-NC, and LP-HF. Metabolic parameters and gut microbiota were examined in the offspring. It showed that the NC-HF and LP-HF offspring displayed higher body weight (P percentage was negatively associated with blood glucose concentrations of intraperitoneal glucose tolerance test (r = -0.886, P = 0.019). In conclusion, catch-up growth predisposes the offspring to gut microbiota perturbation, obesity, impaired glucose tolerance, insulin resistance, and dyslipidemia. Our study is novel in showing the "programming" effects of nutrition-induced catch-up growth on gut microbiota and metabolic diseases in later life. PMID:26749443

  18. Glutamate-induced obesity leads to decreased sperm reserves and acceleration of transit time in the epididymis of adult male rats

    Directory of Open Access Journals (Sweden)

    Fernandes Glaura SA

    2012-12-01

    Full Text Available Abstract Background Given the established fact that obesity interferes with male reproductive functions, the present study aimed to evaluate sperm production in the testis and storage in the epididymis in a glutamate-induced model of obesity. Methods Male rats were treated neonatally with monosodium glutamate (MSG at doses of 4 mg/kg subcutaneously, or with saline solution (control group, on postnatal days 2, 4, 6, 8 and 10. On day 120, obesity was confirmed by the Lee index in all MSG-treated rats. After this, all animals from the two experimental groups were anesthetized and killed to evaluate body and reproductive organ weights, sperm parameters, plasma hormone levels (FSH, LH and testosterone, testicular and epididymal histo-morphometry and histopathology. Results Significant reductions in absolute and relative weights of testis, epididymis, prostate and seminal vesicle were noted in MSG-treated animals. In these same animals plasma testosterone and follicle-stimulating hormone (FSH concentrations were decreased, as well as sperm counts in the testis and epididymis and seminiferous epithelium height and tubular diameter. The sperm transit time was accelerated in obese rats. However, the number of Sertoli cells per seminiferous tubule and stereological findings on the epididymis were not markedly changed by obesity. Conclusions Neonatal MSG-administered model of obesity lowers sperm production and leads to a reduction in sperm storage in the epididymis of adult male rats. The acceleration of sperm transit time can have implications for the sperm quality of these rats.

  19. Long-Term Fate Mapping Using Conditional Lentiviral Vectors Reveals a Continuous Contribution of Radial Glia-Like Cells to Adult Hippocampal Neurogenesis in Mice.

    Directory of Open Access Journals (Sweden)

    Sarah-Ann Aelvoet

    Full Text Available Newborn neurons are generated throughout life in two neurogenic regions, the subventricular zone and the hippocampal dentate gyrus. Stimulation of adult neurogenesis is considered as an attractive endogenous repair mechanism to treat different neurological disorders. Although tremendous progress has been made in our understanding of adult hippocampal neurogenesis, important questions remain unanswered, regarding the identity and the behavior of neural stem cells in the dentate gyrus. We previously showed that conditional Cre-Flex lentiviral vectors can be used to label neural stem cells in the subventricular zone and to track the migration of their progeny with non-invasive bioluminescence imaging. Here, we applied these Cre-Flex lentiviral vectors to study neurogenesis in the dentate gyrus with bioluminescence imaging and histological techniques. Stereotactic injection of the Cre-Flex vectors into the dentate gyrus of transgenic Nestin-Cre mice resulted in specific labeling of the nestin-positive neural stem cells. The labeled cell population could be detected with bioluminescence imaging until 9 months post injection, but no significant increase in the number of labeled cells over time was observed with this imaging technique. Nevertheless, the specific labeling of the nestin-positive neural stem cells, combined with histological analysis at different time points, allowed detailed analysis of their neurogenic potential. This long-term fate mapping revealed that a stable pool of labeled nestin-positive neural stem cells continuously contributes to the generation of newborn neurons in the mouse brain until 9 months post injection. In conclusion, the Cre-Flex technology is a valuable tool to address remaining questions regarding neural stem cell identity and behavior in the dentate gyrus.

  20. Augmenting saturated LTP by broadly spaced episodes of theta-burst stimulation in hippocampal area CA1 of adult rats and mice.

    Science.gov (United States)

    Cao, Guan; Harris, Kristen M

    2014-10-15

    Hippocampal long-term potentiation (LTP) is a model system for studying cellular mechanisms of learning and memory. Recent interest in mechanisms underlying the advantage of spaced over massed learning has prompted investigation into the effects of distributed episodes of LTP induction. The amount of LTP induced in hippocampal area CA1 by one train (1T) of theta-burst stimulation (TBS) in young Sprague-Dawley rats was further enhanced by additional bouts of 1T given at 1-h intervals. However, in young Long-Evans (LE) rats, 1T did not initially saturate LTP. Instead, a stronger LTP induction paradigm using eight trains of TBS (8T) induced saturated LTP in hippocampal slices from both young and adult LE rats as well as adult mice. The saturated LTP induced by 8T could be augmented by another episode of 8T following an interval of at least 90 min. The success rate across animals and slices in augmenting LTP by an additional episode of 8T increased significantly with longer intervals between the first and last episodes, ranging from 0% at 30- and 60-min intervals to 13-66% at 90- to 180-min intervals to 90-100% at 240-min intervals. Augmentation above initially saturated LTP was blocked by the N-methyl-D-aspartate (NMDA) glutamate receptor antagonist D-2-amino-5-phosphonovaleric acid (D-APV). These findings suggest that the strength of induction and interval between episodes of TBS, as well as the strain and age of the animal, are important components in the augmentation of LTP. PMID:25057146

  1. Absence of intracellular ion channels TPC1 and TPC2 leads to mature-onset obesity in male mice, due to impaired lipid availability for thermogenesis in brown adipose tissue.

    Science.gov (United States)

    Lear, Pamela V; González-Touceda, David; Porteiro Couto, Begoña; Viaño, Patricia; Guymer, Vanessa; Remzova, Elena; Tunn, Ruth; Chalasani, Annapurna; García-Caballero, Tomás; Hargreaves, Iain P; Tynan, Patricia W; Christian, Helen C; Nogueiras, Rubén; Parrington, John; Diéguez, Carlos

    2015-03-01

    Intracellular calcium-permeable channels have been implicated in thermogenic function of murine brown and brite/beige adipocytes, respectively transient receptor potential melastin-8 and transient receptor potential vanilloid-4. Because the endo-lysosomal two-pore channels (TPCs) have also been ascribed with metabolic functionality, we studied the effect of simultaneously knocking out TPC1 and TPC2 on body composition and energy balance in male mice fed a chow diet. Compared with wild-type mice, TPC1 and TPC2 double knockout (Tpcn1/2(-/-)) animals had a higher respiratory quotient and became obese between 6 and 9 months of age. Although food intake was unaltered, interscapular brown adipose tissue (BAT) maximal temperature and lean-mass adjusted oxygen consumption were lower in Tpcn1/2(-/-) than in wild type mice. Phosphorylated hormone-sensitive lipase expression, lipid density and expression of β-adrenergic receptors were also lower in Tpcn1/2(-/-) BAT, whereas mitochondrial respiratory chain function and uncoupling protein-1 expression remained intact. We conclude that Tpcn1/2(-/-) mice show mature-onset obesity due to reduced lipid availability and use, and a defect in β-adrenergic receptor signaling, leading to impaired thermogenic activity, in BAT. PMID:25545384

  2. Modification of biochemical constituents in the liver of Swiss-albino mice by Vitamin-E against combined administration of lead and radiation

    International Nuclear Information System (INIS)

    The estimation of biochemical constituents serves as an ideal parameter to determine the protective efficacy of suitable substances against combined treatment of lead and radiation. Vitamin E prevents elevation in glycogen, cholesterol, acid phosphatase and alkaline phosphatase activity after concomitant treatment of lead and radiation. Thus, it is concluded that the prophylactic application of vitamin E is quite potent during lead intoxication and irradiation

  3. Purification of a chymotrypsin-like enzyme present on adult Schistosoma mansoni worms from infected mice and its characterization as a host carboxylesterase.

    Science.gov (United States)

    Igetei, Joseph E; Liddell, Susan; El-Faham, Marwa; Doenhoff, Michael J

    2016-04-01

    A serine protease-like enzyme found in detergent extracts of Schistosoma mansoni adult worms perfused from infected mice has been purified from mouse blood and further characterized. The enzyme is approximately 85 kDa and hydrolyses N-acetyl-DL-phenylalanine β-naphthyl-ester, a chromogenic substrate for chymotrypsin-like enzymes. The enzyme from S. mansoni worms appears to be antigenically and enzymatically similar to a molecule that is present in normal mouse blood and so is seemingly host-derived. The enzyme was partially purified by depleting normal mouse serum of albumin using sodium chloride and cold ethanol, followed by repeated rounds of purification by one-dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis. The purified material was subjected to tandem mass spectrometry and its derived peptides found to belong to mouse carboxylesterase 1C. Its ability to hydrolyse α- or β-naphthyl acetates, which are general esterase substrates, has been confirmed. A similar carboxylesterase was purified and characterized from rat blood. Additional evidence to support identification of the enzyme as a carboxylesterase has been provided. Possible roles of the enzyme in the mouse host-parasite relationship could be to ease the passage of worms through the host's blood vessels and/or in immune evasion. PMID:26924446

  4. Effects of early intraoral acesulfame-K stimulation to mice on the adult's sweet preference and the expression of α-gustducin in fungiform papilla.

    Science.gov (United States)

    Chen, Meng-Ling; Liu, Si-Si; Zhang, Gen-Hua; Quan, Ying; Zhan, Yue-Hua; Gu, Tian-Yuan; Qin, Yu-Mei; Deng, Shao-Ping

    2013-06-01

    Exposure to artificial sweetener acesulfame-K (AK) at early development stages may influence the adult sweet preference and the periphery gustatory system. We observed that the intraoral AK stimulation to mice from postnatal day 4 (P4) to weaning decreased the preference thresholds for AK and sucrose solutions in adulthood, with the preference pattern unchanged. The preference scores were increased in the exposure group significantly when compared with the control group at a range of concentrations for AK or sucrose solution. Meanwhile, more α-Gustducin-labeled fungiform taste buds and cells in a single taste bud were induced from week 7 by the early intraoral AK stimulation. However, the growth in the number of α-Gustducin-positive taste bud or positive cell number per taste bud occurred only in the anterior region, the rostral 1-mm part, but not in the intermediate region, the caudal 4-mm part, of the anterior two-third of the tongue containing fungiform papillae. This work extends our previous observations and provides new information about the developmental and regional expression pattern of α-Gustducin in mouse fungiform taste bud under early AK-stimulated conditions. PMID:23537561

  5. The Coumarin Derivative Osthole Stimulates Adult Neural Stem Cells, Promotes Neurogenesis in the Hippocampus, and Ameliorates Cognitive Impairment in APP/PS1 Transgenic Mice.

    Science.gov (United States)

    Kong, Liang; Hu, Yu; Yao, Yingjia; Jiao, Yanan; Li, Shaoheng; Yang, Jingxian

    2015-01-01

    It is believed that neuronal death caused by abnormal deposition of amyloid-beta peptide is the major cause of the cognitive decline in Alzheimer's disease. Adult neurogenesis plays a key role in the rescue of impaired neurons and amelioration of cognitive impairment. In the present study, we demonstrated that osthole, a natural coumarin derivative, was capable of promoting neuronal stem cell (NSC) survival and inducing NSC proliferation in vitro. In osthole-treated APP/PS1 transgenic mice, a significant improvement in learning and memory function was seen, which was associated with a significant increase in the number of new neurons (Ki67(+)/NF-M(+)) and a decrease in apoptotic cells in the hippocampal region of the brain. These observations suggested that osthole promoted NSC proliferation, supported neurogenesis, and thus efficiently rescued impaired neurons in the hippocampus and ameliorated cognitive impairment. We also found that osthole treatment activated the Notch pathway and upregulated the expression of self-renewal genes Notch 1 and Hes 1 mRNA in NSCs. However, when Notch activity was blocked by the γ-secretase inhibitor DAPT, the augmentation of Notch 1 and Hes 1 protein was ameliorated, and the proliferation-inducing effect of osthole was abolished, suggesting that the effects of osthole are at least in part mediated by activation of the Notch pathway. PMID:26328484

  6. The Effect of the Postnatal Environment on Altered Fetal Programming of Adult Vascular Function in Mice Lacking Endothelial Nitic Oxide Synthase

    Science.gov (United States)

    Clark, Shannon M.; Makhlouf, Michel; Hankins, Gary D.V.; Anderson, Garland D.; Saade, George R.; Longo, Monica

    2007-01-01

    Objective: To investigate vascular reactivity in heterozygous and homozygous offspring with a genetic predisposition for hypertension after postnatal cross fostering to mothers with the opposite genetic inheritance of the NOS3 knockout allele. Study design: Homozygous NOS3 knockout (C57BL/6J-NOS3−/−KO) and wild-type mice (NOS3+/+WT) were bred to obtain heterozygous litters with a paternally-derived (NOS3+/−pat) or maternally-derived (NOS3+/−mat) knockout allele. After delivery, heterozygous and homozygous litters were cross fostered to a mother with the opposite NOS3 gene status. Carotid arteries were placed in a wire myograph for isometric tension recording using contractile and relaxant agents. Statistical analysis with One-Way ANOVA and Neuman-Keuls post-hoc testing was performed. Results: Increased sensitivity to phenylephrine and absent relaxation to acetycholine in NOS3+/−mat was reversed with cross-fostering and vasorelaxation to isoproteronol was increased. Contraction to calcium was increased in the cross fostered paternally-derived and wild-type litters. Conclusion: Postnatal interventions may favorably alter the adult vascular profile resulting from an abnormal intrauterine environment. PMID:17403420

  7. Comparison of the dose-response relationship of radiation-induced apoptosis in the hippocampal dentate gyrus and intestinal crypt of adult mice

    International Nuclear Information System (INIS)

    The present study compared the dose-response curves for the frequency of apoptosis in mouse hippocampal dentate gyrus (DG) and intestinal crypt using whole-body gamma irradiation. The incidence of gamma-ray-induced apoptosis was measured using the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end-labelling (TUNEL) method. TUNEL-positive apoptotic nuclei in the DG and intestinal crypt were increased in a dose-dependent pattern (0-2 Gy). The dose-response curves were linear-quadratic, with a significant relationship between the appearance of apoptosis and irradiation dose. The slopes of the dose-response curves in the DG were much steeper (∼5-6-fold) than those in the intestinal crypt within the range of 0-1 Gy exposure. Hippocampal DG might be a more effective and sensitive evaluation structure than the intestinal crypt to estimate the degree of radiation exposure in damaged organs of adult mice exposed to low irradiation dose. copy; The Author 2011. Published by Oxford Univ. Press. All rights reserved. (authors)

  8. Dexamethasone treatment alters insulin, leptin, and adiponectin levels in male mice as observed in DIO but does not lead to alterations of metabolic phenotypes in the offspring

    OpenAIRE

    Bönisch, Clemens; Irmler, Martin; Brachthäuser, Laura; Neff, Frauke; Bamberger, Mareike T.; Marschall, Susan; Hrabě de Angelis, Martin; Beckers, Johannes

    2015-01-01

    Epigenetic inheritance (EI) of metabolic phenotypes via the paternal lineage has been shown in rodent models of diet-induced obesity (DIO). However, the factors involved in soma-to-germline information transfer remain elusive. Here, we address the role of alterations in insulin, leptin, and adiponectin levels for EI of metabolic phenotypes by treating C57BL/6NTac male mice (F0) with the synthetic glucocorticoid dexamethasone and generating offspring (F1) either by in vitro fertilization or by...

  9. Severe but not moderate vitamin B12 deficiency impairs lipid profile, induces adiposity and leads to adverse gestational outcome in female C57BL/6 mice

    Directory of Open Access Journals (Sweden)

    Shampa eGhosh

    2016-01-01

    Full Text Available Vitamin B12 deficiency is widely prevalent in women of childbearing age especially in developing countries. In the present study, through dietary restriction, we have established mouse models of severe and moderate vitamin B12 deficiencies to elucidate the impact on body composition, biochemical parameters and reproductive performance. Female weanling C57BL/6 mice were fed for four weeks, (a control AIN-76A diet, (b vitamin B12 restricted AIN-76A diet with pectin as dietary fiber (severe deficiency group, as pectin inhibits vitamin B12 absorption or (c vitamin B12 restricted AIN-76A diet with cellulose as dietary fiber (moderate deficiency group as cellulose does not interfere with vitamin B12 absorption. After confirming deficiency, the mice were mated with male colony mice and maintained on their respective diets throughout pregnancy, lactation and thereafter till 12 weeks. Severe vitamin B12 deficiency increased body fat % significantly, induced adiposity and altered lipid profile. Pregnant dams of both the deficient groups developed anemia. Severe vitamin B12 deficiency decreased the percentage of conception and litter size, pups were small-for-gestational-age and had significantly lower body weight at birth as well as weaning. Most of the offspring born to severely deficient dams died within 24 hours of birth. Stress markers and adipocytokines were elevated in severe deficiency with concomitant decrease in antioxidant defense. The results show that severe but not moderate vitamin B12 restriction had profound impact on the physiology of C57BL/6 mice. Oxidative and corticosteroid stress, inflammation and poor antioxidant defense seem to be the probable underlying mechanisms mediating the deleterious effects.

  10. Constitutive activation of Beta-catenin in uterine stroma and smooth muscle leads to the development of mesenchymal tumors in mice.

    Science.gov (United States)

    Tanwar, Pradeep S; Lee, Ho-Joon; Zhang, LiHua; Zukerberg, Lawrence R; Taketo, Makoto M; Rueda, Bo R; Teixeira, Jose M

    2009-09-01

    Leiomyomas and other mesenchymally derived tumors are the most common neoplasms of the female reproductive tract. Presently, very little is known about the etiology and progression of these tumors, which are the primary indication for hysterectomies. Dysregulated WNT signaling through beta-catenin is a well-established mechanism for tumorigenesis. We have developed a mouse model that expresses constitutively activated beta-catenin in uterine mesenchyme driven by the expression of Cre recombinase knocked into the Müllerian-inhibiting substance type II receptor promoter locus to investigate its effects on uterine endometrial stroma and myometrium. These mice show myometrial hyperplasia and develop mesenchymal tumors with 100% penetrance that exhibit histological and molecular characteristics of human leiomyomas and endometrial stromal sarcomas. By immunohistochemistry, we also show that both transforming growth factor beta and the mammalian target of rapamycin are induced by constitutive activation of beta-catenin. The prevalence of the tumors was greater in multiparous mice, suggesting that their development may be a hormonally driven process or that changes in uterine morphology during pregnancy and after parturition induce injury and repair mechanisms that stimulate tumorigenesis from stem/progenitor cells, which normally do not express constitutively activated beta-catenin. Additionally, adenomyosis and endometrial gland hyperplasia were occasionally observed in some mice. These results show evidence suggesting that dysregulated, stromal, and myometrial WNT/beta-catenin signaling has pleiotropic effects on uterine function and tumorigenesis. PMID:19403928

  11. Administration of bleomycin via the oropharyngeal aspiration route leads to sustained lung fibrosis in mice and rats as quantified by UTE-MRI and histology.

    Directory of Open Access Journals (Sweden)

    Christine Egger

    Full Text Available Pulmonary fibrosis can be experimentally induced in small rodents by bleomycin. The antibiotic is usually administered via the intratracheal or intranasal routes. In the present study, we investigated the oropharyngeal aspiration of bleomycin as an alternative route for the induction of lung fibrosis in rats and mice. The development of lung injury was followed in vivo by ultrashort echo time magnetic resonance imaging (UTE-MRI and by post-mortem analyses (histology of collagen, hydroxyproline determination, and qRT-PCR. In C57BL/6 mice, oropharyngeal aspiration of bleomycin led to more prominent lung fibrosis as compared to intranasal administration. Consequently, the oropharyngeal aspiration route allowed a dose reduction of bleomycin and, therewith, a model refinement. Moreover, the distribution of collagen after oropharyngeal aspiration of bleomycin was more homogenous than after intranasal administration: for the oropharyngeal aspiration route, fibrotic areas appeared all over the lung lobes, while for the intranasal route fibrotic lesions appeared mainly around the largest superior airways. Thus, oropharyngeal aspiration of bleomycin induced morphological changes that were more comparable to the human disease than the intranasal administration route did. Oropharyngeal aspiration of bleomycin led to a homogeneous fibrotic injury also in rat lungs. The present data suggest oropharyngeal aspiration of bleomycin as a less invasive means to induce homogeneous and sustained fibrosis in the lungs of mice and rats.

  12. A kinase-dead knock-in mutation in mTOR leads to early embryonic lethality and is dispensable for the immune system in heterozygous mice

    Directory of Open Access Journals (Sweden)

    Cavender Druie

    2009-05-01

    Full Text Available Abstract Background The mammalian target of rapamycin protein (mTOR is an evolutionarily conserved kinase that regulates protein synthesis, cell cycle progression and proliferation in response to various environmental cues. As a critical downstream mediator of PI3K signaling, mTOR is important for lymphocyte development and function of mature T and B-cells. Most studies of mTOR in immune responses have relied on the use of pharmacological inhibitors, such as rapamycin. Rapamycin-FKBP12 complex exerts its immunosuppressive and anti-proliferative effect by binding outside the kinase domain of mTOR, and subsequently inhibiting downstream mTOR signaling. Results To determine the requirement for mTOR kinase activity in the immune system function, we generated knock-in mice carrying a mutation (D2338 in the catalytic domain of mTOR. While homozygous mTOR kd/kd embryos died before embryonic day 6.5, heterozygous mTOR+/kd mice appeared entirely normal and are fertile. mTOR +/kd mice exhibited normal T and B cell development and unaltered proliferative responses of splenocytes to IL-2 and TCR/CD28. In addition, heterozygousity for the mTOR kinase-dead allele did not sensitize T cells to rapamycin in a CD3-mediated proliferation assay. Unexpectedly, mTOR kinase activity towards its substrate 4E-BP1 was not decreased in hearts and livers from heterozygous animals. Conclusion Altogether, our findings indicate that mTOR kinase activity is indispensable for the early development of mouse embryos. Moreover, a single wild type mTOR allele is sufficient to maintain normal postnatal growth and lymphocyte development and proliferation.

  13. The Psen1-L166P-knock-in mutation leads to amyloid deposition in human wild-type amyloid precursor protein YAC transgenic mice

    OpenAIRE

    Vidal, Ruben; Sammeta, Neeraja; Garringer, Holly J.; Sambamurti, Kumar; Miravalle, Leticia; Lamb, Bruce T.; Ghetti, Bernardino

    2012-01-01

    Genetically engineered mice have been generated to model cerebral β-amyloidosis, one of the hallmarks of Alzheimer disease (AD) pathology, based on the overexpression of a mutated cDNA of the amyloid-β precursor protein (AβPP) or by knock-in of the murine Aβpp gene alone or with presenilin1 mutations. Here we describe the generation and initial characterization of a new mouse line based on the presence of 2 copies of the human genomic region encoding the wild-type AβPP and the L166P presenili...

  14. Exposure of BALB/c mice to diesel engine exhaust origin secondary organic aer-osol (DE-SOA during the developmental stages impairs the social behavior in adult life of the males

    Directory of Open Access Journals (Sweden)

    Tin-Tin eWin-Shwe

    2016-01-01

    Full Text Available Secondary organic aerosol (SOA is a component of particulate matter (PM 2.5 and formed in the atmosphere by oxidation of volatile organic compounds. Recently, we have reported that inhalation exposure to diesel engine exhaust (DE originated SOA (DE-SOA affect novel object recognition ability and impair maternal behavior in adult mice. However, it is not clear whether early life exposure to SOA during the de-velopmental stages affect social behavior in adult life or not. In the present study, to investigate the effects of early life exposure to DE-SOA during the gestational and lactation stages on the social behavior in the adult life, BALB/c mice were exposed to clean air (control, DE, DE-SOA and gas without any particulate matter in the inhala-tion chambers from gestational day 14 to postnatal day 21 for 5 h a day and 5 days per week. Then adult mice were examined for changes in their social behavior at the age of 13 week by a sociability and social novelty preference, social interaction with a juvenile mouse and light-dark transition test, hypothalamic mRNA expression levels of social behavior-related genes, estrogen receptor-alpha and oxytocin receptor as well as of the oxidative stress marker gene, heme oxygenase (HO-1 by real-time RT-PCR method. In addition, hypothalamic level of neuronal excitatory marker, glutamate was determined by ELISA method. We observed that sociability and social novelty pref-erence as well as social interaction were remarkably impaired, expression levels of es-trogen receptor-alpha, oxytocin receptor mRNAs were significantly decreased, ex-pression levels of HO-1 mRNAs and glutamate levels were significantly increased in adult male mice exposed to DE-SOA compared to the control ones. Findings of this study indicate early life exposure of BALB/c mice to DE-SOA may affect their late-onset hypothalamic expression of social behavior related genes, trigger neurotoxi-city and impair social behavior in the males.

  15. Inhibition of Tapeworm Thioredoxin and Glutathione Pathways by an Oxadiazole N-Oxide Leads to Reduced Mesocestoides vogae Infection Burden in Mice

    Directory of Open Access Journals (Sweden)

    Vivian Pasquet

    2015-06-01

    Full Text Available Parasitic flatworms cause serious infectious diseases that affect humans and livestock in vast regions of the world, yet there are few effective drugs to treat them. Thioredoxin glutathione reductase (TGR is an essential enzyme for redox homeostasis in flatworm parasites and a promising pharmacological target. We purified to homogeneity and characterized the TGR from the tapeworm Mesocestoides vogae (syn. M. corti. This purification revealed absence of conventional TR and GR. The glutathione reductase activity of the purified TGR exhibits a hysteretic behavior typical of flatworm TGRs. Consistently, M. vogae genome analysis revealed the presence of a selenocysteine-containing TGR and absence of conventional TR and GR. M. vogae thioredoxin and glutathione reductase activities were inhibited by 3,4-bis(phenylsulfonyl-1,2,5-oxadiazole N2-oxide (VL16E, an oxadiazole N-oxide previously identified as an inhibitor of fluke and tapeworm TGRs. Finally, we show that mice experimentally infected with M. vogae tetrathyridia and treated with either praziquantel, the reference drug for flatworm infections, or VL16E exhibited a 28% reduction of intraperitoneal larvae numbers compared to vehicle treated mice. Our results show that oxadiazole N-oxide is a promising chemotype in vivo and highlights the convenience of M. vogae as a model for rapid assessment of tapeworm infections in vivo.

  16. Deletion of the γ-aminobutyric acid transporter 2 (GAT2 and SLC6A13) gene in mice leads to changes in liver and brain taurine contents.

    Science.gov (United States)

    Zhou, Yun; Holmseth, Silvia; Guo, Caiying; Hassel, Bjørnar; Höfner, Georg; Huitfeldt, Henrik S; Wanner, Klaus T; Danbolt, Niels C

    2012-10-12

    The GABA transporters (GAT1, GAT2, GAT3, and BGT1) have mostly been discussed in relation to their potential roles in controlling the action of transmitter GABA in the nervous system. We have generated the first mice lacking the GAT2 (slc6a13) gene. Deletion of GAT2 (both mRNA and protein) neither affected growth, fertility, nor life span under nonchallenging rearing conditions. Immunocytochemistry showed that the GAT2 protein was predominantly expressed in the plasma membranes of periportal hepatocytes and in the basolateral membranes of proximal tubules in the renal cortex. This was validated by processing tissue from wild-type and knockout mice in parallel. Deletion of GAT2 reduced liver taurine levels by 50%, without affecting the expression of the taurine transporter TAUT. These results suggest an important role for GAT2 in taurine uptake from portal blood into liver. In support of this notion, GAT2-transfected HEK293 cells transported [(3)H]taurine. Furthermore, most of the uptake of [(3)H]GABA by cultured rat hepatocytes was due to GAT2, and this uptake was inhibited by taurine. GAT2 was not detected in brain parenchyma proper, excluding a role in GABA inactivation. It was, however, expressed in the leptomeninges and in a subpopulation of brain blood vessels. Deletion of GAT2 increased brain taurine levels by 20%, suggesting a taurine-exporting role for GAT2 in the brain. PMID:22896705