WorldWideScience

Sample records for adult female mice

  1. Lepidium meyenii (Maca increases litter size in normal adult female mice

    Directory of Open Access Journals (Sweden)

    Gasco Manuel

    2005-05-01

    Full Text Available Abstract Background Lepidium meyenii, known as Maca, grows exclusively in the Peruvian Andes over 4000 m altitude. It has been used traditionally to increase fertility. Previous scientific studies have demonstrated that Maca increases spermatogenesis and epididymal sperm count. The present study was aimed to investigate the effects of Maca on several fertility parameters of female mice at reproductive age. Methods Adult female Balb/C mice were divided at random into three main groups: i Reproductive indexes group, ii Implantation sites group and iii Assessment of uterine weight in ovariectomized mice. Animals received an aqueous extract of lyophilized Yellow Maca (1 g/Kg BW or vehicle orally as treatment. In the fertility indexes study, animals received the treatment before, during and after gestation. The fertility index, gestation index, post-natal viability index, weaning viability index and sex ratio were calculated. Sexual maturation was evaluated in the female pups by the vaginal opening (VO day. In the implantation study, females were checked for implantation sites at gestation day 7 and the embryos were counted. In ovariectomized mice, the uterine weight was recorded at the end of treatment. Results Implantation sites were similar in mice treated with Maca and in controls. All reproductive indexes were similar in both groups of treatment. The number of pups per dam at birth and at postnatal day 4 was significantly higher in the group treated with Maca. VO day occurred earlier as litter size was smaller. Maca did not affect VO day. In ovariectomized mice, the treatment with Maca increased significantly the uterine weights in comparison to their respective control group. Conclusion Administration of aqueous extract of Yellow Maca to adult female mice increases the litter size. Moreover, this treatment increases the uterine weight in ovariectomized animals. Our study confirms for the first time some of the traditional uses of Maca to

  2. Inducible knockdown of pregnancy-associated plasma protein-A gene expression in adult female mice extends life span.

    Science.gov (United States)

    Bale, Laurie K; West, Sally A; Conover, Cheryl A

    2017-08-01

    Pregnancy-associated plasma protein-A (PAPP-A) knockout (KO) mice, generated through homologous recombination in embryonic stem cells, have a significantly increased lifespan compared to wild-type littermates. However, it is unknown whether this longevity advantage would pertain to PAPP-A gene deletion in adult animals. In the present study, we used tamoxifen (Tam)-inducible Cre recombinase-mediated excision of the floxed PAPP-A (fPAPP-A) gene in mice at 5 months of age. fPAPP-A mice, which were either positive (pos) or negative (neg) for Tam-Cre, received Tam treatment with quarterly boosters. Only female mice could be used with this experimental design. fPAPP-A/neg and fPAPP-A/pos mice had similar weights at the start of the experiment and showed equivalent weight gain. We found that fPAPP-A/pos mice had a significant extension of life span (P = 0.005). The median life span was increased by 21% for fPAPP-A/pos compared to fPAPP-A/neg mice. Analysis of mortality in life span quartiles indicated that the proportion of deaths of fPAPP-A/pos mice were lower than fPAPP-A/neg mice at young adult ages (P = 0.002 for 601-800 days) and higher than fPAPP-A/neg mice at older ages (P = 0.004 for >1000 days). Thus, survival curves and age-specific mortality indicate that female mice with knockdown of PAPP-A gene expression as adults have an extended healthy life span. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  3. Adult Gli2+/-;Gli3Δ699/+ Male and Female Mice Display a Spectrum of Genital Malformation.

    Directory of Open Access Journals (Sweden)

    Fei He

    Full Text Available Disorders of sexual development (DSD encompass a broad spectrum of urogenital malformations and are amongst the most common congenital birth defects. Although key genetic factors such as the hedgehog (Hh family have been identified, a unifying postnatally viable model displaying the spectrum of male and female urogenital malformations has not yet been reported. Since human cases are diagnosed and treated at various stages postnatally, equivalent mouse models enabling analysis at similar stages are of significant interest. Additionally, all non-Hh based genetic models investigating DSD display normal females, leaving female urogenital development largely unknown. Here, we generated compound mutant mice, Gli2+/-;Gli3Δ699/+, which exhibit a spectrum of urogenital malformations in both males and females upon birth, and also carried them well into adulthood. Analysis of embryonic day (E18.5 and adult mice revealed shortened anogenital distance (AGD, open ventral urethral groove, incomplete fusion of scrotal sac, abnormal penile size and structure, and incomplete testicular descent with hypoplasia in male mice, whereas female mutant mice displayed reduced AGD, urinary incontinence, and a number of uterine anomalies such as vaginal duplication. Male and female fertility was also investigated via breeding cages, and it was identified that male mice were infertile while females were unable to deliver despite becoming impregnated. We propose that Gli2+/-;Gli3Δ699/+ mice can serve as a genetic mouse model for common DSD such as cryptorchidism, hypospadias, and incomplete fusion of the scrotal sac in males, and a spectrum of uterine and vaginal abnormalities along with urinary incontinence in females, which could prove essential in revealing new insights into their equivalent diseases in humans.

  4. Perinatal exposure of mice to the pesticide DDT impairs energy expenditure and metabolism in adult female offspring.

    Directory of Open Access Journals (Sweden)

    Michele La Merrill

    Full Text Available Dichlorodiphenyltrichloroethane (DDT has been used extensively to control malaria, typhus, body lice and bubonic plague worldwide, until countries began restricting its use in the 1970s. Its use in malaria control continues in some countries according to recommendation by the World Health Organization. Individuals exposed to elevated levels of DDT and its metabolite dichlorodiphenyldichloroethylene (DDE have an increased prevalence of diabetes and insulin resistance. Here we hypothesize that perinatal exposure to DDT disrupts metabolic programming leading to impaired metabolism in adult offspring. To test this, we administered DDT to C57BL/6J mice from gestational day 11.5 to postnatal day 5 and studied their metabolic phenotype at several ages up to nine months. Perinatal DDT exposure reduced core body temperature, impaired cold tolerance, decreased energy expenditure, and produced a transient early-life increase in body fat in female offspring. When challenged with a high fat diet for 12 weeks in adulthood, female offspring perinatally exposed to DDT developed glucose intolerance, hyperinsulinemia, dyslipidemia, and altered bile acid metabolism. Perinatal DDT exposure combined with high fat feeding in adulthood further impaired thermogenesis as evidenced by reductions in core temperature and in the expression of numerous RNA that promote thermogenesis and substrate utilization in the brown adipose tissue of adult female mice. These observations suggest that perinatal DDT exposure impairs thermogenesis and the metabolism of carbohydrates and lipids which may increase susceptibility to the metabolic syndrome in adult female offspring.

  5. Perinatal Exposure of Mice to the Pesticide DDT Impairs Energy Expenditure and Metabolism in Adult Female Offspring

    Science.gov (United States)

    La Merrill, Michele; Karey, Emma; Moshier, Erin; Lindtner, Claudia; La Frano, Michael R.; Newman, John W.; Buettner, Christoph

    2014-01-01

    Dichlorodiphenyltrichloroethane (DDT) has been used extensively to control malaria, typhus, body lice and bubonic plague worldwide, until countries began restricting its use in the 1970s. Its use in malaria control continues in some countries according to recommendation by the World Health Organization. Individuals exposed to elevated levels of DDT and its metabolite dichlorodiphenyldichloroethylene (DDE) have an increased prevalence of diabetes and insulin resistance. Here we hypothesize that perinatal exposure to DDT disrupts metabolic programming leading to impaired metabolism in adult offspring. To test this, we administered DDT to C57BL/6J mice from gestational day 11.5 to postnatal day 5 and studied their metabolic phenotype at several ages up to nine months. Perinatal DDT exposure reduced core body temperature, impaired cold tolerance, decreased energy expenditure, and produced a transient early-life increase in body fat in female offspring. When challenged with a high fat diet for 12 weeks in adulthood, female offspring perinatally exposed to DDT developed glucose intolerance, hyperinsulinemia, dyslipidemia, and altered bile acid metabolism. Perinatal DDT exposure combined with high fat feeding in adulthood further impaired thermogenesis as evidenced by reductions in core temperature and in the expression of numerous RNA that promote thermogenesis and substrate utilization in the brown adipose tissue of adult female mice. These observations suggest that perinatal DDT exposure impairs thermogenesis and the metabolism of carbohydrates and lipids which may increase susceptibility to the metabolic syndrome in adult female offspring. PMID:25076055

  6. Exercise training and antioxidant supplementation independently improve cognitive function in adult male and female GFAP-APOE mice

    OpenAIRE

    Kiran Chaudhari; Jessica M. Wong; Philip H. Vann; Nathalie Sumien

    2014-01-01

    Purpose: The purpose of this study was to determine if antioxidant supplementation, moderate exercise, and the combination of both treatments could ameliorate cognitive performance in adult mice and whether the apolipoprotein E (APOE) genotype as well as sex could influence the functional outcomes of the treatments. Methods: For a period of 16 weeks, separate groups of male and female mice expressing either the human APOE3 or APOE4 isoforms were fed either a control diet (NIH-31) or the co...

  7. Tumor necrosis factor-alpha during neonatal brain development affects anxiety- and depression-related behaviors in adult male and female mice.

    Science.gov (United States)

    Babri, Shirin; Doosti, Mohammad-Hossein; Salari, Ali-Akbar

    2014-03-15

    A nascent literature suggests that neonatal infection is a risk factor for the development of brain, behavior and hypothalamic-pituitary-adrenal axis which can affect anxiety- and depression-related behaviors in later life. It has been documented that neonatal infection raises the concentrations of tumor necrosis factor-alpha (TNF-α) in neonate rodents and such infections may result in neonatal brain injury, at least in part, through pro-inflammatory cytokines. In addition, previous studies have shown that TNF-α is involved in cellular differentiation, neurogenesis and programmed cell death during the development of the central nervous system. We investigated for the first time whether neonatal exposure to TNF-α can affect body weight, stress-induced corticosterone (COR), anxiety- and depression-related behaviors in adult mice. In the present study, neonatal mice were treated to recombinant mouse TNF-α (0.2, 0.4, 0.7 and 1 μg/kg) or saline on postnatal days 3 and 5, then adult male and female mice were exposed to different behavioral tests. The results indicated that neonatal TNF-α treatment reduced body weight in neonatal period in both sexes. In addition, this study presents findings indicating that high doses of TNF- increase stress-induced COR levels, anxiety- and depression-related behaviors in adult males, but increase levels of anxiety without significantly influencing depression in adult female mice [corrected]. Our findings suggest that TNF-α exposure during neonatal period can alter brain and behavior development in a dose and sex-dependent manner in mice. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Short-term social memory deficits in adult female mice exposed to tannery effluent and possible mechanism of action.

    Science.gov (United States)

    Estrela, Fernanda Neves; Rabelo, Letícia Martins; Vaz, Boniek Gontijo; de Oliveira Costa, Denys Ribeiro; Pereira, Igor; de Lima Rodrigues, Aline Sueli; Malafaia, Guilherme

    2017-10-01

    The accumulated organic residues in tannery-plant courtyards are an eating attraction to small rodents; however, the contact of these animals with these residues may change their social behavior. Thus, the aim of the present study is to investigate whether the exposure to tannery effluent (TE) can damage the social recognition memory of female Swiss mice, as well as to assess whether vitamin C supplementation could provide information about how TE constituents can damage these animals' memory. We have observed that resident females exposed to TE (without vitamin supplementation) did not explore the anogenital region, their body or chased intruding females for shorter time or with lower frequency during the retest session of the social recognition test, fact that indicates social recognition memory deficit in these animals. Such finding is reinforced by the confirmation that there was no change in the animals' olfactory function during the buried food test, or locomotor changes in females exposed to the pollutant. Since no behavioral change was observed in the females exposed to TE and treated with vitamin C (before or after the exposure), it is possible saying that these social cognitive impairments seem to be directly related to the imbalance between the cellular production of reactive oxygen species and the counteracting antioxidant mechanisms (oxidative stress) in female mice exposed to the pollutant (without vitamin supplementation). Therefore, the present study evidences that the direct contact with tannery effluent, even for a short period-of-time, may cause short-term social memory deficits in adult female Swiss mice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Neurokinin B is critical for normal timing of sexual maturation but dispensable for adult reproductive function in female mice.

    Science.gov (United States)

    True, Cadence; Nasrin Alam, Sayeda; Cox, Kimberly; Chan, Yee-Ming; Seminara, Stephanie B

    2015-04-01

    Humans carrying mutations in neurokinin B (NKB) or the NKB receptor fail to undergo puberty due to decreased secretion of GnRH. Despite this pubertal delay, many of these patients go on to achieve activation of their hypothalamic-pituitary-gonadal axis in adulthood, a phenomenon termed reversal, indicating that NKB signaling may play a more critical role for the timing of pubertal development than adult reproductive function. NKB receptor-deficient mice are hypogonadotropic but have no defects in the timing of sexual maturation. The current study has performed the first phenotypic evaluation of mice bearing mutations in Tac2, the gene encoding the NKB ligand, to determine whether they have impaired sexual development similar to their human counterparts. Male Tac2-/- mice showed no difference in the timing of sexual maturation or fertility compared with wild-type littermates and were fertile. In contrast, Tac2-/- females had profound delays in sexual maturation, with time to vaginal opening and first estrus occurring significantly later than controls, and initial abnormalities in estrous cycles. However, cycling recovered in adulthood and Tac2-/- females were fertile, although they produced fewer pups per litter. Thus, female Tac2-/- mice parallel humans harboring NKB pathway mutations, with delayed sexual maturation and activation of the reproductive cascade later in life. Moreover, direct comparison of NKB ligand and receptor-deficient females confirmed that only NKB ligand-deficient animals have delayed sexual maturation, suggesting that in the absence of the NKB receptor, NKB may regulate the timing of sexual maturation through other tachykinin receptors.

  10. Papain-induced experimental pulmonary emphysema in male and female mice.

    Science.gov (United States)

    Machado, Mariana Nascimento; Figueirôa, Silviane Fernandes da Silva; Mazzoli-Rocha, Flavia; Valença, Samuel dos Santos; Zin, Walter Araújo

    2014-08-15

    In papain-induced models of emphysema, despite the existing extensive description of the cellular and molecular aspects therein involved, sexual hormones may play a complex and still not fully understood role. Hence, we aimed at exploring the putative gender-related differences in lung mechanics, histology and oxidative stress in papain-exposed mice. Thirty adult BALB/c mice received intratracheally either saline (50 μL) or papain (10 U/50 μL saline) once a week for 2 weeks. In males papain increased lung resistive and viscoelastic/inhomogeneous pressures, static elastance, and viscoelastic component of elastance, while females showed higher static elastance and resistive pressure only. Both genders presented similar higher parenchymal cellularity and mean alveolar diameter, and less collagen-elastic fiber content and body weight gain than their respective controls. Increased functional residual capacity was more prominent in males. Female papain-treated mice were more susceptible to oxidative stress. Thus, male and female papain-exposed mice respond differently, which should be carefully considered to avoid confounding results. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Does open-field exposure during infancy influence open-field behavior of the same adult mice?

    OpenAIRE

    Vidal Gómez, José

    2013-01-01

    The goal of this report is to find out whether early exposure of mice to the open-field results in altered behavior of the same adult mice in the same open-field. Early exposure to the open-field was carried out between birth and weaning; two control groups were included: control 2 (mice exposed to a reduced dark space) and control 1 (mice left undisturbed). The (male and female) mice were of the Balb/c and C57Bl/6 strains. Adult C57Bl/6 female mice of the openfield and control 2 groups ambul...

  12. Prenatal Exposure to Unconventional Oil and Gas Operation Chemical Mixtures Altered Mammary Gland Development in Adult Female Mice.

    Science.gov (United States)

    Sapouckey, Sarah A; Kassotis, Christopher D; Nagel, Susan C; Vandenberg, Laura N

    2018-03-01

    Unconventional oil and gas (UOG) operations, which combine hydraulic fracturing (fracking) and directional drilling, involve the use of hundreds of chemicals, including many with endocrine-disrupting properties. Two previous studies examined mice exposed during early development to a 23-chemical mixture of UOG compounds (UOG-MIX) commonly used or produced in the process. Both male and female offspring exposed prenatally to one or more doses of UOG-MIX displayed alterations to endocrine organ function and serum hormone concentrations. We hypothesized that prenatal UOG-MIX exposure would similarly disrupt development of the mouse mammary gland. Female C57Bl/6 mice were exposed to ~3, ~30, ~ 300, or ~3000 μg/kg/d UOG-MIX from gestational day 11 to birth. Although no effects were observed on the mammary glands of these females before puberty, in early adulthood, females exposed to 300 or 3000 μg/kg/d UOG-MIX developed more dense mammary epithelial ducts; females exposed to 3 μg/kg/d UOG-MIX had an altered ratio of apoptosis to proliferation in the mammary epithelium. Furthermore, adult females from all UOG-MIX-treated groups developed intraductal hyperplasia that resembled terminal end buds (i.e., highly proliferative structures typically seen at puberty). These results suggest that the mammary gland is sensitive to mixtures of chemicals used in UOG production at exposure levels that are environmentally relevant. The effect of these findings on the long-term health of the mammary gland, including its lactational capacity and its risk of cancer, should be evaluated in future studies. Copyright © 2018 Endocrine Society.

  13. Exposure to chronic variable social stress during adolescence alters affect-related behaviors and adrenocortical activity in adult male and female inbred mice.

    Science.gov (United States)

    Caruso, Michael J; Kamens, Helen M; Cavigelli, Sonia A

    2017-09-01

    Rodent models provide valuable insight into mechanisms that underlie vulnerability to adverse effects of early-life challenges. Few studies have evaluated sex differences in anxiogenic or depressogenic effects of adolescent social stress in a rodent model. Furthermore, adolescent stress studies often use genetically heterogeneous outbred rodents which can lead to variable results. The current study evaluated the effects of adolescent social stress in male and female inbred (BALB/cJ) mice. Adolescent mice were exposed to repeat cycles of alternating social isolation and social novelty for 4 weeks. Adolescent social stress increased anxiety-related behaviors in both sexes and depression-related behavior in females. Locomotion/exploratory behavior was also decreased in both sexes by stress. Previously stressed adult mice produced less basal fecal corticosteroids than controls. Overall, the novel protocol induced sex-specific changes in anxiety- and depression-related behaviors and corticoid production in inbred mice. The chronic variable social stress protocol used here may be beneficial to systematically investigate sex-specific neurobiological mechanisms underlying adolescent stress vulnerability where genetic background can be controlled. © 2017 Wiley Periodicals, Inc.

  14. Social isolation during puberty affects female sexual behavior in mice

    Directory of Open Access Journals (Sweden)

    Jasmina eKercmar

    2014-09-01

    Full Text Available Exposure to stress during puberty can lead to long-term behavioral alterations in adult rodents coincident with sex steroid hormone-dependent brain remodeling and reorganization. Social isolation is a stress for social animals like mice, but little is known about the effects of such stress during adolescence on later reproductive behaviors. The present study examined sexual behavior of ovariectomized, estradiol and progesterone primed female mice that were individually housed from 25 days of age until testing at approximately 95 days, or individually housed from day 25 until day 60 (during puberty, followed by housing in social groups. Mice in these isolated groups were compared to females that were group housed throughout the experiment. Receptive sexual behaviors of females and behaviors of stimulus males were recorded. Females housed in social groups displayed greater levels of receptive behaviors in comparison to both socially isolated groups. Namely, social females had higher lordosis quotients and more often displayed stronger lordosis postures in comparison to isolated females. No differences between female groups were observed in stimulus male sexual behavior suggesting that female ’attractiveness’ was not affected by their social isolation. Females housed in social groups had fewer cells containing immunoreactive estrogen receptor (ER α in the anteroventral periventricular nucleus (AVPV and in the ventromedial nucleus of the hypothalamus (VMH than both isolated groups. These results suggest that isolation during adolescence affects female sexual behavior and re-socialization for one month in adulthood is insufficient to rescue lordosis behavior from the effects of social isolation during the pubertal period.

  15. Chronic nicotine differentially alters spontaneous recovery of contextual fear in male and female mice.

    Science.gov (United States)

    Tumolo, Jessica M; Kutlu, Munir Gunes; Gould, Thomas J

    2018-04-02

    Post-traumatic stress disorder (PTSD) is a devastating disorder with symptoms such as flashbacks, hyperarousal, and avoidance of reminders of the traumatic event. Exposure therapy, which attempts to extinguish fear responses, is a commonly used treatment for PTSD but relapse following successful exposure therapy is a frequent problem. In rodents, spontaneous recovery (SR), where extinguished fear responses resurface following extinction treatment, is used as a model of fear relapse. Previous studies from our lab showed that chronic nicotine impaired fear extinction and acute nicotine enhanced SR of contextual fear in adult male mice. In addition, we showed that acute nicotine's effects were specific to SR as acute nicotine did not affect recall of contextual fear conditioning in the absence of extinction. However, effects of chronic nicotine administration on SR are not known. Therefore, in the present study, we investigated if chronic nicotine administration altered SR or recall of contextual fear in adult male and female C57BL/6J mice. Our results showed that chronic nicotine significantly enhanced SR in female mice and significantly decreased SR in males. Chronic nicotine had no effect on recall of contextual fear in males or females. Female sham mice also had significantly less baseline SR than male sham mice. Overall, these results demonstrate sex differences in SR of fear memories and that chronic nicotine modulates these effects on SR but nicotine does not alter recall of contextual fear. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Adult neurobehavioral alterations in male and female mice following developmental exposure to paracetamol (acetaminophen): characterization of a critical period.

    Science.gov (United States)

    Philippot, Gaëtan; Gordh, Torsten; Fredriksson, Anders; Viberg, Henrik

    2017-10-01

    Paracetamol (acetaminophen) is a widely used non-prescription drug with analgesic and antipyretic properties. Among pregnant women and young children, paracetamol is one of the most frequently used drugs and is considered the first-choice treatment for pain and/or fever. Recent findings in both human and animal studies have shown associations between paracetamol intake during brain development and adverse behavioral outcomes later in life. The present study was undertaken to investigate if the induction of these effects depend on when the exposure occurs during a critical period of brain development and if male and female mice are equally affected. Mice of both sexes were exposed to two doses of paracetamol (30 + 30 mg kg -1 , 4 h apart) on postnatal days (PND) 3, 10 or 19. Spontaneous behavior, when introduced to a new home environment, was observed at the age of 2 months. We show that adverse effects on adult behavior and cognitive function occurred in both male and female mice exposed to paracetamol on PND 3 and 10, but not when exposed on PND 19. These neurodevelopmental time points in mice correspond to the beginning of the third trimester of pregnancy and the time around birth in humans, supporting existing human data. Considering that paracetamol is the first choice treatment for pain and/or fever during pregnancy and early life, these results may be of great importance for future research and, ultimately, for clinical practice. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Male mice song syntax depends on social contexts and influences female preferences

    Directory of Open Access Journals (Sweden)

    Jonathan eChabout

    2015-04-01

    Full Text Available In 2005 Holy & Guo advanced the idea that male mice produce ultrasonic vocalizations (USV with some features similar to courtship songs of songbirds. Since then, studies showed that male mice emit USV songs in different contexts (sexual and other and possess a multisyllabic repertoire. Debate still exists for and against plasticity in their vocalizations. But the use of a multisyllabic repertoire can increase potential flexibility and information, in how elements are organized and recombined, namely syntax. In many bird species, modulating song syntax has ethological relevance for sexual behavior and mate preferences. In this study we exposed adult male mice to different social contexts and developed a new approach of analyzing their USVs based on songbird syntax analysis. We found that male mice modify their syntax, including specific sequences, length of sequence, repertoire composition, and spectral features, according to stimulus and social context. Males emit longer and simpler syllables and sequences when singing to females, but more complex syllables and sequences in response to fresh female urine. Playback experiments show that the females prefer the complex songs over the simpler ones. We propose the complex songs are to lure females in, whereas the directed simpler sequences are used for direct courtship. These results suggest that although mice have a much more limited ability of song modification, they could still be used as animal models for understanding some vocal communication features that songbirds are used for.

  18. The Satellite Cell in Male and Female, Developing and Adult Mouse Muscle: Distinct Stem Cells for Growth and Regeneration

    Science.gov (United States)

    Neal, Alice; Boldrin, Luisa; Morgan, Jennifer Elizabeth

    2012-01-01

    Satellite cells are myogenic cells found between the basal lamina and the sarcolemma of the muscle fibre. Satellite cells are the source of new myofibres; as such, satellite cell transplantation holds promise as a treatment for muscular dystrophies. We have investigated age and sex differences between mouse satellite cells in vitro and assessed the importance of these factors as mediators of donor cell engraftment in an in vivo model of satellite cell transplantation. We found that satellite cell numbers are increased in growing compared to adult and in male compared to female adult mice. We saw no difference in the expression of the myogenic regulatory factors between male and female mice, but distinct profiles were observed according to developmental stage. We show that, in contrast to adult mice, the majority of satellite cells from two week old mice are proliferating to facilitate myofibre growth; however a small proportion of these cells are quiescent and not contributing to this growth programme. Despite observed changes in satellite cell populations, there is no difference in engraftment efficiency either between satellite cells derived from adult or pre-weaned donor mice, male or female donor cells, or between male and female host muscle environments. We suggest there exist two distinct satellite cell populations: one for muscle growth and maintenance and one for muscle regeneration. PMID:22662253

  19. Crybb2 deficiency impairs fertility in female mice

    International Nuclear Information System (INIS)

    Gao, Qian; Sun, Li-Li; Xiang, Fen-Fen; Gao, Li; Jia, Yin; Zhang, Jian-Rong; Tao, Hai-Bo; Zhang, Jun-Jie; Li, Wen-Jie

    2014-01-01

    Highlights: • Crybb2 deletion impaired female fertility. • Crybb2 deletion dramatically affected the production of reproduction-related hormones and hormone response. • Crybb2 deletion impaired follicular development and inhibited the proliferation of granulosa cells. • Crybb2 deletion promoted follicular atresia and apoptosis in granulosa cells. - Abstract: Beta-B2-crystallin (CRYBB2), encoded by Crybb2 gene, is a major protein in the mammalian eye lens that plays an important role in maintaining the transparency of the ocular lens. However, CRYBB2 also plays important roles in many extra-lenticular tissues and organs such as the retina, brain and testis. Our previous studies demonstrated that male Crybb2 deficient (Crybb2 −/− ) mice have reduced fertility compared with wild-type (WT) mice, while female Crybb2 −/− mice exhibited reduced ovary weights and shorter estrous cycle percentages. Here we specifically investigated the role of CRYBB2 in the female reproductive system. Our studies revealed that ovaries from female Crybb2 −/− mice exhibited significantly reduced numbers of primordial, secondary and pre-ovulatory follicles when compared with WT mice, while the rate of atretic follicles was also increased. Additionally, fewer eggs were collected from the oviduct of Crybb2 −/− female mice after superovulation. Estrogen levels were higher in the metestrus and diestrus cycles of female Crybb2 −/− mice, while progesterone levels were lower in diestrus cycles. Furthermore, the expression of survival and cell cycle genes, Bcl-2, Cdk4 and Ccnd2, were significantly decreased in granulosa cells isolated from female Crybb2 −/− mice, consistent with the predominant expression of CRYBB2 in ovarian granulosa cells. Our results reveal a critical role for CRYBB2 in female fertility and specific effects on the proliferation and survival status of ovarian granulosa cells

  20. Crybb2 deficiency impairs fertility in female mice

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Qian [Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Sun, Li-Li [Aviation Medical Evaluation and Training Center of Airforce in Dalian, Dalian, Liaoning Province 116013 (China); Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Xiang, Fen-Fen [Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062 (China); Gao, Li [Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Jia, Yin; Zhang, Jian-Rong; Tao, Hai-Bo [Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Zhang, Jun-Jie, E-mail: zhangjj910@163.com [Department of Obstetrics and Gynecology, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Li, Wen-Jie, E-mail: wenjieli@pku.org.cn [Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China)

    2014-10-10

    Highlights: • Crybb2 deletion impaired female fertility. • Crybb2 deletion dramatically affected the production of reproduction-related hormones and hormone response. • Crybb2 deletion impaired follicular development and inhibited the proliferation of granulosa cells. • Crybb2 deletion promoted follicular atresia and apoptosis in granulosa cells. - Abstract: Beta-B2-crystallin (CRYBB2), encoded by Crybb2 gene, is a major protein in the mammalian eye lens that plays an important role in maintaining the transparency of the ocular lens. However, CRYBB2 also plays important roles in many extra-lenticular tissues and organs such as the retina, brain and testis. Our previous studies demonstrated that male Crybb2 deficient (Crybb2{sup −/−}) mice have reduced fertility compared with wild-type (WT) mice, while female Crybb2{sup −/−} mice exhibited reduced ovary weights and shorter estrous cycle percentages. Here we specifically investigated the role of CRYBB2 in the female reproductive system. Our studies revealed that ovaries from female Crybb2{sup −/−} mice exhibited significantly reduced numbers of primordial, secondary and pre-ovulatory follicles when compared with WT mice, while the rate of atretic follicles was also increased. Additionally, fewer eggs were collected from the oviduct of Crybb2{sup −/−} female mice after superovulation. Estrogen levels were higher in the metestrus and diestrus cycles of female Crybb2{sup −/−} mice, while progesterone levels were lower in diestrus cycles. Furthermore, the expression of survival and cell cycle genes, Bcl-2, Cdk4 and Ccnd2, were significantly decreased in granulosa cells isolated from female Crybb2{sup −/−} mice, consistent with the predominant expression of CRYBB2 in ovarian granulosa cells. Our results reveal a critical role for CRYBB2 in female fertility and specific effects on the proliferation and survival status of ovarian granulosa cells.

  1. Testosterone and Dihydrotestosterone Differentially Improve Cognition in Aged Female Mice

    Science.gov (United States)

    Benice, Ted S.; Raber, Jacob

    2009-01-01

    Compared with age-matched male mice, female mice experience a more severe age-related cognitive decline (ACD). Since androgens are less abundant in aged female mice compared with aged male mice, androgen supplementation may enhance cognition in aged female mice. To test this, we assessed behavioral performance on a variety of tasks in 22- to…

  2. Maternal exposure to di(2-ethylhexyl)phthalate (DEHP) promotes the transgenerational inheritance of adult-onset reproductive dysfunctions through the female germline in mice

    International Nuclear Information System (INIS)

    Pocar, Paola; Fiandanese, Nadia; Berrini, Anna; Secchi, Camillo; Borromeo, Vitaliano

    2017-01-01

    Endocrine disruptors (EDs) are compounds known to promote transgenerational inheritance of adult-onset disease in subsequent generations after maternal exposure during fetal gonadal development. This study was designed to establish whether gestational and lactational exposure to the plasticizer di(2-ethylhexyl)phthalate (DEHP) at environmental doses promotes transgenerational effects on reproductive health in female offspring, as adults, over three generations in the mouse. Gestating F0 mouse dams were exposed to 0, 0.05, 5 mg/kg/day DEHP in the diet from gestational day 0.5 until the end of lactation. The incidence of adult-onset disease in reproductive function was recorded in F1, F2 and F3 female offspring. In adult F1 females, DEHP exposure induced reproductive adverse effects with: i) altered ovarian follicular dynamics with reduced primordial follicular reserve and a larger growing pre-antral follicle population, suggesting accelerated follicular recruitment; ii) reduced oocyte quality and embryonic developmental competence; iii) dysregulation of the expression profile of a panel of selected ovarian and pre-implantation embryonic genes. F2 and F3 female offspring displayed the same altered reproductive morphological phenotype and gene expression profiles as F1, thus showing transgenerational transmission of reproductive adverse effects along the female lineage. These findings indicate that in mice exposure to DEHP at doses relevant to human exposure during gonadal sex determination significantly perturbs the reproductive indices of female adult offspring and subsequent generations. Evidence of transgenerational transmission has important implications for the reproductive health and fertility of animals and humans, significantly increasing the potential biohazards of this toxicant. - Highlights: • Maternal exposure to DEHP transgenerationally affects female reproductive health. • DEHP reduced ovarian follicular reserve up to the third generation. • DEHP

  3. Maternal exposure to di(2-ethylhexyl)phthalate (DEHP) promotes the transgenerational inheritance of adult-onset reproductive dysfunctions through the female germline in mice

    Energy Technology Data Exchange (ETDEWEB)

    Pocar, Paola, E-mail: paola.pocar@unimi.it; Fiandanese, Nadia; Berrini, Anna; Secchi, Camillo; Borromeo, Vitaliano

    2017-05-01

    Endocrine disruptors (EDs) are compounds known to promote transgenerational inheritance of adult-onset disease in subsequent generations after maternal exposure during fetal gonadal development. This study was designed to establish whether gestational and lactational exposure to the plasticizer di(2-ethylhexyl)phthalate (DEHP) at environmental doses promotes transgenerational effects on reproductive health in female offspring, as adults, over three generations in the mouse. Gestating F0 mouse dams were exposed to 0, 0.05, 5 mg/kg/day DEHP in the diet from gestational day 0.5 until the end of lactation. The incidence of adult-onset disease in reproductive function was recorded in F1, F2 and F3 female offspring. In adult F1 females, DEHP exposure induced reproductive adverse effects with: i) altered ovarian follicular dynamics with reduced primordial follicular reserve and a larger growing pre-antral follicle population, suggesting accelerated follicular recruitment; ii) reduced oocyte quality and embryonic developmental competence; iii) dysregulation of the expression profile of a panel of selected ovarian and pre-implantation embryonic genes. F2 and F3 female offspring displayed the same altered reproductive morphological phenotype and gene expression profiles as F1, thus showing transgenerational transmission of reproductive adverse effects along the female lineage. These findings indicate that in mice exposure to DEHP at doses relevant to human exposure during gonadal sex determination significantly perturbs the reproductive indices of female adult offspring and subsequent generations. Evidence of transgenerational transmission has important implications for the reproductive health and fertility of animals and humans, significantly increasing the potential biohazards of this toxicant. - Highlights: • Maternal exposure to DEHP transgenerationally affects female reproductive health. • DEHP reduced ovarian follicular reserve up to the third generation. • DEHP

  4. Male mice emit distinct ultrasonic vocalizations when the female leaves the social interaction arena

    Directory of Open Access Journals (Sweden)

    Mu eYang

    2013-11-01

    Full Text Available Adult male mice emit large number of complex ultrasonic vocalizations (USVs when interacting with adult females. Call numbers and call categories differ greatly among inbred mouse strains. Little is known about USV emissions when the social partner departs. To investigate whether call repertoires and call rates are different when the male is interacting with a female and after the removal of the female, we designed a novel male-female social interaction test in which vocalizations were recorded across three phases. During phase 1, the male subject freely interacts with an unfamiliar estrus female mouse in a clean cage for 5 minutes. During phase 2, the female is removed while the male remains in the cage for 3 minutes. During phase 3, the same female is returned to the cage to rejoin the male subject mouse for 3 minutes. C57BL/6J (B6, FVB.129P2-Pde6b(+ Tyr(c-ch/Ant (FVB, and BTBR T+ tf/J (BTBR male subject mice were tested in this paradigm. All three strains emitted USVs during the absence of the estrous female, although at lower rates. When the female was reintroduced in phase 3, numbers of USVs were similar to the initial introductory phase 1. Strain comparisons indicated fewer calls in pairs of BTBR males and stimulus females than in pairs of B6 males and stimulus females and pairs of FVB males and stimulus females. In the absence of the female, all FVB males vocalized, while only one third of B6 males and one third of BTBR males vocalized. In all three strains, changes in call repertoires were detected after the female was removed. Call categories reverted to the phase 1 pattern when the female was returned in phase 3. Present findings indicate that males of commonly used inbred strains emit USVs when a partner female leaves the testing arena, suggesting that removing a salient social stimulus may be a unique approach to elicit USVs from mice. Our three-phase paradigm may also be useful for studying attention to social cues, and qualitative

  5. Female mice lacking cholecystokinin 1 receptors have compromised neurogenesis, and fewer dopaminergic cells in the olfactory bulb

    Directory of Open Access Journals (Sweden)

    Yi eSui

    2013-03-01

    Full Text Available Neurogenesis in the adult rodent brain is largely restricted to the subependymal zone (SVZ of the lateral ventricle and subgranular zone (SGZ of the dentate gyrus (DG. We examined whether cholecystokinin (CCK through actions mediated by CCK1 receptors (CCK1R is involved in regulating neurogenesis. Proliferating cells in the SVZ, measured by 5-bromo-2-deoxyuridine (BrdU injected 2 hours prior to death or by immunoreactivity against Ki67, were reduced by 37% and 42%, respectively, in female (but not male mice lacking CCK1Rs (CCK1R-/- compared to wild-type (WT. Generation of neuroblasts in the SVZ and rostral migratory stream was also affected, since the number of doublecortin (DCX-immunoreactive (ir neuroblasts in these regions decreased by 29%. In the SGZ of female CCK1R-/- mice, BrdU-positive (+ and Ki67-ir cells were reduced by 38% and 56%, respectively, while DCX-ir neuroblasts were down 80%. Subsequently, the effect of reduced SVZ/SGZ proliferation on the generation and survival of mature adult-born cells in female CCK1R-/- mice was examined. In the OB granule cell layer (GCL, the number of neuronal nuclei (NeuN-ir and calretinin-ir cells was stable compared to WT, and 42 days after BrdU injections, the number of BrdU+ cells co-expressing GABA- or NeuN-like immunoreactivity (LI was similar. Compared to WT, the granule cell layer of the DG in female CCK1R-/- mice had a similar number of calbindin-ir cells and BrdU+ cells co-expressing calbindin-LI 42 days after BrdU injections. However, the OB glomerular layer (GL of CCK1R-/- female mice had 11% fewer NeuN-ir cells, 23% less TH-ir cells, and a 38% and 29% reduction in BrdU+ cells that co-expressed TH-LI or GABA-LI, respectively. We conclude that CCK, via CCK1Rs, is involved in regulating the generation of proliferating cells and neuroblasts in the adult female mouse brain, and mechanisms are in place to maintain steady neuronal populations in the OB and DG when the rate of proliferation is

  6. Perinatal DDT Exposure Induces Hypertension and Cardiac Hypertrophy in Adult Mice.

    Science.gov (United States)

    La Merrill, Michele A; Sethi, Sunjay; Benard, Ludovic; Moshier, Erin; Haraldsson, Borje; Buettner, Christoph

    2016-11-01

    Dichlorodiphenyltrichloroethane (DDT) was used extensively to control malaria, typhus, body lice, and bubonic plague worldwide, until countries began restricting its use in the 1970s. However, the use of DDT to control vector-borne diseases continues in developing countries. Prenatal DDT exposure is associated with elevated blood pressure in humans. We hypothesized that perinatal DDT exposure causes hypertension in adult mice. DDT was administered to C57BL/6J dams from gestational day 11.5 to postnatal day 5. Blood pressure (BP) and myocardial wall thickness were measured in male and female adult offspring. Adult mice were treated with an angiotensin converting enzyme (ACE) inhibitor, captopril, to evaluate sensitivity to amelioration of DDT-associated hypertension by ACE inhibition. We further assessed the influence of DDT exposure on the expression of mRNAs that regulate BP through renal ion transport. Adult mice perinatally exposed to DDT exhibited chronically increased systolic BP, increased myocardial wall thickness, and elevated expression of mRNAs of several renal ion transporters. Captopril completely reversed hypertension in mice perinatally exposed to DDT. These data demonstrate that perinatal exposure to DDT causes hypertension and cardiac hypertrophy in adult offspring. A key mechanism underpinning this hypertension is an overactivated renin angiotensin system because ACE inhibition reverses the hypertension induced by perinatal DDT exposure. Citation: La Merrill M, Sethi S, Benard L, Moshier E, Haraldsson B, Buettner C. 2016. Perinatal DDT exposure induces hypertension and cardiac hypertrophy in adult mice. Environ Health Perspect 124:1722-1727; http://dx.doi.org/10.1289/EHP164.

  7. Effects of Early-Life Stress on Social and Anxiety-Like Behaviors in Adult Mice: Sex-Specific Effects

    Directory of Open Access Journals (Sweden)

    Natalya P. Bondar

    2018-01-01

    Full Text Available Stressful events in an early postnatal period have critical implications for the individual’s life and can increase later risk for psychiatric disorders. The aim of this study was to investigate the influence of early-life stress on the social behavior of adult male and female mice. C57Bl/6 mice were exposed to maternal separation (MS, 3 h once a day or handling (HD, 15 min once a day on postnatal day 2 through 14. Adult male and female mice were tested for social behavior in the social interaction test and for individual behavior in the plus-maze and open-field tests. Female mice exposed to maternal separation had increased social behavior and increased anxiety. MS male mice had no changes in social behavior but had significantly disrupted individual behavior, including locomotor and exploratory activity. Handling had positive effects on social behavior in males and females and decreased anxiety in males. Our results support the hypothesis that brief separation of pups from their mothers (handling, which can be considered as moderate stress, may result in future positive changes in behavior. Maternal separation has deleterious effects on individual behavior and significant sex-specific effects on social behavior.

  8. Oestrogen-deficient female aromatase knockout (ArKO) mice exhibit depressive-like symptomatology.

    Science.gov (United States)

    Dalla, C; Antoniou, K; Papadopoulou-Daifoti, Z; Balthazart, J; Bakker, J

    2004-07-01

    We recently found that female aromatase knockout (ArKO) mice that are deficient in oestradiol due to a targeted mutation in the aromatase gene show deficits in sexual behaviour that cannot be corrected by adult treatment with oestrogens. We determined here whether these impairments are associated with changes in general levels of activity, anxiety or 'depressive-like' symptomatology due to chronic oestrogen deficiency. We also compared the neurochemical profile of ArKO and wild-type (WT) females, as oestrogens have been shown to modulate dopaminergic, serotonergic and noradrenergic brain activities. ArKO females did not differ from WT in spontaneous motor activity, exploration or anxiety. These findings are in line with the absence of major neurochemical alterations in hypothalamus, prefrontal cortex or striatum, which are involved in the expression of these behaviours. By contrast, ArKO females displayed decreased active behaviours, such as struggling and swimming, and increased passive behaviours, such as floating, in repeated sessions of the forced swim test, indicating that these females exhibit 'depressive-like' symptoms. Adult treatment with oestradiol did not reverse the behavioural deficits observed in the forced swim test, suggesting that they may be due to the absence of oestradiol during development. Accordingly, an increased serotonergic activity was observed in the hippocampus of ArKO females compared with WT, which was also not reversed by adult oestradiol treatment. The possible organizational role of oestradiol on the hippocampal serotonergic system and the 'depressive-like' profile of ArKO females provide new insights into the pathophysiology of depression and the increased vulnerability of women to depression.

  9. Association between Diastolic Dysfunction with Inflammation and Oxidative Stress in Females ob/ob Mice

    Science.gov (United States)

    Sartori, Michelle; Conti, Filipe F.; Dias, Danielle da Silva; dos Santos, Fernando; Machi, Jacqueline F.; Palomino, Zaira; Casarini, Dulce E.; Rodrigues, Bruno; De Angelis, Kátia; Irigoyen, Maria-Claudia

    2017-01-01

    Objective: To evaluate autonomic and cardiovascular function, as well as inflammatory and oxidative stress markers in ob/ob female mice. Methods: Metabolic parameters, cardiac function, arterial pressure (AP), autonomic, hormonal, inflammatory, and oxidative stress markers were evaluated in 12-weeks female wild-type (WT group) and ob/ob mice (OB group). Results: OB animals showed increased body weight, blood glucose, and triglyceride levels, along with glucose intolerance, when compared to WT animals. Ejection fraction (EF) and AP were similar between groups; however, the OB group presented diastolic dysfunction, as well as an impairment on myocardial performance index. Moreover, the OB group exhibited important autonomic dysfunction and baroreflex sensitivity impairment, when compared to WT group. OB group showed increased Angiotensin II levels in heart and renal tissues; decreased adiponectin and increased inflammatory markers in adipose tissue and spleen. Additionally, OB mice presented a higher damage to proteins and lipoperoxidation and lower activity of antioxidant enzymes in kidney and heart. Correlations were found between autonomic dysfunction with angiotensin II and inflammatory mediators, as well as between inflammation and oxidative stress. Conclusions: Our results showed that female adult ob/ob mice presented discrete diastolic dysfunction accompanied by autonomic disorder, which is associated with inflammation and oxidative stress in these animals. PMID:28878683

  10. Association between Diastolic Dysfunction with Inflammation and Oxidative Stress in Females ob/ob Mice

    Directory of Open Access Journals (Sweden)

    Michelle Sartori

    2017-08-01

    Full Text Available Objective: To evaluate autonomic and cardiovascular function, as well as inflammatory and oxidative stress markers in ob/ob female mice.Methods: Metabolic parameters, cardiac function, arterial pressure (AP, autonomic, hormonal, inflammatory, and oxidative stress markers were evaluated in 12-weeks female wild-type (WT group and ob/ob mice (OB group.Results: OB animals showed increased body weight, blood glucose, and triglyceride levels, along with glucose intolerance, when compared to WT animals. Ejection fraction (EF and AP were similar between groups; however, the OB group presented diastolic dysfunction, as well as an impairment on myocardial performance index. Moreover, the OB group exhibited important autonomic dysfunction and baroreflex sensitivity impairment, when compared to WT group. OB group showed increased Angiotensin II levels in heart and renal tissues; decreased adiponectin and increased inflammatory markers in adipose tissue and spleen. Additionally, OB mice presented a higher damage to proteins and lipoperoxidation and lower activity of antioxidant enzymes in kidney and heart. Correlations were found between autonomic dysfunction with angiotensin II and inflammatory mediators, as well as between inflammation and oxidative stress.Conclusions: Our results showed that female adult ob/ob mice presented discrete diastolic dysfunction accompanied by autonomic disorder, which is associated with inflammation and oxidative stress in these animals.

  11. Reduced anxiety-like behavior and altered hippocampal morphology in female p75NTR exon IV-/- mice.

    Directory of Open Access Journals (Sweden)

    Zoe ePuschban

    2016-06-01

    Full Text Available The presence of the neurotrophin receptor p75NTR in adult basal forebrain cholinergic neurons, precursor cells in the subventricular cell layer and the subgranular cell layer of the hippocampus has been linked to alterations in learning as well as anxiety- and depression- related behaviors. In contrast to previous studies performed in a p75NTR exonIII-/- model still expressing the short isoform of the p75NTR, we focused on locomotor and anxiety–associated behavior in p75NTR exonIV-/- mice lacking both p75NTR isoforms. Comparing p75NTR exonIV-/- and wildtype mice for both male and female animals showed an anxiolytic-like behavior as evidenced by increased central activities in the open field paradigm and flex field activity system as well as higher numbers of open arm entries in the elevated plus maze test in female p75NTR knockout mice.Morphometrical analyses of dorsal and ventral hippocampus revealed a reduction of width of the dentate gyrus and the granular cell layer in the dorsal but not ventral hippocampus in male and female p75NTR exonIV -/- mice. We conclude that germ-line deletion of p75NTR seems to differentially affect morphometry of dorsal and ventral dentate gyrus and that p75NTR may play a role in anxiety-like behavior, specifically in female mice.

  12. Sex-specific positive and negative consequences of avoidance training during childhood on adult active avoidance learning in mice

    Directory of Open Access Journals (Sweden)

    Almuth eSpröwitz

    2013-10-01

    Full Text Available In humans and animals cognitive training during childhood plays an important role in shaping neural circuits and thereby determines learning capacity later in life. Using a negative feedback learning paradigm, the two-way active avoidance (TWA learning, we aimed to investigate in mice (i the age-dependency of TWA learning, (ii the consequences of pretraining in childhood on adult learning capacity and (iii the impact of sex on the learning paradigm in mice. Taken together, we show here for the first time that the beneficial or detrimental outcome of pretraining in childhood depends on the age during which TWA training is encountered, indicating that different, age-dependent long-term memory traces might be formed, which are recruited during adult TWA training and thereby either facilitate or impair adult TWA learning. While pretraining during infancy results in learning impairment in adulthood, pretraining in late adolescence improved avoidance learning.The experiments revealed a clear sex difference in the group of late-adolescent mice: female mice showed better avoidance learning during late adolescence compared to males, and the beneficial impact of late-adolescent pretraining on adult learning was more pronounced in females compared to males.

  13. Exposure to Alumina Nanoparticles in Female Mice During Pregnancy Induces Neurodevelopmental Toxicity in the Offspring.

    Science.gov (United States)

    Zhang, Qinli; Ding, Yong; He, Kaihong; Li, Huan; Gao, Fuping; Moehling, Taylor J; Wu, Xiaohong; Duncan, Jeremy; Niu, Qiao

    2018-01-01

    Alumina nanoparticles (AlNP) have been shown to accumulate in organs and penetrate biological barriers which lead to toxic effects in many organ systems. However, it is not known whether AlNP exposure to female mice during pregnancy can affect the development of the central nervous system or induce neurodevelopmental toxicity in the offspring. The present study aims to examine the effect of AlNP on neurodevelopment and associated underlying mechanism. ICR strain adult female mice were randomly divided into four groups, which were treated with normal saline (control), 10 μm particle size of alumina (bulk-Al), and 50 and 13 nm AlNP during entire pregnancy period. Aluminum contents in the hippocampus of newborns were measured and neurodevelopmental behaviors were tracked in the offspring from birth to 1 month of age. Furthermore, oxidative stress and neurotransmitter levels were measured in the cerebral cortex of the adolescents. Our results showed that aluminum contents in the hippocampus of newborns in AlNP-treated groups were significantly higher than those in bulk-Al and controls. Moreover, the offspring delivered by AlNP-treated female mice displayed stunted neurodevelopmental behaviors. Finally, the offspring of AlNP-treated mice demonstrated significantly increased anxiety-like behavior with impaired learning and memory performance at 1 month of age. The underlying mechanism could be related to increased oxidative stress and decreased neurotransmitter levels in the cerebral cortex. We therefore conclude that AlNP exposure of female mice during pregnancy can induce neurodevelopmental toxicity in offspring.

  14. Developmental androgen excess programs sympathetic tone and adipose tissue dysfunction and predisposes to a cardiometabolic syndrome in female mice.

    Science.gov (United States)

    Nohara, Kazunari; Waraich, Rizwana S; Liu, Suhuan; Ferron, Mathieu; Waget, Aurélie; Meyers, Matthew S; Karsenty, Gérard; Burcelin, Rémy; Mauvais-Jarvis, Franck

    2013-06-15

    Among women, the polycystic ovarian syndrome (PCOS) is considered a form of metabolic syndrome with reproductive abnormalities. Women with PCOS show increased sympathetic tone, visceral adiposity with enlarged adipocytes, hypoadiponectinemia, insulin resistance, glucose intolerance, increased inactive osteocalcin, and hypertension. Excess fetal exposure to androgens has been hypothesized to play a role in the pathogenesis of PCOS. Previously, we showed that neonatal exposure to the androgen testosterone (NT) programs leptin resistance in adult female mice. Here, we studied the impact of NT on lean and adipose tissues, sympathetic tone in cardiometabolic tissues, and the development of metabolic dysfunction in mice. Neonatally androgenized adult female mice (NTF) displayed masculinization of lean tissues with increased cardiac and skeletal muscle as well as kidney masses. NTF mice showed increased and dysfunctional white adipose tissue with increased sympathetic tone in both visceral and subcutaneous fat as well as increased number of enlarged and insulin-resistant adipocytes that displayed altered expression of developmental genes and hypoadiponectinemia. NTF exhibited dysfunctional brown adipose tissue with increased mass and decreased energy expenditure. They also displayed decreased undercarboxylated and active osteocalcin and were predisposed to obesity during chronic androgen excess. NTF showed increased renal sympathetic tone associated with increased blood pressure, and they developed glucose intolerance and insulin resistance. Thus, developmental exposure to testosterone in female mice programs features of cardiometabolic dysfunction, as can be observed in women with PCOS, including increased sympathetic tone, visceral adiposity, insulin resistance, prediabetes, and hypertension.

  15. The effects of serotonin1A receptor on female mice body weight and food intake are associated with the differential expression of hypothalamic neuropeptides and the GABAA receptor.

    Science.gov (United States)

    Butt, Isma; Hong, Andrew; Di, Jing; Aracena, Sonia; Banerjee, Probal; Shen, Chang-Hui

    2014-10-01

    Both common eating disorders anorexia nervosa and bulimia nervosa are characteristically diseases of women. To characterize the role of the 5-HT1A receptor (5-HT1A-R) in these eating disorders in females, we investigated the effect of saline or 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) treatment on feeding behavior and body weight in adult WT female mice and in adult 5-HT1A-R knockout (KO) female mice. Our results showed that KO female mice have lower food intake and body weight than WT female mice. Administration of 8-OH-DPAT decreased food intake but not body weight in WT female mice. Furthermore, qRT-PCR was employed to analyze the expression levels of neuropeptides, γ-aminobutyric acid A receptor subunit β (GABAA β subunits) and glutamic acid decarboxylase in the hypothalamic area. The results showed the difference in food intake between WT and KO mice was accompanied by differential expression of POMC, CART and GABAA β2, and the difference in body weight between WT and KO mice was associated with significantly different expression levels of CART and GABAA β2. As such, our data provide new insight into the role of 5-HT1A-R in both feeding behavior and the associated expression of neuropeptides and the GABAA receptor. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. 17ß-Estradiol Regulates Histone Alterations Associated with Memory Consolidation and Increases "Bdnf" Promoter Acetylation in Middle-Aged Female Mice

    Science.gov (United States)

    Fortress, Ashley M.; Kim, Jaekyoon; Poole, Rachel L.; Gould, Thomas J.; Frick, Karyn M.

    2014-01-01

    Histone acetylation is essential for hippocampal memory formation in young adult rodents. Although dysfunctional histone acetylation has been associated with age-related memory decline in male rodents, little is known about whether histone acetylation is altered by aging in female rodents. In young female mice, the ability of 17ß-estradiol…

  17. Perinatal programming of depressive-like behavior by inflammation in adult offspring mice whose mothers were fed polluted eels: Gender selective effects.

    Science.gov (United States)

    Soualeh, Nidhal; Dridi, Imen; Eppe, Gauthier; Némos, Christophe; Soulimani, Rachid; Bouayed, Jaouad

    2017-07-01

    Several lines of evidence indicate that early-life inflammation may predispose to mental illness, including depression, in later-life. We investigated the impact of perinatal exposure to polluted eels on neonatal, postnatal, and adult brain inflammation, and on the resignation behavior of male and female adult offspring mice. The effects of maternal standard diet (laboratory food) were compared to the same diet enriched with low, intermediate, or highly polluted eels. Brain inflammatory markers including cytokines were assessed in offspring mice on the day of birth (i.e., on the postnatal day-PND 1), upon weaning (PND 21) and at adulthood (PND 100). Plasma myeloperoxidase and corticosterone levels were evaluated at PND 100. Immobility behavior of offspring was assessed in adulthood (i.e., at PNDs 95-100), using the tail suspension and forced swimming tests. Chronic brain inflammation was found in male and female offspring mice compared to controls, as assessed at PNDs 1, 21, and 100. The level of myeloperoxidase was found to be significantly higher in both adult males and females vs. control offspring. However, high corticosterone levels were only found in male offspring mice that were perinatally exposed to eels, suggesting a gender-selective dysregulation of the adult hypothalamic-pituitaryadrenal (HPA) axis. Gender-specific differences were also detected in adulthood in regard to offspring resignation behavior. Thus, compared to controls, males, but not females, whose mothers were fed eels during pregnancy and lactation exhibited a depressive-like behavior in adult age in both behavioral models of depression. Depressive symptoms were more pronounced in male mice perinatally exposed to either intermediate or highly polluted eels than those exposed to only lowly polluted eels. Our results indicate that early-life inflammatory insult is a plausible causative factor that induces the depressive phenotype exhibited by male adult offspring mice, most likely through a

  18. DEHP exposure in utero disturbs sex determination and is potentially linked with precocious puberty in female mice

    International Nuclear Information System (INIS)

    Wang, Yongan; Yang, Qing; Liu, Wei; Yu, Mingxi; Zhang, Zhou; Cui, Xiaoyu

    2016-01-01

    Human's ubiquitous exposure to di (2-ethylhexyl) phthalate (DEHP) is thought to be associated with female reproductive toxicity. Previous studies found that DEHP inhibited follicle growth and decreased estradiol levels in adult female mice. However, limited information is available on the link between in utero DEHP exposure and ovarian development in female mouse offspring. The present study evaluates the disturbances in regulatory genes involved in female sex determination and the ovarian outcomes in fetal and postnatal female mice treated with in utero DEHP exposure. Pregnant mice were exposed to DEHP by gavage, with the dosage regime beginning at human relevant exposure levels. After in utero DEHP exposure, increased follicular atresia was observed in the female pups at postnatal days (PND) 21. Foxl2 expression was significantly upregulated, and Fst was significantly downregulated by DEHP above 2 mg/kg/d at PND 1 and 21. This suggests that lesion of granulosa cell differentiation and disturbance of follicle development in postnatal female mice. The expression of Cyp11a1 and Star were significantly downregulated by in utero DEHP exposure, indicating effects on estradiol biosynthesis. The female sex determination pathway was disturbed in fetus by DEHP at 2 mg/kg/d and above during the critical time window of sex determination causing significant upregulation of Foxl2, Wnt4, β-catenin and Fst. Furthermore, the increased expression of Wnt4 was supported by whole-mount in situ hybridization (WISH). These results suggest a possible association between in utero DEHP exposure and precocious puberty in the postnatal life of mice offspring, where disturbance of the sex determination regulating pathway acted as an important mechanism. - Highlights: • Maternal exposure to di (2-ethylhexyl) phthalate disturbs fetus sex determination. • DEHP upregulated Foxl2 expression potentially disturbs postnatal granulosa cell differentiation. • DEHP accelerated medulla

  19. DEHP exposure in utero disturbs sex determination and is potentially linked with precocious puberty in female mice

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yongan [Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024 (China); Yang, Qing [School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning 116024 (China); Liu, Wei, E-mail: liu_wei@dlut.edu.cn [Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024 (China); Yu, Mingxi; Zhang, Zhou; Cui, Xiaoyu [Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024 (China)

    2016-09-15

    Human's ubiquitous exposure to di (2-ethylhexyl) phthalate (DEHP) is thought to be associated with female reproductive toxicity. Previous studies found that DEHP inhibited follicle growth and decreased estradiol levels in adult female mice. However, limited information is available on the link between in utero DEHP exposure and ovarian development in female mouse offspring. The present study evaluates the disturbances in regulatory genes involved in female sex determination and the ovarian outcomes in fetal and postnatal female mice treated with in utero DEHP exposure. Pregnant mice were exposed to DEHP by gavage, with the dosage regime beginning at human relevant exposure levels. After in utero DEHP exposure, increased follicular atresia was observed in the female pups at postnatal days (PND) 21. Foxl2 expression was significantly upregulated, and Fst was significantly downregulated by DEHP above 2 mg/kg/d at PND 1 and 21. This suggests that lesion of granulosa cell differentiation and disturbance of follicle development in postnatal female mice. The expression of Cyp11a1 and Star were significantly downregulated by in utero DEHP exposure, indicating effects on estradiol biosynthesis. The female sex determination pathway was disturbed in fetus by DEHP at 2 mg/kg/d and above during the critical time window of sex determination causing significant upregulation of Foxl2, Wnt4, β-catenin and Fst. Furthermore, the increased expression of Wnt4 was supported by whole-mount in situ hybridization (WISH). These results suggest a possible association between in utero DEHP exposure and precocious puberty in the postnatal life of mice offspring, where disturbance of the sex determination regulating pathway acted as an important mechanism. - Highlights: • Maternal exposure to di (2-ethylhexyl) phthalate disturbs fetus sex determination. • DEHP upregulated Foxl2 expression potentially disturbs postnatal granulosa cell differentiation. • DEHP accelerated medulla

  20. Female mice deficient in alpha-fetoprotein show female-typical neural responses to conspecific-derived pheromones.

    Directory of Open Access Journals (Sweden)

    Olivier Brock

    Full Text Available The neural mechanisms controlling sexual behavior are sexually differentiated by the perinatal actions of sex steroid hormones. We recently observed using female mice deficient in alpha-fetoprotein (AFP-KO and which lack the protective actions of AFP against maternal estradiol, that exposure to prenatal estradiol completely defeminized the potential to show lordosis behavior in adulthood. Furthermore, AFP-KO females failed to show any male-directed mate preferences following treatment with estradiol and progesterone, indicating a reduced sexual motivation to seek out the male. In the present study, we asked whether neural responses to male- and female-derived odors are also affected in AFP-KO female mice. Therefore, we compared patterns of Fos, the protein product of the immediate early gene, c-fos, commonly used as a marker of neuronal activation, between wild-type (WT and AFP-KO female mice following exposure to male or estrous female urine. We also tested WT males to confirm the previously observed sex differences in neural responses to male urinary odors. Interestingly, AFP-KO females showed normal, female-like Fos responses, i.e. exposure to urinary odors from male but not estrous female mice induced equivalent levels of Fos protein in the accessory olfactory pathways (e.g. the medial part of the preoptic nucleus, the bed nucleus of the stria terminalis, the amygdala, and the lateral part of the ventromedial hypothalamic nucleus as well as in the main olfactory pathways (e.g. the piriform cortex and the anterior cortical amygdaloid nucleus, as WT females. By contrast, WT males did not show any significant induction of Fos protein in these brain areas upon exposure to either male or estrous female urinary odors. These results thus suggest that prenatal estradiol is not involved in the sexual differentiation of neural Fos responses to male-derived odors.

  1. Interaction between Sex Hormones and Matricaria Chamomilla Hydroalcholic Extract on Motor Activity Behavior in Gonadectomized Male and Female Mice

    Directory of Open Access Journals (Sweden)

    H. Raie

    2006-04-01

    Full Text Available Introduction & Objective: Locomotor activity is an important physiologic phenomenon that is influenced by several factors. In previous study we showed that the matricaria chamomilla (chamomile hydroalcholic extract acts differently in male and female mice. Therefore in this study, the role of sex hormones and chamomile hydroalcholic extract were investigated on motor activity behavior in absence of sex glands in adult male and female NMRI mice. Materials and Methods: Gonadectomized male and female mice were divided into groups (seven mice in each group including: receiving testosterone (2 mg/kg S.C., estradiol benzoate (0.1 mg/kg S.C., and progesterone (0.5 mg/kg S.C. with and without hydroalcholic extract of chamomile (50 mg/kg i.p. Motor activity monitor system was used to evaluate locomotor activity parameters (fast and slow activity, fast and slow stereotype activity, fast and slow rearing in all groups. Results: 1 Testosterone had no any effect on motor activity parameters, but extract of chamomile with and without testosterone decreased motor activity parameters in male mice. 2 Estradiol benzoate and chamomile hydroalcholic extract in presence and absence of each other increased locomotor activity parameters in female mice. 3 Progesterone also did not change motor activity parameters in presence and absence of chamomile hydroalcholic extract in female mice. 4 Administration of Estradiol benzoate with progestrone in presence and absence of chamomile hydroalcholic extract did not alter motor activity parameters in female mice. Conclusion: It seems both of the chamomile hydroalcholic extract and estradiol enhance motor activity and probably act through same system and potentiate the effect of each other. Also it seems there are interaction between estradiol and progesterone and also between chamomile extract and progesterone. Testosterone probably did not have any interaction with chamomile extract in locomotor activity.

  2. Adult female acne: a new paradigm.

    Science.gov (United States)

    Dréno, B; Layton, A; Zouboulis, C C; López-Estebaranz, J L; Zalewska-Janowska, A; Bagatin, E; Zampeli, V A; Yutskovskaya, Y; Harper, J C

    2013-09-01

    In the adult female, acne is a chronic condition with a substantial negative psychological, social and emotional impact. Based on time of onset, two subtypes of adult female acne are recognized: 'persistent acne' is a continuation of the disease from adolescence, while 'late-onset acne' first presents in adulthood. The morphological characteristics of adult female acne are often distinct from adolescent acne. In adults, inflammatory lesions (particularly papules, pustules and nodules) are generally more prominent on the lower chin, jawline and neck, and comedones are more often closed comedones (micro cysts). Adult acne is mainly mild-to-moderate in severity and may be refractory to treatment. A holistic approach to acne therapy should be taken in adult females, which combines standard treatments with adjunctive therapy and cosmetic use. A number of factors specific to the adult female influence choice of treatment, including the predisposition of older skin to irritation, a possible slow response to treatment, a high likelihood of good adherence, whether of child-bearing age, and the psychosocial impact of the disease. Adherence to therapy should be encouraged through further patient education and a simplified regimen that is tailored to suit the individual patient's needs and lifestyle. This article reviews the specific characteristics of adult female acne, and provides recommendations for acne therapy in this patient group. © 2013 The Authors. Journal of the European Academy of Dermatology and Venereology © 2013 European Academy of Dermatology and Venereology.

  3. Male mice ultrasonic vocalizations enhance female sexual approach and hypothalamic kisspeptin neuron activity.

    Science.gov (United States)

    Asaba, Akari; Osakada, Takuya; Touhara, Kazushige; Kato, Masahiro; Mogi, Kazutaka; Kikusui, Takefumi

    2017-08-01

    Vocal communication in animals is important for ensuring reproductive success. Male mice emit song-like "ultrasonic vocalizations (USVs)" when they encounter female mice, and females show approach to the USVs. However, it is unclear whether USVs of male mice trigger female behavioral and endocrine responses in reproduction. In this study, we first investigated the relationship between the number of deliveries in breeding pairs for 4months and USVs syllables emitted from those paired males during 3min of sexual encounter with unfamiliar female mice. There was a positive correlation between these two indices, which suggests that breeding pairs in which males could emit USVs more frequently had more offspring. Further, we examined the effect of USVs of male mice on female sexual behavior. Female mice showed more approach behavior towards vocalizing males than devocalized males. Finally, to determine whether USVs of male mice could activate the neural system governing reproductive function in female mice, the activation of kisspeptin neurons, key neurons to drive gonadotropin-releasing hormone neurons in the hypothalamus, was examined using dual-label immunocytochemistry with cAMP response element-binding protein phosphorylation (pCREB). In the arcuate nucleus (Arc), the number of kisspeptin neurons expressing pCREB significantly increased after exposure to USVs of male as compared with noise exposure group. In conclusion, our results suggest that USVs of male mice promote fertility in female mice by activating both their approaching behavior and central kisspeptin neurons. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Impact of Triclosan on Female Reproduction through Reducing Thyroid Hormones to Suppress Hypothalamic Kisspeptin Neurons in Mice

    Directory of Open Access Journals (Sweden)

    Xin-Yuan Cao

    2018-01-01

    Full Text Available Triclosan (TCS, a broad-spectrum antimicrobial agent, is widely used in clinical settings and various personal care products. The aim of this study was to evaluate the influence of TCS on reproductive endocrine and function. Here, we show that the exposure of adult female mice to 10 or 100 mg/kg/day TCS caused prolongation of diestrus, and decreases in antral follicles and corpora lutea within 2 weeks. TCS mice showed decreases in the levels of serum luteinizing hormone (LH, follicle-stimulating hormone (FSH and progesterone, and gonadotrophin-releasing hormone (GnRH mRNA with the lack of LH surge and elevation of prolactin (PRL. TCS mice had lower kisspeptin immunoreactivity and kiss1 mRNA in anteroventral periventricular nucleus (AVPV and arcuate nucleus (ARC. Moreover, the estrogen (E2-enhanced AVPV-kisspeptin expression was reduced in TCS mice. In addition, the serum thyroid hormones (triiodothyronine (T3 and thyroxine (T4 in TCS mice were reduced with increases in levels of thyroid stimulating hormone (TSH and thyroid releasing hormone (TRH. In TCS mice, the treatment with Levothyroxine (L-T4 corrected the increases in PRL, TSH and TRH; the administration of L-T4 or type-2 dopamine receptors agonist quinpirole inhibiting PRL release could rescue the decline of kisspeptin expression in AVPV and ARC; the treatment with L-T4, quinpirole or the GPR45 agonist kisspeptin-10 recovered the levels of serum LH and FSH and progesterone, and GnRH mRNA. Furthermore, TCS mice treated with L-T4 or quinpirole resumed regular estrous cycling, follicular development and ovulation. Together, these results indicate that exposing adult female mice to TCS (≥10 mg/kg reduces thyroid hormones causing hyperprolactinemia that then suppresses hypothalamic kisspeptin expression, leading to deficits in reproductive endocrine and function.

  5. Isolation and characterization of string-forming female germline stem cells from ovaries of neonatal mice.

    Science.gov (United States)

    Liu, Jing; Shang, Dantong; Xiao, Yao; Zhong, Pei; Cheng, Hanhua; Zhou, Rongjia

    2017-09-29

    Germline stem cells are essential in the generation of both male and female gametes. In mammals, the male testis produces sperm throughout the entire lifetime, facilitated by testicular germline stem cells. Oocyte renewal ceases in postnatal or adult life in mammalian females, suggesting that germline stem cells are absent from the mammalian ovary. However, studies in mice, rats, and humans have recently provided evidence for ovarian female germline stem cells (FGSCs). A better understanding of the role of FGSCs in ovaries could help improve fertility treatments. Here, we developed a rapid and efficient method for isolating FGSCs from ovaries of neonatal mice. Notably, our FGSC isolation method could efficiently isolate on average 15 cell "strings" per ovary from mice at 1-3 days postpartum. FGSCs isolated from neonatal mice displayed the string-forming cell configuration at mitosis ( i.e. a "stringing" FGSC (sFGSC) phenotype) and a disperse phenotype in postnatal mice. We also found that sFGSCs undergo vigorous mitosis especially at 1-3 days postpartum. After cell division, the sFGSC membranes tended to be connected to form sFGSCs. Moreover, F-actin filaments exhibited a cell-cortex distribution in sFGSCs, and E-cadherin converged in cell-cell connection regions, resulting in the string-forming morphology. Our new method provides a platform for isolating FGSCs from the neonatal ovary, and our findings indicate that FGCSs exhibit string-forming features in neonatal mice. The sFGSCs represent a valuable resource for analysis of ovary function and an in vitro model for future clinical use to address ovarian dysfunction. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Early social enrichment provided by communal nest increases resilience to depression-like behavior more in female than in male mice.

    Science.gov (United States)

    D'Andrea, Ivana; Gracci, Fiorenza; Alleva, Enrico; Branchi, Igor

    2010-12-20

    Early experiences produce persistent changes in behavior and brain function. Being reared in a communal nest (CN), consisting of a single nest where three mouse mothers keep their pups together and share care-giving behavior from birth to weaning, provides an highly stimulating social environment to the developing pup since both mother-offspring and peer-to-peer interactions are markedly increased. Here we show that being reared in a CN affects adult behavior of CD-1 mice in a gender-dependent fashion, with reduced depression-like responses in females and increased anxiety-like behavior in males. In particular, CN females showed higher sucrose preference at baseline condition, drinking more sweet solution compared to female mice reared in a standard laboratory condition (SN). In the isolation test, both SN and CN females showed a reduction in sucrose preference after exposure to isolation stress. However, after 24h, only CN females significantly recovered. Finally, in the forced swim test, compared to SN, CN females spent longer time floating, a behavioral response that in the CN model has been inversely associated with display of endophenotypes of depression. With regard to the emotional response, CN males displayed an increased anxiety-like behavior in comparison to SN, spending less time in the open arms and displaying reduced head-dippings in the elevated plus-maze test. No difference was found in females. Overall, our findings show that gender and early experiences interact in modulating adult behavior. In particular, we show that early experiences modified developmental trajectories shaping adult endophenotypes of depression more markedly in females than in males. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Female scent signals enhance the resistance of male mice to influenza.

    Directory of Open Access Journals (Sweden)

    Ekaterina A Litvinova

    Full Text Available BACKGROUND: The scent from receptive female mice functions as a signal, which stimulates male mice to search for potential mating partners. This searching behavior is coupled with infection risk due to sniffing both scent marks as well as nasal and anogenital areas of females, which harbor bacteria and viruses. Consideration of host evolution under unavoidable parasitic pressures, including helminthes, bacteria, viruses, etc., predicts adaptations that help protect hosts against the parasites associated with mating. METHODS AND FINDINGS: We propose that the perception of female signals by BALB/c male mice leads to adaptive redistribution of the immune defense directed to protection against respiratory infection risks. Our results demonstrate migration of macrophages and neutrophils to the upper airways upon exposure to female odor stimuli, which results in an increased resistance of the males to experimental influenza virus infection. This moderate leukocyte intervention had no negative effect on the aerobic performance in male mice. CONCLUSIONS: Our data provide the first demonstration of the adaptive immunological response to female odor stimuli through induction of nonspecific immune responses in the upper respiratory tract.

  8. Wired for motherhood: induction of maternal care but not maternal aggression in virgin female CD1 mice.

    Science.gov (United States)

    Martín-Sánchez, Ana; Valera-Marín, Guillermo; Hernández-Martínez, Adoración; Lanuza, Enrique; Martínez-García, Fernando; Agustín-Pavón, Carmen

    2015-01-01

    Virgin adult female mice display nearly spontaneous maternal care towards foster pups after a short period of sensitization. This indicates that maternal care is triggered by sensory stimulation provided by the pups and that its onset is largely independent on the physiological events related to gestation, parturition and lactation. Conversely, the factors influencing maternal aggression are poorly understood. In this study, we sought to characterize two models of maternal sensitization in the outbred CD1 strain. To do so, a group of virgin females (godmothers) were exposed to continuous cohabitation with a lactating dam and their pups from the moment of parturition, whereas a second group (pup-sensitized females), were exposed 2 h daily to foster pups. Both groups were tested for maternal behavior on postnatal days 2-4. Godmothers expressed full maternal care from the first test. Also, they expressed higher levels of crouching than dams. Pup-sensitized females differed from dams in all measures of pup-directed behavior in the first test, and expressed full maternal care after two sessions of contact with pups. However, both protocols failed to induce maternal aggression toward a male intruder after full onset of pup-directed maternal behavior, even in the presence of pups. Our study confirms that adult female mice need a short sensitization period before the onset of maternal care. Further, it shows that pup-oriented and non-pup-oriented components of maternal behavior are under different physiological control. We conclude that the godmother model might be useful to study the physiological and neural bases of the maternal behavior repertoire.

  9. Endothelial dysfunction of resistance vessels in female apolipoprotein E-deficient mice

    Directory of Open Access Journals (Sweden)

    Vasquez Elisardo C

    2010-05-01

    Full Text Available Abstract Background The effects of hypercholesterolemia on vasomotricity in apolipoprotein E-deficient (ApoE mice, a murine model of spontaneous atherosclerosis, are still unclear. The studies were mostly performed in conductance vessels from male mice fed a high-fat diet. In the present study, we evaluated the endothelial function of resistance vessels from normal C57BL/6 (C57 and hypercholesterolemic (ApoE female mice in both normal and ovariectomized conditions. Methods Twenty week-old C57 and ApoE mice underwent ovariectomy or sham surgery and were studied 30 days later. The vascular reactivities to norepinephrine (NE, 10-9 to 2 × 10-3 mol/L, acetylcholine (ACh and sodium nitroprusside (SNP (10-10 to 10-3 mol/L were evaluated in the isolated mesenteric arteriolar bed through dose-response curves. Results ACh-induced relaxation was significantly reduced (P 50 (-5.67 ± 0.18 vs. -6.23 ± 0.09 mol/L. Ovariectomy caused a significant impairment in ACh-induced relaxation in the C57 group (maximal response: 61 ± 4% but did not worsen the deficient state of relaxation in ApoE animals (maximal response: 39 ± 5%. SNP-induced vasorelaxation and NE-induced vasoconstriction were similar in ApoE and C57 female mice. Conclusion These data show an impairment of endothelial function in the resistance vessels of spontaneously atherosclerotic (ApoE-deficient female mice compared with normal (C57 female mice. The endothelial dysfunction in hypercholesterolemic animals was so marked that ovariectomy, which impaired endothelial function in C57 mice, did not cause additional vascular damage in ApoE-deficient mice.

  10. Urethral dysfunction in female mice with estrogen receptor β deficiency.

    Directory of Open Access Journals (Sweden)

    Yung-Hsiang Chen

    Full Text Available Estrogen has various regulatory functions in the growth, development, and differentiation of the female urogenital system. This study investigated the roles of ERβ in stress urinary incontinence (SUI. Wild-type (ERβ(+/+ and knockout (ERβ(-/- female mice were generated (aged 6-8 weeks, n = 6 and urethral function and protein expression were measured. Leak point pressures (LPP and maximum urethral closure pressure (MUCP were assessed in mice under urethane anesthesia. After the measurements, the urethras were removed for proteomic analysis using label-free quantitative proteomics by nano-liquid chromatography-mass spectrometry (LC-MS/MS analysis. The interaction between these proteins was further analysed using MetaCore. Lastly, Western blot was used to confirm the candidate proteins. Compared with the ERβ(+/+ group, the LPP and MUCP values of the ERβ(-/- group were significantly decreased. Additionally, we identified 85 differentially expressed proteins in the urethra of ERβ(-/- female mice; 57 proteins were up-regulated and 28 were down-regulated. The majority of the ERβ knockout-modified proteins were involved in cell-matrix adhesion, metabolism, immune response, signal transduction, nuclear receptor translational regelation, and muscle contraction and development. Western blot confirmed the up-regulation of myosin and collagen in urethra. By contrast, elastin was down-regulated in the ERβ(-/- mice. This study is the first study to estimate protein expression changes in urethras from ERβ(-/- female mice. These changes could be related to the molecular mechanism of ERβ in SUI.

  11. Dim Light at Night Increases Body Mass of Female Mice

    OpenAIRE

    Aubrecht, Taryn G.; Jenkins, Richelle; Nelson, Randy J.

    2014-01-01

    During the past century the prevalence of light at night has increased in parallel with obesity rates. Dim light at night (dLAN) increases body mass in male mice. However, the effects of light at night on female body mass remain unspecified. Thus, female mice were exposed to a standard light/dark (LD; 16h light at ~150 lux/8h dark at ~0 lux) cycle or to light/dim light at night (dLAN; 16h light at ~150 lux/8h dim light at ~5 lux) cycles for six weeks. Females exposed to dLAN increased the rat...

  12. Dim light at night increases body mass of female mice.

    Science.gov (United States)

    Aubrecht, Taryn G; Jenkins, Richelle; Nelson, Randy J

    2015-05-01

    During the past century, the prevalence of light at night has increased in parallel with obesity rates. Dim light at night (dLAN) increases body mass in male mice. However, the effects of light at night on female body mass remain unspecified. Thus, female mice were exposed to a standard light/dark (LD; 16 h light at ∼150 lux/8 h dark at ∼0 lux) cycle or to light/dim light at night (dLAN; 16 h light at ∼150 lux/8 h dim light at ∼5 lux) cycles for six weeks. Females exposed to dLAN increased the rate of change in body mass compared to LD mice despite reduced total food intake during weeks five and six, suggesting that dLAN disrupted circadian rhythms resulting in deranged metabolism.

  13. Phenotype selection reveals coevolution of muscle glycogen and protein and PTEN as a gate keeper for the accretion of muscle mass in adult female mice.

    Directory of Open Access Journals (Sweden)

    Mandy Sawitzky

    Full Text Available We have investigated molecular mechanisms for muscle mass accretion in a non-inbred mouse model (DU6P mice characterized by extreme muscle mass. This extreme muscle mass was developed during 138 generations of phenotype selection for high protein content. Due to the repeated trait selection a complex setting of different mechanisms was expected to be enriched during the selection experiment. In muscle from 29-week female DU6P mice we have identified robust increases of protein kinase B activation (AKT, Ser-473, up to 2-fold if compared to 11- and 54-week DU6P mice or controls. While a number of accepted effectors of AKT activation, including IGF-I, IGF-II, insulin/IGF-receptor, myostatin or integrin-linked kinase (ILK, were not correlated with this increase, phosphatase and tensin homologue deleted on chromosome 10 (PTEN was down-regulated in 29-week female DU6P mice. In addition, higher levels of PTEN phosphorylation were found identifying a second mechanism of PTEN inhibition. Inhibition of PTEN and activation of AKT correlated with specific activation of p70S6 kinase and ribosomal protein S6, reduced phosphorylation of eukaryotic initiation factor 2α (eIF2α and higher rates of protein synthesis in 29-week female DU6P mice. On the other hand, AKT activation also translated into specific inactivation of glycogen synthase kinase 3ß (GSK3ß and an increase of muscular glycogen. In muscles from 29-week female DU6P mice a significant increase of protein/DNA was identified, which was not due to a reduction of protein breakdown or to specific increases of translation initiation. Instead our data support the conclusion that a higher rate of protein translation is contributing to the higher muscle mass in mid-aged female DU6P mice. Our results further reveal coevolution of high protein and high glycogen content during the selection experiment and identify PTEN as gate keeper for muscle mass in mid-aged female DU6P mice.

  14. The male sex pheromone darcin stimulates hippocampal neurogenesis and cell proliferation in the subventricular zone in female mice

    Directory of Open Access Journals (Sweden)

    Emma eHoffman

    2015-04-01

    Full Text Available The integration of newly generated neurons persists throughout life in the mammalian olfactory bulb and hippocampus, regions involved in olfactory and spatial learning. Social cues can be potent stimuli for increasing adult neurogenesis; for example, odors from dominant but not subordinate male mice increase neurogenesis in both brain regions of adult females. However, little is known about the role of neurogenesis in social recognition or the assessment of potential mates. Dominant male mice scent-mark territories using urine that contains a number of pheromones including darcin (MUP20, a male-specific major urinary protein that stimulates rapid learned attraction to the spatial location and individual odor signature of the scent owner. Here we investigate whether exposure to darcin stimulates neurogenesis in the female brain. Hippocampal neurons and cellular proliferation in the lateral ventricles that supply neurons to the olfactory bulbs increased in females exposed for seven days to male urine containing at least 0.5µg/µl darcin. Darcin was effective whether presented alone or in the context of male urine, but other information in male urine appeared to modulate the proliferative response. When exposed to urine from wild male mice, hippocampal proliferation increased only if urine was from the same individual over seven days, suggesting that consistency of individual scent signatures is important. While seven days exposure to male scent initiated the first stages of increased neurogenesis, this caused no immediate increase in female attraction to the scent or in the strength or robustness of spatial learning in short-term conditioned place preference tests. The reliable and consistent stimulation of neurogenesis by a pheromone important in rapid social learning suggests that this may provide an excellent model to explore the relationship between the integration of new neurons and plasticity in spatial and olfactory learning in a socially

  15. CETP Expression Protects Female Mice from Obesity-Induced Decline in Exercise Capacity.

    Science.gov (United States)

    Cappel, David A; Lantier, Louise; Palmisano, Brian T; Wasserman, David H; Stafford, John M

    2015-01-01

    Pharmacological approaches to reduce obesity have not resulted in dramatic reductions in the risk of coronary heart disease (CHD). Exercise, in contrast, reduces CHD risk even in the setting of obesity. Cholesteryl Ester Transfer Protein (CETP) is a lipid transfer protein that shuttles lipids between serum lipoproteins and tissues. There are sexual-dimorphisms in the effects of CETP in humans. Mice naturally lack CETP, but we previously reported that transgenic expression of CETP increases muscle glycolysis in fasting and protects against insulin resistance with high-fat diet (HFD) feeding in female but not male mice. Since glycolysis provides an important energy source for working muscle, we aimed to define if CETP expression protects against the decline in exercise capacity associated with obesity. We measured exercise capacity in female mice that were fed a chow diet and then switched to a HFD. There was no difference in exercise capacity between lean, chow-fed CETP female mice and their non-transgenic littermates. Female CETP transgenic mice were relatively protected against the decline in exercise capacity caused by obesity compared to WT. Despite gaining similar fat mass after 6 weeks of HFD-feeding, female CETP mice showed a nearly two-fold increase in run distance compared to WT. After an additional 6 weeks of HFD-feeding, mice were subjected to a final exercise bout and muscle mitochondria were isolated. We found that improved exercise capacity in CETP mice corresponded with increased muscle mitochondrial oxidative capacity, and increased expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). These results suggest that CETP can protect against the obesity-induced impairment in exercise capacity and may be a target to improve exercise capacity in the context of obesity.

  16. CETP Expression Protects Female Mice from Obesity-Induced Decline in Exercise Capacity.

    Directory of Open Access Journals (Sweden)

    David A Cappel

    Full Text Available Pharmacological approaches to reduce obesity have not resulted in dramatic reductions in the risk of coronary heart disease (CHD. Exercise, in contrast, reduces CHD risk even in the setting of obesity. Cholesteryl Ester Transfer Protein (CETP is a lipid transfer protein that shuttles lipids between serum lipoproteins and tissues. There are sexual-dimorphisms in the effects of CETP in humans. Mice naturally lack CETP, but we previously reported that transgenic expression of CETP increases muscle glycolysis in fasting and protects against insulin resistance with high-fat diet (HFD feeding in female but not male mice. Since glycolysis provides an important energy source for working muscle, we aimed to define if CETP expression protects against the decline in exercise capacity associated with obesity. We measured exercise capacity in female mice that were fed a chow diet and then switched to a HFD. There was no difference in exercise capacity between lean, chow-fed CETP female mice and their non-transgenic littermates. Female CETP transgenic mice were relatively protected against the decline in exercise capacity caused by obesity compared to WT. Despite gaining similar fat mass after 6 weeks of HFD-feeding, female CETP mice showed a nearly two-fold increase in run distance compared to WT. After an additional 6 weeks of HFD-feeding, mice were subjected to a final exercise bout and muscle mitochondria were isolated. We found that improved exercise capacity in CETP mice corresponded with increased muscle mitochondrial oxidative capacity, and increased expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α. These results suggest that CETP can protect against the obesity-induced impairment in exercise capacity and may be a target to improve exercise capacity in the context of obesity.

  17. Sex differences in stress-induced social withdrawal: independence from adult gonadal hormones and inhibition of female phenotype by corncob bedding.

    Science.gov (United States)

    Trainor, Brian C; Takahashi, Elizabeth Y; Campi, Katharine L; Florez, Stefani A; Greenberg, Gian D; Laman-Maharg, Abigail; Laredo, Sarah A; Orr, Veronica N; Silva, Andrea L; Steinman, Michael Q

    2013-03-01

    There is compelling evidence for important sex differences in behavioral and hormonal responses to psychosocial stress. Here we examined the effects of gonadal hormones on behavioral responses to social defeat stress in monogamous California mice (Peromyscus californicus). Three episodes of social defeat induced social withdrawal in intact females but not males. Gonadectomy blocked corticosterone responses to defeat in females and sensitized male corticosterone responses. However, gonadectomy had no effects on social interaction behavior, suggesting that social withdrawal is not dependent on gonadal hormones in the adult California mouse. In contrast, defeat reduced exploratory behavior in the open field test for intact but not castrated males. We also examined the effects of social defeat on social interaction behavior when California mice were raised on corncob bedding, which has estrogenic properties. In this dataset of over 300 mice, we observed that social defeat did not induce social withdrawal when females were raised on corncob bedding. This finding suggests that the use of corncob in rodent studies could mask important sex differences in the effects of stress on brain and behavior. Although gonadal hormones do not affect social withdrawal behavior in adults, our data suggest that hormones may act earlier in development to induce a more resilient social phenotype. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Perinatal exposure to methoxychlor enhances adult cognitive responses and hippocampal neurogenesis in mice.

    Directory of Open Access Journals (Sweden)

    Mariangela eMartini

    2014-06-01

    Full Text Available During perinatal life, sex steroids, such as estradiol, have marked effects on the development and function of the nervous system. Environmental estrogens or xenoestrogens are man-made chemicals, which animal and human population encounter in the environment and which are able to disrupt the functioning of the endocrine system. Scientific interest in the effects of exposure to xenoestrogens has focused more on fertility and reproductive behaviors, while the effects on cognitive behaviors have received less attention. Therefore, the present study explored whether the organochlorine insecticide Methoxychlor (MXC, with known xenoestrogens properties, administered during the perinatal period (from gestational day 11 to postnatal day 8 to pregnant-lactating females, at an environmentally relevant dose (20µg/kg (body weight/day, would also affect learning and memory functions depending on the hippocampus of male and female offspring mice in adulthood. When tested in adulthood, MXC perinatal exposure led to an increase in anxiety-like behavior and in short-term spatial working memory in both sexes. Emotional learning was also assessed using a contextual fear paradigm and MXC treated male and female mice showed an enhanced freezing behavior compared to controls. These results were correlated with an increased survival of adult generated cells in the adult hippocampus. In conclusion, our results show that perinatal exposure to an environmentally relevant dose of MXC has an organizational effect on hippocampus-dependent memory and emotional behaviors.

  19. Chronic early postnatal scream sound stress induces learning deficits and NMDA receptor changes in the hippocampus of adult mice.

    Science.gov (United States)

    Hu, Lili; Han, Bo; Zhao, Xiaoge; Mi, Lihua; Song, Qiang; Wang, Jue; Song, Tusheng; Huang, Chen

    2016-04-13

    Chronic scream sounds during adulthood affect spatial learning and memory, both of which are sexually dimorphic. The long-term effects of chronic early postnatal scream sound stress (SSS) during postnatal days 1-21 (P1-P21) on spatial learning and memory in adult mice as well as whether or not these effects are sexually dimorphic are unknown. Therefore, the present study examines the performance of adult male and female mice in the Morris water maze following exposure to chronic early postnatal SSS. Hippocampal NR2A and NR2B levels as well as NR2A/NR2B subunit ratios were tested using immunohistochemistry. In the Morris water maze, stress males showed greater impairment in spatial learning and memory than background males; by contrast, stress and background females performed equally well. NR2B levels in CA1 and CA3 were upregulated, whereas NR2A/NR2B ratios were downregulated in stressed males, but not in females. These data suggest that chronic early postnatal SSS influences spatial learning and memory ability, levels of hippocampal NR2B, and NR2A/NR2B ratios in adult males. Moreover, chronic early stress-induced alterations exert long-lasting effects and appear to affect performance in a sex-specific manner.

  20. Role of the vomeronasal system in intersexual attraction in female mice.

    Science.gov (United States)

    Martínez-Ricós, J; Agustín-Pavón, C; Lanuza, E; Martínez-García, F

    2008-05-02

    Although it is generally accepted that rodents' sociosexual behavior relies mainly on chemosignals, the specific roles played by the vomeronasal and olfactory systems in detecting these signals are presently unclear. This work reports the results of three experiments aimed at clarifying the role of the vomeronasal system on gender recognition and intersexual attraction, by analyzing the effects of lesions of the accessory olfactory bulbs (AOB) in chemically naïve female mice. The first experiment demonstrates that lesions of the AOB abolish the preference that females show for male-soiled bedding in tests in which the females can contact the bedding, thus having access to both volatile and involatile male chemosignals. The second experiment shows that airborne male-derived chemosignals are not attractive to intact, chemically naïve females but tend to be preferentially explored by females whose AOB has been lesioned. However, repeated exposure to male-soiled bedding has opposite effects in sham-operated and AOB-lesioned female mice. Whereas after this experience sham-operated females show an (acquired) attraction toward male airborne chemosignals, in AOB-lesioned females the same experience makes male-derived volatiles aversive. Finally, in the third experiment we have confirmed that our AOB-lesioned females are able to detect urine-borne male odorants, as well as to discriminate them from the synthetic terpene geraniol. These findings strongly suggest that in mice, the involatile male sexual pheromone that is intrinsically attractive is detected by the vomeronasal system of the females. In addition, the repeated experience of females with male-soiled bedding would probably allow the association of this pheromone, acting as unconditioned stimulus, with olfactory stimuli (odorants) that therefore would become conditioned attractors to the females.

  1. Female preproenkephalin-knockout mice display altered emotional responses

    Science.gov (United States)

    Ragnauth, A.; Schuller, A.; Morgan, M.; Chan, J.; Ogawa, S.; Pintar, J.; Bodnar, R. J.; Pfaff, D. W.

    2001-01-01

    The endogenous opioid system has been implicated in sexual behavior, palatable intake, fear, and anxiety. The present study examined whether ovariectomized female transgenic preproenkephalin-knockout (PPEKO) mice and their wild-type and heterozygous controls displayed alterations in fear and anxiety paradigms, sucrose intake, and lordotic behavior. To examine stability of responding, three squads of the genotypes were tested across seasons over a 20-month period. In a fear-conditioning paradigm, PPEKO mice significantly increased freezing to both fear and fear + shock stimuli relative to controls. In the open field, PPEKO mice spent significantly less time and traversed significantly less distance in the center of an open field than wild-type controls. Further, PPEKO mice spent significantly less time and tended to be less active on the light side of a dark–light chamber than controls, indicating that deletion of the enkephalin gene resulted in exaggerated responses to fear or anxiety-provoking environments. These selective deficits were observed consistently across testing squads spanning 20 months and different seasons. In contrast, PPEKO mice failed to differ from corresponding controls in sucrose, chow, or water intake across a range (0.0001–20%) of sucrose concentrations and failed to differ in either lordotic or female approach to male behaviors when primed with estradiol and progesterone, thereby arguing strongly for the selectivity of a fear and anxiety deficit which was not caused by generalized and nonspecific debilitation. These transgenic data strongly suggest that opioids, and particularly enkephalin gene products, are acting naturally to inhibit fear and anxiety. PMID:11172058

  2. Dopamine D5 receptor modulates male and female sexual behavior in mice.

    Science.gov (United States)

    Kudwa, A E; Dominguez-Salazar, E; Cabrera, D M; Sibley, D R; Rissman, E F

    2005-07-01

    Dopamine exerts its actions through at least five receptor (DAR) isoforms. In female rats, D5 DAR may be involved in expression of sexual behavior. We used a D5 knockout (D5KO) mouse to assess the role of D5 DAR in mouse sexual behavior. Both sexes of D5KO mice are fertile and exhibit only minor disruptions in exploratory locomotion, startle, and prepulse inhibition responses. This study was conducted to characterize the sexual behavior of male and female D5KO mice relative to their WT littermates. Female WT and D5KO littermates were ovariectomized and given a series of sexual behavior tests after treatment with estradiol benzoate (EB) and progesterone (P). Once sexual performance was optimal the dopamine agonist, apomorphine (APO), was substituted for P. Male mice were observed in pair- and trio- sexual behavior tests. To assess whether the D5 DAR is involved in rewarding aspects of sexual behavior, WT and D5KO male mice were tested for conditioned place preference. Both WT and D5KO females can display receptivity after treatment with EB and P, but APO was only able to facilitate receptivity in EB-primed WT, not in D5KO, mice. Male D5KO mice display normal masculine sexual behavior in mating tests. In conditioned preference tests, WT males formed a conditioned preference for context associated with either intromissions alone or ejaculation as the unconditioned stimulus. In contrast, D5KO males only showed a place preference when ejaculation was paired with the context. In females, the D5 DAR is essential for the actions of dopamine on receptivity. In males, D5 DAR influences rewarding aspects of intromissions. Taken together, the work suggests that the D5 receptor mediates dopamine's action on sexual behavior in both sexes, perhaps via a reward pathway.

  3. Differences in peripheral sensory input to the olfactory bulb between male and female mice

    Science.gov (United States)

    Kass, Marley D.; Czarnecki, Lindsey A.; Moberly, Andrew H.; McGann, John P.

    2017-04-01

    Female mammals generally have a superior sense of smell than males, but the biological basis of this difference is unknown. Here, we demonstrate sexually dimorphic neural coding of odorants by olfactory sensory neurons (OSNs), primary sensory neurons that physically contact odor molecules in the nose and provide the initial sensory input to the brain’s olfactory bulb. We performed in vivo optical neurophysiology to visualize odorant-evoked OSN synaptic output into olfactory bub glomeruli in unmanipulated (gonad-intact) adult mice from both sexes, and found that in females odorant presentation evoked more rapid OSN signaling over a broader range of OSNs than in males. These spatiotemporal differences enhanced the contrast between the neural representations of chemically related odorants in females compared to males during stimulus presentation. Removing circulating sex hormones makes these signals slower and less discriminable in females, while in males they become faster and more discriminable, suggesting opposite roles for gonadal hormones in influencing male and female olfactory function. These results demonstrate that the famous sex difference in olfactory abilities likely originates in the primary sensory neurons, and suggest that hormonal modulation of the peripheral olfactory system could underlie differences in how males and females experience the olfactory world.

  4. Augmented healing process in female mice with acute myocardial infarction.

    Science.gov (United States)

    Wang, Fangfei; Keimig, Thomas; He, Quan; Ding, Jennifer; Zhang, Zhenggang; Pourabdollah-Nejad, Siamak; Yang, Xiao-Ping

    2007-09-01

    It is well established that premenopausal women are protected from cardiovascular disease. This gender difference in favor of females is also demonstrated in animal studies. Our research group previously found that female mice had much lower incidence of cardiac rupture and mortality than did males during the acute phase of myocardial infarction (MI); however, the mechanisms responsible for such protection are not fully understood. The aim of this study was to determine whether the favorable cardiac effect observed in female mice with MI is due to an augmented healing process that includes less inflammation, reduced matrix degradation, and enhanced neovascularization. Twelve-week-old male and female C57BL/6J mice were subjected to MI by ligating the left anterior descending coronary artery and then euthanized at 1, 4, 7, or 14 days post-MI. Inflammatory cell infiltration and myofibroblast transformation, matrix metalloproteinase (MMP)-2 and MMP-9 activity, tissue inhibitor of metalloproteinase (TIMP)-I expression, and neovascularization were examined by immunohistochemistry, zymography, Western blot, and laser scanning confocal microscopy, respectively. Cardiac function was evaluated by echocardiography on day 14. We found that: (1) neutrophil infiltration during the early phase of MI (1-4 days) was much lower in females than in males and was associated with lower MMP-9 activity and higher TIMP-1 protein expression, indicating less-exaggerated inflammation and extracellular matrix degradation in females; (2) myofibroblast transformation, as indicated by expression of alpha-smooth muscle actin, was significantly greater in females than in males at day 7 of MI (Pvascular area in the infarct border) was markedly increased in females, and was associated with better preserved cardiac function and less left ventricular dilatation. Our data suggest that less-exaggerated early inflammation and augmented reparative fibrotic response, indicated by enhanced myofibroblast

  5. Neonatal blockade of GABA-A receptors alters behavioral and physiological phenotypes in adult mice.

    Science.gov (United States)

    Salari, Ali-Akbar; Amani, Mohammad

    2017-04-01

    Gamma-aminobutyric acid (GABA) plays an inhibitory role in the mature brain, and has a complex and bidirectional effect in different parts of the immature brain which affects proliferation, migration and differentiation of neurons during development. There is also increasing evidence suggesting that activation or blockade of the GABA-A receptors during early life can induce brain and behavioral abnormalities in adulthood. We investigated whether neonatal blockade of the GABA-A receptors by bicuculline can alter anxiety- and depression-like behaviors, body weight, food intake, corticosterone and testosterone levels in adult mice (postnatal days 80-95). To this end, neonatal mice were treated with either DMSO or bicuculline (70, 150 and 300μg/kg) during postnatal days 7, 9 and 11. When grown to adulthood, mice were exposed to behavioral tests to measure anxiety- (elevated plus-maze and light-dark box) and depression-like behaviors (tail suspension test and forced swim test). Stress-induced serum corticosterone and testosterone levels, body weight and food intake were also evaluated. Neonatal bicuculline exposure at dose of 300μg/kg decreased anxiety-like behavior, stress-induced corticosterone levels and increased testosterone levels, body weight and food intake, without significantly influencing depression-like behavior in adult male mice. However, no significant changes in these parameters were observed in adult females. These findings suggest that neonatal blockade of GABA-A receptors affects anxiety-like behavior, physiological and hormonal parameters in a sex-dependent manner in mice. Taken together, these data corroborate the concept that GABA-A receptors during early life have an important role in programming neurobehavioral phenotypes in adulthood. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  6. Influence of Ovarian Hormones on Strength Loss in Healthy and Dystrophic Female Mice

    Science.gov (United States)

    Kosir, Allison M.; Mader, Tara L.; Greising, Angela G.; Novotny, Susan A.; Baltgalvis, Kristen A.; Lowe, Dawn A.

    2014-01-01

    Purpose The primary objective of this study was to determine if strength loss and recovery following eccentric contractions is impaired in healthy and dystrophic female mice with low levels of ovarian hormones. Methods Female C57BL/6 (wildtype) or mdx mice were randomly assigned to ovarian-intact (Sham) and ovariectomized (Ovx) groups. Anterior crural muscles were tested for susceptibility to injury from 150 or 50 eccentric contractions in wildtype and mdx mice, respectively. An additional experiment challenged mdx mice with a 2-wk treadmill running protocol followed by an eccentric contraction injury to posterior crural muscles. Functional recovery from injury was evaluated in wildtype mice by measuring isometric torque 3, 7, 14, or 21 days following injury. Results Ovarian hormone deficiency in wildtype mice did not impact susceptibility to injury as the ~50% isometric torque loss following eccentric contractions did not differ between Sham and Ovx mice (p=0.121). Similarly in mdx mice, hormone deficiency did not affect percent of pre injury isometric torque lost by anterior crural muscles following eccentric contractions (p=0.952), but the percent of pre injury torque in posterior crural muscles was lower in Ovx compared to Sham mice (p=0.014). Recovery from injury in wildtype mice was affected by hormone deficiency. Sham mice recovered pre injury isometric strength by 14 days (96 ± 2%) while Ovx mice maintained deficits at 14 and 21 days post injury (80 ± 3% and 84 ± 2%; phormone status did not impact the vulnerability of skeletal muscle to strength loss following eccentric contractions. However, ovarian hormone deficiency did impair the recovery of muscle strength in female mice. PMID:25255128

  7. Adult Behavior in Male Mice Exposed to E-Cigarette Nicotine Vapors during Late Prenatal and Early Postnatal Life.

    Directory of Open Access Journals (Sweden)

    Dani Smith

    Full Text Available Timed-pregnant C57BL/6J mice were exposed to 2.4% nicotine in propylene glycol (PG or 0% nicotine /PG once a day from gestational day 15 until delivery. After delivery, offspring and mothers were exposed to E-cigarette vapors for an additional 14 days from postnatal day 2 through 16. Following their last exposure serum cotinine levels were measured in female juvenile mice. Male mice underwent behavioral testing at 14 weeks of age to assess sensorimotor, affective, and cognitive functional domains.Adult male mice exposed to 2.4% nicotine/PG E-cigarette vapors had significantly more head dips in the zero maze test and higher levels of rearing activity in the open field test compared to 0% nicotine/PG exposed mice and untreated controls. In the water maze test after reversal training, the 2.4% nicotine/PG mice spent more than 25% of time in the new location whereas the other groups did not.Adult male mice exhibited increased levels of activity in the zero maze and open field tests when exposed to E-cigarette vapor containing nicotine during late prenatal and early postnatal life. These findings indicate that nicotine exposure from E-cigarettes may cause persistent behavioral changes when exposure occurs during a period of rapid brain growth.

  8. Adult Behavior in Male Mice Exposed to E-Cigarette Nicotine Vapors during Late Prenatal and Early Postnatal Life.

    Science.gov (United States)

    Smith, Dani; Aherrera, Angela; Lopez, Armando; Neptune, Enid; Winickoff, Jonathan P; Klein, Jonathan D; Chen, Gang; Lazarus, Philip; Collaco, Joseph M; McGrath-Morrow, Sharon A

    2015-01-01

    Timed-pregnant C57BL/6J mice were exposed to 2.4% nicotine in propylene glycol (PG) or 0% nicotine /PG once a day from gestational day 15 until delivery. After delivery, offspring and mothers were exposed to E-cigarette vapors for an additional 14 days from postnatal day 2 through 16. Following their last exposure serum cotinine levels were measured in female juvenile mice. Male mice underwent behavioral testing at 14 weeks of age to assess sensorimotor, affective, and cognitive functional domains. Adult male mice exposed to 2.4% nicotine/PG E-cigarette vapors had significantly more head dips in the zero maze test and higher levels of rearing activity in the open field test compared to 0% nicotine/PG exposed mice and untreated controls. In the water maze test after reversal training, the 2.4% nicotine/PG mice spent more than 25% of time in the new location whereas the other groups did not. Adult male mice exhibited increased levels of activity in the zero maze and open field tests when exposed to E-cigarette vapor containing nicotine during late prenatal and early postnatal life. These findings indicate that nicotine exposure from E-cigarettes may cause persistent behavioral changes when exposure occurs during a period of rapid brain growth.

  9. Exercise training and antioxidant supplementation independently improve cognitive function in adult male and female GFAP-APOE mice

    Directory of Open Access Journals (Sweden)

    Kiran Chaudhari

    2014-09-01

    Conclusion: Exercise was the most effective treatment at improving cognitive function in both genotypes and sex, while antioxidants seemed to be effective only in the APOE4. In young adult mice only non-spatial learning and memory were improved. The combination of the two treatments did not yield further improvement in cognition, and there was no antagonistic action of the antioxidant supplementation on the beneficial effects of exercise.

  10. 2-Methoxyestradiol Reduces Angiotensin II-Induced Hypertension and Renal Dysfunction in Ovariectomized Female and Intact Male Mice.

    Science.gov (United States)

    Pingili, Ajeeth K; Davidge, Karen N; Thirunavukkarasu, Shyamala; Khan, Nayaab S; Katsurada, Akemi; Majid, Dewan S A; Gonzalez, Frank J; Navar, L Gabriel; Malik, Kafait U

    2017-06-01

    Cytochrome P450 1B1 protects against angiotensin II (Ang II)-induced hypertension and associated cardiovascular changes in female mice, most likely via production of 2-methoxyestradiol. This study was conducted to determine whether 2-methoxyestradiol ameliorates Ang II-induced hypertension, renal dysfunction, and end-organ damage in intact Cyp1b1 -/- , ovariectomized female, and Cyp1b1 +/+ male mice. Ang II or vehicle was infused for 2 weeks and administered concurrently with 2-methoxyestradiol. Mice were placed in metabolic cages on day 12 of Ang II infusion for urine collection for 24 hours. 2-Methoxyestradiol reduced Ang II-induced increases in systolic blood pressure, water consumption, urine output, and proteinuria in intact female Cyp1b1 -/- and ovariectomized mice. 2-Methoxyestradiol also reduced Ang II-induced increase in blood pressure, water intake, urine output, and proteinuria in Cyp1b1 +/+ male mice. Treatment with 2-methoxyestradiol attenuated Ang II-induced end-organ damage in intact Cyp1b1 -/- and ovariectomized Cyp1b1 +/+ and Cyp1b1 -/- female mice and Cyp1b1 +/+ male mice. 2-Methoxyestradiol mitigated Ang II-induced increase in urinary excretion of angiotensinogen in intact Cyp1b1 -/- and ovariectomized Cyp1b1 +/+ and Cyp1b1 -/- female mice but not in Cyp1b1 +/+ male mice. The G protein-coupled estrogen receptor 1 antagonist G-15 failed to alter Ang II-induced increases in blood pressure and renal function in Cyp1b1 +/+ female mice. These data suggest that 2-methoxyestradiol reduces Ang II-induced hypertension and associated end-organ damage in intact Cyp1b1 -/- , ovariectomized Cyp1b1 +/+ and Cyp1b1 -/- female mice, and Cyp1b1 +/+ male mice independent of G protein-coupled estrogen receptor 1. Therefore, 2-methoxyestradiol could serve as a therapeutic agent for treating hypertension and associated pathogenesis in postmenopausal females, and in males. © 2017 American Heart Association, Inc.

  11. Adolescent chronic variable social stress influences exploratory behavior and nicotine responses in male, but not female, BALB/cJ mice.

    Science.gov (United States)

    Caruso, M J; Reiss, D E; Caulfield, J I; Thomas, J L; Baker, A N; Cavigelli, S A; Kamens, H M

    2018-04-01

    Anxiety disorders and nicotine use are significant contributors to global morbidity and mortality as independent and comorbid diseases. Early-life stress, potentially via stress-induced hypothalamic-pituitary-adrenal axis (HPA) dysregulation, can exacerbate both. However, little is known about the factors that predispose individuals to the development of both anxiety disorders and nicotine use. Here, we examined the relationship between anxiety-like behaviors and nicotine responses following adolescent stress. Adolescent male and female BALB/cJ mice were exposed to either chronic variable social stress (CVSS) or control conditions. CVSS consisted of repeated cycles of social isolation and social reorganization. In adulthood, anxiety-like behavior and social avoidance were measured using the elevated plus-maze (EPM) and social approach-avoidance test, respectively. Nicotine responses were assessed with acute effects on body temperature, corticosterone production, locomotor activity, and voluntary oral nicotine consumption. Adolescent stress had sex-dependent effects on nicotine responses and exploratory behavior, but did not affect anxiety-like behavior or social avoidance in males or females. Adult CVSS males exhibited less exploratory behavior, as indicated by reduced exploratory locomotion in the EPM and social approach-avoidance test, compared to controls. Adolescent stress did not affect nicotine-induced hypothermia in either sex, but CVSS males exhibited augmented nicotine-induced locomotion during late adolescence and voluntarily consumed less nicotine during adulthood. Stress effects on male nicotine-induced locomotion were associated with individual differences in exploratory locomotion in the EPM and social approach-avoidance test. Relative to controls, adult CVSS males and females also exhibited reduced corticosterone levels at baseline and adult male CVSS mice exhibited increased corticosterone levels following an acute nicotine injection. Results

  12. The role of p38 in mitochondrial respiration in male and female mice.

    Science.gov (United States)

    Ju, Xiaohua; Wen, Yi; Metzger, Daniel; Jung, Marianna

    2013-06-07

    p38 is a mitogen-activated protein kinase and mediates cell growth, cell differentiation, and synaptic plasticity. The aim of this study is to determine the extent to which p38 plays a role in maintaining mitochondrial respiration in male and female mice under a normal condition. To achieve this aim, we have generated transgenic mice that lack p38 in cerebellar Purkinje neurons by crossing Pcp2 (Purkinje cell protein 2)-Cre mice with p38(loxP/loxP) mice. Mitochondria from cerebellum were then isolated from the transgenic and wild-type mice to measure mitochondrial respiration using XF24 respirometer. The mRNA and protein expression of cytochrome c oxidase (COX) in cerebellum were also measured using RT-PCR and immunoblot methods. Separately, HT22 cells were used to determine the involvement of 17β-estradiol (E2) and COX in mitochondrial respiration. The genetic knockout of p38 in Purkinje neurons suppressed the mitochondrial respiration only in male mice and increased COX expression only in female mice. The inhibition of COX by sodium azide (SA) sharply suppressed mitochondrial respiration of HT22 cells in a manner that was protected by E2. These data suggest that p38 is required for the mitochondrial respiration of male mice. When p38 is below a normal level, females may maintain mitochondrial respiration through COX up-regulation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Female genotype influences the behavioral performance of mice selected for reproductive traits.

    Science.gov (United States)

    Weisker, S M; Barkley, M

    1991-10-01

    The behavioral performance of mice that differ in regularity of the estrous cycle and litter size was studied after female exposure to a male of the same or a different strain. Emotional reactivity was measured using the pole, straightaway and open field tests. Factor interpretations of emotionality included motor discharge, autonomic imbalance and acrophobia. Mice characterized by regular estrous cycles and large litters (line E) were more explorative and emotionally reactive with respect to motor discharge and autonomic imbalance. In contrast, mice with less regular estrous cycles and small litter size (line CN-) were more acrophobic. These strain differences in behavioral performance were influenced by the genotype of the female rather than the cohabitating male.

  14. Age- and region-specific imbalances of basal amino acids and monoamine metabolism in limbic regions of female Fmr1 knock-out mice.

    Science.gov (United States)

    Gruss, Michael; Braun, Katharina

    2004-07-01

    The Fragile X syndrome, a common form of mental retardation in humans, originates from the loss of expression of the Fragile X mental retardation gene leading to the absence of the encoded Fragile X mental retardation protein 1 (FMRP). A broad pattern of morphological and behavioral abnormalities is well described for affected humans as well as Fmr1 knock-out mice, a transgenic animal model for the human Fragile X syndrome. In the present study, we examined neurochemical differences between female Fmr1 knock-out and wildtype mice with particular focus on neurotransmission. Significant age- and region-specific differences of basal tissue neurotransmitter and metabolite levels measured by high performance liquid chromatography were found. Those differences were more numerous in juvenile animals (postnatal day (PND) 28-31) compared to adults (postnatal day 209-221). In juvenile female knock-out mice, especially aspartate and taurine were increased in cortical regions, striatum, cerebellum, and brainstem. Furthermore, compared to the wildtype animals, the juvenile knock-out mice displayed an increased level of neuronal inhibition in the hippocampus and brainstem reflected by decreased ratios of (aspartate + glutamate)/(taurine + GABA), as well as an increased dopamine (DA) turnover in cortical regions, striatum, and hippocampus. These results provide the first evidence that the lack of FMRP expression in female Fmr1 knock-out mice is accompanied by age-dependent, region-specific alterations in brain amino acids, and monoamine turnover, which might be related to the reported synaptical and behavioural alterations in these animals.

  15. Nucleus Accumbens Dopamine Signaling Regulates Sexual Preference for Females in Male Mice.

    Science.gov (United States)

    Beny-Shefer, Yamit; Zilkha, Noga; Lavi-Avnon, Yael; Bezalel, Nadav; Rogachev, Ilana; Brandis, Alexander; Dayan, Molly; Kimchi, Tali

    2017-12-12

    Sexual preference for the opposite sex is a fundamental behavior underlying reproductive success, but the neural mechanisms remain unclear. Here, we examined the role of dopamine signaling in the nucleus accumbens core (NAcc) in governing chemosensory-mediated preference for females in TrpC2 -/- and wild-type male mice. TrpC2 -/- males, deficient in VNO-mediated signaling, do not display mating or olfactory preference toward females. We found that, during social interaction with females, TrpC2 -/- males do not show increased NAcc dopamine levels, observed in wild-type males. Optogenetic stimulation of VTA-NAcc dopaminergic neurons in TrpC2 -/- males during exposure to a female promoted preference response to female pheromones and elevated copulatory behavior toward females. Additionally, we found that signaling through the D1 receptor in the NAcc is necessary for the olfactory preference for female-soiled bedding. Our study establishes a critical role for the mesolimbic dopaminergic system in governing pheromone-mediated responses and mate choice in male mice. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Nucleus Accumbens Dopamine Signaling Regulates Sexual Preference for Females in Male Mice

    Directory of Open Access Journals (Sweden)

    Yamit Beny-Shefer

    2017-12-01

    Full Text Available Sexual preference for the opposite sex is a fundamental behavior underlying reproductive success, but the neural mechanisms remain unclear. Here, we examined the role of dopamine signaling in the nucleus accumbens core (NAcc in governing chemosensory-mediated preference for females in TrpC2−/− and wild-type male mice. TrpC2−/− males, deficient in VNO-mediated signaling, do not display mating or olfactory preference toward females. We found that, during social interaction with females, TrpC2−/− males do not show increased NAcc dopamine levels, observed in wild-type males. Optogenetic stimulation of VTA-NAcc dopaminergic neurons in TrpC2−/− males during exposure to a female promoted preference response to female pheromones and elevated copulatory behavior toward females. Additionally, we found that signaling through the D1 receptor in the NAcc is necessary for the olfactory preference for female-soiled bedding. Our study establishes a critical role for the mesolimbic dopaminergic system in governing pheromone-mediated responses and mate choice in male mice.

  17. File list: ALL.Adl.50.AllAg.Adult_female [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adl.50.AllAg.Adult_female dm3 All antigens Adult Adult female SRX1084165,SRX025...13111,SRX013105 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/ALL.Adl.50.AllAg.Adult_female.bed ...

  18. File list: Unc.Adl.50.AllAg.Adult_female [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adl.50.AllAg.Adult_female dm3 Unclassified Adult Adult female SRX042248,SRX0130...18,SRX013048 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Unc.Adl.50.AllAg.Adult_female.bed ...

  19. Estrogens stimulate serotonin neurons to inhibit binge-like eating in mice

    Science.gov (United States)

    Binge eating afflicts approximately 5% of US adults, though effective treatments are limited. Here, we showed that estrogen replacement substantially suppresses binge-like eating behavior in ovariectomized female mice. Estrogen-dependent inhibition of binge-like eating was blocked in female mice spe...

  20. Mechanism of infectivity of a murine leukemia virus in adult mice

    International Nuclear Information System (INIS)

    Levy, R.L.; Barrington, M.H.; Lerner, R.A.; Dixon, F.J.

    1976-01-01

    Infection of adult BALB/c mice with murine leukemia virus (MuLV) induces typical thymic lymphomas. Expression of virus was measured by using a radioimmunoassay for murine P-30, a virion core protein. Nineteen days after injection of MuLV-S into adult mice, there were 0.3μg P-30/ml of serum. X-irradiation permitted the early expression of high levels of viremia, when given before or after MuLV-S administration, and it also hastened the development of lymphomas. Seventeen to 21 days after injection of MuLV-S into x-irradiated (600 rads) adult mice, there were 2.7 μg of P-30/ml of serum. The virus produced by infected adult mice was infectious and oncogenic when given to newborn mice. Several lines of evidence are presented that suggest the mechanism by which x-irradiation permits early expession of virion proteins and lymphomas is not immunosuppression

  1. Development of intraepithelial T lymphocytes in the intestine of irradiated SCID mice by adult liver hematopoietic stem cells from normal mice

    International Nuclear Information System (INIS)

    Yamagiwa, Satoshi; Seki, Shuhji; Shirai, Katsuaki; Yoshida, Yuhei; Miyaji, Chikako; Watanabe, Hisami; Abo, Toru

    1999-01-01

    Background/Aims: We recently reported the adult mouse liver to contain c-kit + stem cells that can give rise to multilineage leukocytes. This study was designed to determine whether or not adult mouse liver stem cells can generate intraepithelial T cells in the intestine as well as to examine the possibility that adult liver c-kit + stem cells originate from the fetal liver. Methods: Adult liver mononuclear cells, bone marrow (BM) cells, liver c-kit + cells or bone BM c-kit + cells of BALB/c mice were i.v. transferred into 4 Gy irradiated CB17/-SCID mice. In other experiments, fetal liver cells from Ly5.1 C57BL/6 mice and T cell depleted adult BM cells from Ly5.2 C57BL/6 mice were simultaneously transferred into irradiated C57BL/6 SCID mice (Ly5.2). At 1 to 8 weeks after cell transfer, the SCID mice were examined. Results: Not only BM cells and BM c-kit + cells but also liver mononuclear cells and liver c-kit + cells reconstituted γδT cells, CD4 + CD8 + double-positive T cells and CDiα + β - T cells of intestinal intraepithelial lymphocytes of SCID mice. Injection of a mixture of fetal liver cells from Ly5.1 C57BL/6 mice and adult BM cells from Ly5.2 C57BL/6 mice into Ly5.2 C57BL/6 SCID mice induced both Ly5.1 and Ly5.2 T cells, while also generating c-kit + cells of both Ly5.1 and Ly5.2 origins in the liver. Conclusions: Adult mouse liver stem cells were able to generate intestinal intraepithelial T cells of the SCID mice, and it is thus suggested that some adult liver stem cells may indeed be derived from the fetal liver. (au)

  2. File list: Unc.Adl.20.AllAg.Adult_female [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adl.20.AllAg.Adult_female dm3 Unclassified Adult Adult female SRX042248,SRX0130...18,SRX032119,SRX013048 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Unc.Adl.20.AllAg.Adult_female.bed ...

  3. File list: His.Adl.50.AllAg.Adult_female [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adl.50.AllAg.Adult_female dm3 Histone Adult Adult female SRX013017,SRX013034,SR...X013111,SRX013105 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/His.Adl.50.AllAg.Adult_female.bed ...

  4. File list: His.Adl.05.AllAg.Adult_female [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adl.05.AllAg.Adult_female dm3 Histone Adult Adult female SRX013017,SRX013034,SR...X013105,SRX013111 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/His.Adl.05.AllAg.Adult_female.bed ...

  5. File list: His.Adl.20.AllAg.Adult_female [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adl.20.AllAg.Adult_female dm3 Histone Adult Adult female SRX013017,SRX013034,SR...X013105,SRX013111 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/His.Adl.20.AllAg.Adult_female.bed ...

  6. File list: His.Adl.10.AllAg.Adult_female [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adl.10.AllAg.Adult_female dm3 Histone Adult Adult female SRX013017,SRX013034,SR...X013105,SRX013111 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/His.Adl.10.AllAg.Adult_female.bed ...

  7. File list: ALL.Adl.20.AllAg.Adult_female [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adl.20.AllAg.Adult_female dm3 All antigens Adult Adult female SRX1084165,SRX013...13048,SRX013105,SRX013111 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/ALL.Adl.20.AllAg.Adult_female.bed ...

  8. File list: Unc.Adl.10.AllAg.Adult_female [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adl.10.AllAg.Adult_female dm3 Unclassified Adult Adult female SRX042248,SRX0130...48,SRX032119,SRX013018 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Unc.Adl.10.AllAg.Adult_female.bed ...

  9. File list: ALL.Adl.05.AllAg.Adult_female [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adl.05.AllAg.Adult_female dm3 All antigens Adult Adult female SRX025476,SRX0422...13048,SRX032119,SRX013111 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/ALL.Adl.05.AllAg.Adult_female.bed ...

  10. File list: ALL.Adl.10.AllAg.Adult_female [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adl.10.AllAg.Adult_female dm3 All antigens Adult Adult female SRX013017,SRX1084...13018,SRX013111,SRX016140 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/ALL.Adl.10.AllAg.Adult_female.bed ...

  11. Newborn Interneurons in the Accessory Olfactory Bulb Promote Mate Recognition in Female Mice

    Directory of Open Access Journals (Sweden)

    Livio eOboti

    2011-09-01

    Full Text Available In the olfactory bulb of adult rodents, local interneurons are constantly replaced by immature precursors derived from the subventricular zone. Whether any olfactory sensory process specifically relies on this cell renewal remains largely unclear. By using the well-known model of mating-induced imprinting, we demonstrate that this olfactory memory formation critically depends on the presence of newborn granule neurons in the accessory olfactory bulb. Accordingly, we show that, in adult female mice, exposure to male pheromones increases the number of new granule cells surviving in the accessory olfactory bulb. This neuronal addition depends on the detection of sensory cues by the vomeronasal organ and requires centrifugal feedback activity from the amygdala. The stimuli affecting neuronal survival are contained in the low molecular weight fraction of urine and are implied in pheromonal recognition during mating. By chemical depletion of newly generated bulbar interneurons, we show a direct role of renewed granule cells in the accessory olfactory bulb in preventing pregnancy block by mating male odours. Taken together, our results indicate that adult neurogenesis is essential for specific brain functions such as persistent odour learning and mate recognition.

  12. Effects of Altered Levels of Extracellular Superoxide Dismutase and Irradiation on Hippocampal Neurogenesis in Female Mice

    International Nuclear Information System (INIS)

    Zou, Yani; Leu, David; Chui, Jennifer; Fike, John R.; Huang, Ting-Ting

    2013-01-01

    Purpose: Altered levels of extracellular superoxide dismutase (EC-SOD) and cranial irradiation have been shown to affect hippocampal neurogenesis. However, previous studies were only conducted in male mice, and it was not clear if there was a difference between males and females. Therefore, female mice were studied and the results compared with those generated in male mice from an earlier study. Methods and Materials: Female wild-type, EC-SOD-null (KO), and EC-SOD bigenic mice with neuronal-specific expression of EC-SOD (OE) were subjected to a single dose of 5-Gy gamma rays to the head at 8 weeks of age. Progenitor cell proliferation, differentiation, and long-term survival of newborn neurons were determined. Results: Similar to results from male mice, EC-SOD deficiency and irradiation both resulted in significant reductions in mature newborn neurons in female mice. EC-SOD deficiency reduced long-term survival of newborn neurons whereas irradiation reduced progenitor cell proliferation. Overexpression of EC-SOD corrected the negative impacts from EC-SOD deficiency and irradiation and normalized the production of newborn neurons in OE mice. Expression of neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 were significantly reduced by irradiation in wild-type mice, but the levels were not changed in KO and OE mice even though both cohorts started out with a lower baseline level. Conclusion: In terms of hippocampal neurogenesis, EC-SOD deficiency and irradiation have the same overall effects in males and females at the age the studies were conducted

  13. Repeatability and consistency of individual behaviour in juvenile and adult Eurasian harvest mice

    Science.gov (United States)

    Schuster, Andrea C.; Carl, Teresa; Foerster, Katharina

    2017-04-01

    Knowledge on animal personality has provided new insights into evolutionary biology and animal ecology, as behavioural types have been shown to affect fitness. Animal personality is characterized by repeatable and consistent between-individual behavioural differences throughout time and across different situations. Behavioural repeatability within life history stages and consistency between life history stages should be checked for the independence of sex and age, as recent data have shown that males and females in some species may differ in the repeatability of behavioural traits, as well as in their consistency. We measured the repeatability and consistency of three behavioural and one cognitive traits in juvenile and adult Eurasian harvest mice ( Micromys minutus). We found that exploration, activity and boldness were repeatable in juveniles and adults. Spatial recognition measured in a Y Maze was only repeatable in adult mice. Exploration, activity and boldness were consistent before and after maturation, as well as before and after first sexual contact. Data on spatial recognition provided little evidence for consistency. Further, we found some evidence for a litter effect on behaviours by comparing different linear mixed models. We concluded that harvest mice express animal personality traits as behaviours were repeatable across sexes and consistent across life history stages. The tested cognitive trait showed low repeatability and was less consistent across life history stages. Given the rising interest in individual variation in cognitive performance, and in its relationship to animal personality, we suggest that it is important to gather more data on the repeatability and consistency of cognitive traits.

  14. Heterozygous ambra1 deficiency in mice: a genetic trait with autism-like behavior restricted to the female gender.

    Science.gov (United States)

    Dere, Ekrem; Dahm, Liane; Lu, Derek; Hammerschmidt, Kurt; Ju, Anes; Tantra, Martesa; Kästner, Anne; Chowdhury, Kamal; Ehrenreich, Hannelore

    2014-01-01

    Autism-spectrum disorders (ASD) are heterogeneous, highly heritable neurodevelopmental conditions affecting around 0.5% of the population across cultures, with a male/female ratio of approximately 4:1. Phenotypically, ASD are characterized by social interaction and communication deficits, restricted interests, repetitive behaviors, and reduced cognitive flexibility. Identified causes converge at the level of the synapse, ranging from mutation of synaptic genes to quantitative alterations in synaptic protein expression, e.g., through compromised transcriptional or translational control. We wondered whether reduced turnover and degradation of synapses, due to deregulated autophagy, would lead to similar phenotypical consequences. Ambra1, strongly expressed in cortex, hippocampus, and striatum, is a positive regulator of Beclin1, a principal player in autophagosome formation. While homozygosity of the Ambra1 null mutation causes embryonic lethality, heterozygous mice with reduced Ambra1 expression are viable, reproduce normally, and lack any immediately obvious phenotype. Surprisingly, comprehensive behavioral characterization of these mice revealed an autism-like phenotype in Ambra1 (+/-) females only, including compromised communication and social interactions, a tendency of enhanced stereotypies/repetitive behaviors, and impaired cognitive flexibility. Reduced ultrasound communication was found in adults as well as pups, which achieved otherwise normal neurodevelopmental milestones. These features were all absent in male Ambra1 (+/-) mice. As a first hint explaining this gender difference, we found a much stronger reduction of Ambra1 protein in the cortex of Ambra1 (+/-) females compared to males. To conclude, Ambra1 deficiency can induce an autism-like phenotype. The restriction to the female gender of autism-generation by a defined genetic trait is unique thus far and warrants further investigation.

  15. Heterozygous Ambra1 deficiency in mice: A genetic trait with autism-like behavior restricted to the female gender

    Directory of Open Access Journals (Sweden)

    Ekrem eDere

    2014-05-01

    Full Text Available Autism spectrum disorders (ASD are heterogeneous, highly heritable neurodevelopmental conditions affecting around 0.5% of the population across cultures, with a male/female ratio of ~4:1. Phenotypically, ASD are characterized by social interaction and communication deficits, restricted interests, repetitive behaviors, and reduced cognitive flexibility. Identified causes converge at the level of the synapse, ranging from mutation of synaptic genes to quantitative alterations in synaptic protein expression, e.g. through compromised transcriptional or translational control. We wondered whether reduced turnover and degradation of synapses, due to deregulated autophagy, would lead to similar phenotypical consequences. Ambra1, strongly expressed in cortex, hippocampus and striatum, is a positive regulator of Beclin1, a principal player in autophagosome formation. While homozygosity of the Ambra1 null mutation causes embryonic lethality, heterozygous mice with reduced Ambra1 expression are viable, reproduce normally, and lack any immediately obvious phenotype. Surprisingly, comprehensive behavioral characterization of these mice revealed an autism-like phenotype in Ambra1+/- females only, including compromised communication and social interactions, a tendency of enhanced stereotypies/repetitive behaviors, and impaired cognitive flexibility. Reduced ultrasound communication was found in adults as well as pups which achieved otherwise normal neurodevelopmental milestones. These features were all absent in male Ambra1+/- mice. As a first hint explaining this gender difference, we found a much stronger reduction of Ambra1 protein in the cortex of Ambra1+/- females compared to males. To conclude, Ambra1 deficiency can induce an autism-like phenotype. The restriction to the female gender of autism-generation by a defined genetic trait is unique thus far and warrants further investigation.

  16. Female Nur77-deficient mice show increased susceptibility to diet-induced obesity.

    Directory of Open Access Journals (Sweden)

    Sonia Perez-Sieira

    Full Text Available Adipose tissue is essential in the regulation of body weight. The key process in fat catabolism and the provision of energy substrate during times of nutrient deprivation or enhanced energy demand is the hydrolysis of triglycerides and the release of fatty acids and glycerol. Nur77 is a member of the NR4A subfamily of nuclear receptors that plays an important metabolic role, modulating hepatic glucose metabolism and lipolysis in muscle. However, its endogenous role on white adipose tissue, as well as the gender dependency of these mechanisms, remains largely unknown. Male and female wild type and Nur77 deficient mice were fed with a high fat diet (45% calories from fat for 4 months. Mice were analyzed in vivo with the indirect calorimetry system, and tissues were analyzed by real-time PCR and Western blot analysis. Female, but not male Nur77 deficient mice, gained more weight and fat mass when compared to wild type mice fed with high fat diet, which can be explained by decreased energy expenditure. The lack of Nur77 also led to a decreased pHSL/HSL ratio in white adipose tissue and increased expression of CIDEA in brown adipose tissue of female Nur77 deficient mice. Overall, these findings suggest that Nur77 is an important physiological modulator of lipid metabolism in adipose tissue and that there are gender differences in the sensitivity to deletion of the Nur77 signaling. The decreased energy expenditure and the actions of Nur77 on liver, muscle, brown and white adipose tissue contribute to the increased susceptibility to diet-induced obesity in females lacking Nur77.

  17. File list: Oth.Adl.50.AllAg.Adult_female [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adl.50.AllAg.Adult_female dm3 TFs and others Adult Adult female SRX1084165,SRX0...25476,SRX041381,SRX032118,SRX013047,SRX016140 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.Adl.50.AllAg.Adult_female.bed ...

  18. File list: Oth.Adl.10.AllAg.Adult_female [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adl.10.AllAg.Adult_female dm3 TFs and others Adult Adult female SRX1084165,SRX0...25476,SRX041381,SRX013047,SRX032118,SRX016140 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.Adl.10.AllAg.Adult_female.bed ...

  19. File list: Oth.Adl.20.AllAg.Adult_female [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adl.20.AllAg.Adult_female dm3 TFs and others Adult Adult female SRX1084165,SRX0...25476,SRX013047,SRX041381,SRX032118,SRX016140 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.Adl.20.AllAg.Adult_female.bed ...

  20. Extracellular signal-regulated kinase 1 and 2 are not required for GnRH neuron development and normal female reproductive axis function in mice.

    Science.gov (United States)

    Wierman, Margaret E; Xu, Mei; Pierce, A; Bliesner, B; Bliss, S P; Roberson, M S

    2012-01-01

    Selective deletion of extracellular signal-regulated kinase (ERK) 1 and ERK2 in the pituitary gonadotrope and ovarian granulosa cells disrupts female reproductive axis function. Thus, we asked if ERK1 and ERK2 are critical for GnRH neuron ontogeny or the central control of female reproductive function. GnRH-Cre-recombinase (Cre+) expressing mice were crossed with mice with a global deletion of ERK1 and a floxed ERK2 allele (Erk1-/Erk2fl/fl) to selectively delete ERK2 in GnRH neurons. Cre-recombinase mRNA was selectively expressed in the brain of Cre+ mice. GnRH neuron number and location were determined during embryogenesis and in the adult. GnRH neuron counts at E15 did not differ between experimental and control groups (1,198 ± 65 and 1,160 ± 80 respectively, p = NS). In adults, numbers of GnRH neurons in the GnRHCre+Erk1-/Erk2- mice (741 ± 157) were similar to those in controls (756 ± 7), without alteration in their distribution across the forebrain. ERK1 and 2 deficiency did not alter the timing of vaginal opening, age at first estrus, or estrous cyclicity. Although ERK1 and 2 are components of a dominant signaling pathway in GnRH neuronal cells that modulates survival and control of GnRH gene expression, other signaling pathways compensate for their deletion in vivo to allow GnRH neuron survival and targeting and normal onset of female sexual maturation and reproductive function. In contrast to effects at the pituitary and the ovary, ERK1 and ERK2 are dispensable at the level of the GnRH neuron. Copyright © 2011 S. Karger AG, Basel.

  1. Female Mice Deficient in Alpha-Fetoprotein Show Female-Typical Neural Responses to Conspecific-Derived Pheromones

    NARCIS (Netherlands)

    Brock, O.; Keller, M.; Douhard, Q.; Bakker, J.

    2012-01-01

    The neural mechanisms controlling sexual behavior are sexually differentiated by the perinatal actions of sex steroid hormones. We recently observed using female mice deficient in alpha-fetoprotein (AFP-KO) and which lack the protective actions of AFP against maternal estradiol, that exposure to

  2. Effect of dose on lead retention and distribution in suckling and adult female mice

    International Nuclear Information System (INIS)

    Keller, C.A.; Doherty, R.A.

    1980-01-01

    Single doses of lead (trace to 445 mg/kg) were administered per os to suckling and adult mice. Both groups exhibited dose-independent lead retention when doses of 4 to 445 mg/kg were administered. However, developmental differences in the fraction of initial dose (FID) retained were evident for all doses administered. A much larger FID was retained in both age groups following administration of carrier-free 203 Pb. The results are consistent with a mechanism of gastrointestinal lead absorption comprising two or more processes. Developmental differences were also observed in organ lead concentration relative to whole body concentration for kidneys, skull and brain 6 days following lead administration. Lead retentions (relative to whole body retention) in brain and in bone were linearly related to dose of lead administered in both suckling and adult age groups. Though uptake of lead into brain and into femur was observed to be directly related to dose over a wide range, relative blood lead concentrations were not linearly correlated with dose administered. The relationships between lead concentrations of blood and organ(s) were also shown to be nonlinear relative to dose. However, blood lead concentration was found to be a reliable indicator of kidney and liver lead concentrations following an acute lead exposure

  3. Comparison of the course of infection with Giardia muris in male and female mice.

    Science.gov (United States)

    Daniels, C W; Belosevic, M

    1995-01-01

    The infection with Giardia muris in male and female C57BL/6 mice was characterized by enumerating cyst release in the feces and trophozoite burden in the small intestine. Cyst release differed between males and females during the course of the primary and challenge infections. Males and females released similar numbers of cysts in the feces during the acute phase of the infection. However, the trophozoite burden was significantly higher in males during the same period. Males released cysts in their feces longer than females and trophozoites present in their intestines for a longer period than females. From day 18 of infection the females did not release cysts in their feces, while males continued to do so for at least 60 days. Thus, distinct differences exist between male and female mice in their ability to harbor and eliminate this intestinal parasite.

  4. Comparison between C-FOS Expression in Male and Female Mice During Morphine Withdrawal in the Presence and Absence of Acute Administration of Matricaria Recutita

    Directory of Open Access Journals (Sweden)

    Kesmati Mahnaz

    2009-06-01

    Full Text Available Background: There are some evidences that indicate there are sexual differences in drug abuse and response to synthetic and herbal drugs. It has been shown that the expression of C-FOS increases in many areas of brain during morphine withdrawal. Concerning the sedative effect of Matricaria recutita extract, the aim of this study was to compare expression of C-FOS transcription factor during morphine withdrawal with and without acute administration of Matricaria recutita on male and female adult mice.Materials and Methods: This study was done at Shahid Chamran University of Ahvaz in 2007 on NMRI mice. Male and female mice were assigned into 8 groups (morphine + saline; morphine + naloxone; morphine + Matricaria recutita + naloxone; and morphine + saline + naloxone. To develop morphine dependency, increasing doses of morphine (20, 40, 80 mg/kg injected subcutaneously for 4 days. Mice received a final morphine injection (40 mg/kg 3hours prior to naloxone (5 mg/kg on the day of testing (day 4. Matricaria recutita extract whit a dose of 30 mg/kg was administered intraperitoneally 5 minutes before naloxone injection. In cellular study, 90minute after naloxone injection, mice were decapitated and their brains were separated, then mRNA was extracted from brain tissue. Using DIG-labeled DNA probe of C-FOS, beta-actin and dot blot technique, expression of C-FOS was analyzed by Zero Dscan software. Statistical evaluation of data was performed using student t-test and ANOVA with one factor followed by Duncan test in SPSS software. P values less than 0.05 were considered significant. Results: The rate of expression of C-FOS increased in male mice but decreased significantly in female mice after naloxone-precipitated abstinence P<0.01(. Matricaria recutita attenuated the rate of expression of C-FOS in male mice but it showed synergistic effect on it in female mice P<0.05(.Conclusion: It seems that the cellular processes involving morphine dependency and

  5. Lower susceptibility of female mice to acetaminophen hepatotoxicity: Role of mitochondrial glutathione, oxidant stress and c-jun N-terminal kinase

    International Nuclear Information System (INIS)

    Du, Kuo; Williams, C. David; McGill, Mitchell R.; Jaeschke, Hartmut

    2014-01-01

    Acetaminophen (APAP) overdose causes severe hepatotoxicity in animals and humans. However, the mechanisms underlying the gender differences in susceptibility to APAP overdose in mice have not been clarified. In our study, APAP (300 mg/kg) caused severe liver injury in male mice but 69–77% lower injury in females. No gender difference in metabolic activation of APAP was found. Hepatic glutathione (GSH) was rapidly depleted in both genders, while GSH recovery in female mice was 2.6 fold higher in the mitochondria at 4 h, and 2.5 and 3.3 fold higher in the total liver at 4 h and 6 h, respectively. This faster recovery of GSH, which correlated with greater induction of glutamate-cysteine ligase, attenuated mitochondrial oxidative stress in female mice, as suggested by a lower GSSG/GSH ratio at 6 h (3.8% in males vs. 1.4% in females) and minimal centrilobular nitrotyrosine staining. While c-jun N-terminal kinase (JNK) activation was similar at 2 and 4 h post-APAP, it was 3.1 fold lower at 6 h in female mice. However, female mice were still protected by the JNK inhibitor SP600125. 17β-Estradiol pretreatment moderately decreased liver injury and oxidative stress in male mice without affecting GSH recovery. Conclusion: The lower susceptibility of female mice is achieved by the improved detoxification of reactive oxygen due to accelerated recovery of mitochondrial GSH levels, which attenuates late JNK activation and liver injury. However, even the reduced injury in female mice was still dependent on JNK. While 17β-estradiol partially protects male mice, it does not affect hepatic GSH recovery. - Highlights: • Female mice are less susceptible to acetaminophen overdose than males. • GSH depletion and protein adduct formation are similar in both genders. • Recovery of hepatic GSH levels is faster in females and correlates with Gclc. • Reduced oxidant stress in females leads to reduced JNK activation. • JNK activation and mitochondrial translocation are critical

  6. Influence of Sex and Age on Natural Resistance to St. Louis Encephalitis Virus Infection in Mice

    Science.gov (United States)

    Andersen, Arthur A.; Hanson, Robert P.

    1974-01-01

    A difference was observed in susceptibility of adult male and female mice to St. Louis encephalitis (SLE) virus as measured by the death rate after intravenous challenge. Female mice that had susceptibility similar to that of males at 2 months of age had increased resistance to SLE virus at 3 and 4 months of age. The increased resistance occurred after sexual maturity, indicating that the resistance factor possibly was related to an aging process in the female. The susceptibility of male mice remained unchanged over the 2- to 4-month period. Neither pregnancy nor castration had any effect on resistance of adult mice to St. Louis encephalitis virus. PMID:4857422

  7. Activation of PPARα decreases bile acids in livers of female mice while maintaining bile flow and biliary bile acid excretion.

    Science.gov (United States)

    Zhang, Youcai; Lickteig, Andrew J; Csanaky, Iván L; Klaassen, Curtis D

    2018-01-01

    Fibrates are hypolipidemic drugs that act as activators of peroxisome proliferator-activated receptor α (PPARα). In both humans and rodents, females were reported to be less responsive to fibrates than males. Previous studies on fibrates and PPARα usually involved male mice, but little has been done in females. The present study aimed to provide the first comprehensive analysis of the effects of clofibrate (CLOF) and PPARα on bile acid (BA) homeostasis in female mice. Study in WT male mice showed that a 4-day CLOF treatment increased liver weight, bile flow, and biliary BA excretion, but decreased total BAs in both serum and liver. In contrast, WT female mice were less susceptible to these CLOF-mediated responses observed in males. In WT female mice, CLOF decreased total BAs in the liver, but had little effect on the mRNAs of hepatic BA-related genes. Next, a comparative analysis between WT and PPARα-null female mice showed that lack of PPARα in female mice decreased total BAs in serum, but had little effect on total BAs in liver or bile. However, lack of PPARα in female mice increased mRNAs of BA synthetic enzymes (Cyp7a1, Cyp8b1, Cyp27a1, and Cyp7b1) and transporters (Ntcp, Oatp1a1, Oatp1b2, and Mrp3). Furthermore, the increase of Cyp7a1 in PPARα-null female mice was associated with an increase in liver Fxr-Shp-Lrh-1 signaling. In conclusion, female mice are resistant to CLOF-mediated effects on BA metabolism observed in males, which could be attributed to PPARα-mediated suppression in females on genes involved in BA synthesis and transport. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Amiloride Improves Endothelial Function and Reduces Vascular Stiffness in Female Mice Fed a Western Diet

    Directory of Open Access Journals (Sweden)

    Luis A. Martinez-Lemus

    2017-06-01

    Full Text Available Obese premenopausal women lose their sex related cardiovascular disease protection and develop greater arterial stiffening than age matched men. In female mice, we have shown that consumption of a Western diet (WD, high in fat and refined sugars, is associated with endothelial dysfunction and vascular stiffening, which occur via activation of mineralocorticoid receptors and associated increases in epithelial Na+ channel (ENaC activity on endothelial cells (EnNaC. Herein our aim was to determine the effect that reducing EnNaC activity with a very-low-dose of amiloride would have on decreasing endothelial and arterial stiffness in young female mice consuming a WD. To this end, we fed female mice either a WD or control diet and treated them with or without a very-low-dose of the ENaC-inhibitor amiloride (1 mg/kg/day in the drinking water for 20 weeks beginning at 4 weeks of age. Mice consuming a WD were heavier and had greater percent body fat, proteinuria, and aortic stiffness as assessed by pulse-wave velocity than those fed control diet. Treatment with amiloride did not affect body weight, body composition, blood pressure, urinary sodium excretion, or insulin sensitivity, but significantly reduced the development of endothelial and aortic stiffness, aortic fibrosis, aortic oxidative stress, and mesenteric resistance artery EnNaC abundance and proteinuria in WD-fed mice. Amiloride also improved endothelial-dependent vasodilatory responses in the resistance arteries of WD-fed mice. These results indicate that a very-low-dose of amiloride, not affecting blood pressure, is sufficient to improve endothelial function and reduce aortic stiffness in female mice fed a WD, and suggest that EnNaC-inhibition may be sufficient to ameliorate the pathological vascular stiffening effects of WD-induced obesity in females.

  9. Gender-specific effects of endogenous testosterone: female alpha-estrogen receptor-deficient C57Bl/6J mice develop glomerulosclerosis.

    Science.gov (United States)

    Elliot, S J; Berho, M; Korach, K; Doublier, S; Lupia, E; Striker, G E; Karl, M

    2007-08-01

    Young female mice on a C57Bl/6J (B6) background are considered glomerulosclerosis (GS)-resistant but aging B6 mice develop mild GS. Estrogen deficiency accelerates while estrogen replacement retards GS in young sclerosis-prone oligosyndactyly mutant mice on an ROP background. To explore the effects of sex hormones on glomerular structure and function in the context of gender and genetic background, we studied mice in which the estrogen-receptor (ER) genes alpha- or -beta were deleted (alpha- or betaER knockout (KO)) and crossed into the B6 background. We also studied ovariectomized (Ovx) B6 mice given testosterone. Male and female betaERKO and male alphaERKO mice had no glomerular dysfunction at 9 months of age; however, alphaERKO female mice displayed albuminuria and GS. Ovx prevented glomerular dysfunction in alphaERKO female mice by eliminating endogenous testosterone production while exogenous testosterone induced GS in Ovx B6 mice. Androgen receptor (AR) expression and function was found in microdissected glomeruli and cultured mesangial cells. Testosterone compared to placebo increased both AR expression and TGF-beta1 mRNA levels in glomeruli isolated from female B6 mice. Estrogen deficiency had no deleterious effects on the glomeruli in B6 mice. Our study shows that genetic traits strongly influence the GS-promoting effects of estrogen deficiency while testosterone induces GS in a gender-specific manner.

  10. Experimental transmission of M. leprae in the testis of mice, born from 131I-injected females

    International Nuclear Information System (INIS)

    Sushida, Kiyo

    1974-01-01

    Six strains of M. leprae taken from lepromatous leprosy patients were inoculated into the testes of '' 131 I-F 1 '' mice, which were divided into two groups. The first group was born of females which had been subcutaneously injected with 131 I-100 μc during pregnancy; the second group was born of females which had been injected before pregnancy. The '' 131 I-F 1 '' mice which were born of females injected with 131 I-100 μc, during pregnancy were then inoculated with leprous bacilli described above, showed the presence of the so-called ''globi'' in the testes. When samples of leprous bacilli (LL28, LL32, LL33) taken from patients who had not been receiving anti-leprous drug treatments were injected into the 131 I-F 1 mice, globi were also found. When leprous bacilli from leproma removed from patients under treatment were injected into mice born from females which had been injected with 131 I-100 μc either during or before their pregnancy, no globi were found. Even though bacilli (LL32, LL33, LL34) from untreated patients were injected into mice born of females who were injected with 131 I-100 μc before pregnancy, no globi were found. (auth.)

  11. Social isolation reduces serotonergic fiber density in the inferior colliculus of female, but not male, mice.

    Science.gov (United States)

    Keesom, Sarah M; Morningstar, Mitchell D; Sandlain, Rebecca; Wise, Bradley M; Hurley, Laura M

    2018-05-12

    Early-life experiences, including maternal deprivation and social isolation during adolescence, have a profound influence on a range of adult social behaviors. Post-weaning social isolation in rodents influences behavior in part through the alteration of neuromodulatory systems, including the serotonergic system. Of significance to social behavior, the serotonergic system richly innervates brain areas involved in vocal communication, including the auditory system. However, the influence of isolation on serotonergic input to the auditory system remains underexplored. Here, we assess whether 4 weeks of post-weaning individual housing alters serotonergic fiber density in the inferior colliculus (IC), an auditory midbrain nucleus in which serotonin alters auditory-evoked activity. Individually housed male and female mice were compared to conspecifics housed socially in groups of three. Serotonergic projections were subsequently visualized with an antibody to the serotonin transporter, which labels serotonergic fibers with relatively high selectivity. Fiber densities were estimated in the three major subregions of the IC using line-scan intensity analysis. Individually housed female mice showed a significantly reduced fiber density relative to socially housed females, which was accompanied by a lower body weight in individually housed females. In contrast, social isolation did not affect serotonergic fiber density in the IC of males. This finding suggests that sensitivity of the serotonergic system to social isolation is sex-dependent, which could be due to a sex difference in the effect of isolation on psychosocial stress. Since serotonin availability depends on social context, this finding further suggests that social isolation can alter the acute social regulation of auditory processing. Copyright © 2018. Published by Elsevier B.V.

  12. Cognitive performance of male and female C57BL/6J mice after repetitive concussive brain injuries.

    Science.gov (United States)

    Velosky, Alexander G; Tucker, Laura B; Fu, Amanda H; Liu, Jiong; McCabe, Joseph T

    2017-05-01

    In contact sports, repetitive concussive brain injury (rCBI) is the prevalent form of head injury seen in athletes. The need for effective treatment is urgent as rCBI has been associated with a host of cognitive, behavioral and neurological complaints. There has been a growing trend in the use of female animals in pre-clinical research, but few studies have investigated possible sex differences following rCBI. The goal of the current study was to determine any differences between male and female C57BL/6J mice on assessments of learning and memory after repetitive concussive injury. Following rCBI by impact to the scalp, male mice exhibited longer righting reflexes during acute recovery. In both sexes, there were no evident histopathological changes observed in the underlying cerebral cortex or hippocampus. Reactive astrogliosis was elevated in the corpus callosum and optic tract, and astrogliosis was slightly less in the optic tract of female mice. rCBI mice exhibited impairment during the learning phase of the Morris water maze (MWM), but female mice, in comparison to male mice, were observed to have superior spatial memory during standard MWM probe trials. Female mice were overall more active, evidenced by greater distances traveled in the y-maze and greater swim speeds in the MWM. The results of this study demonstrate sex differences in cognitive performance following rCBI and support previous research suggesting the neuroprotective role of sex in brain injury. Published by Elsevier B.V.

  13. Hypothalamic-pituitary thyroid axis alterations in female mice with deletion of the neuromedin B receptor gene.

    Science.gov (United States)

    Oliveira, Karen J; Paula, Gabriela S M; Império, Guinever E; Bressane, Nina O; Magalhães, Carolina M A; Miranda-Alves, Leandro; Ortiga-Carvalho, Tania M; Pazos-Moura, Carmen C

    2014-11-01

    Neuromedin B, a peptide highly expressed at the pituitary, has been shown to act as autocrine/paracrine inhibitor of thyrotropin (TSH) release. Here we studied the thyroid axis of adult female mice lacking neuromedin B receptor (NBR-KO), compared to wild type (WT) littermates. They exhibited slight increase in serum TSH (18%), with normal pituitary expression of mRNA coding for α-glycoprotein subunit (Cga), but reduced TSH β-subunit mRNA (Tshb, 41%), lower intra-pituitary TSH content (24%) and increased thyroid hormone transporter MCT-8 (Slc16a2, 44%) and thyroid hormone receptor β mRNA expression (Thrb, 39%). NBR-KO mice exhibited normal thyroxine (T4) and reduced triiodothyronine (T3) (30%), with no alterations in the intra-thyroidal content of T4 and T3 or thyroid morphological changes. Hypothalamic thyrotropin-releasing hormone (TRH) mRNA (Trh) was increased (68%), concomitant with a reduction in type 2 deiodinase mRNA (Dio2, 30%) and no changes in MCT-8 and thyroid hormone receptor mRNA expression. NBR-KO mice exhibited a 56% higher increase in serum TSH in response to an acute single intraperitoneal injection of TRH concomitant with a non-significant increase in pituitary TRH receptor (Trhr) mRNA at basal state. The phenotype of female NBR-KO mice at the hypothalamus-pituitary axis revealed alterations in pituitary and hypothalamic gene expression, associated with reduced serum T3, and higher TSH response to TRH, with apparently normal thyroid morphology and hormonal production. Thus, results confirm that neuromedin B pathways are importantly involved in secretory pathways of TSH and revealed its participation in the in vivo regulation of gene expression of TSH β-subunit and pituitary MCT8 and Thrb and hypothalamic TRH and type 2 deiodinase. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Gender-specific reduction of hepatic Mrp2 expression by high-fat diet protects female mice from ANIT toxicity

    International Nuclear Information System (INIS)

    Kong, Bo; Csanaky, Iván L.; Aleksunes, Lauren M.; Patni, Meghan; Chen, Qi; Ma, Xiaochao; Jaeschke, Hartmut; Weir, Scott; Broward, Melinda; Klaassen, Curtis D.; Guo, Grace L.

    2012-01-01

    Emerging evidence suggests that feeding a high-fat diet (HFD) to rodents affects the expression of genes involved in drug transport. However, gender-specific effects of HFD on drug transport are not known. The multidrug resistance-associated protein 2 (Mrp2, Abcc2) is a transporter highly expressed in the hepatocyte canalicular membrane and is important for biliary excretion of glutathione-conjugated chemicals. The current study showed that hepatic Mrp2 expression was reduced by HFD feeding only in female, but not male, C57BL/6J mice. In order to determine whether down-regulation of Mrp2 in female mice altered chemical disposition and toxicity, the biliary excretion and hepatotoxicity of the Mrp2 substrate, α-naphthylisothiocyanate (ANIT), were assessed in male and female mice fed control diet or HFD for 4 weeks. ANIT-induced biliary injury is a commonly used model of experimental cholestasis and has been shown to be dependent upon Mrp2-mediated efflux of an ANIT glutathione conjugate that selectively injures biliary epithelial cells. Interestingly, HFD feeding significantly reduced early-phase biliary ANIT excretion in female mice and largely protected against ANIT-induced liver injury. In summary, the current study showed that, at least in mice, HFD feeding can differentially regulate Mrp2 expression and function and depending upon the chemical exposure may enhance or reduce susceptibility to toxicity. Taken together, these data provide a novel interaction between diet and gender in regulating hepatobiliary excretion and susceptibility to injury. -- Highlights: ► High-fat diet decreases hepatic Mrp2 expression only in female but not in male mice. ► HFD significantly reduces early-phase biliary ANIT excretion in female mice. ► HFD protects female mice against ANIT-induced liver injury.

  15. Dental caries experience and treatment needs of an adult female ...

    African Journals Online (AJOL)

    2017-09-03

    Sep 3, 2017 ... Objectives: To determine the prevalence of dental caries and treatment needs in an adult female Nigerian population. Methods: In this cross-sectional study, adult females attending outreach programmes were examined for dental caries using the. Decayed Missing and Filled Teeth caries index (DMFT).

  16. Serum antibody responses by male and female C57Bl/6 mice infected with Giardia muris.

    Science.gov (United States)

    Daniels, C W; Belosevic, M

    1994-09-01

    We compared the levels of serum antibodies in male and female C57Bl/6 mice during the primary and after challenge infection with Giardia muris. Male mice began passing cysts in their faeces earlier than females, and were shedding cysts for over 60 days, while females stopped shedding cysts by day 20 after infection. In both males and females there were significant increases in parasite-specific IgM 10 and 20 days after infection. No differences in parasite-specific serum IgA were observed until 40 days after infection. Parasite-specific IgG (whole) levels were elevated on days 20 and 40 in females, while males showed no significant increases. In addition, females had a much stronger IgG2b and IgG3 response than males. After challenge with either cysts or soluble parasite protein only the females had significant increases in specific anti-parasite IgG2b. Our data show differential ability of males and females to control the infection with G. muris is paralleled by a difference in the anti-parasite serum IgG response of the mice.

  17. Efficacy of protocols for induction of chronic hyperthyroidism in male and female mice.

    Science.gov (United States)

    Engels, Kathrin; Rakov, Helena; Zwanziger, Denise; Hönes, Georg Sebastian; Rehders, Maren; Brix, Klaudia; Köhrle, Josef; Möller, Lars Christian; Führer, Dagmar

    2016-10-01

    Protocols for induction of hyperthyroidism in mice are highly variable and mostly involve short-term thyroid hormone (TH) treatment. In addition, little is known about a possible influence of sex on experimental TH manipulation. Here we analyzed the efficacy of intraperitoneal vs. oral levothyroxine (T4) administration to induce chronic hyperthyroidism in male and female mice and asked which T4 dosing intervals are required to achieve stable organ thyrotoxicosis. T4 was administered intraperitoneally or orally over a period of 6/7 weeks. Assessment included monitoring of body weight, TH serum concentrations, and serial quantitative TH target gene expression analysis in liver and heart. Our results show that both intraperitoneal and oral T4 treatment are reliable methods for induction of chronic hyperthyroidism in mice. Thereby T4 injection intervals should not exceed 48 h and oral levothyroxine should be administered continuously during experiments and up to sacrifice to ensure a hyperthyroid organ state. Furthermore, we found a sex-dependent variation in levothyroxine-induced TH serum state, with significantly higher T4 concentrations in female mice, while expression of investigated classical TH responsive genes in liver and heart did not vary with animal's sex. In summary, our study shows that common approaches for rendering rodents thyrotoxic can also be used for induction of chronic hyperthyroidism in male and female mice. Thereby T4 dosing intervals are critical as are read-out parameters to verify a chronic thyrotoxic organ state.

  18. Thyroid Hormone Receptor α Mutation Causes a Severe and Thyroxine-Resistant Skeletal Dysplasia in Female Mice

    Science.gov (United States)

    Bassett, J. H. Duncan; Boyde, Alan; Zikmund, Tomas; Evans, Holly; Croucher, Peter I.; Zhu, Xuguang; Park, Jeong Won

    2014-01-01

    A new genetic disorder has been identified that results from mutation of THRA, encoding thyroid hormone receptor α1 (TRα1). Affected children have a high serum T3:T4 ratio and variable degrees of intellectual deficit and constipation but exhibit a consistently severe skeletal dysplasia. In an attempt to improve developmental delay and alleviate symptoms of hypothyroidism, patients are receiving varying doses and durations of T4 treatment, but responses have been inconsistent so far. Thra1PV/+ mice express a similar potent dominant-negative mutant TRα1 to affected individuals, and thus represent an excellent disease model. We hypothesized that Thra1PV/+ mice could be used to predict the skeletal outcome of human THRA mutations and determine whether prolonged treatment with a supraphysiological dose of T4 ameliorates the skeletal abnormalities. Adult female Thra1PV/+ mice had short stature, grossly abnormal bone morphology but normal bone strength despite high bone mass. Although T4 treatment suppressed TSH secretion, it had no effect on skeletal maturation, linear growth, or bone mineralization, thus demonstrating profound tissue resistance to thyroid hormone. Despite this, prolonged T4 treatment abnormally increased bone stiffness and strength, suggesting the potential for detrimental consequences in the long term. Our studies establish that TRα1 has an essential role in the developing and adult skeleton and predict that patients with different THRA mutations will display variable responses to T4 treatment, which depend on the severity of the causative mutation. PMID:24914936

  19. Female nursing partner choice in a population of wild house mice (Mus musculus domesticus).

    Science.gov (United States)

    Harrison, Nicola; Lindholm, Anna K; Dobay, Akos; Halloran, Olivia; Manser, Andri; König, Barbara

    2018-01-01

    Communal nursing in house mice is an example of cooperation where females pool litters in the same nest and indiscriminately nurse own and other offspring despite potential exploitation. The direct fitness benefits associated with communal nursing shown in laboratory studies suggest it to be a selected component of female house mice reproductive behaviour. However, past studies on communal nursing in free-living populations have debated whether it is a consequence of sharing the same nest or an active choice. Here using data from a long-term study of free-living, wild house mice we investigated individual nursing decisions and determined what factors influenced a female's decision to nurse communally. Females chose to nurse solitarily more often than expected by chance, but the likelihood of nursing solitarily decreased when females had more partners available. While finding no influence of pairwise relatedness on partner choice, we observed that females shared their social environment with genetically similar individuals, suggesting a female's home area consisted of related females, possibly facilitating the evolution of cooperation. Within such a home area females were more likely to nest communally when the general relatedness of her available options was relatively high. Females formed communal nests with females that were familiar through previous associations and had young pups of usually less than 5 days old. Our findings suggest that communal nursing was not a by-product of sharing the same nesting sites, but females choose communal nursing partners from a group of genetically similar females, and ultimately the decision may then depend on the pool of options available. Social partner choice proved to be an integrated part of cooperation among females, and might allow females to reduce the conflict over number of offspring in a communal nest and milk investment towards own and other offspring. We suggest that social partner choice may be a general

  20. Potential contribution of progesterone receptors to the development of sexual behavior in male and female mice.

    Science.gov (United States)

    Desroziers, Elodie; Brock, Olivier; Bakker, Julie

    2017-04-01

    We previously showed that estradiol can have both defeminizing and feminizing effects on the developing mouse brain. Pre- and early postnatal estradiol defeminized the ability to show lordosis in adulthood, whereas prepubertal estradiol feminized this ability. Furthermore, we found that estradiol upregulates progesterone receptors (PR) during development, inducing both a male-and female-typical pattern of PR expression in the mouse hypothalamus. In the present study, we took advantage of a newly developed PR antagonist (ZK 137316) to determine whether PR contributes to either male- or female-typical sexual differentiation. Thus groups of male and female C57Bl/6j mice were treated with ZK 137316 or OIL as control: males were treated neonatally (P0-P10), during the critical period for male sexual differentiation, and females were treated prepubertally (P15-P25), during the critical period for female sexual differentiation. In adulthood, mice were tested for sexual behavior. In males, some minor effects of neonatal ZK treatment on sexual behavior were observed: latencies to the first mount, intromission and ejaculation were decreased in neonatally ZK treated males; however, this effect disappeared by the second mating test. By contrast, female mice treated with ZK during the prepubertal period showed significantly less lordosis than OIL-treated females. Mate preferences were not affected in either males or females treated with ZK during development. Taken together, these results suggest a role for PR and thus perhaps progesterone in the development of lordosis behavior in female mice. By contrast, no obvious role for PR can be discerned in the development of male sexual behavior. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Associations between tumor types in irradiated BALB/c female mice

    International Nuclear Information System (INIS)

    Storer, J.B.

    1982-01-01

    Associations between pairs of 12 different tumor types were estimated for a population of over 3800 irradiated BALB/c female mice. The associations were adjusted for age and radiation dose. Of the 66 pairs of tumor types, 21 showed significant positive or negative associations. Of these, 8 were considered to be spurious, principally because one or both of the tumors was rapidly lethal, leading to an apparent negative association. Six of the remaining 13 significant associations involed tumors of endocrine organs or tumors known to be endocrine related. Six others involved associations between lung, vascular tissue, or reticular tissue tumors, and tumors of endocrine organs. The remaining and highly negative association was between reticulum cell sarcomas and other lymphomas and leukemias. It was concluded that in irradiated female mice of this strain, at least, tumors are not independent and that alterations in host factors (principally endocrine) lead to animals developing both tumors (positive associations) or to one tumor but not the other (negative associations)

  2. A COMPARATIVE STUDY OF LIPID PROFILE IN SEDENTARY AND ACTIVE ADULT FEMALES

    Directory of Open Access Journals (Sweden)

    Suhasini Sanda

    2018-11-01

    Full Text Available BACKGROUND Lipids and lipoproteins are essential constituents of the body and their activities assist in maintenance of body homeostasis. Sedentary lifestyle has been shown to lead to inactivity, which could lead to lipid disorders. Hyperlipidaemias is one of the major independent risk factor, which affects the cardiovascular system adversely resulting eventually damage to various organs most notably heart, kidneys and brain. The present study is therefore designed to ascertain the effect of sedentary lifestyle on lipid status of sedentary adult females when compared to that of the lipid status of active adult females. MATERIALS AND METHODS The present study comprised of Group I - 50 sedentary adult females and Group II - 50 active adult females aged between 30 to 60 years. The subjects selected in both groups were matched for age and dietary habits. The subjects with hypertension, diabetes, smokers, pregnancy and subjects with Body Mass Index (BMI greater than 30 are excluded. After overnight fasting of 12 to 14 hours, 5 mL of blood is collected from the subjects and fasting Total Serum Cholesterol (TC, Total Serum Triglycerides (TG, HDL cholesterol (HDL-C, LDL cholesterol (LDL-C and total serum cholesterol/HDL-C ratio are measured and data is statistically analysed. RESULTS The evaluation of lipid profile patterns in above subjects showed hypercholesterolaemia, hypertriglyceridaemia, increased LDLC and total serum cholesterol/HDL-C ratio in sedentary adult females and also decreased HDL-C levels in them when compared to the normal healthy lipid profile patterns in active adult females. A statistically significant increased lipid profiles (P-value <0.001 was observed in the sedentary adult females than in active adult females. CONCLUSION This study shows that sedentary lifestyle predisposes to hyperlipidaemias, one of the major risk factor of cardiovascular disease and lack of exercise worsens the situation.

  3. Deficient Purposeful Use of Forepaws in Female Mice Modelling Rett Syndrome

    Directory of Open Access Journals (Sweden)

    Bianca De Filippis

    2015-01-01

    Full Text Available Rett syndrome (RTT is a rare neurodevelopmental disorder, characterized by severe behavioural and physiological symptoms. Mutations in the methyl CpG binding protein 2 gene (MECP2 cause more than 95% of classic cases. Motor abnormalities represent a significant part of the spectrum of RTT symptoms. In the present study we investigated motor coordination and fine motor skill domains in MeCP2-308 female mice, a validated RTT model. This was complemented by the in vivo magnetic resonance spectroscopy (MRS analysis of metabolic profile in behaviourally relevant brain areas. MeCP2-308 heterozygous female mice (Het, 10-12 months of age were impaired in tasks validated for the assessment of purposeful and coordinated forepaw use (Morag test and Capellini handling task. A fine-grain analysis of spontaneous behaviour in the home-cage also revealed an abnormal handling pattern when interacting with the nesting material, reduced motivation to explore the environment, and increased time devoted to feeding in Het mice. The brain MRS evaluation highlighted decreased levels of bioenergetic metabolites in the striatal area in Het mice compared to controls. Present results confirm behavioural and brain alterations previously reported in MeCP2-308 males and identify novel endpoints on which the efficacy of innovative therapeutic strategies for RTT may be tested.

  4. Comparison of Neurological Function in Males and Females from Two Substrains of C57BL/6 Mice

    Directory of Open Access Journals (Sweden)

    Amy Ashworth

    2014-12-01

    Full Text Available The C57BL/6 (B6 mouse is the background strain most frequently used for genetically-modified mice. Previous studies have found significant behavioral and genetic differences between the B6J (The Jackson Laboratory and B6N substrains (National Institutes of Health; however, most studies employed only male mice. We performed a comprehensive battery of motor function and learning and memory tests on male and female mice from both substrains. The B6N male mice had greater improvement in the rotarod test. In contrast, B6J female mice had longer latencies to falling from the rotarod. In the Morris water maze (MWM, B6J males had significantly shorter latencies to finding the hidden platform. However, B6N females had significantly shorter path lengths in the reversal and shifted-reduced phases. In open field locomotor activity, B6J males had higher activity levels, whereas B6N females took longer to habituate. In the fear conditioning test, B6N males had a significantly longer time freezing in the new context compared with B6J males, but no significant differences were found in contextual or cued tests. In summary, our findings demonstrate the importance of testing both males and females in neurobehavioral studies. Both factors (sex and substrain must be taken into account when designing developmental neurotoxicology studies.

  5. The regenerative potential of parietal epithelial cells in adult mice

    NARCIS (Netherlands)

    Berger, K.; Schulte, K.; Boor, P.; Kuppe, C.; Kuppevelt, T.H. van; Floege, J.; Smeets, B.; Moeller, M.J.

    2014-01-01

    Previously, we showed that some podocytes in juvenile mice are recruited from cells lining Bowman's capsule, suggesting that parietal epithelial cells (PECs) are a progenitor cell population for podocytes. To investigate whether PECs also replenish podocytes in adult mice, PECs were genetically

  6. Effect of Tamoxifen on Seminiferous Tubules Structure during Pregnancy in Adult Mice

    Directory of Open Access Journals (Sweden)

    J Soleimani Rad

    2016-03-01

    Full Text Available Introduction: Tamoxifen is a nonsteroidal drug which mainly treats breast cancer. It is also applied for stimulation of ovulation and remedy of infertility. Regarding the tamoxifen binding to estrogen receptors and the possible role of estrogens in spermatogenesis, the present study aimed to histologically evaluate spermatogenesis in the seminiferous ducts of mice, whose mothers had received tamoxifen during pregnancy. Methods: In the present study, 30 female and 15 male mice of NMRI race were selected for mating. Since 13th day of pregnancy, the experimental group received tamoxifen with the dosage of 5 mg/kg intra-peritoneally for 7 days, wherease the control group received normal saline. After childbirth of the mated mice, male infants were selected and monitored in the standard laboratory conditions. After reaching the age of puberty (6-8Weeks, adult mice were sacrificed by the cervical dislocation, and the testes were removed for histological evaluation of spermatogenesis. After routine histological processing, the samples were studied by the light microscope. Results: Histological studies showed that spermatogenic and Sertoli cells in the seminiferous tubules in control and experimental groups were significantly different, though no difference was observed in the number of Leydig cells in the both groups. Conclusion: The findings of the present study showed that tamoxifen exposure during development can cause histological changes in the seminiferous tubules, which can lead to infertility in the male rat.

  7. Impairments in cognition and neural precursor cell proliferation in mice expressing constitutively active glycogen synthase kinase-3

    Directory of Open Access Journals (Sweden)

    Marta ePardo

    2015-03-01

    Full Text Available ABSTRACTBrain glycogen synthase kinase-3 (GSK3 is hyperactive in several neurological conditions that involve impairments in both cognition and neurogenesis. This raises the hypotheses that hyperactive GSK3 may directly contribute to impaired cognition, and that this may be related to deficiencies in neural precursor cells (NPC. To study the effects of hyperactive GSK3 in the absence of disease influences, we compared adult hippocampal NPC proliferation and performance in three cognitive tasks in male and female wild-type mice and GSK3 knockin mice, which express constitutively active GSK3. NPC proliferation was ~40% deficient in both male and female GSK3 knockin mice compared with wild-type mice. Environmental enrichment (EE increased NPC proliferation in male, but not female, GSK3 knockin mice and wild-type mice. Male and female GSK3 knockin mice exhibited impairments in novel object recognition, temporal order memory, and coordinate spatial processing compared with gender-matched wild-type mice. EE restored impaired novel object recognition and temporal ordering in both sexes of GSK3 knockin mice, indicating that this repair was not dependent on NPC proliferation, which was not increased by EE in female GSK3 knockin mice. Acute 1 hr pretreatment with the GSK3 inhibitor TDZD-8 also improved novel object recognition and temporal ordering in male and female GSK3 knockin mice. These findings demonstrate that hyperactive GSK3 is sufficient to impair adult hippocampal NPC proliferation and to impair performance in three cognitive tasks in both male and female mice, but these changes in NPC proliferation do not directly regulate novel object recognition and temporal ordering tasks.

  8. Efficacy of Tramadol as a Sole Analgesic for Postoperative Pain in Male and Female Mice.

    Science.gov (United States)

    Wolfe, A Marissa; Kennedy, Lucy H; Na, Jane J; Nemzek-Hamlin, Jean A

    2015-07-01

    Tramadol is a centrally acting weak μ opioid agonist that has few of the adverse side effects common to other opioids. Little work has been done to establish an effective analgesic dose of tramadol specific for surgical laparotomy and visceral manipulation in mice. We used general appearance parameters to score positive indicators of pain including posture, coat condition, activity, breathing, and interactions with other mice, activity events (that is, the number of times each mouse stretched up in a 3-min period) used as an indicator of decreased pain, von Frey fibers, and plasma levels of corticosterone to determine whether tramadol at 20, 40, or 80 mg/kg prevented postoperative pain in male and female C57BL/6 mice. A ventral midline laparotomy with typhlectomy was used as a model of postoperative pain. In male mice, none of the markers differed between groups that received tramadol (regardless of dose) and the saline-treated controls. However, general appearance scores and plasma corticosterone levels were lower in female mice that received 80 mg/kg tramadol compared with saline. In summary, for severe postoperative pain after laparotomy and aseptic typhlectomy, tramadol was ineffective in male C57BL/6 mice at all doses tested. Although 80 mg/kg ameliorated postoperative pain in female C57BL/6 mice, this dose is very close to the threshold reported to cause toxic side effects, such as tremors and seizures. Therefore, we do not recommend the use of tramadol as a sole analgesic in this mouse model of postoperative pain.

  9. Heterozygous CDKL5 Knockout Female Mice Are a Valuable Animal Model for CDKL5 Disorder

    Directory of Open Access Journals (Sweden)

    Claudia Fuchs

    2018-01-01

    Full Text Available CDKL5 disorder is a severe neurodevelopmental disorder caused by mutations in the X-linked CDKL5 (cyclin-dependent kinase-like five gene. CDKL5 disorder primarily affects girls and is characterized by early-onset epileptic seizures, gross motor impairment, intellectual disability, and autistic features. Although all CDKL5 female patients are heterozygous, the most valid disease-related model, the heterozygous female Cdkl5 knockout (Cdkl5 +/− mouse, has been little characterized. The lack of detailed behavioral profiling of this model remains a crucial gap that must be addressed in order to advance preclinical studies. Here, we provide a behavioral and molecular characterization of heterozygous Cdkl5 +/− mice. We found that Cdkl5 +/− mice reliably recapitulate several aspects of CDKL5 disorder, including autistic-like behaviors, defects in motor coordination and memory performance, and breathing abnormalities. These defects are associated with neuroanatomical alterations, such as reduced dendritic arborization and spine density of hippocampal neurons. Interestingly, Cdkl5 +/− mice show age-related alterations in protein kinase B (AKT and extracellular signal-regulated kinase (ERK signaling, two crucial signaling pathways involved in many neurodevelopmental processes. In conclusion, our study provides a comprehensive overview of neurobehavioral phenotypes of heterozygous female Cdkl5 +/− mice and demonstrates that the heterozygous female might be a valuable animal model in preclinical studies on CDKL5 disorder.

  10. Food restriction increases long-term memory persistence in adult or aged mice.

    Science.gov (United States)

    Talhati, F; Patti, C L; Zanin, K A; Lopes-Silva, L B; Ceccon, L M B; Hollais, A W; Bizerra, C S; Santos, R; Tufik, S; Frussa-Filho, R

    2014-04-03

    Food restriction (FR) seems to be the unique experimental manipulation that leads to a remarkable increase in lifespan in rodents. Evidences have suggested that FR can enhance memory in distinct animal models mainly during aging. However, only few studies systemically evaluated the effects FR on memory formation in both adult (3-month-old) and aged (18-24-month-old) mice. Thus, the aim of the present study was to investigate the effects of acute (12h) or repeated (12h/day for 2days) FR protocols on learning and memory of adult and aged mice evaluated in the plus-maze discriminative avoidance task (PM-DAT), an animal model that concurrently (but independently) evaluates learning and memory, anxiety and locomotion. We also investigated the possible role of FR-induced stress by the corticosterone concentration in adult mice. Male mice were kept at home cage with food ad libitum (CTRL-control condition) or subjected to FR during the dark phase of the cycle for 12h/day or 12h/2days. The FR protocols were applied before training, immediately after it or before testing. Our results demonstrated that only FR for 2days enhanced memory persistence when applied before training in adults and before testing in aged mice. Conversely, FR for 2days impaired consolidation and exerted no effects on retrieval irrespective of age. These effects do not seem to be related to corticosterone concentration. Collectively, these results indicate that FR for 2days can promote promnestic effects not only in aged mice but also in adults. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Linking adult olfactory neurogenesis to social behavior

    Directory of Open Access Journals (Sweden)

    Claudia E Feierstein

    2012-11-01

    Full Text Available In the adult brain, new neurons are added to two brain areas: the olfactory bulb and the hippocampus. Newly-generated neurons integrate into the preexisting circuits, bringing a set of unique properties, such as increased plasticity and responsiveness to stimuli. However, the functional implications of the constant addition of these neurons remain unclear, although they are believed to be important for learning and memory. The levels of neurogenesis are regulated by a variety of environmental factors, as well as during learning, suggesting that new neurons could be important for coping with changing environmental demands. Notably, neurogenesis has been shown to be physiologically regulated in relation to reproductive behavior: neurogenesis increases in female mice upon exposure to cues of the mating partners, during pregnancy and lactation, and in male mice upon exposure to their offspring. In this scenario, and because of the key contribution of olfaction to maternal behavior, we sought to investigate the contribution of adult-generated neurons in the olfactory system to maternal behavior and offspring recognition. To do so, we selectively disrupted neurogenesis in the olfactory pathway of female mice using focal irradiation. Disruption of adult neurogenesis in the olfactory bulb did not affect maternal behavior, or the ability of female mice to discriminate familiar from unfamiliar pups. However, reduction of olfactory neurogenesis resulted in abnormal social interaction of female mice, specifically with male conspecifics. Because the olfactory system is crucial for sex recognition, we suggest that the abnormal interaction with males could result from the inability to detect or discriminate male-specific odors and could therefore have implications for the recognition of potential mating partners. Here, I review the results of this and other studies, and discuss their implications for our understanding of the function of adult neurogenesis.

  12. A mineral-rich extract from the red marine algae Lithothamnion calcareum preserves bone structure and function in female mice on a Western-style diet.

    Science.gov (United States)

    Aslam, Muhammad Nadeem; Kreider, Jaclynn M; Paruchuri, Tejaswi; Bhagavathula, Narasimharao; DaSilva, Marissa; Zernicke, Ronald F; Goldstein, Steven A; Varani, James

    2010-04-01

    The purpose of this study was to determine whether a mineral-rich extract derived from the red marine algae Lithothamnion calcareum could be used as a dietary supplement for prevention of bone mineral loss. Sixty C57BL/6 mice were divided into three groups based on diet: the first group received a high-fat Western-style diet (HFWD), the second group was fed the same HFWD along with the mineral-rich extract included as a dietary supplement, and the third group was used as a control and was fed a low-fat rodent chow diet (AIN76A). Mice were maintained on the respective diets for 15 months. Then, long bones (femora and tibiae) from both males and females were analyzed by three-dimensional micro-computed tomography (micro-CT) and (bones from female mice) concomitantly assessed in bone strength studies. Tartrate-resistant acid phosphatase (TRAP), osteocalcin, and N-terminal peptide of type I procollagen (PINP) were assessed in plasma samples obtained from female mice at the time of sacrifice. To summarize, female mice on the HFWD had reduced bone mineralization and reduced bone strength relative to female mice on the low-fat chow diet. The bone defects in female mice on the HFWD were overcome in the presence of the mineral-rich supplement. In fact, female mice receiving the mineral-rich supplement in the HFWD had better bone structure/function than did female mice on the low-fat chow diet. Female mice on the mineral-supplemented HFWD had higher plasma levels of TRAP than mice of the other groups. There were no differences in the other two markers. Male mice showed little diet-specific differences by micro-CT.

  13. Analysis of Adult Female Mouse (Mus musculus) Group Behavior on the International Space Station (ISS)

    Science.gov (United States)

    Solomides, P.; Moyer, E. L.; Talyansky, Y.; Choi, S.; Gong, C.; Globus, R. K.; Ronca, A. E.

    2016-01-01

    As interest in long duration effects of space habitation increases, understanding the behavior of model organisms living within the habitats engineered to fly them is vital for designing, validating, and interpreting future spaceflight studies. A handful of papers have previously reported behavior of mice and rats in the weightless environment of space. The Rodent Research Hardware and Operations Validation (Rodent Research-1; RR1) utilized the Rodent Habitat (RH) developed at NASA Ames Research Center to fly mice on the ISS (International Space Station). Ten adult (16-week-old) female C57BL/6 mice were launched on September 21st, 2014 in an unmanned Dragon Capsule, and spent 37 days in microgravity. Here we report group behavioral phenotypes of the RR1 Flight (FLT) and environment-matched Ground Control (GC) mice in the Rodent Habitat (RH) during this long-duration flight. Video was recorded for 33 days on the ISS, permitting daily assessments of overall health and well-being of the mice, and providing a valuable repository for detailed behavioral analysis. We previously reported that, as compared to GC mice, RR1 FLT mice exhibited the same range of behaviors, including eating, drinking, exploration, self- and allo-grooming, and social interactions at similar or greater levels of occurrence. Overall activity was greater in FLT as compared to GC mice, with spontaneous ambulatory behavior, including organized 'circling' or 'race-tracking' behavior that emerged within the first few days of flight following a common developmental sequence, and comprised the primary dark cycle activity persisting throughout the remainder of the experiment. Participation by individual mice increased dramatically over the course of the flight. Here we present a detailed analysis of 'race-tracking' behavior in which we quantified: (1) Complete lap rotations by individual mice; (2) Numbers of collisions between circling mice; (3) Lap directionality; and (4) Recruitment of mice into a group

  14. The carcinogenic effects of fetal and postnatal radiation in female mice

    International Nuclear Information System (INIS)

    Kusama, Tomoko; Yoshizawa, Yasuo

    1982-01-01

    The present study was designed to investigate the carcinogenic effects of fetal and postnatal irradiation in female mice. The C57BL/6J mice were subjected to whole-body exposure to 1-Gy or 4-Gy 137 Cs γ-ray irradiation on the 15th fetal day or the 30th postnatal day. Following this, all mice were observed throughout their respective life spans under conventional rearing conditions. The tumor incidence rate, average latent period and distributions of various tumors were used as the quantitative parameters of radiation-induced carcinogenesis. The following conclusions can be draw: (1) The mean life span of mice that underwent 4-Gy irradiation at the age of 30 days was shorter than that of non-irradiated control mice. (2) In control mice, the tumor incidence was 75.7%. (3) In order to estimate the mean age and tumor incidence, an adjustment for competing death is necessary. (4) The adjusted tumor incidences of thymic lymphoma and breast tumor of the irradiated groups were not different from those of control group. On the other hand, there was a significant difference between the two in the adjusted incidence of reticular tissue neoplasm. (author)

  15. The Regenerative Potential of Parietal Epithelial Cells in Adult Mice

    OpenAIRE

    Berger, Katja; Schulte, Kevin; Boor, Peter; Kuppe, Christoph; van Kuppevelt, Toin H.; Floege, Jürgen; Smeets, Bart; Moeller, Marcus J.

    2014-01-01

    Previously, we showed that some podocytes in juvenile mice are recruited from cells lining Bowman’s capsule, suggesting that parietal epithelial cells (PECs) are a progenitor cell population for podocytes. To investigate whether PECs also replenish podocytes in adult mice, PECs were genetically labeled in an irreversible fashion in 5-week-old mice. No significant increase in labeled podocytes was observed, even after 18 months. To accelerate a potential regenerative mechanism, progressive glo...

  16. Ecdysteroid receptors in Drosophila melanogaster adult females

    Science.gov (United States)

    Ecdysteroid receptors were identified and partially characterized from total cell extracts of whole animals and dissected tissues from Drosophila melanogaster adult females. Binding studies indicated the presence of two ecdysteroid binding components having high affinity and specificity consistent w...

  17. Two-year body composition analyses of long-lived GHR null mice.

    Science.gov (United States)

    Berryman, Darlene E; List, Edward O; Palmer, Amanda J; Chung, Min-Yu; Wright-Piekarski, Jacob; Lubbers, Ellen; O'Connor, Patrick; Okada, Shigeru; Kopchick, John J

    2010-01-01

    Growth hormone receptor gene-disrupted (GHR-/-) mice exhibit increased life span and adipose tissue mass. Although this obese phenotype has been reported extensively for young adult male GHR-/- mice, data for females and for other ages in either gender are lacking. Thus, the purpose of this study was to evaluate body composition longitudinally in both male and female GHR-/- mice. Results show that GHR-/- mice have a greater percent fat mass with no significant difference in absolute fat mass throughout life. Lean mass shows an opposite trend with percent lean mass not significantly different between genotypes but absolute mass reduced in GHR-/- mice. Differences in body composition are more pronounced in male than in female mice, and both genders of GHR-/- mice show specific enlargement of the subcutaneous adipose depot. Along with previously published data, these results suggest a consistent and intriguing protective effect of excess fat mass in the subcutaneous region.

  18. Disrupting Jagged1-Notch signaling impairs spatial memory formation in adult mice.

    Science.gov (United States)

    Sargin, Derya; Botly, Leigh C P; Higgs, Gemma; Marsolais, Alexander; Frankland, Paul W; Egan, Sean E; Josselyn, Sheena A

    2013-07-01

    It is well-known that Notch signaling plays a critical role in brain development and growing evidence implicates this signaling pathway in adult synaptic plasticity and memory formation. The Notch1 receptor is activated by two subclasses of ligands, Delta-like (including Dll1 and Dll4) and Jagged (including Jag1 and Jag2). Ligand-induced Notch1 receptor signaling is modulated by a family of Fringe proteins, including Lunatic fringe (Lfng). Although Dll1, Jag1 and Lfng are critical regulators of Notch signaling, their relative contribution to memory formation in the adult brain is unknown. To investigate the roles of these important components of Notch signaling in memory formation, we examined spatial and fear memory formation in adult mice with reduced expression of Dll1, Jag1, Lfng and Dll1 plus Lfng. We also examined motor activity, anxiety-like behavior and sensorimotor gating using the acoustic startle response in these mice. Of the lines of mutant mice tested, we found that only mice with reduced Jag1 expression (mice heterozygous for a null mutation in Jag1, Jag1(+/-)) showed a selective impairment in spatial memory formation. Importantly, all other behavior including open field activity, conditioned fear memory (both context and discrete cue), acoustic startle response and prepulse inhibition, was normal in this line of mice. These results provide the first in vivo evidence that Jag1-Notch signaling is critical for memory formation in the adult brain. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  19. Neurosteroids in Adult Hippocampus of Male and Female Rodents: Biosynthesis and Actions of Sex Steroids

    Directory of Open Access Journals (Sweden)

    Yasushi Hojo

    2018-04-01

    Full Text Available The brain is not only the target of steroid hormones but also is able to locally synthesize steroids de novo. Evidence of the local production of steroids in the brain has been accumulating in various vertebrates, including teleost fish, amphibia, birds, rodents, non-human primates, and humans. In this review, we mainly focus on the local production of sex steroids in the hippocampal neurons of adult rodents (rats and mice, a center for learning and memory. From the data of the hippocampus of adult male rats, hippocampal principal neurons [pyramidal cells in CA1–CA3 and granule cells in dentate gyrus (DG] have a complete system for biosynthesis of sex steroids. Liquid chromatography with tandem-mass-spectrometry (LC-MS/MS enabled us to accurately determine the levels of hippocampal sex steroids including 17β-estradiol (17β-E2, testosterone (T, and dihydrotestosterone (DHT, which are much higher than those in blood. Next, we review the steroid synthesis in the hippocampus of female rats, since previous knowledge had been biased toward the data from males. Recently, we clarified that the levels of hippocampal steroids fluctuate in adult female rats across the estrous cycle. Accurate determination of hippocampal steroids at each stage of the estrous cycle is of importance for providing the account for the fluctuation of female hippocampal functions, including spine density, long-term potentiation (LTP and long-term depression (LTD, and learning and memory. These functional fluctuations in female had been attributed to the level of circulation-derived steroids. LC-MS/MS analysis revealed that the dendritic spine density in CA1 of adult female hippocampus correlates with the levels of hippocampal progesterone and 17β-E2. Finally, we introduce the direct evidence of the role of hippocampus-synthesized steroids in hippocampal function including neurogenesis, LTP, and memory consolidation. Mild exercise (2 week of treadmill running elevated

  20. Cholesteryl ester transfer protein alters liver and plasma triglyceride metabolism through two liver networks in female mice[S

    Science.gov (United States)

    Palmisano, Brian T.; Le, Thao D.; Zhu, Lin; Lee, Yoon Kwang; Stafford, John M.

    2016-01-01

    Elevated plasma TGs increase risk of cardiovascular disease in women. Estrogen treatment raises plasma TGs in women, but molecular mechanisms remain poorly understood. Here we explore the role of cholesteryl ester transfer protein (CETP) in the regulation of TG metabolism in female mice, which naturally lack CETP. In transgenic CETP females, acute estrogen treatment raised plasma TGs 50%, increased TG production, and increased expression of genes involved in VLDL synthesis, but not in nontransgenic littermate females. In CETP females, estrogen enhanced expression of small heterodimer partner (SHP), a nuclear receptor regulating VLDL production. Deletion of liver SHP prevented increases in TG production and expression of genes involved in VLDL synthesis in CETP mice with estrogen treatment. We also examined whether CETP expression had effects on TG metabolism independent of estrogen treatment. CETP increased liver β-oxidation and reduced liver TG content by 60%. Liver estrogen receptor α (ERα) was required for CETP expression to enhance β-oxidation and reduce liver TG content. Thus, CETP alters at least two networks governing TG metabolism, one involving SHP to increase VLDL-TG production in response to estrogen, and another involving ERα to enhance β-oxidation and lower liver TG content. These findings demonstrate a novel role for CETP in estrogen-mediated increases in TG production and a broader role for CETP in TG metabolism. PMID:27354419

  1. The effects of aerobic exercise on depression-like, anxiety-like, and cognition-like behaviours over the healthy adult lifespan of C57BL/6 mice.

    Science.gov (United States)

    Morgan, Julie A; Singhal, Gaurav; Corrigan, Frances; Jaehne, Emily J; Jawahar, Magdalene C; Baune, Bernhard T

    2018-01-30

    Preclinical studies have demonstrated exercise improves various types of behaviours such as anxiety-like, depression-like, and cognition-like behaviours. However, these findings were largely conducted in studies utilising short-term exercise protocols, and the effects of lifetime exercise on these behaviours remain unknown. This study investigates the behavioural effects of lifetime exercise in normal healthy ageing C57BL/6 mice over the adult lifespan. 12 week-old C57BL/6 mice were randomly assigned to voluntary wheel running or non-exercise (control) groups. Exercise commenced at aged 3 months and behaviours were assessed in young adult (Y), early middle age (M), and old (O) mice (n=11-17/group). The open field and elevated zero maze examined anxiety-like behaviours, depression-like behaviours were quantified with the forced swim test, and the Y maze and Barnes maze investigated cognition-like behaviours. The effects of lifetime exercise were not simply an extension of the effects of chronic exercise on anxiety-like, depression-like, and cognition-like behaviours. Exercise tended to reduce overt anxiety-like behaviours with ageing, and improved recognition memory and spatial learning in M mice as was expected. However, exercise also increased anxiety behaviours including greater freezing behaviour that extended spatial learning latencies in Y female mice in particular, while reduced distances travelled contributed to longer spatial memory and cognitive flexibility latencies in Y and O mice. Lifetime exercise may increase neurogenesis-associated anxiety. This could be an evolutionary conserved adaptation that nevertheless has adverse impacts on cognition-like function, with particularly pronounced effects in Y female mice with intact sex hormones. These issues require careful investigation in future rodent studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Characterization of Aromatase Expression in the Adult Male and Female Mouse Brain. I. Coexistence with Oestrogen Receptors α and β, and Androgen Receptors

    Science.gov (United States)

    Stanić, Davor; Dubois, Sydney; Chua, Hui Kheng; Tonge, Bruce; Rinehart, Nicole; Horne, Malcolm K.; Boon, Wah Chin

    2014-01-01

    Aromatase catalyses the last step of oestrogen synthesis. There is growing evidence that local oestrogens influence many brain regions to modulate brain development and behaviour. We examined, by immunohistochemistry, the expression of aromatase in the adult male and female mouse brain, using mice in which enhanced green fluorescent protein (EGFP) is transcribed following the physiological activation of the Cyp19A1 gene. EGFP-immunoreactive processes were distributed in many brain regions, including the bed nucleus of the stria terminalis, olfactory tubercle, medial amygdaloid nucleus and medial preoptic area, with the densest distributions of EGFP-positive cell bodies in the bed nucleus and medial amygdala. Differences between male and female mice were apparent, with the density of EGFP-positive cell bodies and fibres being lower in some brain regions of female mice, including the bed nucleus and medial amygdala. EGFP-positive cell bodies in the bed nucleus, lateral septum, medial amygdala and hypothalamus co-expressed oestrogen receptor (ER) α and β, or the androgen receptor (AR), although single-labelled EGFP-positive cells were also identified. Additionally, single-labelled ERα−, ERβ- or AR-positive cell bodies often appeared to be surrounded by EGFP-immunoreactive nerve fibres/terminals. The widespread distribution of EGFP-positive cell bodies and fibres suggests that aromatase signalling is common in the mouse brain, and that locally synthesised brain oestrogens could mediate biological effects by activating pre- and post-synaptic oestrogen α and β receptors, and androgen receptors. The higher number of EGFP-positive cells in male mice may indicate that the autocrine and paracrine effects of oestrogens are more prominent in males than females. PMID:24646567

  3. Variable Suppression of Serum Thyroxine in Female Mice of Different Inbred Strains by Triiodothyronine Administered in Drinking Water

    Science.gov (United States)

    Hamidi, Sepehr; Aliesky, Holly; Chen, Chun-Rong; Rapoport, Basil

    2010-01-01

    Background Recombinant-inbred mouse strains differ in their susceptibility to Graves'-like hyperthyroidism induced by immunization with adenovirus expressing the human thyrotropin (TSH) receptor. Because one genetic component contributing to this susceptibility is altered thyroid sensitivity to TSH receptor agonist stimulation, we wished to quantify thyroid responsiveness to TSH. For such studies, it is necessary to suppress endogenous TSH by administering L-3,5,3′-triiodothyronine (L-T3), with the subsequent decrease in serum thyroxine (T4) reflecting endogenous TSH suppression. Our two objectives were to assess in different inbred strains of mice (i) the extent of serum T4 suppression after L-T3 administration and (ii) the magnitude of serum T4 increase induced by TSH. Methods Mice were tail-bled to establish baseline-serum T4 before L-T3 administration. We initially employed a protocol of L-T3-supplemented drinking water for 7 days. In subsequent experiments, we injected L-T3 intraperitoneally (i.p.) daily for 3 days. Mice were then injected i.p. with bovine TSH (10 mU) and euthanized 5 hours later. Serum T4 was assayed before L-T3 administration, and before and after TSH injection. In some experiments, serum T3 and estradiol were measured in pooled sera. Results Oral L-T3 (3 or 5 μg/mL) suppressed serum T4 levels by 26%–64% in female BALB/c mice but >95% in males. T4 suppression in female B6 mice ranged from 0% to 90%. In C3H mice, L-T3 at 3 μg/mL was ineffective but 5 μg/mL achieved >80% serum T4 reduction. Unlike inbred mice, in outbred CF1 mice the same protocol was more effective: 83% in females and 100% suppression in males. The degree of T4 suppression was unrelated to baseline T4, T3, or estradiol, but was related to mouse weight and postmortem T3, with greater suppression in larger mice (outbred CF1 animals and inbred males). Among females with serum T4 suppression >80%, the increase in serum T4 after TSH injection was greater for BALB

  4. Staphylococcus epidermidis is involved in a mechanism for female reproduction in mice

    Directory of Open Access Journals (Sweden)

    Chihiro Ono

    2015-06-01

    Full Text Available Both external and internal surfaces of organs (e.g., skin, mouth, gut, and intestine are covered with bacteria, which often contribute to physiological events in host animals. Despite externally opened organs, the presence of bacteria in the mammalian female reproductive tract is uncertain. Here we assessed this problem using wild-type strains of mice, C57BL/6N and ICR. We first demonstrated that bacterial colonies were formed from the oviductal fluid in the C57BL/6N mice with birth experience (“parous”, but not in the mice without birth experience (“non-parous”. Sequence analysis of 16S ribosomal RNA (rRNA revealed that Staphylococcus epidermidis existed in the oviductal fluid of the parous mice, confirmed by immunohistochemical analysis. Furthermore, extinction of bacterial population with intraperitoneal injection of antibiotics, penicillin G and streptomycin, disturbed the regularly implanted pattern of embryos in ICR mice. Our results indicate that symbiotic S. epidermidis plays a role in interaction between embryo and uterus upon implantation in mice.

  5. Sunitinib-ibuprofen drug interaction affects the pharmacokinetics and tissue distribution of sunitinib to brain, liver, and kidney in male and female mice differently.

    Science.gov (United States)

    Lau, Christine Li Ling; Chan, Sook Tyng; Selvaratanam, Manimegahlai; Khoo, Hui Wen; Lim, Adeline Yi Ling; Modamio, Pilar; Mariño, Eduardo L; Segarra, Ignacio

    2015-08-01

    Tyrosine kinase inhibitor sunitinib (used in GIST, advanced RCC, and pancreatic neuroendocrine tumors) undergoes CYP3A4 metabolism and is an ABCB1B and ABCG2 efflux transporters substrate. We assessed the pharmacokinetic interaction with ibuprofen (an NSAID used by patients with cancer) in Balb/c male and female mice. Mice (study group) were coadministered (30 min apart) 30 mg/kg of ibuprofen and 60 mg/kg of sunitinib PO and compared with the control groups, which received sunitinib alone (60 mg/kg, PO). Sunitinib concentration in plasma, brain, kidney, and liver was measured by HPLC as scheduled and noncompartmental pharmacokinetic parameters estimated. In female control mice, sunitinib AUC0→∞ decreased in plasma (P brain (P male control mice. After ibuprofen coadministration, female mice showed lower AUC0→∞ in plasma (P brain, liver, and kidney (all P male mice, AUC0→∞ remained unchanged in plasma, increased in liver and kidney, and decreased in brain (all P male and female control mice, but changed after ibuprofen coadministration: Male mice showed 1.6-fold higher liver-to-plasma ratio (P female mice and in kidney (male and female mice) but decreased 55% in brain (P differences. The results illustrate the relevance of this DDI on sunitinib pharmacokinetics and tissue uptake. These may be due to gender-based P450 and efflux/transporters differences. © 2015 Société Française de Pharmacologie et de Thérapeutique.

  6. The Accessory Olfactory System Facilitates the Recovery of the Attraction to Familiar Volatile Female Odors in Male Mice.

    Science.gov (United States)

    Muroi, Yoshikage; Nishimura, Masakazu; Ishii, Toshiaki

    2017-10-31

    Odors in female mice induce sexual arousal in male mice. Repeated exposure to female odors attenuates male attraction, which recovers when the odors are removed. The neuronal mechanisms for the recovery of male attraction have not been clarified. In this study, we examined how olfactory systems are involved in the recovery of male attraction to female odors following habituation in mice. Presentation with volatile female odors for 5 min induced habituation in males. To evaluate male attraction to familiar volatile female odors, we measured the duration for investigating volatile female odors from the same female mouse, which was presented twice for 5 min with 1-, 3-, or 5-min interval. Intranasal irrigation with ZnSO4 solution almost completely suppressed investigating behavior, indicating that the main olfactory system is indispensable for inducing the attraction to volatile female odors. In contrast, removal of the vomeronasal organ, bilateral lesions of the accessory olfactory bulb (AOB), or pharmacological blockage of neurotransmission in the AOB did not affect the investigation time at the first odor presentation. However, each one of the treatments decreased the investigation time in the second presentation, compared to that in the first presentation, at longer intervals than control treatment, indicating that the disturbance of neurotransmission in the accessory olfactory system delayed the recovery of the attraction attenuated by the first presentation. These results suggest that the accessory olfactory system facilitates the recovery of the attraction to familiar volatile female odors in male mice. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. NanoTIO2 (UV-Titan does not induce ESTR mutations in the germline of prenatally exposed female mice

    Directory of Open Access Journals (Sweden)

    Boisen Anne Mette

    2012-06-01

    Full Text Available Abstract Background Particulate air pollution has been linked to an increased risk of cardiovascular disease and cancer. Animal studies have shown that inhalation of air particulates induces mutations in the male germline. Expanded simple tandem repeat (ESTR loci in mice are sensitive markers of mutagenic effects on male germ cells resulting from environmental exposures; however, female germ cells have received little attention. Oocytes may be vulnerable during stages of active cell division (e.g., during fetal development. Accordingly, an increase in germline ESTR mutations in female mice prenatally exposed to radiation has previously been reported. Here we investigate the effects of nanoparticles on the female germline. Since pulmonary exposure to nanosized titanium dioxide (nanoTiO2 produces a long-lasting inflammatory response in mice, it was chosen for the present study. Findings Pregnant C57BL/6 mice were exposed by whole-body inhalation to the nanoTiO2 UV-Titan L181 (~42.4 mg UV-Titan/m3 or filtered clean air on gestation days (GD 8–18. Female C57BL/6 F1 offspring were raised to maturity and mated with unexposed CBA males. The F2 descendents were collected and ESTR germline mutation rates in this generation were estimated from full pedigrees (mother, father, offspring of F1 female mice (192 UV-Titan-exposed F2 offspring and 164 F2 controls. ESTR mutation rates of 0.029 (maternal allele and 0.047 (paternal allele in UV-Titan-exposed F2 offspring were not statistically different from those of F2 controls: 0.037 (maternal allele and 0.061 (paternal allele. Conclusions We found no evidence for increased ESTR mutation rates in F1 females exposed in utero to UV-Titan nanoparticles from GD8-18 relative to control females.

  8. Protein restriction does not affect body temperature pattern in female mice.

    Science.gov (United States)

    Kato, Goro A; Shichijo, Hiroki; Takahashi, Toshihiro; Shinohara, Akio; Morita, Tetsuo; Koshimoto, Chihiro

    2017-10-30

    Daily torpor is a physiological adaptation in mammals and birds characterized by a controlled reduction of metabolic rate and body temperature during the resting phase of circadian rhythms. In laboratory mice, daily torpor is induced by dietary caloric restriction. However, it is not known which nutrients are related to daily torpor expression. To determine whether dietary protein is a key factor in inducing daily torpor in mice, we fed mice a protein-restricted (PR) diet that included only one-quarter of the amount of protein but the same caloric level as a control (C) diet. We assigned six non-pregnant female ICR mice to each group and recorded their body weights and core body temperatures for 4 weeks. Body weights in the C group increased, but those in the PR group remained steady or decreased. Mice in both groups did not show daily torpor, but most mice in a food-restricted group (n=6) supplied with 80% of the calories given to the C group exhibited decreased body weights and frequently displayed daily torpor. This suggests that protein restriction is not a trigger of daily torpor; torpid animals can conserve their internal energy, but torpor may not play a significant role in conserving internal protein. Thus, opportunistic daily torpor in mice may function in energy conservation rather than protein saving.

  9. Adaptation of enterovirus 71 to adult interferon deficient mice.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Caine

    Full Text Available Non-polio enteroviruses, including enterovirus 71 (EV71, have caused severe and fatal cases of hand, foot and mouth disease (HFMD in the Asia-Pacific region. The development of a vaccine or antiviral against these pathogens has been hampered by the lack of a reliable small animal model. In this study, a mouse adapted EV71 strain was produced by conducting serial passages through A129 (α/β interferon (IFN receptor deficient and AG129 (α/β, γ IFN receptor deficient mice. A B2 sub genotype of EV71 was inoculated intraperitoneally (i.p. into neonatal AG129 mice and brain-harvested virus was subsequently passaged through 12 and 15 day-old A129 mice. When tested in 10 week-old AG129 mice, this adapted strain produced 100% lethality with clinical signs including limb paralysis, eye irritation, loss of balance, and death. This virus caused only 17% mortality in same age A129 mice, confirming that in the absence of a functional IFN response, adult AG129 mice are susceptible to infection by adapted EV71 isolates. Subsequent studies in adult AG129 and young A129 mice with the adapted EV71 virus examined the efficacy of an inactivated EV71 candidate vaccine and determined the role of humoral immunity in protection. Passive transfer of rabbit immune sera raised against the EV71 vaccine provided protection in a dose dependent manner in 15 day-old A129 mice. Intramuscular injections (i.m. in five week-old AG129 mice with the alum adjuvanted vaccine also provided protection against the mouse adapted homologous strain. No clinical signs of disease or mortality were observed in vaccinated animals, which received a prime-and-boost, whereas 71% of control animals were euthanized after exhibiting systemic clinical signs (P<0.05. The development of this animal model will facilitate studies on EV71 pathogenesis, antiviral testing, the evaluation of immunogenicity and efficacy of vaccine candidates, and has the potential to establish correlates of protection

  10. Effect of maternal and post weaning folate supply on gene-specific DNA methylation in the small intestine of weaning and adult Apc+/Min and wild type mice.

    Directory of Open Access Journals (Sweden)

    Jill Ann Mckay

    2011-05-01

    Full Text Available Increasing evidence supports the developmental origins of adult health and disease hypothesis which argues for a causal relationship between adverse early life nutrition and increased disease risk in adulthood. Modulation of epigenetic marks, e.g. DNA methylation and consequential altered gene expression, has been proposed as a mechanism mediating these effects. Via its role as a methyl donor, dietary folate supply may influence DNA methylation. As aberrant methylation is an early event in colorectal cancer (CRC pathogenesis, we hypothesised low maternal and/or post-weaning folate intake may influence methylation of genes involved in CRC development. We investigated the effects of maternal folate depletion during pregnancy and lactation on selected gene methylation in the small intestine (SI of wild type (WT and Apc+/Min mice at weaning and as adults. We also investigated the effects of folate depletion post-weaning on gene methylation in adult mice. Female C57Bl6/J mice were fed low or normal folate diets from mating with Apc+/Min males to the end of lactation. A sub set of offspring were killed at weaning. Remaining offspring were weaned on to low or normal folate diets, resulting in 4 treatment groups of Apc+/Min and WT mice. p53 was more methylated in weaning and adult WT compared with Apc+/Min mice (p>0.001. Igf2 and Apc were hypermethylated in adult Apc+/Mi n compared with WT mice (p=0.004 & p=0.012 respectively. Low maternal folate reduced p53 methylation in adults (p=0.04. Low post-weaning folate increased Apc methylation in Apc+/Min mice only (p=0.008 for interaction. These observations demonstrate that folate depletion in early life can alter epigenetic marks in a gene specific manner. Also, the differential effects of altered folate supply on DNA methylation in WT and Apc+/Min mice suggest that genotype may modulate epigenetic responses to environmental cues and may have implications for the development of personalised nutrition.

  11. Entire litters developed from transferred eggs in whole body x-irradiated female mice

    International Nuclear Information System (INIS)

    Lin, T.P.

    1980-01-01

    The sensitivity of mouse eggs to sublethal x-irradiation was determined in vitro and in vivo with regard to the development of donor litters in foster mothers. One thousand seven hundred fifty-eight unfertilized eggs of agouti dark-eyed donor mice were transferred into 293 unirradiated or x-irradiated, mated female pink-eyed mice. Two hundred thirty-nine recipients became pregnant; of these 35 produced litters containing solely dark-eyed fetuses. Sublethal doses of x-radiation administered to donor eggs in vitro before transferring into unirradiated recipients did not influence significantly the number of litters of exclusively dark-eyed fetuses produced. However, recipients irradiated by 250 roentgens (r) produced more solely dark-eyed litters than did those irradiated with 100 r. In 21 pregnant females irradiated by 100 r, only 3 (14%) developed solely dark-eyed fetuses as compared to 22 pregnant females irradiated by 250 r, of which 13 (59%) developed solely dark-eyed fetuses, all from unirradiated, transferred eggs. Of another group of 22 pregnant females which received 250 r body irradiation and subsequently received eggs also irradiated by 250 r, only 7 (32%) produced litters of dark-eyed fetuses. No one female of these three groups carried native fetuses. Such radiation-induced infertility resulting from damage of native eggs rather than loss of mother's ability to carry a pregnancy, is frequently remedied by egg transfer

  12. Alternative reproductive tactics in female striped mice: Solitary breeders have lower corticosterone levels than communal breeders.

    Science.gov (United States)

    Hill, Davina L; Pillay, Neville; Schradin, Carsten

    2015-05-01

    Alternative reproductive tactics (ARTs), where members of the same sex and population show distinct reproductive phenotypes governed by decision-rules, have been well-documented in males of many species, but are less well understood in females. The relative plasticity hypothesis (RPH) predicts that switches between plastic ARTs are mediated by changes in steroid hormones. This has received much support in males, but little is known about the endocrine control of female ARTs. Here, using a free-living population of African striped mice (Rhabdomys pumilio) over five breeding seasons, we tested whether females following different tactics differed in corticosterone and testosterone levels, as reported for male striped mice using ARTs, and in progesterone and oestrogen, which are important in female reproduction. Female striped mice employ three ARTs: communal breeders give birth in a shared nest and provide alloparental care, returners leave the group temporarily to give birth, and solitary breeders leave to give birth and do not return. We expected communal breeders and returners to have higher corticosterone, owing to the social stress of group-living, and lower testosterone than solitary breeders, which must defend territories alone. Solitary breeders had lower corticosterone than returners and communal breeders, as predicted, but testosterone and progesterone did not differ between ARTs. Oestrogen levels were higher in returners (measured before leaving the group) than in communal and solitary breeders, consistent with a modulatory role. Our study demonstrates hormonal differences between females following (or about to follow) different tactics, and provides the first support for the RPH in females. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Adult exposure to tributyltin affects hypothalamic neuropeptide Y, Y1 receptor distribution, and circulating leptin in mice.

    Science.gov (United States)

    Bo, E; Farinetti, A; Marraudino, M; Sterchele, D; Eva, C; Gotti, S; Panzica, G

    2016-07-01

    Tributyltin (TBT), a pesticide used in antifouling paints, is toxic for aquatic invertebrates. In vertebrates, TBT may act in obesogen- inducing adipogenetic gene transcription for adipocyte differentiation. In a previous study, we demonstrated that acute administration of TBT induces c-fos expression in the arcuate nucleus. Therefore, in this study, we tested the hypothesis that adult exposure to TBT may alter a part of the nervous pathways controlling animal food intake. In particular, we investigated the expression of neuropeptide Y (NPY) immunoreactivity. This neuropeptide forms neural circuits dedicated to food assumption and its action is mediated by Y1 receptors that are widely expressed in the hypothalamic nuclei responsible for the regulation of food intake and energy homeostasis. To this purpose, TBT was orally administered at a dose of 0.025 mg/kg/day/body weight to adult animals [male and female C57BL/6 (Y1-LacZ transgenic mice] for 4 weeks. No differences were found in body weight and fat deposition, but we observed a significant increase in feed efficiency in TBT-treated male mice and a significant decrease in circulating leptin in both sexes. Computerized quantitative analysis of NPY immunoreactivity and Y1-related β-galactosidase activity demonstrated a statistically significant reduction in NPY and Y1 transgene expression in the hypothalamic circuit controlling food intake of treated male mice in comparison with controls. In conclusion, the present results indicate that adult exposure to TBT is profoundly interfering with the nervous circuits involved in the stimulation of food intake. © 2016 American Society of Andrology and European Academy of Andrology.

  14. Genetic and hormonal control of hepatic steatosis in female and male mice.

    Science.gov (United States)

    Norheim, Frode; Hui, Simon T; Kulahcioglu, Emre; Mehrabian, Margarete; Cantor, Rita M; Pan, Calvin; Parks, Brian W; Lusis, Aldons J

    2017-01-01

    The etiology of nonalcoholic fatty liver disease is complex and influenced by factors such as obesity, insulin resistance, hyperlipidemia, and sex. We now report a study on sex difference in hepatic steatosis in the context of genetic variation using a population of inbred strains of mice. While male mice generally exhibited higher concentration of hepatic TG levels on a high-fat high-sucrose diet, sex differences showed extensive interaction with genetic variation. Differences in percentage body fat were the best predictor of hepatic steatosis among the strains and explained about 30% of the variation in both sexes. The difference in percent gonadal fat and HDL explained 9.6% and 6.7% of the difference in hepatic TGs between the sexes, respectively. Genome-wide association mapping of hepatic TG revealed some striking differences in genetic control of hepatic steatosis between females and males. Gonadectomy increased the hepatic TG to body fat percentage ratio among male, but not female, mice. Our data suggest that the difference between the sexes in hepatic TG can be partly explained by differences in body fat distribution, plasma HDL, and genetic regulation. Future studies are required to understand the molecular interactions between sex, genetics, and the environment. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  15. Disruption of the GH Receptor Gene in Adult Mice Increases Maximal Lifespan in Females

    DEFF Research Database (Denmark)

    Junnila, Riia K.; Duran-Ortiz, Silvana; Suer, Ozan

    2016-01-01

    GH and IGF-1 are important for a variety of physiological processes including growth, development, and aging. Mice with reduced levels of GH and IGF-1 have been shown to live longer than wild-type controls. Our laboratory has previously found that mice with a GH receptor gene knockout (GHRKO) fro...

  16. Increasing the effectiveness of intracerebral injections in adult and neonatal mice: a neurosurgical point of view.

    Science.gov (United States)

    Mathon, Bertrand; Nassar, Mérie; Simonnet, Jean; Le Duigou, Caroline; Clemenceau, Stéphane; Miles, Richard; Fricker, Desdemona

    2015-12-01

    Intracerebral injections of tracers or viral constructs in rodents are now commonly used in the neurosciences and must be executed perfectly. The purpose of this article is to update existing protocols for intracerebral injections in adult and neonatal mice. Our procedure for stereotaxic injections in adult mice allows the investigator to improve the effectiveness and safety, and save time. Furthermore, for the first time, we describe a two-handed procedure for intracerebral injections in neonatal mice that can be performed by a single operator in a very short time. Our technique using the stereotaxic arm allows a higher precision than freehand techniques previously described. Stereotaxic injections in adult mice can be performed in 20 min and have >90% efficacy in targeting the injection site. Injections in neonatal mice can be performed in 5 min. Efficacy depends on the difficulty of precisely localizing the injection sites, due to the small size of the animal. We describe an innovative, effortless, and reproducible surgical protocol for intracerebral injections in adult and neonatal mice.

  17. Late gestational intermittent hypoxia induces metabolic and epigenetic changes in male adult offspring mice.

    Science.gov (United States)

    Khalyfa, Abdelnaby; Cortese, Rene; Qiao, Zhuanhong; Ye, Honggang; Bao, Riyue; Andrade, Jorge; Gozal, David

    2017-04-15

    Late gestation during pregnancy has been associated with a relatively high prevalence of obstructive sleep apnoea (OSA). Intermittent hypoxia, a hallmark of OSA, could impose significant long-term effects on somatic growth, energy homeostasis and metabolic function in offspring. Here we show that late gestation intermittent hypoxia induces metabolic dysfunction as reflected by increased body weight and adiposity index in adult male offspring that is paralleled by epigenomic alterations and inflammation in visceral white adipose tissue. Fetal perturbations by OSA during pregnancy impose long-term detrimental effects manifesting as metabolic dysfunction in adult male offspring. Pregnancy, particularly late gestation (LG), has been associated with a relatively high prevalence of obstructive sleep apnoea (OSA). Intermittent hypoxia (IH), a hallmark of OSA, could impose significant long-term effects on somatic growth, energy homeostasis, and metabolic function in offspring. We hypothesized that IH during late pregnancy (LG-IH) may increase the propensity for metabolic dysregulation and obesity in adult offspring via epigenetic modifications. Time-pregnant female C57BL/6 mice were exposed to LG-IH or room air (LG-RA) during days 13-18 of gestation. At 24 weeks, blood samples were collected from offspring mice for lipid profiles and insulin resistance, indirect calorimetry was performed and visceral white adipose tissues (VWAT) were assessed for inflammatory cells as well as for differentially methylated gene regions (DMRs) using a methylated DNA immunoprecipitation on chip (MeDIP-chip). Body weight, food intake, adiposity index, fasting insulin, triglycerides and cholesterol levels were all significantly higher in LG-IH male but not female offspring. LG-IH also altered metabolic expenditure and locomotor activities in male offspring, and increased number of pro-inflammatory macrophages emerged in VWAT along with 1520 DMRs (P < 0.0001), associated with 693

  18. Dietary arginine depletion reduces depressive-like responses in male, but not female, mice.

    Science.gov (United States)

    Workman, Joanna L; Weber, Michael D; Nelson, Randy J

    2011-09-30

    Previous behavioral studies have manipulated nitric oxide (NO) production either by pharmacological inhibition of its synthetic enzyme, nitric oxide synthase (NOS), or by deletion of the genes that code for NOS. However manipulation of dietary intake of the NO precursor, L-arginine, has been understudied in regard to behavioral regulation. L-Arginine is a common amino acid present in many mammalian diets and is essential during development. In the brain L-arginine is converted into NO and citrulline by the enzyme, neuronal NOS (nNOS). In Experiment 1, paired mice were fed a diet comprised either of an L-arginine-depleted, L-arginine-supplemented, or standard level of L-arginine during pregnancy. Offspring were continuously fed the same diets and were tested in adulthood in elevated plus maze, forced swim, and resident-intruder aggression tests. L-Arginine depletion reduced depressive-like responses in male, but not female, mice and failed to significantly alter anxiety-like or aggressive behaviors. Arginine depletion throughout life reduced body mass overall and eliminated the sex difference in body mass. Additionally, arginine depletion significantly increased corticosterone concentrations, which negatively correlated with time spent floating. In Experiment 2, adult mice were fed arginine-defined diets two weeks prior to and during behavioral testing, and again tested in the aforementioned tests. Arginine depletion reduced depressive-like responses in the forced swim test, but did not alter behavior in the elevated plus maze or the resident intruder aggression test. Corticosterone concentrations were not altered by arginine diet manipulation in adulthood. These results indicate that arginine depletion throughout development, as well as during a discrete period during adulthood ameliorates depressive-like responses. These results may yield new insights into the etiology and sex differences of depression. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Focal lesions within the ventral striato-pallidum abolish attraction for male chemosignals in female mice.

    Science.gov (United States)

    Agustín-Pavón, Carmen; Martínez-García, Fernando; Lanuza, Enrique

    2014-02-01

    In rodents, socio-sexual behaviour is largely mediated by chemosensory cues, some of which are rewarding stimuli. Female mice display an innate attraction towards male chemosignals, dependent on the vomeronasal system. This behaviour likely reflects the hedonic value of sexual chemosignals. The anteromedial aspect of the olfactory tubercle, along with its associated islands of Calleja, receives vomeronasal inputs and sexually-dimorphic vasopressinergic innervation. Thus, we hypothesised that this portion of the ventral striato-pallidum, known to be involved in reward processing, might be important for sexual odorant-guided behaviours. In this study, we demonstrate that lesions of this region, but not of regions in the posterolateral striato-pallidum, abolish the attraction of female mice for male chemosignals, without affecting significantly their preference for a different natural reward (a sucrose solution). These results show that, at least in female mice, the integrity of the anterior aspect of the medioventral striato-pallidum, comprising a portion of the olfactory tubercle and associated islands of Calleja, is necessary for the attraction for male chemosignals. We suggest that this region contributes to the processing of the hedonic properties of biologically significant odorants. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Compared to sucrose, previous consumption of fructose and glucose monosaccharides reduces survival and fitness of female mice.

    Science.gov (United States)

    Ruff, James S; Hugentobler, Sara A; Suchy, Amanda K; Sosa, Mirtha M; Tanner, Ruth E; Hite, Megumi E; Morrison, Linda C; Gieng, Sin H; Shigenaga, Mark K; Potts, Wayne K

    2015-03-01

    Intake of added sugar has been shown to correlate with many human metabolic diseases, and rodent models have characterized numerous aspects of the resulting disease phenotypes. However, there is a controversy about whether differential health effects occur because of the consumption of either of the two common types of added sugar-high-fructose corn syrup (fructose and glucose monosaccharides; F/G) or table sugar (sucrose, a fructose and glucose disaccharide). We tested the equivalence of sucrose- vs. F/G-containing diets on mouse (Mus musculus) longevity, reproductive success, and social dominance. We fed wild-derived mice, outbred mice descended from wild-caught ancestors, a diet in which 25% of the calories came from either an equal ratio of F/G or an isocaloric amount of sucrose (both diets had 63% of total calories as carbohydrates). Exposure lasted 40 wk, starting at weaning (21 d of age), and then mice (104 females and 56 males) were released into organismal performances assays-seminatural enclosures where mice competed for territories, resources, and mates for 32 wk. Within enclosures all mice consumed the F/G diet. Females initially fed the F/G diet experienced a mortality rate 1.9 times the rate (P = 0.012) and produced 26.4% fewer offspring than females initially fed sucrose (P = 0.001). This reproductive deficiency was present before mortality differences, suggesting the F/G diet was causing physiologic performance deficits prior to mortality. No differential patterns in survival, reproduction, or social dominance were observed in males, indicating a sex-specific outcome of exposure. This study provides experimental evidence that the consumption of human-relevant levels of F/G is more deleterious than an isocaloric amount of sucrose for key organism-level health measures in female mice. © 2015 American Society for Nutrition.

  1. No evidence for female discrimination against male house mice carrying a selfish genetic element.

    Science.gov (United States)

    Sutter, Andreas; Lindholm, Anna K

    2016-12-01

    Meiotic drivers distort transmission to the next generation in their favor, with detrimental effects on the fitness of their homologues and the rest of the genome. Male carriers of meiotic drivers commonly inflict costs on their mates through genetic incompatibility, reduced fecundity, or biased brood sex ratios. Given these costs, evidence for female discrimination against male carriers is surprisingly rare. One of few examples is the t haplotype in house mice, a meiotic driver that shows strong transmission distortion in males and is typically homozygote lethal. As a consequence, mating between 2 t heterozygous (+/ t ) mice leads to high embryo mortality. Previous experiments showing that +/ t females avoid this incompatibility cost by preferring +/+ versus +/ t males have inferred preference based on olfactory cues or brief social interactions. Evidence from mating contexts in laboratory settings and semi-natural populations has been inconclusive. Here, we investigated female choice from a large number of no-choice mating trials. We found no evidence for discrimination against +/ t males based on mating, remating, and copulatory behavior. Further, we found no evidence for avoidance of incompatibility through selective interactions between gametes. The likelihood of mating showed significant effects of female weight and genotype, suggesting that our test paradigm enabled females to exhibit mate choice. We discuss the strengths and limitations of our approach. By explicitly considering selection at both the individual and gene level, we argue why precopulatory female discrimination by +/ t females may be less evolutionarily stable than discrimination by all females based on postcopulatory mechanisms.

  2. Myogenin regulates exercise capacity but is dispensable for skeletal muscle regeneration in adult mdx mice.

    Directory of Open Access Journals (Sweden)

    Eric Meadows

    Full Text Available Duchenne muscular dystrophy (DMD is the most prevalent inherited childhood muscle disorder in humans. mdx mice exhibit a similar pathophysiology to the human disorder allowing for an in-depth investigation of DMD. Myogenin, a myogenic regulatory factor, is best known for its role in embryonic myogenesis, but its role in adult muscle maintenance and regeneration is still poorly understood. Here, we generated an mdx:Myog(flox/flox mouse harboring a tamoxifen-inducible Cre recombinase transgene, which was used to conditionally delete Myog during adult life. After tamoxifen treatment, three groups of mice were created to study the effects of Myog deletion: mdx:Myog(flox/flox mice (mdx, Myog(flox/flox mice (wild-type, and mdx:Myog(floxΔ/floxΔ:Cre-ER mice (mdx:Myog-deleted. mdx:Myog-deleted mice exhibited no adverse phenotype and behaved normally. When run to exhaustion, mdx:Myog-deleted mice demonstrated an enhanced capacity for exercise compared to mdx mice, running nearly as far as wild-type mice. Moreover, these mice showed the same signature characteristics of muscle regeneration as mdx mice. Unexpectedly, we found that myogenin was dispensable for muscle regeneration. Factors associated with muscle fatigue, metabolism, and proteolysis were significantly altered in mdx:Myog-deleted mice, and this might contribute to their increased exercise capacity. Our results reveal novel functions for myogenin in adult muscle and suggest that reducing Myog expression in other muscle disease models may partially restore muscle function.

  3. Neonatal vaginal irritation results in long-term visceral and somatic hypersensitivity and increased hypothalamic–pituitary–adrenal axis output in female mice

    Science.gov (United States)

    Pierce, Angela N.; Zhang, Zhen; Fuentes, Isabella M.; Wang, Ruipeng; Ryals, Janelle M.; Christianson, Julie A.

    2015-01-01

    Abstract Experiencing early life stress or injury increases a woman's likelihood of developing vulvodynia and concomitant dysregulation of the hypothalamic–pituitary–adrenal (HPA) axis. To investigate the outcome of neonatal vaginal irritation (NVI), female mouse pups were administered intravaginal zymosan on postnatal days 8 and 10 and were assessed as adults for vaginal hypersensitivity by measuring the visceromotor response to vaginal balloon distension (VBD). Western blotting and calcium imaging were performed to measure transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) in the vagina and innervating primary sensory neurons. Serum corticosterone (CORT), mast cell degranulation, and corticotropin-releasing factor receptor 1 (CRF1) expression were measured as indicators of peripheral HPA axis activation. Colorectal and hind paw sensitivity were measured to determine cross-sensitization resulting from NVI. Adult NVI mice had significantly larger visceromotor response during VBD than naive mice. TRPA1 protein expression was significantly elevated in the vagina, and calcium transients evoked by mustard oil (TRPA1 ligand) or capsaicin (TRPV1 ligand) were significantly decreased in dorsal root ganglion from NVI mice, despite displaying increased depolarization-evoked calcium transients. Serum CORT, vaginal mast cell degranulation, and CRF1 protein expression were all significantly increased in NVI mice, as were colorectal and hind paw mechanical and thermal sensitivity. Neonatal treatment with a CRF1 antagonist, NBI 35965, immediately before zymosan administration largely attenuated many of the effects of NVI. These results suggest that NVI produces chronic hypersensitivity of the vagina, as well as of adjacent visceral and distant somatic structures, driven in part by increased HPA axis activation. PMID:26098441

  4. Neonatal exposure to daidzein, genistein, or the combination modulates bone development in female CD-1 mice.

    Science.gov (United States)

    Kaludjerovic, Jovana; Ward, Wendy E

    2009-03-01

    Neonatal exposure to genistein (GEN), an isoflavone abundant in soy, favorably modulates bone mineral density (BMD) and bone strength in mice at adulthood. The study objective was to determine whether early exposure to a combination of the soy isoflavones daidzein (DAI) and GEN that naturally exists in soy protein-based infant formula results in greater benefits to bone at adulthood than either treatment alone. Male and female CD-1 mice (n = 8-16 pups per group per gender) were randomized to subcutaneous injections of DAI (2 mg x kg body weight(-1) x d(-1)), GEN (5 mg x kg body weight(-1) x d(-1)), DAI+GEN (7 mg x kg body weight(-1) x d(-1)), diethylstilbesterol (DES; positive control) (2 mg x kg body weight(-1) x d(-1)), or control (CON) from postnatal d 1-5 and were studied to 4 mo of age. BMD, biomechanical bone strength, and bone microarchitecture were assessed at the femur and lumbar vertebrae (LV). Females treated with DAI, GEN, DAI+GEN, or DES had greater (P GEN resulted in greater (P GEN had a positive effect on the skeleton of female mice at adulthood, but, compared with individual treatments, DAI+GEN did not have a greater benefit to bone in females or males.

  5. Estradiol-induced neurogenesis in the female accessory olfactory bulb is required for the learning of the male odor.

    Science.gov (United States)

    Brus, Maïna; Trouillet, Anne-Charlotte; Hellier, Vincent; Bakker, Julie

    2016-08-01

    Odors processed by the main and accessory olfactory bulbs (MOB, AOB) are important for sexual behavior. Interestingly, both structures continue to receive new neurons during adulthood. A role for olfactory neurogenesis in sexual behavior in female mice has recently been shown and gonadal hormones such as estradiol can modulate adult neurogenesis. Therefore, we wanted to determine the role of estradiol in learning the odors of sexual partners and in the adult neurogenesis of female aromatase knockout mice (ArKO), unable to produce estradiol. Female wild-type (WT) and ArKO mice were exposed to male odors during 7 days, and olfactory preferences, cell proliferation, cell survival and functional involvement of newborn neurons were analyzed, using BrdU injections, in combination with a marker of cell activation (Zif268) and neuronal fate (doublecortin, NeuN). Behavioral tasks indicated that both WT and ArKO females were able to discriminate between the odors of two different males, but ArKO mice failed to learn the familiar male odor. Proliferation of newborn cells was reduced in ArKO mice only in the dentate gyrus of the hippocampus. Olfactory exposure decreased cell survival in the AOB in WT females, suggesting a role for estradiol in a structure involved in sexual behavior. Finally, newborn neurons do not seem to be functionally involved in the AOB of ArKO mice compared with WT, when females were exposed to the odor of a familiar male, suggesting that estradiol-induced neurogenesis in the AOB is required for the learning of the male odor in female mice. Aromatase knockout mice (ArKO) presented deficits in olfactory preferences without affecting their olfactory discrimination abilities, and showed no functional involvement of newborn neurons in the accessory olfactory bulb (AOB) in response to the odor of a familiar male. These results suggest that estradiol-induced neurogenesis in the female AOB is required for the learning of the male odor. © 2016 International

  6. Effect of Vomeronasal Organ Removal From Male Mice on Their Preference for and Neural Fos Responses to Female Urinary Odors

    OpenAIRE

    Pankevich, Diana E.; Cherry, James A.; Baum, Michael J.

    2006-01-01

    Four experiments were conducted to determine whether vomeronasal organ (VNO) inputs in male mice mediate the rewarding properties of estrous female urinary odors. Sexually naive male mice with either an intact (VNOi) or lesioned (VNOx) VNO preferred to investigate female urine over water in Y-maze tests. Subsequently, VNOi males ran significantly more quickly and remained in nasal contact longer with estrous female urine than with male urine, whereas VNOx males investigated these odors equall...

  7. Survival of adult female elk in yellowstone following wolf restoration

    Science.gov (United States)

    Evans, S.B.; Mech, L.D.; White, P.J.; Sargeant, G.A.

    2006-01-01

    Counts of northern Yellowstone elk (Cervus elaphus) in northwestern Wyoming and adjacent Montana, USA, have decreased at an average rate of 6-8% per year since wolves (Canis lupus) were reintroduced in 1995. Population growth rates of elk are typically sensitive to variations in adult female survival; populations that are stable or increasing exhibit high adult female survival. We used survival records for 85 radiocollared adult female elk 1-19 years old to estimate annual survival from March 2000 to February 2004. Weighted average annual survival rates were approximately 0.83 (95% CI = 0.77-0.89) for females 1-15 years old and 0.80 (95% CI = 0.73-0.86) for all females. Our estimates were much lower than the rate of 0.99 observed during 1969-1975 when fewer elk were harvested by hunters, wolves were not present, and other predators were less numerous. Of 33 documented deaths included in our analysis, we attributed 11 to hunter harvest, 14 to predation (10 wolf, 2 unknown, 1 cougar [Puma concolor], and 1 bear [Ursus sp.]), 6 to unknown causes, and 2 to winter-kill. Most deaths occurred from December through March. Estimates of cause-specific annual mortality rates were 0.09 (0.05-0.14) for all predators, 0.08 (0.04-0.13) for hunting, and 0.07 (0.03-0.11) for wolves specifically. Wolf-killed elk were typically older (median = 12 yr) than hunter-killed elk (median = 9 yr, P = 0.03). However, elk that winter outside the park where they were exposed to hunting were also younger (median = 7 yr) than elk that we did not observe outside the park (median = 9 yr, P wolves and hunters may reflect characteristics of elk exposed to various causes of mortality, as well as differences in susceptibility. Unless survival rates of adult females increase, elk numbers are likely to continue declining. Hunter harvest is the only cause of mortality that is amenable to management at the present time.

  8. Ultrasonic vocalizations of adult male Foxp2-mutant mice: behavioral contexts of arousal and emotion.

    Science.gov (United States)

    Gaub, S; Fisher, S E; Ehret, G

    2016-02-01

    Adult mouse ultrasonic vocalizations (USVs) occur in multiple behavioral and stimulus contexts associated with various levels of arousal, emotion and social interaction. Here, in three experiments of increasing stimulus intensity (water; female urine; male interacting with adult female), we tested the hypothesis that USVs of adult males express the strength of arousal and emotion via different USV parameters (18 parameters analyzed). Furthermore, we analyzed two mouse lines with heterozygous Foxp2 mutations (R552H missense, S321X nonsense), known to produce severe speech and language disorders in humans. These experiments allowed us to test whether intact Foxp2 function is necessary for developing full adult USV repertoires, and whether mutations of this gene influence instinctive vocal expressions based on arousal and emotion. The results suggest that USV calling rate characterizes the arousal level, while sound pressure and spectrotemporal call complexity (overtones/harmonics, type of frequency jumps) may provide indices of levels of positive emotion. The presence of Foxp2 mutations did not qualitatively affect the USVs; all USV types that were found in wild-type animals also occurred in heterozygous mutants. However, mice with Foxp2 mutations displayed quantitative differences in USVs as compared to wild-types, and these changes were context dependent. Compared to wild-type animals, heterozygous mutants emitted mainly longer and louder USVs at higher minimum frequencies with a higher occurrence rate of overtones/harmonics and complex frequency jump types. We discuss possible hypotheses about Foxp2 influence on emotional vocal expressions, which can be investigated in future experiments using selective knockdown of Foxp2 in specific brain circuits. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  9. Speciation and reduced hybrid female fertility in house mice.

    Science.gov (United States)

    Suzuki, Taichi A; Nachman, Michael W

    2015-09-01

    In mammals, intrinsic postzygotic isolation has been well studied in males but has been less studied in females, despite the fact that female gametogenesis and pregnancy provide arenas for hybrid sterility or inviability that are absent in males. Here, we asked whether inviability or sterility is observed in female hybrids of Mus musculus domesticus and M. m. musculus, taxa which hybridize in nature and for which male sterility has been well characterized. We looked for parent-of-origin growth phenotypes by measuring adult body weights in F1 hybrids. We evaluated hybrid female fertility by crossing F1 females to a tester male and comparing multiple reproductive parameters between intrasubspecific controls and intersubspecific hybrids. Hybrid females showed no evidence of parent-of-origin overgrowth or undergrowth, providing no evidence for reduced viability. However, hybrid females had smaller litter sizes, reduced embryo survival, fewer ovulations, and fewer small follicles relative to controls. Significant variation in reproductive parameters was seen among different hybrid genotypes, suggesting that hybrid incompatibilities are polymorphic within subspecies. Differences in reproductive phenotypes in reciprocal genotypes were observed and are consistent with cyto-nuclear incompatibilities or incompatibilities involving genomic imprinting. These findings highlight the potential importance of reduced hybrid female fertility in the early stages of speciation. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  10. Global gene expression patterns in the post-pneumonectomy lung of adult mice

    Directory of Open Access Journals (Sweden)

    Ingenito Edward P

    2009-10-01

    Full Text Available Abstract Background Adult mice have a remarkable capacity to regenerate functional alveoli following either lung resection or injury that exceeds the regenerative capacity observed in larger adult mammals. The molecular basis for this unique capability in mice is largely unknown. We examined the transcriptomic responses to single lung pneumonectomy in adult mice in order to elucidate prospective molecular signaling mechanisms used in this species during lung regeneration. Methods Unilateral left pneumonectomy or sham thoracotomy was performed under general anesthesia (n = 8 mice per group for each of the four time points. Total RNA was isolated from the remaining lung tissue at four time points post-surgery (6 hours, 1 day, 3 days, 7 days and analyzed using microarray technology. Results The observed transcriptomic patterns revealed mesenchymal cell signaling, including up-regulation of genes previously associated with activated fibroblasts (Tnfrsf12a, Tnc, Eln, Col3A1, as well as modulation of Igf1-mediated signaling. The data set also revealed early down-regulation of pro-inflammatory cytokine transcripts and up-regulation of genes involved in T cell development/function, but few similarities to transcriptomic patterns observed during embryonic or post-natal lung development. Immunohistochemical analysis suggests that early fibroblast but not myofibroblast proliferation is important during lung regeneration and may explain the preponderance of mesenchymal-associated genes that are over-expressed in this model. This again appears to differ from embryonic alveologenesis. Conclusion These data suggest that modulation of mesenchymal cell transcriptome patterns and proliferation of S100A4 positive mesenchymal cells, as well as modulation of pro-inflammatory transcriptome patterns, are important during post-pneumonectomy lung regeneration in adult mice.

  11. Different effects of bisphenol-A on memory behavior and synaptic modification in intact and estrogen-deprived female mice.

    Science.gov (United States)

    Xu, Xiaohong; Gu, Ting; Shen, Qiaoqiao

    2015-03-01

    Bisphenol-A (BPA) has the capability of interfering with the effects of estrogens on modulating brain function. The purpose of this study was to investigate the effects of BPA on memory and synaptic modification in the hippocampus of female mice under different levels of cycling estrogen. BPA exposure (40, 400 μg/kg/day) for 8 weeks did not affect spatial memory and passive avoidance task of gonadally intact mice but improved ovariectomy (Ovx)-induced memory impairment, whereas co-exposure of BPA with estradiol benzoate (EB) diminished the rescue effect of EB on memory behavior of Ovx mice. The results of morphometric measurement showed that BPA positively modified the synaptic interface structure and increased the synaptic density of CA1 pyramidal cell in the hippocampus of Ovx females, but inhibited the enhancement of EB on synaptic modification and synaptogenesis of Ovx mice. Furthermore, BPA up-regulated synaptic proteins synapsin I and PSD-95 and NMDA receptor NR2B but inhibited EB-induced increase in PSD-95 and NR2B in the hippocampus of Ovx mice. These results suggest that BPA interfered with normal hormonal regulation in synaptic plasticity and memory of female mice as a potent estrogen mimetic and as a disruptor of estrogen under various concentrations of cycling estrogen. © 2014 International Society for Neurochemistry.

  12. 17β-Estradiol administration promotes delayed cutaneous wound healing in 40-week ovariectomised female mice.

    Science.gov (United States)

    Mukai, Kanae; Nakajima, Yukari; Urai, Tamae; Komatsu, Emi; Nasruddin; Sugama, Junko; Nakatani, Toshio

    2016-10-01

    This study investigated the effect of 17β-estradiol on wound healing in 40-week ovariectomised female mice. Thirty-six-week-old female mice were divided into three groups: medication with 17β-estradiol after ovariectomy (OVX + 17β-estradiol), ovariectomy (OVX) and sham (SHAM). The mice received two full-thickness wounds, and the OVX + 17β-estradiol group was administered 17β-estradiol at 0·01 g/day until healing. In the OVX + 17β-estradiol group, the ratio of wound area was significantly smaller than those of the OVX and SHAM groups on days 1-3, 5, 6, 8-12 and 9-12, respectively, the numbers of neutrophils and macrophages were significantly smaller than those on days 3 and 7, the ratio of re-epithelialisation was significantly higher than those on days 3 and 11, the ratio of myofibroblasts was significantly higher than those on day 11 and smaller on day 14, and the ratio of collagen fibres was significantly larger than that of the OVX group on days 7-14. We found that 17β-estradiol administration promotes cutaneous wound healing in 40-week female mice by reducing wound area, shortening inflammatory response, and promoting re-epithelialisation, collagen deposition and wound contraction. Our results suggest that cutaneous wound healing that is delayed because of ageing is promoted by exogenous and continuous 17β-estradiol administration. © 2014 The Authors. International Wound Journal © 2014 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  13. Mice with ablated adult brain neurogenesis are not impaired in antidepressant response to chronic fluoxetine.

    Science.gov (United States)

    Jedynak, Paulina; Kos, Tomasz; Sandi, Carmen; Kaczmarek, Leszek; Filipkowski, Robert K

    2014-09-01

    The neurogenesis hypothesis of major depression has two main facets. One states that the illness results from decreased neurogenesis while the other claims that the very functioning of antidepressants depends on increased neurogenesis. In order to verify the latter, we have used cyclin D2 knockout mice (cD2 KO mice), known to have virtually no adult brain neurogenesis, and we demonstrate that these mice successfully respond to chronic fluoxetine. After unpredictable chronic mild stress, mutant mice showed depression-like behavior in forced swim test, which was eliminated with chronic fluoxetine treatment, despite its lack of impact on adult hippocampal neurogenesis in cD2 KO mice. Our results suggest that new neurons are not indispensable for the action of antidepressants such as fluoxetine. Using forced swim test and tail suspension test, we also did not observe depression-like behavior in control cD2 KO mice, which argues against the link between decreased adult brain neurogenesis and major depression. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Long-lived ames dwarf mice are resistant to chemical stressors.

    Science.gov (United States)

    Bokov, Alex F; Lindsey, Merry L; Khodr, Christina; Sabia, Marian R; Richardson, Arlan

    2009-08-01

    To probe the connection between longevity and stress resistance, we compared the sensitivity of Ames long-lived dwarf mice and control littermates with paraquat, diquat, and dobutamine. In young adult animals, 95% of male and 39% of female controls died after paraquat administration, but no dwarf animals died. When the experiment was repeated at an older age or a higher dosage of paraquat, dwarf mice still showed greater resistance. Dwarf mice also were more resistant to diquat; 80% of male and 60% of female controls died compared with 40% and 20% of dwarf mice, despite greater sensitivity of dwarf liver to diquat. Dwarf mice were also less sensitive to dobutamine-induced cardiac stress and had lower levels of liver and lung F(2)-isoprostanes. This is the first direct in vivo evidence that long-lived Ames dwarf mice have enhanced resistance to chemical insult, particularly oxidative stressors.

  15. A Novel Letrozole Model Recapitulates Both the Reproductive and Metabolic Phenotypes of Polycystic Ovary Syndrome in Female Mice1

    Science.gov (United States)

    Kauffman, Alexander S.; Thackray, Varykina G.; Ryan, Genevieve E.; Tolson, Kristen P.; Glidewell-Kenney, Christine A.; Semaan, Sheila J.; Poling, Matthew C.; Iwata, Nahoko; Breen, Kellie M.; Duleba, Antoni J.; Stener-Victorin, Elisabet; Shimasaki, Shunichi; Webster, Nicholas J.; Mellon, Pamela L.

    2015-01-01

    Polycystic ovary syndrome (PCOS) pathophysiology is poorly understood, due partly to lack of PCOS animal models fully recapitulating this complex disorder. Recently, a PCOS rat model using letrozole (LET), a nonsteroidal aromatase inhibitor, mimicked multiple PCOS phenotypes, including metabolic features absent in other models. Given the advantages of using genetic and transgenic mouse models, we investigated whether LET produces a similar PCOS phenotype in mice. Pubertal female C57BL/6N mice were treated for 5 wk with LET, which resulted in increased serum testosterone and normal diestrus levels of estradiol, similar to the hyperandrogenemia and follicular phase estrogen levels of PCOS women. As in PCOS, ovaries from LET mice were larger, polycystic, and lacked corpora lutea versus controls. Most LET females were acyclic, and all were infertile. LET females displayed elevated serum LH levels and higher Lhb mRNA in the pituitary. In contrast, serum FSH and Fshb were significantly reduced in LET females, demonstrating differential effects on gonadotropins, as in PCOS. Within the ovary, LET females had higher Cyp17, Cyp19, and Fsh receptor mRNA expression. In the hypothalamus, LET females had higher kisspeptin receptor mRNA expression but lower progesterone receptor mRNA levels. LET females also gained more weight than controls, had increased abdominal adiposity and adipocyte size, elevated adipose inflammatory mRNA levels, and impaired glucose tolerance, mirroring the metabolic phenotype in PCOS women. This is the first report of a LET paradigm in mice that recapitulates both reproductive and metabolic PCOS phenotypes and will be useful to genetically probe the PCOS condition. PMID:26203175

  16. Preferences of group-housed female mice regarding structure of softwood bedding.

    Science.gov (United States)

    Kirchner, J; Hackbarth, H; Stelzer, H D; Tsai, P-P

    2012-04-01

    Bedding influences various parameters in the housing of laboratory mice, such as health, physiology and behaviour (often considered as being integral parts of welfare). Notwithstanding existent studies about bedding preferences of individually tested mice, data about group-housed mice are still lacking. The aim of this study was to find out the structure preference for softwood bedding of group-housed mice. One hundred and eight 8-week-old female mice (C57BL6/JOlaHsd and BALB/cOlaHsd) were housed in groups of three and were given one-week free access to two different bedding structures at a time. In three test combinations, softwood shaving bedding was tested versus softwood chip bedding products of three different particle sizes (fine/medium/coarse-grained). The preference test was performed in a DoubleCage system composed of two Makrolon type IIL cages, connected by a perspex tunnel. This validated system was able to detect the crossings of each individual animal with correct crossing time and direction. On the basis of these data, dwelling times on the particular bedding structures were statistically analysed as a parameter for bedding preferences. In all three test combinations, a highly significant shaving preference was detected. On average, mice spent 70% of their dwelling time on the shavings. This preference was more explicit during the light period and in C57BL/6J mice. The relative ranking of the bedding structures was: shavings > coarse-grained chips > medium chips = fine chips. By means of these results, a shaving structure as bedding can be recommended for laboratory mice, whereas fine chip structures should be avoided.

  17. Fast neutron irradiation deteriorates hippocampus-related memory ability in adult mice.

    Science.gov (United States)

    Yang, Miyoung; Kim, Hwanseong; Kim, Juhwan; Kim, Sung-Ho; Kim, Jong-Choon; Bae, Chun-Sik; Kim, Joong-Sun; Shin, Taekyun; Moon, Changjong

    2012-03-01

    Object recognition memory and contextual fear conditioning task performance in adult C57BL/6 mice exposed to cranial fast neutron irradiation (0.8 Gy) were examined to evaluate hippocampus-related behavioral dysfunction following acute exposure to relatively low doses of fast neutrons. In addition, hippocampal neurogenesis changes in adult murine brain after cranial irradiation were analyzed using the neurogenesis immunohistochemical markers Ki-67 and doublecortin (DCX). In the object recognition memory test and contextual fear conditioning, mice trained 1 and 7 days after irradiation displayed significant memory deficits compared to the sham-irradiated controls. The number of Ki-67- and DCX-positive cells decreased significantly 24 h post-irradiation. These results indicate that acute exposure of the adult mouse brain to a relatively low dose of fast neutrons interrupts hippocampal functions, including learning and memory, possibly by inhibiting neurogenesis.

  18. EAAC1 Gene Deletion Increases Neuronal Death and Blood Brain Barrier Disruption after Transient Cerebral Ischemia in Female Mice

    Directory of Open Access Journals (Sweden)

    Bo Young Choi

    2014-10-01

    Full Text Available EAAC1 is important in modulating brain ischemic tolerance. Mice lacking EAAC1 exhibit increased susceptibility to neuronal oxidative stress in mice after transient cerebral ischemia. EAAC1 was first described as a glutamate transporter but later recognized to also function as a cysteine transporter in neurons. EAAC1-mediated transport of cysteine into neurons contributes to neuronal antioxidant function by providing cysteine substrates for glutathione synthesis. Here we evaluated the effects of EAAC1 gene deletion on hippocampal blood vessel disorganization after transient cerebral ischemia. EAAC1−/− female mice subjected to transient cerebral ischemia by common carotid artery occlusion for 30 min exhibited twice as much hippocampal neuronal death compared to wild-type female mice as well as increased reduction of neuronal glutathione, blood–brain barrier (BBB disruption and vessel disorganization. Pre-treatment of N-acetyl cysteine, a membrane-permeant cysteine prodrug, increased basal glutathione levels in the EAAC1−/− female mice and reduced ischemic neuronal death, BBB disruption and vessel disorganization. These findings suggest that cysteine uptake by EAAC1 is important for neuronal antioxidant function under ischemic conditions.

  19. Similar reliability and equivalent performance of female and male mice in the open field and water‐maze place navigation task

    Science.gov (United States)

    Fritz, Ann‐Kristina; Amrein, Irmgard

    2017-01-01

    Although most nervous system diseases affect women and men differentially, most behavioral studies using mouse models do not include subjects of both sexes. Many researchers worry that data of female mice may be unreliable due to the estrous cycle. Here, we retrospectively evaluated sex effects on coefficient of variation (CV) in 5,311 mice which had performed the same place navigation protocol in the water‐maze and in 4,554 mice tested in the same open field arena. Confidence intervals for Cohen's d as measure of effect size were computed and tested for equivalence with 0.2 as equivalence margin. Despite the large sample size, only few behavioral parameters showed a significant sex effect on CV. Confidence intervals of effect size indicated that CV was either equivalent or showed a small sex difference at most, accounting for less than 2% of total group to group variation of CV. While female mice were potentially slightly more variable in water‐maze acquisition and in the open field, males tended to perform less reliably in the water‐maze probe trial. In addition to evaluating variability, we also directly compared mean performance of female and male mice and found them to be equivalent in both water‐maze place navigation and open field exploration. Our data confirm and extend other large scale studies in demonstrating that including female mice in experiments does not cause a relevant increase of data variability. Our results make a strong case for including mice of both sexes whenever open field or water‐maze are used in preclinical research. PMID:28654717

  20. Neuropsychiatric Symptom Modeling in Male and Female C57BL/6J Mice after Experimental Traumatic Brain Injury

    Science.gov (United States)

    Tucker, Laura B.; Burke, John F.; Fu, Amanda H.

    2017-01-01

    Abstract Psychiatric symptoms such as anxiety and depression are frequent and persistent complaints following traumatic brain injury (TBI). Modeling these symptoms in animal models of TBI affords the opportunity to determine mechanisms underlying behavioral pathologies and to test potential therapeutic agents. However, testing these symptoms in animal models of TBI has yielded inconsistent results. The goal of the current study was to employ a battery of tests to measure multiple anxiety- and depressive-like symptoms following TBI in C57BL/6J mice, and to determine if male and female mice are differentially affected by the injury. Following controlled cortical impact (CCI) at a parietal location, neither male nor female mice showed depressive-like symptoms as measured by the Porsolt forced-swim test and sucrose preference test. Conclusions regarding anxiety-like behaviors were dependent upon the assay employed; CCI-induced thigmotaxis in the open field suggested an anxiogenic effect of the injury; however, results from the elevated zero maze, light-dark box, and marble-burying tests indicated that CCI reduced anxiety-like behaviors. Fewer anxiety-like behaviors were also associated with the female sex. Increased levels of activity were also measured in female mice and injured mice in these tests, and conclusions regarding anxiety should be taken with caution when experimental manipulations induce changes in baseline activity. These results underscore the irreconcilability of results from studies attempting to model TBI-induced neuropsychiatric symptoms. Changes in injury models or better attempts to replicate the clinical syndrome may improve the translational applicability of rodent models of TBI-induced anxiety and depression. PMID:27149139

  1. Inflammatory and mitochondrial gene expression data in GPER-deficient cardiomyocytes from male and female mice

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2017-02-01

    Full Text Available We previously showed that cardiomyocyte-specific G protein-coupled estrogen receptor (GPER gene deletion leads to sex-specific adverse effects on cardiac structure and function; alterations which may be due to distinct differences in mitochondrial and inflammatory processes between sexes. Here, we provide the results of Gene Set Enrichment Analysis (GSEA based on the DNA microarray data from GPER-knockout versus GPER-intact (intact cardiomyocytes. This article contains complete data on the mitochondrial and inflammatory response-related gene expression changes that were significant in GPER knockout versus intact cardiomyocytes from adult male and female mice. The data are supplemental to our original research article “Cardiomyocyte-specific deletion of the G protein-coupled estrogen receptor (GPER leads to left ventricular dysfunction and adverse remodeling: a sex-specific gene profiling” (Wang et al., 2016 [1]. Data have been deposited to the Gene Expression Omnibus (GEO database repository with the dataset identifier GSE86843.

  2. SEC23B is required for pancreatic acinar cell function in adult mice

    Science.gov (United States)

    Khoriaty, Rami; Vogel, Nancy; Hoenerhoff, Mark J.; Sans, M. Dolors; Zhu, Guojing; Everett, Lesley; Nelson, Bradley; Durairaj, Haritha; McKnight, Brooke; Zhang, Bin; Ernst, Stephen A.; Ginsburg, David; Williams, John A.

    2017-01-01

    Mice with germline absence of SEC23B die perinatally, exhibiting massive pancreatic degeneration. We generated mice with tamoxifen-inducible, pancreatic acinar cell–specific Sec23b deletion. Inactivation of Sec23b exclusively in the pancreatic acinar cells of adult mice results in decreased overall pancreatic weights from pancreatic cell loss (decreased pancreatic DNA, RNA, and total protein content), as well as degeneration of exocrine cells, decreased zymogen granules, and alterations in the endoplasmic reticulum (ER), ranging from vesicular ER to markedly expanded cisternae with accumulation of moderate-density content or intracisternal granules. Acinar Sec23b deletion results in induction of ER stress and increased apoptosis in the pancreas, potentially explaining the loss of pancreatic cells and decreased pancreatic weight. These findings demonstrate that SEC23B is required for normal function of pancreatic acinar cells in adult mice. PMID:28539403

  3. Compared to Sucrose, Previous Consumption of Fructose and Glucose Monosaccharides Reduces Survival and Fitness of Female Mice123

    Science.gov (United States)

    Ruff, James S; Hugentobler, Sara A; Suchy, Amanda K; Sosa, Mirtha M; Tanner, Ruth E; Hite, Megumi E; Morrison, Linda C; Gieng, Sin H; Shigenaga, Mark K; Potts, Wayne K

    2015-01-01

    Background: Intake of added sugar has been shown to correlate with many human metabolic diseases, and rodent models have characterized numerous aspects of the resulting disease phenotypes. However, there is a controversy about whether differential health effects occur because of the consumption of either of the two common types of added sugar—high-fructose corn syrup (fructose and glucose monosaccharides; F/G) or table sugar (sucrose, a fructose and glucose disaccharide). Objectives: We tested the equivalence of sucrose- vs. F/G-containing diets on mouse (Mus musculus) longevity, reproductive success, and social dominance. Methods: We fed wild-derived mice, outbred mice descended from wild-caught ancestors, a diet in which 25% of the calories came from either an equal ratio of F/G or an isocaloric amount of sucrose (both diets had 63% of total calories as carbohydrates). Exposure lasted 40 wk, starting at weaning (21 d of age), and then mice (104 females and 56 males) were released into organismal performances assays—seminatural enclosures where mice competed for territories, resources, and mates for 32 wk. Within enclosures all mice consumed the F/G diet. Results: Females initially fed the F/G diet experienced a mortality rate 1.9 times the rate (P = 0.012) and produced 26.4% fewer offspring than females initially fed sucrose (P = 0.001). This reproductive deficiency was present before mortality differences, suggesting the F/G diet was causing physiologic performance deficits prior to mortality. No differential patterns in survival, reproduction, or social dominance were observed in males, indicating a sex-specific outcome of exposure. Conclusion: This study provides experimental evidence that the consumption of human-relevant levels of F/G is more deleterious than an isocaloric amount of sucrose for key organism-level health measures in female mice. PMID:25733457

  4. Different perception levels of histamine-induced itch sensation in young adult mice.

    Science.gov (United States)

    Ji, Yeounjung; Jang, Yongwoo; Lee, Wook Joo; Yang, Young Duk; Shim, Won-Sik

    2018-05-01

    Itch is an unpleasant sensation that evokes behavioral responses such as scratching the skin. Interestingly, it is conceived that the perception of itch sensation is influenced by age. Indeed, accumulating evidence supports the idea that even children or younger adults show distinctive itch sensation depending on age. This evidence implies the presence of a mechanism that regulates the perception of itch sensation in an age-dependent fashion. Therefore, the purpose of the present study was to investigate a putative mechanism for the age-dependent perception of itch sensation by comparing histamine-induced scratching behaviors in 45-day old (D45) and 75-day old male "young adult" mice. The results indicated that, following histamine administration, the D75 mice spent a longer time scratching than D45 mice. However, the intensity of the calcium influx induced by histamine in primary culture of dorsal root ganglia (DRG) neurons was not different between D45 and D75 mice. Moreover, no apparent difference was observed in mRNA levels of a characteristic His-related receptor and ion channel. In contrast, the mRNA levels of Toll-Like Receptor 4 (TLR4) were increased approximately by two-fold in D75 DRG compared with D45 DRG. Additionally, D75-derived DRG neurons exhibited enhanced intracellular calcium increase by lipopolysaccharide (LPS, a TLR4 agonist) than those of D45 mice. Furthermore, intensities of calcium influx induced by histamine were significantly potentiated when co-treated with LPS in D75 DRG neurons, but not in those of D45 mice. Thus, it appears that D75 mice showed enhanced histamine-induced scratching behaviors not by increased expression levels of histamine-related genes, but probably due to augmented TLR4 expression in DRG neurons. Consequently, the current study found that different perception levels of histamine-induced itch sensation are present in different age groups of young adult mice. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. TWEAK Receptor Deficiency Has Opposite Effects on Female and Male Mice Subjected to Neonatal Hypoxia–Ischemia

    Directory of Open Access Journals (Sweden)

    Anton Kichev

    2018-04-01

    Full Text Available Tumor necrosis factor (TNF-like weak inducer of apoptosis (TWEAK is a multifunctional cytokine member of the TNF family. TWEAK binds to its only known receptor, Fn14, enabling it to activate downstream signaling processes in response to tissue injury. The aim of this study was to investigate the role of TWEAK signaling in neonatal hypoxia–ischemia (HI. We found that after neonatal HI, both TWEAK and Fn14 expression were increased to a greater extent in male compared with female mice. To assess the role of TWEAK signaling after HI, the size of the injury was measured in neonatal mice genetically deficient in Fn14 and compared with their wild-type and heterozygote littermates. A significant sex difference in the Fn14 knockout (KO animals was observed. Fn14 gene KO was beneficial in females; conversely, reducing Fn14 expression exacerbated the brain injury in male mice. Our findings indicate that the TWEAK/Fn14 pathway is critical for development of hypoxic–ischemic brain injury in immature animals. However, as the responses are different in males and females, clinical implementation depends on development of sex-specific therapies.

  6. The influence of enriched environment on spatial memory in Swiss mice of different ages

    Directory of Open Access Journals (Sweden)

    Alessandra Fernandes Druzian

    2015-08-01

    Full Text Available The objective of this study was to evaluate the influence of enriched environment on spatial memory acquisition in mice of three different age groups. Weanling, young, and young adult female Swiss mice were housed in a standard control or enriched environment for 50 days, and their spatial memory was tested with the Morris Water Maze. We did not observe an experimental effect for spatial memory acquisition, and there was neither an effect of time of analysis nor an interaction between experimental group and time of analysis. Regarding effects of experimental group and training day in relation to latency in finding the hidden platform, we did find an effect in the experimental young adult mice group (p = 0.027, but there was no interaction between these factors in all three groups. Based on these findings environmental enrichment did not enhance spatial memory acquisition in female Swiss mice in the tested age groups.

  7. Tuning the brain for motherhood: prolactin-like central signalling in virgin, pregnant, and lactating female mice.

    Science.gov (United States)

    Salais-López, Hugo; Lanuza, Enrique; Agustín-Pavón, Carmen; Martínez-García, Fernando

    2017-03-01

    Prolactin is fundamental for the expression of maternal behaviour. In virgin female rats, prolactin administered upon steroid hormone priming accelerates the onset of maternal care. By contrast, the role of prolactin in mice maternal behaviour remains unclear. This study aims at characterizing central prolactin activity patterns in female mice and their variation through pregnancy and lactation. This was revealed by immunoreactivity of phosphorylated (active) signal transducer and activator of transcription 5 (pSTAT5-ir), a key molecule in the signalling cascade of prolactin receptors. We also evaluated non-hypophyseal lactogenic activity during pregnancy by administering bromocriptine, which suppresses hypophyseal prolactin release. Late-pregnant and lactating females showed significantly increased pSTAT5-ir resulting in a widespread pattern of immunostaining with minor variations between pregnant and lactating animals, which comprises nuclei of the sociosexual and maternal brain, including telencephalic (septum, nucleus of the stria terminalis, and amygdala), hypothalamic (preoptic, paraventricular, supraoptic, and ventromedial), and midbrain (periaqueductal grey) regions. During late pregnancy, this pattern was not affected by the administration of bromocriptine, suggesting it to be elicited mostly by non-hypophyseal lactogenic agents, likely placental lactogens. Virgin females displayed, instead, a variable pattern of pSTAT5-ir restricted to a subset of the brain nuclei labelled in pregnant and lactating mice. A hormonal substitution experiment confirmed that estradiol and progesterone contribute to the variability found in virgin females. Our results reflect how the shaping of the maternal brain takes place prior to parturition and suggest that lactogenic agents are important candidates in the development of maternal behaviours already during pregnancy.

  8. The ERα-PI3K Cascade in Proopiomelanocortin Progenitor Neurons Regulates Feeding and Glucose Balance in Female Mice.

    Science.gov (United States)

    Zhu, Liangru; Xu, Pingwen; Cao, Xuehong; Yang, Yongjie; Hinton, Antentor Othrell; Xia, Yan; Saito, Kenji; Yan, Xiaofeng; Zou, Fang; Ding, Hongfang; Wang, Chunmei; Yan, Chunling; Saha, Pradip; Khan, Sohaib A; Zhao, Jean; Fukuda, Makoto; Tong, Qingchun; Clegg, Deborah J; Chan, Lawrence; Xu, Yong

    2015-12-01

    Estrogens act upon estrogen receptor (ER)α to inhibit feeding and improve glucose homeostasis in female animals. However, the intracellular signals that mediate these estrogenic actions remain unknown. Here, we report that anorexigenic effects of estrogens are blunted in female mice that lack ERα specifically in proopiomelanocortin (POMC) progenitor neurons. These mutant mice also develop insulin resistance and are insensitive to the glucose-regulatory effects of estrogens. Moreover, we showed that propyl pyrazole triol (an ERα agonist) stimulates the phosphatidyl inositol 3-kinase (PI3K) pathway specifically in POMC progenitor neurons, and that blockade of PI3K attenuates propyl pyrazole triol-induced activation of POMC neurons. Finally, we show that effects of estrogens to inhibit food intake and to improve insulin sensitivity are significantly attenuated in female mice with PI3K genetically inhibited in POMC progenitor neurons. Together, our results indicate that an ERα-PI3K cascade in POMC progenitor neurons mediates estrogenic actions to suppress food intake and improve insulin sensitivity.

  9. Percutaneous absorption of triadimefon in the adult and young male and female rat

    International Nuclear Information System (INIS)

    Knaak, J.B.; Yee, K.; Ackerman, C.R.; Zweig, G.; Wilson, B.W.

    1984-01-01

    The percutaneous absorption of 14 C-phenoxy ring labeled triadimefon was studied in adult and young male and female Sprague-Dawley rats. Triadimefon was applied (41.1 to 46.4 micrograms/cm2) in 0.2 ml of acetone to areas comprising 3% of the body surface (7.0 to 14.5 cm2). Thirty-six animals were treated at the initiation of each study. Groups of three animals were subsequently killed at 1, 4, 8, 12, 24, 48, 72, 96, 120, 144, 168, and 192 hr after treatment. Skin from the treated area as well as blood, heart, liver, kidneys, remaining carcass, urine, and feces were analyzed for 14 C by scintillation counting techniques. Based on 14 C counts, triadimefon was lost more rapidly from the skin of young animals (t 1/2, 20 to 25 hr) than from the skin of adult animals (t 1/2, 29 to 53 hr). Recovery studies indicated that adult males, adult females, young males, and young females, respectively, absorbed 53, 82, 57, and 52% of the dose. The rest of the dose based on material balance was presumably lost by evaporation. Approximately 2.5 to 3.9% of the dose penetrated the skin in one hour and was available for absorption. The rate of entry triadimefon into blood was 2 to 2.5 times faster for young than that observed in adult animals. Elimination of it from blood was faster in the case of the young animals. Triadimefon was absorbed through the skins of the adult male, adult female, young male, and young female rats, respectively, at rates of 0.20, 0.50, 0.58, and 0.48 micrograms/hr/cm2 of skin

  10. Differentiation of adult-type Leydig cells occurs in gonadotrophin-deficient mice

    Directory of Open Access Journals (Sweden)

    Charlton HM

    2003-02-01

    Full Text Available Abstract During mammalian testis development distinct generations of fetal and adult Leydig cells arise. Luteinising hormone (LH is required for normal adult Leydig cell function and for the establishment of normal adult Leydig cell number but its role in the process of adult Leydig cell differentiation has remained uncertain. In this study we have examined adult Leydig cell differentiation in gonadotrophin-releasing hormone (GnRH-null mice which are deficient in circulating gonadotrophins. Adult Leydig cell differentiation was assessed by measuring expression of mRNA species encoding four specific markers of adult Leydig cell differentiation in the mouse. Each of these markers (3β-hydroxysteroid dehydrogenase type VI (3βHSD VI, 17β-hydroxysteroid dehydrogenase type III (17βHSD III, prostaglandin D (PGD-synthetase and oestrogen sulphotransferase (EST is expressed only in the adult Leydig cell lineage in the normal adult animal. Real-time PCR studies showed that all four markers are expressed in adult GnRH-null mice. Localisation of 3βHSD VI and PGD-synthetase expression by in situ hybridisation confirmed that these genes are expressed in the interstitial tissue of the GnRH-null mouse. Treatment of animals with human chorionic gonadotrophin increased expression of 3βHSD VI and 17βHSD III within 12 hours further indicating that differentiated, but unstimulated cells already exist in the GnRH-null mouse. Thus, while previous studies have shown that LH is required for adult Leydig cell proliferation and activity, results from the present study show that adult Leydig cell differentiation will take place in animals deficient in LH.

  11. Endothelial Estrogen Receptor-α Does Not Protect Against Vascular Stiffness Induced by Western Diet in Female Mice.

    Science.gov (United States)

    Manrique, Camila; Lastra, Guido; Ramirez-Perez, Francisco I; Haertling, Dominic; DeMarco, Vincent G; Aroor, Annayya R; Jia, Guanghong; Chen, Dongqing; Barron, Brady J; Garro, Mona; Padilla, Jaume; Martinez-Lemus, Luis A; Sowers, James R

    2016-04-01

    Consumption of a diet high in fat and refined carbohydrates (Western diet [WD]) is associated with obesity and insulin resistance, both major risk factors for cardiovascular disease (CVD). In women, obesity and insulin resistance abrogate the protection against CVD likely afforded by estrogen signaling through estrogen receptor (ER)α. Indeed, WD in females results in increased vascular stiffness, which is independently associated with CVD. We tested the hypothesis that loss of ERα signaling in the endothelium exacerbates WD-induced vascular stiffening in female mice. We used a novel model of endothelial cell (EC)-specific ERα knockout (EC-ERαKO), obtained after sequential crossing of the ERα double floxed mice and VE-Cadherin Cre-recombinase mice. Ten-week-old females, EC-ERαKO and aged-matched genopairs were fed either a regular chow diet (control diet) or WD for 8 weeks. Vascular stiffness was measured in vivo by pulse wave velocity and ex vivo in aortic explants by atomic force microscopy. In addition, vascular reactivity was assessed in isolated aortic rings. Initial characterization of the model fed a control diet did not reveal changes in whole-body insulin sensitivity, aortic vasoreactivity, or vascular stiffness in the EC-ERαKO mice. Interestingly, ablation of ERα in ECs reduced WD-induced vascular stiffness and improved endothelial-dependent dilation. In the setting of a WD, endothelial ERα signaling contributes to vascular stiffening in females. The precise mechanisms underlying the detrimental effects of endothelial ERα in the setting of a WD remain to be elucidated.

  12. Similar reliability and equivalent performance of female and male mice in the open field and water-maze place navigation task.

    Science.gov (United States)

    Fritz, Ann-Kristina; Amrein, Irmgard; Wolfer, David P

    2017-09-01

    Although most nervous system diseases affect women and men differentially, most behavioral studies using mouse models do not include subjects of both sexes. Many researchers worry that data of female mice may be unreliable due to the estrous cycle. Here, we retrospectively evaluated sex effects on coefficient of variation (CV) in 5,311 mice which had performed the same place navigation protocol in the water-maze and in 4,554 mice tested in the same open field arena. Confidence intervals for Cohen's d as measure of effect size were computed and tested for equivalence with 0.2 as equivalence margin. Despite the large sample size, only few behavioral parameters showed a significant sex effect on CV. Confidence intervals of effect size indicated that CV was either equivalent or showed a small sex difference at most, accounting for less than 2% of total group to group variation of CV. While female mice were potentially slightly more variable in water-maze acquisition and in the open field, males tended to perform less reliably in the water-maze probe trial. In addition to evaluating variability, we also directly compared mean performance of female and male mice and found them to be equivalent in both water-maze place navigation and open field exploration. Our data confirm and extend other large scale studies in demonstrating that including female mice in experiments does not cause a relevant increase of data variability. Our results make a strong case for including mice of both sexes whenever open field or water-maze are used in preclinical research. © 2017 The Authors. American Journal of Medical Genetics Part C Published by Wiley Periodicals, Inc.

  13. Genistein Stimulates Jejunum Chloride Secretion via an Akt-Mediated Pathway in Intact Female Mice

    Directory of Open Access Journals (Sweden)

    Lana Leung

    2015-02-01

    Full Text Available Background/Aims: We have previously shown that daily subcutaneous injections with the naturally occurring phytoestrogen genistein (600 mg genistein/kg body weight/day, 600G results in a significantly increased basal intestinal chloride, Cl-, secretion (Isc, a measure of transepithelial secretion in intact C57BL/6J female mice after 1-week of treatment, compared to controls (DMSO vehicle injected. Removal of endogenous estrogen via ovariectomy (OVX had no effect on the 600G-mediated increase in basal Isc. Methods: Given the estrogen-like characteristics of genistein, we compared the effects of daily estradiol (E2 injections (10 mg E2/kg body weight/day, 10E2 on basal Isc in intact and OVX mice. In intact mice, 10E2 was without effect on basal Isc, however, in OVX mice, 10E2 significantly increased basal Isc (mimicked 600G. The goal of the current study was to characterize the intracellular signaling pathways responsible for mediating 600G- or 10E2-stimulated increases in basal Isc in intact female or OVX mice. Results: We measured total protein expression in isolated segments of jejunum using western blot from the following six groups of mice; intact or OVX with; 600G, 10E2 or control. The proteins of interest were: Akt, p-Akt, p-PDK1, p-PTEN, p-c-Raf, p-GSK-3β, rap-1 and ERK1/2. All blots were normalized to GAPDH levels (n = 6-18/group. Conclusion: These data suggest that the presence of the endogenous sex steroid, estrogen, modifies the intracellular signaling pathway required to mediate Cl- secretion when the intestine is exposed to exogenous 600G or E2. These studies may have relevance for designing pharmacological tools for women with intestinal chloride secretory dysfunctions.

  14. Performance of Male and Female C57BL/6J Mice on Motor and Cognitive Tasks Commonly Used in Pre-Clinical Traumatic Brain Injury Research

    Science.gov (United States)

    Tucker, Laura B.; Fu, Amanda H.

    2016-01-01

    Abstract To date, clinical trials have failed to find an effective therapy for victims of traumatic brain injury (TBI) who live with motor, cognitive, and psychiatric complaints. Pre-clinical investigators are now encouraged to include male and female subjects in all translational research, which is of particular interest in the field of neurotrauma given that circulating female hormones (progesterone and estrogen) have been demonstrated to exert neuroprotective effects. To determine whether behavior of male and female C57BL6/J mice is differentially impaired by TBI, male and cycling female mice were injured by controlled cortical impact and tested for several weeks with functional assessments commonly employed in pre-clinical research. We found that cognitive and motor impairments post-TBI, as measured by the Morris water maze (MWM) and rotarod, respectively, were largely equivalent in male and female animals. However, spatial working memory, assessed by the y-maze, was poorer in female mice. Female mice were generally more active, as evidenced by greater distance traveled in the first exposure to the open field, greater distance in the y-maze, and faster swimming speeds in the MWM. Statistical analysis showed that variability in all behavioral data was no greater in cycling female mice than it was in male mice. These data all suggest that with careful selection of tests, procedures, and measurements, both sexes can be included in translational TBI research without concern for effect of hormones on functional impairments or behavioral variability. PMID:25951234

  15. Cardiac autonomic modulation by estrogen in female mice undergoing ambulatory monitoring and in vivo electrophysiologic testing.

    Science.gov (United States)

    Saba, Samir; Shusterman, Vladimir; Usiene, Irmute; London, Barry

    2004-04-01

    Estrogen is an important modulator of cardiovascular risk, but its mechanism of action is not fully understood. We investigated the effect of ovariectomy and its timing on the cardiac electrophysiology in mice. Thirty female mice (age 18.8 +/- 3.1 weeks) underwent in vivo electrophysiologic testing before and after autonomic blockade. Fifteen mice were ovariectomized prepuberty (PRE) and ten postpuberty (POST), 2 weeks prior to electrophysiologic testing. Five age-matched sham-operated female mice (Control) served as controls. A subset of 13 mice (5 PRE, 3 POST, and 5 Controls) underwent 24-hour ambulatory monitoring. With ambulatory monitoring, the average (668 +/- 28 vs 769 +/- 52 b/min, P = 0.008) and minimum (485 +/- 47 vs 587 +/- 53 b/min, P = 0.02) heart rates were significantly slower in the ovariectomized mice (PRE and POST groups) compared to the Control group. At baseline electrophysiologic testing, there were no significant differences among the ovariectomized and intact mice in any of the measured parameters. With autonomic blockade, the Control group had a significantly larger change (delta) in the atrioventricular (AV) nodal Wenckebach (AVW) periodicity (deltaAVW = 11.3 +/- 2.9 vs 2.1 +/- 7.3 ms, P = 0.05) and functional refractory period (deltaFRP = 11.3 +/- 2.1 vs 1.25 +/- 6.8 ms, P = 0.02) compared to the ovariectomized mice. These results were not altered by the time of ovariectomy (PRE vs POST groups). Our results suggest that estrogen modulates the autonomic inputs into the murine sinus and AV nodes. These findings, if replicated in humans, might underlie the observed clustering of certain arrhythmias around menstruation and explain the higher incidence of arrhythmias in men and postmenopausal women.

  16. A selfish genetic element influencing longevity correlates with reactive behavioural traits in female house mice (Mus domesticus.

    Directory of Open Access Journals (Sweden)

    Yannick Auclair

    Full Text Available According to theory in life-history and animal personality, individuals with high fitness expectations should be risk-averse, while individuals with low fitness expectations should be more bold. In female house mice, a selfish genetic element, the t haplotype, is associated with increased longevity under natural conditions, representing an appropriate case study to investigate this recent theory empirically. Following theory, females heterozygous for the t haplotype (+/t are hypothesised to express more reactive personality traits and be more shy, less explorative and less active compared to the shorter-lived homozygous wildtype females (+/+. As males of different haplotype do not differ in survival, no similar pattern is expected. We tested these predictions by quantifying boldness, exploration, activity, and energetic intake in both +/t and +/+ mice. +/t females, unlike +/+ ones, expressed some reactive-like personality traits: +/t females were less active, less prone to form an exploratory routine and tended to ingest less food. Taken together these results suggest that differences in animal personality may contribute to the survival advantage observed in +/t females but fail to provide full empirical support for recent theory.

  17. Establishment of a tamoxifen-inducible Cre-driver mouse strain for widespread and temporal genetic modification in adult mice.

    Science.gov (United States)

    Ichise, Hirotake; Hori, Akiko; Shiozawa, Seiji; Kondo, Saki; Kanegae, Yumi; Saito, Izumu; Ichise, Taeko; Yoshida, Nobuaki

    2016-07-29

    Temporal genetic modification of mice using the ligand-inducible Cre/loxP system is an important technique that allows the bypass of embryonic lethal phenotypes and access to adult phenotypes. In this study, we generated a tamoxifen-inducible Cre-driver mouse strain for the purpose of widespread and temporal Cre recombination. The new line, named CM32, expresses the GFPneo-fusion gene in a wide variety of tissues before FLP recombination and tamoxifen-inducible Cre after FLP recombination. Using FLP-recombined CM32 mice (CM32Δ mice) and Cre reporter mouse lines, we evaluated the efficiency of Cre recombination with and without tamoxifen administration to adult mice, and found tamoxifen-dependent induction of Cre recombination in a variety of adult tissues. In addition, we demonstrated that conditional activation of an oncogene could be achieved in adults using CM32Δ mice. CM32Δ;T26 mice, which harbored a Cre recombination-driven, SV40 large T antigen-expressing transgene, were viable and fertile. No overt phenotype was found in the mice up to 3 months after birth. Although they displayed pineoblastomas (pinealoblastomas) and/or thymic enlargement due to background Cre recombination by 6 months after birth, they developed epidermal hyperplasia when administered tamoxifen. Collectively, our results suggest that the CM32Δ transgenic mouse line can be applied to the assessment of adult phenotypes in mice with loxP-flanked transgenes.

  18. Amyloid β Is Not the Major Factor Accounting for Impaired Adult Hippocampal Neurogenesis in Mice Overexpressing Amyloid Precursor Protein

    Directory of Open Access Journals (Sweden)

    Hongyu Pan

    2016-10-01

    Full Text Available Adult hippocampal neurogenesis was impaired in several Alzheimer's disease models overexpressing mutant human amyloid precursor protein (hAPP. However, the effects of wild-type hAPP on adult neurogenesis and whether the impaired adult hippocampal neurogenesis was caused by amyloid β (Aβ or APP remained unclear. Here, we found that neurogenesis was impaired in the dentate gyrus (DG of adult mice overexpressing wild-type hAPP (hAPP-I5 compared with controls. However, the adult hippocampal neurogenesis was more severely impaired in hAPP-I5 than that in hAPP-J20 mice, which express similar levels of hAPP mRNA but much higher levels of Aβ. Furthermore, reducing Aβ levels did not affect the number of doublecortin-positive cells in the DG of hAPP-J20 mice. Our results suggested that hAPP was more likely an important factor inhibiting adult neurogenesis, and Aβ was not the major factor affecting neurogenesis in the adult hippocampus of hAPP mice.

  19. Ablation of the MiR-17-92 MicroRNA Cluster in Germ Cells Causes Subfertility in Female Mice.

    Science.gov (United States)

    Wang, Jian; Xu, Bo; Tian, Geng G; Sun, Tao; Wu, Ji

    2018-01-01

    Oogenesis is a highly complex process that is intricately regulated by interactions of multiple genes and signaling molecules. However, the underlying molecular mechanisms are poorly understood. There is emerging evidence that microRNAs contribute to oogenesis. Here, we aimed to investigate the role of miR-17-92 cluster in regulating oogenesis. The miR-17-92 cluster was genetically ablated in germ cells of female mice by applying the Cre-loxp system for conditional gene knockout. Mating experiment, superovulation and histological analysis were used to assess the fertility of the model female mice. TUNEL assay was used to identify apoptotic cells in ovaries. The expression level of apoptosis- and follicular atresia- related genes was evaluated by qRT-PCR. Western blotting was performed to detect protein expression. Bioinformatics software and dual luciferase reporter assay were applied to predict and verify the target of miR-17-92 cluster. Deletion of miR-17-92 cluster in germ cells of female mice caused increased oocyte degradation and follicular atresia, perturbed oogenesis, and ultimately led to subfertility. Genes involved in follicular atresia and the mitochondrial apoptotic pathway were obviously up-regulated. Furthermore, we verified that miR-19a regulated oogenesis at the post-transcriptional level by targeting Bmf in the ovaries of miR-17-92 cluster conditional knockout female mice. The miR-17-92 cluster is an important regulator of oogenesis. These findings will assist in better understanding the etiology of disorders in oogenesis and in developing new therapeutic targets for female infertility. © 2018 The Author(s). Published by S. Karger AG, Basel.

  20. Infertility as a consequence of spermagglutinating Staphylococcus aureus colonization in genital tract of female mice.

    Directory of Open Access Journals (Sweden)

    Siftjit Kaur

    Full Text Available Various studies have shown Staphylococcus aureus to be one of the most prevalent organism in male and female genital tract but most practitioners dismiss it as mere contamination which is assumed to be of no significance. However, it is now suggested that the presence of this organism should not be ignored, as incubation of spermatozoa with S. aureus results in reduced sperm motility. Although S. aureus has been reported to cause immobilization of spermatozoa, however, its role in infertility has yet to be elucidated. The present study was designed to establish a spermagglutinating strain of S. aureus isolated from the cervix of a woman with unexplained infertility, in mouse and evaluate its effect on fertility outcome. Female Balb/c mice were inoculated intravaginally with different doses of S. aureus (10(4, 10(6 or 10(8cfu/20 µl for 10 consecutive days. Microbial colonization monitored every 3(rd day by vaginal cultures, revealed that strain could efficiently colonize mouse vagina. Mating on day 12, with proven breeder males led to 100% decrease in fertility as compared to control. Even a single dose of 10(6 or 10(8cfu could lead to vaginal colonization which persisted for 10 days followed by gradual clearing till 21 days, vaginal cultures were negative thereafter. Female mice mated on day 7 (culture positive, were rendered infertile, however, the mice mated on day 22 (culture negative, retained fertility and delivered pups indicating its role in provoking infertility. Further, except infertility, no other clinical manifestation could be seen apparently or histologically. However, when a non-spermagglutinating/immobilizing standard strain of S. aureus MTCC6625 was inoculated intravaginally at 10(8cfu for 10 days followed by mating on day 12, fertility was observed in all the female mice. This supports the hypothesis that infertility observed in the former groups was as a result of colonization with spermagglutinating strain of S. aureus.

  1. Effects of a single bout of strenuous exercise on platelet activation in female ApoE/LDLR-/- mice.

    Science.gov (United States)

    Przyborowski, K; Kassassir, H; Wojewoda, M; Kmiecik, K; Sitek, B; Siewiera, K; Zakrzewska, A; Rudolf, A M; Kostogrys, R; Watala, C; Zoladz, J A; Chlopicki, S

    2017-11-01

    Strenuous physical exercise leads to platelet activation that is normally counterbalanced by the production of endothelium-derived anti-platelet mediators, including prostacyclin (PGI 2 ) and nitric oxide (NO). However, in the case of endothelial dysfunction, e.g. in atherosclerosis, there exists an increased risk for intravascular thrombosis during exercise that might be due to an impairment in endothelial anti-platelet mechanisms. In the present work, we evaluated platelet activation at rest and following a single bout of strenuous treadmill exercise in female ApoE/LDLR - /- mice with early (3-month-old) and advanced (7-month-old) atherosclerosis compared to female age-matched WT mice. In sedentary and post-exercise groups of animals, we analyzed TXB 2 generation and the expression of platelet activation markers in the whole blood ex vivo assay. We also measured pre- and post-exercise plasma concentration of 6-keto-PGF 1α , nitrite/nitrate, lipid profile, and blood cell count. Sedentary 3- and 7-month-old ApoE/LDLR - /- mice displayed significantly higher activation of platelets compared to age-matched wild-type (WT) mice, as evidenced by increased TXB 2 production, expression of P-selectin, and activation of GPIIb/IIIa receptors, as well as increased fibrinogen and von Willebrand factor (vWf) binding. Interestingly, in ApoE/LDLR - /- but not in WT mice, strenuous exercise partially inhibited TXB 2 production, the expression of activated GPIIb/IIIa receptors, and fibrinogen binding, with no effect on the P-selectin expression and vWf binding. Post-exercise down-regulation of the activated GPIIb/IIIa receptor expression and fibrinogen binding was not significantly different between 3- and 7-month-old ApoE/LDLR - /- mice; however, only 7-month-old ApoE/LDLR - /- mice showed lower TXB 2 production after exercise. In female 4-6-month-old ApoE/LDLR - /- but not in WT mice, an elevated pre- and post-exercise plasma concentration of 6-keto-PGF 1α was observed. In turn

  2. Distribution and time course of corticosterone excretion in faeces and urine of female mice with varying systemic concentrations

    DEFF Research Database (Denmark)

    Kalliokoski, Otto; Hau, Jann; Jacobsen, Kirsten R

    2010-01-01

    distribution and time course of corticosterone excretion, after intravenous injection of varying corticosterone concentrations, was investigated in female mice. Female BALB/c mice excreted 60% of all corticosterone in the urine with an approximate delay of 5h from tail vein administration. The remaining 40......% were excreted in faeces, with an approximate delay of 9h from administration. The faecal/urinary excretion ratio, as well as time course of excretion, remained unaltered by administration of various doses of corticosterone covering the entire physiological range of serum corticosterone. Although...

  3. Effect of Amphetamine on Adult Male and Female Rats Prenatally Exposed to Methamphetamine

    Directory of Open Access Journals (Sweden)

    Romana Šlamberová

    2014-01-01

    Full Text Available The aim of the present study was to examine the cross-sensitization induced by prenatal methamphetamine (MA exposure to adult amphetamine (AMP treatment in male and female rats. Rat mothers received a daily injection of MA (5 mg/kg or saline throughout the gestation period. Adult male and female offspring (prenatally MA- or saline-exposed were administered with AMP (5 mg/kg or saline (1 ml/kg in adulthood. Behaviour in unknown environment was examined in open field test (Laboras, active drug-seeking behaviour in conditioned place preference test (CPP, spatial memory in the Morris water maze (MWM, and levels of corticosterone (CORT were analyzed by enzyme immunoassay (EIA. Our data demonstrate that in Laboras test, AMP treatment in adulthood increased general locomotion (time and distance travelled regardless of the prenatal exposure and sex, while AMP increased exploratory activity (rearing only in prenatally MA-exposed animals. AMP induced sensitization only in male rats, but not in females when tested drug-seeking behaviour in the CPP test. In the spatial memory MWM test, AMP worsened the performance only in females, but not in males. On the other hand, males swam faster after chronic AMP treatment regardless of the prenatal drug exposure. EIA analysis of CORT levels demonstrated higher level in females in all measurement settings. In males, prenatal MA exposure and chronic adult AMP treatment decreased CORT levels. Thus, our data demonstrated that adult AMP treatment affects behaviour of adult rats, their spatial memory and stress response in sex-specific manner. The effect is also influenced by prenatal drug exposure.

  4. Stress and estrous cycle affect strategy but not performance of female C57BL/6J mice

    NARCIS (Netherlands)

    ter Horst, J.P.; Kentrop, J.; de Kloet, E.R.; Oitzl, M.S.

    2013-01-01

    Stress induces a switch in learning strategies of male C57BL/6J mice from predominantly spatial to more stimulus-response learning. To study generalization of these findings over sex, we investigated female C57BL/6J mice at three phases of the estrous cycle under non stress and acute (10 min)

  5. Prenatal lipopolysaccharide exposure affects sexual dimorphism in different germlines of mice with a depressive phenotype.

    Science.gov (United States)

    Reis-Silva, Thiago M; Cohn, Daniel W H; Sandini, Thaísa M; Udo, Mariana S B; Teodorov, Elizabeth; Bernardi, Maria Martha

    2016-03-15

    The objective of the present study was to investigate whether prenatal lipopolysaccharide (LPS) administration modifies the expression of depressive and non-depressive-like behavior in male and female mice across two generations. The sexual dimorphism of these mice was also examined in the open-field test. Male and female mice of the parental (F0) generation were selected for depressive- or non-depressive-like behavioral profiles using the tail suspension test (TST). Animals with similar profiles were matched for further mating. On gestation day (GD) 15, pregnant F0 mice received LPS (100μg/kg, i.p.) and were allowed to nurture their offspring freely. Adult male and female of the F1 generation were then selected according to behavioral profiles and observed in the open field. Male and female mice of the two behavioral profiles were then mated to obtain the F2 generation. Adults from the F2 generation were also behaviorally phenotyped, and open field behavior was assessed. Male mice that were selected for depressive- and non-depressive-like behaviors and treated or not with LPS in the parental generation exhibited similar proportions of behavioral profiles in both filial lines, but LPS exposure increased the number of depressive-like behavior. An effect of gender was observed in the F1 and F2 generations, in which male mice were more sensitive to the intergenerational effects of LPS in the TST. These data indicate that prenatal LPS exposure on GD15 in the F0 generation influenced the transmission of depressive- and non-depressive-like behavior across filial lines, with sexual dimorphism between phenotypes. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Effect of Sex Differences on Brain Mitochondrial Function and Its Suppression by Ovariectomy and in Aged Mice.

    Science.gov (United States)

    Gaignard, Pauline; Savouroux, Stéphane; Liere, Philippe; Pianos, Antoine; Thérond, Patrice; Schumacher, Michael; Slama, Abdelhamid; Guennoun, Rachida

    2015-08-01

    Sex steroids regulate brain function in both normal and pathological states. Mitochondria are an essential target of steroids, as demonstrated by the experimental administration of 17β-estradiol or progesterone (PROG) to ovariectomized female rodents, but the influence of endogenous sex steroids remains understudied. To address this issue, mitochondrial oxidative stress, the oxidative phosphorylation system, and brain steroid levels were analyzed under 3 different experimental sets of endocrine conditions. The first set was designed to study steroid-mediated sex differences in young male and female mice, intact and after gonadectomy. The second set concerned young female mice at 3 time points of the estrous cycle in order to analyze the influence of transient variations in steroid levels. The third set involved the evaluation of the effects of a permanent decrease in gonadal steroids in aged male and female mice. Our results show that young adult females have lower oxidative stress and a higher reduced nicotinamide adenine dinucleotide (NADH)-linked respiration rate, which is related to a higher pyruvate dehydrogenase complex activity as compared with young adult males. This sex difference did not depend on phases of the estrous cycle, was suppressed by ovariectomy but not by orchidectomy, and no longer existed in aged mice. Concomitant analysis of brain steroids showed that pregnenolone and PROG brain levels were higher in females during the reproductive period than in males and decreased with aging in females. These findings suggest that the major male/female differences in brain pregnenolone and PROG levels may contribute to the sex differences observed in brain mitochondrial function.

  7. Androgen Receptor (AR) Physiological Roles in Male and Female Reproductive Systems: Lessons Learned from AR-Knockout Mice Lacking AR in Selective Cells1

    Science.gov (United States)

    Chang, Chawnshang; Lee, Soo Ok; Wang, Ruey-Sheng; Yeh, Shuyuan; Chang, Ta-Min

    2013-01-01

    ABSTRACT Androgens/androgen receptor (AR) signaling is involved primarily in the development of male-specific phenotypes during embryogenesis, spermatogenesis, sexual behavior, and fertility during adult life. However, this signaling has also been shown to play an important role in development of female reproductive organs and their functions, such as ovarian folliculogenesis, embryonic implantation, and uterine and breast development. The establishment of the testicular feminization (Tfm) mouse model exploiting the X-linked Tfm mutation in mice has been a good in vivo tool for studying the human complete androgen insensitivity syndrome, but this mouse may not be the perfect in vivo model. Mouse models with various cell-specific AR knockout (ARKO) might allow us to study AR roles in individual types of cells in these male and female reproductive systems, although discrepancies are found in results between labs, probably due to using various Cre mice and/or knocking out AR in different AR domains. Nevertheless, no doubt exists that the continuous development of these ARKO mouse models and careful studies will provide information useful for understanding AR roles in reproductive systems of humans and may help us to develop more effective and more specific therapeutic approaches for reproductive system-related diseases. PMID:23782840

  8. Spatial learning of female mice: a role of the mineralocorticoid receptor during stress and the estrous cycle

    Directory of Open Access Journals (Sweden)

    Judith P Ter Horst

    2013-05-01

    Full Text Available Corticosterone facilitates behavioral adaptation to a novel experience in a coordinate manner via mineralocorticoid (MR and glucocorticoid receptors (GR. Initially, MR mediates corticosterone action on appraisal processes, risk assessment and behavioral flexibility and then, GR activation promotes consolidation of the new information into memory. Here, we studied on the circular holeboard (CHB the spatial performance of female mice with genetic deletion of MR from the forebrain (MRCaMKCre and their wild type littermates (MRflox/flox mice over the estrous cycle and in response to an acute stressor. The estrous cycle had no effect on the spatial performance of MRflox/flox mice and neither did the acute stressor. However, the MRCaMKCre mutants needed significantly more time to find the exit and made more hole visit errors than the MRflox/flox mice, especially when in proestrus and estrus. In addition, stressed MRCaMKCre mice in estrus had a shorter exit latency than the control estrus MRCaMKCre mice. About 70% of the female MRCaMKCre and MRflox/flox mice used a hippocampal (spatial, extra maze cues rather than the caudate nucleus (stimulate-response, S-R, intra-maze cue strategy and this preference did neither change over the estrous cycle nor after stress. However, stressed MRCaMKCre mice using the S-R strategy needed significantly more time to find the exit hole as compared to the spatial strategy using mice suggesting that the MR could be needed for the stress-induced strategy switch towards a spatial strategy. In conclusion, the results suggest that loss of MR interferes with performance of a spatial task especially when estrogen levels are high suggesting a strong interaction between stress and sex hormones.

  9. Differential metabolism of acrylonitrile to cyanide is responsible for the greater sensitivity of male vs female mice: role of CYP2E1 and epoxide hydrolases

    International Nuclear Information System (INIS)

    Chanas, Brian; Wang, Hongbing; Ghanayem, Burhan I.

    2003-01-01

    Acrylonitrile (AN) is a potent toxicant and a known rodent carcinogen. AN epoxidation to cyanoethylene oxide (CEO) via CYP2E1 and its subsequent metabolism via epoxide hydrolases (EH) to yield cyanide is thought to be responsible for the acute toxicity and mortality of AN. Recent reports showed that male mice are more sensitive than females to the acute toxicity/mortality of AN. The present work was undertaken to assess the metabolic and enzymatic basis for the greater sensitivity of male vs female mice to AN toxicity. Male and female wild-type and CYP2E1-null mice received AN at 0, 2.5, 10, 20, or 40 mg/kg by gavage. Cyanide concentrations were measured at 1 or 3 h after dosing. Current data demonstrated that cyanide levels in blood and tissues of AN-treated wild-type mice of both sexes were significantly greater than in vehicle-treated controls and increased in a dose-dependent manner. In contrast, cyanide levels in AN-treated CYP2E1-null mice were not statistically different from those measured in vehicle-treated controls. Furthermore, higher levels of cyanide were detected in male wild-type mice vs females in association with greater sensitivity of males to the acute toxicity/mortality of this chemical. Using Western blot analysis, negligible difference in CYP2E1 expression with higher levels of soluble and microsomal EH (sEH and mEH) was detected in the liver of male vs female mice. In kidneys, male mice exhibited higher expression of both renal CYP2E1 and sEH than did female mice. In conclusion, higher blood and tissue cyanide levels are responsible for the greater sensitivity of male vs female mice to AN. Further, higher expression of CYP2E1 and EH in male mice may contribute to greater formation of CEO and its subsequent metabolism to yield cyanide, respectively

  10. Adolescent C57BL/6J mice show elevated alcohol intake, but reduced taste aversion, as compared to adult mice: a potential behavioral mechanism for binge drinking.

    Science.gov (United States)

    Holstein, Sarah E; Spanos, Marina; Hodge, Clyde W

    2011-10-01

    Binge alcohol drinking during adolescence is a serious health problem that may increase future risk of an alcohol use disorder. Although there are several different procedures by which to preclinically model binge-like alcohol intake, limited-access procedures offer the advantage of achieving high voluntary alcohol intake and pharmacologically relevant blood alcohol concentrations (BACs). Therefore, in the current study, developmental differences in binge-like alcohol drinking using a limited-access cycling procedure were examined. In addition, as alcohol drinking has been negatively correlated with sensitivity to the aversive properties of alcohol, we examined developmental differences in sensitivity to an alcohol-induced conditioned taste aversion (CTA). Binge-like alcohol consumption was investigated in adolescent (4 weeks) and adult (10 weeks) male C57BL/6J mice for 2 to 4 h/d for 16 days. Developmental differences in sensitivity to an alcohol-induced CTA were examined in adolescent and adult mice, with saline or alcohol (3 or 4 g/kg) repeatedly paired with the intake of a novel tastant (NaCl). Adolescent mice showed a significant increase in alcohol intake as compared to adults, with adolescents achieving higher BACs and increasing alcohol consumption over successive cycles of the binge procedure. Conversely, adolescent mice exhibited a dose-dependent reduction in sensitivity to the aversive properties of alcohol, as compared to adult mice, with adolescent mice failing to develop a CTA to 3 g/kg alcohol. Finally, extinction of an alcohol CTA was observed following conditioning with a higher dose of alcohol in adolescent, versus adult, mice. These results indicate that adolescent mice consume more alcohol, per kilogram body weight, than adults in a binge-like model of alcohol drinking and demonstrate a blunted sensitivity to the conditioned aversive effects of alcohol. Overall, this supports a behavioral framework by which heightened binge alcohol intake during

  11. Dental caries experience and treatment needs of an adult female population in Nigeria.

    Science.gov (United States)

    Lawal, Folake; Alade, Omolola

    2017-09-01

    Experience and awareness of adult females concerning dental caries is important in its prevention particularly in children because of their natural role as care givers. To determine the prevalence of dental caries and treatment needs in an adult female Nigerian population. In this cross-sectional study, adult females attending outreach programmes were examined for dental caries using the Decayed Missing and Filled Teeth caries index (DMFT). Socio-demographic variables were also recorded and statistical analysis done with SPSS software. A total of 430 females aged 16 to 59 years participated in the outreach programme out of which 109 (25.3%) had a DMFT score > 0. Mean DMFT was 0.7 ± 1.6. Fifty-five (12.8%) participants had decayed teeth, 78 (18.1 %) had missing teeth and 10(2.3%) had filled teeth. The treatment need was 34.3%, restorative index was 13.3% and significant caries index was 2.0. There were significant differences in caries experience based on age, marital status and educational qualifications of participants p caries among the study group was low but the treatment need was high. Younger females, singles and those with lower educational qualifications had a higher dental caries experience.

  12. Long-lasting Effects of Minocycline on Behavior in Young but not Adult Fragile X Mice

    Science.gov (United States)

    Dansie, Lorraine E.; Phommahaxay, Kelly; Okusanya, Ayodeji G.; Uwadia, Jessica; Huang, Mike; Rotschafer, Sarah E.; Razak, Khaleel A.; Ethell, Douglas W.; Ethell, Iryna M.

    2013-01-01

    Fragile X Syndrome (FXS) is the most common single-gene inherited form of intellectual disability with behaviors characteristic of autism. People with FXS display childhood seizures, hyperactivity, anxiety, developmental delay, attention deficits, and visual-spatial memory impairment, as well as a propensity for obsessive-compulsive disorder (OCD). Several of these aberrant behaviors and FXS-associated synaptic irregularities also occur in “fragile X mental retardation gene” knock-out (Fmr1 KO) mice. We previously reported that minocycline promotes the maturation of dendritic spines - postsynaptic sites for excitatory synapses - in the developing hippocampus of Fmr1 KO mice, which may underlie the beneficial effects of minocycline on anxiolytic behavior in young Fmr1 KO mice. In this study, we compared the effectiveness of minocycline treatment in young and adult Fmr1 KO mice, and determined the dependence of behavioral improvements on short-term versus long-term minocycline administration. We found that 4 and 8 week long treatments significantly reduced locomotor activity in both young and adult Fmr1 KO mice. Some behavioral improvements persisted in young mice post-treatment, but in adults the beneficial effects were lost soon after minocycline treatment was stopped. We also show, for the first time, that minocycline treatment partially attenuates the number and severity of audiogenic seizures in Fmr1 KO mice. This report provides further evidence that minocycline treatment has immediate and long-lasting benefits on FXS-associated behaviors in the Fmr1 KO mouse model. PMID:23660195

  13. Voracious male spiders that kill adult females of their own species (genera Walckenaeria, Diplostyla, Neriene, Meta, Araneae)

    NARCIS (Netherlands)

    Heuts, B.; Brunt, T.

    2008-01-01

    In contrast to the popular belief that adult female spiders often kill and eat their adult male partners in the context of copulation, we present a few instances of adult male spiders killing and eating adult females of their own species in the laboratory. However, in line with the popular belief,

  14. Hormonal and molecular effects of restraint stress on formalin-induced pain-like behavior in male and female mice.

    Science.gov (United States)

    Long, Caela C; Sadler, Katelyn E; Kolber, Benedict J

    2016-10-15

    The evolutionary advantages to the suppression of pain during a stressful event (stress-induced analgesia (SIA)) are obvious, yet the reasoning behind sex-differences in the expression of this pain reduction are not. The different ways in which males and females integrate physiological stress responses and descending pain inhibition are unclear. A potential supraspinal modulator of stress-induced analgesia is the central nucleus of the amygdala (CeA). This limbic brain region is involved in both the processing of stress and pain; the CeA is anatomically and molecularly linked to regions of the hypothalamic pituitary adrenal (HPA) axis and descending pain network. The CeA exhibits sex-based differences in response to stress and pain that may differentially induce SIA in males and females. Here, sex-based differences in behavioral and molecular indices of SIA were examined following noxious stimulation. Acute restraint stress in male and female mice was performed prior to intraplantar injections of formalin, a noxious inflammatory agent. Spontaneous pain-like behaviors were measured for 60min following formalin injection and mechanical hypersensitivity was evaluated 120 and 180min post-injection. Restraint stress altered formalin-induced spontaneous behaviors in male and female mice and formalin-induced mechanical hypersensitivity in male mice. To assess molecular indices of SIA, tissue samples from the CeA and blood samples were collected at the 180min time point. Restraint stress prevented formalin-induced increases in extracellular signal regulated kinase 2 (ERK2) phosphorylation in the male CeA, but no changes associated with pERK2 were seen with formalin or restraint in females. Sex differences were also seen in plasma corticosterone concentrations 180min post injection. These results demonstrate sex-based differences in behavioral, molecular, and hormonal indices of acute stress in mice that extend for 180min after stress and noxious stimulation. Copyright

  15. The ERa-PI3K cascade in proopiomelanocortin progenitor neurons regulates feeding and glucose balance in female mice

    Science.gov (United States)

    Estrogens act upon estrogen receptor (ER)a to inhibit feeding and improve glucose homeostasis in female animals. However, the intracellular signals that mediate these estrogenic actions remain unknown. Here, we report that anorexigenic effects of estrogens are blunted in female mice that lack ERa sp...

  16. Oxytocin mediates rodent social memory within the lateral septum and the medial amygdala depending on the relevance of the social stimulus: male juvenile versus female adult conspecifics.

    Science.gov (United States)

    Lukas, Michael; Toth, Iulia; Veenema, Alexa H; Neumann, Inga D

    2013-06-01

    Brain oxytocin (OXT) plays an important role in short-term social memory in laboratory rodents. Here we monitored local release of OXT and its functional involvement in the maintenance and retrieval of social memory during the social discrimination test. We further assessed, if the local effects of OXT within the medial amygdala (MeA) and lateral septum (LS) on social discrimination abilities were dependent on the biological relevance of the social stimulus, thus comparing male juvenile versus adult female conspecifics. OXT release was increased in the LS of male rats during the retrieval, but not during the acquisition or maintenance, of social memory for male juvenile stimuli. Blockade of OXT activity by intracerebroventricular (ICV) administration of a specific OXT receptor antagonist (OXTR-A, rats: 0.75 μg/5 μl, mice: 2 μg/2 μl) immediately after acquisition of social memory impaired the maintenance of social memory, and consequently discrimination abilities during retrieval of social memory. In contrast, ICV OXTR-A was without effect when administered 20 min prior to retrieval of social memory in both species. Non-social memory measured in the object discrimination test was not affected by ICV OXTR-A in male mice, indicating that brain OXT is mainly required for memory formation in a social context. The biological relevance of the social stimulus seems to importantly determine social memory abilities, as male rats recognized a previously encountered female adult stimulus for at least 2h (versus 60 min for male juveniles), with a region-dependent contribution of endogenous OXT; while bilateral administration of OXTR-A into the MeA (0.1 μg/1 μl) impaired social memory for adult females only, administration of OXTR-A into the LS via retrodialysis (10 μg/ml, 1.0 μl/min) impaired social memory for both male juveniles and female adults. Overall, these results indicate that brain OXT is a critical mediator of social memory in male rodents and that, depending

  17. Retrograde cystogram for precise localization and irradiation of the urinary bladder of mice

    International Nuclear Information System (INIS)

    Meier, D.

    1988-01-01

    Using a Bangerter cannula contrast medium (Telebrix 30 Meglumine) was instilled for retrograde urography in adult, female mice. Afterwards localization, size and shape of the urinary bladder were examined by computer tomography. (author)

  18. Behavioural Effects of Adult Vitamin D Deficiency in BALB/c Mice Are not Associated with Proliferation or Survival of Neurons in the Adult Hippocampus.

    Directory of Open Access Journals (Sweden)

    Natalie J Groves

    Full Text Available Epidemiological studies have shown that up to one third of adults have insufficient levels of vitamin D and there is an association between low vitamin D concentrations and adverse brain outcomes, such as depression. Vitamin D has been shown to be involved in processes associated with neurogenesis during development. Therefore, the aim of this study was to test the hypothesis that adult vitamin D (AVD deficiency in BALB/c mice was associated with (a adult hippocampal neurogenesis at baseline, b following 6 weeks of voluntary wheel running and (c a depressive-like phenotype on the forced swim test (FST, which may be linked to alterations in hippocampal neurogenesis. We assessed proliferation and survival of adult born hippocampal neurons by counting the number of cells positive for Ki67 and doublecortin (DCX, and incorporation of 5-Bromo-2'-Deoxyuridine (BrdU within newly born mature neurons using immunohistochemistry. There were no significant effects of diet on number of Ki67+, DCX+ or BrdU+ cells in the dentate gyrus. All mice showed significantly increased number of Ki67+ cells and BrdU incorporation, and decreased immobility time in the FST, after voluntary wheel running. A significant correlation was found in control mice between immobility time in the FST and level of hippocampal neurogenesis, however, no such correlation was found for AVD-deficient mice. We conclude that AVD deficiency was not associated with impaired proliferation or survival of adult born neurons in BALB/c mice and that the impact on rodent behaviour may not be due to altered neurogenesis per se, but to altered function of new hippocampal neurons or processes independent of adult neurogenesis.

  19. The Effects of the Preconception Endurance Exercise Training and Voluntary Exercise Activity during Pregnancy in C57BL/6 Mice on Lipid Profile of the Adult Offsprings

    Directory of Open Access Journals (Sweden)

    Abbasali Gaeini

    2016-05-01

    Full Text Available Abstract Background: The aim of this study was to determine the effect of preconception endurance exercise training with voluntary exercise activity during pregnancy in mother mice on lipid profile in adult offsprings. Materials and Methods: Twenty four C57BL/6 female mice were randomly divided into four subgroups: trained in preconception period and exercised during pregnancy (TE(20.3±1.02g; trained in preconception periods but unexercised during pregnancy (TC(21.58±0.4g; untrained in preconception periods but exercised during pregnancy (CE(21.02±0.23g; untrained and unexercised (CC(19.23±0.45g. Trained mice were subjected to a protocol of moderate endurance exercise training over a period of 4 weeks for 5 days before pregnancy. The fasting blood samples were collected from adult mice(8 weeks old and serum levels of glucose and lipid profile were measured. Data were analyzed using two way ANOVA and Tukey’s post hoc test. Results: The Glucose test results in offspring showed that there was a significant interaction between group and sex and group main effect (p<0.001 Glucose levels of male offspring were significantly lower in TC and TE groups. Results on LDL also showed that the sex main effect was significant (p<0.001, and LDL levels of male born to TE and TC dams lower than in female offspring. Conclusion: Improving the mother's physical fitness by providing regular endurance training in the preconception period and maintaining it by exercise activty throughout pregnancy may have potential for eliciting positive changes in lipid profile of offspring, specially males.

  20. Defining Subpopulations of Arcuate Nucleus GABA Neurons in Male, Female, and Prenatally Androgenized Female Mice.

    Science.gov (United States)

    Marshall, Christopher J; Desroziers, Elodie; McLennan, Timothy; Campbell, Rebecca E

    2017-01-01

    Arcuate nucleus (ARN) γ-aminobutyric acid (GABA) neurons are implicated in many critical homeostatic mechanisms, from food intake to fertility. To determine the functional relevance of ARN GABA neurons, it is essential to define the neurotransmitters co-expressed with and potentially co-released from ARN GABA neurons. The present study investigated the expression of markers of specific signaling molecules by ARN GABA neurons in brain sections from male, female, and, in some cases, prenatally androgen-treated (PNA) female, vesicular GABA transporter (VGaT)-ires-Cre/tdTomato reporter mice. Immunofluorescence for kisspeptin, β-endorphin, neuropeptide Y (NPY), tyrosine hydroxylase (TH) and neuronal nitric oxide synthase (nNOS) was detected by confocal microscopy, and co-localization with tdTomato VGaT reporter expression throughout the ARN was quantified. GABA neurons rarely co-localized with kisspeptin (95%) co-localized with VGaT across groups. Both TH and nNOS labeling was co-localized with ∼10% of ARN GABA neurons. The proportion of TH neurons co-localized with VGaT was significantly greater in males than either control or PNA females, and the proportion of nNOS neurons co-localizing VGaT was higher in control and PNA females compared with males. These data highlight NPY as a significant subpopulation of ARN GABA neurons, demonstrate no significant impact of PNA on signal co-expression, and, for the first time, show sexually dimorphic co-expression patterns of TH and nNOS with ARN GABA neurons. © 2016 S. Karger AG, Basel.

  1. Sex differences in the activity of mice: modulation by postnatal gonadal hormones.

    Science.gov (United States)

    Broida, J; Svare, B

    1984-03-01

    A series of six experiments was performed to examine the influence of postnatal-gonadal-hormone exposure on home-cage activity in Rockland-Swiss albino mice. Intact females were more active than their male counterparts and gonadectomy in adulthood, while reducing levels of the behavior in both sexes, did not eliminate the gender difference. Males that were castrated on the day of birth were more active than animals castrated 5, 10, or 25 days later. Also, females treated with testosterone propionate on the day of birth were less active than oil-treated controls and females exposed to the steroid 10 days after birth. Thus, perinatal exposure to gonadal hormones suppresses adult levels of home-cage activity in mice.

  2. Life shortening and carcinogenesis in mice irradiated at the perinatal period with gamma rays

    International Nuclear Information System (INIS)

    Sasaki, S.; Kasuga, T.

    1986-01-01

    This study elucidates the life-span radiation effects in mice irradiated at the perinatal period in comparison to mice irradiated at the young adult period. B6C3F 1 female mice were irradiated at 17 days of prenatal age, at 0 days of postnatal age, or as young adults at 15 weeks of age with 190, 380, or 570 rads of 137 Cs gamma rays. Mice irradiated at the late fetal period showed dose-dependent life shortening of somewhat lesser magnitude than that seen after neonatal or young adult irradiation. Mice exposed at the late fetal period were highly susceptible to induction of pituitary tumors for which the latent period was the longest of all induced neoplasms. Incidence of lung tumors in mice irradiated at the late fetal period with 190 and 380 rads was higher than in controls. Malignant lymphomas of the lymphocytic type developed in excess, after a short latent period, in mice irradiated fetally with the highest dose; susceptibility of prenatally exposed mice was lower than that of early postnatally exposed mice. Liver tumors developed more frequently in mice irradiated in utero than in controls; susceptibility to induction of this type of neoplasm was highest at the neonatal period. In general, carcinogenic response of mice exposed at the late fetal period resembled that of neonatally exposed mice but was quite different from that of young adult mice. Mice exposed as young adults have no, or low, susceptibility to induction of pituitary, lung, and liver tumors; and a higher susceptibility to induction of myeloid leukemias and Harderian gland tumors. 19 refs., 4 figs., 3 tabs

  3. Chronic exposure to trichloroethene causes early onset of SLE-like disease in female MRL +/+ mice

    International Nuclear Information System (INIS)

    Cai Ping; Koenig, Rolf; Boor, Paul J.; Kondraganti, Shakuntala; Kaphalia, Bhupendra S.; Khan, M. Firoze; Ansari, G.A.S.

    2008-01-01

    Trichloroethene (TCE) exacerbates the development of autoimmune responses in autoimmune-prone MRL +/+ mice. Although TCE-mediated autoimmune responses are associated with an increase in serum immunoglobulins and autoantibodies, the underlying mechanism of autoimmunity is not known. To determine the progression of TCE-mediated immunotoxicity, female MRL +/+ mice were chronically exposed to TCE through the drinking water (0.5 mg/ml of TCE) for various periods of time. Serum concentrations of antinuclear antibodies increased after 36 and 48 weeks of TCE exposure. Histopathological analyses showed lymphocyte infiltration in the livers of MRL +/+ mice exposed to TCE for 36 or 48 weeks. Lymphocyte infiltration was also apparent in the pancreas, lungs, and kidneys of mice exposed to TCE for 48 weeks. Immunoglobulin deposits in kidney glomeruli were found after 48 weeks of exposure to TCE. Our results suggest that chronic exposure to TCE promotes inflammation in the liver, pancreas, lungs, and kidneys, which may lead to SLE-like disease in MRL +/+ mice

  4. Novel object recognition ability in female mice following exposure to nanoparticle-rich diesel exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Win-Shwe, Tin-Tin, E-mail: tin.tin.win.shwe@nies.go.jp [Center for Environmental Health Sciences, National Institute for Environmental Studies, 16‐2 Onogawa, Tsukuba, Ibaraki 305‐8506 (Japan); Fujimaki, Hidekazu; Fujitani, Yuji; Hirano, Seishiro [Center for Environmental Risk Research, National Institute for Environmental Studies, 16‐2 Onogawa, Tsukuba, Ibaraki 305‐8506 (Japan)

    2012-08-01

    Recently, our laboratory reported that exposure to nanoparticle-rich diesel exhaust (NRDE) for 3 months impaired hippocampus-dependent spatial learning ability and up-regulated the expressions of memory function-related genes in the hippocampus of female mice. However, whether NRDE affects the hippocampus-dependent non-spatial learning ability and the mechanism of NRDE-induced neurotoxicity was unknown. Female BALB/c mice were exposed to clean air, middle-dose NRDE (M-NRDE, 47 μg/m{sup 3}), high-dose NRDE (H-NRDE, 129 μg/m{sup 3}), or filtered H-NRDE (F-DE) for 3 months. We then investigated the effect of NRDE exposure on non-spatial learning ability and the expression of genes related to glutamate neurotransmission using a novel object recognition test and a real-time RT-PCR analysis, respectively. We also examined microglia marker Iba1 immunoreactivity in the hippocampus using immunohistochemical analyses. Mice exposed to H-NRDE or F-DE could not discriminate between familiar and novel objects. The control and M-NRDE-exposed groups showed a significantly increased discrimination index, compared to the H-NRDE-exposed group. Although no significant changes in the expression levels of the NMDA receptor subunits were observed, the expression of glutamate transporter EAAT4 was decreased and that of glutamic acid decarboxylase GAD65 was increased in the hippocampus of H-NRDE-exposed mice, compared with the expression levels in control mice. We also found that microglia activation was prominent in the hippocampal area of the H-NRDE-exposed mice, compared with the other groups. These results indicated that exposure to NRDE for 3 months impaired the novel object recognition ability. The present study suggests that genes related to glutamate metabolism may be involved in the NRDE-induced neurotoxicity observed in the present mouse model. -- Highlights: ► The effects of nanoparticle-induced neurotoxicity remain unclear. ► We investigated the effect of exposure to

  5. Novel object recognition ability in female mice following exposure to nanoparticle-rich diesel exhaust

    International Nuclear Information System (INIS)

    Win-Shwe, Tin-Tin; Fujimaki, Hidekazu; Fujitani, Yuji; Hirano, Seishiro

    2012-01-01

    Recently, our laboratory reported that exposure to nanoparticle-rich diesel exhaust (NRDE) for 3 months impaired hippocampus-dependent spatial learning ability and up-regulated the expressions of memory function-related genes in the hippocampus of female mice. However, whether NRDE affects the hippocampus-dependent non-spatial learning ability and the mechanism of NRDE-induced neurotoxicity was unknown. Female BALB/c mice were exposed to clean air, middle-dose NRDE (M-NRDE, 47 μg/m 3 ), high-dose NRDE (H-NRDE, 129 μg/m 3 ), or filtered H-NRDE (F-DE) for 3 months. We then investigated the effect of NRDE exposure on non-spatial learning ability and the expression of genes related to glutamate neurotransmission using a novel object recognition test and a real-time RT-PCR analysis, respectively. We also examined microglia marker Iba1 immunoreactivity in the hippocampus using immunohistochemical analyses. Mice exposed to H-NRDE or F-DE could not discriminate between familiar and novel objects. The control and M-NRDE-exposed groups showed a significantly increased discrimination index, compared to the H-NRDE-exposed group. Although no significant changes in the expression levels of the NMDA receptor subunits were observed, the expression of glutamate transporter EAAT4 was decreased and that of glutamic acid decarboxylase GAD65 was increased in the hippocampus of H-NRDE-exposed mice, compared with the expression levels in control mice. We also found that microglia activation was prominent in the hippocampal area of the H-NRDE-exposed mice, compared with the other groups. These results indicated that exposure to NRDE for 3 months impaired the novel object recognition ability. The present study suggests that genes related to glutamate metabolism may be involved in the NRDE-induced neurotoxicity observed in the present mouse model. -- Highlights: ► The effects of nanoparticle-induced neurotoxicity remain unclear. ► We investigated the effect of exposure to

  6. Prenatal exposure to an environmentally relevant phthalate mixture disrupts reproduction in F1 female mice

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Changqing; Gao, Liying; Flaws, Jodi A., E-mail: jflaws@illinois.edu

    2017-03-01

    Phthalates are used in a large variety of products, such as building materials, medical devices, and personal care products. Most previous studies on the toxicity of phthalates have focused on single phthalates, but it is also important to study the effects of phthalate mixtures because humans are exposed to phthalate mixtures. Thus, we tested the hypothesis that prenatal exposure to an environmentally relevant phthalate mixture adversely affects female reproduction in mice. To test this hypothesis, pregnant CD-1 dams were orally dosed with vehicle (tocopherol-stripped corn oil) or a phthalate mixture (20 and 200 μg/kg/day, 200 and 500 mg/kg/day) daily from gestational day 10 to birth. The mixture was based on the composition of phthalates detected in urine samples from pregnant women in Illinois. The mixture included 35% diethyl phthalate, 21% di(2-ethylhexyl) phthalate, 15% dibutyl phthalate, 15% diisononyl phthalate, 8% diisobutyl phthalate, and 5% benzylbutyl phthalate. Female mice born to the exposed dams were subjected to tissue collections and fertility tests at different ages. Our results indicate that prenatal exposure to the phthalate mixture significantly increased uterine weight and decreased anogenital distance on postnatal days 8 and 60, induced cystic ovaries at 13 months, disrupted estrous cyclicity, reduced fertility-related indices, and caused some breeding complications at 3, 6, and 9 months of age. Collectively, our data suggest that prenatal exposure to an environmentally relevant phthalate mixture disrupts aspects of female reproduction in mice. - Highlights: • Prenatal exposure to a phthalate mixture disrupts F1 estrous cyclicity. • Prenatal exposure to a phthalate mixture induces F1 ovarian cysts. • Prenatal exposure to a phthalate mixture decreases F1 female fertility-related indices. • Prenatal exposure to a phthalate mixture induces F1 breeding complications.

  7. Cdc20 is critical for meiosis I and fertility of female mice.

    Directory of Open Access Journals (Sweden)

    Fang Jin

    2010-09-01

    Full Text Available Chromosome missegregation in germ cells is an important cause of unexplained infertility, miscarriages, and congenital birth defects in humans. However, the molecular defects that lead to production of aneuploid gametes are largely unknown. Cdc20, the activating subunit of the anaphase-promoting complex/cyclosome (APC/C, initiates sister-chromatid separation by ordering the destruction of two key anaphase inhibitors, cyclin B1 and securin, at the transition from metaphase to anaphase. The physiological significance and full repertoire of functions of mammalian Cdc20 are unclear at present, mainly because of the essential nature of this protein in cell cycle progression. To bypass this problem we generated hypomorphic mice that express low amounts of Cdc20. These mice are healthy and have a normal lifespan, but females produce either no or very few offspring, despite normal folliculogenesis and fertilization rates. When mated with wild-type males, hypomorphic females yield nearly normal numbers of fertilized eggs, but as these embryos develop, they become malformed and rarely reach the blastocyst stage. In exploring the underlying mechanism, we uncover that the vast majority of these embryos have abnormal chromosome numbers, primarily due to chromosome lagging and chromosome misalignment during meiosis I in the oocyte. Furthermore, cyclin B1, cyclin A2, and securin are inefficiently degraded in metaphase I; and anaphase I onset is markedly delayed. These results demonstrate that the physiologically effective threshold level of Cdc20 is high for female meiosis I and identify Cdc20 hypomorphism as a mechanism for chromosome missegregation and formation of aneuploid gametes.

  8. Room temperature housing results in premature cancellous bone loss in growing female mice: implications for the mouse as a preclinical model for age-related bone loss.

    Science.gov (United States)

    Iwaniec, U T; Philbrick, K A; Wong, C P; Gordon, J L; Kahler-Quesada, A M; Olson, D A; Branscum, A J; Sargent, J L; DeMambro, V E; Rosen, C J; Turner, R T

    2016-10-01

    Room temperature housing (22 °C) results in premature cancellous bone loss in female mice. The bone loss was prevented by housing mice at thermoneutral temperature (32 °C). Thermogenesis differs markedly between mice and humans and mild cold stress induced by standard room temperature housing may introduce an unrecognized confounding variable into preclinical studies. Female mice are often used as preclinical models for osteoporosis but, in contrast to humans, mice exhibit cancellous bone loss during growth. Mice are routinely housed at room temperature (18-23 °C), a strategy that exaggerates physiological differences in thermoregulation between mice (obligatory daily heterotherms) and humans (homeotherms). The purpose of this investigation was to assess whether housing female mice at thermoneutral (temperature range where the basal rate of energy production is at equilibrium with heat loss) alters bone growth, turnover and microarchitecture. Growing (4-week-old) female C57BL/6J and C3H/HeJ mice were housed at either 22 or 32 °C for up to 18 weeks. C57BL/6J mice housed at 22 °C experienced a 62 % cancellous bone loss from the distal femur metaphysis during the interval from 8 to 18 weeks of age and lesser bone loss from the distal femur epiphysis, whereas cancellous and cortical bone mass in 32 °C-housed mice were unchanged or increased. The impact of thermoneutral housing on cancellous bone was not limited to C57BL/6J mice as C3H/HeJ mice exhibited a similar skeletal response. The beneficial effects of thermoneutral housing on cancellous bone were associated with decreased Ucp1 gene expression in brown adipose tissue, increased bone marrow adiposity, higher rates of bone formation, higher expression levels of osteogenic genes and locally decreased bone resorption. Housing female mice at 22 °C resulted in premature cancellous bone loss. Failure to account for species differences in thermoregulation may seriously confound interpretation of studies

  9. Diclofenac sex-divergent drug-drug interaction with Sunitinib: pharmacokinetics and tissue distribution in male and female mice.

    Science.gov (United States)

    Chew, Chii Chii; Ng, Salby; Chee, Yun Lee; Koo, Teng Wai; Liew, Ming Hui; Chee, Evelyn Li-Ching; Modamio, Pilar; Fernández, Cecilia; Mariño, Eduardo L; Segarra, Ignacio

    2017-08-01

    Coadministration of diclofenac and sunitinib, tyrosine kinase inhibitor, led to sex-divergent pharmacokinetic drug-drug interaction outcomes. Male and female mice were administered 60 mg/kg PO sunitinib alone (control groups) or with 30 mg/kg PO diclofenac. Sunitinib concentration in plasma, brain, kidney and liver were determined by HPLC and non-compartmental pharmacokinetic parameters calculated. In male mice, diclofenac decreased AUC 0→∞ 38% in plasma (p diclofenac increased the liver uptake efficiency in male (27%, p diclofenac with probable clinical translatability due to potential different effects in male and female patients requiring careful selection of the NSAID and advanced TDM to implement a personalized treatment.

  10. Intraovarian Transplantation of Female Germline Stem Cells Rescue Ovarian Function in Chemotherapy-Injured Ovaries.

    Directory of Open Access Journals (Sweden)

    Jiaqiang Xiong

    Full Text Available Early menopause and infertility often occur in female cancer patients after chemotherapy (CTx. For these patients, oocyte/embryo cryopreservation or ovarian tissue cryopreservation is the current modality for fertility preservation. However, the above methods are limited in the long-term protection of ovarian function, especially for fertility preservation (very few females with cancer have achieved pregnancy with cryopreserved ovarian tissue or eggs until now. In addition, the above methods are subject to their scope (females with no husband or prepubertal females with no mature oocytes. Thus, many females who suffer from cancers would not adopt the above methods pre- and post-CTx due to their uncertainty, safety and cost-effectiveness. Therefore, millions of women have achieved long-term survival after thorough CTx treatment and have desired to rescue their ovarian function and fertility with economic, durable and reliable methods. Recently, some studies showed that mice with infertility caused by CTx can produce normal offspring through intraovarian injection of exogenous female germline stem cells (FGSCs. Though exogenous FGSC can be derived from mice without immune rejection in the same strain, it is difficult to obtain human female germline stem cells (hFGSCs, and immune rejection could occur between different individuals. In this study, infertility in mice was caused by CTx, and the ability of FGSCs to restore ovarian function or even produce offspring was assessed. We had successfully isolated and purified the FGSCs from adult female mice two weeks after CTx. After infection with GFP-carrying virus, the FGSCs were transplanted into ovaries of mice with infertility caused by CTx. Finally, ovarian function was restored and the recipients produced offspring long-term. These findings showed that mice with CTx possessed FGSCs, restoring ovarian function and avoiding immune rejection from exogenous germline stem cells.

  11. Intraovarian Transplantation of Female Germline Stem Cells Rescue Ovarian Function in Chemotherapy-Injured Ovaries.

    Science.gov (United States)

    Xiong, Jiaqiang; Lu, Zhiyong; Wu, Meng; Zhang, Jinjin; Cheng, Jing; Luo, Aiyue; Shen, Wei; Fang, Li; Zhou, Su; Wang, Shixuan

    2015-01-01

    Early menopause and infertility often occur in female cancer patients after chemotherapy (CTx). For these patients, oocyte/embryo cryopreservation or ovarian tissue cryopreservation is the current modality for fertility preservation. However, the above methods are limited in the long-term protection of ovarian function, especially for fertility preservation (very few females with cancer have achieved pregnancy with cryopreserved ovarian tissue or eggs until now). In addition, the above methods are subject to their scope (females with no husband or prepubertal females with no mature oocytes). Thus, many females who suffer from cancers would not adopt the above methods pre- and post-CTx due to their uncertainty, safety and cost-effectiveness. Therefore, millions of women have achieved long-term survival after thorough CTx treatment and have desired to rescue their ovarian function and fertility with economic, durable and reliable methods. Recently, some studies showed that mice with infertility caused by CTx can produce normal offspring through intraovarian injection of exogenous female germline stem cells (FGSCs). Though exogenous FGSC can be derived from mice without immune rejection in the same strain, it is difficult to obtain human female germline stem cells (hFGSCs), and immune rejection could occur between different individuals. In this study, infertility in mice was caused by CTx, and the ability of FGSCs to restore ovarian function or even produce offspring was assessed. We had successfully isolated and purified the FGSCs from adult female mice two weeks after CTx. After infection with GFP-carrying virus, the FGSCs were transplanted into ovaries of mice with infertility caused by CTx. Finally, ovarian function was restored and the recipients produced offspring long-term. These findings showed that mice with CTx possessed FGSCs, restoring ovarian function and avoiding immune rejection from exogenous germline stem cells.

  12. Skewed X-inactivation in cloned mice

    International Nuclear Information System (INIS)

    Senda, Sho; Wakayama, Teruhiko; Yamazaki, Yukiko; Ohgane, Jun; Hattori, Naka; Tanaka, Satoshi; Yanagimachi, Ryuzo; Shiota, Kunio

    2004-01-01

    In female mammals, dosage compensation for X-linked genes is accomplished by inactivation of one of two X chromosomes. The X-inactivation ratio (a percentage of the cells with inactivated maternal X chromosomes in the whole cells) is skewed as a consequence of various genetic mutations, and has been observed in a number of X-linked disorders. We previously reported that phenotypically normal full-term cloned mouse fetuses had loci with inappropriate DNA methylation. Thus, cloned mice are excellent models to study abnormal epigenetic events in mammalian development. In the present study, we analyzed X-inactivation ratios in adult female cloned mice (B6C3F1). Kidneys of eight naturally produced controls and 11 cloned mice were analyzed. Although variations in X-inactivation ratio among the mice were observed in both groups, the distributions were significantly different (Ansary-Bradley test, P < 0.01). In particular, 2 of 11 cloned mice showed skewed X-inactivation ratios (19.2% and 86.8%). Similarly, in intestine, 1 of 10 cloned mice had a skewed ratio (75.7%). Skewed X-inactivation was observed to various degrees in different tissues of different individuals, suggesting that skewed X-inactivation in cloned mice is the result of secondary cell selection in combination with stochastic distortion of primary choice. The present study is the first demonstration that skewed X-inactivation occurs in cloned animals. This finding is important for understanding both nuclear transfer technology and etiology of X-linked disorders

  13. Female mucopolysaccharidosis IIIA mice exhibit hyperactivity and a reduced sense of danger in the open field test.

    Directory of Open Access Journals (Sweden)

    Alex Langford-Smith

    Full Text Available Reliable behavioural tests in animal models of neurodegenerative diseases allow us to study the natural history of disease and evaluate the efficacy of novel therapies. Mucopolysaccharidosis IIIA (MPS IIIA or Sanfilippo A, is a severe, neurodegenerative lysosomal storage disorder caused by a deficiency in the heparan sulphate catabolising enzyme, sulfamidase. Undegraded heparan sulphate accumulates, resulting in lysosomal enlargement and cellular dysfunction. Patients suffer a progressive loss of motor and cognitive function with severe behavioural manifestations and premature death. There is currently no treatment. A spontaneously occurring mouse model of the disease has been described, that has approximately 3% of normal enzyme activity levels. Behavioural phenotyping of the MPS IIIA mouse has been previously reported, but the results are conflicting and variable, even after full backcrossing to the C57BL/6 background. Therefore we have independently backcrossed the MPS IIIA model onto the C57BL/6J background and evaluated the behaviour of male and female MPS IIIA mice at 4, 6 and 8 months of age using the open field test, elevated plus maze, inverted screen and horizontal bar crossing at the same circadian time point. Using a 60 minute open field, we have demonstrated that female MPS IIIA mice are hyperactive, have a longer path length, display rapid exploratory behaviour and spend less time immobile than WT mice. Female MPS IIIA mice also display a reduced sense of danger and spend more time in the centre of the open field. There were no significant differences found between male WT and MPS IIIA mice and no differences in neuromuscular strength were seen with either sex. The altered natural history of behaviour that we observe in the MPS IIIA mouse will allow more accurate evaluation of novel therapeutics for MPS IIIA and potentially other neurodegenerative disorders.

  14. Female mucopolysaccharidosis IIIA mice exhibit hyperactivity and a reduced sense of danger in the open field test.

    Science.gov (United States)

    Langford-Smith, Alex; Langford-Smith, Kia J; Jones, Simon A; Wynn, Robert F; Wraith, J E; Wilkinson, Fiona L; Bigger, Brian W

    2011-01-01

    Reliable behavioural tests in animal models of neurodegenerative diseases allow us to study the natural history of disease and evaluate the efficacy of novel therapies. Mucopolysaccharidosis IIIA (MPS IIIA or Sanfilippo A), is a severe, neurodegenerative lysosomal storage disorder caused by a deficiency in the heparan sulphate catabolising enzyme, sulfamidase. Undegraded heparan sulphate accumulates, resulting in lysosomal enlargement and cellular dysfunction. Patients suffer a progressive loss of motor and cognitive function with severe behavioural manifestations and premature death. There is currently no treatment. A spontaneously occurring mouse model of the disease has been described, that has approximately 3% of normal enzyme activity levels. Behavioural phenotyping of the MPS IIIA mouse has been previously reported, but the results are conflicting and variable, even after full backcrossing to the C57BL/6 background. Therefore we have independently backcrossed the MPS IIIA model onto the C57BL/6J background and evaluated the behaviour of male and female MPS IIIA mice at 4, 6 and 8 months of age using the open field test, elevated plus maze, inverted screen and horizontal bar crossing at the same circadian time point. Using a 60 minute open field, we have demonstrated that female MPS IIIA mice are hyperactive, have a longer path length, display rapid exploratory behaviour and spend less time immobile than WT mice. Female MPS IIIA mice also display a reduced sense of danger and spend more time in the centre of the open field. There were no significant differences found between male WT and MPS IIIA mice and no differences in neuromuscular strength were seen with either sex. The altered natural history of behaviour that we observe in the MPS IIIA mouse will allow more accurate evaluation of novel therapeutics for MPS IIIA and potentially other neurodegenerative disorders.

  15. Asic3(-/- female mice with hearing deficit affects social development of pups.

    Directory of Open Access Journals (Sweden)

    Wei-Li Wu

    Full Text Available BACKGROUND: Infant crying is an important cue for mothers to respond adequately. Inappropriate response to infant crying can hinder social development in infants. In rodents, the pup-mother interaction largely depends on pup's calls. Mouse pups emit high frequency to ultrasonic vocalization (2-90 kHz to communicate with their dam for maternal care. However, little is known about how the maternal response to infant crying or pup calls affects social development over the long term. METHODOLOGY/PRINCIPAL FINDINGS: Here we used mice lacking acid-sensing ion channel 3 (Asic3(-/- to create a hearing deficit to probe the effect of caregiver hearing on maternal care and adolescent social development. Female Asic3(-/- mice showed elevated hearing thresholds for low to ultrasonic frequency (4-32 kHz on auditory brain stem response, which thus hindered their response to their pups' wriggling calls and ultrasonic vocalization, as well as their retrieval of pups. In adolescence, pups reared by Asic3(-/- mice showed a social deficit in juvenile social behaviors as compared with those reared by wild-type or heterozygous dams. The social-deficit phenotype in juvenile mice reared by Asic3(-/- mice was associated with the reduced serotonin transmission of the brain. However, Asic3(-/- pups cross-fostered to wild-type dams showed rescued social deficit. CONCLUSIONS/SIGNIFICANCE: Inadequate response to pups' calls as a result of ASIC3-dependent hearing loss confers maternal deficits in caregivers and social development deficits in their young.

  16. Suppressive effects of Lactobacillus casei cells, a bacterial immunostimulant, on the incidence of spontaneous thymic lymphoma in AKR mice.

    Science.gov (United States)

    Watanabe, T

    1996-06-01

    The mean survival age of female AKR/J mice was significantly prolonged, the enlargement of thymus was markedly suppressed, and the proliferation of ecotropic and recombinant murine leukemia viruses (MuLV) was markedly inhibited when 8-week-old female AKR/J mice were injected intraperitoneally (i.p.) with heat-killed Lactobacillus casei cells twice weekly for 8 weeks. In contrast, such actions of heat-killed L. casei cells were not seen in 20-week-old female AKR/J mice. The leukemogenic activity of the cell-free extract of thymus from adult female AKR/J mice in newborn female AKR/J mice was drastically reduced by i.p. treatment with heat-killed L. casei cells. The difference in adjuvant effectiveness of heat-killed L. casei cells on 8- and 20-week-old animals may be dependent on the difference in the enhancing activity of the cell-mediated immune systems between the groups induced by heat-killed L. casei cells, and, as a result, on the difference in the degree of proliferation of ecotropic and recombinant MuLV in thymus, which consequently causes thymic lymphoma.

  17. Immune Alterations in Male and Female Mice after 2-Deoxy-D-Glucose Administration

    Science.gov (United States)

    Dreau, Didier; Morton, Darla S.; Foster, Mareva; Swiggett, Jeanene P.; Sonnenfeld, Gerald

    1995-01-01

    Administration of 2-deoxy-D-glucose (2-DG), an analog of glucose which inhibits glycolysis by competitive antagonism for phosphohexose isomerase, results in acute periods of intracellular glucoprivation and hyperglycemia resulting in hyperphagia. In addition to these changes in the carbohydrate metabolism, injection of 2-DG results in alterations of both the endocrine and neurological systems as suggested by modifications in oxytocin and glucocorticoid levels and norepinephrine production. Moreover, alterations of the immune response, such as a decrease in the in vitro proliferation of splenocytes after mitogen-stimulation, were observed in mice injected with 2-DG. Sex, genotype and environment are among the factors that may modulate effects of catecholamines and hypothalamo-pituitary-adrenal axis on these immune changes. Sexual dimorphism in immune function resulting from the effects of sex hormones on immune effector cells has been shown in both animals and humans. These observations have important implications, especially with regard to higher incidence of many autoimmune diseases in females. Evidence exists that reproductive hormones influence the immune system and increase the risk of immunologically related disorders in both animals and humans. Indeed, immunological responses in stressful situations may also be confounded by fluctuations of sex hormones especially in females. Lymphocyte distribution, cytoldne production, and the ability of lymphocyte to proliferate in vitro were analyzed in male and female mice to determine if sex influenced 2-DG immunomodulation. In addition, the influence of hormones, especially sex hormones, on these changes were evaluated.

  18. Increased susceptibility to collagen-induced arthritis in female mice carrying congenic Cia40/Pregq2 fragments

    DEFF Research Database (Denmark)

    Liljander, Maria; Andersson, Åsa Inga Maria; Holmdahl, Rikard

    2008-01-01

    ABSTRACT: INTRODUCTION: Collagen-induced arthritis (CIA) in mice is a commonly used experimental model for rheumatoid arthritis (RA). We have previously identified a significant quantitative trait locus denoted Cia40 on chromosome 11 that affects CIA in older female mice. This locus colocalizes...... with another locus, denoted Pregq2, known to affect reproductive success. The present study was performed to evaluate the role of the Cia40 locus in congenic B10.Q mice and to identify possible polymorphic candidate genes, which may also be relevant in the context of RA. METHODS: Congenic B10.Q mice carrying...... an NFR/N fragment surrounding the Cia40/Pregq2 loci were created by 10 generations of backcrossing (N10). The congenic mice were investigated in the CIA model, and the incidence and severity of arthritis as well as the serum levels of anti-collagen II (CII) antibodies were recorded. RESULTS: Significant...

  19. Increased high-density lipoprotein cholesterol levels in mice with XX versus XY sex chromosomes.

    Science.gov (United States)

    Link, Jenny C; Chen, Xuqi; Prien, Christopher; Borja, Mark S; Hammerson, Bradley; Oda, Michael N; Arnold, Arthur P; Reue, Karen

    2015-08-01

    The molecular mechanisms underlying sex differences in dyslipidemia are poorly understood. We aimed to distinguish genetic and hormonal regulators of sex differences in plasma lipid levels. We assessed the role of gonadal hormones and sex chromosome complement on lipid levels using the four core genotypes mouse model (XX females, XX males, XY females, and XY males). In gonadally intact mice fed a chow diet, lipid levels were influenced by both male-female gonadal sex and XX-XY chromosome complement. Gonadectomy of adult mice revealed that the male-female differences are dependent on acute effects of gonadal hormones. In both intact and gonadectomized animals, XX mice had higher HDL cholesterol (HDL-C) levels than XY mice, regardless of male-female sex. Feeding a cholesterol-enriched diet produced distinct patterns of sex differences in lipid levels compared with a chow diet, revealing the interaction of gonadal and chromosomal sex with diet. Notably, under all dietary and gonadal conditions, HDL-C levels were higher in mice with 2 X chromosomes compared with mice with an X and Y chromosome. By generating mice with XX, XY, and XXY chromosome complements, we determined that the presence of 2 X chromosomes, and not the absence of the Y chromosome, influences HDL-C concentration. We demonstrate that having 2 X chromosomes versus an X and Y chromosome complement drives sex differences in HDL-C. It is conceivable that increased expression of genes escaping X-inactivation in XX mice regulates downstream processes to establish sexual dimorphism in plasma lipid levels. © 2015 American Heart Association, Inc.

  20. Excessive Vitamin E Intake Does Not Cause Bone Loss in Male or Ovariectomized Female Mice Fed Normal or High-Fat Diets.

    Science.gov (United States)

    Ikegami, Hiroko; Kawawa, Rie; Ichi, Ikuyo; Ishikawa, Tomoko; Koike, Taisuke; Aoki, Yoshinori; Fujiwara, Yoko

    2017-10-01

    Background: Animal studies on the effects of vitamin E on bone health have yielded conflicting and inconclusive results, and to our knowledge, no studies have addressed the effect of vitamin E on bone in animals consuming a high-fat diet (HFD). Objective: This study aimed to evaluate the effect of excessive vitamin E on bone metabolism in normal male mice and ovariectomized female mice fed a normal diet (ND) or HFD. Methods: In the first 2 experiments, 7-wk-old male mice were fed an ND (16% energy from fat) containing 75 (control), 0 (vitamin E-free), or 1000 (high vitamin E) mg vitamin E/kg (experiment 1) or an HFD (46% energy from fat) containing 0, 200, 500, or 1000 mg vitamin E/kg (experiment 2) for 18 wk. In the third experiment, 7-wk-old sham-operated or ovariectomized female mice were fed the ND (75 mg vitamin E/kg) or HFD containing 0 or 1000 mg vitamin E/kg for 8 wk. At the end of the feeding period, blood and femurs were collected to measure bone turnover markers and analyze histology and microcomputed tomography. Results: In experiments 1 and 2, vitamin E intake had no effect on plasma alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) activity, or bone formation, resorption, or volume in femurs in mice fed the ND or HFDs. In experiment 3, bone volume was significantly reduced (85%) in ovariectomized mice compared with that in sham-operated mice ( P vitamin E/kg. Conclusions: The results suggest that excess vitamin E intake does not cause bone loss in normal male mice or in ovariectomized or sham-operated female mice, regardless of dietary fat content. © 2017 American Society for Nutrition.

  1. Behavioral responses to and brain distribution of morphine in mature adult and aged mice

    International Nuclear Information System (INIS)

    Burton, C.K.; Ho, I.K.; Hoskins, B.

    1986-01-01

    Mature adult (3-6 mo old) and aged (2 yr old) male ICR mice were injected with 10 to 100 mg/kg morphine, s.c. The ED50 values for running behavior (as measured using Stoelting activity monitors and having each mouse serve as its own control) representing 5 times control activity was approximately 7.5 mg/kg for aged mice and approximately 17.5 mg/kg for the mature adults. The ED50 values for analgesia 1 hr after morphine administration using the tail-flick method (max. response time = 8 sec) were approx. 70 mg/kg for the aged mice and 15 mg/kg for the mature adults. One hour after injecting 3 H-morphine at doses of 30 and 100 mg/kg, 0.13 and 0.14% of the doses appeared in brains of aged and mature adult mice, respectively. Regional distribution of the morphine was the same for both age groups. Expressed as percent of total brain morphine, it was as follows: cortex, 30%; midbrain, 18%; cerebellum, 17%; medulla, 12%; pons, 9%; striatum, 8% and periaqueductal gray, 6%. Expressed as g morphine/g tissue for the 2 doses, the distribution was; periaqueductal gray, 30 and 80; striatum, 9 and 34; medulla, 6 and 20 pons; 5 and 19; cerebellum, 4 and 13; midbrain 2.5 and 8.5 and cortex, 2 and 8. These results suggest that the differences in response to morphine by the two age groups were due to age-related differences in opioid receptor populations and/or affinities

  2. Behavioral responses to and brain distribution of morphine in mature adult and aged mice

    Energy Technology Data Exchange (ETDEWEB)

    Burton, C.K.; Ho, I.K.; Hoskins, B.

    1986-03-01

    Mature adult (3-6 mo old) and aged (2 yr old) male ICR mice were injected with 10 to 100 mg/kg morphine, s.c. The ED50 values for running behavior (as measured using Stoelting activity monitors and having each mouse serve as its own control) representing 5 times control activity was approximately 7.5 mg/kg for aged mice and approximately 17.5 mg/kg for the mature adults. The ED50 values for analgesia 1 hr after morphine administration using the tail-flick method (max. response time = 8 sec) were approx. 70 mg/kg for the aged mice and 15 mg/kg for the mature adults. One hour after injecting /sup 3/H-morphine at doses of 30 and 100 mg/kg, 0.13 and 0.14% of the doses appeared in brains of aged and mature adult mice, respectively. Regional distribution of the morphine was the same for both age groups. Expressed as percent of total brain morphine, it was as follows: cortex, 30%; midbrain, 18%; cerebellum, 17%; medulla, 12%; pons, 9%; striatum, 8% and periaqueductal gray, 6%. Expressed as g morphine/g tissue for the 2 doses, the distribution was; periaqueductal gray, 30 and 80; striatum, 9 and 34; medulla, 6 and 20 pons; 5 and 19; cerebellum, 4 and 13; midbrain 2.5 and 8.5 and cortex, 2 and 8. These results suggest that the differences in response to morphine by the two age groups were due to age-related differences in opioid receptor populations and/or affinities.

  3. Diseases of aging untreated virgin female RFM and BALB/c mice

    International Nuclear Information System (INIS)

    Cosgrove, G.E.; Satterfield, L.C.; Bowles, N.D.; Klima, W.C.

    1978-01-01

    Diseases of untreated, virgin female barrier-maintained RFM and BALB/c mice used as controls in a large radiation aging experiment were necropsied after natural death. The spectrum and incidence of neoplastic and nonneoplastic diseases were somewhat different in the two strains. Both strains show a high incidence of neoplasma (largely reticulum cell sarcomas and lung tumors) and of glomerulosclerosis. A wide variety of other diseases was noted in much lower incidence. The findings in the RF were briefly compared with those in earlier experiments with that strain in this laboratory

  4. Transplacental arsenic carcinogenesis in mice

    International Nuclear Information System (INIS)

    Waalkes, Michael P.; Liu, Jie; Diwan, Bhalchandra A.

    2007-01-01

    Our work has focused on the carcinogenic effects of in utero arsenic exposure in mice. Our data show that a short period of maternal exposure to inorganic arsenic in the drinking water is an effective, multi-tissue carcinogen in the adult offspring. These studies have been reproduced in three temporally separate studies using two different mouse strains. In these studies pregnant mice were treated with drinking water containing sodium arsenite at up to 85 ppm arsenic from days 8 to 18 of gestation, and the offspring were observed for up to 2 years. The doses used in all these studies were well tolerated by both the dam and offspring. In C3H mice, two separate studies show male offspring exposed to arsenic in utero developed liver carcinoma and adrenal cortical adenoma in a dose-related fashion during adulthood. Prenatally exposed female C3H offspring show dose-related increases in ovarian tumors and lung carcinoma and in proliferative lesions (tumors plus preneoplastic hyperplasia) of the uterus and oviduct. In addition, prenatal arsenic plus postnatal exposure to the tumor promoter, 12-O-tetradecanoyl phorbol-13-acetate (TPA) in C3H mice produces excess lung tumors in both sexes and liver tumors in females. Male CD1 mice treated with arsenic in utero develop tumors of the liver and adrenal and renal hyperplasia while females develop tumors of urogenital system, ovary, uterus and adrenal and hyperplasia of the oviduct. Additional postnatal treatment with diethylstilbestrol or tamoxifen after prenatal arsenic in CD1 mice induces urinary bladder transitional cell proliferative lesions, including carcinoma and papilloma, and enhances the carcinogenic response in the liver of both sexes. Overall this model has provided convincing evidence that arsenic is a transplacental carcinogen in mice with the ability to target tissues of potential human relevance, such as the urinary bladder, lung and liver. Transplacental carcinogenesis clearly occurs with other agents in humans

  5. Spermatogenic Cell-Specific Gene Mutation in Mice via CRISPR-Cas9.

    Science.gov (United States)

    Bai, Meizhu; Liang, Dan; Wang, Yinghua; Li, Qing; Wu, Yuxuan; Li, Jinsong

    2016-05-20

    Tissue-specific knockout technology enables the analysis of the gene function in specific tissues in adult mammals. However, conventional strategy for producing tissue-specific knockout mice is a time- and labor-consuming process, restricting rapid study of the gene function in vivo. CRISPR-Cas9 system from bacteria is a simple and efficient gene-editing technique, which has enabled rapid generation of gene knockout lines in mouse by direct injection of CRISPR-Cas9 into zygotes. Here, we demonstrate CRISPR-Cas9-mediated spermatogenic cell-specific disruption of Scp3 gene in testes in one step. We first generated transgenic mice by pronuclear injection of a plasmid containing Hspa2 promoter driving Cas9 expression and showed Cas9 specific expression in spermatogenic cells. We then produced transgenic mice carrying Hspa2 promoter driven Cas9 and constitutive expressed sgRNA targeting Scp3 gene. Male founders were infertile due to developmental arrest of spermatogenic cells while female founders could produce progeny normally. Consistently, male progeny from female founders were infertile and females could transmit the transgenes to the next generation. Our study establishes a CRISPR-Cas9-based one-step strategy to analyze the gene function in adult tissues by a temporal-spatial pattern. Copyright © 2016 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  6. Social transfer of alcohol withdrawal-induced hyperalgesia in female prairie voles.

    Science.gov (United States)

    Walcott, Andre T; Smith, Monique L; Loftis, Jennifer M; Ryabinin, Andrey E

    2018-03-27

    The expression of pain serves as a way for animals to communicate potential dangers to nearby conspecifics. Recent research demonstrated that mice undergoing alcohol or morphine withdrawal, or inflammation, could socially communicate their hyperalgesia to nearby mice. However, it is unknown whether such social transfer of hyperalgesia can be observed in other species of rodents. Therefore, the present study investigated if the social transfer of hyperalgesia occurs in the highly social prairie vole (Microtus ochrogaster). We observe that adult female prairie voles undergoing withdrawal from voluntary two-bottle choice alcohol drinking display an increase in nociception. This alcohol withdrawal-induced hypersensitiity is socially transferred to female siblings within the same cage and female strangers housed in separate cages within the same room. These experiments reveal that the social transfer of pain phenomenon is not specific to inbred mouse strains and that prairie voles display alcohol withdrawal and social transfer-induced hyperalgesia.

  7. Test-retest paradigm of the forced swimming test in female mice is not valid for predicting antidepressant-like activity: participation of acetylcholine and sigma-1 receptors.

    Science.gov (United States)

    Su, Jing; Hato-Yamada, Noriko; Araki, Hiroaki; Yoshimura, Hiroyuki

    2013-01-01

    The forced swimming test (FST) in mice is widely used to predict the antidepressant activity of a drug, but information describing the immobility of female mice is limited. We investigated whether a prior swimming experience affects the immobility duration in a second FST in female mice and whether the test-retest paradigm is a valid screening tool for antidepressants. Female ICR mice were exposed to the FST using two experimental paradigms: a single FST and a double FST in which mice had experienced FST once 24 h prior to the second trail. The initial FST experience reliably prolonged immobility duration in the second FST. The antidepressants imipramine and paroxetine significantly reduced immobility duration in the single FST, but not in the double FST. Scopolamine and the sigma-1 (σ1) antagonist NE-100 administered before the second trial significantly prevented the prolongation of immobility. Neither a 5-HT1A nor a 5-HT2A receptor agonist affected immobility duration. We suggest that the test-retest paradigm in female mice is not adequate for predicting antidepressant-like activity of a drug; the prolongation of immobility in the double FST is modulated through acetylcholine and σ1 receptors.

  8. The Regenerative Potential of Parietal Epithelial Cells in Adult Mice

    Science.gov (United States)

    Berger, Katja; Schulte, Kevin; Boor, Peter; Kuppe, Christoph; van Kuppevelt, Toin H.; Floege, Jürgen; Smeets, Bart

    2014-01-01

    Previously, we showed that some podocytes in juvenile mice are recruited from cells lining Bowman’s capsule, suggesting that parietal epithelial cells (PECs) are a progenitor cell population for podocytes. To investigate whether PECs also replenish podocytes in adult mice, PECs were genetically labeled in an irreversible fashion in 5-week-old mice. No significant increase in labeled podocytes was observed, even after 18 months. To accelerate a potential regenerative mechanism, progressive glomerular hypertrophy was induced by progressive partial nephrectomies. Again, no significant podocyte replenishment was observed. Rather, labeled PECs exclusively invaded segments of the tuft affected by glomerulosclerosis, consistent with our previous findings. We next reassessed PEC recruitment in juvenile mice using a different reporter mouse and confirmed significant recruitment of labeled PECs onto the glomerular tuft. Moreover, some labeled cells on Bowman’s capsule expressed podocyte markers, and cells on Bowman’s capsule were also directly labeled in juvenile podocyte-specific Pod-rtTA transgenic mice. In 6-week-old mice, however, cells on Bowman’s capsule no longer expressed podocyte-specific markers. Similarly, in human kidneys, some cells on Bowman’s capsule expressed the podocyte marker synaptopodin from 2 weeks to 2 years of age but not at 7 years of age. In summary, podocyte regeneration from PECs could not be detected in aging mice or models of glomerular hypertrophy. We propose that a small fraction of committed podocytes reside on Bowman’s capsule close to the vascular stalk and are recruited onto the glomerular tuft during infancy to adolescence in mice and humans. PMID:24408873

  9. The regenerative potential of parietal epithelial cells in adult mice.

    Science.gov (United States)

    Berger, Katja; Schulte, Kevin; Boor, Peter; Kuppe, Christoph; van Kuppevelt, Toin H; Floege, Jürgen; Smeets, Bart; Moeller, Marcus J

    2014-04-01

    Previously, we showed that some podocytes in juvenile mice are recruited from cells lining Bowman's capsule, suggesting that parietal epithelial cells (PECs) are a progenitor cell population for podocytes. To investigate whether PECs also replenish podocytes in adult mice, PECs were genetically labeled in an irreversible fashion in 5-week-old mice. No significant increase in labeled podocytes was observed, even after 18 months. To accelerate a potential regenerative mechanism, progressive glomerular hypertrophy was induced by progressive partial nephrectomies. Again, no significant podocyte replenishment was observed. Rather, labeled PECs exclusively invaded segments of the tuft affected by glomerulosclerosis, consistent with our previous findings. We next reassessed PEC recruitment in juvenile mice using a different reporter mouse and confirmed significant recruitment of labeled PECs onto the glomerular tuft. Moreover, some labeled cells on Bowman's capsule expressed podocyte markers, and cells on Bowman's capsule were also directly labeled in juvenile podocyte-specific Pod-rtTA transgenic mice. In 6-week-old mice, however, cells on Bowman's capsule no longer expressed podocyte-specific markers. Similarly, in human kidneys, some cells on Bowman's capsule expressed the podocyte marker synaptopodin from 2 weeks to 2 years of age but not at 7 years of age. In summary, podocyte regeneration from PECs could not be detected in aging mice or models of glomerular hypertrophy. We propose that a small fraction of committed podocytes reside on Bowman's capsule close to the vascular stalk and are recruited onto the glomerular tuft during infancy to adolescence in mice and humans.

  10. Role of CYP2B in Phenobarbital-Induced Hepatocyte Proliferation in Mice.

    Science.gov (United States)

    Li, Lei; Bao, Xiaochen; Zhang, Qing-Yu; Negishi, Masahiko; Ding, Xinxin

    2017-08-01

    Phenobarbital (PB) promotes liver tumorigenesis in rodents, in part through activation of the constitutive androstane receptor (CAR) and the consequent changes in hepatic gene expression and increases in hepatocyte proliferation. A typical effect of CAR activation by PB is a marked induction of Cyp2b10 expression in the liver; the latter has been suspected to be vital for PB-induced hepatocellular proliferation. This hypothesis was tested here by using a Cyp2a(4/5)bgs -null (null) mouse model in which all Cyp2b genes are deleted. Adult male and female wild-type (WT) and null mice were treated intraperitoneally with PB at 50 mg/kg once daily for 5 successive days and tested on day 6. The liver-to-body weight ratio, an indicator of liver hypertrophy, was increased by 47% in male WT mice, but by only 22% in male Cyp2a(4/5)bgs -null mice, by the PB treatment. The fractions of bromodeoxyuridine-positive hepatocyte nuclei, assessed as a measure of the rate of hepatocyte proliferation, were also significantly lower in PB-treated male null mice compared with PB-treated male WT mice. However, whereas few proliferating hepatocytes were detected in saline-treated mice, many proliferating hepatocytes were still detected in PB-treated male null mice. In contrast, female WT mice were much less sensitive than male WT mice to PB-induced hepatocyte proliferation, and PB-treated female WT and PB-treated female null mice did not show significant difference in rates of hepatocyte proliferation. These results indicate that CYP2B induction plays a significant, but partial, role in PB-induced hepatocyte proliferation in male mice. U.S. Government work not protected by U.S. copyright.

  11. Nature of fatty acids in high fat diets differentially delineates obesity-linked metabolic syndrome components in male and female C57BL/6J mice

    Directory of Open Access Journals (Sweden)

    El Akoum Souhad

    2011-12-01

    Full Text Available Abstract Background Adverse effects of high-fat diets (HFD on metabolic homeostasis are linked to adipose tissue dysfunction. The goal of this study was to examine the effect of the HFD nature on adipose tissue activity, metabolic disturbances and glucose homeostasis alterations in male mice compared with female mice. Methods C57BL/6J mice were fed either a chow diet or HFD including vegetal (VD or animal (AD fat. Body weight, plasmatic parameters and adipose tissue mRNA expression levels of key genes were evaluated after 20 weeks of HFD feeding. Results HFD-fed mice were significantly heavier than control at the end of the protocol. Greater abdominal visceral fat accumulation was observed in mice fed with AD compared to those fed a chow diet or VD. Correlated with weight gain, leptin levels in systemic circulation were increased in HFD-fed mice in both sexes with a significant higher level in AD group compared to VD group. Circulating adiponectin levels as well as adipose tissue mRNA expression levels were significantly decreased in HFD-fed male mice. Although its plasma levels remained unchanged in females, adiponectin mRNA levels were significantly reduced in adipose tissue of both HFD-fed groups with a more marked decrease in AD group compared to VD group. Only HFD-fed male mice were diabetic with increased fasting glycaemia. On the other hand, insulin levels were only increased in AD-fed group in both sexes associated with increased resistin levels. VD did not induce any apparent metabolic alteration in females despite the increased weight gain. Peroxisome Proliferator-Activated Receptors gamma-2 (PPARγ2 and estrogen receptor alpha (ERα mRNA expression levels in adipose tissue were decreased up to 70% in HFD-fed mice but were more markedly reduced in male mice as compared with female mice. Conclusions The nature of dietary fat determines the extent of metabolic alterations reflected in adipocytes through modifications in the pattern of

  12. Fibroblast growth factor 21 has no direct role in regulating fertility in female mice

    Directory of Open Access Journals (Sweden)

    Garima Singhal

    2016-08-01

    Full Text Available Objective: Reproduction is an energetically expensive process. Insufficient calorie reserves, signaled to the brain through peripheral signals such as leptin, suppress fertility. Recently, fibroblast growth factor 21 (FGF21 was implicated as a signal from the liver to the hypothalamus that directly inhibits the hypothalamic–gonadotropin axis during fasting and starvation. However, FGF21 itself increases metabolic rate and can induce weight loss, which suggests that the effects of FGF21 on fertility may not be direct and may reflect changes in energy balance. Methods: To address this important question, we evaluated fertility in several mouse models with elevated FGF21 levels including ketogenic diet fed mice, fasted mice, mice treated with exogenous FGF21 and transgenic mice over-expressing FGF21. Results: We find that ketogenic diet fed mice remain fertile despite significant elevation in serum FGF21 levels. Absence of FGF21 does not alter transient infertility induced by fasting. Centrally infused FGF21 does not suppress fertility despite its efficacy in inducing browning of inguinal white adipose tissue. Furthermore, a high fat diet (HFD can restore fertility of female FGF21-overexpressing mice, a model of growth restriction, even in the presence of supraphysiological serum FGF21 levels. Conclusions: We conclude that FGF21 is not a direct physiological regulator of fertility in mice. The infertility observed in FGF21 overexpressing mice is likely driven by the increased energy expenditure and consequent excess calorie requirements resulting from high FGF21 levels. Keywords: FGF21, Fertility, Leptin, Hypothalamic action

  13. Could adult female acne be associated with modern life?

    Science.gov (United States)

    Albuquerque, R G R; Rocha, M A D; Bagatin, E; Tufik, S; Andersen, M L

    2014-10-01

    In recent years, the prevalence of adult female acne has increased, but the reason for this increase remains unclear. Acne is one of the most common skin disorders. It can be triggered or worsened by endogenous and exogenous factors, including genetic predisposition, hormone concentrations, diet, smoke and stress; although the interaction with this last factor is not well understood. Modern life presents many stresses including urban noises, socioeconomic pressures and light stimuli. Women are especially affected by stress during daily routine. The recent insertion in the labor market is added to the duties of the mother and wife. Women also have a higher risk of developing psychiatric disorders such as depression and anxiety. Sleep restriction is added to these factors, with several negative consequences on health, including on hormonal secretion and the immune system. This is further complicated by the natural variation in sleep architecture across the menstrual cycle. Recent studies have brought new data about the mechanisms and possible factors involved. This review aims to establish a connection between stress, sleep deprivation and adult female acne.

  14. Growth restriction, leptin, and the programming of adult behavior in mice.

    Science.gov (United States)

    Meyer, Lauritz R; Zhu, Vivian; Miller, Alise; Roghair, Robert D

    2014-12-15

    Prematurity and neonatal growth restriction (GR) are risk factors for autism and attention deficit hyperactivity disorder (ADHD). Leptin production is suppressed during periods of undernutrition, and we have shown that isolated neonatal leptin deficiency leads to adult hyperactivity while neonatal leptin supplementation normalizes the brain morphology of GR mice. We hypothesized that neonatal leptin would prevent the development of GR-associated behavioral abnormalities. From postnatal day 4-14, C57BL/6 mice were randomized to daily injections of saline or leptin (80ng/g), and GR was identified by a weanling weight below the tenth percentile. The behavioral phenotypes of GR and control mice were assessed beginning at 4 months. Within the tripartite chamber, GR mice had significantly impaired social interaction. Baseline escape times from the Barnes maze were faster for GR mice (65+/-6s vs 87+/-7s for controls, phormone leptin mitigates these effects. We speculate neonatal leptin deficiency may contribute to the adverse neurodevelopmental outcomes associated with postnatal growth restriction, and postnatal leptin therapy may be protective. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Substance p regulates puberty onset and fertility in the female mouse.

    Science.gov (United States)

    Simavli, Serap; Thompson, Iain R; Maguire, Caroline A; Gill, John C; Carroll, Rona S; Wolfe, Andrew; Kaiser, Ursula B; Navarro, Víctor M

    2015-06-01

    Puberty is a tightly regulated process that leads to reproductive capacity. Kiss1 neurons are crucial in this process by stimulating GnRH, yet how Kiss1 neurons are regulated remains unknown. Substance P (SP), an important neuropeptide in pain perception, induces gonadotropin release in adult mice in a kisspeptin-dependent manner. Here, we assessed whether SP, through binding to its receptor NK1R (neurokinin 1 receptor), participates in the timing of puberty onset and fertility in the mouse. We observed that 1) selective NK1R agonists induce gonadotropin release in prepubertal females; 2) the expression of Tac1 (encoding SP) and Tacr1 (NK1R) in the arcuate nucleus is maximal before puberty, suggesting increased SP tone; 3) repeated exposure to NK1R agonists prepubertally advances puberty onset; and 4) female Tac1(-/-) mice display delayed puberty; moreover, 5) SP deficiency leads to subfertility in females, showing fewer corpora lutea and antral follicles and leading to decreased litter size. Thus, our findings support a role for SP in the stimulation of gonadotropins before puberty, acting via Kiss1 neurons to stimulate GnRH release, and its involvement in the attainment of full reproductive capabilities in female mice.

  16. Supplementation with α-lipoic acid, CoQ10, and vitamin E augments running performance and mitochondrial function in female mice.

    Directory of Open Access Journals (Sweden)

    Arkan Abadi

    Full Text Available Antioxidant supplements are widely consumed by the general public; however, their effects of on exercise performance are controversial. The aim of this study was to examine the effects of an antioxidant cocktail (α-lipoic acid, vitamin E and coenzyme Q10 on exercise performance, muscle function and training adaptations in mice. C57Bl/J6 mice were placed on antioxidant supplement or placebo-control diets (n = 36/group and divided into trained (8 wks treadmill running (n = 12/group and untrained groups (n = 24/group. Antioxidant supplementation had no effect on the running performance of trained mice nor did it affect training adaptations; however, untrained female mice that received antioxidants performed significantly better than placebo-control mice (p ≤ 0.05. Furthermore, antioxidant-supplemented females (untrained showed elevated respiratory capacity in freshly excised muscle fibers (quadriceps femoris (p ≤ 0.05, reduced oxidative damage to muscle proteins (p ≤ 0.05, and increased expression of mitochondrial proteins (p ≤ 0.05 compared to placebo-controls. These changes were attributed to increased expression of proliferator-activated receptor gamma coactivator 1α (PGC-1α (p ≤ 0.05 via activation of AMP-activated protein kinase (AMPK (p ≤ 0.05 by antioxidant supplementation. Overall, these results indicate that this antioxidant supplement exerts gender specific effects; augmenting performance and mitochondrial function in untrained females, but does not attenuate training adaptations.

  17. Effects of Dim Light at Night on Food Intake and Body Mass in Developing Mice.

    Science.gov (United States)

    Cissé, Yasmine M; Peng, Juan; Nelson, Randy J

    2017-01-01

    Appropriately timed light is critical for circadian organization; exposure to dim light at night (dLAN) disrupts temporal organization of endogenous biological timing. Exposure to dLAN in adult mice is associated with elevated body mass and changes in metabolism putatively driven by voluntary changes in the time of food intake. We predicted that exposure of young mice to LAN could affect adult metabolic function. At 3 weeks (Experiment 1) or 5 weeks (Experiment 2) of age, mice were either maintained in standard light-dark (DARK) cycles or exposed to nightly dLAN (5 lux). In the first two experiments, food intake and locomotor activity were assessed after 4 weeks and a glucose tolerance test was administered after 6 weeks in experimental lighting conditions. In Experiment 3, tissues were collected around the clock at 6 h intervals to investigate rhythmic hepatic clock gene expression in mice exposed to dLAN from 3 or 5 weeks of age. Male and female mice exposed to dLAN beginning at 3 weeks of age displayed similar growth rates and body mass to DARK-reared offspring, despite increasing day-time food intake. Exposure to dLAN beginning at 5 weeks of age increased body mass and daytime food intake in male, but not female, mice. Consistent with the body mass phenotype, clock gene expression was unaltered in the liver. In contrast to adults, dLAN exposure during the development of the peripheral circadian system has sex- and development-dependent effects on body mass gain.

  18. Effects of Dim Light at Night on Food Intake and Body Mass in Developing Mice

    Directory of Open Access Journals (Sweden)

    Yasmine M. Cissé

    2017-05-01

    Full Text Available Appropriately timed light is critical for circadian organization; exposure to dim light at night (dLAN disrupts temporal organization of endogenous biological timing. Exposure to dLAN in adult mice is associated with elevated body mass and changes in metabolism putatively driven by voluntary changes in the time of food intake. We predicted that exposure of young mice to LAN could affect adult metabolic function. At 3 weeks (Experiment 1 or 5 weeks (Experiment 2 of age, mice were either maintained in standard light-dark (DARK cycles or exposed to nightly dLAN (5 lux. In the first two experiments, food intake and locomotor activity were assessed after 4 weeks and a glucose tolerance test was administered after 6 weeks in experimental lighting conditions. In Experiment 3, tissues were collected around the clock at 6 h intervals to investigate rhythmic hepatic clock gene expression in mice exposed to dLAN from 3 or 5 weeks of age. Male and female mice exposed to dLAN beginning at 3 weeks of age displayed similar growth rates and body mass to DARK-reared offspring, despite increasing day-time food intake. Exposure to dLAN beginning at 5 weeks of age increased body mass and daytime food intake in male, but not female, mice. Consistent with the body mass phenotype, clock gene expression was unaltered in the liver. In contrast to adults, dLAN exposure during the development of the peripheral circadian system has sex- and development-dependent effects on body mass gain.

  19. Aging rather than stress strongly influences amino acid metabolisms in the brain and genital organs of female mice.

    Science.gov (United States)

    Kodaira, Momoko; Nagasawa, Mao; Yamaguchi, Takeshi; Ikeda, Hiromi; Minaminaka, Kimie; Chowdhury, Vishwajit S; Yasuo, Shinobu; Furuse, Mitsuhiro

    2017-03-01

    Aging and stress affect quality of life, and proper nourishment is one of means of preventing this effect. Today, there is a focus on the amount of protein consumed by elderly people; however, changes in the amino acid metabolism of individuals have not been fully considered. In addition, the difference between average life span and healthy life years is larger in females than it is in males. To prolong the healthy life years of females, in the present study we evaluated the influence of stress and aging on metabolism and emotional behavior by comparing young and middle-aged female mice. After 28 consecutive days of immobilization stress, behavioral tests were conducted and tissue sampling was performed. The results showed that the body weight of middle-aged mice was severely lowered by stress, but emotional behaviors were hardly influenced by either aging or stress. Aging influenced changes in amino acid metabolism in the brain and increased various amino acid levels in the uterus and ovary. In conclusion, we found that aged mice were more susceptible to stress in terms of body-weight reduction, and that amino acid metabolisms in the brain and genital organs were largely influenced by aging rather than by stress. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. EFFECTS OF PHYSICAL TRAINING ON THE MYOCARDIUM OF FEMALE LDL KNOCKOUT OVARIECTOMIZED MICE

    OpenAIRE

    Brianezi, Ledimar; Marques, Mara Rubia; Cardoso, Clever Gomes; Miranda, Maria Luiza de Jesus; Fonseca, Fernando Luiz Affonso; Maifrino, Laura Beatriz Mesiano

    2017-01-01

    ABSTRACT Introduction: The emergence of coronary heart disease increases with menopause, physical inactivity and with dyslipidemia. It is known that physical training promotes the improvement of cardiovascular functions. Objective: The purpose of this study was to investigate the effects of aerobic physical training on the left ventricle in female LDL knockout ovariectomized mice. Methods: Thirty animals were divided into 6 groups (n=5), namely, sedentary non-ovariectomized control; sedentary...

  1. Butyl paraben and propyl paraben modulate bisphenol A and estradiol concentrations in female and male mice

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, Tyler; Weaver, Rachel E.; Ghasemi, Ramtin; Catanzaro, Denys de, E-mail: decatanz@mcmaster.ca

    2017-06-15

    People are routinely exposed to the antimicrobial preservatives butyl paraben (BP) and propyl paraben (PP), as well as the monomer of polycarbonate plastics, bisphenol A (BPA). These chemicals are reliably detected in human urine and potentially interact. We investigated whether BP or PP exposure can modulate the concentrations of {sup 14}C-BPA and 17β-estradiol (E{sub 2}). Female and male CF1 mice were each given a subcutaneous injection of oil containing 0 (vehicle), 1, 3, or 9 mg BP or PP, then given a dietary supplement containing 50 μg/kg {sup 14}C-BPA. Radioactivity was measured in tissues through liquid scintillation counting. Significantly elevated {sup 14}C-BPA concentrations were observed following BP treatment in blood serum of both sexes, as well as the lungs, uterus, and ovaries of females and the testes and epididymides of males. Treatment with PP significantly elevated {sup 14}C-BPA concentrations in the uterus only. In another experiment, female and male CF1 mice were each injected with vehicle, 3 mg BP, or 3 mg PP, and E{sub 2} was measured in urine 2–12 h later. Whereas PP did not affect E{sub 2}, BP significantly elevated E{sub 2} 6–10 h after injection in females and 8 h after injection in males. These data indicate that BP and PP can alter the pharmacokinetics of BPA in vivo, and that BP can modulate E{sub 2} concentrations. These results are consistent with evidence that parabens inhibit enzymes that are critical for BPA and E{sub 2} metabolism, and demonstrate the importance of considering concurrent exposure to multiple chemicals when determining regulatory exposure limits. - Highlights: • We studied whether paraben exposure affects the distribution of oral {sup 14}C-BPA. • Elevated {sup 14}C–BPA was observed in mice given butyl or propyl paraben. • We also studied whether paraben exposure affects natural E{sub 2} levels in urine. • Elevated E{sub 2} was observed in mice given butyl, but not propyl, paraben. • Parabens may

  2. Differentially Severe Cognitive Effects of Compromised Cerebral Blood Flow in Aged Mice: Association with Myelin Degradation and Microglia Activation

    Directory of Open Access Journals (Sweden)

    Gilly Wolf

    2017-06-01

    Full Text Available Bilateral common carotid artery stenosis (BCAS models the effects of compromised cerebral blood flow on brain structure and function in mice. We compared the effects of BCAS in aged (21 month and young adult (3 month female mice, anticipating a differentially more severe effect in the older mice. Four weeks after surgery there was a significant age by time by treatment interaction on the radial-arm water maze (RAWM; p = 0.014: on the first day of the test, latencies of old mice were longer compared to the latencies of young adult mice, independent of BCAS. However, on the second day of the test, latencies of old BCAS mice were significantly longer than old control mice (p = 0.049, while latencies of old controls were similar to those of the young adult mice, indicating more severe impairment of hippocampal dependent learning and working memory by BCAS in the older mice. Fluorescence staining of myelin basic protein (MBP showed that old age and BCAS both induced a significant decrease in fluorescence intensity. Evaluation of the number oligodendrocyte precursor cells demonstrated augmented myelin replacement in old BCAS mice (p < 0.05 compared with young adult BCAS and old control mice. While microglia morphology was assessed as normal in young adult control and young adult BCAS mice, microglia of old BCAS mice exhibited striking activation in the area of degraded myelin compared to young adult BCAS (p < 0.01 and old control mice (p < 0.05. These findings show a differentially more severe effect of cerebral hypoperfusion on cognitive function, myelin integrity and inflammatory processes in aged mice. Hypoperfusion may exacerbate degradation initiated by aging, which may induce more severe neuronal and cognitive phenotypes.

  3. Effects of Portulaca oleracea ethanolic extract on reproductive system of aging female mice

    Directory of Open Access Journals (Sweden)

    Akram Ahangarpour

    2016-03-01

    Full Text Available Background: Aging contains morphological and functional deterioration in biological systems. D-galactose (D-gal generates free radicals and accelerates aging. Portulaca oleracea (Purslane may have protective effect against oxidative stress. Objective: Purslane ethanolic extract effects were evaluated on antioxidant indices and sex hormone in D-gal aging female mice. Materials and Methods: 48 female NMRI mice (25-35 gr were randomly divided into, 6 groups: 1- control (normal saline for 45 days, 2- Purslane (200 mg/kg for last 3 weeks, 3-D-gal (500 mg/kg for 45 days, 4-D-gal+Purslane, 5- Aging, 6-Aging+Purslane. Sex hormones, antioxidants and malondialdehyde (MDA level of ovary and uterus were measured. Histological assessment was also done. Results: In D-gal treated and aging animals, LH and FSH levels were significantly increased (p<0.001 while estrogen and progesterone levels were significantly reduced (p<0.001 in comparison with control group. MDA contents were significantly increased in ovaries and uterus of D-gal and aging groups (p<0.01. Superoxide dismutase (SOD (p<0.001 and catalase (p<0.01 activities were significantly decreased in both aging and D-gal treated animals. Ovarian follicles were degenerated and atrophy on uterine wall and endometrial glands was observed in D-gal and aging groups. Alteration in hormone levels, MDA contents and antioxidant activity were significantly reversed by Purslane (p<0.05. Purslane could also improve histological changes such as atrophy of endometrium. Conclusion: These findings indicate that Purslane can attenuate aging alternations induced by D-gal and aging in female reproductive system.

  4. Effects of Portulaca oleracea ethanolic extract on reproductive system of aging female mice

    Science.gov (United States)

    Ahangarpour, Akram; Lamoochi, Zohreh; Fathi Moghaddam, Hadi; Mansouri, Seyed Mohamad Taghi

    2016-01-01

    Background: Aging contains morphological and functional deterioration in biological systems. D-galactose (D-gal) generates free radicals and accelerates aging. Portulaca oleracea (Purslane) may have protective effect against oxidative stress. Objective: Purslane ethanolic extract effects were evaluated on antioxidant indices and sex hormone in D-gal aging female mice. Materials and Methods: 48 female NMRI mice (25-35 gr) were randomly divided into, 6 groups: 1- control (normal saline for 45 days), 2- Purslane (200 mg/kg for last 3 weeks), 3-D-gal (500 mg/kg for 45 days), 4-D-gal+Purslane, 5- Aging, 6-Aging+Purslane. Sex hormones, antioxidants and malondialdehyde (MDA) level of ovary and uterus were measured. Histological assessment was also done. Results: In D-gal treated and aging animals, LH and FSH levels were significantly increased (p<0.001) while estrogen and progesterone levels were significantly reduced (p<0.001) in comparison with control group. MDA contents were significantly increased in ovaries and uterus of D-gal and aging groups (p<0.01). Superoxide dismutase (SOD) (p<0.001) and catalase (p<0.01) activities were significantly decreased in both aging and D-gal treated animals. Ovarian follicles were degenerated and atrophy on uterine wall and endometrial glands was observed in D-gal and aging groups. Alteration in hormone levels, MDA contents and antioxidant activity were significantly reversed by Purslane (p<0.05). Purslane could also improve histological changes such as atrophy of endometrium. Conclusion: These findings indicate that Purslane can attenuate aging alternations induced by D-gal and aging in female reproductive system. PMID:27294220

  5. Increased survivorship of testosterone-treated female house mice (Mus musculus) in high-density field conditions

    Science.gov (United States)

    W.J. Zielinski; J.G. Vandenbergh

    1991-01-01

    Differences in hormone levels influence sexual differences in aggression. survival, home-range size and dispcrsal in rodents. The role oftestosterone in establishing some of these differences in wild house mice was examined. Females treated with either 0·5 mg of testosterone enanthate (TE-treated) or oil (control), and an...

  6. Effects of cage density on behavior in young adult mice.

    Science.gov (United States)

    Davidson, Lauren P; Chedester, Alan L; Cole, Marlene N

    2007-08-01

    Optimal housing conditions for mice can be achieved by minimizing environmental variables, such as those that may contribute to anxiety-like behavior. This study evaluated the effects of cage size on juvenile mice through assessment of differences in weaning weight, locomotor skills, and anxiety-like behavior. Eighteen pairs of male and pregnant female Swiss-Webster (Cr:SW) mice were housed in 3 different caging scenarios, providing 429, 505, or 729 cm2 of space. Litters were standardized to 10 pups per litter in each cage. Mice reared in each caging scenario were assessed with the open-field, light-dark exploration, and elevated plus-maze tests. No differences in weaning weight were noted. Mice reared in the 505- and 729-cm2 cages explored a significantly larger area of the open-field arena than did those in the 429-cm2 cages. Those reared in the 505-cm2 cages spent more time in the center of the open field than did those in the 729-cm2 cages, suggesting that anxiety-like behavior may be increased in the animals housed in the larger cages. This study did not establish a consistent link between decreased floor space and increased anxiety-like behavior; neither does there appear to be a consistent effect of available floor area on the development of locomotor skills on mouse pups.

  7. Female children with incarcerated adult family members at risk for life-long neurological decline

    OpenAIRE

    Brewer-Smyth, Kathleen; Pohlig, Ryan T.; Bucurescu, Gabriel

    2016-01-01

    A secondary analysis of data from adult female prison inmates in the mid-Atlantic United States defined relationships between having incarcerated adult family members during childhood and neurological outcomes. Of 135 inmates, 99(73%) had one or more incarcerated adult family members during childhood. Regression analyses revealed that having incarcerated adult family members was related to greater frequency and severity of childhood abuse and higher incidence of neurological deficits in adult...

  8. A behavioral comparison of male and female adults with high functioning autism spectrum conditions.

    Directory of Open Access Journals (Sweden)

    Meng-Chuan Lai

    Full Text Available Autism spectrum conditions (ASC affect more males than females in the general population. However, within ASC it is unclear if there are phenotypic sex differences. Testing for similarities and differences between the sexes is important not only for clinical assessment but also has implications for theories of typical sex differences and of autism. Using cognitive and behavioral measures, we investigated similarities and differences between the sexes in age- and IQ-matched adults with ASC (high-functioning autism or Asperger syndrome. Of the 83 (45 males and 38 females participants, 62 (33 males and 29 females met Autism Diagnostic Interview-Revised (ADI-R cut-off criteria for autism in childhood and were included in all subsequent analyses. The severity of childhood core autism symptoms did not differ between the sexes. Males and females also did not differ in self-reported empathy, systemizing, anxiety, depression, and obsessive-compulsive traits/symptoms or mentalizing performance. However, adult females with ASC showed more lifetime sensory symptoms (p = 0.036, fewer current socio-communication difficulties (p = 0.001, and more self-reported autistic traits (p = 0.012 than males. In addition, females with ASC who also had developmental language delay had lower current performance IQ than those without developmental language delay (p<0.001, a pattern not seen in males. The absence of typical sex differences in empathizing-systemizing profiles within the autism spectrum confirms a prediction from the extreme male brain theory. Behavioral sex differences within ASC may also reflect different developmental mechanisms between males and females with ASC. We discuss the importance of the superficially better socio-communication ability in adult females with ASC in terms of why females with ASC may more often go under-recognized, and receive their diagnosis later, than males.

  9. Airway exposure to multi-walled carbon nanotubes disrupts the female reproductive cycle without affecting pregnancy outcomes in mice

    DEFF Research Database (Denmark)

    Johansson, Hanna Katarina Lilith; Hansen, J. S.; Elfving, B.

    2017-01-01

    response and inflammation in experimental animals, which may affect female reproduction. This proof-of-principle study therefore aimed to investigate if lung exposure by intratracheal instillation of the MWCNT NM-400 would affect the estrous cycle and reproductive function in female mice.Results: Estrous...... of irregular cycling after exposure. Our data indicates that MWCNT exposure may interfere with events leading to ovulation....

  10. Development of electrocardiogram intervals during growth of FVB/N neonate mice

    Science.gov (United States)

    2010-01-01

    Background Electrocardiography remains the best diagnostic tool and therapeutic biomarker for a spectrum of pediatric diseases involving cardiac or autonomic nervous system defects. As genetic links to these disorders are established and transgenic mouse models produced in efforts to understand and treat them, there is a surprising lack of information on electrocardiograms (ECGs) and ECG abnormalities in neonate mice. This is likely due to the trauma and anaesthesia required of many legacy approaches to ECG recording in mice, exacerbated by the fragility of many mutant neonates. Here, we use a non-invasive system to characterize development of the heart rate and electrocardiogram throughout the growth of conscious neonate FVB/N mice. Results We examine ECG waveforms as early as two days after birth. At this point males and females demonstrate comparable heart rates that are 50% lower than adult mice. Neonatal mice exhibit very low heart rate variability. Within 12 days of birth PR, QRS and QTc interval durations are near adult values while heart rate continues to increase until weaning. Upon weaning FVB/N females quickly develop slower heart rates than males, though PR intervals are comparable between sexes until a later age. This suggests separate developmental events may contribute to these gender differences in electrocardiography. Conclusions We provide insight with a new level of detail to the natural course of heart rate establishment in neonate mice. ECG can now be conveniently and repeatedly used in neonatal mice. This should serve to be of broad utility, facilitating further investigations into development of a diverse group of diseases and therapeutics in preclinical mouse studies. PMID:20735846

  11. The Effect of Ecstasy Administration during Pregnancy on Mice Fetuses

    Directory of Open Access Journals (Sweden)

    Y Mostafavi Pour-Manshadi

    2011-09-01

    Full Text Available Introduction: Ecstasy or 3,4-Methylenedioxymethamphetamine(MDMA is a psychotropic and addictive substance that young people tend to use it to reduce their psychological and social tensions. The purpose of this study was to assess the influence of ecstasy consumption on the fetus of pregnant mice during the second and third weeks of pregnancy. Methods: 20 adult female mice were randomly selected(5 for control group and 15 for experimental group. Two intraperitoneal injections of ecstasy(5mg/Kg was used in the experimental group, on 7th and 14th days of pregnancy, while, in the control group, only distilled water was injected intraperitoneally. On 18th day of pregnancy, mice were placed in separate cages. The condition of palate, skull, external ear, eye, fingers and toes and sindactily, weight, and fertility potentials of newborn mice were studied using stereo microscope. Results: From 163 newborn mice in two groups, no abnormalities were observed in the skull and the external ear. There wasn’t any significant difference between male and female sex ratio between two groups (p=.08. Hypoplasia of the fingers was significantly different between the two groups(p<0.001. The frequency of sindactily was not significantly different between two groups(p=0. 11. Female fertility potential was significantly different between two groups(p<0.001. Conclusion: Adminstration of ecstasy during pregnancy may affect the organogenesis and fertility potential of newborn mice. Therefore, more studies are needed in this regard.

  12. Effect of vitamin E on preovulatory stage irradiated female mouse expressed as chromosomal abnormalities in generated embryos

    International Nuclear Information System (INIS)

    Salimi, M.; Mozdarani, H.

    2006-01-01

    The present study has been carried out to investigate the effects of preovulatory stage gamma-irradiation of female mice in the absence or presence of vitamin E on numerical chromosome abnormalities in 8-cell embryos after mating with non- irradiated males. Materials and Methods: The 8-11 weeks adult female NMRl mice were whole body irradiated at preovulatory stage (post PMSG injection and about 12-18 hours before Injecting HCG) with 4 Gy gamma-rays generated from a cobalt-60 source alone or in combination with 200 IU/kg vitamin E, intraperitoneally administered one hour prior to irradiation. Soon after HCG injection super ovulated irradiated females were mated with non-irradiated males. About 68-h post coitus (p.c), 8-cell embryos were flushed from the oviducts of pregnant mice and were fixed on slides using standard methods in order to screen for metaphase spreads and numerical chromosome abnormalities. Results: In control embryos, 8% of metaphase plates were aneuploidy whereas in preovulatory stage irradiated female mice, about 50% of metaphase plates of embryos showed numerical chromosome aberrations (P nd meiotic division. Reduction of the frequency of chromosome aberrations in the presence of vitamin E is probably due to antioxidant effects of this vitamin, and scavenging free radicals induced by gamma-rays in mice oocytes' environment

  13. Deletion of the forebrain mineralocorticoid receptor impairs social discrimination and decision-making in male, but not in female mice.

    Science.gov (United States)

    Ter Horst, Judith P; van der Mark, Maaike; Kentrop, Jiska; Arp, Marit; van der Veen, Rixt; de Kloet, E Ronald; Oitzl, Melly S

    2014-01-01

    Social interaction with unknown individuals requires fast processing of information to decide whether it is friend or foe. This process of discrimination and decision-making is stressful and triggers secretion of corticosterone activating mineralocorticoid receptor (MR) and glucocorticoid receptor (GR). The MR is involved in appraisal of novel experiences and risk assessment. Recently, we have demonstrated in a dual-solution memory task that MR plays a role in the early stage of information processing and decision-making. Here we examined social approach and social discrimination in male and female mice lacking MR from hippocampal-amygdala-prefrontal circuitry and controls. The social approach task allows the assessment of time spent with an unfamiliar mouse and the ability to discriminate between familiar and unfamiliar conspecifics. The male and female test mice were both more interested in the social than the non-social experience and deletion of their limbic MR increased the time spent with an unfamiliar mouse. Unlike controls, the male MR(CaMKCre) mice were not able to discriminate between an unfamiliar and the familiar mouse. However, the female MR mutant had retained the discriminative ability between unfamiliar and familiar mice. Administration of the MR antagonist RU28318 to male mice supported the role of the MR in the discrimination between an unfamiliar mouse and a non-social stimulus. No effect was found with a GR antagonist. Our findings suggest that MR is involved in sociability and social discrimination in a sex-specific manner through inhibitory control exerted putatively via limbic-hippocampal efferents. The ability to discriminate between familiar and unfamiliar conspecifics is of uttermost importance for territorial defense and depends on a role of MR in decision-making.

  14. Behavioral neurotoxicity in adolescent and adult mice exposed to fenproporex during pregnancy.

    Science.gov (United States)

    Moreira, C Q; Faria, M J S S; Moreira, E G

    2005-08-01

    We investigated the effects of gestational exposure to fenproporex, one of the most used anorectic drugs in Brazil, on the behavior of adolescent and adult pups (30 and 60 days of age, respectively). Pregnant Swiss mice were treated daily, by gavage, with 15 mg/kg of fenproporex chloride or water during the whole gestational period. Male pups were submitted to open-field, forced swimming test, tail suspension test and fenproporex-induced stereotyped behavior. The results demonstrated that gestational exposure to fenproporex induces antidepressant-like effect and decreases fenproporex-induced stereotyped behavior in both adolescent and adult pups. Moreover, fenproporex-exposed adolescent pups tended (P= 0.06) to be more active than control pups. Our data show, for the first time, that gestational exposure to fenproporex leads to long-lasting behavioral toxicity in male mice characteristic of altered dopaminergic transmission.

  15. Fluoxetine treatment induces dose dependent alterations in depression associated behavior and neural plasticity in female mice

    OpenAIRE

    Hodes, Georgia E.; Hill-Smith, Tiffany E.; Lucki, Irwin

    2010-01-01

    Antidepressant induced increases in neurogenesis and neurotrophin mobilization in rodents and primates are proposed to be necessary for behavioral efficacy. The current study examines the relationship between the effects of fluoxetine treatment on behavior, cell proliferation and the neurotrophin BDNF in females. Female MRL/MpJ mice were treated acutely (5 and 10 mg/kg) or chronically (2.5, 5 and 10 mg/kg b.i.d.) with fluoxetine and tested in the tail suspension test (TST) and or novelty indu...

  16. Insulin signaling displayed a differential tissue-specific response to low-dose dihydrotestosterone in female mice.

    Science.gov (United States)

    Andrisse, Stanley; Billings, Katelyn; Xue, Ping; Wu, Sheng

    2018-04-01

    Hyperandrogenemia and hyperinsulinemia are believed to play prominent roles in polycystic ovarian syndrome (PCOS). We explored the effects of low-dose dihydrotestosterone (DHT), a model of PCOS, on insulin signaling in metabolic and reproductive tissues in a female mouse model. Insulin resistance in the energy storage tissues is associated with type 2 diabetes. Insulin signaling in the ovaries and pituitary either directly or indirectly stimulates androgen production. Energy storage and reproductive tissues were isolated and molecular assays were performed. Livers and white adipose tissue (WAT) from DHT mice displayed lower mRNA and protein expression of insulin signaling intermediates. However, ovaries and pituitaries of DHT mice exhibited higher expression levels of insulin signaling genes/proteins. Insulin-stimulated p-AKT levels were blunted in the livers and WAT of the DHT mice but increased or remained the same in the ovaries and pituitaries compared with controls. Glucose uptake decreased in liver and WAT but was unchanged in pituitary and ovary of DHT mice. Plasma membrane GLUTs were decreased in liver and WAT but increased in ovary and pituitary of DHT mice. Skeletal muscle insulin-signaling genes were not lowered in DHT mice compared with control. DHT mice did not display skeletal muscle insulin resistance. Insulin-stimulated glucose transport increased in skeletal muscles of DHT mice compared with controls. DHT mice were hyperinsulinemic. However, the differential mRNA and protein expression pattern was independent of hyperinsulinemia in cultured hepatocytes and pituitary cells. These findings demonstrate a differential effect of DHT on the insulin-signaling pathway in energy storage vs. reproductive tissues independent of hyperinsulinemia.

  17. Injection anaesthesia with fentanyl-midazolam-medetomidine in adult female mice: importance of antagonization and perioperative care.

    Science.gov (United States)

    Fleischmann, Thea; Jirkof, Paulin; Henke, Julia; Arras, Margarete; Cesarovic, Nikola

    2016-08-01

    Injection anaesthesia is commonly used in laboratory mice; however, a disadvantage is that post-anaesthesia recovery phases are long. Here, we investigated the potential for shortening the recovery phase after injection anaesthesia with fentanyl-midazolam-medetomidine by antagonization with naloxone-flumazenil-atipamezole. In order to monitor side-effects, the depth of anaesthesia, heart rate (HR), core body temperature (BT) and concentration of blood gases, as well as reflex responses, were assessed during a 50 min anaesthesia. Mice were allowed to recover from the anaesthesia in their home cages either with or without antagonization, while HR, core BT and spontaneous home cage behaviours were recorded for 24 h. Mice lost righting reflex at 330 ± 47 s after intraperitoneal injection of fentanyl-midazolam-medetomidine. During anaesthesia, HR averaged 225 ± 23 beats/min, respiratory rate and core BT reached steady state at 131 ± 15 breaths/min and 34.3 ± 0.25℃, respectively. Positive pedal withdrawal reflex, movement triggered by tail pinch and by toe pinch, still occurred in 25%, 31.2% and 100% of animals, respectively. Arterial blood gas analysis revealed acidosis, hypoxia, hypercapnia and a marked increase in glucose concentration. After anaesthesia reversal by injection with naloxone-flumazenil-atipamezole, animals regained consciousness after 110 ± 18 s and swiftly returned to physiological baseline values, yet they displayed diminished levels of locomotion and disrupted circadian rhythm. Without antagonization, mice showed marked hypothermia (22 ± 1.9℃) and bradycardia (119 ± 69 beats/min) for several hours. Fentanyl-midazolam-medetomidine provided reliable anaesthesia in mice with reasonable intra-anaesthetic side-effects. Post-anaesthetic period and related adverse effects were both reduced substantially by antagonization with naloxone-flumazenil-atipamezole. © The Author(s) 2016.

  18. Nutritional intervention restores muscle but not kidney phenotypes in adult calcineurin Aα null mice.

    Directory of Open Access Journals (Sweden)

    Kirsten Madsen

    Full Text Available Mice lacking the α isoform of the catalytic subunit of calcineurin (CnAα were first reported in 1996 and have been an important model to understand the role of calcineurin in the brain, immune system, bones, muscle, and kidney. Research using the mice has been limited, however, by failure to thrive and early lethality of most null pups. Work in our laboratory led to the rescue of CnAα-/- mice by supplemental feeding to compensate for a defect in salivary enzyme secretion. The data revealed that, without intervention, knockout mice suffer from severe caloric restriction. Since nutritional deprivation is known to significantly alter development, it is imperative that previous conclusions based on CnAα-/- mice are revisited to determine which aspects of the phenotype were attributable to caloric restriction versus a direct role for CnAα. In this study, we find that defects in renal development and function persist in adult CnAα-/- mice including a significant decrease in glomerular filtration rate and an increase in blood urea nitrogen levels. These data indicate that impaired renal development we previously reported was not due to caloric restriction but rather a specific role for CnAα in renal development and function. In contrast, we find that rather than being hypoglycemic, rescued mice are mildly hyperglycemic and insulin resistant. Examination of muscle fiber types shows that previously reported reductions in type I muscle fibers are no longer evident in rescued null mice. Rather, loss of CnAα likely alters insulin response due to a reduction in insulin receptor substrate-2 (IRS2 expression and signaling in muscle. This study illustrates the importance of re-examining the phenotypes of CnAα-/- mice and the advances that are now possible with the use of adult, rescued knockout animals.

  19. Auto-mobilized adult hematopoietic stem cells advance neovasculature in diabetic retinopathy of mice

    Institute of Scientific and Technical Information of China (English)

    TIAN Bei; LI Xiao-xin; SHEN Li; ZHAO Min; YU Wen-zhen

    2010-01-01

    Background Hematopoietic stem cells (HSCs) can be used to deliver functionally active angiostatic molecules to the retinal vasculature by targeting active astrocytes and may be useful in targeting pre-angiogenic retinal lesions. We sought to determine whether HSC mobilization can ameliorate early diabetic retinopathy in mice.Methods Mice were devided into four groups: normal mice control group, normal mice HSC-mobilized group, diabetic mice control group and diabetic mice HSC mobilized group. Murine stem cell growth factor (murine SCF) and recombined human granulocyte colony stimulating factor (rhG-csf) were administered to the mice with diabetes and without diabetes for continuous 5 days to induce autologous HSCs mobilization, and subcutaneous injection of physiological saline was used as control. Immunohistochemical double staining was conducted with anti-mouse rat CD31 monoclonal antibody and anti-BrdU rat antibody.Results Marked HSCs clearly increased after SCF plus G-csf-mobilization. Non-mobilized diabetic mice showed more HSCs than normal mice (P=0.032), and peripheral blood significantly increased in both diabetic and normal mice (P=0.000).Diabetic mice showed more CD31 positive capillary vessels (P=0.000) and accelerated endothelial cell regeneration. Only diabetic HSC-mobilized mice expressed both BrdU and CD31 antigens in the endothelial cells of new capillaries.Conclusion Auto-mobilized adult hematopoietic stem cells advance neovasculature in diabetic retinopathy of mice.

  20. Female children with incarcerated adult family members at risk for lifelong neurological decline.

    Science.gov (United States)

    Brewer-Smyth, Kathleen; Pohlig, Ryan T; Bucurescu, Gabriel

    2016-07-01

    A secondary analysis of data from adult female prison inmates in the mid-Atlantic United States defined relationships between having incarcerated adult family members during childhood and neurological outcomes. Of 135 inmates, 99 (60%) had one or more incarcerated adult family members during childhood. Regression analyses revealed that having incarcerated adult family members was related to greater frequency and severity of childhood abuse and higher incidence of neurological deficits in adulthood, especially related to traumatic brain injuries, compared to those without incarcerated adult family members. Along with being role models, adult family members impact the neurological health of children throughout their life-span.

  1. Prenatal and lactational exposure to low-doses of bisphenol A alters adult mice behavior.

    Science.gov (United States)

    Nakamura, Keiko; Itoh, Kyoko; Dai, Hongmei; Han, Longzhe; Wang, Xiaohang; Kato, Shingo; Sugimoto, Tohru; Fushiki, Shinji

    2012-01-01

    Bisphenol A (BPA) is an endocrine-disrupting chemical, widely used in dentistry and various industries. We previously reported that BPA affected murine neocortical development by accelerating neuronal differentiation/migration, resulting in abnormal neocortical architecture as well as aberrant thalamocortical connections in the brains of adult mice. The aim of this study was to investigate whether prenatal and lactational BPA exposure affected behavior in adult mice. Pregnant mice were injected subcutaneously with 20μg/kg of BPA daily from embryonic day 0 (E0) until postnatal day 21 (P21). Control animals received a vehicle alone. Behavioral tests (n=15-20) were conducted at postnatal 3weeks (P3W) and P10-15W. After an open-field test, an elevated plus maze and Morris water maze tests were performed. The total distance in the elevated plus maze test at P3W and in the open-field test at P10W was significantly decreased in the BPA-exposed group, compared with the control group. Significant sex differences were observed in the time spent in the central area in the open-field test at P3W and in the total distance in the elevated plus maze test at P11W. These results indicated that prenatal and lactational BPA exposure disturbed the murine behavior in the postnatal development period and the adult mice. Copyright © 2011 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  2. Self-Mutilating Behavior of Sexually Abused Female Adults in Turkey.

    Science.gov (United States)

    Baral, Isin; Kora, Kaan; Yuksel, Sahika; Sezgin, Ufuk

    1998-01-01

    Self-mutilating behavior (SMB), suicide, and eating disorders are examined in adult females (N=42) in relation to childhood sexual abuse. A statistically significant relationship was found between SMB and suicide attempts. Findings support the contention that SMB and sexual abuse are closely related to eating disorders. (Author/EMK)

  3. No evidence for punishment in communally nursing female house mice (Mus musculus domesticus).

    Science.gov (United States)

    Ferrari, Manuela; König, Barbara

    2017-01-01

    Punishment is claimed as an important mechanism to stabilise costly cooperation in humans, but its importance in social animals has been questioned recently due to both conceptual considerations and a lack of empirical evidence (only few published studies). We empirically tested whether there is evidence for punishment in communally nursing house mice (Mus musculus domesticus, direct descendants of "wild" animals). Communally breeding females pool their litters and raise all offspring together, indiscriminately caring for own and other offspring. Such a situation resembles a public good and provides scope for exploitation if females vary in their relative contributions to the joint nest (offspring number). We allowed two females to communally breed and conducted removal experiments both in the presence and absence of pups. We aimed to test whether reduced investment by one of the females (induced through separation from the partner and their combined offspring for 4 or 12 hours) leads to increased aggression by the other female after the reunion. We found no evidence for punishment, on the contrary, females increased socio-positive behaviours. The costs of losing a partner in a communally breeding species might be too high and hinder the evolution of punishment. Our findings add to a growing list of examples questioning the role of punishment in cooperating non-human animals and emphasise the importance of empirical testing of its assumptions and predictions.

  4. Abnormal motor phenotype at adult stages in mice lacking type 2 deiodinase.

    Science.gov (United States)

    Bárez-López, Soledad; Bosch-García, Daniel; Gómez-Andrés, David; Pulido-Valdeolivas, Irene; Montero-Pedrazuela, Ana; Obregon, Maria Jesus; Guadaño-Ferraz, Ana

    2014-01-01

    Thyroid hormones have a key role in both the developing and adult central nervous system and skeletal muscle. The thyroid gland produces mainly thyroxine (T4) but the intracellular concentrations of 3,5,3'-triiodothyronine (T3; the transcriptionally active hormone) in the central nervous system and skeletal muscle are modulated by the activity of type 2 deiodinase (D2). To date no neurological syndrome has been associated with mutations in the DIO2 gene and previous studies in young and juvenile D2-knockout mice (D2KO) did not find gross neurological alterations, possibly due to compensatory mechanisms. This study aims to analyze the motor phenotype of 3-and-6-month-old D2KO mice to evaluate the role of D2 on the motor system at adult stages in which compensatory mechanisms could have failed. Motor abilities were explored by validated tests. In the footprint test, D2KO showed an altered global gait pattern (mice walked slower, with shorter strides and with a hindlimb wider base of support than wild-type mice). No differences were detected in the balance beam test. However, a reduced latency to fall was found in the rotarod, coat-hanger and four limb hanging wire tests indicating impairment on coordination and prehensile reflex and a reduction of muscle strength. In histological analyses of cerebellum and skeletal muscle, D2KO mice did not present gross structural abnormalities. Thyroid hormones levels and deiodinases activities were also determined. In D2KO mice, despite euthyroid T3 and high T4 plasma levels, T3 levels were significantly reduced in cerebral cortex (48% reduction) and skeletal muscle (33% reduction), but not in the cerebellum where other deiodinase (type 1) is expressed. The motor alterations observed in D2KO mice indicate an important role for D2 in T3 availability to maintain motor function and muscle strength. Our results suggest a possible implication of D2 in motor disorders.

  5. Abnormal motor phenotype at adult stages in mice lacking type 2 deiodinase.

    Directory of Open Access Journals (Sweden)

    Soledad Bárez-López

    Full Text Available BACKGROUND: Thyroid hormones have a key role in both the developing and adult central nervous system and skeletal muscle. The thyroid gland produces mainly thyroxine (T4 but the intracellular concentrations of 3,5,3'-triiodothyronine (T3; the transcriptionally active hormone in the central nervous system and skeletal muscle are modulated by the activity of type 2 deiodinase (D2. To date no neurological syndrome has been associated with mutations in the DIO2 gene and previous studies in young and juvenile D2-knockout mice (D2KO did not find gross neurological alterations, possibly due to compensatory mechanisms. AIM: This study aims to analyze the motor phenotype of 3-and-6-month-old D2KO mice to evaluate the role of D2 on the motor system at adult stages in which compensatory mechanisms could have failed. RESULTS: Motor abilities were explored by validated tests. In the footprint test, D2KO showed an altered global gait pattern (mice walked slower, with shorter strides and with a hindlimb wider base of support than wild-type mice. No differences were detected in the balance beam test. However, a reduced latency to fall was found in the rotarod, coat-hanger and four limb hanging wire tests indicating impairment on coordination and prehensile reflex and a reduction of muscle strength. In histological analyses of cerebellum and skeletal muscle, D2KO mice did not present gross structural abnormalities. Thyroid hormones levels and deiodinases activities were also determined. In D2KO mice, despite euthyroid T3 and high T4 plasma levels, T3 levels were significantly reduced in cerebral cortex (48% reduction and skeletal muscle (33% reduction, but not in the cerebellum where other deiodinase (type 1 is expressed. CONCLUSIONS: The motor alterations observed in D2KO mice indicate an important role for D2 in T3 availability to maintain motor function and muscle strength. Our results suggest a possible implication of D2 in motor disorders.

  6. Depressive symptoms in older female carers of adults with intellectual disabilities.

    Science.gov (United States)

    Chou, Y C; Pu, C-Y; Fu, L-Y; Kröger, T

    2010-12-01

    This survey study aims to examine the prevalence and factors associated with depressive symptoms among primary older female family carers of adults with intellectual disabilities (ID). In total, 350 female family carers aged 55 and older took part and completed the interview in their homes. The survey package contained standardised scales to assess carer self-reported depressive symptoms, social support, caregiving burden and disease and health, as well as adult and carer sociodemographic information. Multiple linear regressions were used to identify the factors associated with high depressive symptoms in carers. Between 64% and 72% of these carers were classified as having high depressive symptoms. The factors associated with carer self-reported depressive symptoms were carer physical health, social support and caregiving burden; overall, the carer self-reported physical health was a stronger factor associated with depressive symptoms than their physical disease status. The level of the adult with ID's behavioural functioning and the carer age, marital status, employment status, education level and the family income level were not significantly associated with carer depressive symptoms. The factors identified in this study as correlating with self-reported depressive symptoms suggest that researchers and mental health professionals should collaborate to help improve the physical health and social support networks of the most vulnerable older female family carers. This should reduce depressive symptoms directly among this high-risk group. © 2010 The Authors. Journal of Intellectual Disability Research © 2010 Blackwell Publishing Ltd.

  7. Transgenerational epigenetic effects of the endocrine disruptor vinclozolin on pregnancies and female adult onset disease.

    Science.gov (United States)

    Nilsson, Eric E; Anway, Matthew D; Stanfield, Jacob; Skinner, Michael K

    2008-05-01

    Endocrine disruptor exposure during gonadal sex determination was previously found to induce male rat adult onset transgenerational disease (F1-F4 generation), and this was associated with an alteration in the epigenetic (i.e., DNA methylation) programming of the male germ line. The current study was designed to characterize the transgenerational disease phenotypes of the female adult offspring. Pregnant rats (F0 generation) were treated transiently with vinclozolin (i.e., fungicide with anti-androgenic activity) on embryonic (E) days E8-E14 of gestation. F1 control and vinclozolin generation offspring from different litters were mated to produce F2 offspring, and similarly F2 generation animals produced F3 generation offspring. Observations demonstrated that 9 out of 105 pregnant rats (8.6%) from the vinclozolin F1-F3 generations exhibited uterine hemorrhage and/or anemia late in pregnancy. None (0 out of 82) of the control F1-F3 generation females had similar pregnancy problems. Complete blood cell counts and serum chemistry profiles demonstrated that selected vinclozolin generation animals, but not controls, exhibited marked regenerative anemia in late pregnancy. Examination of kidney histology revealed moderate or severe glomerular abnormalities in 67% of the vinclozolin F2 and F3 generation adult females compared with 18% of the controls. Adult female vinclozolin generation animals also developed various types of tumors in 6.5% of the animals (11 out of 170), while 2% of control-line animals (3 out of 151) developed mammary tumors. Observations demonstrate that vinclozolin exposure during gonadal sex determination promotes a transgenerational increase in pregnancy abnormalities and female adult onset disease states.

  8. Morphological aspects of Schistosoma mansoni adult worms isolated from nourished and undernourished mice: a comparative analysis by confocal laser scanning microscopy

    Directory of Open Access Journals (Sweden)

    Neves Renata Heisler

    2001-01-01

    Full Text Available Malnutrition hampers the course of schistosomiasis mansoni infection just as normal growth of adult worms. A comparative morphometric study on adult specimens (male and female recovered from undernourished (fed with a low protein diet - regional basic diet and nourished (rodent commercial laboratory food, NUVILAB white mice was performed. Tomographic images and morphometric analysis of the oral and ventral suckers, reproductive system and tegument were obtained by means of confocal laser scanning microscopy. Undernourished male specimens presented smaller morphometric values (length and width of the reproductive system (first, third and last testicular lobes and thickness of the tegument than controls. Besides that, it was demonstrated that the dorsal surface of the male worms bears large tubercles unevenly distributed, but kept grouped and flat. At the subtegumental region, vacuolated areas were detected. It was concluded that the inadequate nutritional status of the vertebrate host has a negative influence mainly in the reproductive system and topographical somatic development of male adult Schistosoma mansoni, inducing some alterations on the structure of the parasite.

  9. Loss of miR-10a activates Lpo and collaborates with activated Wnt signaling in inducing intestinal Neoplasia in female mice

    DEFF Research Database (Denmark)

    Stadthagen Gomez, Gustavo; Tehler, Disa Elisabet; Høyland-Kroghsbo, Nina Molin

    2013-01-01

    , in the Apc(min) mouse model of intestinal neoplasia, female miR-10a deficient mice develop significantly more adenomas than miR-10(+/+) and male controls. We further found that Lpo is extensively upregulated in the intestinal epithelium of mice deprived of miR-10a. Using in vitro assays, we demonstrate...... that the primary miR-10a target KLF4 can upregulate transcription of Lpo, whereas siRNA knockdown of KLF4 reduces LPO levels in HCT-116 cells. Furthermore, Klf4 is upregulated in the intestines of miR-10a knockout mice. Lpo has previously been shown to have the capacity to oxidize estrogens into potent...... depurinating mutagens, creating an instable genomic environment that can cause initiation of cancer. Therefore, we postulate that Lpo upregulation in the intestinal epithelium of miR-10a deficient mice together with the predominant abundance of estrogens in female animals mainly accounts for the sex...

  10. Camellia sinensis Prevents Perinatal Nicotine-Induced Neurobehavioral Alterations, Tissue Injury, and Oxidative Stress in Male and Female Mice Newborns

    Science.gov (United States)

    Ajarem, Jamaan S.; Al-Basher, Gadh; Allam, Ahmed A.

    2017-01-01

    Nicotine exposure during pregnancy induces oxidative stress and leads to behavioral alterations in early childhood and young adulthood. The current study aimed to investigate the possible protective effects of green tea (Camellia sinensis) against perinatal nicotine-induced behavioral alterations and oxidative stress in mice newborns. Pregnant mice received 50 mg/kg C. sinensis on gestational day 1 (PD1) to postnatal day 15 (D15) and were subcutaneously injected with 0.25 mg/kg nicotine from PD12 to D15. Nicotine-exposed newborns showed significant delay in eye opening and hair appearance and declined body weight at birth and at D21. Nicotine induced neuromotor alterations in both male and female newborns evidenced by the suppressed righting, rotating, and cliff avoidance reflexes. Nicotine-exposed newborns exhibited declined memory, learning, and equilibrium capabilities, as well as marked anxiety behavior. C. sinensis significantly improved the physical development, neuromotor maturation, and behavioral performance in nicotine-exposed male and female newborns. In addition, C. sinensis prevented nicotine-induced tissue injury and lipid peroxidation and enhanced antioxidant defenses in the cerebellum and medulla oblongata of male and female newborns. In conclusion, this study shows that C. sinensis confers protective effects against perinatal nicotine-induced neurobehavioral alterations, tissue injury, and oxidative stress in mice newborns. PMID:28588748

  11. Radioautographic DNA-synthesis study on mice mus musculus gingival epithelium

    International Nuclear Information System (INIS)

    Silveira Tarelho, Z.V. da; Hetem, S.

    1984-01-01

    The DNA-synthetizing cells frequency in the gingival epithelium basal layer of the first lower molar region in young and adult mice of both sexes, using 3H-thymidine and radioautography were studied. The labeled cells frequency and proportion were determined and the data were statiscally analysed. The labeled cells frenquency is higher in female than in male animals, but difference is statiscally significant for adult animals only; this result suggests a hormonal influence, possibly of estrogen on the epithelial tissue. (Author) [pt

  12. In utero exposure to nanosized carbon black (Printex90) does not induce tandem repeat mutations in female murine germ cells

    DEFF Research Database (Denmark)

    Boisen, Anne Mette Zenner; Shipley, Thomas; Jackson, Petra

    2013-01-01

    Inhalation of particles has been shown to induce mutations in the male germline in mice following both prenatal and adult exposures in several experiments. In contrast, the effects of particles on female germ cell mutagenesis are not well established. Germline mutations are induced during active...... cell division, which occurs during fetal development in females. We investigated the effects of prenatal exposure to carbon black nanoparticles (CB) on induction of mutations in the female mouse germline during fetal development, spanning the critical developmental stages of oogenesis. Pregnant C57BL/6...... mutation rates in the resulting F2 generation were determined from full pedigrees (mother, father, offspring) of F1 female mice (178 CB-exposed and 258 control F2 offspring). ESTR mutation rates in CB-exposed F2 female offspring were not statistically different from those of F2 female control offspring....

  13. Development and application of the Chinese adult female computational phantom Rad-HUMAN

    International Nuclear Information System (INIS)

    Wu, Yican; Cheng, Mengyun; Wang, Wen; Fan, Yanchang; Zhao, Kai; He, Tao; Pei, Xi; Shang, Leiming; Chen, Chaobin; Long, Pengcheng; Cao, Ruifen; Wang, Guozhong; Zhou, Shaoheng; Yu, Shengpeng; Hu, Liqin; Zeng, Q.

    2013-01-01

    Rad-HUMAN is a whole-body numerical phantom of a Chinese adult woman which contains 46 organs and tissues and was created by MCAM6 software using the color photographs of the Chinese Visible Human dataset. This dataset was obtained from a 22-year old Chinese female cadaver judged to represent normal human anatomy as much as possible. The density and elemental composition recommended in the ICRP Publication 89 and in the ICRU report 44 were assigned to the organ and tissue in Rad-HUMAN for radiation protection purpose. The last step was to implement the anatomical data into a Monte Carlo code. Rad-HUMAN contains more than 28.8 billion tiny volume units, which produces an accurately whole-body numerical phantom of a Chinese adult female

  14. Deletion of the forebrain mineralocorticoid receptor impairs social discrimination and decision-making in male, but not in female mice

    Directory of Open Access Journals (Sweden)

    Judith P Ter Horst

    2014-02-01

    Full Text Available Social interaction with unknown individuals requires fast processing of information to decide whether it is friend or foe. This process of discrimination and decision-making is stressful and triggers secretion of corticosterone activating mineralocorticoid receptors (MR and glucocorticoid receptors (GR. The MR is involved in appraisal of novel experiences and risk assessment. Recently, we have demonstrated in a dual-solution memory task that MR plays a role in the early stage of information processing and decision-making. Here we examined social approach and social discrimination in male and female mice lacking MR from hippocampal-amygdala-prefrontal circuitry and controls. The social approach task allows the assessment of time spent with an unfamiliar mouse and the ability to discriminate between familiar and unfamiliar conspecifics. The male and female test mice were both more interested in the social than the non-social experience and deletion of their limbic MR increased the time spent with an unfamiliar mouse. Unlike controls, the male MRCaMKCre mice were not able to discriminate between an unfamiliar and the familiar mouse. However, the female MR mutant had retained the discriminative ability between unfamiliar and familiar mice. Administration of the MR antagonist RU28318 to male mice supported the role of the MR in the discrimination between an unfamiliar mouse and a non-social stimulus. No effect was found with a GR antagonist. Our findings suggest that MR is involved in sociability and social discrimination in a sex-specific manner through inhibitory control exerted putatively via limbic-hippocampal efferents. The ability to discriminate between familiar and unfamiliar conspecifics is of uttermost importance for territorial defense and depends on a role of MR in decision-making.

  15. Skeletal myofiber VEGF regulates contraction-induced perfusion and exercise capacity but not muscle capillarity in adult mice.

    Science.gov (United States)

    Knapp, Amy E; Goldberg, Daniel; Delavar, Hamid; Trisko, Breanna M; Tang, Kechun; Hogan, Michael C; Wagner, Peter D; Breen, Ellen C

    2016-07-01

    A single bout of exhaustive exercise signals expression of vascular endothelial growth factor (VEGF) in the exercising muscle. Previous studies have reported that mice with life-long deletion of skeletal myofiber VEGF have fewer capillaries and a severe reduction in endurance exercise. However, in adult mice, VEGF gene deletion conditionally targeted to skeletal myofibers limits exercise capacity without evidence of capillary regression. To explain this, we hypothesized that adult skeletal myofiber VEGF acutely regulates skeletal muscle perfusion during muscle contraction. A tamoxifen-inducible skeletal myofiber-specific VEGF gene deletion mouse (skmVEGF-/-) was used to reduce skeletal muscle VEGF protein by 90% in adult mice. Three weeks after inducing deletion of the skeletal myofiber VEGF gene, skmVEGF-/- mice exhibited diminished maximum running speed (-10%, P Contraction-induced perfusion measured by optical imaging during a period of electrically stimulated muscle contraction was 85% lower in skmVEGF-/- than control mice. No evidence of capillary rarefication was detected in the soleus, gastrocnemius, and extensor digitorum longus (EDL) up to 8 wk after tamoxifen-induced VEGF ablation, and contractility and fatigue resistance of the soleus measured ex vivo were also unchanged. The force-frequency of the EDL showed a small right shift, but fatigue resistance did not differ between EDL from control and skmVEGF-/- mice. These data suggest myofiber VEGF is required for regulating perfusion during periods of contraction and may in this manner affect endurance capacity. Copyright © 2016 the American Physiological Society.

  16. Barriers, Motivations, and Preferences for Physical Activity Among Female African American Older Adults

    Directory of Open Access Journals (Sweden)

    Neha P. Gothe PhD

    2016-11-01

    Full Text Available According to the Centers for Disease Control and Prevention, less than 11% of adults more than the age of 65 meet the 2008 Physical Activity Guidelines for Americans. Among minority populations, only 5% of non-Hispanic Black older adults met the guidelines. Given our limited understanding of psychosocial and environmental factors that affect physical activity participation in these groups, the purpose of our focus groups was to investigate barriers, motivators, and preferences of physical activity for community-dwelling African American older adults. Three focus groups were conducted with female African American older adults ( N = 20. Questions posed to each focus group targeted motivations and barriers toward physical activity as well as their preferences for physical activity. The motivations included perceived health benefits of physical activity, social support, and enjoyment associated with engagement in physical activity. Prominent barriers included time and physical limitations, peer pressure and family responsibilities, and weather and poor neighborhood conditions. Group activities involving a dance component and novel exercises such as tai-chi or yoga were preferred choices. These findings should be taken into consideration when designing and implementing research or community physical activity programs for female African American older adults.

  17. Barriers, Motivations, and Preferences for Physical Activity Among Female African American Older Adults.

    Science.gov (United States)

    Gothe, Neha P; Kendall, Bradley J

    2016-01-01

    According to the Centers for Disease Control and Prevention, less than 11% of adults more than the age of 65 meet the 2008 Physical Activity Guidelines for Americans. Among minority populations, only 5% of non-Hispanic Black older adults met the guidelines. Given our limited understanding of psychosocial and environmental factors that affect physical activity participation in these groups, the purpose of our focus groups was to investigate barriers, motivators, and preferences of physical activity for community-dwelling African American older adults. Three focus groups were conducted with female African American older adults ( N = 20). Questions posed to each focus group targeted motivations and barriers toward physical activity as well as their preferences for physical activity. The motivations included perceived health benefits of physical activity, social support, and enjoyment associated with engagement in physical activity. Prominent barriers included time and physical limitations, peer pressure and family responsibilities, and weather and poor neighborhood conditions. Group activities involving a dance component and novel exercises such as tai-chi or yoga were preferred choices. These findings should be taken into consideration when designing and implementing research or community physical activity programs for female African American older adults.

  18. The lemon balm extract ALS-L1023 inhibits obesity and nonalcoholic fatty liver disease in female ovariectomized mice.

    Science.gov (United States)

    Kim, Jeongjun; Lee, Hyunghee; Lim, Jonghoon; Lee, Haerim; Yoon, Seolah; Shin, Soon Shik; Yoon, Michung

    2017-08-01

    Increasing evidence indicates that angiogenesis inhibitors regulate obesity. This study aimed to determine whether the lemon balm extract ALS-L1023 inhibits diet-induced obesity and nonalcoholic fatty liver disease (NAFLD) in female ovariectomized (OVX) mice. OVX mice received a low fat diet (LFD), a high fat diet (HFD) or HFD supplemented with ALS-L1023 (ALS-L1023) for 15 weeks. HFD mice exhibited increases in visceral adipose tissue (VAT) angiogenesis, body weight, VAT mass and VAT inflammation compared with LFD mice. In contrast, all of these effects were reduced in ALS-L1023 mice compared with HFD mice. Serum lipids and liver injury markers were improved in ALS-L1023 mice. Hepatic lipid accumulation, inflammatory cells and collagen levels were lower in ALS-L1023 mice than in HFD mice. ALS-L1023 mice exhibited a tendency to normalize hepatic expression of genes involved in lipid metabolism, inflammation and fibrosis to levels in LFD mice. ALS-L1023 also induced Akt phosphorylation and increased Nrf2 mRNA expression in livers of obese mice. Our results indicate that the angiogenesis inhibitor ALS-L1023 can regulate obesity, hepatic steatosis and fibro-inflammation, in part through improvement of VAT function, in obese OVX mice. These findings suggest that angiogenesis inhibitors may contribute to alleviation of NAFLD in post-menopausal women with obesity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. 2,2′,3,5′,6-PENTACHLOROBIPHENYL (PCB 95) AND ITS HYDROXYLATED METABOLITES ARE ENANTIOMERICALLY ENRICHED IN FEMALE MICE

    Science.gov (United States)

    Kania-Korwel, Izabela; Barnhart, Christopher D.; Stamou, Marianna; Truong, Kim M.; El-Komy, Mohammed H.M.E.; Lein, Pamela J.; Veng-Pedersen, Peter; Lehmler, Hans-Joachim

    2012-01-01

    Epidemiological and laboratory studies link polychlorinated biphenyls and their metabolites to adverse neurodevelopmental outcomes. Several neurotoxic PCB congeners are chiral and undergo enantiomeric enrichment in mammalian species, which may modulate PCB developmental neurotoxicity. This study measures levels and enantiomeric enrichment of PCB 95 and its hydroxylated metabolites (OH-PCBs) in adult female C57Bl/6 mice following subchronic exposure to racemic PCB 95. Tissue levels of PCB 95 and OH-PCBs increased with increasing dose. Dose-dependent enantiomeric enrichment of PCB 95 was observed in brain and other tissues. OH-PCBs also displayed enantiomeric enrichment in blood and liver, but were not detected in adipose and brain. In light of data suggesting enantioselective effects of chiral PCBs on molecular targets linked to PCB developmental neurotoxicity, our observations highlight the importance of accounting for PCB and OH-PCB enantiomeric enrichment in the assessment of PCB developmental neurotoxicity. PMID:22974126

  20. Similar reliability and equivalent performance of female and male mice in the open field and water-maze place navigation task

    OpenAIRE

    Fritz, Ann-Kristina; Amrein, Irmgard; Wolfer, David P.

    2017-01-01

    Although most nervous system diseases affect women and men differentially, most behavioral studies using mouse models do not include subjects of both sexes. Many researchers worry that data of female mice may be unreliable due to the estrous cycle. Here, we retrospectively evaluated sex effects on coefficient of variation (CV) in 5,311 mice which had performed the same place navigation protocol in the water-maze and in 4,554 mice tested in the same open field arena. Confidence intervals for C...

  1. High-fat-diet-induced weight gain ameliorates bone loss without exacerbating AβPP processing and cognition in female APP/PS1 mice

    Directory of Open Access Journals (Sweden)

    Yunhua ePeng

    2014-08-01

    Full Text Available Osteoporosis is negatively correlated with body mass, whereas both osteoporosis and weight loss occur at higher incidence during the progression of Alzheimer’s disease (AD than the age-matched non-dementia individuals. Given that there is no evidence that overweight associated with AD-type cognitive dysfunction, we hypothesized that moderate weight gain might have a protective effect on the bone loss in AD without exacerbating cognitive dysfunction. In the present study, feeding a high-fat-diet (HFD, 45% calorie from fat to female APP/PS1 transgenic mice, an AD animal model, induced weight gain. The bone mineral density, microarchitecture, and biomechanical properties of the femurs were then evaluated. The results showed that the middle-aged female APP/PS1 transgenic mice were susceptible to osteoporosis of the femoral bones and that weight gain significantly enhanced bone mass and mechanical properties. Notably, HFD was not detrimental to brain insulin signaling and AβPP processing, as well as to exploration ability and working, learning and memory performance of the transgenic mice measured by T maze and water maze, compared with the mice fed a normal fat diet (10% calorie from fat. In addition, the circulating levels of leptin but not estradiol were remarkably elevated in HFD-treated mice. These results suggest that a body weight gain induced by the HFD feeding regimen significantly improved bone mass in female APP/PS1 mice with no detriments to exploration ability and spatial memory, most likely via the action of elevated circulating leptin.

  2. Cannabidiol Prevents the Development of Cold and Mechanical Allodynia in Paclitaxel-Treated Female C57Bl6 Mice

    OpenAIRE

    Ward, Sara Jane; Ramirez, Michael David; Neelakantan, Harshini; Walker, Ellen Ann

    2011-01-01

    The taxane chemotherapeutic paclitaxel frequently produces peripheral neuropathy in humans. Rodent models to investigate mechanisms and treatments are largely restricted to male rats, whereas female mouse studies are lacking. We characterized a range of paclitaxel doses on cold and mechanical allodynia in male and female C57Bl/6 mice. Because the nonpsycho-active phytocannabinoid cannabidiol attenuates other forms of neuropathic pain, we assessed its effect on paclitaxel-induced allodynia. Pa...

  3. Effects of prenatal exposure to surface-coated nanosized titanium dioxide (UV-Titan). A study in mice

    DEFF Research Database (Denmark)

    Hougaard, Karin S.; Jackson, Petra; Jensen, Keld A.

    2010-01-01

    to a nanoparticulate UV-filter (UV-titan L181). Methods: Time-mated mice (C57BL/6BomTac) were exposed by inhalation 1h/day to 42 mg/m(3) aerosolized powder (1.7.10(6) n/cm(3); peak-size: 97 nm) on gestation days 8-18. Endpoints included: maternal lung inflammation; gestational and litter parameters; offspring...... the central zone of the open field and exposed female offspring displayed enhanced prepulse inhibition. Cognitive function was unaffected (Morris water maze test). Conclusion: Inhalation exposure to nano-sized UV Titan dusts induced long term lung inflammation in time-mated adult female mice. Gestationally...

  4. Effects of lung exposure to carbon nanotubes on female fertility and pregnancy. A study in mice

    DEFF Research Database (Denmark)

    Hougaard, Karin S.; Jackson, Petra; Kyjovska, Zdenka O.

    2013-01-01

    We studied the effects of preconceptional exposure to multiwalled carbon nanotubes (MWCNTs): mature, female C57BL/6J mice were intratracheally instilled with 67μg NM-400 MWCNT, and the following day co-housed with mature males, in breeding pairs. Time to delivery of the first litter, litter...

  5. Educating adult females for leadership roles in an informal science program for girls

    Science.gov (United States)

    McCreedy, Dale

    The purpose of this study is to gain an understanding of and an evidentiary warrant for, how a community of practice focused on informal science learning, can engage and promote active participation that offers adult female members and the community opportunities for legitimacy and transformation. This study is a qualitative, ethnographic research study that documents how adult female volunteers, historically inexperienced and/or excluded from traditional practices of science, come to engage in science activities through an informal, community-based context that helps them to appreciate science connections in their lives that are ultimately empowering and agentic. I begin to understand the ways in which such informal contexts, often thought to be marginal to dominant educational beliefs and practices, can offer adults outside of the field of science, education, or both, an entree into science learning and teaching that facilitate female's participation in legitimate and empowering ways. Using descriptive analyses, I first identify the characteristics of peripheral and active program participants. Through phenomenological analyses, I then develop an understanding of participation in an informal science program by focusing on three adult female members' unique trajectories of participation leading to core member status. Each draws on different aspects of the program that they find most salient, illustrating how different elements can serve as motivators for participation, and support continuation along the trajectory of participation reflecting personal and political agency. Through a purposeful ethnographic case-study analysis, I then explore one core member's transformation, evidenced by her developing identities as someone who enjoys science, engages in science activities, and, enacts a role as community old timer and door opener to science learning. This study: (1) contributes to the limited knowledge base in fields of informal learning, science education, and

  6. The suitability of 129SvEv mice for studying depressive-like behaviour: both males and females develop learned helplessness.

    Science.gov (United States)

    Chourbaji, Sabine; Pfeiffer, Natascha; Dormann, Christof; Brandwein, Christiane; Fradley, Rosa; Sheardown, Malcolm; Gass, P

    2010-07-29

    Behavioural studies using transgenic techniques in mice usually require extensive backcrossing to a defined background strain, e.g. to C57BL/6. In this study we investigated whether backcrossing can be replaced by using the 129SvEv strain from which the embryonic stem cells are generally obtained for gene targeting strategies to analyze e.g. depression-like behaviour. For that purpose we subjected male and female 129SvEv mice to two frequently used depression tests and compared them with commonly used C57BL/6 mice. 129SvEv and C57BL/6 mice exhibited differing profiles with regard to locomotion and pain sensitivity. However, in the learned helplessness paradigm, a procedure, which represents a valid method to detect depressive-like behaviour, 129SvEv animals develop a similar level of helplessness as C57BL/6 mice. One great advantage of the 129SvEv animals though, is the fact that in this strain even females develop helplessness, which could not be produced in C57BL/6 mice. In the tail suspension test, both genders of 129SvEv exhibited more despair behaviour than C57BL/6 animals. We therefore suggest that this strain may be utilized in the establishment of new test procedures for affective diseases, since costly and time-consuming backcrossing can be prevented, depressive-like behaviour may be analyzed effectively, and gender-specific topics could be addressed in an adequate way. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Hyperandrogenemia Induced by Letrozole Treatment of Pubertal Female Mice Results in Hyperinsulinemia Prior to Weight Gain and Insulin Resistance.

    Science.gov (United States)

    Skarra, Danalea V; Hernández-Carretero, Angelina; Rivera, Alissa J; Anvar, Arya R; Thackray, Varykina G

    2017-09-01

    Women with polycystic ovary syndrome (PCOS) diagnosed with hyperandrogenism and ovulatory dysfunction have an increased risk of developing metabolic disorders, including type 2 diabetes and cardiovascular disease. We previously developed a model that uses letrozole to elevate endogenous testosterone levels in female mice. This model has hallmarks of PCOS, including hyperandrogenism, anovulation, and polycystic ovaries, as well as increased abdominal adiposity and glucose intolerance. In the current study, we further characterized the metabolic dysfunction that occurs after letrozole treatment to determine whether this model represents a PCOS-like metabolic phenotype. We focused on whether letrozole treatment results in altered pancreatic or liver function as well as insulin resistance. We also investigated whether hyperinsulinemia occurs secondary to weight gain and insulin resistance in this model or if it can occur independently. Our study demonstrated that letrozole-treated mice developed hyperinsulinemia after 1 week of treatment and without evidence of insulin resistance. After 2 weeks of letrozole treatment, mice became significantly heavier than placebo mice, demonstrating that weight gain was not required to develop hyperinsulinemia. After 5 weeks of letrozole treatment, mice exhibited blunted glucose-stimulated insulin secretion, insulin resistance, and impaired insulin-induced phosphorylation of AKT in skeletal muscle. Moreover, letrozole-treated mice exhibited dyslipidemia after 5 weeks of treatment but no evidence of hepatic disease. Our study demonstrated that the letrozole-induced PCOS mouse model exhibits multiple features of the metabolic dysregulation observed in obese, hyperandrogenic women with PCOS. This model will be useful for mechanistic studies investigating how hyperandrogenemia affects metabolism in females. Copyright © 2017 Endocrine Society.

  8. Effects of Kerack used in addict Iranian people on fertility of adult mice

    Directory of Open Access Journals (Sweden)

    Mehdi Amini

    2013-08-01

    Full Text Available Background: Infertility is one of the most serious social problems. Illicit drug use can be an important cause of male factor infertility. Kerack which its use is rising up in Iran refers to a high purity street-level heroin (heroin Kerack. Heroin Kerack used in Iran is an opioid and has harmful effects on body organs. The aim of this study is to investigate the effects of Kerack used in Iran on fertility adult mice.Methods: In this study, 25 male mice were divided into five groups (control, sham and three experimental. Experimental groups of Kerack-dependent mice (received ascend-ing dose of Kerack for seven days were divided into three categories, experimental I, II and III. Experimental I was given Kerack at a dose of 5 mg/kg, experimental II 35 mg/kg and experimental III 70 mg/kg, intraperitoneally twice a day for a period of 35 days. The sham group received normal saline and lemon juice (2.6 µl/ml whilst the control group just received water and food. Mice were then scarified and sperm removed from cauda epididymis were analyzed for sperm count, motility, morphology (normal/abnormal and viability. Testes were also removed, weighed and processed for light microscopic studies.Results: The results showed that fertility were significantly decreased in addicted mice compared with control groups (P≤0.05. Epididymal sperm parameters and thickness of seminiferous epithelium were significantly decreased in experimental groups (dose-dependent compared with sham and control groups (P≤0.05. Gonadosomatic index was significantly reduced with high dose Kerack injected (70 mg/kg in comparison with control testes (P≤0.05.Conclusion: This study has shown the deleterious effects of Kerack used in addicted Iranian people on fertility for the first time. This effect is especially on epididymal sperm parameters in adult mice.

  9. Residual haematopoietic damage in adult and 8 day-old mice exposed to 7 Gy of x-rays

    International Nuclear Information System (INIS)

    Grande, T.; Bueren, J.A.; Gaitan, S.; Tejero, C.

    1993-01-01

    The authors' experiments have focused on the analysis of residual haematopoietic damage in 8-day-old and 12-week-old mice X-irradiated with a single dose of 7 Gy. In the case of adult mice, analysis of femoral and splenic CFU-S, CFU-GM and BFU-E showed a persistent depletion of these haematopoietic progenitor cells after irradiation. In contrast, in 1-week-old irradiated mice, a progressive recovery of the femoral haematopoietic progenitors was observed, achieving essentially normal values 1 year after irradiation. The spleens of these mice, however, contained significantly less haematopoietic progenitors than the control group, mainly as a consequence of the size reduction of this organ. In the peripheral blood, normal cellularity values were observed in most cases, although in the adult group a decline in numbers or circulating cells was noted after the first year following irradiation. (author)

  10. Acute endocrine correlates of attack by lactating females in male mice: effects on plasma prolactin, luteinizing hormone and corticosterone levels.

    Science.gov (United States)

    Broida, J; Michael, S D; Svare, B

    1984-05-01

    Immediately following defeat inflicted by lactating Rockland-Swiss (R-S) albino mice, adult R-S male mice exhibited significant reductions in circulating prolactin (PRL) and luteinizing hormone (LH), but not corticosterone (CORT). These results suggest that acute neuroendocrine responses to intersex competition may be as dramatic as those previously reported for intermale encounters.

  11. IDH2 Deficiency Aggravates Fructose-Induced NAFLD by Modulating Hepatic Fatty Acid Metabolism and Activating Inflammatory Signaling in Female Mice

    Directory of Open Access Journals (Sweden)

    Jeong Hoon Pan

    2018-05-01

    Full Text Available Fructose is a strong risk factor for non-alcoholic fatty liver disease (NAFLD, resulting from the disruption of redox systems by excessive reactive oxygen species production in the liver cells. Of note, recent epidemiological studies indicated that women are more prone to developing metabolic syndrome in response to fructose-sweetened beverages. Hence, we examined whether disruption of the redox system through a deletion of NADPH supplying mitochondrial enzyme, NADP+-dependent isocitrate dehydrogenase (IDH2, exacerbates fructose-induced NAFLD conditions in C57BL/6 female mice. Wild-type (WT and IDH2 knockout (KO mice were treated with either water or 34% fructose water over six weeks. NAFLD phenotypes and key proteins and mRNAs involved in the inflammatory pathway (e.g., NF-κB p65 and IL-1β were assessed. Hepatic lipid accumulation was significantly increased in IDH2 KO mice fed fructose compared to the WT counterpart. Neutrophil infiltration was observed only in IDH2 KO mice fed fructose. Furthermore, phosphorylation of NF-κB p65 and expression of IL-1β was remarkably upregulated in IDH2 KO mice fed fructose, and expression of IκBα was decreased by fructose treatment in both WT and IDH2 KO groups. For the first time, we report our novel findings that IDH2 KO female mice may be more susceptible to fructose-induced NAFLD and the associated inflammatory response, suggesting a mechanistic role of IDH2 in metabolic diseases.

  12. Sex-dependent alteration of cardiac cytochrome P450 gene expression by doxorubicin in C57Bl/6 mice.

    Science.gov (United States)

    Grant, Marianne K O; Seelig, Davis M; Sharkey, Leslie C; Zordoky, Beshay N

    2017-01-01

    There is inconclusive evidence about the role of sex as a risk factor for doxorubicin (DOX)-induced cardiotoxicity. Recent experimental studies have shown that adult female rats are protected against DOX-induced cardiotoxicity. However, the mechanisms of this sexual dimorphism are not fully elucidated. We have previously demonstrated that DOX alters the expression of several cytochrome P450 (CYP) enzymes in the hearts of male rats. Nevertheless, the sex-dependent effect of DOX on the expression of CYP enzymes is still not known. Therefore, in the present study, we determined the effect of acute DOX exposure on the expression of CYP genes in the hearts of both male and female C57Bl/6 mice. Acute DOX cardiotoxicity was induced by a single intraperitoneal injection of 20 mg/kg DOX in male and female adult C57Bl/6 mice. Cardiac function was assessed 5 days after DOX exposure by trans-thoracic echocardiography. Mice were euthanized 1 day or 6 days after DOX or saline injection. Thereafter, the hearts were harvested and weighed. Heart sections were evaluated for pathological lesions. Total RNA was extracted and expression of natriuretic peptides, inflammatory and apoptotic markers, and CYP genes was measured by real-time PCR. Adult female C57Bl/6 mice were protected from acute DOX-induced cardiotoxicity as they show milder pathological lesions, less inflammation, and faster recovery from DOX-induced apoptosis and DOX-mediated inhibition of beta-type natriuretic peptide. Acute DOX exposure altered the gene expression of multiple CYP genes in a sex-dependent manner. In 24 h, DOX exposure caused male-specific induction of Cyp1b1 and female-specific induction of Cyp2c29 and Cyp2e1. Acute DOX exposure causes sex-dependent alteration of cardiac CYP gene expression. Since cardiac CYP enzymes metabolize several endogenous compounds to biologically active metabolites, sex-dependent alteration of CYP genes may play a role in the sexual dimorphism of acute DOX

  13. Heterozygosity for a Bub1 mutation causes female-specific germ cell aneuploidy in mice

    Energy Technology Data Exchange (ETDEWEB)

    Leland, Shawn; Nagarajan, Prabakaran; Polyzos, Aris; Thomas, Sharon; Samaan, George; Donnell, Robert; Marchetti, Francesco; Venkatachalam, Sundaresan

    2009-06-24

    Aneuploidy, the most common chromosomal abnormality at birth and the main ascertained cause of pregnancy loss in humans, originates primarily from chromosome segregation errors during oogenesis. Here we report that heterozygosity for a mutation in the mitotic checkpoint kinase gene, Bub1, induces aneuploidy in female germ cells of mice, and that the effect increases with advancing maternal age. Analysis of Bub1 heterozygous oocytes showed that aneuploidy occurred primarily during the first meiotic division and involved premature sister chromatid separation. Furthermore, aneuploidy was inherited in zygotes and resulted in the loss of embryos after implantation. The incidence of aneuploidy in zygotes was sufficient to explain the reduced litter size in matings with Bub1 heterozygous females. No effects were seen in germ cells from heterozygous males. These findings show that Bub1 dysfunction is linked to inherited aneuploidy in female germ cells and may contribute to the maternal age-related increase in aneuploidy and pregnancy loss.

  14. Exposure to neonatal cigarette smoke causes durable lung changes but does not potentiate cigarette smoke–induced chronic obstructive pulmonary disease in adult mice

    Science.gov (United States)

    McGrath-Morrow, Sharon; Malhotra, Deepti; Lauer, Thomas; Collaco, J. Michael; Mitzner, Wayne; Neptune, Enid; Wise, Robert; Biswal, Shyam

    2016-01-01

    The impact of early childhood cigarette smoke (CS) exposure on CS-induced chronic obstructive pulmonary disease (COPD) is unknown. This study was performed to evaluate the individual and combined effects of neonatal and adult CS exposure on lung structure, function, and gene expression in adult mice. To model a childhood CS exposure, neonatal C57/B6 mice were exposed to 14 days of CS (Neo CS). At 10 weeks of age, Neo CS and control mice were exposed to 4 months of CS. Pulmonary function tests, bronchoalveolar lavage, and lung morphometry were measured and gene expression profiling was performed on lung tissue. Mean chord lengths and lung volumes were increased in neonatal and/or adult CS-exposed mice. Differences in immune, cornified envelope protein, muscle, and erythrocyte genes were found in CS-exposed lung. Neonatal CS exposure caused durable structural and functional changes in the adult lung but did not potentiate CS-induced COPD changes. Cornified envelope protein gene expression was decreased in all CS-exposed mice, whereas myosin and erythrocyte gene expression was increased in mice exposed to both neonatal and adult CS, suggesting an adaptive response. Additional studies may be warranted to determine the utility of these genes as biomarkers of respiratory outcomes. PMID:21649527

  15. Protective effects of lemongrass (Cymbopogon citratus STAPF) essential oil on DNA damage and carcinogenesis in female Balb/C mice.

    Science.gov (United States)

    Bidinotto, Lucas T; Costa, Celso A R A; Salvadori, Daisy M F; Costa, Mirtes; Rodrigues, Maria A M; Barbisan, Luís F

    2011-08-01

    This study investigated the protective effect of oral treatment with lemongrass (Cymbopogon citratus STAPF) essential oil (LGEO) on leukocyte DNA damage induced by N-methyl-N-nitrosurea (MNU). Also, the anticarcinogenic activity of LGEO was investigated in a multi-organ carcinogenesis bioassay induced by 7,12-dimethylbenz(a)antracene, 1,2-dimethylhydrazine and N-butyl-N-(4-hydroxibuthyl)nitrosamine in Balb/C female Balb/c mice (DDB-initiated mice). In the short-term study, the animals were allocated into three groups: vehicle group (negative control), MNU group (positive control) and LGEO 500 mg kg⁻¹ (five times per week for 5 weeks) plus MNU group (test group). Blood samples were collected to analyze leukocyte DNA damage by comet assay 4 h after each MNU application at the end of weeks 3 and 5. The LGEO 500 mg kg⁻¹ treated group showed significantly lower (P lemongrass essential oil provided protective action against MNU-induced DNA damage and a potential anticarcinogenic activity against mammary carcinogenesis in DDB-initiated female Balb/C mice. Copyright © 2010 John Wiley & Sons, Ltd.

  16. Antidepressant-like effects of guanfacine and sex-specific differences in effects on c-fos immunoreactivity and paired-pulse ratio in male and female mice.

    Science.gov (United States)

    Mineur, Yann S; Bentham, Matthew P; Zhou, Wen-Liang; Plantenga, Margreet E; McKee, Sherry A; Picciotto, Marina R

    2015-10-01

    The a2A-noradrenergic agonist guanfacine can decreases stress-induced smoking in female, but not male, human smokers. It is not known whether these effects are due to effects on mood regulation and/or result from nicotinic-cholinergic interactions. The objective of the study was to determine whether there are sex differences in the effect of guanfacine in tests of anxiolytic and antidepressant efficacy in mice at baseline and in a hypercholinergic model of depression induced by the acetylcholinesterase inhibitor physostigmine. The effects of guanfacine were measured in the light/dark box, tail suspension, and the forced swim test in female and male C57BL/6J mice. In parallel, electrophysiological properties were evaluated in the prefrontal cortex, a critical brain region involved in stress responses. c-fos immunoreactivity was measured in other brain regions known to regulate mood. Despite a baseline sex difference in behavior in the forced swim test (female mice were more immobile), guanfacine had similar, dose-dependent, antidepressant-like effects in mice of both sexes (optimal dose, 0.15 mg/kg). An antidepressant-like effect of guanfacine was also observed following pre-treatment with physostigmine. A sex difference in the paired-pulse ratio in the prefrontal cortex (PFC) (male, 1.4; female, 2.1) was observed at baseline that was normalized by guanfacine. Other brain areas involved in cholinergic control of depression-like behaviors, including the basolateral amygdala and lateral septum, showed sex-specific changes in c-fos expression. Guanfacine has a robust antidepressant-like effect and can reverse a depression-like state induced by increased acetylcholine (ACh) signaling. These data suggest that different brain areas are recruited in female and male mice, despite similar behavioral responses to guanfacine.

  17. Ontogeny of B lymphocyte function. IV. Kinetics of maturation of B lymphocytes from fetal and neonatal mice when transferred into adult irradiated hosts

    International Nuclear Information System (INIS)

    Sherr, D.; Szewczuk, M.R.; Siskind, G.W.

    1977-01-01

    Lethally irradiated mice reconstituted with adult T cells and neonatal or fetal B cells produce an anti-DNP response of restricted heterogeneity of affinity when compared with the response of mice reconstituted with T and B cells from adult donors. The capacity to reconstitute adult mice to give a heterogeneous response matures between 7 and 10 days after birth. The maturation of B cells from day-15 fetal or neonatal donors to produce a heterogeneous response was followed in the adult, cell transfer recipient by immunizing them at different times after cell transfer. It was found that B cells both from day-15 fetal mice and from neonatal mice acquire the capacity to produce a heterogeneous response within 3 days in the adult, cell transfer recipient. Thus, the B cell population matures more rapidly in the cell transfer recipient than in the intact donor. The kinetics of maturation in the adult recipient is the same for B cells from day-15 fetal and neonatal donors. The data imply that all information required to produce a fully heterogeneous response is already present in the day-15 fetus. In addition, the data strongly support the hypothesis that a factor in the adult mouse acts to induce this step in the maturation of the B lymphocyte population. Thus, the data seem to be inconsistent with the view that the timing of the occurrence of this differentiation event is precoded in an internal cell clock in the B lymphocyte line. Clearly, B cells from day-15 fetal mice are already capable of differentiating in response to the inducing factor which is present in the adult animal

  18. Acute toxicity of Psilocybe cubensis (Ear. Sing., Strophariaceae, aqueous extract in mice

    Directory of Open Access Journals (Sweden)

    Thiago Berti Kirsten

    Full Text Available Psilocybe cubensis (Ear. Sing., Strophariaceae, is a hallucinogen mushroom that has been used since the old times by humans, causing several psychotic effects. P. cubensis contains two tryptamine derivates: psilocybin and psilocin, agonists of the 5-HT2 receptor (serotonin. The main objective of this study was to investigate the acute toxicity effects of P. cubensis aqueous extract (PCAE administration in mice. Male and female adult Swiss mice received PCAE 0.1 mL/10 g i.p., and were observed individually, directly in a glass box and in an open-field. In relation to the data of the control group, PCAE-treated animals presented: an increased gnawing, appearance of wet-dog shakes and a decreased locomotion and rearing frequencies after 29-38 min. Also a clear gender difference was detected, being female mice more sensible to the PCAE than males. It was suggested that PCAE administration produced specific effects on mice behaviors, characteristic of drugs which interfere on central serotonergic and dopaminergic systems. Finally, the observational methods here employed were efficient to evaluate the toxic effects of the extract.

  19. Placental passage of rose bengal 131I, its accumulation in the fetus and its distribution in the organs of the female mice

    International Nuclear Information System (INIS)

    Sudarwati, S.; Sutasurya, L.A.

    1977-01-01

    Female mice of various gestation periods were injected intraperitoneally with 0.25-0.5O ml of rose bengal 131 I with the activity between 225-250 μCi. A group was administered with Lugol's solution one day before treatment. Accumulation of radio-rose bengal in the fetuses started at the eleventh day and great increase occured at the seventeenth day of gestation till birth. Acculmulations in both fetal and female mice's thyroids could be prevented by administering Lugol's solution before treatment, and the second target of the labelled compound after the thyroid gland was liver. (author)

  20. Cholesteryl ester transfer protein alters liver and plasma triglyceride metabolism through two liver networks in female mice.

    Science.gov (United States)

    Palmisano, Brian T; Le, Thao D; Zhu, Lin; Lee, Yoon Kwang; Stafford, John M

    2016-08-01

    Elevated plasma TGs increase risk of cardiovascular disease in women. Estrogen treatment raises plasma TGs in women, but molecular mechanisms remain poorly understood. Here we explore the role of cholesteryl ester transfer protein (CETP) in the regulation of TG metabolism in female mice, which naturally lack CETP. In transgenic CETP females, acute estrogen treatment raised plasma TGs 50%, increased TG production, and increased expression of genes involved in VLDL synthesis, but not in nontransgenic littermate females. In CETP females, estrogen enhanced expression of small heterodimer partner (SHP), a nuclear receptor regulating VLDL production. Deletion of liver SHP prevented increases in TG production and expression of genes involved in VLDL synthesis in CETP mice with estrogen treatment. We also examined whether CETP expression had effects on TG metabolism independent of estrogen treatment. CETP increased liver β-oxidation and reduced liver TG content by 60%. Liver estrogen receptor α (ERα) was required for CETP expression to enhance β-oxidation and reduce liver TG content. Thus, CETP alters at least two networks governing TG metabolism, one involving SHP to increase VLDL-TG production in response to estrogen, and another involving ERα to enhance β-oxidation and lower liver TG content. These findings demonstrate a novel role for CETP in estrogen-mediated increases in TG production and a broader role for CETP in TG metabolism. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  1. Hops (Humulus lupulus) Content in Beer Modulates Effects of Beer on the Liver After Acute Ingestion in Female Mice.

    Science.gov (United States)

    Landmann, Marianne; Sellmann, Cathrin; Engstler, Anna Janina; Ziegenhardt, Doreen; Jung, Finn; Brombach, Christine; Bergheim, Ina

    2017-01-01

    Using a binge-drinking mouse model, we aimed to determine whether hops (Humulus lupulus) in beer is involved in the less damaging effects of acute beer consumption on the liver in comparison with ethanol. Female C57BL/6 J mice were either fed one iso-alcoholic and iso-caloric bolus dose of ethanol, beer, beer without hops (6 g ethanol/kg body weight) or an iso-caloric bolus of maltodextrin control solution. Markers of steatosis, intestinal barrier function, activation of toll-like receptor 4 signaling cascades, lipid peroxidation and lipogenesis were determined in liver, small intestine and plasma 2 h and 12 h after acute alcohol ingestion. Alcohol-induced hepatic fat accumulation was significantly attenuated in mice fed beer whereas in those fed beer without hops, hepatic fat accumulation was similar to that found in ethanol-fed mice. While markers of intestinal barrier function e.g. portal endotoxin levels and lipogenesis only differed slightly between groups, hepatic concentrations of myeloid differentiation primary response gene 88, inducible nitric oxide synthase (iNOS) and plasminogen-activator inhibitor 1 protein as well as of 4-hydroxynonenal and 3-nitrotyrosine protein adducts were similarly elevated in livers of mice fed ethanol or beer without hops when compared with controls. Induction of these markers was markedly attenuated in mice fed hops-containing beer. Taken together, our data suggest that hops in beer markedly attenuated acute alcohol-induced liver steatosis in female mice through mechanisms involving a suppression of iNOS induction in the liver. © The Author 2016. Medical Council on Alcohol and Oxford University Press. All rights reserved.

  2. Germline mutation rates in mice following in utero exposure to diesel exhaust particles by maternal inhalation

    DEFF Research Database (Denmark)

    Ritz, Caitlin; Ruminski, Wojciech; Hougaard, Karin S.

    2011-01-01

    (PAPs) from industrial environments cause DNA damage and mutations in the sperm of adult male mice. Effects on the female and male germline during critical stages of development (in utero) are unknown. In mice, previous studies have shown that expanded simple tandem repeat (ESTR) loci exhibit high rates......The induction of inherited DNA sequence mutations arising in the germline (i.e., sperm or egg) of mice exposed in utero to diesel exhaust particles (DEPs) via maternal inhalation compared to unexposed controls was investigated in this study. Previous work has shown that particulate air pollutants...... of spontaneous mutation, making this endpoint a valuable tool for studying inherited mutation and genomic instability. In the present study, pregnant C57Bl/6 mice were exposed to 19mg/m3 DEP from gestational day 7 through 19, alongside air exposed controls. Male and female F1 offspring were raised to maturity...

  3. Effects of acute and chronic administration of neurosteroid dehydroepiandrosterone sulfate on neuronal excitability in mice

    Directory of Open Access Journals (Sweden)

    Svob Strac D

    2016-03-01

    Full Text Available Dubravka Svob Strac,1 Josipa Vlainic,1 Janko Samardzic,2 Julija Erhardt,3 Zeljka Krsnik41Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia; 2Institute of Pharmacology, Clinical Pharmacology and Toxicology, Medical Faculty, University of Belgrade, Belgrade, Serbia; 3Department of Animal Physiology, Faculty of Science, University of Zagreb, 4Croatian Institute for Brain Research, Department of Neuroscience, School of Medicine, University of Zagreb, Zagreb, CroatiaBackground: Neurosteroid dehydroepiandrosterone sulfate (DHEAS has been associated with important brain functions, including neuronal survival, memory, and behavior, showing therapeutic potential in various neuropsychiatric and cognitive disorders. However, the antagonistic effects of DHEAS on γ-amino-butyric acidA receptors and its facilitatory action on glutamatergic neurotransmission might lead to enhanced brain excitability and seizures and thus limit DHEAS therapeutic applications. The aim of this study was to investigate possible age and sex differences in the neuronal excitability of the mice following acute and chronic DHEAS administration.Methods: DHEAS was administered intraperitoneally in male and female adult and old mice either acutely or repeatedly once daily for 4 weeks in a 10 mg/kg dose. To investigate the potential proconvulsant properties of DHEAS, we studied the effects of acute and chronic DHEAS treatment on picrotoxin-, pentylentetrazole-, and N-methyl-d-aspartate-induced seizures in mice. The effects of acute and chronic DHEAS administration on the locomotor activity, motor coordination, and body weight of the mice were also studied. We also investigated the effects of DHEAS treatment on [3H]flunitrazepam binding to the mouse brain membranes.Results: DHEAS did not modify the locomotor activity, motor coordination, body weight, and brain [3H]flunitrazepam binding of male and female mice. The results

  4. Citalopram Ameliorates Impairments in Spatial Memory and Synaptic Plasticity in Female 3xTgAD Mice

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2017-01-01

    Full Text Available Alzheimer’s disease (AD is the primary cause of dementia. There is no effective treatment. Amyloid-β peptide (Aβ plays an important role in the pathogenesis and thus strategies suppressing Aβ production and accumulation seem promising. Citalopram is an antidepressant drug and can decrease Aβ production and amyloid plaques in transgenic mice of AD and humans. Whether citalopram can ameliorate memory deficit was not known yet. We tested the effects of citalopram on behavioral performance and synaptic plasticity in female 3xTgAD mice, a well-characterized model of AD. Mice were treated with citalopram or water from 5 months of age for 3 months. Citalopram treatment at approximately 10 mg/kg/day significantly improved spatial memory in the Morris water maze (MWM test, while not affecting anxiety-like and depression-like behavior in 3xTgAD mice. Further, hippocampal long-term potentiation (LTP impairment in 3xTgAD mice was reversed by citalopram treatment. Citalopram treatment also significantly decreased the levels of insoluble Aβ40 in hippocampal and cortical tissues in 3xTgAD mice, accompanied with a reduced amyloid precursor protein (APP. Together, citalopram treatment may be a promising strategy for AD and further clinical trials should be conducted to verify the effect of citalopram on cognition in patients with AD or mild cognitive impairment.

  5. Female children with incarcerated adult family members at risk for life-long neurological decline

    Science.gov (United States)

    Brewer-Smyth, Kathleen; Pohlig, Ryan T.; Bucurescu, Gabriel

    2016-01-01

    A secondary analysis of data from adult female prison inmates in the mid-Atlantic United States defined relationships between having incarcerated adult family members during childhood and neurological outcomes. Of 135 inmates, 99(73%) had one or more incarcerated adult family members during childhood. Regression analyses revealed that having incarcerated adult family members was related to greater frequency and severity of childhood abuse and higher incidence of neurological deficits in adulthood, especially related to traumatic brain injuries, compared to those without incarcerated adult family members. Along with being role models, adult family members impact the neurological health of children throughout their lifespan. PMID:26788781

  6. Exercise capacity and cardiac hemodynamic response in female ApoE/LDLR−/− mice: a paradox of preserved V’O2max and exercise capacity despite coronary atherosclerosis

    Science.gov (United States)

    Wojewoda, M.; Tyrankiewicz, U.; Gwozdz, P.; Skorka, T.; Jablonska, M.; Orzylowska, A.; Jasinski, K.; Jasztal, A.; Przyborowski, K.; Kostogrys, R. B.; Zoladz, J. A.; Chlopicki, S.

    2016-01-01

    We assessed exercise performance, coronary blood flow and cardiac reserve of female ApoE/LDLR−/− mice with advanced atherosclerosis compared with age-matched, wild-type C57BL6/J mice. Exercise capacity was assessed as whole body maximal oxygen consumption (V’O2max), maximum running velocity (vmax) and maximum distance (DISTmax) during treadmill exercise. Cardiac systolic and diastolic function in basal conditions and in response to dobutamine (mimicking exercise-induced cardiac stress) were assessed by Magnetic Resonance Imaging (MRI) in vivo. Function of coronary circulation was assessed in isolated perfused hearts. In female ApoE/LDLR−/− mice V’O2max, vmax and DISTmax were not impaired as compared with C57BL6/J mice. Cardiac function at rest and systolic and diastolic cardiac reserve were also preserved in female ApoE/LDLR−/− mice as evidenced by preserved fractional area change and similar fall in systolic and end diastolic area after dobutamine. Moreover, endothelium-dependent responses of coronary circulation induced by bradykinin (Bk) and acetylcholine (ACh) were preserved, while endothelium-independent responses induced by NO-donors were augmented in female ApoE/LDLR−/− mice. Basal COX-2-dependent production of 6-keto-PGF1α was increased. Concluding, we suggest that robust compensatory mechanisms in coronary circulation involving PGI2- and NO-pathways may efficiently counterbalance coronary atherosclerosis-induced impairment in V’O2max and exercise capacity. PMID:27108697

  7. Psychological stress on female mice diminishes the developmental potential of oocytes: a study using the predatory stress model.

    Directory of Open Access Journals (Sweden)

    Yu-Xiang Liu

    Full Text Available Although the predatory stress experimental protocol is considered more psychological than the restraint protocol, it has rarely been used to study the effect of psychological stress on reproduction. Few studies exist on the direct effect of psychological stress to a female on developmental competence of her oocytes, and the direct effect of predatory maternal stress on oocytes has not been reported. In this study, a predatory stress system was first established for mice with cats as predators. Beginning 24 h after injection of equine chorionic gonadotropin, female mice were subjected to predatory stress for 24 h. Evaluation of mouse responses showed that the predatory stress system that we established increased anxiety-like behaviors and plasma cortisol concentrations significantly and continuously while not affecting food and water intake of the mice. In vitro experiments showed that whereas oocyte maturation and Sr(2+ activation or fertilization were unaffected by maternal predatory stress, rate of blastocyst formation and number of cells per blastocyst decreased significantly in stressed mice compared to non-stressed controls. In vivo embryo development indicated that both the number of blastocysts recovered per donor mouse and the average number of young per recipient after embryo transfer of blastocysts with similar cell counts were significantly lower in stressed than in unstressed donor mice. It is concluded that the predatory stress system we established was both effective and durative to induce mouse stress responses. Furthermore, predatory stress applied during the oocyte pre-maturation stage significantly impaired oocyte developmental potential while exerting no measurable impact on nuclear maturation, suggesting that cytoplasmic maturation of mouse oocytes was more vulnerable to maternal stress than nuclear maturation.

  8. Vulnerability of female germ cells in developing mice and monkeys to tritium, gamma rays, and polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Dobson, R.L.; Koehler, C.G.; Felton, J.S.; Kwan, T.C.; Wuebbles, B.J.; Jones, D.C.L.

    1978-01-01

    During development female germ cells in both mouse and monkey are extremely sensitive to destruction by low-level chronic tritium exposure (via 3 HOH in maternal drinking water). Practical significance of this stems from tritium's importance in nuclear energy production and as an environmental pollutant. In mice exposed from conception to 14 days of age, the LD 50 level for oocytes is only 2 μCi per mililiter of body water. The present studies indicate that, for female germ cells in squirrel monkeys exposed in utero, the LD 50 is even lower, about 0.5 μCi/ml. This striking sensitivity contrasts with reported radioresistance for primate oocytes, chiefly from acute x-irradiation experiments. The discrepancy is reconciled if germ cells in the fetal primate pass through a highly sensitive period of limited duration. In light of other data showing germ-cell loss following repeated semiweekly x-irradiation during late but not during mid gestation, these results indicate that exceedingly high sensitivity occurs probably about the middle of the last trimester, at which time the LD 50 for monkey germ cells is, as for that of the mouse, less than 5 rads. Whereas highest radiosensitivity in primates is before birth, in mice it is after birth. To define the period of sensitivity more sharply, we measured oocyte responses to standard gamma-ray exposures in Swiss-Webster mice at various ages and found them to be maximal between days 5 and 19. Polycyclic aromatic hydrocarbons (PAH's), important as pollutants, also can destroy female germ cells effectively

  9. Gestational lead exposure selectively decreases retinal dopamine amacrine cells and dopamine content in adult mice.

    Science.gov (United States)

    Fox, Donald A; Hamilton, W Ryan; Johnson, Jerry E; Xiao, Weimin; Chaney, Shawntay; Mukherjee, Shradha; Miller, Diane B; O'Callaghan, James P

    2011-11-01

    Gestational lead exposure (GLE) produces supernormal scotopic electroretinograms (ERG) in children, monkeys and rats, and a novel retinal phenotype characterized by an increased number of rod photoreceptors and bipolar cells in adult mice and rats. Since the loss of dopaminergic amacrine cells (DA ACs) in GLE monkeys and rats contributes to supernormal ERGs, the retinal DA system was analyzed in mice following GLE. C57BL/6 female mice were exposed to low (27 ppm), moderate (55 ppm) or high (109 ppm) lead throughout gestation and until postnatal day 10 (PN10). Blood [Pb] in control, low-, moderate- and high-dose GLE was ≤ 1, ≤ 10, ~25 and ~40 μg/dL, respectively, on PN10 and by PN30 all were ≤ 1 μg/dL. At PN60, confocal-stereology studies used vertical sections and wholemounts to characterize tyrosine hydroxylase (TH) expression and the number of DA and other ACs. GLE dose-dependently and selectively decreased the number of TH-immunoreactive (IR) DA ACs and their synaptic plexus without affecting GABAergic, glycinergic or cholinergic ACs. Immunoblots and confocal revealed dose-dependent decreases in retinal TH protein expression and content, although monoamine oxidase-A protein and gene expression were unchanged. High-pressure liquid chromatography showed that GLE dose-dependently decreased retinal DA content, its metabolites and DA utilization/release. The mechanism of DA selective vulnerability is unknown. However, a GLE-induced loss/dysfunction of DA ACs during development could increase the number of rods and bipolar cells since DA helps regulate neuronal proliferation, whereas during adulthood it could produce ERG supernormality as well as altered circadian rhythms, dark/light adaptation and spatial contrast sensitivity. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Predictors of urinary cadmium levels in adult females

    International Nuclear Information System (INIS)

    McElroy, Jane A.; Shafer, Martin M.; Hampton, John M.; Newcomb, Polly A.

    2007-01-01

    Ubiquitous exposure to low levels of cadmium has raised concern about adverse health effects. The aim of this study was to identify characteristics of non-occupationally exposed adult females that correlated with creatinine-adjusted urinary cadmium levels. In our population-based study, trained interviewers collected information from 254 female Wisconsin residents aged 20-69 years on tobacco use, limited dietary consumption patterns, reproductive history, demographics, and residential history. Participants provided spot-urine specimens collected at home. Urine cadmium concentrations were quantified using inductively-coupled plasma mass spectrometry and creatinine levels were also determined. Least square means and 95% confidence intervals for the natural log of the creatinine-adjusted urinary cadmium levels were calculated for each characteristic using multivariate analysis of variance adjusting for age and smoking status. Results were calculated on the log scale and then transformed to the original scale by taking the exponent of each of the values. We observed statistically significant increasing creatinine-adjusted urinary cadmium mean levels relative to smoking status, older age, parity, lower body surface area, mineral zinc supplement consumption, and high income. We did not observe a difference relative to consumption of organ meats, crustaceans, alcohol, multivitamins, multiminerals or homegrown vegetables, age of menopause, menarche of participant or oldest daughter, menopausal status or urban-rural residential location. Approximately 40% of the variance in creatinine-adjusted urinary cadmium levels in adult women was explained by several characteristics. Similar to other studies, age and smoking were the strongest determinants of creatinine-adjusted urinary cadmium concentration

  11. Predictors of urinary cadmium levels in adult females

    Energy Technology Data Exchange (ETDEWEB)

    McElroy, Jane A. [University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, 610 Walnut Street, 370 WARF, Madison, WI 53726 (United States)]. E-mail: jamcelroy@wisc.edu; Shafer, Martin M. [University of Wisconsin, Environmental Chemistry and Technology Program, 600 N Park Street, Madison, WI 53706 (United States); Hampton, John M. [University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, 610 Walnut Street, 370 WARF, Madison, WI 53726 (United States); Newcomb, Polly A. [University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, 610 Walnut Street, 370 WARF, Madison, WI 53726 (United States); Fred Hutchinson Cancer Research Center, Cancer Prevention Program, 1100 Fairview Ave N, M4-B402 PO Box 19024, Seattle, WA 98109 (United States)

    2007-09-01

    Ubiquitous exposure to low levels of cadmium has raised concern about adverse health effects. The aim of this study was to identify characteristics of non-occupationally exposed adult females that correlated with creatinine-adjusted urinary cadmium levels. In our population-based study, trained interviewers collected information from 254 female Wisconsin residents aged 20-69 years on tobacco use, limited dietary consumption patterns, reproductive history, demographics, and residential history. Participants provided spot-urine specimens collected at home. Urine cadmium concentrations were quantified using inductively-coupled plasma mass spectrometry and creatinine levels were also determined. Least square means and 95% confidence intervals for the natural log of the creatinine-adjusted urinary cadmium levels were calculated for each characteristic using multivariate analysis of variance adjusting for age and smoking status. Results were calculated on the log scale and then transformed to the original scale by taking the exponent of each of the values. We observed statistically significant increasing creatinine-adjusted urinary cadmium mean levels relative to smoking status, older age, parity, lower body surface area, mineral zinc supplement consumption, and high income. We did not observe a difference relative to consumption of organ meats, crustaceans, alcohol, multivitamins, multiminerals or homegrown vegetables, age of menopause, menarche of participant or oldest daughter, menopausal status or urban-rural residential location. Approximately 40% of the variance in creatinine-adjusted urinary cadmium levels in adult women was explained by several characteristics. Similar to other studies, age and smoking were the strongest determinants of creatinine-adjusted urinary cadmium concentration.

  12. GPR30 activation decreases anxiety in the open field test but not in the elevated plus maze test in female mice.

    Science.gov (United States)

    Anchan, Divya; Clark, Sara; Pollard, Kevin; Vasudevan, Nandini

    2014-01-01

    The GPR30 is a novel estrogen receptor (ER) that is a candidate membrane ER based on its binding to 17β estradiol and its rapid signaling properties such as activation of the extracellular-regulated kinase (ERK) pathway. Its distribution in the mouse limbic system predicts a role for this receptor in the estrogenic modulation of anxiety behaviors in the mouse. A previous study showed that chronic administration of a selective agonist to the GPR30 receptor, G-1, in the female rat can improve spatial memory, suggesting that GPR30 plays a role in hippocampal-dependent cognition. In this study, we investigated the effect of a similar chronic administration of G-1 on behaviors that denote anxiety in adult ovariectomized female mice, using the elevated plus maze (EPM) and the open field test as well as the activation of the ERK pathway in the hippocampus. Although estradiol benzoate had no effect on behaviors in the EPM or the open field, G-1 had an anxiolytic effect solely in the open field that was independent of ERK signaling in either the ventral or dorsal hippocampus. Such an anxiolytic effect may underlie the ability of G-1 to increase spatial memory, by acting on the hippocampus.

  13. Discovery of a new strain of murine rotavirus that is consistently shed in large quantities after oral inoculation of adult mice

    International Nuclear Information System (INIS)

    McNeal, Monica M.; Belli, Janine; Basu, Mitali; Choi, Anthony H.-C.; Ward, Richard L.

    2004-01-01

    In 1990, we developed the adult mouse model for studies on active immunity against shedding of the EDIM strain of murine rotavirus. Low and inconsistent levels of EDIM shedding in some strains of adult mice, particularly those on C57BL/6 backgrounds, established the need for an alternative murine rotavirus strain for these studies. Fortuitously, such a rotavirus strain was obtained from mice housed within the conventional colony at Children's Hospital. This strain, named EMcN, was clearly distinguishable from EDIM based on electropherotype. Furthermore, sequence analyses of VP4 and VP7 genes of EMcN revealed non-identities in 5% of the amino acids of both proteins relative to EDIM but established EMcN as another G3P[16] strain of murine rotavirus. Subgroup analysis showed EMcN belonged to SG1 while EDIM was found to be non-SG1/SG2. Similarly, unlike EDIM, the EMcN strain was identified as serotype G3 based on neutralization by hyperimmune antisera developed against prototype human and simian G3 rotavirus strains. Although EDIM produced more days of diarrhea and was shed in greater quantities in neonatal BALB/c mice, EMcN was shed in much greater quantities in adult BALB/c mice. More importantly, in contrast to the EDIM strain, EMcN was shown to be consistently shed in large quantities in adult C57BL/6 mice and ko mice on this background. Therefore, it is recommended that the EMcN strain be used for future challenge studies with mice on this background

  14. Causes of adult female deaths in Bangladesh: findings from two National Surveys.

    Science.gov (United States)

    Nahar, Quamrun; El Arifeen, Shams; Jamil, Kanta; Streatfield, Peter Kim

    2015-09-18

    Assessment of causes of death and changes in pattern of causes of death over time are needed for programmatic purposes. Limited national level data exist on the adult female causes of death in Bangladesh. Using data from two nationally representation surveys, the 2001 and 2010 Bangladesh Maternal Mortality Surveys (BMMS), the paper examines the causes of adult female death, aged 15-49 years, and changes in the patterns of these deaths. In both surveys, all household deaths three years prior to the survey were identified. Adult female deaths were then followed by a verbal autopsy (VA) using the WHO structured questionnaire. Two physicians independently reviewed the VA forms to assign a cause of death using the ICD-10; in case of disagreement, a third physician made an independent review and assigned a cause of death. The overall mortality rates for women aged 15-49 in 2001 and 2010 were 182 per 100,000 and 120 per 100,000 respectively. There is a shift in the pattern of causes of death during the period covered by the two surveys. In the 2001 survey, the main causes of death were maternal (20 %), followed by diseases of the circulatory system (15 %), malignancy (14 %) and infectious diseases (13 %). However, in the 2010 survey, malignancies were the leading cause (21 %), followed by diseases of the circulatory system (16 %), maternal causes (14 %) and infectious diseases (8 %). While maternal deaths remained the number one cause of death among 20-34 years old in both surveys, unnatural deaths were the main cause for teenage deaths, and malignancies were the main cause of death for older women. Although there is an increasing trend in the proportion of women who died in hospitals, in both surveys most women died at home (74 % in 2001 and 62 % in 2010). The shift in the pattern of causes of adult female deaths is in agreement with the overall change in the disease pattern from communicable to non-communicable diseases in Bangladesh. Suicide and other violent deaths as

  15. The effects of breeding protocol in C57BL/6J mice on adult offspring behaviour.

    Directory of Open Access Journals (Sweden)

    Claire J Foldi

    Full Text Available Animal experiments have demonstrated that a wide range of prenatal exposures can impact on the behaviour of the offspring. However, there is a lack of evidence as to whether the duration of sire exposure could affect such outcomes. We compared two widely used methods for breeding offspring for behavioural studies. The first involved housing male and female C57Bl/6J mice together for a period of time (usually 10-12 days and checking for pregnancy by the presence of a distended abdomen (Pair-housed; PH. The second involved daily introduction of female breeders to the male homecage followed by daily checks for pregnancy by the presence of vaginal plugs (Time-mated; TM. Male and female offspring were tested at 10 weeks of age on a behavioural test battery including the elevated plus-maze, hole board, light/dark emergence, forced swim test, novelty-suppressed feeding, active avoidance and extinction, tests for nociception and for prepulse inhibition (PPI of the acoustic startle response. We found that length of sire exposure (LSE had no significant effects on offspring behaviour, suggesting that the two breeding protocols do not differentially affect the behavioural outcomes of interest. The absence of LSE effects on the selected variables examined does not detract from the relevance of this study. Information regarding the potential influences of breeding protocol is not only absent from the literature, but also likely to be of particular interest to researchers studying the influence of prenatal manipulations on adult behaviour.

  16. Pathology of Serially Sacrificed Female B6C3F1 Mice Continuously Exposed to Very Low-Dose-Rate Gamma Rays.

    Science.gov (United States)

    Tanaka, I B; Komura, J; Tanaka, S

    2017-03-01

    We have previously reported on life span shortening as well as increased incidence rates in several neoplasms in B6C3F1 mice that were continuously exposed to 21 mGy/day of gamma rays for 400 days. To clarify whether the life shortening was due to early appearance of neoplasms (shortened latency) or increased promotion/progression, 8-week-old female specific-pathogen-free B6C3F1 mice were gamma-ray irradiated at a low dose rate of 20 mGy/day for 400 days. At 100 days postirradiation, 60-90 mice were sacrificed, and thereafter every 100 days alongside the age-matched nonirradiated controls, for 700 days. Additional groups were allowed to live out their natural life span. Pathological examination was performed on all mice to identify lesions, non-neoplastic and neoplastic, as well as to determine the cause of death. Body weights were significantly increased in irradiated mice from sacrifice days 200-500. Incidence rates for spontaneously occurring non-neoplastic lesions, such as adrenal subcapsular cell hyperplasia, fatty degeneration of the liver, atrophy and tubulostromal hyperplasia of the ovaries, were significantly increased in irradiated mice. Significantly increased incidence rates with no shortening of latency periods were observed in irradiated mice for malignant lymphomas, hepatocellular adenomas/carcinomas, bronchioloalveolar adenomas, harderian gland adenoma/adenocarcinoma. Shortened latencies with significantly increased incidence rates were observed for adrenal subcapsular cell adenomas and ovarian neoplasms (tubulostromal adenoma, granulosa cell tumors) in irradiated mice. Life span shortening in mice exposed to 20 mGy/day was mostly due to malignant lymphomas. Multiple primary neoplasms were significantly increased in mice exposed to 20 mGy/day from sacrifice days 400-700 and in the life span group. Our results confirm that continuous low-dose-rate gamma-ray irradiation of female B6C3F1 mice causes both cancer induction (shortened latency) and

  17. Antitumor Effect of Selenium and Modified Pectin Nano Particles and Gamma Radiation on Ehrilch Solid Tumor in Female Mice

    International Nuclear Information System (INIS)

    Mansour, S. Z.; Anis, L.M.; EI- Batal, A.I.

    2010-01-01

    Selenium nano particle (Nano- Se) is a novel Se species with novel biological activities with low toxicity. The aim of the present work was to evaluate the antitumor activity of a novel Nano- Se compound with or without gamma irradiation of female mice. Selenium size- controlled Nano-Se was prepared by a simple method by adding modified pectin to the selenious acid and ascorbic acid. The antitumor activity of Selenium and Modified Pectin Nano Particles (Se-Mp- NPs) were evaluated against Ehrilch ascites carcinoma (In vitro) and Ehrilch solid tumor model (In vivo). The antioxidant states of the novel compound were assessed measuring parameters in blood and tumor tissue of female mice. Malonaldehydoyl (MDA) end product of lipid peroxidation was evaluated in plasma and tumor tissue. Glutathione -S- transferase (GST) and cytochrome P450 (Cyto P450) were determined in tumor tissue homogenate. Tumor necrosis factor alpha (TNF- a) concentration and interleukin 10 (IL- 10) concentrations was evaluated in plasma of female mice. The effect of tumor inoculation and different treatments on liver enzymes (ALT and AST) and kidney Function (urea and creatinine) were detected in the plasma of animals. Apoptosis was shown and estimated in tumor tissue of animals histopathological of tumor in different groups of mice were examined. Ehrilch solid tumor induced a significant increase in MDA content, GSH-Px and GST activities level and in the amount of metabolites of CYP 450. Moreover, a significant decrease was observed in GSH content, SOD activity level in the tumor tissue, INF- a concentration, IL- 10 concentration in the plasma. Also, a significant alteration in kidney and liver functions was occurred as compared to control group. The results showed a significant antitumor activity of selenium and Modified Pectin Nano Particles (Se-Mp- NPs) at the concentration 2.25 μg / ml was 70%

  18. The ZEB1 transcription factor is a novel repressor of adiposity in female mice.

    Directory of Open Access Journals (Sweden)

    Jessica N Saykally

    Full Text Available BACKGROUND: Four genome-wide association studies mapped an "obesity" gene to human chromosome 10p11-12. As the zinc finger E-box binding homeobox 1 (ZEB1 transcription factor is encoded by the TCF8 gene located in that region, and as it influences the differentiation of various mesodermal lineages, we hypothesized that ZEB1 might also modulate adiposity. The goal of these studies was to test that hypothesis in mice. METHODOLOGY/PRINCIPAL FINDINGS: To ascertain whether fat accumulation affects ZEB1 expression, female C57BL/6 mice were fed a regular chow diet (RCD ad libitum or a 25% calorie-restricted diet from 2.5 to 18.3 months of age. ZEB1 mRNA levels in parametrial fat were six to ten times higher in the obese mice. To determine directly whether ZEB1 affects adiposity, wild type (WT mice and mice heterozygous for TCF8 (TCF8+/- were fed an RCD or a high-fat diet (HFD (60% calories from fat. By two months of age on an HFD and three months on an RCD, TCF8+/- mice were heavier than WT controls, which was attributed by Echo MRI to increased fat mass (at three months on an HFD: 0.517+/-0.081 total fat/lean mass versus 0.313+/-0.036; at three months on an RCD: 0.175+/-0.013 versus 0.124+/-0.012. No differences were observed in food uptake or physical activity, suggesting that the genotypes differ in some aspect of their metabolic activity. ZEB1 expression also increases during adipogenesis in cell culture. CONCLUSION/SIGNIFICANCE: These results show for the first time that the ZEB1 transcription factor regulates the accumulation of adipose tissue. Furthermore, they corroborate the genome-wide association studies that mapped an "obesity" gene at chromosome 10p11-12.

  19. Predominant modifier of extreme liver cancer susceptibility in C57BR/cdJ female mice localized to 6 Mb on chromosome 17

    Science.gov (United States)

    Peychal, Stephanie E.-M.; Bilger, Andrea; Pitot, Henry C.; Drinkwater, Norman R.

    2009-01-01

    Sex hormones influence the susceptibility of inbred mice to liver cancer. C57BR/cdJ (BR) females are extremely susceptible to spontaneous and chemically induced liver tumors, in part due to a lack of protection against hepatocarcinogenesis normally offered by ovarian hormones. BR males are also moderately susceptible, and the susceptibility of both sexes of BR mice to liver tumors induced with N,N-diethylnitrosamine relative to the resistant C57BL/6J (B6) strain is caused by two loci designated Hcf1 and Hcf2 (hepatocarcinogenesis in females) located on chromosomes 17 and 1, respectively. The Hcf1 locus on chromosome 17 is the predominant modifier of liver cancer in BR mice. To validate the existence of this locus and investigate its potential interaction with Hcf2, congenic mice for each region were generated. Homozygosity for the B6.BR(D17Mit164-D17Mit2) region resulted in a 4-fold increase in liver tumor multiplicity in females and a 4.5-fold increase in males compared with B6 controls. A series of 16 recombinants covering the entire congenic region was developed to further narrow the area containing Hcf1. Susceptible heterozygous recombinants demonstrated a 3- to 7-fold effect in females and a 1.5- to 2-fold effect in males compared with B6 siblings. The effect in susceptible lines completely recapitulated the susceptibility of heterozygous full-length chromosome 17 congenics and furthermore narrowed the location of the Hcf1 locus to a single region of the chromosome from 30.05 to 35.83 Mb. PMID:19255062

  20. Short-Term Treatment with Bisphenol-A Leads to Metabolic Abnormalities in Adult Male Mice

    Science.gov (United States)

    Batista, Thiago M.; Alonso-Magdalena, Paloma; Vieira, Elaine; Amaral, Maria Esmeria C.; Cederroth, Christopher R.; Nef, Serge; Quesada, Ivan; Carneiro, Everardo M.; Nadal, Angel

    2012-01-01

    Bisphenol-A (BPA) is one of the most widespread endocrine disrupting chemicals (EDC) used as the base compound in the manufacture of polycarbonate plastics. Although evidence points to consider exposure to BPA as a risk factor for insulin resistance, its actions on whole body metabolism and on insulin-sensitive tissues are still unclear. The aim of the present work was to study the effects of low doses of BPA in insulin-sensitive peripheral tissues and whole body metabolism in adult mice. Adult mice were treated with subcutaneous injection of 100 µg/kg BPA or vehicle for 8 days. Whole body energy homeostasis was assessed with in vivo indirect calorimetry. Insulin signaling assays were conducted by western blot analysis. Mice treated with BPA were insulin resistant and had increased glucose-stimulated insulin release. BPA-treated mice had decreased food intake, lower body temperature and locomotor activity compared to control. In skeletal muscle, insulin-stimulated tyrosine phosphorylation of the insulin receptor β subunit was impaired in BPA-treated mice. This impairment was associated with a reduced insulin-stimulated Akt phosphorylation in the Thr308 residue. Both skeletal muscle and liver displayed an upregulation of IRS-1 protein by BPA. The mitogen-activated protein kinase (MAPK) signaling pathway was also impaired in the skeletal muscle from BPA-treated mice. In the liver, BPA effects were of lesser intensity with decreased insulin-stimulated tyrosine phosphorylation of the insulin receptor β subunit. In conclusion, short-term treatment with low doses of BPA slows down whole body energy metabolism and disrupts insulin signaling in peripheral tissues. Thus, our findings support the notion that BPA can be considered a risk factor for the development of type 2 diabetes. PMID:22470480

  1. Congenital malformations in embryos of female mice exposed to alcohol and nicotinamide

    Directory of Open Access Journals (Sweden)

    Natasha Soares Simões dos Santos

    2009-03-01

    Full Text Available Objective: To compare the incidence of congenital malformations among the offspring of female mice exposed to alcohol or alcohol plus nicotinamide. Methods: Three groups of pregnant C57BL/6J mice were studied; G1 received alcohol (5 g/kg in saline solution (20% - vol/vol; G2 received nicotinamide, 50 mg/ml associated to alcohol; and G3, only saline solution; all by intraperitoneal injection on the seventh day of pregnancy. The animals were killed in a CO2 chamber on day 18 of pregnancy. The intrauterine content was assessed and the number of complete and reabsorbed fetuses was counted. The complete fetuses had their weight and crown-rump length measured and malformations were identified. Rresults: G1 showed the highest number of malformations: micrognathia, low set ears, hypertrophic nose, scoliosis, and atrophy of the lower and upper limbs. Weight was significantly different among the groups (p = 0.0139, and in G1 it was below average as compared to G3 (p = 0.3133. As for length, the lowest values were found in G2 and G3 showed the highest ones. There was a significant difference among the groups (p = 0.0145. Cconclusions: Ethanol, when administered to pregnant mice was teratogenic. However, length of G1 fetuses was, in average, higher than that of other groups. Nicotinamide decreased the number of malformations and may be a possible protector against alcohol effects.

  2. Effect of acute beer ingestion on the liver: studies in female mice.

    Science.gov (United States)

    Kanuri, Giridhar; Wagnerberger, Sabine; Landmann, Marianne; Prigl, Eva; Hellerbrand, Claus; Bischoff, Stephan C; Bergheim, Ina

    2015-04-01

    The aim of the present study was to assess whether the effects of acute consumption of stout or pilsner beer on the liver differ from those of plain ethanol in a mouse model. Seven-week-old female C57BL/6J mice received either ethanol, stout or pilsner beer (ethanol content: 6 g/kg body weight) or isocaloric maltodextrin solution. Plasma alanine transaminase, markers of steatosis, lipogenesis, activation of the toll-like receptor-4 signaling cascade as well as lipid peroxidation and fibrogenesis in the liver were measured 12 h after acute ethanol or beer intake. Acute alcohol ingestion caused a marked ~11-fold increase in hepatic triglyceride accumulation in comparison to controls, whereas in mice exposed to stout and pilsner beer, hepatic triglyceride levels were increased only by ~6.5- and ~4-fold, respectively. mRNA expression of sterol regulatory element-binding protein 1c and fatty acid synthase in the liver did not differ between alcohol and beer groups. In contrast, expression of myeloid differentiation primary response gene 88, inducible nitric oxide synthases, but also the concentrations of 4-hydroxynonenal protein adducts, nuclear factor κB and plasminogen activator inhibitor-1 were induced in livers of ethanol treated mice but not in those exposed to the two beers. Taken together, our results suggest that acute ingestion of beer and herein especially of pilsner beer is less harmful to the liver than the ingestion of plain ethanol.

  3. HDRK-Woman: whole-body voxel model based on high-resolution color slice images of Korean adult female cadaver

    Science.gov (United States)

    Yeom, Yeon Soo; Jeong, Jong Hwi; Kim, Chan Hyeong; Han, Min Cheol; Ham, Bo Kyoung; Cho, Kun Woo; Hwang, Sung Bae

    2014-07-01

    In a previous study, we constructed a male reference Korean phantom; HDRK-Man (High-Definition Reference Korean-Man), to represent Korean adult males for radiation protection purposes. In the present study, a female phantom; HDRK-Woman (High-Definition Reference Korean-Woman), was constructed to represent Korean adult females. High-resolution color photographic images obtained by serial sectioning of a 26 year-old Korean adult female cadaver were utilized. The body height and weight, the skeletal mass, and the dimensions of the individual organs and tissues were adjusted to the reference Korean data. The phantom was then compared with the International Commission on Radiological Protection (ICRP) female reference phantom in terms of calculated organ doses and organ-depth distributions. Additionally, the effective doses were calculated using both the HDRK-Man and HDRK-Woman phantoms, and the values were compared with those of the ICRP reference phantoms.

  4. HDRK-Woman: whole-body voxel model based on high-resolution color slice images of Korean adult female cadaver

    International Nuclear Information System (INIS)

    Yeom, Yeon Soo; Kim, Chan Hyeong; Han, Min Cheol; Jeong, Jong Hwi; Ham, Bo Kyoung; Cho, Kun Woo; Hwang, Sung Bae

    2014-01-01

    In a previous study, we constructed a male reference Korean phantom; HDRK-Man (High-Definition Reference Korean-Man), to represent Korean adult males for radiation protection purposes. In the present study, a female phantom; HDRK-Woman (High-Definition Reference Korean-Woman), was constructed to represent Korean adult females. High-resolution color photographic images obtained by serial sectioning of a 26 year-old Korean adult female cadaver were utilized. The body height and weight, the skeletal mass, and the dimensions of the individual organs and tissues were adjusted to the reference Korean data. The phantom was then compared with the International Commission on Radiological Protection (ICRP) female reference phantom in terms of calculated organ doses and organ-depth distributions. Additionally, the effective doses were calculated using both the HDRK-Man and HDRK-Woman phantoms, and the values were compared with those of the ICRP reference phantoms. (paper)

  5. HDRK-Woman: whole-body voxel model based on high-resolution color slice images of Korean adult female cadaver.

    Science.gov (United States)

    Yeom, Yeon Soo; Jeong, Jong Hwi; Kim, Chan Hyeong; Han, Min Cheol; Ham, Bo Kyoung; Cho, Kun Woo; Hwang, Sung Bae

    2014-07-21

    In a previous study, we constructed a male reference Korean phantom; HDRK-Man (High-Definition Reference Korean-Man), to represent Korean adult males for radiation protection purposes. In the present study, a female phantom; HDRK-Woman (High-Definition Reference Korean-Woman), was constructed to represent Korean adult females. High-resolution color photographic images obtained by serial sectioning of a 26 year-old Korean adult female cadaver were utilized. The body height and weight, the skeletal mass, and the dimensions of the individual organs and tissues were adjusted to the reference Korean data. The phantom was then compared with the International Commission on Radiological Protection (ICRP) female reference phantom in terms of calculated organ doses and organ-depth distributions. Additionally, the effective doses were calculated using both the HDRK-Man and HDRK-Woman phantoms, and the values were compared with those of the ICRP reference phantoms.

  6. Sex differences in diurnal rhythms of food intake in mice caused by gonadal hormones and complement of sex chromosomes.

    Science.gov (United States)

    Chen, Xuqi; Wang, Lixin; Loh, Dawn H; Colwell, Christopher S; Taché, Yvette; Reue, Karen; Arnold, Arthur P

    2015-09-01

    We measured diurnal rhythms of food intake, as well as body weight and composition, while varying three major classes of sex-biasing factors: activational and organizational effects of gonadal hormones, and sex chromosome complement (SCC). Four Core Genotypes (FCG) mice, comprising XX and XY gonadal males and XX and XY gonadal females, were either gonad-intact or gonadectomized (GDX) as adults (2.5months); food intake was measured second-by-second for 7days starting 5weeks later, and body weight and composition were measured for 22weeks thereafter. Gonadal males weighed more than females. GDX increased body weight/fat of gonadal females, but increased body fat and reduced body weight of males. After GDX, XX mice had greater body weight and more fat than XY mice. In gonad-intact mice, males had greater total food intake and more meals than females during the dark phase, but females had more food intake and meals and larger meals than males during the light phase. GDX reduced overall food intake irrespective of gonad type or SCC, and eliminated differences in feeding between groups with different gonads. Diurnal phase of feeding was influenced by all three sex-biasing variables. Gonad-intact females had earlier onset and acrophase (peak) of feeding relative to males. GDX caused a phase-advance of feeding, especially in XX mice, leading to an earlier onset of feeding in GDX XX vs. XY mice, but earlier acrophase in GDX males relative to females. Gonadal hormones and SCC interact in the control of diurnal rhythms of food intake. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Patient-specific FDG dosimetry for adult males, adult females, and very low birth weight infants

    Science.gov (United States)

    Niven, Erin

    Fluorodeoxyglucose is the most commonly used radiopharmaceutical in Positron Emission Tomography, with applications in neurology, cardiology, and oncology. Despite its routine use worldwide, the radiation absorbed dose estimates from FDG have been based primarily on data obtained from two dogs studied in 1977 and 11 adults (most likely males) studied in 1982. In addition, the dose estimates calculated for FDG have been centered on the adult male, with little or no mention of variations in the dose estimates due to sex, age, height, weight, nationality, diet, or pathological condition. Through an extensive investigation into the Medical Internal Radiation Dose schema for calculating absorbed doses, I have developed a simple patient-specific equation; this equation incorporates the parameters necessary for alterations to the mathematical values of the human model to produce an estimate more representative of the individual under consideration. I have used this method to determine the range of absorbed doses to FDG from the collection of a large quantity of biological data obtained in adult males, adult females, and very low birth weight infants. Therefore, a more accurate quantification of the dose to humans from FDG has been completed. My results show that per unit administered activity, the absorbed dose from FDG is higher for infants compared to adults, and the dose for adult women is higher than for adult men. Given an injected activity of approximately 3.7 MBq kg-1, the doses for adult men, adult women, and full-term newborns would be on the order of 5.5, 7.1, and 2.8 mSv, respectively. These absorbed doses are comparable to the doses received from other nuclear medicine procedures.

  8. Comparison of the eight weeks of supplementation Creatine and Glutamine consumption along with resistance exercise on the level of ALP in female mice

    Directory of Open Access Journals (Sweden)

    A eskandari

    2015-11-01

    Full Text Available Background and purpose: in recent years, in order to improve power, speed, the increase in the volume of the musculature, preventing sports injuries and maintain the muscle performance athletes use from different resistance exercises and food supplements. In this regard, present study has been conducted with the aim of comparison the influence of an 8 week period consumption of creatine (2 gr.kg-1.day-1 in 1st week and 0.48 gr.kg-1.day-1during 2nd to 8th weeks and glutamine (1 gr.kg-1.day-1 from first to eighth weeks along with resistance exercise on level of ALP of female mice. Materials and methods: This experimental study was done on 80 Small adult female mice of Surrey species (28 ± 5 gram. The animals were randomly divided into 8 groups of: resistance exercise, resistance exercise + creatine, resistance exercise + glutamine, resistance exercise + glutamine + creatine, creatine, glutamine, creatine + glutamine and control groups (N= 10. Resistance exercise (5 days a week was including: climbing (4 sets, 5 times repetition with two minutes rest between the sets from a ladder (with the height of one meter and including 26 steps and bearing 30 percent of the weight of the Mouse body (hanging from tail in the first week and the increasing it up to 200 percent of body weight till the last week of the experiment. During 48 hours after the last practice session of resistance exercise, the blood sample was taken and the the level of ALP has been measured. Findings:The results showed that the level of ALP enzyme in creatine + glutamine + resistance exercise groug had been increased in comparison with the control group (144.3 ± 15.86 in comparison with 234.7 ± 25.69 U.L-1 P < 0.05. Conclusion: The results of this research indicate Creatine and Glutamine supplementation consumption along with resistance exercise increases in the level of ALP enzyme in the liver of mice.

  9. Epigenetics and sex differences in the brain: A genome-wide comparison of histone-3 lysine-4 trimethylation (H3K4me3) in male and female mice.

    Science.gov (United States)

    Shen, Erica Y; Ahern, Todd H; Cheung, Iris; Straubhaar, Juerg; Dincer, Aslihan; Houston, Isaac; de Vries, Geert J; Akbarian, Schahram; Forger, Nancy G

    2015-06-01

    Many neurological and psychiatric disorders exhibit gender disparities, and sex differences in the brain likely explain some of these effects. Recent work in rodents points to a role for epigenetics in the development or maintenance of neural sex differences, although genome-wide studies have so far been lacking. Here we review the existing literature on epigenetics and brain sexual differentiation and present preliminary analyses on the genome-wide distribution of histone-3 lysine-4 trimethylation in a sexually dimorphic brain region in male and female mice. H3K4me3 is a histone mark primarily organized as 'peaks' surrounding the transcription start site of active genes. We microdissected the bed nucleus of the stria terminalis and preoptic area (BNST/POA) in adult male and female mice and used ChIP-Seq to compare the distribution of H3K4me3 throughout the genome. We found 248 genes and loci with a significant sex difference in H3K4me3. Of these, the majority (71%) had larger H3K4me3 peaks in females. Comparisons with existing databases indicate that genes and loci with increased H3K4me3 in females are associated with synaptic function and with expression atlases from related brain areas. Based on RT-PCR, only a minority of genes with a sex difference in H3K4me3 has detectable sex differences in expression at baseline conditions. Together with previous findings, our data suggest that there may be sex biases in the use of epigenetic marks. Such biases could underlie sex differences in vulnerabilities to drugs or diseases that disrupt specific epigenetic processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Organotypic brain slice cultures of adult transgenic P301S mice--a model for tauopathy studies.

    Directory of Open Access Journals (Sweden)

    Agneta Mewes

    Full Text Available BACKGROUND: Organotypic brain slice cultures represent an excellent compromise between single cell cultures and complete animal studies, in this way replacing and reducing the number of animal experiments. Organotypic brain slices are widely applied to model neuronal development and regeneration as well as neuronal pathology concerning stroke, epilepsy and Alzheimer's disease (AD. AD is characterized by two protein alterations, namely tau hyperphosphorylation and excessive amyloid β deposition, both causing microglia and astrocyte activation. Deposits of hyperphosphorylated tau, called neurofibrillary tangles (NFTs, surrounded by activated glia are modeled in transgenic mice, e.g. the tauopathy model P301S. METHODOLOGY/PRINCIPAL FINDINGS: In this study we explore the benefits and limitations of organotypic brain slice cultures made of mature adult transgenic mice as a potential model system for the multifactorial phenotype of AD. First, neonatal (P1 and adult organotypic brain slice cultures from 7- to 10-month-old transgenic P301S mice have been compared with regard to vitality, which was monitored with the lactate dehydrogenase (LDH- and the MTT (3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assays over 15 days. Neonatal slices displayed a constant high vitality level, while the vitality of adult slice cultures decreased significantly upon cultivation. Various preparation and cultivation conditions were tested to augment the vitality of adult slices and improvements were achieved with a reduced slice thickness, a mild hypothermic cultivation temperature and a cultivation CO(2 concentration of 5%. Furthermore, we present a substantial immunohistochemical characterization analyzing the morphology of neurons, astrocytes and microglia in comparison to neonatal tissue. CONCLUSION/SIGNIFICANCE: Until now only adolescent animals with a maximum age of two months have been used to prepare organotypic brain slices. The current study

  11. An investigation into ‘two hit’ effects of BDNF deficiency and young-adult cannabinoid receptor stimulation on prepulse inhibition regulation and memory in mice

    Directory of Open Access Journals (Sweden)

    Maren eKlug

    2013-10-01

    Full Text Available Reduced brain-derived neurotrophic factor (BDNF signalling has been shown in the frontal cortex and hippocampus in schizophrenia. The aim of the present study was to investigate whether a BDNF deficit would modulate effects of chronic cannabis intake, a well-described risk factor for schizophrenia development. BDNF heterozygous mice (HET and wild-type controls were chronically treated during weeks 6, 7 and 8 of life with the cannabinoid CB1 receptor agonist, CP55,940 (CP. After a 2-week delay, there were no CP-induced deficits in any of the groups in short-term spatial memory in a Y-maze task or novel object recognition memory. Baseline prepulse inhibition (PPI was lower but average startle was increased in BDNF HET compared to wild-type controls. Acute CP administration before the PPI session caused a marked increase in PPI in male HET mice pre-treated with CP but not in any of the other male groups. In females, there were small increases of PPI in all groups upon acute CP administration. Acute CP administration furthermore reduced startle and this effect was greater in HET mice irrespective of chronic CP pre-treatment. Analysis of the levels of [3H]CP55,940 binding by autoradiography revealed a significant increase in the nucleus accumbens of male BDNF HET mice previously treated with CP but not in any of the other groups or in the caudate nucleus.These results show that BDNF deficiency and chronic young-adult cannabinoid receptor stimulation do not interact in this model on learning and memory later in life. In contrast, male ‘two hit’ mice, but not females, were hypersensitive to the effect of acute CP on sensorimotor gating. These effects may be related to a selective increase of [3H]CP55,940 binding in the nucleus accumbens, reflecting up-regulation of CB1 receptor density in this region. These data could be of relevance to our understanding of differential ‘two hit’ neurodevelopmental mechanisms in schizophrenia.

  12. Membrane potential dye imaging of ventromedial hypothalamus neurons from adult mice to study glucose sensing.

    Science.gov (United States)

    Vazirani, Reema P; Fioramonti, Xavier; Routh, Vanessa H

    2013-11-27

    Studies of neuronal activity are often performed using neurons from rodents less than 2 months of age due to the technical difficulties associated with increasing connective tissue and decreased neuronal viability that occur with age. Here, we describe a methodology for the dissociation of healthy hypothalamic neurons from adult-aged mice. The ability to study neurons from adult-aged mice allows the use of disease models that manifest at a later age and might be more developmentally accurate for certain studies. Fluorescence imaging of dissociated neurons can be used to study the activity of a population of neurons, as opposed to using electrophysiology to study a single neuron. This is particularly useful when studying a heterogeneous neuronal population in which the desired neuronal type is rare such as for hypothalamic glucose sensing neurons. We utilized membrane potential dye imaging of adult ventromedial hypothalamic neurons to study their responses to changes in extracellular glucose. Glucose sensing neurons are believed to play a role in central regulation of energy balance. The ability to study glucose sensing in adult rodents is particularly useful since the predominance of diseases related to dysfunctional energy balance (e.g. obesity) increase with age.

  13. Effects of testosterone on sexual behavior and morphology in adult female leopard geckos, Eublepharis macularius.

    Science.gov (United States)

    Rhen, T; Ross, J; Crews, D

    1999-10-01

    The leopard gecko, Eublepharis macularius, is a species in which testosterone (T) is the primary circulating sex hormone in adults of both sexes. There are, however, sex differences in T physiology. Whereas males have prolonged periods with high T levels, T levels cycle in accord with follicular development in females. Specifically, T concentration increases during vitellogenesis, drops after ovulation, and then remains at previtellogenic levels until eggs are laid and the next follicular cycle begins. To determine the function of T in females, we manipulated both the level and the duration of T elevation using Silastic implants in intact, adult female leopard geckos. Females had low ( approximately 1 ng/ml), medium ( approximately 100 ng/ml), or high ( approximately 200 ng/ml) T levels for either a short (8 days) or a long (35 days) duration. Behavior tests with males were conducted on days 1-5 in the short-duration group or on days 29-33 in the long-duration group. For both short- and long-duration groups, T treatment decreased attractivity in females with medium and high T levels compared to females with low T levels. In contrast, females with a medium T level were more receptive than females with a low T level in the short-duration group. Females in the long-duration group were unreceptive regardless of T level. Females treated for a long duration also displayed more aggression toward and evoked more aggression from males than short duration females. Short-duration T treatment had no masculinizing effect on female morphology, whereas medium and high T levels for a long duration induced development of hemipenes. Overall, these results suggest that T can both increase and decrease sexual behaviors in the female leopard gecko.

  14. AAV-Mediated Administration of Myostatin Pro-Peptide Mutant in Adult Ldlr Null Mice Reduces Diet-Induced Hepatosteatosis and Arteriosclerosis

    Science.gov (United States)

    Guo, Wen; Wong, Siu; Bhasin, Shalender

    2013-01-01

    Genetic disruption of myostatin or its related signaling is known to cause strong protection against diet-induced metabolic disorders. The translational value of these prior findings, however, is dependent on whether such metabolically favorable phenotype can be reproduced when myostatin blockade begins at an adult age. Here, we reported that AAV-mediated delivery of a myostatin pro-peptide D76A mutant in adult mice attenuates the development of hepatic steatosis and arteriosclerosis, two common diet-induced metabolic diseases. A single dose of AAV-D76A in adult Ldlr null mice resulted in sustained expression of myostatin pro-peptide in the liver. Compared to vehicle-treated mice, D76A-treated mice gained similar amount of lean and fat mass when fed a high fat diet. However, D76A-treated mice displayed significantly reduced aortic lesions and liver fat, in association with a reduction in hepatic expression of lipogenic genes and improvement in liver insulin sensitivity. This suggests that muscle and fat may not be the primary targets of treatment under our experimental condition. In support to this argument, we show that myostatin directly up-regulated lipogenic genes and increased fat accumulation in cultured liver cells. We also show that both myostatin and its receptor were abundantly expressed in mouse aorta. Cultured aortic endothelial cells responded to myostatin with a reduction in eNOS phosphorylation and an increase in ICAM-1 and VCAM-1 expression. Conclusions: AAV-mediated expression of myostatin pro-peptide D76A mutant in adult Ldlr null mice sustained metabolic protection without remarkable impacts on body lean and fat mass. Further investigations are needed to determine whether direct impact of myostatin on liver and aortic endothelium may contribute to the related metabolic phenotypes. PMID:23936482

  15. Immune competence in 90Sr-exposed, adult thymectomized and antilymphocyteglobulin-treated CBA mice. Pt. 1

    International Nuclear Information System (INIS)

    Bierke, P.

    1989-01-01

    CBA mice subjected to either adult thymectomy, internal exposure to 90 Sr or antilymphocyteglobulin treatment separately, or to combinations of the three were tested for cellular immune competence using their reaction to allogenic skin grafts. Peripheral blood white cell counts did not reveal any obvious correlation between the degree of mononuclear cell depletion and the ability to accept grafts, suggesting that the particular treatments depleted specific fractions of mononuclear cells, differing in their extent of involvement in the rejection process. No single treatment alone induced a significant prolongation in the time elapsed before graft rejection. Adult thymectomy followed by appropriate antilymphocyteglobulin treatment induced severe lymphocytopenia and a profound suppression of the cell-mediate immune system, as evidenced by the acceptance of allogenic skin grafts. When applied to 90 Sr-preexposed mice the same treatment induced lifelong acceptance of grafts, indicating a similar, though weaker immunosuppressive impact of 90 Sr. Hence it was possible to significantly enhance immunosuppression in 90 Sr-exposed mice. This in vivo model should be useful when investigating the role of immunological responsiveness in radiation carcinogenesis. (orig.)

  16. Flt3 Ligand Regulates the Development of Innate Lymphoid Cells in Fetal and Adult Mice.

    Science.gov (United States)

    Baerenwaldt, Anne; von Burg, Nicole; Kreuzaler, Matthias; Sitte, Selina; Horvath, Edit; Peter, Annick; Voehringer, David; Rolink, Antonius G; Finke, Daniela

    2016-03-15

    Flt3 ligand (Flt3L) promotes survival of lymphoid progenitors in the bone marrow and differentiation of dendritic cells (DCs), but its role in regulating innate lymphoid cells (ILCs) during fetal and adult life is not understood. By using Flt3L knockout and transgenic mice, we demonstrate that Flt3L controls ILC numbers by regulating the pool of α4β7(-) and α4β7(+) lymphoid tissue inducer cell progenitors in the fetal liver and common lymphoid progenitors in the bone marrow. Deletion of flt3l severely reduced the number of fetal liver progenitors and lymphoid tissue inducer cells in the neonatal intestine, resulting in impaired development of Peyer's patches. In the adult intestine, NK cells and group 2 and 3 ILCs were severely reduced. This effect occurred independently of DCs as ILC numbers were normal in mice in which DCs were constitutively deleted. Finally, we could show that administration of Flt3L increased the number of NKp46(-) group 3 ILCs in wild-type and even in Il7(-/-) mice, which generally have reduced numbers of ILCs. Taken together, Flt3L significantly contributes to ILC and Peyer's patches development by targeting lymphoid progenitor cells during fetal and adult life. Copyright © 2016 by The American Association of Immunologists, Inc.

  17. Radiation genetic injury and metabolic difference of tritiated thymidine in testis of young and adult mice

    Energy Technology Data Exchange (ETDEWEB)

    Mingyue, Lun; Shoupeng, Zhu

    1990-04-01

    The radiogenetoxicological effects on the adult testis and the metabolic difference of tritiated thymidine between the testis of young and adult BALB/C mice were studied. When 0.037 MBq/g.b.w. of tritiated thymidine was given i.v. to mice, the initial burden of tritium in the adult was larger than that of tritium in the young. But the retention of tritium in testis of the young gradually become larger than that of tritium in the adult with the passing time. Tritiated thymidine which was incorporated into DNA of the male germ cell nuclei damaged the genetic materials and caused the rising of the rates of the dominant lethal and the dominant mutation which produced skeletal abnomalities in the offspring. The relationship between the dominant lethal mutation index (Y) and the injected activity of tritiated thymidine (I, MBq/g.b.w.) is described by Y = 74.13 + 80.20 I (r = 0.95). The relationship between the incidence of the dominant skeletal mutation in the offspring (B) and the injected activity is B = 0.16 + 0.079 I ( r = 0.85).

  18. Radiation genetic injury and metabolic difference of tritiated thymidine in testis of young and adult mice

    International Nuclear Information System (INIS)

    Lun Mingyue; Zhu Shoupeng.

    1990-01-01

    The radiogenetoxicological effects on the adult testis and the metabolic difference of tritiated thymidine between the testis of young and adult BALB/C mice were studied. When 0.037 MBq/g.b.w. of tritiated thymidine was given i.v. to mice, the initial burden of tritium in the adult was larger than that of tritium in the young. But the retention of tritium in testis of the young gradually become larger than that of tritium in the adult with the passing time. Tritiated thymidine which was incorporated into DNA of the male germ cell nuclei damaged the genetic materials and caused the rising of the rates of the dominant lethal and the dominant mutation which produced skeletal abnomalities in the offspring. The relationship between the dominant lethal mutation index (Y) and the injected activity of tritiated thymidine (I, MBq/g.b.w.) is described by Y = 74.13 + 80.20 I (r = 0.95). The relationship between the incidence of the dominant skeletal mutation in the offspring (B) and the injected activity is B = 0.16 + 0.079 I ( r = 0.85)

  19. Dietary enrichment with alpha-linolenic acid during pregnancy attenuates insulin resistance in adult offspring in mice.

    Science.gov (United States)

    Hollander, K S; Tempel Brami, C; Konikoff, F M; Fainaru, M; Leikin-Frenkel, A

    2014-07-01

    Our objective was to test the contribution of dietary enrichment in essential or saturated fatty acids, in normocaloric diets, on the lipid accumulation and insulin resistance in the adult offspring in a C57Bl6/J mice model. Pregnant mothers were fed normocaloric diets containing 6% fat enriched in essential fatty acids (EFA): alpha-linolenic (ALA-18:3, n-3), linoleic (LA-18:2, n-6), or saturated fatty acids (SFA). After a washing-out period with regular diet, the offspring received a high-fat diet before euthanization. Adult mice fed maternal ALA showed lower body weight gain and lower liver fat accumulation, lower HOMA index and lower stearoyl-CoA desaturase (SCD1) activity than those fed maternal SFA. The results observed using this novel model suggest that ALA in maternal diet may have the potential to inhibit insulin resistance in adult offspring.

  20. Intake of Erythrocytes Required for Reproductive Development of Female Schistosoma japonicum

    Science.gov (United States)

    Wang, Jipeng; Wang, Shuqi; Liu, Xiufeng; Xu, Bin; Chai, Riyi; Zhou, Pan; Ju, Chuan; Sun, Jun; Brindley, Paul J.; Hu, Wei

    2015-01-01

    The reproductive development and maturation of female schistosomes are crucial since their released eggs are responsible for the host immunopathology and transmission of schistosomiasis. However, little is known about the nutrients required by female Schistosoma japonicum during its sexual maturation. We evaluated the promoting effect of several nutrients (calf serum, red blood cells (RBCs), ATP and hypoxanthine) on the reproductive development of pre-adult females at 18 days post infection (dpi) from mixed infections and at 50 dpi from unisexual infections of laboratory mice in basic medium RPMI-1640. We found RBCs, rather than other nutrients, promoted the female sexual maturation and egg production with significant morphological changes. In 27% of females (18 dpi) from mixed infections that paired with males in vitro on day 14, vitelline glands could be positively stained by Fast Blue B; and in 35% of females (50 dpi) from unisexual infections on day 21, mature vitelline cells were observed. Infertile eggs were detected among both groups. To analyze which component of mouse RBCs possesses the stimulating effect, RBCs were fractionated and included in media. However, the RBC fractions failed to stimulate development of the female reproductive organs. In addition, bovine hemoglobin hydrolysate, digested by neutral protease, was found to exhibit the promoting activity instead of untreated bovine hemoglobin. The other protein hydrolysate, lactalbumin hydrolysate, exhibited a similar effect with bovine hemoglobin hydrolysate. Using quantitative RT-PCR, we found the expression levels of four reproduction-related genes were significantly stimulated by RBCs. These data indicate that RBCs provide essential nutrients for the sexual maturation of female S. japonicum and that the protein component of RBCs appeared to constitute the key nutrient. These findings would improve laboratory culture of pre-adult schistosomes to adult worms in medium with well-defined components

  1. Illumination of murine gammaherpesvirus-68 cycle reveals a sexual transmission route from females to males in laboratory mice.

    Directory of Open Access Journals (Sweden)

    Sylvie François

    Full Text Available Transmission is a matter of life or death for pathogen lineages and can therefore be considered as the main motor of their evolution. Gammaherpesviruses are archetypal pathogenic persistent viruses which have evolved to be transmitted in presence of specific immune response. Identifying their mode of transmission and their mechanisms of immune evasion is therefore essential to develop prophylactic and therapeutic strategies against these infections. As the known human gammaherpesviruses, Epstein-Barr virus and Kaposi's Sarcoma-associated Herpesvirus are host-specific and lack a convenient in vivo infection model; related animal gammaherpesviruses, such as murine gammaherpesvirus-68 (MHV-68, are commonly used as general models of gammaherpesvirus infections in vivo. To date, it has however never been possible to monitor viral excretion or virus transmission of MHV-68 in laboratory mice population. In this study, we have used MHV-68 associated with global luciferase imaging to investigate potential excretion sites of this virus in laboratory mice. This allowed us to identify a genital excretion site of MHV-68 following intranasal infection and latency establishment in female mice. This excretion occurred at the external border of the vagina and was dependent on the presence of estrogens. However, MHV-68 vaginal excretion was not associated with vertical transmission to the litter or with horizontal transmission to female mice. In contrast, we observed efficient virus transmission to naïve males after sexual contact. In vivo imaging allowed us to show that MHV-68 firstly replicated in penis epithelium and corpus cavernosum before spreading to draining lymph nodes and spleen. All together, those results revealed the first experimental transmission model for MHV-68 in laboratory mice. In the future, this model could help us to better understand the biology of gammaherpesviruses and could also allow the development of strategies that could prevent

  2. A novel disease affecting the predatory mite Phytoseiulus persimilis (Acari, Phytoseiidae): 2. Disease transmission by adult females.

    Science.gov (United States)

    Schütte, Conny; Poitevin, Olivier; Negash, Tesfaye; Dicke, Marcel

    2006-01-01

    Adult female Phytoseiulus persimilis Athias-Henriot (Acari, Phytoseiidae) of one of our laboratory populations (=NR-population), show the following set of symptoms: predators shrink several days after mating, cease egg production and die several days after shrinking, show a lower degree of attraction to herbivore-induced plant volatiles and a shorter choice time in olfactometer tests, have the tendency to leave a prey patch with ample food, may carry excretory crystals in the legs, may cease prey consumption, and have a lower excretion rate. We hypothesized earlier that this characteristic syndrome, called non-responding (=NR-) syndrome, is caused by a pathogen infecting P. persimilis. To further support this hypothesis we here study several transmission modes of the factor causing the NR-syndrome. In all tests we measured size, short-term fecundity, mortality, predator position, response to plant odors and crystal location, thus including 6 of the 9 symptoms known yet. No evidence was found for vertical transmission from parent to offspring. Eggs from symptomatic females of the NR-population mated by males of the NR-population gave rise to normal-sized, well performing predators, when they had been surface sterilized or transferred to a new leaf. However, such eggs gave rise to shrunken females (17%) when left on the leaf where they had been laid. In the latter case transmission via products deposited on the leaf by the mothers was possible. We therefore tested several modes of horizontal transmission by exposing females of a commercial population that never showed the NR-syndrome (=R1-population) to products related to the symptomatic NR-population. No evidence was found for transmission via food or via squashed adult females. However, symptoms were induced in adult females of the R1-population after a 3-day exposure to a live adult female of the NR-population (incubation period=3-7 days, fraction shrunken females=53%) and after a 1-day exposure to feces and

  3. Transient postnatal fluoxetine decreases brain concentrations of 20-HETE and 15-epi-LXA4, arachidonic acid metabolites in adult mice.

    Science.gov (United States)

    Yuan, Zhi-Xin; Rapoport, Stanley I

    2015-10-01

    Transient postnatal exposure of rodents to the selective serotonin (5-HT) reuptake inhibitor (SSRI) fluoxetine alters behavior and brain 5-HT neurotransmission during adulthood, and also reduces brain arachidonic (ARA) metabolic consumption and protein level of the ARA metabolizing enzyme, cytochrome P4504A (CYP4A). Brain 20-hydroxyeicosatetraenoic acid (20-HETE), converted by CYP4A from ARA, will be reduced in adult mice treated transiently and postnatally with fluoxetine. Male mice pups were injected i.p. daily with fluoxetine (10mg/kg) or saline during P4-P21. At P90 their brain was high-energy microwaved and analyzed for 20-HETE and six other ARA metabolites by enzyme immunoassay. Postnatal fluoxetine vs. saline significantly decreased brain concentrations of 20-HETE (-70.3%) and 15-epi-lipoxin A4 (-60%) in adult mice, but did not change other eicosanoid concentrations. Behavioral changes in adult mice treated postnatally with fluoxetine may be related to reduced brain ARA metabolism involving CYP4A and 20-HETE formation. Published by Elsevier Ltd.

  4. Toll-like receptor 2 mediates ischemia-reperfusion injury of the small intestine in adult mice.

    Directory of Open Access Journals (Sweden)

    Toshio Watanabe

    Full Text Available Toll-like receptor 2 (TLR2 recognizes conserved molecular patterns associated with both gram-negative and gram-positive bacteria, and detects some endogenous ligands. Previous studies demonstrated that in ischemia-reperfusion (I/R injury of the small intestine, the TLR2-dependent signaling exerted preventive effects on the damage in young mice, but did not have a significant effect in neonatal mice. We investigated the role of TLR2 in adult ischemia-reperfusion injury in the small intestine. Wild-type and TLR2 knockout mice at 16 weeks of age were subjected to intestinal I/R injury. Some wild-type mice received anti-Ly-6G antibodies to deplete circulating neutrophils. In wild-type mice, I/R induced severe small intestinal injury characterized by infiltration by inflammatory cells, disruption of the mucosal epithelium, and mucosal bleeding. Compared to wild-type mice, TLR2 knockout mice exhibited less severe mucosal injury induced by I/R, with a 35%, 33%, and 43% reduction in histological grading score and luminal concentration of hemoglobin, and the numbers of apoptotic epithelial cells, respectively. The I/R increased the activity of myeloperoxidase (MPO, a marker of neutrophil infiltration, and the levels of mRNA expression of tumor necrosis factor-α (TNF-α, intercellular adhesion molecule-1 (ICAM-1, and cyclooxygenase-2 (COX-2 in the small intestine of the wild-type mice by 3.3-, 3.2-, and 13.0-fold, respectively. TLR2 deficiency significantly inhibited the I/R-induced increase in MPO activity and the expression of mRNAs for TNF-α and ICAM-1, but did not affect the expression of COX-2 mRNA. I/R also enhanced TLR2 mRNA expression by 2.9-fold. TLR2 proteins were found to be expressed in the epithelial cells, inflammatory cells, and endothelial cells. Neutrophil depletion prevented intestinal I/R injury in wild-type mice. These findings suggest that TLR2 may mediate I/R injury of the small intestine in adult mice via induction of inflammatory

  5. Are age and sex differences in brain oxytocin receptors related to maternal and infanticidal behavior in naïve mice?

    Science.gov (United States)

    Olazábal, Daniel E; Alsina-Llanes, Marcela

    2016-01-01

    This article is part of a Special Issue "Parental Care". There is significant variability in the behavioral responses displayed by naïve young and adult mice when first exposed to pups. This variability has been associated with differences in the expression of oxytocin receptors (OXTRs) in the brain in several species. Experiment I investigated the behavioral responses of juvenile, adolescent, and adult CB57BL/6 males and females when first exposed to pups. We found an age increase in maternal females (11% of juveniles, 20% of adolescents, and 50% of young adults), and infanticidal males (0% of juveniles, 30% of adolescents, 44.5% of young adults, and 100% of older adults). Experiment II investigated OXTR density in the brain of juvenile and adult mice. Our results revealed an age decline in the density of OXTR in several brain regions, including the lateral septum, cingulated and posterior paraventricular thalamic nucleus in both males and females. Adult females had higher OXTR density in the ventromedial nucleus/postero-ventral hypothalamus (VMH) and the accessory olfactory bulb (AOB), but lower density in the ventral region of the lateral septum (LSv) than juveniles. Males had lower OXTR density in the anterior olfactory area (AOA) compared to juveniles. No age or sex differences were found in the medial preoptic area, and amygdaloid nuclei, among other brain regions. This study suggests that 1) maturation of parental and infanticidal behavioral responses is not reached until adulthood; 2) the pattern of development of OXTR in the mouse brain is unique, region specific, and differs from that observed in other rodents; 3) either up or down regulation of OXTR in a few brain regions (VMH/AOB/LSv/AOA) might contribute to age or sex differences in parental or infanticidal behavior. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Social Isolation Stress Induces Anxious-Depressive-Like Behavior and Alterations of Neuroplasticity-Related Genes in Adult Male Mice

    Directory of Open Access Journals (Sweden)

    Alessandro Ieraci

    2016-01-01

    Full Text Available Stress is a major risk factor in the onset of several neuropsychiatric disorders including anxiety and depression. Although several studies have shown that social isolation stress during postweaning period induces behavioral and brain molecular changes, the effects of social isolation on behavior during adulthood have been less characterized. Aim of this work was to investigate the relationship between the behavioral alterations and brain molecular changes induced by chronic social isolation stress in adult male mice. Plasma corticosterone levels and adrenal glands weight were also analyzed. Socially isolated (SI mice showed higher locomotor activity, spent less time in the open field center, and displayed higher immobility time in the tail suspension test compared to group-housed (GH mice. SI mice exhibited reduced plasma corticosterone levels and reduced difference between right and left adrenal glands. SI showed lower mRNA levels of the BDNF-7 splice variant, c-Fos, Arc, and Egr-1 in both hippocampus and prefrontal cortex compared to GH mice. Finally, SI mice exhibited selectively reduced mGluR1 and mGluR2 levels in the prefrontal cortex. Altogether, these results suggest that anxious- and depressive-like behavior induced by social isolation stress correlates with reduction of several neuroplasticity-related genes in the hippocampus and prefrontal cortex of adult male mice.

  7. Connectivity differences between adult male and female patients with attention deficit hyperactivity disorder according to resting-state functional MRI

    Directory of Open Access Journals (Sweden)

    Bo-yong Park

    2016-01-01

    Full Text Available Attention deficit hyperactivity disorder (ADHD is a pervasive psychiatric disorder that affects both children and adults. Adult male and female patients with ADHD are differentially affected, but few studies have explored the differences. The purpose of this study was to quantify differences between adult male and female patients with ADHD based on neuroimaging and connectivity analysis. Resting-state functional magnetic resonance imaging scans were obtained and preprocessed in 82 patients. Group-wise differences between male and female patients were quantified using degree centrality for different brain regions. The medial-, middle-, and inferior-frontal gyrus, superior parietal lobule, precuneus, supramarginal gyrus, superior- and middle-temporal gyrus, middle occipital gyrus, and cuneus were identified as regions with significant group-wise differences. The identified regions were correlated with clinical scores reflecting depression and anxiety and significant correlations were found. Adult ADHD patients exhibit different levels of depression and anxiety depending on sex, and our study provides insight into how changes in brain circuitry might differentially impact male and female ADHD patients.

  8. Altered gut microbiota in female mice with persistent low body weights following removal of post-weaning chronic dietary restriction.

    Science.gov (United States)

    Chen, Jun; Toyomasu, Yoshitaka; Hayashi, Yujiro; Linden, David R; Szurszewski, Joseph H; Nelson, Heidi; Farrugia, Gianrico; Kashyap, Purna C; Chia, Nicholas; Ordog, Tamas

    2016-10-03

    Nutritional interventions often fail to prevent growth failure in childhood and adolescent malnutrition and the mechanisms remain unclear. Recent studies revealed altered microbiota in malnourished children and anorexia nervosa. To facilitate mechanistic studies under physiologically relevant conditions, we established a mouse model of growth failure following chronic dietary restriction and examined microbiota in relation to age, diet, body weight, and anabolic treatment. Four-week-old female BALB/c mice (n = 12/group) were fed ad libitum (AL) or offered limited food to abolish weight gain (LF). A subset of restricted mice was treated with an insulin-like growth factor 1 (IGF1) analog. Food access was restored in a subset of untreated LF (LF-RF) and IGF1-treated LF mice (TLF-RF) on day 97. Gut microbiota were determined on days 69, 96-99 and 120 by next generation sequencing of the V3-5 region of the 16S rRNA gene. Microbiota-host factor associations were analyzed by distance-based PERMANOVA and quantified by the coefficient of determination R 2 for age, diet, and normalized body weight change (Δbwt). Microbial taxa on day 120 were compared following fitting with an overdispersed Poisson regression model. The machine learning algorithm Random Forests was used to predict age based on the microbiota. On day 120, Δbwt in AL, LF, LF-RF, and TLF-RF mice was 52 ± 3, -6 ± 1*, 40 ± 3*, and 46 ± 2 % (*, P < 0.05 versus AL). Age and diet, but not Δbwt, were associated with gut microbiota composition. Age explained a larger proportion of the microbiota variability than diet or Δbwt. Random Forests predicted chronological age based on the microbiota and indicated microbiota immaturity in the LF mice before, but not after, refeeding. However, on day 120, the microbiota community structure of LF-RF mice was significantly different from that of both AL and LF mice. IGF1 mitigated the difference from the AL group. Refed groups had a higher

  9. Workplace Inhalant Abuse in Adult Female: Brief Report

    Directory of Open Access Journals (Sweden)

    Rohit Verma

    2011-01-01

    Full Text Available Inhalant abuse is the purposeful inhalation of intoxicating gases and vapors for the purpose of achieving an altered mental state. With its propensity for being yet an under-recognized form of substance use, being gateway to hard substances, cross-cultural penetration crossing socioeconomic boundaries, and causing significant morbidity and mortality in early ages, the prevention of inhalant misuse is a highly pertinent issue. This clinical report identifies a newer perspective in the emergence of inhalant abuse initiation. We report a case of an adult female with late onset of inhalant dependence developing at workplace and recommend for greater awareness, prevention, and management of this expanding substance abuse problem.

  10. Spatial distribution of juvenile and adult female Tanner crabs (Chionoecetes bairdi) in a glacial fjord ecosystem: Implications for recruitment processes

    Science.gov (United States)

    Nielsen, J.K.; Taggart, S. James; Shirley, Thomas C.; Mondragon, Jennifer

    2007-01-01

    A systematic pot survey in Glacier Bay, Alaska, was conducted to characterize the spatial distribution of juvenile and adult female Tanner crabs, and their association with depth and temperature. The information was used to infer important recruitment processes for Tanner crabs in glaciated ecosystems. High-catch areas for juvenile and adult female Tanner crabs were identified using local autocorrelation statistics. Spatial segregation by size class corresponded to features in the glacial landscape: high-catch areas for juveniles were located at the distal ends of two narrow glacial fjords, and high-catch areas for adults were located in the open waters of the central Bay. Juvenile female Tanner crabs were found at nearly all sampled depths (15–439 m) and temperatures (4–8°C), but the biggest catches were at depths <150 m where adults were scarce. Because adults may prey on or compete with juveniles, the distribution of juveniles could be influenced by the distribution of adults. Areas where adults or predators are scarce, such as glacially influenced fjords, could serve as refuges for juvenile Tanner crabs.

  11. Chronic social isolation and chronic variable stress during early development induce later elevated ethanol intake in adult C57BL/6J mice.

    Science.gov (United States)

    Lopez, Marcelo F; Doremus-Fitzwater, Tamara L; Becker, Howard C

    2011-06-01

    Experience with stress situations during early development can have long-lasting effects on stress- and anxiety-related behaviors. Importantly, this can also favor drug self-administration. These studies examined the effects of chronic social isolation and/or variable stress experiences during early development on subsequent voluntary ethanol intake in adult male and female C57BL/6J mice. The experiments were conducted to evaluate the effect of chronic isolation between weaning and adulthood (Experiment 1), chronic isolation during adulthood (Experiment 2), and chronic variable stress (CVS) alone or in combination with chronic social isolation between weaning and adulthood (Experiment 3) on subsequent voluntary ethanol intake. Mice were born in our facility and were separated into two housing conditions: isolate housed (one mouse/cage) or group housed (four mice/cage) according to sex. Separate groups were isolated for 40 days starting either at time of weaning postnatal day 21 (PD 21) (early isolation, Experiments 1 and 3) or at adulthood (PD 60: late isolation, Experiment 2). The effects of housing condition on subsequent ethanol intake were assessed starting at around PD 65 in Experiments 1 and 3 or PD 105 days in Experiment 2. In Experiment 3, starting at PD 32, isolate-housed and group-housed mice were either subjected to CVS or left undisturbed. CVS groups experienced random presentations of mild stressors for 14 days, including exposure to an unfamiliar open field, restraint, physical shaking, and forced swim, among others. All mice were tested for ethanol intake for 14 days using a two-bottle choice (ethanol 15% vol/vol vs. water) for a 2-h limited access procedure. Early social isolation resulted in greater ethanol intake compared with the corresponding group-housed mice (Experiment 1). In contrast, social isolation during adulthood (late isolation) did not increase subsequent ethanol intake compared with the corresponding group-housed mice (Experiment 2

  12. An Interaction of the Pre- and Post-Weaning Diets Rich in Omega-6 Polyunsaturated Fats Alters Plasma Lipids, Hepatic Gene Expression and Aortic Vascular Reactivity in Adult 057Bl/6 Mice

    Directory of Open Access Journals (Sweden)

    Kanta Chechi

    2010-01-01

    Full Text Available Aim To investigate the effects of diets rich in n-6 polyunsaturated fats (PUFA fed during pre- and post-weaning time periods on the lipid metabolism and vascular reactivity in adult C57Bl/6 mice, in order to assess the impact of maternal nutrition and its interaction with the offspring diet on the metabolism of adult offspring. Methods Female C57Bl/6 mice were fed a high-fat diet enriched with n-6 PUFA (P or control diet (C for 2-weeks before, during mating, gestation and lactation, while their pups received either P or C for 8-weeks post-weaning. Results A significant interaction between the maternal and post-weaning diets was observed for the offspring body weight, food-, caloric-intake, plasma lipids, hepatic mRNA expression of lecithin cholesterol acyltransferase, aortic contractile and relaxation responses ( P < 0.05. Conclusion The overall metabolic and physiological outcome in the offspring is dependent upon the interaction between the pre- and post-weaning dietary environments.

  13. Eating high fat chow enhances the locomotor-stimulating effects of cocaine in adolescent and adult female rats.

    Science.gov (United States)

    Baladi, Michelle G; Koek, Wouter; Aumann, Megan; Velasco, Fortino; France, Charles P

    2012-08-01

    Dopamine systems vary through development in a manner that can impact drugs acting on those systems. Dietary factors can also impact the effects of drugs acting on dopamine systems. This study examined whether eating high fat chow alters locomotor effects of cocaine (1-56 mg/kg) in adolescent and adult female rats. Cocaine was studied in rats (n = 6/group) with free access to standard (5.7% fat) or high fat (34.3%) chow or restricted access to high fat chow (body weight matched to rats eating standard chow). After 1 week of eating high fat chow (free or restricted access), sensitivity to cocaine was significantly increased in adolescent and adult rats, compared with rats eating standard chow. Sensitivity to cocaine was also increased in adolescent rats with restricted, but not free, access to high fat chow for 4 weeks. When adolescent and adult rats that previously ate high fat chow ate standard chow, sensitivity to cocaine returned to normal. In adolescent and adult female rats eating high fat chow, but not those eating standard chow, sensitivity to cocaine increased progressively over once weekly tests with cocaine (i.e., sensitization) in a manner that was not statistically different between adolescents and adults. These results show that eating high fat chow alters sensitivity of female rats to acutely administered cocaine and also facilitates the development of sensitization to cocaine. That the type of food consumed can increase drug effects might have relevance to vulnerability to abuse cocaine in the female population.

  14. Oxytocin, vasopressin and estrogen receptor gene expression in relation to social recognition in female mice.

    Science.gov (United States)

    Clipperton-Allen, Amy E; Lee, Anna W; Reyes, Anny; Devidze, Nino; Phan, Anna; Pfaff, Donald W; Choleris, Elena

    2012-02-28

    Inter- and intra-species differences in social behavior and recognition-related hormones and receptors suggest that different distribution and/or expression patterns may relate to social recognition. We used qRT-PCR to investigate naturally occurring differences in expression of estrogen receptor-alpha (ERα), ER-beta (ERβ), progesterone receptor (PR), oxytocin (OT) and receptor, and vasopressin (AVP) and receptors in proestrous female mice. Following four 5 min exposures to the same two conspecifics, one was replaced with a novel mouse in the final trial (T5). Gene expression was examined in mice showing high (85-100%) and low (40-60%) social recognition scores (i.e., preferential novel mouse investigation in T5) in eight socially-relevant brain regions. Results supported OT and AVP involvement in social recognition, and suggest that in the medial preoptic area, increased OT and AVP mRNA, together with ERα and ERβ gene activation, relate to improved social recognition. Initial social investigation correlated with ERs, PR and OTR in the dorsolateral septum, suggesting that these receptors may modulate social interest without affecting social recognition. Finally, increased lateral amygdala gene activation in the LR mice may be associated with general learning impairments, while decreased lateral amygdala activity may indicate more efficient cognitive mechanisms in the HR mice. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Effect of sericea lespedeza leaf meal pellets on adult female Haemonchus contortus in goats.

    Science.gov (United States)

    Kommuru, D S; Whitley, N C; Miller, J E; Mosjidis, J A; Burke, J M; Gujja, S; Mechineni, A; Terrill, T H

    2015-01-15

    Sericea lespedeza (SL; Lespedeza cuneata) is a perennial warm-season forage rich in condensed tannins (CT) that has been reported to have anthelmintic activity against small ruminant gastrointestinal nematodes (GIN), particularly Haemonchus contortus, a highly pathogenic blood-feeder, but the mechanism of action of CT against H. contortus is not clearly understood. An experiment with young goats was designed to study the effect of SL leaf meal pellets on (1) a mature H. contortus infection, and (2) the surface appearance of adult H. contortus female worms. Thirty-six female and castrated male Boer crossbred goats artificially infected with H. contortus larvae were fed 75% SL leaf meal pellets or alfalfa pellets (18 goats/treatment group) in a 28-day confinement feeding trial. Fecal and blood samples were collected weekly for fecal egg count (FEC) and packed cell volume (PCV) determination, respectively, and all goats were slaughtered at the end of the trial for adult GIN recovery and counting. Five adult female H. contortus were recovered from the abomasum of two goats from each treatment group and from a prior study in which 75% and 95% SL leaf meal pellets or a commercial feed pellet were group-fed to grazing goats (270 days old, Spanish males, 10/treatment group) at 0.91 kg/head/d for 11 weeks. Adult GIN collected were fixed and examined for evidence of surface damage using scanning electron microscopy. Feeding 75% SL pellets to young goats in confinement reduced (P<0.05) FEC compared with control animals, while total worm numbers and PCV were not influenced by treatment. Three out of the 5 adult H. contortus recovered from SL treatment goats in the confinement feeding trial had cuticular surface damage, while no damage was observed on worms from the control group. All five worms observed from both SL treatments in the grazing study showed a shrunken, disheveled cuticular surface, whereas this was not observed on worms from control animals. Overall, this work

  16. Maternal postpartum corticosterone and fluoxetine differentially affect adult male and female offspring on anxiety-like behavior, stress reactivity, and hippocampal neurogenesis.

    Science.gov (United States)

    Gobinath, Aarthi R; Workman, Joanna L; Chow, Carmen; Lieblich, Stephanie E; Galea, Liisa A M

    2016-02-01

    Postpartum depression (PPD) affects approximately 15% of mothers, disrupts maternal care, and can represent a form of early life adversity for the developing offspring. Intriguingly, male and female offspring are differentially vulnerable to the effects of PPD. Antidepressants, such as fluoxetine, are commonly prescribed for treating PPD. However, fluoxetine can reach offspring via breast milk, raising serious concerns regarding the long-term consequences of infant exposure to fluoxetine. The goal of this study was to examine the long-term effects of maternal postpartum corticosterone (CORT, a model of postpartum stress/depression) and concurrent maternal postpartum fluoxetine on behavioral, endocrine, and neural measures in adult male and female offspring. Female Sprague-Dawley dams were treated daily with either CORT or oil and fluoxetine or saline from postnatal days 2-23, and offspring were weaned and left undisturbed until adulthood. Here we show that maternal postpartum fluoxetine increased anxiety-like behavior and impaired hypothalamic-pituitary-adrenal (HPA) axis negative feedback in adult male, but not female, offspring. Furthermore, maternal postpartum fluoxetine increased the density of immature neurons (doublecortin-expressing) in the hippocampus of adult male offspring but decreased the density of immature neurons in adult female offspring. Maternal postpartum CORT blunted HPA axis negative feedback in males and tended to increase density of immature neurons in males but decreased it in females. These results indicate that maternal postpartum CORT and fluoxetine can have long-lasting effects on anxiety-like behavior, HPA axis negative feedback, and adult hippocampal neurogenesis and that adult male and female offspring are differentially affected by these maternal manipulations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Neonatal Whisker Trimming Impairs Fear/Anxiety-Related Emotional Systems of the Amygdala and Social Behaviors in Adult Mice.

    Directory of Open Access Journals (Sweden)

    Hitomi Soumiya

    Full Text Available Abnormalities in tactile perception, such as sensory defensiveness, are common features in autism spectrum disorder (ASD. While not a diagnostic criterion for ASD, deficits in tactile perception contribute to the observed lack of social communication skills. However, the influence of tactile perception deficits on the development of social behaviors remains uncertain, as do the effects on neuronal circuits related to the emotional regulation of social interactions. In neonatal rodents, whiskers are the most important tactile apparatus, so bilateral whisker trimming is used as a model of early tactile deprivation. To address the influence of tactile deprivation on adult behavior, we performed bilateral whisker trimming in mice for 10 days after birth (BWT10 mice and examined social behaviors, tactile discrimination, and c-Fos expression, a marker of neural activation, in adults after full whisker regrowth. Adult BWT10 mice exhibited significantly shorter crossable distances in the gap-crossing test than age-matched controls, indicating persistent deficits in whisker-dependent tactile perception. In contrast to controls, BWT10 mice exhibited no preference for the social compartment containing a conspecific in the three-chamber test. Furthermore, the development of amygdala circuitry was severely affected in BWT10 mice. Based on the c-Fos expression pattern, hyperactivity was found in BWT10 amygdala circuits for processing fear/anxiety-related responses to height stress but not in circuits for processing reward stimuli during whisker-dependent cued learning. These results demonstrate that neonatal whisker trimming and concomitant whisker-dependent tactile discrimination impairment severely disturbs the development of amygdala-dependent emotional regulation.

  18. Estimation of stature from the foot and its segments in a sub-adult female population of North India

    Directory of Open Access Journals (Sweden)

    Krishan Kewal

    2011-11-01

    Full Text Available Abstract Background Establishing personal identity is one of the main concerns in forensic investigations. Estimation of stature forms a basic domain of the investigation process in unknown and co-mingled human remains in forensic anthropology case work. The objective of the present study was to set up standards for estimation of stature from the foot and its segments in a sub-adult female population. Methods The sample for the study constituted 149 young females from the Northern part of India. The participants were aged between 13 and 18 years. Besides stature, seven anthropometric measurements that included length of the foot from each toe (T1, T2, T3, T4, and T5 respectively, foot breadth at ball (BBAL and foot breadth at heel (BHEL were measured on both feet in each participant using standard methods and techniques. Results The results indicated that statistically significant differences (p p-value Conclusions The present study concluded that foot measurements have a strong relationship with stature in the sub-adult female population of North India. Hence, the stature of an individual can be successfully estimated from the foot and its segments using different regression models derived in the study. The regression models derived in the study may be applied successfully for the estimation of stature in sub-adult females, whenever foot remains are brought for forensic examination. Stepwise multiple regression models tend to estimate stature more accurately than linear regression models in female sub-adults.

  19. The ZEB1 Transcription Factor Is a Novel Repressor of Adiposity in Female Mice

    Science.gov (United States)

    Saykally, Jessica N.; Dogan, Soner; Cleary, Margot P.; Sanders, Michel M.

    2009-01-01

    Background Four genome-wide association studies mapped an “obesity” gene to human chromosome 10p11–12. As the zinc finger E-box binding homeobox 1 (ZEB1) transcription factor is encoded by the TCF8 gene located in that region, and as it influences the differentiation of various mesodermal lineages, we hypothesized that ZEB1 might also modulate adiposity. The goal of these studies was to test that hypothesis in mice. Methodology/Principal Findings To ascertain whether fat accumulation affects ZEB1 expression, female C57BL/6 mice were fed a regular chow diet (RCD) ad libitum or a 25% calorie-restricted diet from 2.5 to 18.3 months of age. ZEB1 mRNA levels in parametrial fat were six to ten times higher in the obese mice. To determine directly whether ZEB1 affects adiposity, wild type (WT) mice and mice heterozygous for TCF8 (TCF8+/−) were fed an RCD or a high-fat diet (HFD) (60% calories from fat). By two months of age on an HFD and three months on an RCD, TCF8+/− mice were heavier than WT controls, which was attributed by Echo MRI to increased fat mass (at three months on an HFD: 0.517±0.081 total fat/lean mass versus 0.313±0.036; at three months on an RCD: 0.175±0.013 versus 0.124±0.012). No differences were observed in food uptake or physical activity, suggesting that the genotypes differ in some aspect of their metabolic activity. ZEB1 expression also increases during adipogenesis in cell culture. Conclusion/Significance These results show for the first time that the ZEB1 transcription factor regulates the accumulation of adipose tissue. Furthermore, they corroborate the genome-wide association studies that mapped an “obesity” gene at chromosome 10p11–12. PMID:20041147

  20. Toxicokinetics of α-thujone following intravenous and gavage administration of α-thujone or α- and β-thujone mixture in male and female F344/N rats and B6C3F1 mice

    International Nuclear Information System (INIS)

    Waidyanatha, Suramya; Johnson, Jerry D.; Hong, S. Peter; Robinson, Veronica Godfrey; Gibbs, Seth; Graves, Steven W.; Hooth, Michelle J.; Smith, Cynthia S.

    2013-01-01

    Plants containing thujone have widespread use and hence have significant human exposure. α-Thujone caused seizures in rodents following gavage administration. We investigated the toxicokinetics of α-thujone in male and female F344/N rats and B6C3F1 mice following intravenous and gavage administration of α-thujone or a mixture of α- and β-thujone (which will be referred to as α,β-thujone). Absorption of α-thujone following gavage administration was rapid without any dose-, species-, sex- or test article-related effect. Absolute bioavailability of α-thujone following administration of α-thujone or α,β-thujone was generally higher in rats than in mice. In rats, females had higher bioavailability than males following administration of either test article although a sex difference was not observed in mice. C max and AUC ∞ increased greater than proportional to the dose in female rats following administration of α-thujone and in male and female mice following administration of α,β-thujone suggesting possible saturation of elimination kinetics with increasing dose. Dose-adjusted AUC ∞ for male and female rats was 5- to 15-fold and 3- to 24-fold higher than mice counterparts following administration of α-thujone and α,β-thujone, respectively (p-value < 0.0001 for all comparisons). Following both intravenous and gavage administration, α-thujone was distributed to the brains of rats and mice with females, in general, having higher brain:plasma ratios than males. These data are in support of the observed toxicity of α-thujone and α,β-thujone where females were more sensitive than males of both species to α-thujone-induced neurotoxicity. In general there was no difference in toxicokinetics between test articles when normalized to α-thujone concentration. - Highlights: • Absorption of α-thujone following gavage administration was rapid in rats and mice. • Rats undergo higher exposure to α-thujone than mice. • α-Thujone brain:plasma ratios

  1. Toxicokinetics of α-thujone following intravenous and gavage administration of α-thujone or α- and β-thujone mixture in male and female F344/N rats and B6C3F1 mice

    Energy Technology Data Exchange (ETDEWEB)

    Waidyanatha, Suramya, E-mail: waidyanathas@niehs.nih.gov [Division of National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (United States); Johnson, Jerry D.; Hong, S. Peter [Battelle Memorial Institute, Columbus, OH 43201 (United States); Robinson, Veronica Godfrey [Division of National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (United States); Gibbs, Seth; Graves, Steven W. [Battelle Memorial Institute, Columbus, OH 43201 (United States); Hooth, Michelle J.; Smith, Cynthia S. [Division of National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (United States)

    2013-09-01

    Plants containing thujone have widespread use and hence have significant human exposure. α-Thujone caused seizures in rodents following gavage administration. We investigated the toxicokinetics of α-thujone in male and female F344/N rats and B6C3F1 mice following intravenous and gavage administration of α-thujone or a mixture of α- and β-thujone (which will be referred to as α,β-thujone). Absorption of α-thujone following gavage administration was rapid without any dose-, species-, sex- or test article-related effect. Absolute bioavailability of α-thujone following administration of α-thujone or α,β-thujone was generally higher in rats than in mice. In rats, females had higher bioavailability than males following administration of either test article although a sex difference was not observed in mice. C{sub max} and AUC{sub ∞} increased greater than proportional to the dose in female rats following administration of α-thujone and in male and female mice following administration of α,β-thujone suggesting possible saturation of elimination kinetics with increasing dose. Dose-adjusted AUC{sub ∞} for male and female rats was 5- to 15-fold and 3- to 24-fold higher than mice counterparts following administration of α-thujone and α,β-thujone, respectively (p-value < 0.0001 for all comparisons). Following both intravenous and gavage administration, α-thujone was distributed to the brains of rats and mice with females, in general, having higher brain:plasma ratios than males. These data are in support of the observed toxicity of α-thujone and α,β-thujone where females were more sensitive than males of both species to α-thujone-induced neurotoxicity. In general there was no difference in toxicokinetics between test articles when normalized to α-thujone concentration. - Highlights: • Absorption of α-thujone following gavage administration was rapid in rats and mice. • Rats undergo higher exposure to α-thujone than mice. • α-Thujone brain

  2. Maternal enrichment affects prenatal hippocampal proliferation and open-field behaviors in female offspring mice.

    Science.gov (United States)

    Maruoka, Takashi; Kodomari, Ikuko; Yamauchi, Rena; Wada, Etsuko; Wada, Keiji

    2009-04-17

    The maternal environment is thought to be important for fetal brain development. However, the effects of maternal environment are not fully understood. Here, we investigated whether enrichment of the maternal environment can influence prenatal brain development and postnatal behaviors in mice. An enriched environment is a housing condition with several objects such as a running wheel, tube and ladder, which are thought to increase sensory, cognitive and motor stimulation in rodents compared with standard housing conditions. First, we measured the number of BrdU-positive cells in the hippocampal dentate gyrus of fetuses from pregnant dams housed in an enriched environment. Our results revealed that maternal enrichment influences cell proliferation in the hippocampus of female, but not male, fetuses. Second, we used the open-field test to investigate postnatal behaviors in the offspring of dams housed in the enriched environment during pregnancy. We found that maternal enrichment significantly affects the locomotor activity and time spent in the center of the open-field in female, but not male, offspring. These results indicate that maternal enrichment influences prenatal brain development and postnatal behaviors in female offspring.

  3. The effect of maternal chromium status on lipid metabolism in female elderly mice offspring and involved molecular mechanism.

    Science.gov (United States)

    Zhang, Qian; Sun, Xiaofang; Xiao, Xinhua; Zheng, Jia; Li, Ming; Yu, Miao; Ping, Fan; Wang, Zhixin; Qi, Cuijuan; Wang, Tong; Wang, Xiaojing

    2017-04-30

    Maternal malnutrition leads to the incidence of metabolic diseases in offspring. The purpose of this project was to examine whether maternal low chromium could disturb normal lipid metabolism in offspring, altering adipose cell differentiation and leading to the incidence of lipid metabolism diseases, including metabolic syndrome and obesity. Female C57BL mice were given a control diet (CD) or a low chromium diet (LCD) during the gestational and lactation periods. After weaning, offspring was fed with CD or LCD. The female offspring were assessed at 32 weeks of age. Fresh adipose samples from CD-CD group and LCD-CD group were collected. Genome mRNA were analysed using Affymetrix GeneChip Mouse Gene 2.0 ST Whole Transcript-based array. Differentially expressed genes (DEGs) were analysed based on gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis database. Maternal low chromium irreversibly increased offspring body weight, fat-pad weight, serum triglyceride (TG) and TNF-α. Eighty five genes increased and 109 genes reduced in the offspring adipose of the maternal low chromium group. According to KEGG pathway and String analyses, the PPAR signalling pathway may be the key controlled pathway related to the effect of maternal low chromium on female offspring. Maternal chromium status have long-term effects of lipid metabolism in female mice offspring. Normalizing offspring diet can not reverse these effects. The potential underlying mechanisms are the disturbance of the PPAR signalling pathway in adipose tissue. © 2017 The Author(s).

  4. Preferences of newborn mice for odours indicating closer genetic relatedness: is experience necessary?

    Science.gov (United States)

    Todrank, Josephine; Busquet, Nicolas; Baudoin, Claude; Heth, Giora

    2005-10-07

    Evidence from studies with adult rodents indicates that individual recognition enables distinctions between familiar individuals irrespective of relatedness (but including close kin) and a separate mechanism enables discriminations based on genetic relatedness without prior familiarity. For example, adult mice could assess the extent of their genetic relatedness to unfamiliar individuals using perceptual similarities between their individual odours. The ontogeny of this genetic relatedness assessment mechanism, however, had not been investigated. Here, in two-choice tests, newborn mice differentially preferred odours of more genetically similar lactating females (paternal aunts to unrelated conspecific and conspecific to heterospecific) even without prior direct exposure to adults with the tested genotypes. The results provide a direct demonstration of genetic relatedness assessment abilities in newborns and show that experience with parental odours is not necessary for genetic relatedness distinctions. Future studies will be necessary to determine whether exposure to odours of other foetuses in the womb or littermates shortly after birth affects this genetic relatedness assessment process.

  5. Effects of fetal exposure to gamma rays on aggressive behavior in adult male mice

    International Nuclear Information System (INIS)

    Minamisawa, Takeru; Hirokaga, Kouichi; Sasaki, Shunsaku; Noda, Yutaka.

    1992-01-01

    Aggressive behavior (AB) in first generation (F 1 ) hybrid male C57BL/6 x C3H mice irradiated on the 14th day of gestation was studied at 100-135 days of age. Gravid female mice were irradiated with 1.0 or 2.0 Gy of gamma rays to the whole body. The AB of pairs of mice were recorded with a capacitance-induction motility monitor and on videotape. Recordings were continued for 90 min, starting at 2:00 PM. Vigorous wrestling, boxing and biting were regarded as AB. Data recorded at 15-min intervals were stored on micro-computer discs. The body weight for the irradiated group was significantly lower than that for the control group. The number of instances of AB was significantly higher in the irradiated group. The AB of the 2.0 Gy group was significantly more intensive than that of the control group. No difference in the duration of AB was found for the 2 irradiated and the control groups. Results demonstrate that male mice irradiated prenatally show increased aggressiveness. (author)

  6. Correlates of Serious Suicidal Ideation and Attempts in Female Adult Sexual Assault Survivors

    Science.gov (United States)

    Ullman, Sarah E.; Najdowski, Cynthia J.

    2009-01-01

    Relations between (a) serious suicidal ideation and attempts and (b) demographics, trauma history, assault characteristics, post-assault outcomes, and psychosocial variables were examined among female adult sexual assault survivors. Younger, minority, and bisexual survivors reported greater ideation. More traumas, drug use, and assault disclosure…

  7. Effects of Early Smoking Habits on Young Adult Female Voices in Greece.

    Science.gov (United States)

    Tafiadis, Dionysios; Toki, Eugenia I; Miller, Kevin J; Ziavra, Nausica

    2017-11-01

    Cigarette use is a preventable cause of mortality and diseases. The World Health Organization states that Europe and especially Greece has the highest occurrence of smoking among adults. The prevalence of smoking among women in Greece was estimated to be over 30% in 2012. Smoking is a risk factor for many diseases. Studies have demonstrated the association between smoking and laryngeal pathologies as well as changes in voice characteristics. The purpose of this study was to estimate the effect of early smoking habit on young adult female voices and if they perceive any vocal changes using two assessment methods. The Voice Handicap Index and the acoustic analyses of voice measurements were used, with both serving as mini-assessment protocols. Two hundred and ten young females (110 smokers and 100 nonsmokers) attending the Technological Educational Institute of Epirus in the School of Health and Welfare were included. Statistically significant increases for physical and total scores of the Voice Handicap Index were found in the smokers group (P smoking habits. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  8. Forebrain deletion of αGDI in adult mice worsens the pre-synaptic deficit at cortico-lateral amygdala synaptic connections.

    Directory of Open Access Journals (Sweden)

    Veronica Bianchi

    Full Text Available The GDI1 gene encodes αGDI, which retrieves inactive GDP-bound RAB from membranes to form a cytosolic pool awaiting vesicular release. Mutations in GDI1 are responsible for X-linked Intellectual Disability. Characterization of the Gdi1-null mice has revealed alterations in the total number and distribution of hippocampal and cortical synaptic vesicles, hippocampal short-term synaptic plasticity and specific short-term memory deficits in adult mice, which are possibly caused by alterations of different synaptic vesicle recycling pathways controlled by several RAB GTPases. However, interpretation of these studies is complicated by the complete ablation of Gdi1 in all cells in the brain throughout development. In this study, we generated conditionally gene-targeted mice in which the knockout of Gdi1 is restricted to the forebrain, hippocampus, cortex and amygdala and occurs only during postnatal development. Adult mutant mice reproduce the short-term memory deficit previously reported in Gdi1-null mice. Surprisingly, the delayed ablation of Gdi1 worsens the pre-synaptic phenotype at cortico-amygdala synaptic connections compared to Gdi1-null mice. These results suggest a pivotal role of αGDI via specific RAB GTPases acting specifically in forebrain regions at the pre-synaptic sites involved in memory formation.

  9. Effects of prenatal exposure to surface-coated nanosized titanium dioxide (UV-Titan. A study in mice

    Directory of Open Access Journals (Sweden)

    Vibenholt Anni

    2010-06-01

    Full Text Available Abstract Background Engineered nanoparticles are smaller than 100 nm and designed to improve or achieve new physico-chemical properties. Consequently, also toxicological properties may change compared to the parent compound. We examined developmental and neurobehavioral effects following maternal exposure to a nanoparticulate UV-filter (UV-titan L181. Methods Time-mated mice (C57BL/6BomTac were exposed by inhalation 1h/day to 42 mg/m3 aerosolized powder (1.7·106 n/cm3; peak-size: 97 nm on gestation days 8-18. Endpoints included: maternal lung inflammation; gestational and litter parameters; offspring neurofunction and fertility. Physicochemical particle properties were determined to provide information on specific exposure and deposition. Results Particles consisted of mainly elongated rutile titanium dioxide (TiO2 with an average crystallite size of 21 nm, modified with Al, Si and Zr, and coated with polyalcohols. In exposed adult mice, 38 mg Ti/kg was detected in the lungs on day 5 and differential cell counts of bronchoalveolar lavage fluid revealed lung inflammation 5 and 26-27 days following exposure termination, relative to control mice. As young adults, prenatally exposed offspring tended to avoid the central zone of the open field and exposed female offspring displayed enhanced prepulse inhibition. Cognitive function was unaffected (Morris water maze test. Conclusion Inhalation exposure to nano-sized UV Titan dusts induced long term lung inflammation in time-mated adult female mice. Gestationally exposed offspring displayed moderate neurobehavioral alterations. The results are discussed in the light of the observed particle size distribution in the exposure atmosphere and the potential pathways by which nanoparticles may impart changes in fetal development.

  10. Effects of prenatal exposure to surface-coated nanosized titanium dioxide (UV-Titan). A study in mice.

    Science.gov (United States)

    Hougaard, Karin S; Jackson, Petra; Jensen, Keld A; Sloth, Jens J; Löschner, Katrin; Larsen, Erik H; Birkedal, Renie K; Vibenholt, Anni; Boisen, Anne-Mette Z; Wallin, Håkan; Vogel, Ulla

    2010-06-14

    Engineered nanoparticles are smaller than 100 nm and designed to improve or achieve new physico-chemical properties. Consequently, also toxicological properties may change compared to the parent compound. We examined developmental and neurobehavioral effects following maternal exposure to a nanoparticulate UV-filter (UV-titan L181). Time-mated mice (C57BL/6BomTac) were exposed by inhalation 1h/day to 42 mg/m(3) aerosolized powder (1.7.10(6) n/cm(3); peak-size: 97 nm) on gestation days 8-18. Endpoints included: maternal lung inflammation; gestational and litter parameters; offspring neurofunction and fertility. Physicochemical particle properties were determined to provide information on specific exposure and deposition. Particles consisted of mainly elongated rutile titanium dioxide (TiO2) with an average crystallite size of 21 nm, modified with Al, Si and Zr, and coated with polyalcohols. In exposed adult mice, 38 mg Ti/kg was detected in the lungs on day 5 and differential cell counts of bronchoalveolar lavage fluid revealed lung inflammation 5 and 26-27 days following exposure termination, relative to control mice. As young adults, prenatally exposed offspring tended to avoid the central zone of the open field and exposed female offspring displayed enhanced prepulse inhibition. Cognitive function was unaffected (Morris water maze test). Inhalation exposure to nano-sized UV Titan dusts induced long term lung inflammation in time-mated adult female mice. Gestationally exposed offspring displayed moderate neurobehavioral alterations. The results are discussed in the light of the observed particle size distribution in the exposure atmosphere and the potential pathways by which nanoparticles may impart changes in fetal development.

  11. Exposure to bisphenol A in young adult mice does not alter ovulation but does alter the fertilization ability of oocytes

    International Nuclear Information System (INIS)

    Moore-Ambriz, Teresita Rocio; Acuña-Hernández, Deyanira Guadalupe; Ramos-Robles, Brenda; Sánchez-Gutiérrez, Manuel; Santacruz-Márquez, Ramsés; Sierra-Santoyo, Adolfo; Piña-Guzmán, Belem

    2015-01-01

    Follicle growth culminates in ovulation, which allows for the expulsion of fertilizable oocytes and the formation of corpora lutea. Bisphenol A (BPA) is present in many consumer products, and it has been suggested that BPA impairs ovulation; however, the underlying mechanisms are unknown. Therefore, this study first evaluated whether BPA alters ovulation by affecting folliculogenesis, the number of corpora lutea or eggs shed to the oviduct, ovarian gonadotropin responsiveness, hormone levels, and estrous cyclicity. Because it has been suggested (but not directly confirmed) that BPA exerts toxic effects on the fertilization ability of oocytes, a second aim was to evaluate whether BPA impacts the oocyte fertilization rate using an in vitro fertilization assay and mating. The possible effects on early zygote development were also examined. Young adult female C57BL/6J mice (39 days old) were orally dosed with corn oil (vehicle) or 50 μg/kg bw/day BPA for a period encompassing the first three reproductive cycles (12–15 days). BPA exposure did not alter any parameters related to ovulation. Moreover, BPA exposure reduced the percentage of fertilized oocytes after either in vitro fertilization or mating, but it did not alter the zygotic stages. The data indicate that exposure to the reference dose of BPA does not impact ovulation but that it does influence the oocyte quality in terms of its fertilization ability. - Highlights: • Bisphenol A targets the fertilization ability of oocytes. • Bisphenol A does not alter ovulation. • Young adult females may be susceptible to the effects of bisphenol A on fertilization.

  12. Exposure to bisphenol A in young adult mice does not alter ovulation but does alter the fertilization ability of oocytes

    Energy Technology Data Exchange (ETDEWEB)

    Moore-Ambriz, Teresita Rocio; Acuña-Hernández, Deyanira Guadalupe; Ramos-Robles, Brenda [Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México D.F. 07360, México (Mexico); Sánchez-Gutiérrez, Manuel [Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca, Hidalgo 42000, México (Mexico); Santacruz-Márquez, Ramsés; Sierra-Santoyo, Adolfo [Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México D.F. 07360, México (Mexico); Piña-Guzmán, Belem [Instituto Politécnico Nacional-UPIBI, México D.F. 07738, México (Mexico); and others

    2015-12-15

    Follicle growth culminates in ovulation, which allows for the expulsion of fertilizable oocytes and the formation of corpora lutea. Bisphenol A (BPA) is present in many consumer products, and it has been suggested that BPA impairs ovulation; however, the underlying mechanisms are unknown. Therefore, this study first evaluated whether BPA alters ovulation by affecting folliculogenesis, the number of corpora lutea or eggs shed to the oviduct, ovarian gonadotropin responsiveness, hormone levels, and estrous cyclicity. Because it has been suggested (but not directly confirmed) that BPA exerts toxic effects on the fertilization ability of oocytes, a second aim was to evaluate whether BPA impacts the oocyte fertilization rate using an in vitro fertilization assay and mating. The possible effects on early zygote development were also examined. Young adult female C57BL/6J mice (39 days old) were orally dosed with corn oil (vehicle) or 50 μg/kg bw/day BPA for a period encompassing the first three reproductive cycles (12–15 days). BPA exposure did not alter any parameters related to ovulation. Moreover, BPA exposure reduced the percentage of fertilized oocytes after either in vitro fertilization or mating, but it did not alter the zygotic stages. The data indicate that exposure to the reference dose of BPA does not impact ovulation but that it does influence the oocyte quality in terms of its fertilization ability. - Highlights: • Bisphenol A targets the fertilization ability of oocytes. • Bisphenol A does not alter ovulation. • Young adult females may be susceptible to the effects of bisphenol A on fertilization.

  13. Increased CRF mRNA expression in the sexually dimorphic BNST of male but not female GAD67 mice and TMT predator odor stress effects upon spatial memory retrieval.

    Science.gov (United States)

    Janitzky, K; Peine, A; Kröber, A; Yanagawa, Y; Schwegler, H; Roskoden, T

    2014-10-01

    The bed nucleus of the stria terminalis (BNST) is an important region for 2,5-dihydro-2,4,5-trimethylthiazoline (TMT) predator odor-induced stress responses in mice. It is sexually dimorphic and a region for corticotropin-releasing factor (CRF)-enhanced stress responses. Dense GABAergic and CRF input from the amygdala to the BNST gives point to relevant interactions between CRF and GABA activity in these brain regions. Hence, to investigate sexual dimorphism of stress-induced neuronal changes, we studied effects of acute TMT exposure on CRF mRNA expression in stress-related brain regions in male and female GAD67 mice and their wild-type littermates. In GAD67 mice, heterozygous knock-in of GFP in GABAergic neurons caused a 50% decrease of GAD67 protein level in the brain [91,99]. Results show higher CRF mRNA levels in the BNST of male but not female GAD67 mice after TMT and control odor exposure. While CRF neurons in the BNST are predominantly GABAergic and CRF enhances GABAergic transmission in the BNST [20,51], the deficit in GABAergic transmission in GAD67 mice could induce a compensatory CRF increase. Sexual dimorphism of the BNST with greater density of GABA-ir neurons in females could explain the differences in CRF mRNA levels between male and female GAD67 mice. Effects of odor exposure were studied in a radial arm maze (RAM) task. Results show impaired retrieval of spatial memory after acute TMT exposure in both sexes and genotypes. However, only GAD67 mice show increased working memory errors after control odor exposure. Our work elicits GAD67 mice as a model to further study interactions of GABA and CRF in the BNST for a better understanding of how sex-specific characteristics of the brain may contribute to differences in anxiety- and stress-related psychological disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Gender differences in locomotor and stereotypic behavior associated with l-carnitine treatment in mice.

    Science.gov (United States)

    Benvenga, Salvatore; Itri, Elenora; Hauser, Peter; De Tolla, Louis; Yu, Sui-Foh; Testa, Giuseppe; Pappalardo, Maria Angela; Trimarchi, Francesco; Amato, Antonino

    2011-02-01

    The carnitines exert neuroprotective and neuromodulatory actions, and carnitine supplementation increases locomotor activity (LMA) in experimental animals. We measured 13 indexes of LMA and 3 indexes of stereotypic activity (STA) in adult male and female caged mice. In a randomized 4-week trial, 10 males and 10 females received 50 mg/kg body weight PO l-carnitine, and another 10 males and 10 females received placebo. Compared with placebo-treated females, placebo-treated males had a greater number of stereotypies (NSTs), stereotypy counts (STCs), stereotypy time (STT), and right front time (RFT), but smaller total distance traveled (TDT), margin distance (MD), number of vertical movements (NVMs), and left rear time (LRT). Compared with placebo-treated males, carnitine-treated males had greater horizontal activity (HA), movement time (MT), NVM, STT, TDT, STC, MD, LRT, and clockwise revolutions (CRs), but smaller left front time (LFT) and RFT. Compared with placebo-treated females, carnitine-treated females had greater NST, STC, STT, LFT, and RFT, but smaller NM, HA, NVM, VA, MT, anticlockwise revolutions (ACRs), CR, TDT, and MD; right rear time (RRT) remained statistically insignificant across all comparisons. In summary, l-carnitine caused gender differences to persist for STC, diminish for NST and STT, disappear for LRT and NVM, change in the opposite direction for TDT and MD, appear de novo for HA, VA, NM, MT, and LFT, and remain absent for RRT and ACR. Some indexes of LMA and STA are sexually dimorphic in adult mice, and l-carnitine differentially maintains, diminishes/cancels, inverts, or creates the sexual dimorphism of particular indexes. Copyright © 2011 Elsevier HS Journals, Inc. All rights reserved.

  15. Nutritional intervention restores muscle but not kidney phenotypes in adult calcineurin aα null mice

    DEFF Research Database (Denmark)

    Madsen, Kirsten; Reddy, Ramesh N; Price, S Russ

    2013-01-01

    to thrive and early lethality of most null pups. Work in our laboratory led to the rescue of CnAα-/- mice by supplemental feeding to compensate for a defect in salivary enzyme secretion. The data revealed that, without intervention, knockout mice suffer from severe caloric restriction. Since nutritional...... deprivation is known to significantly alter development, it is imperative that previous conclusions based on CnAα-/- mice are revisited to determine which aspects of the phenotype were attributable to caloric restriction versus a direct role for CnAα. In this study, we find that defects in renal development...... and function persist in adult CnAα-/- mice including a significant decrease in glomerular filtration rate and an increase in blood urea nitrogen levels. These data indicate that impaired renal development we previously reported was not due to caloric restriction but rather a specific role for CnAα in renal...

  16. Effect of Perceived Stigmatisation on the Quality of Life among Ageing Female Family Carers: A Comparison of Carers of Adults with Intellectual Disability and Carers of Adults with Mental Illness

    Science.gov (United States)

    Chou, Y. C.; Pu, C. Y.; Lee, Y. C.; Lin, L. C.; Kroger, T.

    2009-01-01

    Background: Little account has been taken of quality of life (QoL) among family carers of adults with an intellectual disability (ID) and family carers of adults with a mental illness (MI), particularly the female ageing carers' perceived stigma. We explore whether there are differences in the significant predictors of female ageing family carers'…

  17. Dysmenorrhea: Prevalence and Impact on Quality of Life among Young Adult Jordanian Females.

    Science.gov (United States)

    Al-Jefout, Moamar; Seham, Abu-Fraijeh; Jameel, Hijazeen; Randa, Al-Qaisi; Ola, Al-Ma'aitah; Oday, Al-Ma'aitah; Luscombe, Georgina

    2015-06-01

    To establish the prevalence and impact on quality of life of dysmenorrhea among young adult Jordanian females. Cross-sectional study based on quantitative self-reported anonymous questionnaire. University-based study. A total of 272 female medical students (aged 19-25 years). None. Self-reports of menstruation-related pain symptoms and methods of dealing with them. Of study subjects 152/272 (55.8%) participants had moderate and severe dysmenorrhea. Of them, 55.8% had a family history of severe dysmenorrhea compared with 33.1% of those without dysmenorrhea (χ2 = 13.40, df = 1, P dysmenorrhea and poor university attendance (χ(2) = 45.35, df = 2, P Dysmenorrhea worsens during examination periods in 50% of cases. The most common pain symptom was low back pain (60.2%). Body mass index, family monthly income and early age at menarche had no correlation with the occurrence of dysmenorrhea. Of those with dysmenorrhea, 69.4% were using analgesics. Mothers were the main source of information regarding menstruation. Dysmenorrhea is highly prevalent among young adult Jordanian females and seems to negatively affect quality of life, particularly as related to university attendance and performance and social relationships. Copyright © 2015 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  18. Intrauterine programming mechanism for hypercholesterolemia in prenatal caffeine-exposed female adult rat offspring.

    Science.gov (United States)

    Xu, Dan; Luo, Hanwen W; Hu, Wen; Hu, Shuwei W; Yuan, Chao; Wang, Guihua H; Zhang, Li; Yu, Hong; Magdalou, Jacques; Chen, Liaobin B; Wang, Hui

    2018-05-02

    Clinical and animal studies have indicated that hypercholesterolemia and its associated diseases have intrauterine developmental origins. Our previous studies showed that prenatal caffeine exposure (PCE) led to fetal overexposure to maternal glucocorticoids (GCs) and increased serum total cholesterol levels in adult rat offspring. This study further confirms the intrauterine programming of PCE-induced hypercholesterolemia in female adult rat offspring. Pregnant Wistar rats were intragastrically administered caffeine (30, 60, and 120 mg/kg/d) from gestational day (GD)9 to 20. Female rat offspring were euthanized at GD20 and postnatal wk 12; several adult rat offspring were additionally subjected to ice-water swimming stimulation to induce chronic stress prior to death. The effects of GCs on cholesterol metabolism and epigenetic regulation were verified using the L02 cell line. The results showed that PCE induced hypercholesterolemia in adult offspring, which manifested as significantly higher levels of serum total cholesterol and LDL cholesterol (LDL-C) as well as higher ratios of LDL-C/HDL cholesterol. We further found that the cholesterol levels were increased in fetal livers but were decreased in fetal blood, accompanied by increased maternal blood cholesterol levels and reduced placental cholesterol transport. Furthermore, analysis of PCE offspring in the uterus and in a postnatal basal/chronic stress state and the results of in vitro experiments showed that hepatic cholesterol metabolism underwent GC-dependent changes and was associated with cholesterol synthase via abnormalities in 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) histone acetylation. We concluded that, to compensate for intrauterine placentally derived decreases in fetal blood cholesterol levels, high intrauterine GC levels activated fetal hepatic CCAAT enhancer binding protein α signaling and down-regulated Sirtuin1 expression, which mediated the high levels of histone acetylation ( via H3K9

  19. The long-term effects of stress and kappa opioid receptor activation on conditioned place aversion in male and female California mice.

    Science.gov (United States)

    Laman-Maharg, Abigail R; Copeland, Tiffany; Sanchez, Evelyn Ordoñes; Campi, Katharine L; Trainor, Brian C

    2017-08-14

    Psychosocial stress leads to the activation of kappa opioid receptors (KORs), which induce dysphoria and facilitate depression-like behaviors. However, less is known about the long-term effects of stress and KORs in females. We examined the long-term effects of social defeat stress on the aversive properties of KOR activation in male and female California mice (Peromyscus californicus) using a conditioned place aversion paradigm. Female California mice naïve to social defeat, formed a place aversion following treatment with 2.5mg/kg of the KOR agonist U50,488, but females exposed to defeat did not form a place aversion to this dose. This supports the finding by others that social defeat weakens the aversive properties of KOR agonists. In contrast, both control and stressed males formed an aversion to 10mg/kg of U50,488. We also examined EGR1 immunoreactivity, an indirect marker of neuronal activity, in the nucleus accumbens (NAc) and found that stress and treatment with 10mg/kg of U50,488 increased EGR1 immunoreactivity in the NAc core in females but reduced activation in males. The effects of stress and U50,488 on EGR1 were specific to the NAc, as we found no differences in the bed nucleus of the stria terminalis. In summary, our data indicate important sex differences in the long-term effects of stress and indicate the need for further study of the molecular mechanisms mediating the behavioral effects of KOR in both males and females. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Influence of the thymus on the capacity of female mice to reject male skin grafts

    International Nuclear Information System (INIS)

    De Pirro, E.S.; Goldberg, E.H.

    1989-01-01

    The ability of female mice to reject H-Y-incompatible, but otherwise histocompatible, male skin grafts differs greatly from strain to strain, as is illustrated particularly by the C57BL strain (B6 and other sublines), termed ''H-Y rejector,'' because females invariably and promptly reject C57BL male skin, in comparison with the C3H strain, termed ''H-Y nonrejector,'' because females characteristically accept male C3H skin. To assess the extent to which the thymus governs this rejector vs. nonrejector status, two studies were made. In the first, lethally irradiated B6 (C57BL) and C3H females were restored with (B6 X C3H)F1 female cells, providing a graft-vs.-host-free milieu for differentiation of the same immunopoietic cell population in B6 vs. C3H hosts. With respect to (B6 X C3H)F1 male skin grafts, B6 hosts responded as rejectors and C3H hosts as nonrejectors, signifying that rejector vs. nonrejector status was determined by the host during immunopoiesis. That the main organ responsible for rejector vs. nonrejector determination is the thymus was shown in a second study. Previously thymectomized (B6 X C3H)F1 females received a histocompatible graft of thymus from either B6 or C3H neonatal females and were restored with donor-marked (B6-Ly-5a X C3H)F1 female cells after lethal irradiation. With respect to (B6 X C3H)F1 male skin grafts, the recipients of B6 thymus grafts responded generally as rejectors and the recipients of C3H thymus grafts responded uniformly as nonrejectors

  1. Thyroid hormone interacts with the sympathetic nervous system to modulate bone mass and structure in young adult mice.

    Science.gov (United States)

    Fonseca, Tatiana L; Teixeira, Marilia B C G; Miranda-Rodrigues, Manuela; Rodrigues-Miranda, Manuela; Silva, Marcos V; Martins, Gisele M; Costa, Cristiane C; Arita, Danielle Y; Perez, Juliana D; Casarini, Dulce E; Brum, Patricia C; Gouveia, Cecilia H A

    2014-08-15

    To investigate whether thyroid hormone (TH) interacts with the sympathetic nervous system (SNS) to modulate bone mass and structure, we studied the effects of daily T3 treatment in a supraphysiological dose for 12 wk on the bone of young adult mice with chronic sympathetic hyperactivity owing to double-gene disruption of adrenoceptors that negatively regulate norepinephrine release, α(2A)-AR, and α(2C)-AR (α(2A/2C)-AR(-/-) mice). As expected, T3 treatment caused a generalized decrease in the areal bone mineral density (aBMD) of WT mice (determined by DEXA), followed by deleterious effects on the trabecular and cortical bone microstructural parameters (determined by μCT) of the femur and vertebra and on the biomechanical properties (maximum load, ultimate load, and stiffness) of the femur. Surprisingly, α(2A/2C)-AR(-/-) mice were resistant to most of these T3-induced negative effects. Interestingly, the mRNA expression of osteoprotegerin, a protein that limits osteoclast activity, was upregulated and downregulated by T3 in the bone of α(2A/2C)-AR(-/-) and WT mice, respectively. β1-AR mRNA expression and IGF-I serum levels, which exert bone anabolic effects, were increased by T3 treatment only in α(2A/2C)-AR(-/-) mice. As expected, T3 inhibited the cell growth of calvaria-derived osteoblasts isolated from WT mice, but this effect was abolished or reverted in cells isolated from KO mice. Collectively, these findings support the hypothesis of a TH-SNS interaction to control bone mass and structure of young adult mice and suggests that this interaction may involve α2-AR signaling. Finally, the present findings offer new insights into the mechanisms through which TH regulates bone mass, structure, and physiology. Copyright © 2014 the American Physiological Society.

  2. Effect of bcl-2 overexpression in mice on ovotoxicity caused by 4-vinylcyclohexene

    International Nuclear Information System (INIS)

    Flaws, Jodi A.; Marion, Samuel L.; Miller, Kimberly P.; Christian, Patricia J.; Babus, Janice K.; Hoyer, Patricia B.

    2006-01-01

    The occupational chemical 4-vinylcyclohexene (VCH) destroys small preantral ovarian follicles in mice following repeated daily dosing. The cell survival gene bcl-2 is thought to protect against follicular death during embryogenesis because primordial follicle numbers in newborn bcl-2 overexpressing (OE) mice are greater than in wild-type (WT) controls. Thus, this study was designed to determine if overexpression of bcl-2 protects against VCH-induced follicle loss during embryonic development. Pregnant bcl-2 OE or WT mice were dosed (p.o.) daily with VCH (500 mg/kg) or sesame oil (vehicle control) on days 8-18 of pregnancy. Ovaries were collected from moms and female pups on pup postnatal day (PND) 8. Nonpregnant OE and WT females were also treated with VCH (500 mg/kg p.o.) or vehicle and evaluated in the same manner. As previously reported, ovaries from PND8 OE female pups contained 50% more primordial follicles than WT pups (P < 0.05). Unlike WT pups, relative to vehicle controls, in utero exposure to VCH resulted in a reduction in primordial (25% of control), primary (38% of control), and secondary (33% of control) follicles in ovaries of OE pups (P < 0.05). VCH had no significant effect on follicle numbers in OE or WT moms. Conversely, in nonpregnant adults, VCH did not affect WT mice but caused loss of primordial (55% of control), primary (51% of control), and secondary (69% of control) follicles in OE mice (P < 0.05). These results demonstrate that bcl-2 overexpression does not protect against, but instead increases susceptibility to VCH-induced follicle loss in transplacentally exposed or in nonpregnant mice

  3. Vocal patterns of adult females and juveniles Caiman yacare (Crocodilia: Alligatoridae in Brazilian Pantanal wetland

    Directory of Open Access Journals (Sweden)

    Fernando L. Sicuro

    2013-09-01

    Full Text Available The Paraguayan caiman (Caiman yacare is the main Caimaninae species occurring in the Brazilian Pantanal Wetland. Despite the relative availability of works focused on biology and conservation of the Paraguayan caiman, almost nothing is known about its vocal structure and behavior. We recorded aggressive calls of adult caiman females guarding nests and, afterwards, the distress calls of the new born juvenile caimans in seasonally flooded areas of the Nhecolândia (Southern Pantanal. The results of both observations and sonographic analyses diverged from studies with other crocodilian species. Aggressive vocalization of adult females of the Paraguayan caiman was longer and more complex than the same vocalization of larger Alligatoridae species. Vocalizations of the young caimans presented interspecific differences with other crocodilian offsprings. Moreover, we found statistically significant intraspecific variation in the distress call structure among different pods, even separated by few kilometers. Differences in distress call structure were tested by Canonical Discriminant Analysis (CDA. We obtained the squared Mahalanobis distances between the acoustic multivariate spaces of each pod provided by the CDA and compared with the geographic distance between the bays of origin of each pod through Mantel Test. The geographic distance by itself did not explain the differences found in the structure of the vocalization of young caimans from different pods. The adult females of Paraguayan caiman positively responded to playbacks of calls from juvenile caimans from pods of other regions, as well as to rough imitations of distress call. Since the adult caimans showed protective responses to quite heterogeneous vocalizations of distress by juveniles, we hypothesized that the variation in the distress call pattern may be associated to a low specificity in sound recognition by adult caimans.

  4. Dominant lethal and ovarian effects of plutonium-239 in female mice

    International Nuclear Information System (INIS)

    Searle, A.G.; Beechey, C.V.; Green, D.; Howells, G.R.

    1982-01-01

    (C3H x 101)F 1 female mice were injected intravenously with 239 Pu in trisodium citrate, then mated in pairs to strain CBA males, to test for dominant lethality. In the first experiment 10μCi kg -1 and in the second 20μCi kg -1 body mass was injected. Matings were after 6 days in the first experiment (estimated ovarian absorbed dose of 0.1 Gy) and after 3,6 or 12 weeks in the second (estimated ovarian doses of 1.11, 2.45 and 5.91 Gy respectively). No evidence of dominant lethal induction was found in the first experiment, but in the second there was a significant increase over controls in pre-implantation loss in all three series. Post-implantation lethality increased significantly (by 12%) only after 12 weeks' exposure. With the 6- and 12-week exposures (especially the latter) luteal counts fell, fewer females becoming pregnant than in controls. This is attributed to oocyte killing by the α-particles. Histological and autoradiographic investigations showed a marked reduction in ovarian size and follicular numbers with fission-tracks clustered mainly over the medullary stroma. The preimplantation loss may stem from lowered fertilization of oocytes because of their damage, so that the best measure of dominant lethality is that based on post-implantation death. (author)

  5. Genetic deletion of P-glycoprotein alters stress responsivity and increases depression-like behavior, social withdrawal and microglial activation in the hippocampus of female mice.

    Science.gov (United States)

    Brzozowska, Natalia I; Smith, Kristie L; Zhou, Cilla; Waters, Peter M; Cavalcante, Ligia Menezes; Abelev, Sarah V; Kuligowski, Michael; Clarke, David J; Todd, Stephanie M; Arnold, Jonathon C

    2017-10-01

    P-glycoprotein (P-gp) is an ABC transporter expressed at the blood brain barrier and regulates the brain uptake of various xenobiotics and endogenous mediators including glucocorticoid hormones which are critically important to the stress response. Moreover, P-gp is expressed on microglia, the brain's immune cells, which are activated by stressors and have an emerging role in psychiatric disorders. We therefore hypothesised that germline P-gp deletion in mice might alter the behavioral and microglial response to stressors. Female P-gp knockout mice displayed an unusual, frantic anxiety response to intraperitoneal injection stress in the light-dark test. They also tended to display reduced conditioned fear responses compared to wild-type (WT) mice in a paradigm where a single electric foot-shock stressor was paired to a context. Foot-shock stress reduced social interaction and decreased microglia cell density in the amygdala which was not varied by P-gp genotype. Independently of stressor exposure, female P-gp deficient mice displayed increased depression-like behavior, idiosyncratic darting behavior, age-related social withdrawal and hyperactivity, facilitated sensorimotor gating and altered startle reactivity. In addition, P-gp deletion increased microglia cell density in the CA3 region of the hippocampus, and the microglial cells exhibited a reactive, hypo-ramified morphology. Further, female P-gp KO mice displayed increased glucocorticoid receptor (GR) expression in the hippocampus. In conclusion, this research shows that germline P-gp deletion affected various behaviors of relevance to psychiatric conditions, and that altered microglial cell activity and enhanced GR expression in the hippocampus may play a role in mediating these behaviors. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Effects of environmental enrichment on anxiety-like behavior, sociability, sensory gating, and spatial learning in male and female C57BL/6J mice.

    Science.gov (United States)

    Hendershott, Taylor R; Cronin, Marie E; Langella, Stephanie; McGuinness, Patrick S; Basu, Alo C

    2016-11-01

    The influence of housing on cognition and emotional regulation in mice presents a problem for the study of genetic and environmental risk factors for neuropsychiatric disorders: standard laboratory housing may result in low levels of cognitive function or altered levels of anxiety that leave little room for assessment of deleterious effects of experimental manipulations. The use of enriched environment (EE) may allow for the measurement of a wider range of performance in cognitive domains. Cognitive and behavioral effects of EE in male mice have not been widely reproduced, perhaps due to variability in the application of enrichment protocols, and the effects of EE in female mice have not been widely studied. We have developed an EE protocol using common laboratory equipment that, without a running wheel for exercise, results in significant cognitive and behavioral effects relative to standard laboratory housing conditions. We compared male and female wild-type C57BL/6J mice reared from weaning age in an EE to those reared in a standard environment (SE), using common measures of anxiety-like behavior, sensory gating, sociability, and spatial learning and memory. Sex was a significant factor in relevant elevated plus maze (EPM) measures, and bordered on significance in a social interaction (SI) assay. Effects of EE on anxiety-like behavior and sociability were indicative of a general increase in exploratory activity. In male and female mice, EE resulted in reduced prepulse inhibition (PPI) of the acoustic startle response, and enhanced spatial learning and use of spatially precise strategies in a Morris water maze task. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Progesterone protects normative anxiety-like responding among ovariectomized female mice that conditionally express the HIV-1 regulatory protein, Tat, in the CNS.

    Science.gov (United States)

    Paris, Jason J; Fenwick, Jason; McLaughlin, Jay P

    2014-05-01

    Increased anxiety is co-morbid with human immunodeficiency virus (HIV) infection. Actions of the neurotoxic HIV-1 regulatory protein, Tat, may contribute to affective dysfunction. We hypothesized that Tat expression would increase anxiety-like behavior of female GT-tg bigenic mice that express HIV-1 Tat protein in the brain in a doxycycline-dependent manner. Furthermore, given reports that HIV-induced anxiety may occur at lower rates among women, and that the neurotoxic effects of Tat are ameliorated by sex steroids in vitro, we hypothesized that 17β-estradiol and/or progesterone would ameliorate Tat-induced anxiety-like effects. Among naturally-cycling proestrous and diestrous mice, Tat-induction via 7days of doxycycline treatment significantly increased anxiety-like responding in an open field, elevated plus maze and a marble-burying task, compared to treatment with saline. Proestrous mice demonstrated less anxiety-like behavior than diestrous mice in the open field and elevated plus maze, but these effects did not significantly interact with Tat-induction. Among ovariectomized mice, doxycycline-induced Tat protein significantly increased anxiety-like behavior in an elevated plus maze and a marble burying task compared to saline-treated mice, but not an open field (where anxiety-like responding was already maximal). Co-administration of progesterone (4mg/kg), but not 17β-estradiol (0.09mg/kg), with doxycycline significantly ameliorated anxiety-like responding in the elevated plus maze and marble burying tasks. When administered together, 17β-estradiol partially antagonized the protective effects of progesterone on Tat-induced anxiety-like behavior. These findings support evidence of steroid-protection over HIV-1 proteins, and extend them by demonstrating the protective capacity of progesterone on Tat-induced anxiety-like behavior of ovariectomized female mice. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Knowledge about mammography and associated factors: population surveys with female adults and elderly

    Directory of Open Access Journals (Sweden)

    Ione Jayce Ceola Schneider

    2013-12-01

    Full Text Available The purpose of this paper is to describe the knowledge about mammography and to identify associated factors in female adults and elderly. Data were obtained from two population surveys, one with female adults and another with elderly women from Florianópolis (SC in 2009 - 2010. A descriptive analysis of the variables was carried out, the appropriate mean of responses about mammography was estimated and crude and adjusted Poisson regression was conducted to identify associated factors. Among adults, 23.1% answered all of the questions appropriately and the appropriate average responses was 7.2 (95%CI 7.1 - 7.3 in a total of 9. In the adjusted model, older age, higher education and income were associated with knowledge about mammography. For the elderly, 15.3% answered all questions appropriately and the average of appropriate responses was 6.4 (95%CI 5.2 - 6.5 and the factors associated with knowledge about mammography in the adjusted model were younger age groups, increased education and income, and identification of mammography as the main diagnostic method for breast cancer. Information about mammography can neither be transmitted in a clear way nor be easily understood; there are also demographic and socioeconomic differences concerning the knowledge about the exam.

  9. Evaluating The Effect of Melatonin on HAS2, and PGR expression, as well as Cumulus Expansion, and Fertility Potential in Mice.

    Science.gov (United States)

    Ezzati, Maryam; Roshangar, Leila; Soleimani Rad, Jafar; Karimian, Nahid

    2018-04-01

    Infertility is a worldwide health problem which affects approximately 15% of sexually active couples. One of the factors influencing the fertility is melatonin. Also, protection of oocytes and embryos from oxidative stress inducing chemicals in the culture medium is important. The aim of the present study was to investigate if melatonin could regulate hyaluronan synthase-2 (HAS2) and Progesterone receptor (PGR) expressions in the cumulus cells of mice oocytes and provide an in vitro fertilization (IVF) approach. In this experimental study, for this purpose, 30 adult female mice and 15 adult male mice were used. The female mice were superovulated using 10 U of pregnant mare serum gonadotropin (PMSG) and 24 hours later, 10 U of human chorionic gonadotropin (hCG) were injected. Next, cumulus oocyte complexes (COCs) were collected from the oviducts of the female mice by using a matrix-flushing method. The cumulus cells were cultured with melatonin 10 μM for 6 hours and for real-time reverse transcription-polymerase chain reaction (RT-PCR) was used for evaluation of HAS2 and PGR expression levels. The fertilization rate was evaluated through IVF. All the data were analyzed using a t test. The results of this study showed that HAS2 and PGR expressions in the cumulus cells of the mice receiving melatonin increased in comparison to the control groups. Also, IVF results revealed an enhancement in fertilization rate in the experimental groups compared to the control groups. To improve the oocyte quality and provide new approaches for infertility treatment, administration of melatonin as an antioxidant, showed promising results. Thus, it is concluded that fertility outcomes can be improved by melatonin it enhances PGR. Copyright© by Royan Institute. All rights reserved.

  10. Elevated paternal glucocorticoid exposure modifies memory retention in female offspring.

    Science.gov (United States)

    Yeshurun, Shlomo; Rogers, Jake; Short, Annabel K; Renoir, Thibault; Pang, Terence Y; Hannan, Anthony J

    2017-09-01

    Recent studies have demonstrated that behavioral traits are subject to transgenerational modification by paternal environmental factors. We previously reported on the transgenerational influences of increased paternal stress hormone levels on offspring anxiety and depression-related behaviors. Here, we investigated whether offspring sociability and cognition are also influenced by paternal stress. Adult C57BL/6J male mice were treated with corticosterone (CORT; 25mg/L) for four weeks prior to paired-matings to generate F1 offspring. Paternal CORT treatment was associated with decreased body weights of female offspring and a marked reduction of the male offspring. There were no differences in social behavior of adult F1 offspring in the three-chamber social interaction test. Despite male offspring of CORT-treated fathers displaying hyperactivity in the Y-maze, there was no observable difference in short-term spatial working memory. Spatial learning and memory testing in the Morris water maze revealed that female, but not male, F1 offspring of CORT-treated fathers had impaired memory retention. We used our recently developed methodology to analyze the spatial search strategy of the mice during the learning trials and determined that the impairment could not be attributed to underlying differences in search strategy. These results provide evidence for the impact of paternal corticosterone administration on offspring cognition and complement the cumulative knowledge of transgenerational epigenetic inheritance of acquired traits in rodents and humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Humility, Forgiveness, and Emerging Adult Female Romantic Relationships.

    Science.gov (United States)

    Bell, Chance A; Fincham, Frank D

    2017-10-26

    Among a sample of emerging adult females (N = 152) we empirically examined the role of humility and forgiveness in romantic relationships. We specifically tested a model linking perceived humility to relationship satisfaction with self-forgiveness and partner-forgiveness. Participants in a romantic relationship completed measures of self-reported humility, self-forgiveness, partner-forgiveness, and relationship satisfaction. Serial mediation analyses were conducted using path analysis to test the following sequence, humility self-forgiveness partner-forgiveness relationship satisfaction. Findings indicate that humility was related to relationship satisfaction via a serially mediated path of self-forgiveness and partner-forgiveness, which was not reducible to impression management. We consider implications for research and clinical practice. © 2017 American Association for Marriage and Family Therapy.

  12. Gastrointestinal absorption of plutonium and uranium in fed and fasted adult baboons and mice: application to humans

    International Nuclear Information System (INIS)

    Bhattacharyya, M.H.; Larsen, R.P.; Oldham, R.D.; Cohen, N.; Ralston, L.G.; Moretti, E.S.; Ayres, L.

    1989-01-01

    Gastrointestinal (GI) absorption values of plutonium and uranium were determined in fed and fasted adult baboons and mice. For both baboons and mice, the GI absorptions of plutonium and uranium were 10 to 20 times higher in 24 h fasted animals than in fed ones. For plutonium, GI absorption values in baboons were almost identical to those in mice for both fed and fasted conditions, and values for fed animals agreed with estimates for humans. For uranium, GI absorption values in fed and fasted baboons were 6 to 7 times higher than those in mice, and agreed well with those fed and fasted humans. For one baboon that was not given its morning meal, plutonium absorption 2 h after the start of the active phase was the same as that in the 24 h fasted animals. In contrast, for baboons that received a morning meal, plutonium absorption did not rise to the value of 24 h fasted baboons even 8 h after the meal. We conclude that GI absorption values for plutonium and uranium in adult baboons are good estimates of the values in humans and that the values for the fasted condition should be used to set standards for oral exposure of persons in the workplace. (author)

  13. Characteristics of multi-organ lymphangiectasia resulting from temporal deletion of calcitonin receptor-like receptor in adult mice.

    Science.gov (United States)

    Hoopes, Samantha L; Willcockson, Helen H; Caron, Kathleen M

    2012-01-01

    Adrenomedullin (AM) and its receptor complexes, calcitonin receptor-like receptor (Calcrl) and receptor activity modifying protein 2/3, are highly expressed in lymphatic endothelial cells and are required for embryonic lymphatic development. To determine the role of Calcrl in adulthood, we used an inducible Cre-loxP system to temporally and ubiquitously delete Calcrl in adult mice. Following tamoxifen injection, Calcrl(fl/fl)/CAGGCre-ER™ mice rapidly developed corneal edema and inflammation that was preceded by and persistently associated with dilated corneoscleral lymphatics. Lacteals and submucosal lymphatic capillaries of the intestine were also dilated, while mesenteric collecting lymphatics failed to properly transport chyle after an acute Western Diet, culminating in chronic failure of Calcrl(fl/fl)/CAGGCre-ER™ mice to gain weight. Dermal lymphatic capillaries were also dilated and chronic edema challenge confirmed significant and prolonged dermal lymphatic insufficiency. In vivo and in vitro imaging of lymphatics with either genetic or pharmacologic inhibition of AM signaling revealed markedly disorganized lymphatic junctional proteins ZO-1 and VE-cadherin. The maintenance of AM signaling during adulthood is required for preserving normal lymphatic permeability and function. Collectively, these studies reveal a spectrum of lymphatic defects in adult Calcrl(fl/fl)/CAGGCre-ER™ mice that closely recapitulate the clinical symptoms of patients with corneal, intestinal and peripheral lymphangiectasia.

  14. Voluntary resistance wheel exercise from mid-life prevents sarcopenia and increases markers of mitochondrial function and autophagy in muscles of old male and female C57BL/6J mice.

    Science.gov (United States)

    White, Zoe; Terrill, Jessica; White, Robert B; McMahon, Christopher; Sheard, Phillip; Grounds, Miranda D; Shavlakadze, Tea

    2016-12-13

    There is much interest in the capacity of resistance exercise to prevent the age-related loss of skeletal muscle mass and function, known as sarcopenia. This study investigates the molecular basis underlying the benefits of resistance exercise in aging C57BL/6J mice of both sexes. This study is the first to demonstrate that long-term (34 weeks) voluntary resistance wheel exercise (RWE) initiated at middle age, from 15 months, prevents sarcopenia in selected hindlimb muscles and causes hypertrophy in soleus, by 23 months of age in both male and female C57BL/6J mice. Compared with 23-month-old sedentary (SED) controls, RWE (0-6 g of resistance) increased intramuscular mitochondrial density and oxidative capacity (measured by citrate synthase and NADH-TR) and increased LC3II/I ratios (a marker of autophagy) in exercised mice of both sexes. RWE also reduced mRNA expression of Gadd45α (males only) and Runx1 (females only) but had no effect on other markers of denervation including Chrng, Chrnd, Musk, and Myog. RWE increased heart mass in all mice, with a more pronounced increase in females. Significant sex differences were also noted among SED mice, with Murf1 mRNA levels increasing in male, but decreasing in old female mice between 15 and 23 months. Overall, long-term RWE initiated from 15 month of age significantly improved some markers of the mitochondrial and autophagosomal pathways and prevented age-related muscle wasting.

  15. Assessment of immunotoxicity in female Fischer 344/N and Sprague Dawley rats and female B6C3F1 mice exposed to hexavalent chromium via the drinking water.

    Science.gov (United States)

    Shipkowski, Kelly A; Sheth, Christopher M; Smith, Matthew J; Hooth, Michelle J; White, Kimber L; Germolec, Dori R

    2017-12-01

    Sodium dichromate dihydrate (SDD), an inorganic compound containing hexavalent chromium (Cr(VI)), is a common environmental contaminant of groundwater sources due to widespread industrial use. There are indications in the literature that Cr(VI) may induce immunotoxic effects following dermal exposure, including acting as both an irritant and a sensitizer; however, the potential immunomodulatory effects of Cr(VI) following oral exposure are relatively unknown. Following the detection of Cr(VI) in drinking water sources, the National Toxicology Program (NTP) conducted extensive evaluations of the toxicity and carcinogenicity of SDD following drinking water exposure, including studies to assess the potential for Cr(VI) to modulate immune function. For the immunotoxicity assessments, female Fischer 344/N (F344/N) and Sprague Dawley (SD) rats and female B 6 C 3 F 1 mice were exposed to SDD in drinking water for 28 consecutive days and evaluated for alterations in cellular and humoral immune function as well as innate immunity. Rats were exposed to concentrations of 0, 14.3, 57.3, 172, or 516 ppm SDD while mice were exposed to concentrations of 0, 15.6, 31.3, 62.5, 125, or 250 ppm SDD. Final mean body weight and body weight gain were decreased relative to controls in 250 ppm B 6 C 3 F 1 mice and 516 ppm SD rats. Water consumption was significantly decreased in F344/N and SD rats exposed to 172 and 516 ppm SDD; this was attributed to poor palatability of the SDD drinking water solutions. Several red blood cell-specific parameters were significantly (5-7%) decreased in 250 ppm mice; however, these parameters were unaffected in rats. Sporadic increases in the spleen IgM antibody response to sheep red blood cells (SRBC) were observed, however, these increases were not dose-dependent and were not reproducible. No significant effects were observed in the other immunological parameters evaluated. Overall, exposure to Cr(VI) in drinking water had limited effects on

  16. Estrous cycle influences the expression of neuronal nitric oxide synthase in the hypothalamus and limbic system of female mice

    Directory of Open Access Journals (Sweden)

    Viglietti-Panzica Carla

    2009-07-01

    Full Text Available Abstract Background Nitric oxide plays an important role in the regulation of male and female sexual behavior in rodents, and the expression of the nitric oxide synthase (NOS is influenced by testosterone in the male rat, and by estrogens in the female. We have here quantitatively investigated the distribution of nNOS immunoreactive (ir neurons in the limbic hypothalamic region of intact female mice sacrificed during different phases of estrous cycle. Results Changes were observed in the medial preoptic area (MPA (significantly higher number in estrus and in the arcuate nucleus (Arc (significantly higher number in proestrus. In the ventrolateral part of the ventromedial nucleus (VMHvl and in the bed nucleus of the stria terminalis (BST no significant changes have been observed. In addition, by comparing males and females, we observed a stable sex dimorphism (males have a higher number of nNOS-ir cells in comparison to almost all the different phases of the estrous cycle in the VMHvl and in the BST (when considering only the less intensely stained elements. In the MPA and in the Arc sex differences were detected only comparing some phases of the cycle. Conclusion These data demonstrate that, in mice, the expression of nNOS in some hypothalamic regions involved in the control of reproduction and characterized by a large number of estrogen receptors is under the control of gonadal hormones and may vary according to the rapid variations of hormonal levels that take place during the estrous cycle.

  17. Reproductive and neurobehavioral effects of clothianidin administered to mice in the diet.

    Science.gov (United States)

    Tanaka, Toyohito

    2012-04-01

    Clothianidin was given in the diet to provide levels of 0% (control), 0.003%, 0.006%, and 0.012% from 5 weeks of age of the F(0) generation to 11 weeks of age of the F(1) generation in mice. Selected reproductive and neurobehavioral parameters were measured. In exploratory behavior in the F(0) generation, average time of movement, number of rearing, and rearing time of adult males increased significantly in a dose-related manner. There was no adverse effect of clothianidin on litter size, litter weight, or sex ratio at birth. The average body weight of male and female offspring was increased significantly in a dose-related manner during the early lactation period. With respect to behavioral developmental parameters, swimming head angle at postnatal day (PND) 7 of male offspring was accelerated significantly in a dose-related manner. Negative geotaxis at PND 7 of female offspring was accelerated significantly in a dose-related manner. For movement activity of exploratory behavior in the F(1) generation, number of rearing of female offspring increased significantly in a dose-related manner. Movement time of adult males increased significantly in a dose-related manner. The dose levels of clothianidin in the present study produced several adverse effects in neurobehavioral parameters in mice. Nevertheless, it would appear that the levels of the actual dietary intake of clothianidin are unlikely to produce adverse effects in humans. © 2012 Wiley Periodicals, Inc.

  18. Delivery of Human EV71 Receptors by Adeno-Associated Virus Increases EV71 Infection-Induced Local Inflammation in Adult Mice

    Directory of Open Access Journals (Sweden)

    Hung-Bo Hsiao

    2014-01-01

    Full Text Available Enterovirus71 (EV71 is now recognized as an emerging neurotropic virus in Asia and one major causative agent of hand-foot-mouth diseases (HFMD. However potential animal models for vaccine development are limited to young mice. In this study, we used an adeno-associated virus (AAV vector to introduce the human EV71 receptors P-selectin glycoprotein ligand-1 (hPSGL1 or a scavenger receptor class-B member-2 (hSCARB2 into adult ICR mice to change their susceptibility to EV71 infection. Mice were administered AAV-hSCARB2 or AAV-hPSGL1 through intravenous and oral routes. After three weeks, expression of human SCARB2 and PSGL1 was detected in various organs. After infection with EV71, we found that the EV71 viral load in AAV-hSCARB2- or AAV-hPSGL1-transduced mice was higher than that of the control mice in both the brain and intestines. The presence of EV71 viral particles in tissues was confirmed using immunohistochemistry analysis. Moreover, inflammatory cytokines were induced in the brain and intestines of AAV-hSCARB2- or AAV-hPSGL1-transduced mice after EV71 infection but not in wild-type mice. However, neurological disease was not observed in these animals. Taken together, we successfully infected adult mice with live EV71 and induced local inflammation using an AAV delivery system.

  19. Effects of Maternal Behavior Induction and Pup Exposure on Neurogenesis in Adult, Virgin Female Rats

    Science.gov (United States)

    Furuta, Miyako; Bridges, Robert S.

    2009-01-01

    The states of pregnancy and lactation bring about a range of physiological and behavioral changes in the adult mammal that prepare the mother to care for her young. Cell proliferation increases in the subventricular zone (SVZ) of the female rodent brain during both pregnancy and lactation when compared to that in cycling, diestrous females. In the present study, the effects of maternal behavior induction and pup exposure o