WorldWideScience

Sample records for adult cardiac myocytes

  1. Isolation and Genetic Manipulation of Adult Cardiac Myocytes for Confocal Imaging

    OpenAIRE

    Kaestner, Lars; Scholz, Anke; Hammer, Karin; Vecerdea, Anne; Ruppenthal, Sandra; Lipp, Peter

    2009-01-01

    Cardiac myocytes isolated from adult hearts are widely accepted as a model somewhere half way between embryonic and neonatal muscle cells on one side and a working heart on the other. Thus, cardiomyocytes serve as good models for cardiac cellular physiology and pathophysiology, for pharmaceutical investigations as well as for the exploration of transgenic animal models. Here we describe a method of isolating the cells from the heart. Furthermore we show how a genetic manipulation on cardiac m...

  2. Trophic effect of human pericardial fluid on adult cardiac myocytes. Differential role of fibroblast growth factor-2 and factors related to ventricular hypertrophy.

    Science.gov (United States)

    Corda, S; Mebazaa, A; Gandolfini, M P; Fitting, C; Marotte, F; Peynet, J; Charlemagne, D; Cavaillon, J M; Payen, D; Rappaport, L; Samuel, J L

    1997-11-01

    Pericardial fluid (PF) may contain myocardial growth factors that exert paracrine actions on cardiac myocytes. The aims of this study were (1) to investigate the effects of human PF and serum, collected from patients undergoing cardiac surgery, on the growth of cultured adult rat cardiac myocytes and (2) to relate the growth activity of both fluids to the adaptive changes in overloaded human hearts. Both PF and serum increased the rate of protein synthesis, measured by [14C]phenylalanine incorporation in adult rat cardiomyocytes (PF, +71.9 +/- 8.2% [n = 17]; serum, +14.9 +/- 6.5% [n = 13]; both P < .01 versus control medium). The effects of both PF and serum on cardiomyocyte growth correlated positively with the respective left ventricular (LV) mass. However, the magnitude of change with PF was 3-fold greater than with serum (P < .01). These trophic effects of PF were mimicked by exogenous basic fibroblast growth factor (FGF2) and inhibited by anti-FGF2 antibodies and transforming growth factor-beta (TGF-beta), suggesting a relationship to FGF2. In addition, FGF2 concentration in PF was 20 times greater than in serum. On the other hand, the LV mass-dependent trophic effect, present in both fluids, was independent of FGF2 concentration or other factors, such as angiotensin II, atrial natriuretic factor, and TGF-beta. These data suggest that FGF2 in human PF is a major determining factor in normal myocyte growth, whereas unidentified LV mass-dependent factor(s), present in both PF and serum, participates in the development of ventricular hypertrophy. PMID:9351441

  3. Expression and protective effects of urocortin in cardiac myocytes.

    Science.gov (United States)

    Okosi, A; Brar, B K; Chan, M; D'Souza, L; Smith, E; Stephanou, A; Latchman, D S; Chowdrey, H S; Knight, R A

    1998-04-01

    Reverse transcription PCR showed that mRNA encoding the CRH-like molecule, urocortin, is expressed in a rat cardiac myocyte cell line and in primary cultures of cardiac myocytes. Identity of the amplified with the published sequence was established by restriction mapping and direct sequencing. Expression of urocortin mRNA was increased 12-18 h after thermal injury. Urocortin peptide protected cardiac myocytes from cell death induced by hypoxia. The data suggest that urocortin is an endogenous cardiac myocyte peptide which modulates the cellular response to stress. PMID:9639256

  4. ErbB4 localization to cardiac myocyte nuclei, and its role in myocyte DNA damage response

    Energy Technology Data Exchange (ETDEWEB)

    Icli, Basak [Department of Medicine, Cardiovascular Division, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Bharti, Ajit [Center of Molecular Stress Response Whitaker Cardiovascular Institute, Department of Medicine, Boston University Medical Center, Boston, MA 02118 (United States); Pentassuglia, Laura; Peng, Xuyang [Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (United States); Sawyer, Douglas B., E-mail: douglas.b.sawyer@vanderbilt.edu [Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (United States)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer ErbB4 localizes to cardiac myocyte nuclei as a full-length receptor. Black-Right-Pointing-Pointer Cardiac myocytes express predominantly JM-a/CYT-1 ErbB4. Black-Right-Pointing-Pointer Myocyte p53 activation in response to doxorubicin requires ErbB4 activity. -- Abstract: The intracellular domain of ErbB4 receptor tyrosine kinase is known to translocate to the nucleus of cells where it can regulate p53 transcriptional activity. The purpose of this study was to examine whether ErbB4 can localize to the nucleus of adult rat ventricular myocytes (ARVM), and regulate p53 in these cells. We demonstrate that ErbB4 does locate to the nucleus of cardiac myocytes as a full-length protein, although nuclear location occurs as a full-length protein that does not require Protein Kinase C or {gamma}-secretase activity. Consistent with this we found that only the non-cleavable JM-b isoform of ErbB4 is expressed in ARVM. Doxorubicin was used to examine ErbB4 role in regulation of a DNA damage response in ARVM. Doxorubicin induced p53 and p21 was suppressed by treatment with AG1478, an EGFR and ErbB4 kinase inhibitor, or suppression of ErbB4 expression with small interfering RNA. Thus ErbB4 localizes to the nucleus as a full-length protein, and plays a role in the DNA damage response induced by doxorubicin in cardiac myocytes.

  5. Cell contact as an independent factor modulating cardiac myocyte hypertrophy and survival in long-term primary culture

    Science.gov (United States)

    Clark, W. A.; Decker, M. L.; Behnke-Barclay, M.; Janes, D. M.; Decker, R. S.

    1998-01-01

    Cardiac myocytes maintained in cell culture develop hypertrophy both in response to mechanical loading as well as to receptor-mediated signaling mechanisms. However, it has been shown that the hypertrophic response to these stimuli may be modulated through effects of intercellular contact achieved by maintaining cells at different plating densities. In this study, we show that the myocyte plating density affects not only the hypertrophic response and features of the differentiated phenotype of isolated adult myocytes, but also plays a significant role influencing myocyte survival in vitro. The native rod-shaped phenotype of freshly isolated adult myocytes persists in an environment which minimizes myocyte attachment and spreading on the substratum. However, these conditions are not optimal for long-term maintenance of cultured adult cardiac myocytes. Conditions which promote myocyte attachment and spreading on the substratum, on the other hand, also promote the re-establishment of new intercellular contacts between myocytes. These contacts appear to play a significant role in the development of spontaneous activity, which enhances the redevelopment of highly differentiated contractile, junctional, and sarcoplasmic reticulum structures in the cultured adult cardiomyocyte. Although it has previously been shown that adult cardiac myocytes are typically quiescent in culture, the addition of beta-adrenergic agonists stimulates beating and myocyte hypertrophy, and thereby serves to increase the level of intercellular contact as well. However, in densely-plated cultures with intrinsically high levels of intercellular contact, spontaneous contractile activity develops without the addition of beta-adrenergic agonists. In this study, we compare the function, morphology, and natural history of adult feline cardiomyocytes which have been maintained in cultures with different levels of intercellular contact, with and without the addition of beta-adrenergic agonists

  6. Future perspectives and potential implications of cardiac myocyte apoptosis.

    Science.gov (United States)

    Haunstetter, A; Izumo, S

    2000-02-01

    Recent advances in the understanding of the molecular mechanisms of apoptosis has gained increasing interest in the cardiovascular research community. Apoptotic myocyte loss has been detected in different cardiac disease states such as ischemic heart disease and congestive heart failure. In addition, some evidence for the molecular mechanisms in cardiac myocyte apoptosis has been evolving, although at present the implications thereof for clinical cardiac disease are not known in most of the cases. Based on these new insights, it is the intention of this article to highlight some topics in apoptosis research that might be of particular interest to define the future role and potentials of new therapeutic approaches aimed at preventing myocyte apoptosis. PMID:10728403

  7. Physiological changes induced in cardiac myocytes by cytotoxic T lymphocytes

    International Nuclear Information System (INIS)

    The lethal hit induced by viral specific, sensitized, cytotoxic T lymphocytes (CTL) attacking virus-infected heart cells is important in the pathogenesis of viral myocarditis and reflects the key role of CTL in this immune response. The mechanisms involved are incompletely understood. Studies of the physiological changes induced in mengovirus-infected, cultured, neonatal, rat heart cells by CTL that had been previously sensitized by the same virus are presented. The CTL were obtained from spleens of mengovirus-infected, major histocompatibility complex (MHC) matched adult rats. Cell wall motion was measured by an optical method, action potentials with intracellular microelectrodes, and total exchangeable calcium content by 45Ca tracer measurements after loading the myocytes with 45Ca and then exposing them to CTL. After 50 min (mean time) of exposing mengovirus-infected myocytes to the CTL, the mechanical relaxation of the myocyte was slowed, with a subsequent slowing of beating rate and a reduced amplitude of contraction. Impaired relaxation progressed, and prolonged oscillatory contractions lasting up to several seconds appeared, with accompanying oscillations in the prolonged plateau phase of the action potentials. Arrest of the myocyte contractions appeared 98 min (mean time) after exposure to CTL. It is concluded that infection of cultured myocytes with mengovirus predisposes them to attack by mengovirus specific CTL, and that persistent dysfunction of the myocyte is preceded by reversible changes in membrane potential and contraction. This is suggestive of an altered calcium handling by the myocytes possibly resulting in the cytotoxic effect

  8. Nanomaterials for Cardiac Myocyte Tissue Engineering

    OpenAIRE

    Rodolfo Amezcua; Ajay Shirolkar; Carolyn Fraze; David A. Stout

    2016-01-01

    Since their synthesizing introduction to the research community, nanomaterials have infiltrated almost every corner of science and engineering. Over the last decade, one such field has begun to look at using nanomaterials for beneficial applications in tissue engineering, specifically, cardiac tissue engineering. During a myocardial infarction, part of the cardiac muscle, or myocardium, is deprived of blood. Therefore, the lack of oxygen destroys cardiomyocytes, leaving dead tissue and possib...

  9. PGC-1α accelerates cytosolic Ca2+ clearance without disturbing Ca2+ homeostasis in cardiac myocytes

    International Nuclear Information System (INIS)

    Energy metabolism and Ca2+ handling serve critical roles in cardiac physiology and pathophysiology. Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) is a multi-functional coactivator that is involved in the regulation of cardiac mitochondrial functional capacity and cellular energy metabolism. However, the regulation of PGC-1α in cardiac Ca2+ signaling has not been fully elucidated. To address this issue, we combined confocal line-scan imaging with off-line imaging processing to characterize calcium signaling in cultured adult rat ventricular myocytes expressing PGC-1α via adenoviral transduction. Our data shows that overexpressing PGC-1α improved myocyte contractility without increasing the amplitude of Ca2+ transients, suggesting that myofilament sensitivity to Ca2+ increased. Interestingly, the decay kinetics of global Ca2+ transients and Ca2+ waves accelerated in PGC-1α-expressing cells, but the decay rate of caffeine-elicited Ca2+ transients showed no significant change. This suggests that sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA2a), but not Na+/Ca2+ exchange (NCX) contribute to PGC-1α-induced cytosolic Ca2+ clearance. Furthermore, PGC-1α induced the expression of SERCA2a in cultured cardiac myocytes. Importantly, overexpressing PGC-1α did not disturb cardiac Ca2+ homeostasis, because SR Ca2+ load and the propensity for Ca2+ waves remained unchanged. These data suggest that PGC-1α can ameliorate cardiac Ca2+ cycling and improve cardiac work output in response to physiological stress. Unraveling the PGC-1α-calcium handing pathway sheds new light on the role of PGC-1α in the therapy of cardiac diseases.

  10. Finite Element Model to Study One Dimensional Calcium Dyanmics in Cardiac Myocytes

    Science.gov (United States)

    Pathak, Kunal B.; Adlakha, Neeru

    2015-12-01

    The multi physical process involving calcium ions regulate expansion and contraction of cardiac myocytes. This mechanism of expansion and contraction of cardiac myocytes is responsible for contraction and expansion of heart for pumping of blood into arteries and receiving blood into heart from vein. Thus calcium dynamics in cardiac myocytes is responsible for the activities of the myocytes cells and functioning of the heart. The specific spatiotemporal calcium ion dynamics is required to trigger, sustain and terminate activity of the cell. In this paper an attempt has been done to propose a model to study calcium dynamics in cardiac myocytes for a one-dimensional unsteady state case. The model incorporates the process like diffusion, reaction involving source and excess buffers. Appropriate boundary conditions and initial conditions have been framed. The finite element method has been employed to obtain the solution. The numerical results have been used to study the effect of buffers and source influx on calcium dynamics in cardiac myocytes.

  11. Salvianolic acid B inhibits autophagy and protects starving cardiac myocytes

    Institute of Scientific and Technical Information of China (English)

    Xiao HAN; Jian-xun LIU; Xin-zhi LI

    2011-01-01

    Aim: To investigate the protective or lethal role of autophagy and the effects of Salvianolic acid B (Sal B) on autophagy in starving myocytes.Methods: Cardiac myocytes were incubated under starvation conditions (GD) for O, 1, 2, 3, and 6 h. Autophagic flux in starving cells was measured via chloroquine (3 μmol/L). After myocytes were treated with Sat B (50 μmol/L) in the presence or absence of chloro-quine (3 μmol/L) under GD 3 h, the amount of LC3-11, the abundance of LC3-positive fluorescent dots in cells, cell viability and cellular ATP levels were determined using immunoblotting, immunofluorescence microscopy, MTT assay and luminometer, respectively. More-over, electron microscopy (EM) and immunofluorescent duel labeling of LC3 and Caspase-8 were used to examine the characteristics of autophagy and apoptosis.Results: Immunoblot analysis showed that the amount of LC3-11 in starving cells increased in a time-dependent manner accompanied by increased LC3-positive fluorescence and decreased cell viability and ATP content. Sal B (50 μmol/L) inhibited the increase in LC3-11, reduced the abundance of LC3 immunofluorescence and intensity of Caspase-8 fluorescence, and enhanced cellular viability and ATP levels in myocytes under GD 3 h, regardless of whether chloroquine was present.Conclusion: Autophagy induced by starvation for 3 h led to cell injury. Sal B protected starving cells by blocking the early stage of autophagic flux and inhibiting apoptosis that occurred during autophagy.

  12. Mitochondria-Targeted Antioxidant Prevents Cardiac Dysfunction Induced by Tafazzin Gene Knockdown in Cardiac Myocytes

    Directory of Open Access Journals (Sweden)

    Quan He

    2014-01-01

    Full Text Available Tafazzin, a mitochondrial acyltransferase, plays an important role in cardiolipin side chain remodeling. Previous studies have shown that dysfunction of tafazzin reduces cardiolipin content, impairs mitochondrial function, and causes dilated cardiomyopathy in Barth syndrome. Reactive oxygen species (ROS have been implicated in the development of cardiomyopathy and are also the obligated byproducts of mitochondria. We hypothesized that tafazzin knockdown increases ROS production from mitochondria, and a mitochondria-targeted antioxidant prevents tafazzin knockdown induced mitochondrial and cardiac dysfunction. We employed cardiac myocytes transduced with an adenovirus containing tafazzin shRNA as a model to investigate the effects of the mitochondrial antioxidant, mito-Tempo. Knocking down tafazzin decreased steady state levels of cardiolipin and increased mitochondrial ROS. Treatment of cardiac myocytes with mito-Tempo normalized tafazzin knockdown enhanced mitochondrial ROS production and cellular ATP decline. Mito-Tempo also significantly abrogated tafazzin knockdown induced cardiac hypertrophy, contractile dysfunction, and cell death. We conclude that mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes and suggest mito-Tempo as a potential therapeutic for Barth syndrome and other dilated cardiomyopathies resulting from mitochondrial oxidative stress.

  13. Mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes.

    Science.gov (United States)

    He, Quan; Harris, Nicole; Ren, Jun; Han, Xianlin

    2014-01-01

    Tafazzin, a mitochondrial acyltransferase, plays an important role in cardiolipin side chain remodeling. Previous studies have shown that dysfunction of tafazzin reduces cardiolipin content, impairs mitochondrial function, and causes dilated cardiomyopathy in Barth syndrome. Reactive oxygen species (ROS) have been implicated in the development of cardiomyopathy and are also the obligated byproducts of mitochondria. We hypothesized that tafazzin knockdown increases ROS production from mitochondria, and a mitochondria-targeted antioxidant prevents tafazzin knockdown induced mitochondrial and cardiac dysfunction. We employed cardiac myocytes transduced with an adenovirus containing tafazzin shRNA as a model to investigate the effects of the mitochondrial antioxidant, mito-Tempo. Knocking down tafazzin decreased steady state levels of cardiolipin and increased mitochondrial ROS. Treatment of cardiac myocytes with mito-Tempo normalized tafazzin knockdown enhanced mitochondrial ROS production and cellular ATP decline. Mito-Tempo also significantly abrogated tafazzin knockdown induced cardiac hypertrophy, contractile dysfunction, and cell death. We conclude that mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes and suggest mito-Tempo as a potential therapeutic for Barth syndrome and other dilated cardiomyopathies resulting from mitochondrial oxidative stress. PMID:25247053

  14. Membrane Localization, Caveolin-3 Association and Rapid Actions of Vitamin D Receptor in Cardiac Myocytes

    OpenAIRE

    Zhao, Guisheng; Simpson, Robert U.

    2009-01-01

    The active form of vitamin D, 1alpha, 25-Dihydroxyvitamin D3 (1, 25(OH)2D3), mediates both genomic and rapid non-genomic actions in heart cells. We have previously shown that the vitamin D receptor (VDR) is located in the t-tubular structure of cardiomyocytes. Here we show that VDR specifically interacts with Caveolin-3 in the t-tubules and sarcolemma of adult rat cardiac myocytes. Co-Immunoprecipitation studies using VDR antibodies revealed that Caveolin-3 specifically co-precipitates with t...

  15. New dynamic model for non-Fickian diffusion of calcium spark in cardiac myocytes

    Institute of Scientific and Technical Information of China (English)

    TAN Wenchang; LIU Shiqiang; GUO Jingjing; WANG Shiqiang; CHENG Heping; T. Masuoka

    2003-01-01

    A new dynamic model for non-Fickian diffusion of calcium spark in cardiac myocytes was developed by introducing time lags on the basis of the microscale mass transport theory. Numerical simulation showed that the size of the calcium spark produced by the new dynamic model was larger than that of Fick diffusion and was in more agreement with experimental results. In addition, the time lags of the calcium spark in cardiac myocytes were about 0.1-0.8 ms. These results can be used to understand the mechanism of calcium spark diffusion in cardiac myocytes.

  16. GENERAL: Stochastic Alternating Dynamics for Synchronous EAD-Like Beating Rhythms in Cultured Cardiac Myocytes

    Science.gov (United States)

    Zhang, Ning; Zhang, Hui-Min; Liu, Zhi-Qiang; Ding, Xue-Li; Yang, Ming-Hao; Gu, Hua-Guang; Ren, Wei

    2009-11-01

    Dissolved cardiac myocytes can couple together and generate synchronous beatings in culture. We observed a synchronized early after-depolarization(EAD)-like rhythm in cultured cardiac myocytes and reproduced the experimental observation in a network mathematical model whose dynamics are close to a Hopf bifurcation. The mechanism for this EAD-like rhythm is attributed to noised-induced stochastic alternatings between the focus and the limit cycle. These results provide novel understandings for pathological heart rhythms like the early immature beatings.

  17. Expression, Activity, and Pro-Hypertrophic Effects of PDE5A in Cardiac Myocytes

    OpenAIRE

    Zhang, Manling; Koitabashi, Norimichi; Nagayama, Takahiro; Rambaran, Ryan; Feng, Ning; Takimoto, Eiki; Koenke, Trisha; O'Rourke, Brian; Champion, Hunter C.; Crow, Michael T.; Kass, David A.

    2008-01-01

    Cyclic GMP-selective phosphodiesterase type 5 (PDE5) has been traditionally thought to play little role in cardiac myocytes, yet recent studies using selective inhibitors such as sildenafil suggest it can potently modulate acute and chronic cardiac stress responses. To date, evidence for myocyte PDE5 expression and regulation has relied on small-molecule inhibitors and anti-sera, leaving open concerns regarding non-specific immune-reactivity, and off-target drug effects. To directly address b...

  18. Multiscale Modeling of Calcium Cycling in Cardiac Ventricular Myocyte: Macroscopic Consequences of Microscopic Dyadic Function

    OpenAIRE

    Gaur, Namit; Rudy, Yoram

    2011-01-01

    In cardiac ventricular myocytes, calcium (Ca) release occurs at distinct structures (dyads) along t-tubules, where L-type Ca channels (LCCs) appose sarcoplasmic reticulum (SR) Ca release channels (RyR2s). We developed a model of the cardiac ventricular myocyte that simulates local stochastic Ca release processes. At the local Ca release level, the model reproduces Ca spark properties. At the whole-cell level, the model reproduces the action potential, Ca currents, and Ca transients. Changes i...

  19. Stochastic Alternating Dynamics for Synchronous EAD-Like Beating Rhythms in Cultured Cardiac Myocytes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ning; ZHANG Hui-Min; LIU Zhi-Qiang; DING Xue-Li; YANG Ming-Hao; GU Hua-Guang; REN Wei

    2009-01-01

    Dissolved cardiac myocytes can couple together and generate synchronous beatings in culture. We observed a synchronized early after-depolarization(EAD)-like rhythm in cultured cardiac myocytes and reproduced the experimental observation in a network mathematical model whose dynamics are close to a Hopf bifurcation. The mechanism for this EAD-like rhythm is attributed to noised-induced stochastic alternatings between the focus and the limit cycle. These results provide novel understandings for pathological heart rhythms like the early immature beatings.

  20. 5-azacytidine promotes the transdifferentiation of cardiac cells to skeletal myocytes.

    Science.gov (United States)

    Kaur, Keerat; Yang, Jinpu; Eisenberg, Carol A; Eisenberg, Leonard M

    2014-10-01

    The DNA methylation inhibitor 5-azacytidine is widely used to stimulate the cardiac differentiation of stem cells. However, 5-azacytidine has long been employed as a tool for stimulating skeletal myogenesis. Yet, it is unclear whether the ability of 5-azacytidine to promote both cardiac and skeletal myogenesis is dependent strictly on the native potential of the starting cell population or if this drug is a transdifferentiation agent. To address this issue, we examined the effect of 5-azacytidine on cultures of adult mouse atrial tissue, which contains cardiac but not skeletal muscle progenitors. Exposure to 5-azacytidine caused atrial cells to elongate and increased the presence of fat globules within the cultures. 5-Azacytidine also induced expression of the skeletal myogenic transcription factors MyoD and myogenin. 5-Azacytidine pretreatments allowed atrial cells to undergo adipogenesis or skeletal myogenesis when subsequently cultured with either insulin and dexamethasone or low-serum media, respectively. The presence of skeletal myocytes in atrial cultures was indicated by dual staining for myogenin and sarcomeric α-actin. These data demonstrate that 5-azacytidine converts cardiac cells to noncardiac cell types and suggests that this drug has a compromised efficacy as a cardiac differentiation factor. PMID:25090621

  1. PGC-1{alpha} accelerates cytosolic Ca{sup 2+} clearance without disturbing Ca{sup 2+} homeostasis in cardiac myocytes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Min, E-mail: chenminyx@gmail.com [Institute of Molecular Medicine, State Key Laboratory of Biomembrane and Membrane Biotechnology, Peking University, Beijing 100871 (China); Yunnan Centers for Diseases Prevention and Control, Kunming 650022 (China); Wang, Yanru [Institute of Molecular Medicine, State Key Laboratory of Biomembrane and Membrane Biotechnology, Peking University, Beijing 100871 (China); Qu, Aijuan [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States)

    2010-06-11

    Energy metabolism and Ca{sup 2+} handling serve critical roles in cardiac physiology and pathophysiology. Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1{alpha}) is a multi-functional coactivator that is involved in the regulation of cardiac mitochondrial functional capacity and cellular energy metabolism. However, the regulation of PGC-1{alpha} in cardiac Ca{sup 2+} signaling has not been fully elucidated. To address this issue, we combined confocal line-scan imaging with off-line imaging processing to characterize calcium signaling in cultured adult rat ventricular myocytes expressing PGC-1{alpha} via adenoviral transduction. Our data shows that overexpressing PGC-1{alpha} improved myocyte contractility without increasing the amplitude of Ca{sup 2+} transients, suggesting that myofilament sensitivity to Ca{sup 2+} increased. Interestingly, the decay kinetics of global Ca{sup 2+} transients and Ca{sup 2+} waves accelerated in PGC-1{alpha}-expressing cells, but the decay rate of caffeine-elicited Ca{sup 2+} transients showed no significant change. This suggests that sarcoplasmic reticulum (SR) Ca{sup 2+}-ATPase (SERCA2a), but not Na{sup +}/Ca{sup 2+} exchange (NCX) contribute to PGC-1{alpha}-induced cytosolic Ca{sup 2+} clearance. Furthermore, PGC-1{alpha} induced the expression of SERCA2a in cultured cardiac myocytes. Importantly, overexpressing PGC-1{alpha} did not disturb cardiac Ca{sup 2+} homeostasis, because SR Ca{sup 2+} load and the propensity for Ca{sup 2+} waves remained unchanged. These data suggest that PGC-1{alpha} can ameliorate cardiac Ca{sup 2+} cycling and improve cardiac work output in response to physiological stress. Unraveling the PGC-1{alpha}-calcium handing pathway sheds new light on the role of PGC-1{alpha} in the therapy of cardiac diseases.

  2. The FOXO3a Transcription Factor Regulates Cardiac Myocyte Size Downstream of AKT Signaling*

    OpenAIRE

    Skurk, Carsten; Izumiya, Yasuhiro; Maatz, Henrike; Razeghi, Peter; Shiojima, Ichiro; Sandri, Marco; Sato, Kaori; Zeng, Ling; Schiekofer, Stephan; Pimentel, David; Lecker, Stewart; Taegtmeyer, Heinrich; Goldberg, Alfred L.; Walsh, Kenneth

    2005-01-01

    Although signaling mechanisms inducing cardiac hypertrophy have been extensively studied, little is known about the mechanisms that reverse cardiac hypertrophy. Here, we describe the existence of a similar Akt/forkhead signaling axis in cardiac myocytes in vitro and in vivo, which is regulated by insulin, insulin-like growth factor (IGF), stretch, pressure overload, and angiotensin II stimulation. FOXO3a gene transfer prevented both IGF and stretch-induced hypertrophy in rat neonatal cardiac ...

  3. Mitochondrial networks in cardiac myocytes reveal dynamic coupling behavior.

    Science.gov (United States)

    Kurz, Felix T; Derungs, Thomas; Aon, Miguel A; O'Rourke, Brian; Armoundas, Antonis A

    2015-04-21

    Oscillatory behavior of mitochondrial inner membrane potential (ΔΨm) is commonly observed in cells subjected to oxidative or metabolic stress. In cardiac myocytes, the activation of inner membrane pores by reactive oxygen species (ROS) is a major factor mediating intermitochondrial coupling, and ROS-induced ROS release has been shown to underlie propagated waves of ΔΨm depolarization as well as synchronized limit cycle oscillations of ΔΨm in the network. The functional impact of ΔΨm instability on cardiac electrophysiology, Ca(2+) handling, and even cell survival, is strongly affected by the extent of such intermitochondrial coupling. Here, we employ a recently developed wavelet-based analytical approach to examine how different substrates affect mitochondrial coupling in cardiac cells, and we also determine the oscillatory coupling properties of mitochondria in ventricular cells in intact perfused hearts. The results show that the frequency of ΔΨm oscillations varies inversely with the size of the oscillating mitochondrial cluster, and depends on the strength of local intermitochondrial coupling. Time-varying coupling constants could be quantitatively determined by applying a stochastic phase model based on extension of the well-known Kuramoto model for networks of coupled oscillators. Cluster size-frequency relationships varied with different substrates, as did mitochondrial coupling constants, which were significantly larger for glucose (7.78 × 10(-2) ± 0.98 × 10(-2) s(-1)) and pyruvate (7.49 × 10(-2) ± 1.65 × 10(-2) s(-1)) than lactate (4.83 × 10(-2) ± 1.25 × 10(-2) s(-1)) or β-hydroxybutyrate (4.11 × 10(-2) ± 0.62 × 10(-2) s(-1)). The findings indicate that mitochondrial spatiotemporal coupling and oscillatory behavior is influenced by substrate selection, perhaps through differing effects on ROS/redox balance. In particular, glucose-perfusion generates strong intermitochondrial coupling and temporal oscillatory stability

  4. Myoglobin-mediated oxygen delivery to mitochondria of isolated cardiac myocytes.

    OpenAIRE

    Wittenberg, B A; Wittenberg, J. B.

    1987-01-01

    Myoglobin-mediated oxygen delivery to intracellular mitochondria is demonstrated in cardiac myocytes isolated from the hearts of mature rats. Myocytes are held at high ambient oxygen pressure, 40-340 torr (5-45 kPa); sarcoplasmic myoglobin is fully oxygenated. In this condition oxygen availability does not limit respiratory rate; myoglobin-facilitated diffusion contributes no additional oxygen flux and, since oxygen consumption is measured in steady states, the storage function of myoglobin v...

  5. The pharmacology of three inwardly rectifying potassium Channels in neonatal rat cardiac myocytes.

    OpenAIRE

    Azam, R.

    1999-01-01

    The aim of the present study was to investigate the pharmacology of three inwardly rectifying K+-channels in neonatal rat cardiac myocytes, IKAch, IKI, IKAtp- using whole cell voltage clamp techniques. Cells were held at -50mV. A previous study has shown that clotrimazole, an antimycotic agent, and cetiedil, an antisickling agent are potent against the IKACch in atrial myocytes. Structural analogues of these compounds were tested on the three inward rectifiers. UCL1880, an a...

  6. Some growth factors stimulate cultured adult rabbit ventricular myocyte hypertrophy in the absence of mechanical loading

    Science.gov (United States)

    Decker, R. S.; Cook, M. G.; Behnke-Barclay, M.; Decker, M. L.

    1995-01-01

    Cultured adult rabbit cardiac myocytes treated with recombinant growth factors display enhanced rates of protein accumulation (ie, growth) in response to insulin and insulin-like growth factors (IGFs), but epidermal growth factor, acidic or basic fibroblast growth factor, and platelet-derived growth factor failed to increase contractile protein synthesis or growth of the heart cells. Insulin and IGF-1 increased growth rates by stimulating anabolic while simultaneously inhibiting catabolic pathways, whereas IGF-2 elevated growth modestly by apparently inhibiting lysosomal proteolysis. Neutralizing antibodies directed against either IGF-1 or IGF-2 or IGF binding protein 3 blocked protein accumulation. A monoclonal antibody directed against the IGF-1 receptor also inhibited changes in protein turnover provoked by recombinant human IGF-1 but not IGF-2. Of the other growth factors tested, only transforming growth factor-beta 1 increased the fractional rate of myosin heavy chain (MHC) synthesis, with beta-MHC synthesis being elevated and alpha-MHC synthesis being suppressed. However, the other growth factors were able to modestly stimulate the rate of DNA synthesis in this preparation. Bromodeoxyuridine labeling revealed that these growth factors increased DNA synthesis in myocytes and nonmyocytes alike, but the heart cells displayed neither karyokinesis or cytokinesis. In contrast, cocultures of cardiac myocytes and nonmyocytes and nonmyocyte-conditioned culture medium failed to enhance the rate of cardiac MHC synthesis or its accumulation, implying that quiescent heart cells do not respond to "conditioning" by cardiac nonmyocytes. These findings demonstrated that insulin and the IGFs promote passively loaded cultured adult rabbit heart cells to hypertrophy but suggest that other growth factors tested may be limited in this regard.

  7. Peptide growth factors can provoke "fetal" contractile protein gene expression in rat cardiac myocytes.

    OpenAIRE

    Parker, T G; Packer, S E; Schneider, M. D.

    1990-01-01

    Cardiac-specific gene expression is intricately regulated in response to developmental, hormonal, and hemodynamic stimuli. To test whether cardiac muscle might be a target for regulation by peptide growth factors, the effect of three growth factors on the actin and myosin gene families was investigated by Northern blot analysis in cultured neonatal rat cardiac myocytes. Transforming growth factor-beta 1 (TGF beta 1, 1 ng/ml) and basic fibroblast growth factor (FGF, 25 ng/ml) elicited changes ...

  8. Uptake and metabolism of the novel peptide angiotensin-(1-12 by neonatal cardiac myocytes.

    Directory of Open Access Journals (Sweden)

    Sarfaraz Ahmad

    Full Text Available BACKGROUND: Angiotensin-(1-12 [Ang-(1-12] functions as an endogenous substrate for the productions of Ang II and Ang-(1-7 by a non-renin dependent mechanism. This study evaluated whether Ang-(1-12 is incorporated by neonatal cardiac myocytes and the enzymatic pathways of ¹²⁵I-Ang-(1-12 metabolism in the cardiac myocyte medium from WKY and SHR rats. METHODOLOGY/PRINCIPAL FINDINGS: The degradation of ¹²⁵I-Ang-(1-12 (1 nmol/L in the cultured medium of these cardiac myocytes was evaluated in the presence and absence of inhibitors for angiotensin converting enzymes 1 and 2, neprilysin and chymase. In both strains uptake of ¹²⁵I-Ang-(1-12 by myocytes occurred in a time-dependent fashion. Uptake of intact Ang-(1-12 was significantly greater in cardiac myocytes of SHR as compared to WKY. In the absence of renin angiotensin system (RAS enzymes inhibitors the hydrolysis of labeled Ang-(1-12 and the subsequent generation of smaller Ang peptides from Ang-(1-12 was significantly greater in SHR compared to WKY controls. ¹²⁵I-Ang-(1-12 degradation into smaller Ang peptides fragments was significantly inhibited (90% in WKY and 71% in SHR in the presence of all RAS enzymes inhibitors. Further analysis of peptide fractions generated through the incubation of Ang-(1-12 in the myocyte medium demonstrated a predominant hydrolytic effect of angiotensin converting enzyme and neprilysin in WKY and an additional role for chymase in SHR. CONCLUSIONS/SIGNIFICANCE: These studies demonstrate that neonatal myocytes sequester angiotensin-(1-12 and revealed the enzymes involved in the conversion of the dodecapeptide substrate to biologically active angiotensin peptides.

  9. IGF-1 protects cardiac myocytes from hyperosmotic stress-induced apoptosis via CREB

    International Nuclear Information System (INIS)

    Hyperosmotic stress stimulates a rapid and pronounced apoptosis in cardiac myocytes which is attenuated by insulin-like growth factor-1 (IGF-1). Because in these cells IGF-1 induces intracellular Ca2+ increase, we assessed whether the cyclic AMP response element-binding protein (CREB) is activated by IGF-1 through Ca2+-dependent signalling pathways. In cultured cardiac myocytes, IGF-1 induced phosphorylation (6.5 ± 1.0-fold at 5 min), nuclear translocation (30 min post-stimulus) and DNA binding activity of CREB. IGF-1-induced CREB phosphorylation was mediated by MEK1/ERK, PI3-K, p38-MAPK, as well as Ca2+/calmodulin kinase and calcineurin. Exposure of cardiac myocytes to hyperosmotic stress (sorbitol 600 mOsm) decreased IGF-1-induced CREB activation Moreover, overexpression of a dominant negative CREB abolished the anti-apoptotic effects of IGF-1. Our results suggest that IGF-1 activates CREB through a complex signalling pathway, and this transcription factor plays an important role in the anti-apoptotic action of IGF-1 in cultured cardiac myocytes

  10. ROLE OF CALCINEURIN IN ANGIOTENSIN II INDUCED CARDIAC MYOCYTE HYPERTROPHY OF RATS

    Institute of Scientific and Technical Information of China (English)

    符民桂; 张继峰; 许松; 庞永政; 刘乃奎; 唐朝枢

    2001-01-01

    Objective. The present study investigated the role of calcineurin in angiotensin II(AngII) induced cardiac myocyte hypertrophy of rats. Method. The primary cardiac myocytes were cultured under the standard conditions. The calcineurin activity in AngII treated cardiomyocytes was tested by using PNPP;protein synethsis rate was assessed by 3H leucine incorporation; atrial natriuretic factor(ANF) Mrna level was determined by Northern blot analysis. Cell viability was estimated by lactate dehydrogenase(LDH) levels in cultured medium and by dyed cell numbers. Result. After stimulation of 10,100 and 1 000nmol/L of AngII, calcineurin activities in the cardiomyocytes were increased by 13% ,57% (P< 0.05) and 228% (P< 0.01) respectively, compared with control group. Cyclosporin A(CsA), a specific inhibitor of calcineurin, markedly inhibited the calcineurin activity and decreased the 3H leucine incorporation in AngII treated cardiomyocytes in a dose dependent manner. It was also found that CsA slightly reduced the Mrna level of ANF gene in AngII stimulated cardiomyocytes. Conclusion. During AngII induced cardiac myocyte hypertrophy, calcineurin signal pathway is activated, and inhibition of the pathway can attenuate AngII induced cardiac myocyte hypertrophy, which suggests that the calcineurin signal pathway may play an important role in AngII induced myocardial hypertrophy of rats.

  11. C-Reactive Protein Inhibits Survivin Expression via Akt/mTOR Pathway Downregulation by PTEN Expression in Cardiac Myocytes

    OpenAIRE

    Beom Seob Lee; Soo Hyuk Kim; Jaewon Oh; Taewon Jin; Eun Young Choi; Sungha Park; Sang-Hak Lee; Ji Hyung Chung; Seok-Min Kang

    2014-01-01

    C-reactive protein (CRP) is one of the most important biomarkers for arteriosclerosis and cardiovascular disease. Recent studies have shown that CRP affects cell cycle and inflammatory process in cardiac myocytes. Survivin is also involved in cardiac myocytes replication and apoptosis. Reduction of survivin expression is associated with less favorable cardiac remodeling in animal models. However, the effect of CRP on survivin expression and its cellular mechanism has not yet been studied. We ...

  12. Intermittent hypoxia attenuates ischemia/reperfusion induced apoptosis in cardiac myocytes via regulating Bcl-2/Bax expression

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Intermittent hypoxia has been shown to provide myocardial protection against ishemia/reperfusion-induced injury.Cardiac myocyte loss through apoptosis has been reported in ischemia/reperfusion injury. Our aim was to investigate whether intermittent hypoxia could attenuate ischemia/reperfusion-induced apoptosis in cardiac myocytes and its potential mechanisms. Adult male Sprague-Dawley rats were exposed to hypoxia simulated 5000 m in a hypobaric chamber for 6 h/day, lasting 42 days. Normoxia group rats were kept under normoxic conditions. Isolated perfused hearts from both groups were subjected to 30 min of global ischemia followed by 60 min reperfusion.Incidence of apoptosis in cardiac myocytes was determined by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) and DNA agarose gel electrophoresis. Expressions of apoptosis related proteins,Bax and Bcl-2, in cytosolic and membrane fraction were detected by Western Blotting. After ischemia/reperfusion,enhanced recovery of cardiac function was observed in intermittent hypoxia hearts compared with normoxia group.Ischemia/reperfusion-induced apoptosis, as evidenced by TUNEL-positive nuclei and DNA fragmentation, was significantly reduced in intermittent hypoxia group compared with normoxia group. After ischemia/reperfusion,expression of Bax in both cytosolic and membrane fractions was decreased in intermittent hypoxia hearts compared with normoxia group. Although ischemia/reperfusion did not induce changes in the level of Bcl-2 expression in cytosolic fraction between intermittent hypoxia and normoxia groups, the expression of Bcl-2 in membrane fraction was upregulated in intermittent hypoxia group compared with normoxia group. These results indicated that the cardioprotection of intermittent hypoxia against ischemia/reperfusion injury appears to be in part due to reduce myocardial apoptosis. Intermittent hypoxia attenuated ischemia/reperfusion-induced apoptosis via increasing the ratio of Bcl

  13. Cardiac Myocyte Diversity and a Fibroblast Network in the Junctional Region of the Zebrafish Heart Revealed by Transmission and Serial Block-Face Scanning Electron Microscopy

    KAUST Repository

    Lafontant, Pascal J.

    2013-08-23

    The zebrafish has emerged as an important model of heart development and regeneration. While the structural characteristics of the developing and adult zebrafish ventricle have been previously studied, little attention has been paid to the nature of the interface between the compact and spongy myocardium. Here we describe how these two distinct layers are structurally and functionally integrated. We demonstrate by transmission electron microscopy that this interface is complex and composed primarily of a junctional region occupied by collagen, as well as a population of fibroblasts that form a highly complex network. We also describe a continuum of uniquely flattened transitional cardiac myocytes that form a circumferential plate upon which the radially-oriented luminal trabeculae are anchored. In addition, we have uncovered within the transitional ring a subpopulation of markedly electron dense cardiac myocytes. At discrete intervals the transitional cardiac myocytes form contact bridges across the junctional space that are stabilized through localized desmosomes and fascia adherentes junctions with adjacent compact cardiac myocytes. Finally using serial block-face scanning electron microscopy, segmentation and volume reconstruction, we confirm the three-dimensional nature of the junctional region as well as the presence of the sheet-like fibroblast network. These ultrastructural studies demonstrate the previously unrecognized complexity with which the compact and spongy layers are structurally integrated, and provide a new basis for understanding development and regeneration in the zebrafish heart. © 2013 Lafontant et al.

  14. Direct toxic effects of aqueous extract of cigarette smoke on cardiac myocytes at clinically relevant concentrations

    International Nuclear Information System (INIS)

    Aims: Our goal was to determine if clinically relevant concentrations of aqueous extract of cigarette smoke (CSE) have direct deleterious effects on ventricular myocytes during simulated ischemia, and to investigate the mechanisms involved. Methods: CSE was prepared with a smoking chamber. Ischemia was simulated by metabolic inhibition (MI) with cyanide (CN) and 0 glucose. Adult rabbit and mouse ventricular myocyte [Ca2+]i was measured by flow cytometry using fluo-3. Mitochondrial [Ca2+] was measured with confocal microscopy, and Rhod-2 fluorescence. The mitochondrial permeability transition (MPT) was detected by TMRM fluorescence and myocyte contracture. Myocyte oxidative stress was quantified by dichlorofluorescein (DCF) fluorescence with confocal microscopy. Results: CSE 0.1% increased myocyte contracture caused by MI. The nicotine concentration (HPLC) in 0.1% CSE was 15 ng/ml, similar to that in humans after smoking cigarettes. CSE 0.1% increased mitochondrial Ca2+ uptake, and increased the susceptibility of mitochondria to the MPT. CSE 0.1% increased DCF fluorescence in isolated myocytes, and increased [Ca2+]i in paced myocytes exposed to 2.0 mM CN, 0 glucose (P-MI). These effects were inhibited by the superoxide scavenger Tiron. The effect of CSE on [Ca2+]i during P-MI was also prevented by ranolazine. Conclusions: CSE in clinically relevant concentrations increases myocyte [Ca2+]i during simulated ischemia, and increases myocyte susceptibility to the MPT. These effects appear to be mediated at least in part by oxidative radicals in CSE, and likely contribute to the effects of cigarette smoke to increase myocardial infarct size, and to decrease angina threshold

  15. Stochastic Simulation of Cardiac Ventricular Myocyte Calcium Dynamics and Waves

    OpenAIRE

    Tuan, Hoang-Trong Minh; Williams, George S.B.; Chikando, Aristide C.; Sobie, Eric A.; Lederer, W. Jonathan; Jafri, M. Saleet

    2011-01-01

    A three dimensional model of calcium dynamics in the rat ventricular myocyte was developed to study the mechanism of calcium homeostasis and pathological calcium dynamics during calcium overload. The model contains 20,000 calcium release units (CRUs) each containing 49 ryanodine receptors. The model simulates calcium sparks with a realistic spontaneous calcium spark rate. It suggests that in addition to the calcium spark-based leak, there is an invisible calcium leak caused by the stochastic ...

  16. MicroRNA-208a Silencing Attenuates Doxorubicin Induced Myocyte Apoptosis and Cardiac Dysfunction

    Directory of Open Access Journals (Sweden)

    Hasahya Tony

    2015-01-01

    Full Text Available Aims. GATA4 depletion is a distinct mechanism by which doxorubicin leads to cardiomyocyte apoptosis, and preservation of GATA4 mitigates doxorubicin induced myocyte apoptosis and cardiac dysfunction. We investigated a novel approach of attenuating doxorubicin induced cardiac toxicity by silencing miR-208a, a heart specific microRNA known to target GATA4. Methods and Results. Eight-week-old female Balb/C mice were randomly assigned to sham, antagomir, and control groups. Antagomir group were pretreated with miR-208a antagomir 4 days before doxorubicin administration. At day 0, control and antagomir groups received 20 mg/kg of doxorubicin, while sham mice received phosphate buffered solution. Echocardiography was done at day 7, after which animals were sacrificed and hearts harvested and assessed for apoptosis and expression of miR-208a, GATA4, and BCL-2. Doxorubicin significantly upregulated miR-208a, downregulated GATA4, and increased myocyte apoptosis, with resulting decrease in cardiac function. In contrast, therapeutic silencing of miR-208a salvaged GATA4 and BCL-2 and decreased apoptosis, with improvement in cardiac function. Conclusion. Doxorubicin upregulates miR-208a and promotes cardiomyocyte apoptosis, while therapeutic silencing of miR-208a attenuates doxorubicin induced myocyte apoptosis with subsequent improvement in cardiac function. These novel results highlight the therapeutic potential of targeting miR-208a to prevent doxorubicin cardiotoxicity.

  17. Minocycline suppresses oxidative stress and attenuates fetal cardiac myocyte apoptosis triggered by in utero cocaine exposure.

    Science.gov (United States)

    Sinha-Hikim, Indrani; Shen, Ruoqing; Nzenwa, Ify; Gelfand, Robert; Mahata, Sushil K; Sinha-Hikim, Amiya P

    2011-06-01

    This study investigates the molecular mechanisms by which minocycline, a second generation tetracycline, prevents cardiac myocyte death induced by in utero cocaine exposure. Timed mated pregnant Sprague-Dawley (SD) rats received one of the following treatments twice daily from embryonic (E) day 15-21 (E15-E21): (i) intraperitoneal (IP) injections of saline (control); (ii) IP injections of cocaine (15 mg/kg BW); and (iii) IP injections of cocaine + oral administration of 25 mg/kg BW of minocycline. Pups were killed on postnatal day 15 (P15). Additional pregnant dams received twice daily IP injections of cocaine (from E15-E21) + oral administration of a relatively higher (37.5 mg/kg BW) dose of minocycline. Minocycline treatment continued from E15 until the pups were sacrificed on P15. In utero cocaine exposure resulted in an increase in oxidative stress and fetal cardiac myocyte apoptosis through activation of c-Jun-NH(2)-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK)-mediated mitochondria-dependent apoptotic pathway. Continued minocycline treatment from E15 through P15 significantly prevented oxidative stress, kinase activation, perturbation of BAX/BCL-2 ratio, cytochrome c release, caspase activation, and attenuated fetal cardiac myocyte apoptosis after prenatal cocaine exposure. These results demonstrate in vivo cardioprotective effects of minocycline in preventing fetal cardiac myocyte death after prenatal cocaine exposure. Given its proven clinical safety and ability to cross the placental barrier and enter into the fetal circulation, minocycline may be an effective therapy for preventing cardiac consequences of in utero cocaine exposure. PMID:21424555

  18. Predicting changes in cardiac myocyte contractility during early drug discovery with in vitro assays

    International Nuclear Information System (INIS)

    Cardiovascular-related adverse drug effects are a major concern for the pharmaceutical industry. Activity of an investigational drug at the L-type calcium channel could manifest in a number of ways, including changes in cardiac contractility. The aim of this study was to define which of the two assay technologies – radioligand-binding or automated electrophysiology – was most predictive of contractility effects in an in vitro myocyte contractility assay. The activity of reference and proprietary compounds at the L-type calcium channel was measured by radioligand-binding assays, conventional patch-clamp, automated electrophysiology, and by measurement of contractility in canine isolated cardiac myocytes. Activity in the radioligand-binding assay at the L-type Ca channel phenylalkylamine binding site was most predictive of an inotropic effect in the canine cardiac myocyte assay. The sensitivity was 73%, specificity 83% and predictivity 78%. The radioligand-binding assay may be run at a single test concentration and potency estimated. The least predictive assay was automated electrophysiology which showed a significant bias when compared with other assay formats. Given the importance of the L-type calcium channel, not just in cardiac function, but also in other organ systems, a screening strategy emerges whereby single concentration ligand-binding can be performed early in the discovery process with sufficient predictivity, throughput and turnaround time to influence chemical design and address a significant safety-related liability, at relatively low cost. - Highlights: • The L-type calcium channel is a significant safety liability during drug discovery. • Radioligand-binding to the L-type calcium channel can be measured in vitro. • The assay can be run at a single test concentration as part of a screening cascade. • This measurement is highly predictive of changes in cardiac myocyte contractility

  19. Predicting changes in cardiac myocyte contractility during early drug discovery with in vitro assays

    Energy Technology Data Exchange (ETDEWEB)

    Morton, M.J., E-mail: michael.morton@astrazeneca.com [Discovery Sciences, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom); Armstrong, D.; Abi Gerges, N. [Drug Safety and Metabolism, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom); Bridgland-Taylor, M. [Discovery Sciences, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom); Pollard, C.E.; Bowes, J.; Valentin, J.-P. [Drug Safety and Metabolism, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom)

    2014-09-01

    Cardiovascular-related adverse drug effects are a major concern for the pharmaceutical industry. Activity of an investigational drug at the L-type calcium channel could manifest in a number of ways, including changes in cardiac contractility. The aim of this study was to define which of the two assay technologies – radioligand-binding or automated electrophysiology – was most predictive of contractility effects in an in vitro myocyte contractility assay. The activity of reference and proprietary compounds at the L-type calcium channel was measured by radioligand-binding assays, conventional patch-clamp, automated electrophysiology, and by measurement of contractility in canine isolated cardiac myocytes. Activity in the radioligand-binding assay at the L-type Ca channel phenylalkylamine binding site was most predictive of an inotropic effect in the canine cardiac myocyte assay. The sensitivity was 73%, specificity 83% and predictivity 78%. The radioligand-binding assay may be run at a single test concentration and potency estimated. The least predictive assay was automated electrophysiology which showed a significant bias when compared with other assay formats. Given the importance of the L-type calcium channel, not just in cardiac function, but also in other organ systems, a screening strategy emerges whereby single concentration ligand-binding can be performed early in the discovery process with sufficient predictivity, throughput and turnaround time to influence chemical design and address a significant safety-related liability, at relatively low cost. - Highlights: • The L-type calcium channel is a significant safety liability during drug discovery. • Radioligand-binding to the L-type calcium channel can be measured in vitro. • The assay can be run at a single test concentration as part of a screening cascade. • This measurement is highly predictive of changes in cardiac myocyte contractility.

  20. Influence of fatty acid oxidation rate on glycerol release from cardiac myocytes

    International Nuclear Information System (INIS)

    Quiescent cardiac myocytes are characterized by low rates of fatty acid oxidation due to the reduced energy demand compared with beating hearts. The accumulation of intracellular fatty acid metabolites may, therefore, result in feed-back inhibition of the cardiac lipase responsible for the mobilization of triacylglycerols (lipolysis). The objective of this study was to examine if interventions that increase fatty acid oxidation rates in myocytes have an effect on lipolysis. Addition of 100 μM dinitrophenol (DNP) to calcium-tolerant rat ventricular myocytes caused an increase in the rate of 14C-oleic acid oxidation from 1.11 +/- 0.06 to 2.38 +/- 0.17 nmol 14CO2/106 cells/min (115% stimulation; mean +/- S.D., n = 3). In parallel incubations, DNP increased the rate of lipolysis from 4.4 +/- 1.7 to 13.6 +/- 3.2 nmol glycerol/106 cells/30 min (215% stimulation). The addition of 1 mM barium to a modified Ringer's incubation medium produced an increase in the contractile activity of the myocytes, and increased the rates of oleic acid oxidation from 0.62 +/- 0.16 to 0.88 +/- 0.23 nmol/106 cells/min (42% stimulation; n = 6) and lipolysis from 13.1 +/- 6.5 to 22.2 +/- 6.4 nmol/106 cells/30 min (70% stimulation). These data show that stimulation of fatty acid oxidation in myocardial myocytes is accompanied by increased lipolytic rates, the latter probably due to release of feed-back inhibition of cardiac lipases by accumulated fatty acid metabolites

  1. Influence of fatty acid oxidation rate on glycerol release from cardiac myocytes

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, T.S.; Severson, D.L.

    1986-03-05

    Quiescent cardiac myocytes are characterized by low rates of fatty acid oxidation due to the reduced energy demand compared with beating hearts. The accumulation of intracellular fatty acid metabolites may, therefore, result in feed-back inhibition of the cardiac lipase responsible for the mobilization of triacylglycerols (lipolysis). The objective of this study was to examine if interventions that increase fatty acid oxidation rates in myocytes have an effect on lipolysis. Addition of 100 ..mu..M dinitrophenol (DNP) to calcium-tolerant rat ventricular myocytes caused an increase in the rate of /sup 14/C-oleic acid oxidation from 1.11 +/- 0.06 to 2.38 +/- 0.17 nmol /sup 14/CO/sub 2//10/sup 6/ cells/min (115% stimulation; mean +/- S.D., n = 3). In parallel incubations, DNP increased the rate of lipolysis from 4.4 +/- 1.7 to 13.6 +/- 3.2 nmol glycerol/10/sup 6/ cells/30 min (215% stimulation). The addition of 1 mM barium to a modified Ringer's incubation medium produced an increase in the contractile activity of the myocytes, and increased the rates of oleic acid oxidation from 0.62 +/- 0.16 to 0.88 +/- 0.23 nmol/10/sup 6/ cells/min (42% stimulation; n = 6) and lipolysis from 13.1 +/- 6.5 to 22.2 +/- 6.4 nmol/10/sup 6/ cells/30 min (70% stimulation). These data show that stimulation of fatty acid oxidation in myocardial myocytes is accompanied by increased lipolytic rates, the latter probably due to release of feed-back inhibition of cardiac lipases by accumulated fatty acid metabolites.

  2. Myocyte-fibroblast communication in cardiac fibrosis and arrhythmias: Mechanisms and model systems.

    Science.gov (United States)

    Pellman, Jason; Zhang, Jing; Sheikh, Farah

    2016-05-01

    Development of cardiac fibrosis and arrhythmias is controlled by the activity of and communication between cardiomyocytes and fibroblasts in the heart. Myocyte-fibroblast interactions occur via both direct and indirect means including paracrine mediators, extracellular matrix interactions, electrical modulators, mechanical junctions, and membrane nanotubes. In the diseased heart, cardiomyocyte and fibroblast ratios and activity, and thus myocyte-fibroblast interactions, change and are thought to contribute to the course of disease including development of fibrosis and arrhythmogenic activity. Fibroblasts have a developing role in modulating cardiomyocyte electrical and hypertrophic activity, however gaps in knowledge regarding these interactions still exist. Research in this field has necessitated the development of unique approaches to isolate and control myocyte-fibroblast interactions. Numerous methods for 2D and 3D co-culture systems have been developed, while a growing part of this field is in the use of better tools for in vivo systems including cardiomyocyte and fibroblast specific Cre mouse lines for cell type specific genetic ablation. This review will focus on (i) mechanisms of myocyte-fibroblast communication and their effects on disease features such as cardiac fibrosis and arrhythmias as well as (ii) methods being used and currently developed in this field. PMID:26996756

  3. Ca2+ Alternans in a Cardiac Myocyte Model that Uses Moment Equations to Represent Heterogeneous Junctional SR Ca2+

    OpenAIRE

    Huertas, Marco A; Smith, Gregory D.; Györke, Sándor

    2010-01-01

    Multiscale whole-cell models that accurately represent local control of Ca2+-induced Ca2+ release in cardiac myocytes can reproduce high-gain Ca2+ release that is graded with changes in membrane potential. Using a recently introduced formalism that represents heterogeneous local Ca2+ using moment equations, we present a model of cardiac myocyte Ca2+ cycling that exhibits alternating sarcoplasmic reticulum (SR) Ca2+ release when periodically stimulated by depolarizing voltage pulses. The model...

  4. Sub-micrometer anatomical models of the sarcolemma of cardiac myocytes based on confocal imaging.

    Science.gov (United States)

    Sachse, Frank B; Savio-Galimberti, Eleonora; Goldhaber, Joshua I; Bridge, John H B

    2008-01-01

    We describe an approach to develop anatomical models of cardiac cells. The approach is based on confocal imaging of living ventricular myocytes with submicrometer resolution, digital image processing of three-dimensional stacks with high data volume, and generation of dense triangular surface meshes representing the sarcolemma including the transverse tubular system. The image processing includes methods for deconvolution, filtering and segmentation. We introduce and visualize models of the sarcolemma of whole ventricular myocytes and single transversal tubules. These models can be applied for computational studies of cell and sub-cellular physical behavior and physiology, in particular cell signaling. Furthermore, the approach is applicable for studying effects of cardiac development, aging and diseases, which are associated with changes of cell anatomy and protein distributions. PMID:18229702

  5. Cardiac mast cells regulate myocyte ANP release via histamine H2 receptor in beating rabbit atria.

    Science.gov (United States)

    Li, Dan; Wen, Jin Fu; Jin, Jing Yu; Quan, He Xiu; Cho, Kyung Woo

    2009-06-01

    It has been shown that histamine inhibits atrial natriuretic peptide (ANP) release. Because cardiac mast cells are the principal source of histamine in the heart, we hypothesized that cardiac mast cells are involved in the regulation of atrial ANP release. To test the hypothesis, experiments were performed in perfused beating rabbit atria allowing atrial pacing and measurements of changes in atrial stroke volume, intraatrial pulse pressure and myocyte ANP release. Mast cell degranulation with Compound 48/80 decreased atrial myocyte ANP release, and the response was blocked by a selective histamine H(2) receptor blocker, cimetidine, indicating that histamine was responsible for the decrease in ANP release. Mast cell stabilization with cromolyn blocked the Compound 48/80-induced decrease in ANP release. These data suggest that mast cell-derived histamine is involved in the regulation of cardiac ANP release. Thus, the cardiac mast cell-cardiomyocyte communication via the histamine-ANP pathway may implicate in the cardiac disorder associated with mast cell degranulation such as in acute coronary syndrome or cardiac hypertrophy. PMID:19328828

  6. Ionic diffusion in voltage-clamped isolated cardiac myocytes. Implications for Na,K-pump studies.

    OpenAIRE

    Mogul, D J; Singer, D H; ten Eick, R E

    1989-01-01

    The whole-cell voltage-clamp technique employing electrolyte-filled micro-pipette suction electrodes is widely used to investigate questions requiring an electrophysiological approach. With this technique, the ionic composition of the cytosol is assumed to be strongly influenced (as result of diffusion) by the ionic composition of the solution contained in the electrode. If this assumption is valid for isolated cardiac myocytes, the technique would be particularly powerful for studying the de...

  7. Titanium Dioxide Nanoparticles Induced Proinflammation of Primary Cultured Cardiac Myocytes of Rat

    OpenAIRE

    Wei Song; Jiangxue Wang; Meili Liu; Ping Li; Gang Zhou; Zhou Li; Yubo Fan

    2013-01-01

    Titanium dioxide (TiO2) nanoparticles are widely used in electronics, biology, and medicine owing to their special properties. However, during TiO2 nanoparticles exposure, nanoparticles may enter the blood circulation and translocate to the heart, and they may result in negative effects on the cardiovascular system. In this study, we demonstrated that the anatase and rutile TiO2 nanoparticles had potential toxicological effects on primary cultured cardiac myocytes of rat. After incubating wit...

  8. Direct, differential effects of tamoxifen, 4-hydroxytamoxifen, and raloxifene on cardiac myocyte contractility and calcium handling.

    Directory of Open Access Journals (Sweden)

    Michelle L Asp

    Full Text Available Tamoxifen (Tam, a selective estrogen receptor modulator, is in wide clinical use for the treatment and prevention of breast cancer. High Tam doses have been used for treatment of gliomas and cancers with multiple drug resistance, but long QT Syndrome is a side effect. Tam is also used experimentally in mice for inducible gene knockout in numerous tissues, including heart; however, the potential direct effects of Tam on cardiac myocyte mechanical function are not known. The goal of this study was to determine the direct, acute effects of Tam, its active metabolite 4-hydroxytamoxifen (4OHT, and related drug raloxifene (Ral on isolated rat cardiac myocyte mechanical function and calcium handling. Tam decreased contraction amplitude, slowed relaxation, and decreased Ca²⁺ transient amplitude. Effects were primarily observed at 5 and 10 μM Tam, which is relevant for high dose Tam treatment in cancer patients as well as Tam-mediated gene excision in mice. Myocytes treated with 4OHT responded similarly to Tam-treated cells with regard to both contractility and calcium handling, suggesting an estrogen-receptor independent mechanism is responsible for the effects. In contrast, Ral increased contraction and Ca²⁺ transient amplitudes. At 10 μM, all drugs had a time-dependent effect to abolish cellular contraction. In conclusion, Tam, 4OHT, and Ral adversely and differentially alter cardiac myocyte contractility and Ca²⁺ handling. These findings have important implications for understanding the Tam-induced cardiomyopathy in gene excision studies and may be important for understanding effects on cardiac performance in patients undergoing high-dose Tam therapy.

  9. FINITE ELEMENT ANALYSIS OF CARDIAC MYOCYTE DEBONDING AND REORIENTATION DURING CYCLIC SUBSTRATE STRETCH EXPERIMENTS

    Institute of Scientific and Technical Information of China (English)

    Tao Tang; Jun Qiu; Meng Zhang; Zhuo Zhuang

    2009-01-01

    The substrate stretch experiment, which is carried out on several kinds of adherent cells, is usually used to catch the physiological variation and morphological response to cyclic substrate deformation. In this paper, stretch loading was exerted on cardiac myocytes cultured on silica substrates using a custom-made substrate stretch device. The effect of stretch on the alignment orientation of cardiac myocytes was studied through morphocytological statistics. Under cyclic stretch stimulus, the long axes of cardiac myocytes oriented perpendicularly to the stretch direction for continuous stretch acting. However, the mechanism underlying these behaviors is not well understood from such in vitro tests. Finite element (FE) model was developed in the analysis to investigate these behaviors. Xu-Needleman formulation was used to define the interaction behavior for contact surfaces between cell and substrate. The role of cell viscoelasticity nature is studied in adherent cell debonding with the substrate and aligning perpendicular to the stretch direction during long time cyclic stretch stimulation. There were four different strain magnitudes considered in the simulation to find out the cell debonding affected by the cyclic strains. The potential role of cyclic strain frequency in regulating cell debonding and alignment was also studied using FE analysis.

  10. Modeling Calcium Wave Based on Anomalous Subdiffusion of Calcium Sparks in Cardiac Myocytes

    Science.gov (United States)

    Chen, Xi; Kang, Jianhong; Fu, Ceji; Tan, Wenchang

    2013-01-01

    sparks and waves play important roles in calcium release and calcium propagation during the excitation-contraction (EC) coupling process in cardiac myocytes. Although the classical Fick’s law is widely used to model sparks and waves in cardiac myocytes, it fails to reasonably explain the full-width at half maximum(FWHM) paradox. However, the anomalous subdiffusion model successfully reproduces sparks of experimental results. In this paper, in the light of anomalous subdiffusion of sparks, we develop a mathematical model of calcium wave in cardiac myocytes by using stochastic release of release units (CRUs). Our model successfully reproduces calcium waves with physiological parameters. The results reveal how concentration waves propagate from an initial firing of one CRU at a corner or in the middle of considered region, answer how large in magnitude of an anomalous spark can induce a wave. With physiological currents (2pA) through CRUs, it is shown that an initial firing of four adjacent CRUs can form a wave. Furthermore, the phenomenon of calcium waves collision is also investigated. PMID:23483894

  11. PARM-1 is an endoplasmic reticulum molecule involved in endoplasmic reticulum stress-induced apoptosis in rat cardiac myocytes.

    Directory of Open Access Journals (Sweden)

    Koji Isodono

    Full Text Available To identify novel transmembrane and secretory molecules expressed in cardiac myocytes, signal sequence trap screening was performed in rat neonatal cardiac myocytes. One of the molecules identified was a transmembrane protein, prostatic androgen repressed message-1 (PARM-1. While PARM-1 has been identified as a gene induced in prostate in response to castration, its function is largely unknown. Our expression analysis revealed that PARM-1 was specifically expressed in hearts and skeletal muscles, and in the heart, cardiac myocytes, but not non-myocytes expressed PARM-1. Immunofluorescent staining showed that PARM-1 was predominantly localized in endoplasmic reticulum (ER. In Dahl salt-sensitive rats, high-salt diet resulted in hypertension, cardiac hypertrophy and subsequent heart failure, and significantly stimulated PARM-1 expression in the hearts, with a concomitant increase in ER stress markers such as GRP78 and CHOP. In cultured cardiac myocytes, PARM-1 expression was stimulated by proinflammatory cytokines, but not by hypertrophic stimuli. A marked increase in PARM-1 expression was observed in response to ER stress inducers such as thapsigargin and tunicamycin, which also induced apoptotic cell death. Silencing PARM-1 expression by siRNAs enhanced apoptotic response in cardiac myocytes to ER stresses. PARM-1 silencing also repressed expression of PERK and ATF6, and augmented expression of CHOP without affecting IRE-1 expression and JNK and Caspase-12 activation. Thus, PARM-1 expression is induced by ER stress, which plays a protective role in cardiac myocytes through regulating PERK, ATF6 and CHOP expression. These results suggested that PARM-1 is a novel ER transmembrane molecule involved in cardiac remodeling in hypertensive heart disease.

  12. Stimulation of ICa by basal PKA activity is facilitated by caveolin-3 in cardiac ventricular myocytes.

    Science.gov (United States)

    Bryant, Simon; Kimura, Tomomi E; Kong, Cherrie H T; Watson, Judy J; Chase, Anabelle; Suleiman, M Saadeh; James, Andrew F; Orchard, Clive H

    2014-03-01

    L-type Ca channels (LTCC), which play a key role in cardiac excitation-contraction coupling, are located predominantly at the transverse (t-) tubules in ventricular myocytes. Caveolae and the protein caveolin-3 (Cav-3) are also present at the t-tubules and have been implicated in localizing a number of signaling molecules, including protein kinase A (PKA) and β2-adrenoceptors. The present study investigated whether disruption of Cav-3 binding to its endogenous binding partners influenced LTCC activity. Ventricular myocytes were isolated from male Wistar rats and LTCC current (ICa) recorded using the whole-cell patch-clamp technique. Incubation of myocytes with a membrane-permeable peptide representing the scaffolding domain of Cav-3 (C3SD) reduced basal ICa amplitude in intact, but not detubulated, myocytes, and attenuated the stimulatory effects of the β2-adrenergic agonist zinterol on ICa. The PKA inhibitor H-89 also reduced basal ICa; however, the inhibitory effects of C3SD and H-89 on basal ICa amplitude were not summative. Under control conditions, myocytes stained with antibody against phosphorylated LTCC (pLTCC) displayed a striated pattern, presumably reflecting localization at the t-tubules. Both C3SD and H-89 reduced pLTCC staining at the z-lines but did not affect staining of total LTCC or Cav-3. These data are consistent with the idea that the effects of C3SD and H-89 share a common pathway, which involves PKA and is maximally inhibited by H-89, and suggest that Cav-3 plays an important role in mediating stimulation of ICa at the t-tubules via PKA-induced phosphorylation under basal conditions, and in response to β2-adrenoceptor stimulation. PMID:24412535

  13. Consequences of cardiac myocyte-specific ablation of KATP channels in transgenic mice expressing dominant negative Kir6 subunits

    OpenAIRE

    Tong, XiaoYong; Porter, Lisa M.; Liu, GongXin; Dhar-Chowdhury, Piyali; Srivastava, Shekhar; Pountney, David J.; Yoshida, Hidetada; Artman, Michael; Fishman, Glenn I.; Yu, Cindy; Iyer, Ramesh; Morley, Gregory E.; Gutstein, David E.; Coetzee, William A.

    2006-01-01

    Consequences of cardiac myocyte-specific ablation of KATP channels in transgenic mice expressing dominant negative Kir6 subunits. Am J Physiol Heart Circ Physiol 291: H543–H551, 2006. First published February 24, 2006; doi:10.1152/ajpheart.00051.2006.—Cardiac ATP-sensitive K+ (KATP) channels are formed by Kir6.2 and SUR2A subunits. We produced transgenic mice that express dominant negative Kir6.x pore-forming subunits (Kir6.1-AAA or Kir6.2-AAA) in cardiac myocytes by driving their expression ...

  14. Effect of PPAR γ activators on hypertrophic cardiac myocytes in vitro

    International Nuclear Information System (INIS)

    Objective: To investigate the effects of peroxisome proliferator-activated receptor γ (PPAR γ) activators pioglitazone and 15-deoxy-Δ12,14 prostaglandin J2(15d-PGJ2) on hypertrophic cardiac myocytes (MC) of neonatal rats in vitro. Methods; With the stimulation of angiotensin II(Ang II), a model of hypertrophy of MC was established. With the method of reverse transcription-polymerase chain reaction (RT-PCR), mRNA expression of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) was amplified; with the aid of NIH Image J software the surface area of MC was analyzed and with 3H-leucine incorporation, the synthesizing rate of protein in MC was measured. Results: Increases in surface area of MC, mRNA expression of ANP and BNP and 3H-leucine incorporation in MC were observed in the model of cardiac hypertrophy. Pioglitazone and 15d-PGJ2, two kinds of PPAR γ activators, inhibited the above changes in a dose-dependent manner. Conclusion: It is suggested that PPAR γ activators inhibit hypertrophy of cardiac myocytes and PPAR γ-dependent pathway be involved in the inhibitory course

  15. Inorganic polyphosphate in cardiac myocytes: from bioenergetics to the permeability transition pore and cell survival.

    Science.gov (United States)

    Dedkova, Elena N

    2016-02-01

    Inorganic polyphosphate (polyP) is a linear polymer of Pi residues linked together by high-energy phosphoanhydride bonds as in ATP. PolyP is present in all living organisms ranging from bacteria to human and possibly even predating life of this planet. The length of polyP chain can vary from just a few phosphates to several thousand phosphate units long, depending on the organism and the tissue in which it is synthesized. PolyP was extensively studied in prokaryotes and unicellular eukaryotes by Kulaev's group in the Russian Academy of Sciences and by the Nobel Prize Laureate Arthur Kornberg at Stanford University. Recently, we reported that mitochondria of cardiac ventricular myocytes contain significant amounts (280±60 pmol/mg of protein) of polyP with an average length of 25 Pi and that polyP is involved in Ca(2+)-dependent activation of the mitochondrial permeability transition pore (mPTP). Enzymatic polyP depletion prevented Ca(2+)-induced mPTP opening during ischaemia; however, it did not affect reactive oxygen species (ROS)-mediated mPTP opening during reperfusion and even enhanced cell death in cardiac myocytes. We found that ROS generation was actually enhanced in polyP-depleted cells demonstrating that polyP protects cardiac myocytes against enhanced ROS formation. Furthermore, polyP concentration was dynamically changed during activation of the mitochondrial respiratory chain and stress conditions such as ischaemia/reperfusion (I/R) and heart failure (HF) indicating that polyP is required for the normal heart metabolism. This review discusses the current literature on the roles of polyP in cardiovascular health and disease. PMID:26862184

  16. Na/K pump current in aggregates of cultured chick cardiac myocytes

    OpenAIRE

    1990-01-01

    Spontaneously beating aggregates of cultured embryonic chick cardiac myocytes, maintained at 37 degrees C, were voltage clamped using a single microelectrode switching clamp to measure the current generated by the Na/K pump (Ip). In resting, steady-state preparations an ouabain- sensitive current of 0.46 +/- 0.03 microA/cm2 (n = 22) was identified. This current was not affected by 1 mM Ba, which was used to reduce inward rectifier current (IK1) and linearize the current-voltage relationship. ...

  17. Intracellular sodium affects ouabain interaction with the Na/K pump in cultured chick cardiac myocytes

    OpenAIRE

    1990-01-01

    Whether a given dose of ouabain will produce inotropic or toxic effects depends on factors that affect the apparent affinity (K0.5) of the Na/K pump for ouabain. To accurately resolve these factors, especially the effect of intracellular Na concentration (Nai), we have applied three complementary techniques for measuring the K0.5 for ouabain in cultured embryonic chick cardiac myocytes. Under control conditions with 5.4 mM Ko, the value of the K0.5 for ouabain was 20.6 +/- 1.2, 12.3 +/- 1.7, ...

  18. Minocycline suppresses oxidative stress and attenuates fetal cardiac myocyte apoptosis triggered by in utero cocaine exposure

    OpenAIRE

    Sinha-Hikim, Indrani; Shen, Ruoqing; Nzenwa, Ify; GELFAND, ROBERT; Mahata, Sushil K.; Sinha-Hikim, Amiya P.

    2011-01-01

    This study investigates the molecular mechanisms by which minocycline, a second generation tetracycline, prevents cardiac myocyte death induced by in utero cocaine exposure. Timed mated pregnant Sprague-Dawley (SD) rats received one of the following treatments twice daily from embryonic (E) day 15–21 (E15–E21): (i) intraperitoneal (IP) injections of saline (control); (ii) IP injections of cocaine (15 mg/kg BW); and (iii) IP injections of cocaine + oral administration of 25 mg/kg BW of minocyc...

  19. Effect of Sodium Tanshinone Ⅱ A Sulfonate on Cardiac Myocyte Hypertrophy and Its Underlying Mechanism

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Objective:To investigate the effects of sodium tanshinone Ⅱ A sulfonate (STS) on the hypertrophy induced by angiotensin Ⅱ (Ang Ⅱ) in primary cultured neonatal rat cardiac myocytes.Methods:The effect of STS on cytotoxicity was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-3,5-phenytetrazoliumromide (MTT) assay.As indexes for cardiocyte hypertrophy,cell size was determined by phase contrast microscopy and protein synthesis rate was measured by 3H-leucine incorporation.The proto-oncogene c-fos mRNA expression of cardiocytes was assessed using reverse transcription polymerase chain reaction (RT-PCR).Results:STS could inhibit cardiocyte hypertrophy,increase the protein synthesis rate and enhance proto-oncogene c-los mRNA expression in cardiocytes induced by Ang Ⅱ (P<0.01),with an effect similar to that of Valsartan,the Ang Ⅱ receptor antagonist.Conclusion:STS can prevent the hypertrophy of cardiac myocytes induced by Ang Ⅱ,which may be related to its inhibition of the expression of proto-oncogene c-fos mRNA.

  20. Sarcolemmal ATP-sensitive potassium channel protects cardiac myocytes against lipopolysaccharide-induced apoptosis.

    Science.gov (United States)

    Zhang, Xiaohui; Zhang, Xiaohua; Xiong, Yiqun; Xu, Chaoying; Liu, Xinliang; Lin, Jian; Mu, Guiping; Xu, Shaogang; Liu, Wenhe

    2016-09-01

    The sarcolemmal ATP-sensitive K+ (sarcKATP) channel plays a cardioprotective role during stress. However, the role of the sarcKATP channel in the apoptosis of cardiomyocytes and association with mitochondrial calcium remains unclear. For this purpose, we developed a model of LPS-induced sepsis in neonatal rat cardiomyocytes (NRCs). The TUNEL assay was performed in order to detect the apoptosis of cardiac myocytes and the MTT assay was performed to determine cellular viability. Exposure to LPS significantly decreased the viability of the NRCs as well as the expression of Bcl-2, whereas it enhanced the activity and expression of the apoptosis-related proteins caspase-3 and Bax, respectively. The sarcKATP channel blocker, HMR-1098, increased the apoptosis of NRCs, whereas the specific sarcKATP channel opener, P-1075, reduced the apoptosis of NRCs. The mitochondrial calcium uniporter inhibitor ruthenium red (RR) partially inhibited the pro-apoptotic effect of HMR-1098. In order to confirm the role of the sarcKATP channel, we constructed a recombinant adenovirus vector carrying the sarcKATP channel mutant subunit Kir6.2AAA to inhibit the channel activity. Kir6.2AAA adenovirus infection in NRCs significantly aggravated the apoptosis of myocytes induced by LPS. Elucidating the regulatory mechanisms of the sarcKATP channel in apoptosis may facilitate the development of novel therapeutic targets and strategies for the management of sepsis and cardiac dysfunction. PMID:27430376

  1. Important role of energy-dependent mitochondrial pathways in cultured rat cardiac myocyte apoptosis.

    Science.gov (United States)

    Shiraishi, J; Tatsumi, T; Keira, N; Akashi, K; Mano, A; Yamanaka, S; Matoba, S; Asayama, J; Yaoi, T; Fushiki, S; Fliss, H; Nakagawa, M

    2001-10-01

    Recent studies have suggested that apoptosis and necrosis share common features in their signaling pathway and that apoptosis requires intracellular ATP for its mitochondrial/apoptotic protease-activating factor-1 suicide cascade. The present study was, therefore, designed to examine the role of intracellular energy levels in determining the form of cell death in cardiac myocytes. Neonatal rat cardiac myocytes were first incubated for 1 h in glucose-free medium containing oligomycin to achieve metabolic inhibition. The cells were then incubated for another 4 h in similar medium containing staurosporine and graded concentrations of glucose to manipulate intracellular ATP levels. Under ATP-depleting conditions, the cell death caused by staurosporine was primarily necrotic, as determined by creatine kinase release and nuclear staining with ethidium homodimer-1. However, under ATP-replenishing conditions, staurosporine increased the percentage of apoptotic cells, as determined by nuclear morphology and DNA fragmentation. Caspase-3 activation by staurosporine was also ATP dependent. However, loss of mitochondrial transmembrane potential (DeltaPsi(m)), Bax translocation, and cytochrome c release were observed in both apoptotic and necrotic cells. Moreover, cyclosporin A, an inhibitor of mitochondrial permeability transition, attenuated staurosporine-induced apoptosis and necrosis through the inhibition of DeltaPsi(m) reduction, cytochrome c release, and caspase-3 activation. Our data therefore suggest that staurosporine induces cell demise through a mitochondrial death signaling pathway and that the presence of intracellular ATP favors a shift from necrosis to apoptosis through caspase activation. PMID:11557554

  2. C-reactive protein inhibits survivin expression via Akt/mTOR pathway downregulation by PTEN expression in cardiac myocytes.

    Directory of Open Access Journals (Sweden)

    Beom Seob Lee

    Full Text Available C-reactive protein (CRP is one of the most important biomarkers for arteriosclerosis and cardiovascular disease. Recent studies have shown that CRP affects cell cycle and inflammatory process in cardiac myocytes. Survivin is also involved in cardiac myocytes replication and apoptosis. Reduction of survivin expression is associated with less favorable cardiac remodeling in animal models. However, the effect of CRP on survivin expression and its cellular mechanism has not yet been studied. We demonstrated that treatment of CRP resulted in a significant decrease of survivin protein expression in a concentration-dependent manner in cardiac myocytes. The upstream signaling proteins of survivin, such as Akt, mTOR and p70S6K, were also downregulated by CRP treatment. In addition, CRP increased the protein and mRNA levels of PTEN. The siRNA transfection or specific inhibitor treatment for PTEN restored the CRP-induced downregulation of Akt/mTOR/p70S6K pathway and survivin protein expression. Moreover, pretreatment with a specific p53 inhibitor decreased the CRP-induced PTEN expression. ERK-specific inhibitor also blocked the p53 phosphorylation and PTEN expression induced by CRP. Our study provides a novel insight into CRP-induced downregulation of survivin protein expression in cardiac myocytes through mechanisms that involved in downregulation of Akt/mTOR/p70S6K pathway by expression of PTEN.

  3. Angiotensin II type 1 receptor signalling regulates microRNA differentially in cardiac fibroblasts and myocytes

    DEFF Research Database (Denmark)

    Jeppesen, Pia Lindgren; Christensen, Gitte Lund; Schneider, Mikael; Nossent, Anne Yaël; Jensen, Hasse Brønnum; Andersen, Ditte Caroline; Eskildsen, Tilde; Gammeltoft, Steen; Hansen, Jakob Lerche; Sheikh, Søren Paludan

    2011-01-01

    Background and purpose: The Angiotensin II type 1 receptor (AT(1) R) is a key regulator of blood pressure and cardiac contractility and is profoundly involved in development of cardiac disease. Since several microRNAs (miRNAs) have been implicated in cardiac disease, we asked whether miRNAs might...... be regulated by AT(1) R signals in a Gaq/11 dependent or -independent manner. Experimental approach: We performed a global miRNA array analysis of angiotensin II (Ang II) mediated miRNA regulation in HEK293N cells over-expressing the AT(1) R and focused on separating the role of Gaq/11 -dependent and...... -independent pathways. MiRNA regulation was verified with quantitative PCR in both HEK293N cells and primary cardiac myocytes and fibroblasts. Key results: Our studies revealed five miRNAs (miR-29b, -129-3p, -132, -132* and -212) that were upregulated by Ang II in HEK293N cells. In contrast, the biased Ang II...

  4. Effects of hypoxia on promoter of telomerase reverse transcriptase and cell cycle distribution in neonatal rat cardiac myocytes

    Institute of Scientific and Technical Information of China (English)

    XU Shun-lin; HUANG Jun; ZHU Jing; CAO Ke-jiang; DING Gui-peng; ZHU Yi; XU Lu

    2005-01-01

    @@ On the hypothesis that telomerase reverse transcriptase (TERT) of cardiac myocytes (CMs) is consistent with cell cycle distribution as well as tumour cells, we plan to investigate the expression of TERT in CMs and how TERT is in keeping with CMs cycle distribution after birth and under hypoxia, and roughly understand how hypoxia affects activity of TERT promoter.

  5. Curvature effects on activation speed and repolarization in an ionic model of cardiac myocytes

    Science.gov (United States)

    Comtois, P.; Vinet, A.

    1999-10-01

    Reentry is a major mechanism underlying the initiation and perpetuation of many cardiac arrhythmias 12345. Stimulated ventricular myocytes give action potential characterized by a fast upstroke, a long-lasting plateau, and a late repolarization phase. The plateau phase determines the action potential duration (APD) during which the system remains refractory, a property essential to the synchronization of the heart cycle. The APD varies much with prematurity and this change has been shown to be the main determinant of the dynamics in models of paced cells and cable, and during reentry in the one-dimensional loop. Curvature has also been shown to be an important factor for propagation in experimental and theoretical cardiac extended tissue. The objective of this paper is to combine both curvature and prematurity effects in a kinematical model of propagation in cardiac tissue. First, an approximation of the ionic model is used to obtain the effects of curvature and prematurity on the speed of propagation, the APD, and the absolute refractory period. Two versions of the ionic model are studied that differ in their rate of excitability recovery. The functions are used in a kinematical model describing the propagation of period-1 solutions around an annulus.

  6. Increased cardiac myocyte PDE5 levels in human and murine pressure overload hypertrophy cntribute to adverse LV remodeling

    OpenAIRE

    Vandenwijngaert, Sara; Pokreisz, Peter; Hermans, Hadewich; Gillijns, Hilde; Pellens, Marijke; Bax, Noortje A M; Coppiello, Giulia; Oosterlinck, Wouter; Balogh, Agnes; Papp, Zoltan; Bouten, Carlijn V. C.; Bartunek, Jozef; D'Hooge, Jan; Luttun, Aernout; Verbeken, Erik

    2013-01-01

    Background: The intracellular second messenger cGMP protects the heart under pathological conditions. We examined expression of phosphodiesterase 5 (PDE5), an enzyme that hydrolyzes cGMP, in human and mouse hearts subjected to sustained left ventricular (LV) pressure overload. We also determined the role of cardiac myocyte-specific PDE5 expression in adverse LV remodeling in mice after transverse aortic constriction (TAC). Methodology/Principal Findings: In patients with severe aortic stenosi...

  7. Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes

    International Nuclear Information System (INIS)

    Regulation of cardiac contraction by neurotransmitters and hormones is often correlated with regulation of the L-type Ca2+-channel current (ICa) through the opposite actions for two second messengers, cyclic AMP and cyclic GMP. While cyclic AMP stimulation of ICa is mediated by the activation of cyclic AMP-dependent protein kinase, inhibition of ICa by cyclic GMP in frog heart is largely mediated by activation of cyclic AMP phosphodiesterase. The present patch-clamp study reveals that, in rat ventricular cells, cyclic GMP can also regulate ICa via activation of endogenous cyclic GMP-dependent protein kinase (cGMP-PK). Indeed, the effect of cyclic GMP on ICa was mimicked by intracellular perfusion with the proteolytic active fragment of purified cGMP-PK. Moreover, cGMP-PK immunoreactivity was detected in pure rat ventricular myocytes by using a specific polyclonal antibody. These results demonstrate a dual mechanism for the inhibitory action of cyclic GMP in heart, as well as a physiological role for cGMP-PK in the control of mammalian heart function

  8. FAK-related nonkinase attenuates hypertrophy induced by angiotensin-Ⅱ in cultured neonatal rat cardiac myocytes

    Institute of Scientific and Technical Information of China (English)

    Jin QIN; Zheng-xiang LIU

    2006-01-01

    Aim: To examine the inhibitory effect of FAK-related nonkinase (FRNK) in cardiac hypertrophy in vitro and investigate the possible mechanisms. Methods: A functional fragment of FRNK cDNA was amplified by reverse transcription-polymerase chain reaction and cloned into the vector pcDNA3.1. Hypertrophy in neonatal rat cardiac myocytes was established with angiotensin-Ⅱ stimulation. The pcDNA3.1-FRNK or pcDNA3.1 was respectively transfected into cardiomyocytes by Lipofectamine 2000. The surface area and mRNA expression of atrial natriuretic peptide (ANP) of myocytes were employed to detect cardiac hypertrophy. NF-κB p65 protein in nuclear extracts, phosphorylation levels of ERK1/2 (p-ERK1/2) and AKT (p-AKT), as well as total ERK1/2, and AKT in variant treated cardiomyocytes were determined by Western blot. Results: Under the stimulation of angiotensin Ⅱ, the surface area of myocytes and levels of ANP mRNA were significantly increased. But transient transfection with pcDNA3.1-FRNK in advance may reduce the surface area and expression of ANP mRNA of hypertrophic myocytes. The protein levels of NF-κB p65 in nuclear extracts and p-ERK1/2, p-AKT in FRNK treated cardiomyocytes were significantly decreased compared with that in angiotensin-Ⅱ induced cardiomyocytes, while different treatments had little effect on total ERK1/2 and AKT. Conclusion: FRNK may inhibit angiotensin-Ⅱ-induced cardiomyocyte hypertrophy via decreasing phosphorylation levels at ERK1/2 and AKT, consequently downregulating nuclear translocation of NF-κB p65.

  9. Gene Product Expression of Cyclin D2 and p16 During the Transition from Cardiac Myocyte Hyperplasia to Hypertrophy

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The current study was to investigate mRNA expression of cyclin D2 and p16 during the transition from cardiac myocyte hyperplasia to hypertrophy. Cultured cardiac myocytes (CM) and fibroblasts (FC) obtained from 1-day-old Sparague-Dawley rats were used in this study. We have determined (1) hyperplasia by cell growth curve and fluorescence activated cell sorting (FACS); and (2) ultrastructure by electron microscope observation; and (3) expressions of cyclin D2 mRNA and p16 mRNA by using in situ hybridization and image analysis. The results were shown (1) Results of cell growth curve and FACS analysis showed CM could proliferate in the first 3 cultured days (4 days in postnatal development). But the ability decreased quickly, concomitant with the differentiation. (2) The ultrastructure of CM showed the large amount of myofilaments and mitochondrion and FC showed moderate amount of rough endoplasmic reticulum. (3) The expression of cyclin D2 mRNA in 3-, 4-, 5-day CM group was 0.89 times(p<0.05), 0.80 times (p<0.05)and 0.56 times (p<0.01)of that in 1-day group respectively. P16 mRNA in 2-, 3-, 4-, 5-day CM group were 1.63 times(p<0.01),1.72 times(p<0.01),1.99 times (p<0.01)and 2.84 times (p<0.01) of that in 1-day group respectively. It can be concluded that cultured neonatal rat cardiac myocytes could proliferate during the first 3 cultured days, but the ability of proliferation decreased, from the fourth day, concomitant with differentiation. Cyclin D2 and p16 have the key roles during the transition from myocyte hyperplasia to hypertrophy.

  10. Metabolites of MDMA induce oxidative stress and contractile dysfunction in adult rat left ventricular myocytes

    OpenAIRE

    Shenouda, Sylvia K.; Varner, Kurt J.; Carvalho, Felix; Lucchesi, Pamela A.

    2009-01-01

    Repeated administration of MDMA (ecstasy) produces eccentric left ventricular (LV) dilation and diastolic dysfunction. While the mechanism(s) underlying this toxicity are unknown; oxidative stress plays an important role. MDMA is metabolized into redox cycling metabolites that produce superoxide. In this study, we demonstrated that metabolites of MDMA induce oxidative stress and contractile dysfunction in adult rat left ventricular myocytes. Metabolites of MDMA used in this study included: al...

  11. Temperature dependence of intracellular free calcium in cardiac myocytes from rat and ground squirrel measured by confocal microscopy

    Institute of Scientific and Technical Information of China (English)

    王世强; 周曾铨; 钱洪

    1999-01-01

    The temperature-dependence of infraeeliular free caleimn (Ca) was investigated in mdo-1 loaded ventricular myocytes from the ral, a non-hibernator, and from the ground squirrel, a hibernator. The dissociation constant of indo-l at different temperatures was calibrated both al pll-tat and at @-stat . and the result demonstrated that the @-stat ralibration should be prettrred . Analysis of the fluoreseent image showed a striking increase of Ca2 as well as spontaneous caleiuni waves in ral cells, indicating an overloaded cakuum. In contrast, cardiac myocytes of the ground sqnirraf were found to keep a constant (Ca2+) without caleium overload regardless of temperature variation. It is be-lieved that understanding of the mechanisms underlying the interccllular caleima homeostasis of hibrernators may lead to solutions of some medical questions .

  12. Human umbilical cord blood mononuclear cells activate the survival protein Akt in cardiac myocytes and endothelial cells that limits apoptosis and necrosis during hypoxia.

    Science.gov (United States)

    Henning, Robert J; Dennis, Steve; Sawmiller, Darrell; Hunter, Lorynn; Sanberg, Paul; Miller, Leslie

    2012-06-01

    We have previously reported that human umbilical cord blood mononuclear cells (HUCBC), which contain hematopoietic, mesenchymal, and endothelial stem cells, can significantly reduce acute myocardial infarction size. To determine the mechanism whereby HUCBC increase myocyte and vascular endothelial cell survival, we treated cardiac myocytes and coronary artery endothelial cells in separate experiments with HUCBC plus culture media or culture media alone and subjected the cells to 24 h of hypoxia or normoxia. We then determined in myocytes and endothelial cells activation of the cell survival protein Akt by Western blots. We also determined in these cells apoptosis by annexin V staining and necrosis by propidium iodide staining. Thereafter, we inhibited with API, a specific and sensitive Akt inhibitor, Akt activation in myocytes and endothelial cells cultured with HUCBC during hypoxia and determined cell apoptosis and necrosis. In cells cultured without HUCBC, hypoxia only slightly activated Akt. Moreover, hypoxia increased myocyte apoptosis by ≥ 226% and necrosis by 58% in comparison with myocytes in normoxia. Hypoxic treatment of endothelial cells without HUCBC increased apoptosis by 94% and necrosis by 59%. In contrast, hypoxia did not significantly affect HUCBC. Moreover, in myocyte + HUCBC cultures in hypoxia, HUCBC induced a ≥ 135% increase in myocyte phospho-Akt. Akt activation decreased myocyte apoptosis by 76% and necrosis by 35%. In endothelial cells, HUCBC increased phospho-Akt by 116%. HUCBC also decreased endothelial cell apoptosis by 58% and necrosis by 42%. Inhibition of Akt with API in myocytes and endothelial cells cultured with HUCBC during hypoxia nearly totally prevented the HUCBC-induced decrease in apoptosis and necrosis. We conclude that HUCBC can significantly decrease hypoxia-induced myocyte and endothelial cell apoptosis and necrosis by activating Akt in these cells and in this manner HUCBC can limit myocardial ischemia and injury. PMID

  13. Cardiac Rehabilitation in Older Adults.

    Science.gov (United States)

    Schopfer, David W; Forman, Daniel E

    2016-09-01

    The biology of aging and the pathophysiology of cardiovascular disease (CVD) overlap, with the effect that CVD is endemic in the growing population of older adults. Moreover, CVD in older adults is usually complicated by age-related complexities, including multimorbidity, polypharmacy, frailty, and other intricacies that add to the risks of ambiguous symptoms, deconditioning, iatrogenesis, falls, disability, and other challenges. Cardiac rehabilitation (CR) is a comprehensive lifestyle program that can have particular benefit for older patients with cardiovascular conditions. Although CR was originally designed primarily as an exercise training program for younger adults after a myocardial infarction or coronary artery bypass surgery, it has evolved as a comprehensive lifestyle program (promoting physical activity as well as education, diet, risk reduction, and adherence) for a broader range of CVD (coronary heart disease, heart failure, and valvular heart disease). It provides a valuable opportunity to address and moderate many of the challenges pertinent for the large and growing population of older adults with CVD. Cardiac rehabilitation promotes physical function (cardiorespiratory fitness as well as strength and balance) that helps overcome disease and deconditioning as well as related vulnerabilities such as disability, frailty, and falls. Similarly, CR facilitates education, monitoring, and guidance to reduce iatrogenesis and promote adherence. Furthermore, CR fosters cognition, socialization, and independence in older patients. Yet despite all its conceptual benefits, CR is significantly underused in older populations. This review discusses benefits and the paradoxical underuse of CR, as well as evolving models of care that may achieve greater application and efficacy. PMID:27297002

  14. Difference of Sodium Currents between Pediatric and Adult Human Atrial Myocytes: Evidence for Developmental Changes of Sodium Channels

    Directory of Open Access Journals (Sweden)

    Benzhi Cai, Xiaoqin Mu, Dongmei Gong, Shulin Jiang, Jianping Li, Qingxin Meng, Yunlong Bai, Yanju Liu, Xinyue Wang, Xueying Tan, Baofeng Yang, Yanjie Lu

    2011-01-01

    Full Text Available Voltage-gated calcium currents and potassium currents were shown to undergo developmental changes in postnatal human and animal cardiomocytes. However, so far, there is no evidence whether sodium currents also presented the developmental changes in postnatal human atrial cells. The aim of this study was to observe age-related changes of sodium currents between pediatric and adult atrial myocytes. Human atrial myocytes were acutely isolated and the whole-cell patch clamp technique was used to record sodium currents isolated from pediatric and adult atrial cardiomocytes. The peak amplitude of sodium currents recorded in adult atrial cells was significantly larger than that in pediatric atrial myocytes. However, there was no significant difference of the activation voltage for peak sodium currents between two kinds of atrial myocytes. The time constants for the activation and inactivation of sodium currents were smaller in adult atria than pediatric atria. The further study revealed that the voltage-dependent inactivation of sodium currents were more slow in adult atrial cardiomyocytes than pediatric atrial cells. A significant difference was also observed in the recovery process of sodium channel from inactivation. In summary, a few significant differences were demonstrated in sodium currents characteristics between pediatric and adult atrial myocytes, which indicates that sodium currents in human atria also undergo developmental changes.

  15. Pressure mediated hypertrophy and mechanical stretch up-regulate expression of the long form of leptin receptor (ob-Rb in rat cardiac myocytes

    Directory of Open Access Journals (Sweden)

    Matsui Hiroki

    2012-12-01

    Full Text Available Abstract Background Hyperleptinemia is known to participate in cardiac hypertrophy and hypertension, but the relationship between pressure overload and leptin is poorly understood. We therefore examined the expression of leptin (ob and the leptin receptor (ob-R in the pressure-overloaded rat heart. We also examined gene expressions in culture cardiac myocytes to clarify which hypertension-related stimulus induces these genes. Results Pressure overload was produced by ligation of the rat abdominal aorta, and ob and ob-R isoform mRNAs were measured using a real-time polymerase chain reaction (PCR. We also measured these gene expressions in neonatal rat cardiac myocytes treated with angiotensin II (ANGII, endothelin-1 (ET-1, or cyclic mechanical stretch. Leptin and the long form of the leptin receptor (ob-Rb gene were significantly increased 4 weeks after banding, but expression of the short form of the leptin receptor (ob-Ra was unchanged. ob-Rb protein expression was also detected by immunohistochemistry in hypertrophied cardiac myocytes after banding. Meanwhile, plasma leptin concentrations were not different between the control and banding groups. In cultured myocytes, ANGII and ET-1 increased only ob mRNA expression. However, mechanical stretch activated both ob and ob-Rb mRNA expression in a time-dependent manner, but ob-Ra mRNA was unchanged by any stress. Conclusions We first demonstrated that both pressure mediated hypertrophy and mechanical stretch up-regulate ob-Rb gene expression in heart and cardiac myocytes, which are thought to be important for leptin action in cardiac myocytes. These results suggest a new local mechanism by which leptin affects cardiac remodeling in pressure-overloaded hearts.

  16. Tribulosin suppresses apoptosis via PKC epsilon and ERK1/2 signaling pathway during hypoxia/reoxygenation in neonatal rat ventricular cardiac myocytes.

    Science.gov (United States)

    Zhang, Shuang; Li, Hong; Yang, Shi-Jie

    2011-12-01

    Tribulosin (tigogenin 3-O-β-D-xylopyranosyl(1-2)-[β-D-xylopyranosyl (1-3)]-β-D-glucopyranosyl (1-4)-[a-L-rhamnopyranosyl(1-2)]-β-D-galactopyranoside), a component of gross saponins of Tribulus terrestris, has been shown to produce cytoprotective effects in heart. Yet, the precise mechanisms are not fully understood. We examined the mechanisms of tribulosin on myocardial protection. Ventricular myocytes were isolated from the heart of neonatal rats and were exposed to 3 h of hypoxia followed by 2 h reoxygenation. Apoptosis was induced by hypoxia/reoxygenation (H/R), and the expression of protein kinase C epsilon (PKCϵ) and extracellular signal-regulated kinase 1 and 2 (ERK1/2) in cultured neonatal rat cardiac myocytes was detected. The results indicated that treatment with tribulosin in the culture medium protected cardiac myocytes against apoptosis induced by H/R. PKCϵ and ERK1/2 expression increased after pretreated with tribulosin. In the presence of PKCϵ inhibitor co-treated with tribulosin, the expression of ERK1/2 was decreased in H/R cardiac myocytes. While preconditioned with PD98059, ERK1/2 inhibitor, no effects on the expression of PKCϵ were detected. Tribulosin has protective effects on cardiac myocytes against apoptosis induced by H/R injury via PKCϵ and ERK1/2 signaling pathway. PMID:22115037

  17. Effects of adiponectin on oxidative stress and apoptosis in human cardiac myocytes cultured with high glucose

    Institute of Scientific and Technical Information of China (English)

    LI Xing; LI Mei-rong; GUO Zhi-xin

    2012-01-01

    Background Diabetic cardiomyopathy is the major cause of morbidity and mortality in diabetic patients.Oxidative stress plays an important role in diabetic cardiomyopathy.This study aimed to investigate the effects of adiponectin on oxidative stress and apoptosis in human cardiac myocytes (HCM) cultured with high glucose.Methods The cells were assigned to three group: control group,high glucose group and high glucose plus adiponectin group.After culture for 24,48,72 hours,oxidative stress was evaluated by detecting levels of malondialdehyde (MDA)and superoxide dismutase (SOD) in the supernatant of culture media.The expression of p66Shc and Heme oxygenase-1 (HO-1) was detected by real-time polymerase chain reaction (PCR).Flow cytometry was designed to observe and detect cellular apoptosis.Results Our findings showed significant increase in MDA levels and decrease in SOD activity in the high glucose group compared with the control group (P <0.05).However,MDA levels were significantly decreased and SOD activity was significantly increased in the adiponectin group compared with those in the high-glucose group (P <0.05).The mRNA expression of HO-1 in the high glucose group was significantly increased in a time-dependent manner compared with that in the control group (P <0.05).Adiponectin further increased the mRNA expression of HO-1 induced by high glucose in a time-dependent manner (P <0.05).The expression of p66Shc was significantly increased in high glucose group compared with that in the control group (P <0.05).Adiponectin significantly suppressed the upregulation of p66Shc induced by high glucose (P <0.05).The apoptotic rate of cardiomyocytes was significantly increased in the high glucose group compared with that in the control group while the apoptotic rate in the adiponectin group was remarkably declined in comparison with that in the high glucose group.Conclusion Adiponectin reduces high glucose-induced oxidative stress and apoptosis and plays a

  18. Recording of calcium transient and analysis of calcium removal mechanisms in cardiac myocytes from rats and ground squirrels

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    With confocal microscopy, we recorded calcium transients and analyzed calcium removal rate at different temperatures in cardiac myocytes from the rat, a non-hibernator, and the ground squirrel, a hibernator. The results showed a remarkable increase of the diastolic level of calcium transients in the rat but no detectable change in the ground squirrel. Calcium transient of the ground squirrel, compared with that of the rat at the same temperature, had a shorter duration and showed a faster calcium removal. As indicated by the pharmacological effect of cyclopiazonic acid, calcium uptake by sarcoplasmic reticulum (SR) was the major mechanism of calcium removal, and was faster in the ground squirrel than in the rat. Our results confirmed the essential role of SR in hypothermia-tolerant adaptation, and negated the importance of Na-Ca exchange. We postulated the possibility to improve hypothermia-tolerance of the cardiac tissue of non-hibernating mammals.

  19. Two functionally different Na/K pumps in cardiac ventricular myocytes

    OpenAIRE

    1995-01-01

    The whole-cell patch-clamp technique was used to voltage clamp acutely isolated myocytes at -60 mV and study effects of ionic environment on Na/K pump activity. In quiescent guinea pig myocytes, normal intracellular Na+ is approximately 6 mM, which gives a total pump current of 0.25 +/- 0.09 pA/pF, and an inward background sodium current of 0.75 +/- 0.26 pA/pF. The average capacitance of a cell is 189 +/- 61 pF. Our main conclusion is the total Na/K pump current comprises currents from two di...

  20. Morphological Modifications in Myofibrils by Suppressing Tropomyosin 4α in Chicken Cardiac Myocytes.

    Science.gov (United States)

    Toyota, Naoji; Fujitsuka, Chiaki; Ishibashi, Goushi; S Yoshida, Lucia; Takano-Ohmuro, Hiromi

    2016-01-01

    Tropomyosin (TPM) localizes along F-actin and, together with troponin T (TnT) and other components, controls calcium-sensitive muscle contraction. The role of the TPM isoform (TPM4α) that is expressed in embryonic and adult cardiac muscle cells in chicken is poorly understood. To analyze the function of TPM4α in myofibrils, the effects of TPM4α-suppression were examined in embryonic cardiomyocytes by small interference RNA transfection. Localization of myofibril proteins such as TPM, actin, TnT, α-actinin, myosin and connectin was examined by immunofluorescence microscopy on day 5 when almost complete TPM4α-suppression occurred in culture. A unique large structure was detected, consisting of an actin aggregate bulging from the actin bundle, and many curved filaments projecting from the aggregate. TPM, TnT and actin were detected on the large structure, but myosin, connectin, α-actinin and obvious myofibril striations were undetectable. It is possible that TPM4α-suppressed actin filaments are sorted and excluded at the place of the large structure. This suggests that TPM4α-suppression significantly affects actin filament, and that TPM4α plays an important role in constructing and maintaining sarcomeres and myofibrils in cardiac muscle. PMID:27118431

  1. Role of t-tubules in the control of trans-sarcolemmal ion flux and intracellular Ca2+ in a model of the rat cardiac ventricular myocyte

    Czech Academy of Sciences Publication Activity Database

    Pásek, Michal; Šimurda, J.; Orchard, C.

    2012-01-01

    Roč. 41, č. 6 (2012), s. 491-503. ISSN 0175-7571 Institutional research plan: CEZ:AV0Z20760514 Keywords : t-tubules * rat * cardiac myocyte * computer model * calcium Subject RIV: BO - Biophysics Impact factor: 2.274, year: 2012

  2. Effects of rutin from leaves and flowers of buckwheat (Fagopyrum esculentum Moench.) on angiotensin II-induced hypertrophy of cardiac myocytes and proliferation of fibroblasts

    OpenAIRE

    Han, Shu-ying; Chu, Jin-Xiu; Li, Guang-min; Zhu, Li-Sha; Shi, Rui-Fang

    2010-01-01

    Rutin was isolated from dried leaves and flowers of buckwheat (Fagopyrum esculentum Moench.). The effects of rutin on angiotensin II-induced hypertrophy of cultured cardiac myocytes and proliferation of cardiac fibroblasts of neonatal rats were evaluated by analyzing the cell surface area, measuring the protein synthesis rate through 3H-leucine incorporation, and the MTT method. Rutin (0.8 to 8.0 mg/l) exhibited a strong inhibition on the hypertrophy and proliferation. The results...

  3. The transcription factor myocyte enhancer factor-2 (MEF2) in cardiac hypertrophy and heart failure

    OpenAIRE

    van Oort, R.J.

    2007-01-01

    The heart responds to stress signals by hypertrophic growth, which is the first step towards heart failure (HF). The genetic pattern underlying HF remains largely elusive. Although the transcription factor Myocyte Enhancer Factor-2 (MEF2) is known to be a common endpoint for several hypertrophic signaling pathways, its precise role in myocardial remodeling is unknown. To this end, we pursued comprehensive gain- and loss-of-function approaches for MEF2 transcriptional activity in heart muscle ...

  4. S100A4 is upregulated in injured myocardium and promotes growth and survival of cardiac myocytes

    DEFF Research Database (Denmark)

    Schneider, Mikael; Kostin, Sawa; Strøm, Claes C;

    2007-01-01

    RNA expression was increased in hypertrophic rat hearts and that it has pro-cardiomyogenic effects in embryonic stem cell-derived embryoid bodies. We therefore hypothesized that S100A4 could play a supportive role in the injured heart. METHODS AND RESULTS: Here we verify by quantitative real-time PCR and...... immunoblotting that S100A4 mRNA and protein is upregulated in hypertrophic rat and human hearts and show by way of confocal microscopy that S100A4 protein, but not mRNA, appears in cardiac myocytes only in the border zone after an acute ischemic event in rat and human hearts. In normal rat and human hearts, S100...

  5. Spectrally resolved time-correlated single photon counting: a novel approach for characterization of endogenous fluorescence in isolated cardiac myocytes.

    Science.gov (United States)

    Chorvat, D; Chorvatova, A

    2006-12-01

    A new setup for time-resolved fluorescence micro-spectroscopy of cells, based on multi-dimensional time-correlated single photon counting, was designed and tested. Here we demonstrate that the spectrometer allows fast and reproducible measurements of endogenous flavin fluorescence measured directly in living cardiac cells after excitation with visible picosecond laser diodes. Two complementary approaches for the analysis of spectrally- and time-resolved autofluorescence data are presented, comprising the fluorescence decay fitting by exponential series and the time-resolved emission spectroscopy analysis. In isolated cardiac myocytes, we observed three distinct lifetime pools with characteristic lifetime values spanning from picosecond to nanosecond range and the time-dependent red shift of the autofluorescence emission spectra. We compared obtained results to in vitro recordings of free flavin adenine dinucleotide (FAD) and FAD in lipoamide dehydrogenase (LipDH). The developed setup combines the strength of both spectral and fluorescence lifetime analysis and provides a solid base for the study of complex systems with intrinsic fluorescence, such as identification of the individual flavinoprotein components in living cardiac cells. This approach therefore constitutes an important instrumental advancement towards redox fluorimetry of living cardiomyocytes, with the perspective of its applications in the investigation of oxidative metabolic state under pathophysiological conditions, such as ischemia and/or metabolic disorders. PMID:17033778

  6. Effects of nifedipine and moxonidine on cardiac structure in spontaneously hypertensive rats. Stereological studies on myocytes, capillaries, arteries, and cardiac interstitium.

    Science.gov (United States)

    Amann, K; Greber, D; Gharehbaghi, H; Wiest, G; Lange, B; Ganten, U; Mattfeldt, T; Mall, G

    1992-02-01

    Light and electron microscopic stereological studies were performed on the myocardium of spontaneously hypertensive rats (SHR-SP) before and after treatment with nifedipine (27 mg/kg body weight/day) and the antisympathotonic agent moxonidine (8 mg/kg body weight/day). The treated groups were compared with nontreated SHR-SP and normotensive WKY (n = 10 in each group). At the beginning of therapy (when the male SHR-SP were 6 months old), blood pressure was increased and left ventricular hypertrophy had developed whereas pathologic changes of myocardial structure were not observed. After 3 months, the nontreated hypertensive rats showed cardiac fibrosis, activation and proliferation of interstitial cells, wall thickening of intramyocardial arteries, reduced capillarization as well as focal degeneration of myocytes at the ultrastructural level. Both treatments showed similar effects on blood pressure, degree of hypertrophy, and cardiac structure. Blood pressure as well as the degree of hypertrophy were significantly reduced. As far as myocardial fibrosis, capillarization, and regressive changes of myocytes are concerned a complete normalization was observed. Furthermore, nifedipine enhanced capillary supply beyond the normal level by induction of capillary neoformation. Microarteriopathy and activation of nonvascular interstitial cells (first step in development of interstitial myocardial fibrosis) were significantly suppressed by therapy, but the level of the normotensive control could not be maintained. Additional experiments with a low dose combination therapy of nifedipine and moxonidine that did not reduce blood pressure provided evidence that hypertension is an important determinant of the alterations of intramyocardial arteries, but not of cardiac interstitial fibrosis. PMID:1550668

  7. Carbon Nanohorns Promote Maturation of Neonatal Rat Ventricular Myocytes and Inhibit Proliferation of Cardiac Fibroblasts: a Promising Scaffold for Cardiac Tissue Engineering.

    Science.gov (United States)

    Wu, Yujing; Shi, Xiaoli; Li, Yi; Tian, Lei; Bai, Rui; Wei, Yujie; Han, Dong; Liu, Huiliang; Xu, Jianxun

    2016-12-01

    Cardiac tissue engineering (CTE) has developed rapidly, but a great challenge remains in finding practical scaffold materials for the construction of engineered cardiac tissues. Carbon nanohorns (CNHs) may be a potential candidate due to their special structure and properties. The purpose of this study was to assess the effect of CNHs on the biological behavior of neonatal rat ventricular myocytes (NRVMs) for CTE applications. CNHs were incorporated into collagen to form growth substrates for NRVMs. Transmission electron microscopy (TEM) observations demonstrated that CNHs exhibited a good affinity to collagen. Moreover, it was found that CNH-embedded substrates enhanced adhesion and proliferation of NRVMs. Immunohistochemical staining, western blot analysis, and intracellular calcium transient measurements indicated that the addition of CNHs significantly increased the expression and maturation of electrical and mechanical proteins (connexin-43 and N-cadherin). Bromodeoxyuridine staining and a Cell Counting Kit-8 assay showed that CNHs have the ability to inhibit the proliferation of cardiac fibroblasts. These findings suggest that CNHs can have a valuable effect on the construction of engineered cardiac tissues and may be a promising scaffold for CTE. PMID:27263018

  8. Carbon Nanohorns Promote Maturation of Neonatal Rat Ventricular Myocytes and Inhibit Proliferation of Cardiac Fibroblasts: a Promising Scaffold for Cardiac Tissue Engineering

    Science.gov (United States)

    Wu, Yujing; Shi, Xiaoli; Li, Yi; Tian, Lei; Bai, Rui; Wei, Yujie; Han, Dong; Liu, Huiliang; Xu, Jianxun

    2016-06-01

    Cardiac tissue engineering (CTE) has developed rapidly, but a great challenge remains in finding practical scaffold materials for the construction of engineered cardiac tissues. Carbon nanohorns (CNHs) may be a potential candidate due to their special structure and properties. The purpose of this study was to assess the effect of CNHs on the biological behavior of neonatal rat ventricular myocytes (NRVMs) for CTE applications. CNHs were incorporated into collagen to form growth substrates for NRVMs. Transmission electron microscopy (TEM) observations demonstrated that CNHs exhibited a good affinity to collagen. Moreover, it was found that CNH-embedded substrates enhanced adhesion and proliferation of NRVMs. Immunohistochemical staining, western blot analysis, and intracellular calcium transient measurements indicated that the addition of CNHs significantly increased the expression and maturation of electrical and mechanical proteins (connexin-43 and N-cadherin). Bromodeoxyuridine staining and a Cell Counting Kit-8 assay showed that CNHs have the ability to inhibit the proliferation of cardiac fibroblasts. These findings suggest that CNHs can have a valuable effect on the construction of engineered cardiac tissues and may be a promising scaffold for CTE.

  9. Adult cardiac fibroblast proliferation is modulated by calcium/calmodulin-dependent protein kinase II in normal and hypertrophied hearts.

    Science.gov (United States)

    Martin, Tamara P; Lawan, Ahmed; Robinson, Emma; Grieve, David J; Plevin, Robin; Paul, Andrew; Currie, Susan

    2014-02-01

    Increased adult cardiac fibroblast proliferation results in an increased collagen deposition responsible for the fibrosis accompanying pathological remodelling of the heart. The mechanisms regulating cardiac fibroblast proliferation remain poorly understood. Using a minimally invasive transverse aortic banding (MTAB) mouse model of cardiac hypertrophy, we have assessed fibrosis and cardiac fibroblast proliferation. We have investigated whether calcium/calmodulin-dependent protein kinase IIδ (CaMKIIδ) regulates proliferation in fibroblasts isolated from normal and hypertrophied hearts. It is known that CaMKIIδ plays a central role in cardiac myocyte contractility, but nothing is known of its role in adult cardiac fibroblast function. The MTAB model used here produces extensive hypertrophy and fibrosis. CaMKIIδ protein expression and activity is upregulated in MTAB hearts and, specifically, in cardiac fibroblasts isolated from hypertrophied hearts. In response to angiotensin II, cardiac fibroblasts isolated from MTAB hearts show increased proliferation rates. Inhibition of CaMKII with autocamtide inhibitory peptide inhibits proliferation in cells isolated from both sham and MTAB hearts, with a significantly greater effect evident in MTAB cells. These results are the first to show selective upregulation of CaMKIIδ in adult cardiac fibroblasts following cardiac hypertrophy and to assign a previously unrecognised role to CaMKII in regulating adult cardiac fibroblast function in normal and diseased hearts. PMID:23881186

  10. Ca(2+ release events in cardiac myocytes up close: insights from fast confocal imaging.

    Directory of Open Access Journals (Sweden)

    Vyacheslav M Shkryl

    Full Text Available The spatio-temporal properties of Ca(2+ transients during excitation-contraction coupling and elementary Ca(2+ release events (Ca(2+ sparks were studied in atrial and ventricular myocytes with ultra-fast confocal microscopy using a Zeiss LSM 5 LIVE system that allows sampling rates of up to 60 kHz. Ca(2+ sparks which originated from subsarcolemmal junctional sarcoplasmic reticulum (j-SR release sites in atrial myocytes were anisotropic and elongated in the longitudinal direction of the cell. Ca(2+ sparks in atrial cells originating from non-junctional SR and in ventricular myocytes were symmetrical. Ca(2+ spark recording in line scan mode at 40,000 lines/s uncovered step-like increases of [Ca(2+]i. 2-D imaging of Ca(2+ transients revealed an asynchronous activation of release sites and allowed the sequential recording of Ca(2+ entry through surface membrane Ca(2+ channels and subsequent activation of Ca(2+-induced Ca(2+ release. With a latency of 2.5 ms after application of an electrical stimulus, Ca(2+ entry could be detected that was followed by SR Ca(2+ release after an additional 3 ms delay. Maximum Ca(2+ release was observed 4 ms after the beginning of release. The timing of Ca(2+ entry and release was confirmed by simultaneous [Ca(2+]i and membrane current measurements using the whole cell voltage-clamp technique. In atrial cells activation of discrete individual release sites of the j-SR led to spatially restricted Ca(2+ release events that fused into a peripheral ring of elevated [Ca(2+]i that subsequently propagated in a wave-like fashion towards the center of the cell. In ventricular myocytes asynchronous Ca(2+ release signals from discrete sites with no preferential subcellular location preceded the whole-cell Ca(2+ transient. In summary, ultra-fast confocal imaging allows investigation of Ca(2+ signals with a time resolution similar to patch clamp technique, however in a less invasive fashion.

  11. P2X4 receptor–eNOS signaling pathway in cardiac myocytes as a novel protective mechanism in heart failure

    Directory of Open Access Journals (Sweden)

    Ronghua Yang

    2015-01-01

    Full Text Available We have demonstrated using immunoprecipitation and immunostaining a novel physical association of the P2X4 receptor (P2X4R, a ligand-gated ion channel, with the cardioprotective, calcium-dependent enzyme endothelial nitric oxide synthase (eNOS. Treatment of murine ventricular myocytes with the P2XR agonist 2-methylthioATP (2-meSATP to induce a current (mainly Na+ increased the formation of nitric oxide (NO, as measured using a fluorescent probe. Possible candidates for downstream effectors mediating eNOS activity include cyclic GMP and PKG or cellular protein nitrosylation. A cardiac-specific P2X4R overexpressing mouse line was protected from heart failure (HF with improved cardiac function and survival in post-infarct, pressure overload, and calsequestrin (CSQ overexpression models of HF. Although the role of the P2X4R in other tissues such as the endothelium and monocytes awaits characterization in tissue-specific KO, cardiac-specific activation of eNOS may be more cardioprotective than an increased activity of global systemic eNOS. The intra-myocyte formation of NO may be more advantageous over NO derived externally from a donor. A small molecule drug stimulating this sarcolemmal pathway or gene therapy-mediated overexpression of the P2X4R in cardiac myocytes may represent a new therapy for both ischemic and pressure overloaded HF.

  12. Dependence of Na-K pump current on internal Na+ in mammalian cardiac myocytes.

    Science.gov (United States)

    Mogul, D J; Singer, D H; Ten Eick, R E

    1990-08-01

    Na-K pump current (Ipump) is a function of the intracellular Na+ concentration [( Na+]i). We examined the quantitative relationship between Ipump and [Na+]i in isolated guinea pig ventricular myocytes under steady-state conditions. [Na+]i was controlled and "clamped" at several selected concentrations using wide-tipped pipette microelectrodes, and membrane current was measured using the whole cell patch voltage-clamp technique. Ipump generated at a holding potential of -40 mV was determined by measuring the change in steady-state holding current before and during exposure to dihydroouabain (1 mM); Ipump was measured at 11 levels of [Na+]i ranging from 0 to 80 mM (n = 63) with only one measurement per cell and normalized to cell capacitance to account for differences between myocytes in sarcolemmal surface area. Ipump exhibited a nonlinear dependence on [Na+]i; a Hill analysis of the relationship yielded a half-maximal [Na+]i for pump stimulation of 43.2 mM and a Hill coefficient of 1.53. An alternative analysis of the experimental data was performed assuming that occupation of three internal binding sites by Na+ is required for enzyme turnover. Regression analysis gave the best fit when only two different binding affinities (KD) are postulated. The values are KD1 = 1 mM, KD2 = KD3 = 29 mM. From the analysis using the latter model, the level of [Na+]i at which Ipump saturated closely approximated the theoretical saturation level calculated from published estimates of pump turnover rate and density. The maximal sensitivity of the Na-K pump to changes in [Na+]i occurs when internal [Na+] is within the range for the normal resting physiological level. PMID:2167023

  13. Physiological role of transverse-axial tubular system in cardiac ventricular myocytes: a simulation study

    Czech Academy of Sciences Publication Activity Database

    Pásek, Michal; Šimurda, J.; Orchard, C.; Christé, G.

    Lyon : IEEE, 2005, s. 393-395. [Computers in cardiology. Lyon (FR), 25.09.2005-28.09.2005] Institutional research plan: CEZ:AV0Z20760514 Keywords : cardiac cell * tubular system * quantitative modelling Subject RIV: BO - Biophysics

  14. Liganded Peroxisome Proliferator-Activated Receptors (PPARs) Preserve Nuclear Histone Deacetylase 5 Levels in Endothelin-Treated Sprague-Dawley Rat Cardiac Myocytes

    OpenAIRE

    Zhang, Haining; Shao, Zongjun; Alibin, Caroline P.; Acosta, Crystal; Anderson, Hope D

    2014-01-01

    Ligand activation of peroxisome proliferator-activated receptors (PPARs) prevents cardiac myocyte hypertrophy, and we previously reported that diacylglycerol kinase zeta (DGKζ) is critically involved. DGKζ is an intracellular lipid kinase that catalyzes phosphorylation of diacylglycerol; by attenuating DAG signaling, DGKζ suppresses protein kinase C (PKC) and G-protein signaling. Here, we investigated how PPAR-DGKζ signaling blocks activation of the hypertrophic gene program. We focused on ex...

  15. Variations in Local Calcium Signaling in Adjacent Cardiac Myocytes of the Intact Mouse Heart Detected with Two-Dimensional Confocal Microscopy

    Directory of Open Access Journals (Sweden)

    Karin P Hammer

    2015-01-01

    Full Text Available Dyssynchronous local Ca release within individual cardiac myocytes has been linked to cellular contractile dysfunction. Differences in Ca kinetics in adjacent cells may also provide a substrate for inefficient contraction and arrhythmias. In a new approach we quantify variation in local Ca transients between adjacent myocytes in the whole heart.Langendorff-perfused mouse hearts were loaded with Fluo-8 AM to detect Ca and Di-4-ANEPPS to visualize cell membranes. A spinning disc confocal microscope with a fast camera allowed us to record Ca signals within an area of 465 µm by 315 µm with an acquisition speed of 55 fps. Images from multiple transients recorded at steady state were registered to their time point in the cardiac cycle to restore averaged local Ca transients with a higher temporal resolution. Local Ca transients within and between adjacent myocytes were compared with regard to amplitude, time to peak and decay at steady state stimulation (250 ms cycle length.Image registration from multiple sequential Ca transients allowed reconstruction of high temporal resolution (2.4 ±1.3ms local CaT in 2D image sets (N= 4 hearts, n= 8 regions. During steady state stimulation, spatial Ca gradients were homogeneous within cells in both directions and independent of distance between measured points. Variation in CaT amplitudes was similar across the short and the long side of neighboring cells. Variations in TAU and TTP were similar in both directions. Isoproterenol enhanced the CaT but not the overall pattern of spatial heterogeneities.Here we detected and analyzed local Ca signals in intact mouse hearts with high temporal and spatial resolution, taking into account 2D arrangement of the cells. We observed significant differences in the variation of CaT amplitude along the long and short axis of cardiac myocytes. Variations of Ca signals between neighboring cells may contribute to the substrate of cardiac remodeling.

  16. Specificity of secreted proteomes from cardiac stem cells and neonatal myocytes

    Czech Academy of Sciences Publication Activity Database

    Šťastná, Miroslava; Chimenti, I.; Marban, E.; Van Eyk, J.

    2009-01-01

    Roč. 276, Suppl.1 (2009), s. 346. ISSN 1742-464X. [FEBS Congress /34./. 04.07.2009-09.07.2009, Prague] Institutional research plan: CEZ:AV0Z40310501 Keywords : cardiac stem cells * secreted paracrine/autocrine factors * proteomics Subject RIV: CB - Analytical Chemistry, Separation

  17. Analysis of NAD(P)H fluorescence components in cardiac myocytes from human biopsies: a new tool to improve diagnostics of rejection of transplanted patients

    Science.gov (United States)

    Cheng, Y.; Mateasik, A.; Poirier, N.; Miró, J.; Dahdah, N.; Chorvat, D., Jr.; Chorvatova, A.

    2009-02-01

    Tissue autofluorescence is one of the most versatile non-invasive tools for mapping the metabolic state in living tissues. Increasing interest in the imaging and diagnosis of living cells and tissues, based on their intrinsic fluorescence rather than fluorescence labeling, is closely connected to the latest developments in high-performance spectroscopic and microscopic techniques. We investigate metabolic state of cardiac cells isolated from one additional human biopsy from transplanted pediatric patients presenting either no rejection (R0) or mild rejection (R1). Two different approaches for isolation of human cardiac myocytes are also compared. Spectrally-resolved fluorescence lifetime detection of NAD(P)H fluorescence (excitation by pulsed 375 nm picosecond laser) is tested as a promising new tool for quantitative analysis of intrinsic cellular autofluorescence signals in living cardiomyocytes. This work opens new horizons in the evaluation of cardiac transplant rejection using latest fluorescence imaging approaches.

  18. Research progress of adult cardiac stem cells

    Directory of Open Access Journals (Sweden)

    Nan ZHENG

    2013-04-01

    Full Text Available The traditional view is that the heart is a terminal organ. This dogma, however, has been widely questioned with the discovery of adult cardiac stem cells (CSCs. Since CSCs have a highly self-renewal capacity and specific myocardial differentiation potential, nowadays they have been regarded as the most promising type of stem cells used in ischemic heart disease and other replacement therapy of end-stage heart disease. The present paper will focus on current results of scientific research on human adult CSCs and epicardium-derived cell (EPDC, as well as the treatment strategies in the field of cardiac regeneration, and the problems and prospect disclosed in the research.

  19. Research progress of adult cardiac stem cells

    OpenAIRE

    Zheng, Nan; Ning-kun ZHANG; Lian-ru GAO

    2013-01-01

    The traditional view is that the heart is a terminal organ. This dogma, however, has been widely questioned with the discovery of adult cardiac stem cells (CSCs). Since CSCs have a highly self-renewal capacity and specific myocardial differentiation potential, nowadays they have been regarded as the most promising type of stem cells used in ischemic heart disease and other replacement therapy of end-stage heart disease. The present paper will focus on current results of scientific research on...

  20. Tissue-Mimicking Geometrical Constraints Stimulate Tissue-Like Constitution and Activity of Mouse Neonatal and Human-Induced Pluripotent Stem Cell-Derived Cardiac Myocytes

    Science.gov (United States)

    Pilarczyk, Götz; Raulf, Alexandra; Gunkel, Manuel; Fleischmann, Bernd K.; Lemor, Robert; Hausmann, Michael

    2016-01-01

    The present work addresses the question of to what extent a geometrical support acts as a physiological determining template in the setup of artificial cardiac tissue. Surface patterns with alternating concave to convex transitions of cell size dimensions were used to organize and orientate human-induced pluripotent stem cell (hIPSC)-derived cardiac myocytes and mouse neonatal cardiac myocytes. The shape of the cells, as well as the organization of the contractile apparatus recapitulates the anisotropic line pattern geometry being derived from tissue geometry motives. The intracellular organization of the contractile apparatus and the cell coupling via gap junctions of cell assemblies growing in a random or organized pattern were examined. Cell spatial and temporal coordinated excitation and contraction has been compared on plain and patterned substrates. While the α-actinin cytoskeletal organization is comparable to terminally-developed native ventricular tissue, connexin-43 expression does not recapitulate gap junction distribution of heart muscle tissue. However, coordinated contractions could be observed. The results of tissue-like cell ensemble organization open new insights into geometry-dependent cell organization, the cultivation of artificial heart tissue from stem cells and the anisotropy-dependent activity of therapeutic compounds. PMID:26751484

  1. Differential extracellular signal-regulated kinases 1 and 2 activation by the angiotensin type 1 receptor supports distinct phenotypes of cardiac myocytes

    DEFF Research Database (Denmark)

    Aplin, Mark; Christensen, Gitte Lund; Schneider, Mikael;

    2007-01-01

    The angiotensin II (AngII) type 1 receptor (AT(1)R) is a seven-transmembrane receptor well established to activate extracellular signal-regulated kinases 1 and 2 (ERK1/2) by discrete G protein-dependent and beta-arrestin2-dependent pathways. The biological importance of this, however, remains obs...... obscure. Application of the modified analogue [Sar(1), Ile(4), Ile(8)]-AngII ([SII] AngII) allowed us to dissect the two pathways of ERK1/2 activation in native cardiac myocytes. Although cytosol-retained, the beta-arrestin2-bound pool of ERK1/2 represents an active signalling component...

  2. Early Regulation of Profibrotic Genes in Primary Human Cardiac Myocytes by Trypanosoma cruzi.

    Science.gov (United States)

    Udoko, Aniekanabassi N; Johnson, Candice A; Dykan, Andrey; Rachakonda, Girish; Villalta, Fernando; Mandape, Sammed N; Lima, Maria F; Pratap, Siddharth; Nde, Pius N

    2016-01-01

    The molecular mechanisms of Trypanosoma cruzi induced cardiac fibrosis remains to be elucidated. Primary human cardiomyoctes (PHCM) exposed to invasive T. cruzi trypomastigotes were used for transcriptome profiling and downstream bioinformatic analysis to determine fibrotic-associated genes regulated early during infection process (0 to 120 minutes). The identification of early molecular host responses to T. cruzi infection can be exploited to delineate important molecular signatures that can be used for the classification of Chagasic patients at risk of developing heart disease. Our results show distinct gene network architecture with multiple gene networks modulated by the parasite with an incline towards progression to a fibrogenic phenotype. Early during infection, T. cruzi significantly upregulated transcription factors including activator protein 1 (AP1) transcription factor network components (including FOSB, FOS and JUNB), early growth response proteins 1 and 3 (EGR1, EGR3), and cytokines/chemokines (IL5, IL6, IL13, CCL11), which have all been implicated in the onset of fibrosis. The changes in our selected genes of interest did not all start at the same time point. The transcriptome microarray data, validated by quantitative Real-Time PCR, was also confirmed by immunoblotting and customized Enzyme Linked Immunosorbent Assays (ELISA) array showing significant increases in the protein expression levels of fibrogenic EGR1, SNAI1 and IL 6. Furthermore, phosphorylated SMAD2/3 which induces a fibrogenic phenotype is also upregulated accompanied by an increased nuclear translocation of JunB. Pathway analysis of the validated genes and phospho-proteins regulated by the parasite provides the very early fibrotic interactome operating when T. cruzi comes in contact with PHCM. The interactome architecture shows that the parasite induces both TGF-β dependent and independent fibrotic pathways, providing an early molecular foundation for Chagasic cardiomyopathy

  3. Early Regulation of Profibrotic Genes in Primary Human Cardiac Myocytes by Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Aniekanabassi N Udoko

    2016-01-01

    Full Text Available The molecular mechanisms of Trypanosoma cruzi induced cardiac fibrosis remains to be elucidated. Primary human cardiomyoctes (PHCM exposed to invasive T. cruzi trypomastigotes were used for transcriptome profiling and downstream bioinformatic analysis to determine fibrotic-associated genes regulated early during infection process (0 to 120 minutes. The identification of early molecular host responses to T. cruzi infection can be exploited to delineate important molecular signatures that can be used for the classification of Chagasic patients at risk of developing heart disease. Our results show distinct gene network architecture with multiple gene networks modulated by the parasite with an incline towards progression to a fibrogenic phenotype. Early during infection, T. cruzi significantly upregulated transcription factors including activator protein 1 (AP1 transcription factor network components (including FOSB, FOS and JUNB, early growth response proteins 1 and 3 (EGR1, EGR3, and cytokines/chemokines (IL5, IL6, IL13, CCL11, which have all been implicated in the onset of fibrosis. The changes in our selected genes of interest did not all start at the same time point. The transcriptome microarray data, validated by quantitative Real-Time PCR, was also confirmed by immunoblotting and customized Enzyme Linked Immunosorbent Assays (ELISA array showing significant increases in the protein expression levels of fibrogenic EGR1, SNAI1 and IL 6. Furthermore, phosphorylated SMAD2/3 which induces a fibrogenic phenotype is also upregulated accompanied by an increased nuclear translocation of JunB. Pathway analysis of the validated genes and phospho-proteins regulated by the parasite provides the very early fibrotic interactome operating when T. cruzi comes in contact with PHCM. The interactome architecture shows that the parasite induces both TGF-β dependent and independent fibrotic pathways, providing an early molecular foundation for Chagasic

  4. Activation of extracellular signal-regulated kinase during silibinin-protected, isoproterenol-induced apoptosis in rat cardiac myocytes is tyrosine kinase pathway-mediated and protein kinase C-dependent

    Institute of Scientific and Technical Information of China (English)

    Bei ZHOU; Li-jun WU; Shin-ichi TASHIRO; Satoshi ONODERA; Fumiaki UCHIUMI; Takashi IKEJIMA

    2007-01-01

    Aim: To investigate the mechanism of silibinin-protected isoproterenol-induced apoptosis in rat cardiac myocytes.Methods: The viability of rat cardiac myocytes was measured by MTT method. The apoptotic ratio was measured by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling. Protein kinase C (PKC) activity assay was carried out according to the instructions of the PepTag non-radioactive protein kinase C assay kit. Western blot analysis was used to evaluate the level of Ras, Raf-1 and mitogen-activated protein kinase (MAPK) expression.Results: The protective effects of silibinin were significantly sup-pressed by inhibitors, including genistein, manumycin A and GW5074 [inhibitors for protein tyrosine kinases (PTK), Ras and Raf- 1, respectively]. The exposure of rat cardiac myocytes to isoproterenol alone caused decreased PKC activity, which was prevented by pretreatment with silibinin dose-dependently. Simultaneously,the increased expression of Ras and Raf-1 activated by silibinin were blocked by the PKC inhibitor, stauroporine. In addition, the extracellularly responsive kinase (ERK) inhibitor, PD98059, suppressed silibinin-protected apoptosis, whereas the p38 MAPK inhibitor, SB203580, protected cardiac myocytes from isoproterenol-induced injury, and the c-Jun N-terminal kinase (JNK) inhibitor, SP600125 had no protective effects. Furthermore, Western blot analysis showed that the expres-sion of phosphorylated ERK was increased by silibinin, the expression of phos-phorylated p38 MAPK was decreased and total ERK, p38, JNK and phosphory-lated JNK MAPK did not change after treatment with both isoproterenol and silibinin. Furthermore, pretreatment of cardiac myocyte with PKC, Ras and Raf inhibitors significantly blocked ERK phosphorylation.Conclusion: Silibinin is suggested to protect isoproterenol-induced rat cardiac myocyte apoptosis by activating the tyrosine kinase pathway, PKC and MAPK pathways.

  5. Pre-Conditioning with CDP-Choline Attenuates Oxidative Stress-Induced Cardiac Myocyte Death in a Hypoxia/Reperfusion Model

    Directory of Open Access Journals (Sweden)

    Héctor González-Pacheco

    2014-01-01

    Full Text Available Background. CDP-choline is a key intermediate in the biosynthesis of phosphatidylcholine, which is an essential component of cellular membranes, and a cell signalling mediator. CDP-choline has been used for the treatment of cerebral ischaemia, showing beneficial effects. However, its potential benefit for the treatment of myocardial ischaemia has not been explored yet. Aim. In the present work, we aimed to evaluate the potential use of CDP-choline as a cardioprotector in an in vitro model of ischaemia/reperfusion injury. Methods. Neonatal rat cardiac myocytes were isolated and subjected to hypoxia/reperfusion using the coverslip hypoxia model. To evaluate the effect of CDP-choline on oxidative stress-induced reperfusion injury, the cells were incubated with H2O2 during reperfusion. The effect of CDP-choline pre- and postconditioning was evaluated using the cell viability MTT assay, and the proportion of apoptotic and necrotic cells was analyzed using the Annexin V determination by flow cytometry. Results. Pre- and postconditioning with 50 mg/mL of CDP-choline induced a significant reduction of cells undergoing apoptosis after hypoxia/reperfusion. Preconditioning with CDP-choline attenuated postreperfusion cell death induced by oxidative stress. Conclusion. CDP-choline administration reduces cell apoptosis induced by oxidative stress after hypoxia/reperfusion of cardiac myocytes. Thus, it has a potential as cardioprotector in ischaemia/reperfusion-injured cardiomyocytes.

  6. Irreversible injury of isolated adult rat myocytes. Osmotic fragility during metabolic inhibition.

    OpenAIRE

    Ganote, C. E.; Vander Heide, R. S.

    1988-01-01

    Isolated myocytes can be established as a valid model for studying changes in cytoskeletal proteins during the development of irreversible injury only if isolated cells develop lesions similar to those that occur during irreversible injury to intact hearts, specifically osmotic fragility and subsarcolemmal blebs. In the first experiment, isolated cells were irreversibly injured by metabolic inhibition with 5 mM Iodoacetic acid (IAA) and 6 mM amobarbital (Amy). Osmotic fragility of control and...

  7. 心肌细胞微管图像的灰度特征分析%Gray Characteristic Analysis of Microtubules in Cardiac Myocytes

    Institute of Scientific and Technical Information of China (English)

    姚宇华; 熊江辉; 梁仲刚; 严洪; 李莹辉

    2004-01-01

    目的利用图像灰度的统计特征参数量化微重力条件下大鼠心肌细胞微管图像的形态变化,并研究在不同条件下这种变化的特点.方法 对模拟微重力条件下培养的乳鼠心肌细胞(回转组)和正常条件下培养的心肌细胞(对照组)细胞骨架的微管图像提取灰度统计特征,利用灰度方差、偏度及峰度等参数量化细胞骨架的灰度特征.结果 在对24幅图像进行特征分析后,发现所选的参数对量化微管的灰度特征有不同程度的统计意义.利用灰度方差、偏度和峰度进行多元判决,发现这些参数可以很好地区分模拟微重力条件下培养的心肌细胞图像和正常条件下培养的心肌细胞图像,总的错误判决率达到16.7%.结论 在微重力条件下心肌细胞骨架微管的形态变得弥散,利用灰度特征参数方差、偏度和峰度可以描述这种变化.%Objective To quantify the images of the microtubules in fetal rat cardiac myocytes under simulated microgravity by utilizing the characteristic parameters of image gray, and to study their morphological change. Method Gray characteristic of the microtubules in fetal rat cardiac myocytes was quantified in both simulated mircogravity and control conditions by variance, skewness, and kurtosis. Result From feature analysis of 24 images, the characteristic parameters selected here were proved to be effective. Good result was obtained when discrimination between simulated microgravity group and control group was made by multivariate analysis with these parameters. The total false verdict rate even reached 16.7% when using multivariate analysis with these parameters. Conclusion The morphology of the microtubules in cardiac myocytes cytoskeleton became diffused under simulated microgravity, and the quantitative analysis of gray parameters (variance, skewness, kurtosis) described the variation satisfactorily.

  8. The experimental study of reporter probe 131I-FIAU in neonatal cardiac myocytes after transfer of herpes simplex virus type 1 thymidine kinase reporter gene by different vectors

    International Nuclear Information System (INIS)

    Objective: Reporter gene imaging is a promising approach for noninvasive monitoring of cardiac gene therapy. In the present study, the recombinant plasmid and adenoviral vector carrying reporter gene. herpes simplex virus type 1 thymidine kinase (HSV1-tk), were constructed and transferred into nee-natal cardiac myocytes, and a series of in vitro studies were carried out on the cells transferred to evaluate the uptake of radiolabeled reporter probe and to compare both vectors for cardiac reporter gene imaging. Methods: Neonatal cardiac myocytes were obtained from rat heart by single collagenase digestion. HSVI-tk. chosen as the reporter gene.was inserted into adenovirus vector (Ad5-tk) and plasmid (pDC316-tk), thus it could be transferred into neonatal cardiac myocytes. Recombinant adenovirus containing enhanced green fluorescent protein (Ad5-EGFP) was used as control. Recombinant plasmid was coated with lipofectamine TM 2000 (pDC316-tk/lipoplex). The specific reporter probe of HSV1-tk, 2'-fluoro-2'-deoxy-l-β-D-arabinofuranosyl-uracil (FAU), was labeled with 131I by solid phase oxidation with lodogen. Product wag purified on a reverse. phase Sep-Pak C18 column and the radiochemical purity wag then assessed. The accumulation of it in the transferred cardiac myocytes wag detected as uptake rate. Furthermore, mRNA expression of HSV1-tk was detected by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR), while its protein expression wag located by immunocytochemistry. Results: FAU could be labeled with 131I and the labeling efficiency was (53.82 ±2.05)%. The radiochemical purity was (94.85 ± 1.76)% after purification, and it kept stable in vitro for at least 24h. Time-dependent increase of the ac- cumulation of 131I-FIAU was observed in both Ad5-tk group and pDC316-tk/lipoplex group. and the highest uptake rate occurred at 5h, with peak values of (12.55 ± 0.37)% and (2.09 ± 0.34)% respectively. However, it also indicated that greater

  9. Contribution of spontaneous L-type Ca2+ channel activation to the genesis of Ca2+ sparks in resting cardiac myocytes

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Guangqin; FU; Yu; YANG; Dongmei; HAO; Xuemei; BAI; S

    2004-01-01

    Ca2+ sparks are the elementary events of intracellular Ca2+ release from the sarcoplasmic reticulum in cardiac myocytes. In order to investigate whether spontaneous L-type Ca2+ channel activation contributes to the genesis of spontaneous Ca2+ sparks, we used confocal laser scanning microscopy and fluo-4 to visualize local Ca2+ sparks in intact rat ventricular myocytes. In the presence of 0.2 mmol/L CdCl2 which inhibits spontaneous L-type Ca2+ channel activation, the rate of occurrence of spontaneous Ca2+ sparks was halved from 4.20 to 2.04 events/(100 μm·s), with temporal and spatial properties of individual Ca2+ sparks unchanged. Analysis of the Cd2+-sensitive spark production revealed an open probability of ~10-5 for L-type channels at the rest membrane potentials (-80 mV). Thus, infrequent and stochastic openings of sarcolemmal L-type Ca2+ channels in resting heart cells contribute significantly to the production of spontaneous Ca2+ sparks.

  10. Effects of adding intravenous nicorandil to standard therapy on cardiac sympathetic nerve activity and myocyte dysfunction in patients with acute decompensated heart failure

    Energy Technology Data Exchange (ETDEWEB)

    Kasama, Shu [Gunma University Graduate School of Medicine, Department of Medicine and Biological Science (Cardiovascular Medicine), Maebashi, Gunma (Japan); Cardiovascular Hospital of Central Japan (Kitakanto Cardiovascular Hospital), Department of Cardiovascular Medicine, Gunma (Japan); Toyama, Takuji; Funada, Ryuichi; Takama, Noriaki; Koitabashi, Norimichi; Kurabayashi, Masahiko [Gunma University Graduate School of Medicine, Department of Medicine and Biological Science (Cardiovascular Medicine), Maebashi, Gunma (Japan); Ichikawa, Shuichi [Cardiovascular Hospital of Central Japan (Kitakanto Cardiovascular Hospital), Department of Cardiovascular Medicine, Gunma (Japan); Suzuki, Yasuyuki; Matsumoto, Naoya [Nihon University School of Medicine, Department of Cardiology, Tokyo (Japan); Sato, Yuichi [Health Park Clinic, Department of Imaging, Takasaki, Gunma (Japan)

    2015-04-01

    Nicorandil, an adenosine triphosphate-sensitive potassium channel opener, improves cardiac sympathetic nerve activity (CSNA) in ischemic heart disease or chronic heart failure. However, its effects on CSNA and myocyte dysfunction in acute heart failure (AHF) remain unclear. We investigated the effects of adding intravenous nicorandil to standard therapy on CSNA and myocyte dysfunction in AHF. We selected 70 patients with mild to moderate nonischemic AHF who were treated with standard conventional therapy soon after admission. Thirty-five patients were assigned to additionally receive intravenous nicorandil (4-12 mg/h; group A), whereas the remaining patients continued their current drug regimen (group B). Delayed total defect score (TDS), delayed heart to mediastinum count (H/M) ratio, and washout rate (WR) were determined by {sup 123}I-metaiodobenzylguanidine (MIBG) scintigraphy within 3 days of admission and 4 weeks later. High sensitivity troponin T (hs-TnT) level was also measured at the same time points. After treatment, MIBG scintigraphic parameters significantly improved in both groups. However, the extent of the changes in these parameters in group A significantly exceeded the extent of the changes in group B [TDS -11.3 ± 4.3 in group A vs -4.0 ± 6.0 in group B (p < 0.01); H/M ratio 0.31 ± 0.16 vs 0.14 ± 0.16 (p < 0.01); WR -13.8 ± 7.8 % vs -6.1 ± 8.9 % (p < 0.01)]. The hs-TnT level decreased significantly from 0.052 ± 0.043 to 0.041 ± 0.033 ng/ml (p < 0.05) in group A, but showed no significant change in group B. Moreover, in both groups, no relationships between the extent of changes in MIBG parameters and hs-TnT level were observed. Adding intravenous nicorandil to standard therapy provides additional benefits for CSNA and myocyte dysfunction over conventional therapy alone in AHF patients. Furthermore, the mechanisms of improvement in CSNA and myocyte dysfunction after nicorandil treatment in AHF patients were distinct. (orig.)

  11. Effects of adding intravenous nicorandil to standard therapy on cardiac sympathetic nerve activity and myocyte dysfunction in patients with acute decompensated heart failure

    International Nuclear Information System (INIS)

    Nicorandil, an adenosine triphosphate-sensitive potassium channel opener, improves cardiac sympathetic nerve activity (CSNA) in ischemic heart disease or chronic heart failure. However, its effects on CSNA and myocyte dysfunction in acute heart failure (AHF) remain unclear. We investigated the effects of adding intravenous nicorandil to standard therapy on CSNA and myocyte dysfunction in AHF. We selected 70 patients with mild to moderate nonischemic AHF who were treated with standard conventional therapy soon after admission. Thirty-five patients were assigned to additionally receive intravenous nicorandil (4-12 mg/h; group A), whereas the remaining patients continued their current drug regimen (group B). Delayed total defect score (TDS), delayed heart to mediastinum count (H/M) ratio, and washout rate (WR) were determined by 123I-metaiodobenzylguanidine (MIBG) scintigraphy within 3 days of admission and 4 weeks later. High sensitivity troponin T (hs-TnT) level was also measured at the same time points. After treatment, MIBG scintigraphic parameters significantly improved in both groups. However, the extent of the changes in these parameters in group A significantly exceeded the extent of the changes in group B [TDS -11.3 ± 4.3 in group A vs -4.0 ± 6.0 in group B (p < 0.01); H/M ratio 0.31 ± 0.16 vs 0.14 ± 0.16 (p < 0.01); WR -13.8 ± 7.8 % vs -6.1 ± 8.9 % (p < 0.01)]. The hs-TnT level decreased significantly from 0.052 ± 0.043 to 0.041 ± 0.033 ng/ml (p < 0.05) in group A, but showed no significant change in group B. Moreover, in both groups, no relationships between the extent of changes in MIBG parameters and hs-TnT level were observed. Adding intravenous nicorandil to standard therapy provides additional benefits for CSNA and myocyte dysfunction over conventional therapy alone in AHF patients. Furthermore, the mechanisms of improvement in CSNA and myocyte dysfunction after nicorandil treatment in AHF patients were distinct. (orig.)

  12. Evidence for angiotensin II type 2 receptor–mediated cardiac myocyte enlargement during in vivo pressure overload

    OpenAIRE

    Senbonmatsu, Takaaki; Ichihara, Sahoko; Price, Edward; Gaffney, F.Andrew; Inagami, Tadashi

    2000-01-01

    The pathophysiological roles of the angiotensin II type 2 receptor (AT2) in cardiac hypertrophy remain unclear. By the targeted deletion of mouse AT2 we were able to prevent the left ventricular hypertrophy resulting from pressure overload, while cardiac contractile functions remained normal. This implies that AT2 is a mediator of cardiac hypertrophy in response to increased blood pressure. The effects of AT2 deletion were independent of activation of embryonic genes for cardiac hypertrophy. ...

  13. Stearoyl-CoA desaturase-1 (SCD1 augments saturated fatty acid-induced lipid accumulation and inhibits apoptosis in cardiac myocytes.

    Directory of Open Access Journals (Sweden)

    Hiroki Matsui

    Full Text Available Mismatch between the uptake and utilization of long-chain fatty acids in the myocardium leads to abnormally high intracellular fatty acid concentration, which ultimately induces myocardial dysfunction. Stearoyl-Coenzyme A desaturase-1 (SCD1 is a rate-limiting enzyme that converts saturated fatty acids (SFAs to monounsaturated fatty acids. Previous studies have shown that SCD1-deficinent mice are protected from insulin resistance and diet-induced obesity; however, the role of SCD1 in the heart remains to be determined. We examined the expression of SCD1 in obese rat hearts induced by a sucrose-rich diet for 3 months. We also examined the effect of SCD1 on myocardial energy metabolism and apoptotic cell death in neonatal rat cardiac myocytes in the presence of SFAs. Here we showed that the expression of SCD1 increases 3.6-fold without measurable change in the expression of lipogenic genes in the heart of rats fed a high-sucrose diet. Forced SCD1 expression augmented palmitic acid-induced lipid accumulation, but attenuated excess fatty acid oxidation and restored reduced glucose oxidation. Of importance, SCD1 substantially inhibited SFA-induced caspase 3 activation, ceramide synthesis, diacylglycerol synthesis, apoptotic cell death, and mitochondrial reactive oxygen species (ROS generation. Experiments using SCD1 siRNA confirmed these observations. Furthermore, we showed that exposure of cardiac myocytes to glucose and insulin induced SCD1 expression. Our results indicate that SCD1 is highly regulated by a metabolic syndrome component in the heart, and such induction of SCD1 serves to alleviate SFA-induced adverse fatty acid catabolism, and eventually to prevent SFAs-induced apoptosis.

  14. Hypoxia and glucose independently regulate the beta-adrenergic receptor-adenylate cyclase system in cardiac myocytes.

    OpenAIRE

    Rocha-Singh, K J; Honbo, N Y; Karliner, J S

    1991-01-01

    We explored the effects of two components of ischemia, hypoxia and glucose deprivation, on the beta-adrenergic receptor (beta AR)-adenylate cyclase system in a model of hypoxic injury in cultured neonatal rat ventricular myocytes. After 2 h of hypoxia in the presence of 5 mM glucose, cell surface beta AR density (3H-CGP-12177) decreased from 54.8 +/- 8.4 to 39 +/- 6.3 (SE) fmol/mg protein (n = 10, P less than 0.025), while cytosolic beta AR density (125I-iodocyanopindolol [ICYP]) increased by...

  15. Male and female hypertrophic rat cardiac myocyte functional responses to ischemic stress and β-adrenergic challenge are different

    OpenAIRE

    Bell, James R.; Curl, Claire L.; Harding, Tristan W.; Vila Petroff, Martin; Harrap, Stephen B.; Delbridge, Lea M D

    2016-01-01

    Background Cardiac hypertrophy is the most potent cardiovascular risk factor after age, and relative mortality risk linked with cardiac hypertrophy is greater in women. Ischemic heart disease is the most common form of cardiovascular pathology for both men and women, yet significant differences in incidence and outcomes exist between the sexes. Cardiac hypertrophy and ischemia are frequently occurring dual pathologies. Whether the cellular (cardiomyocyte) mechanisms underlying myocardial dama...

  16. Cardiac Magnetic Resonance In Adults With Congenital Heart Disease

    OpenAIRE

    Partington, Sara L.; Valente, Anne Marie

    2013-01-01

    Increasing numbers of adults with congenital heart disease are referred for cardiac magnetic resonance imaging. Knowledge of the congenital heart anatomy, prior surgical interventions, and the development of an imaging focus for each individual patient plays a crucial role when performing a successful cardiac magnetic resonance imaging examination. The following manuscript focuses on cardiac magnetic resonance imaging considerations of three specific conotruncal congenital heart lesions: tetr...

  17. Current-Voltage Relationship for Late Na(+) Current in Adult Rat Ventricular Myocytes.

    Science.gov (United States)

    Clark, R B; Giles, W R

    2016-01-01

    It is now well established that the slowly inactivating component of the Na(+) current (INa-L) in the mammalian heart is a significant regulator of the action potential waveform. This insight has led to detailed studies of the role of INa-L in a number of important and challenging pathophysiological settings. These include genetically based ventricular arrhythmias (LQT 1, 2, and 3), ventricular arrhythmias arising from progressive cardiomyopathies (including diabetic), and proarrhythmic abnormalities that develop during local or global ventricular ischemia. Inhibition of INa-L may also be a useful strategy for management of atrial flutter and fibrillation. Many important biophysical parameters that characterize INa-L have been identified; and INa-L as an antiarrhythmia drug target has been studied extensively. However, relatively little information is available regarding (1) the ion transfer or current-voltage relationship for INa-L or (2) the time course of its reactivation at membrane potentials similar to the resting or diastolic membrane potential in mammalian ventricle. This chapter is based on our preliminary findings concerning these two very important physiological/biophysical descriptors for INa-L. Our results were obtained using whole-cell voltage clamp methods applied to enzymatically isolated rat ventricular myocytes. A chemical agent, BDF 9148, which was once considered to be a drug candidate in the Na(+)-dependent inotropic agent category has been used to markedly enhance INa-L current. BDF acts in a potent, selective, and reversible fashion. These BDF 9148 effects are compared and contrasted with the prototypical activator of INa-L, a sea anemone toxin, ATX II. PMID:27586292

  18. Cardiac arrhythmias in adults with congenital heart disease

    NARCIS (Netherlands)

    Z. Koyak

    2016-01-01

    Arrhythmias are a major cause of hospital admissions and morbidity in adults with congenital heart disease (CHD). Furthermore, the leading cause of death in adults with CHD is sudden cardiac death (SCD) of presumed arrhythmic aetiology. The main objectives of this thesis were to identify risk factor

  19. Surface Chemistry and Microtopography of Parylene C Films Control the Morphology and Microtubule Density of Cardiac Myocytes.

    Science.gov (United States)

    Trantidou, Tatiana; Humphrey, Eleanor J; Poulet, Claire; Gorelik, Julia; Prodromakis, Themistoklis; Terracciano, Cesare M

    2016-05-01

    Cell micropatterning has certainly proved to improve the morphological and physiological properties of cardiomyocytes in vitro; however, there is little knowledge on the single cell-scaffold interactions that influence the cells' development and differentiation in culture. In this study, we employ hydrophobic/hydrophilic micropatterned Parylene C thin films (2-10 μm) as cell microscaffolds that can control the morphology and microtubule density of neonatal rat ventricular myocytes (NRVM) by regulating their adhesion area on Parylene through a thickness-dependent hydrophobicity. Structured NRVM on thin films tend to bridge across the hydrophobic areas, demonstrating a more spread-out shape and sparser microtubule organization, while cells on thicker films adopt a cylindrical (in vivo-like) shape (contact angles at the level of the nucleus are 64.51° and 84.73°, respectively) and a significantly (p < 0.05) denser microtubule structure. Ion scanning microscopy on NRVM revealed that cells on thicker membranes were significantly (p < 0.05) smaller in volume, but more elongated. The cylindrical shape and a significantly denser microtubule structure indicate the ability to influence cardiomyocyte phenotype using patterning and manipulation of hydrophilicity. These combined bioengineering strategies are promising tools in the generation of more representative cardiomyocytes in culture. PMID:27018760

  20. A model of the guinea-pig ventricular cardiac myocyte incorporating a transverse–axial tubular system

    Czech Academy of Sciences Publication Activity Database

    Pásek, Michal; Šimurda, J.; Orchard, C.; Christé, G.

    2008-01-01

    Roč. 96, 1-3 (2008), s. 258-280. ISSN 0079-6107 Institutional research plan: CEZ:AV0Z20760514 Keywords : guinea pig * cardiac cell * transverse-axial tubular system * quantitative model Subject RIV: BO - Biophysics Impact factor: 6.388, year: 2008

  1. Differences in the control of basal L-type Ca(2+) current by the cyclic AMP signaling cascade in frog, rat, and human cardiac myocytes.

    Science.gov (United States)

    Treinys, Rimantas; Bogdelis, Andrius; Rimkutė, Lina; Jurevičius, Jonas; Skeberdis, Vytenis Arvydas

    2016-07-01

    β-adrenergic receptors (β-ARs) mediate the positive inotropic effects of catecholamines by cAMP-dependent phosphorylation of the L-type Ca(2+) channels (LTCCs), which provide Ca(2+) for the initiation and regulation of cell contraction. The overall effect of cAMP-modulating agents on cardiac calcium current (I Ca,L) and contraction depends on the basal activity of LTCCs which, in turn, depends on the basal activities of key enzymes involved in the cAMP signaling cascade. Our current work is a comparative study demonstrating the differences in the basal activities of β-ARs, adenylyl cyclase, phosphodiesterases, phosphatases, and LTCCs in the frog and rat ventricular and human atrial myocytes. The main conclusion is that the basal I Ca,L, and consequently the contractile function of the heart, is secured from unnecessary elevation of its activity and energy consumption at the several "checking-points" of cAMP-dependent signaling cascade and the loading of these "checking-points" may vary in different species and tissues. PMID:26676115

  2. 趋化因子CXCL10在心肌细胞及巨噬细胞中的表达机制%Mechanism of CXCL10 expression in cardiac myocytes and bone marrow-derived macrophages

    Institute of Scientific and Technical Information of China (English)

    李子南; 翟原; 卢静; 王钜

    2011-01-01

    Objective To investigate the mechanism of CXCL10 expression during myocardial ischemia-reperfusion injury. Methods To stimulate cardiac myocytes,bone marrow-derived macrophages (BMMs) and co-culture system with LPS, H2O2 or calcium ionophore A23187 respectively, and then test the CXCL10, IL-1 β, IL-6, TNF-α levels in the supernant of medium by ELISA. Results ①High dose ( 10 μg/mL) LPS could induce cardiac myocytes to express CXCL10 as well as BMMs to produce IL-1β,IL-6,TNF-α. ②H2O2 ,calcium ionophore A23187 failed to induce CXCL10 expression or IL-1β,IL-6 ,TNF-α expression,either on cardiac myocytes or on BMMs. ③BMMs promote CXCL10 induction of cardiac myocytes,while cardiac myocytes promote IL-6 and TNF-α induction of BMMs. Oppositely,the IL-1 β induction of BMMs was inhibited by cardiac myocytes in this research. Conclusion Cardiac myocytes could be the potential cellular resource during myocardial ischemia-reperfusion injury. It is mainly the activation of TLR4 that cause CXCL10 expression.%目的 探讨心肌缺血-再灌注损伤中趋化因子CXCL10的产生机制.方法 分别用LPS、H2O2、Ca2+载体A23187刺激原代培养的心肌细胞、骨髓来源的巨噬细胞或二者混合培养的共培养系统后,ELISA检测培养基上清中的趋化因子CXCL10和促炎性细胞因子IL-1β、IL-6、TNF-α的含量,观察其表达动力学.结果 ①大剂量(10 μg/mL)的LPS刺激心肌细胞主要产生趋化因子CXCL10;刺激骨髓来源巨噬细胞主要产生促炎性细胞因子IL-1β、IL-6、TNF-α.②H2O2、Ca2+通道激活剂并不能使产生趋化因子CXCL10或IL-1β、IL-6、TNF-α这些促炎性细胞因子.③骨髓来源的巨噬细胞促进心肌细胞表达趋化因子CXCL10;心肌细胞促进骨髓来源的巨噬细胞表达IL-6、TNF-α,但抑制IL-1β的表达.结论 心肌细胞是心肌缺血-再灌注损伤中CXCL10潜在的细胞来源;CXCL10的表达,主要依赖于TLR4的激活.

  3. Thyroid hormone induces cardiac myocyte hypertrophy in a TRα1-specific manner that requires TAK1 and p38 MAPK.

    OpenAIRE

    Kinugawa, Koichiro; Jeong, Mark Y.; Bristow, Michael R.; Long, Carlin S.

    2005-01-01

    Alterations in thyroid hormone receptor (TR)1 isoform expression have been reported in models of both physiologic and pathologic cardiac hypertrophy as well as in patients with heart failure. In this report, we demonstrate that thyroid hormone (TH) induces hypertrophy as a direct result of binding to the TRα1 isoform and moreover, that over-expression of TRα1 alone is also associated with a hypertrophic phenotype, even in the absence of ligand. The mechanism of TH and TRα1-specific hypertroph...

  4. [Inhibition of oxygen free radicals in potassium channels of cardiac myocytes and the action of salvianolic acid A].

    Science.gov (United States)

    Bao, G

    1993-10-01

    By using the patch clamp technique, the effect of oxygen free radicals on the single potassium channels of cardiac papillary muscle cells were studied, as well as the action of salvianolic acid A. It was found that xanthane-xanthane oxidase generated oxygen free radicals could apparently inhibited the unitary currents of the single potassium channel activity. This inhibition was reversed by salvianolic acid A, which is an effective component extracted from Salvia miltiorrhiza. PMID:8168213

  5. Nitric oxide can acutely modulate its biosynthesis through a negative feedback mechanism on l-arginine transport in cardiac myocytes

    OpenAIRE

    Zhou, Jiaguo; Kim, David D.; Peluffo, R. Daniel

    2010-01-01

    Nitric oxide (NO) plays a central role as a cellular signaling molecule in health and disease. In the heart, NO decreases the rate of spontaneous beating and the velocity and extent of shortening and accelerates the velocity of relengthening. Since the cationic amino acid l-arginine (l-Arg) is the substrate for NO production by NO synthases (NOS), we tested whether the transporters that mediate l-Arg import in cardiac muscle cells represent an intervention point in the regulation of NO synthe...

  6. Activation of KATP channels by Na/K pump in isolated cardiac myocytes and giant membrane patches.

    OpenAIRE

    Kabakov, A Y

    1998-01-01

    Strophanthidin inhibits KATP channels in 2,4-dinitrophenol-poisoned heart cells (). The current study shows that the Na/K pump interacts with KATP current (IK-ATP) via submembrane ATP depletion in isolated giant membrane patches and in nonpoisoned guinea pig cardiac cells in whole-cell configuration. IK-ATP was inhibited by ATP, glibenclamide, or intracellular Cs+. Na/K pump inactivation by substitution of cytoplasmic Na+ for Li+ or N-methylglucamine decreased both IK-ATP by 1/3 (1 mM ATP, ze...

  7. Stimulating endogenous cardiac regeneration

    Directory of Open Access Journals (Sweden)

    Amanda eFinan

    2015-09-01

    Full Text Available The healthy adult heart has a low turnover of cardiac myocytes. The renewal capacity, however, is augmented after cardiac injury. Participants in cardiac regeneration include cardiac myocytes themselves, cardiac progenitor cells, and peripheral stem cells, particularly from the bone marrow compartment. Cardiac progenitor cells and bone marrow stem cells are augmented after cardiac injury, migrate to the myocardium, and support regeneration. Depletion studies of these populations have demonstrated their necessary role in cardiac repair. However, the potential of these cells to completely regenerate the heart is limited. Efforts are now being focused on ways to augment these natural pathways to improve cardiac healing, primarily after ischemic injury but in other cardiac pathologies as well. Cell and gene therapy or pharmacological interventions are proposed mechanisms. Cell therapy has demonstrated modest results and has passed into clinical trials. However, the beneficial effects of cell therapy have primarily been their ability to produce paracrine effects on the cardiac tissue and recruit endogenous stem cell populations as opposed to direct cardiac regeneration. Gene therapy efforts have focused on prolonging or reactivating natural signaling pathways. Positive results have been demonstrated to activate the endogenous stem cell populations and are currently being tested in clinical trials. A potential new avenue may be to refine pharmacological treatments that are currently in place in the clinic. Evidence is mounting that drugs such as statins or beta blockers may alter endogenous stem cell activity. Understanding the effects of these drugs on stem cell repair while keeping in mind their primary function may strike a balance in myocardial healing. To maximize endogenous cardiac regeneration,a combination of these approaches couldameliorate the overall repair process to incorporate the participation ofmultiple cell players.

  8. Milrinone for cardiac dysfunction in critically ill adult patients

    DEFF Research Database (Denmark)

    Koster, Geert; Bekema, Hanneke J; Wetterslev, Jørn;

    2016-01-01

    review was performed according to The Cochrane Handbook for Systematic Reviews of Interventions. Searches were conducted until November 2015. Patients with cardiac dysfunction were included. The primary outcome was serious adverse events (SAE) including mortality at maximum follow-up. The risk of bias...... analyses displayed statistical and/or clinical heterogeneity of patients, interventions, comparators, outcomes, and/or settings and all featured missing data. DISCUSSION: The current evidence on the use of milrinone in critically ill adult patients with cardiac dysfunction suffers from considerable risks...

  9. Primary gastric teratoma on the cardiac orifice in an adult

    Institute of Scientific and Technical Information of China (English)

    Liu Liu; Wen Zhuang; Zhong Chen; Yong Zhou; Xiao-Ran Huang

    2009-01-01

    Gastric teratoma (GT) is a seldom seen congenital abnormality. GT always occurs in children. The greater curvature and posterior wall of the stomach are the most common sites involving GT. We diagnosed a case of GT located on the inferior wall of the cardiac orifice in a 20-year-old man. To the best of our knowledge, this is the first case of GT located on the wall of the cardiac orifice in an adult in the English literature. We report this unusual case as an addition to this rare disease usually found in children. Computed tomography combined with endoscopic ultrasonography can be selected to diagnose GT.

  10. Venoarterial Extracorporeal Membrane Oxygenation in Adults With Cardiac Arrest.

    Science.gov (United States)

    Patel, Jignesh K; Schoenfeld, Elinor; Parnia, Sam; Singer, Adam J; Edelman, Norman

    2016-07-01

    Cardiac arrest (CA) is a major cause of morbidity and mortality worldwide. Despite the use of conventional cardiopulmonary resuscitation (CPR), rates of return of spontaneous circulation and survival with minimal neurologic impairment remain low. Utilization of venoarterial extracorporeal membrane oxygenation (ECMO) for CA in adults is steadily increasing. Propensity-matched cohort studies have reported outcomes associated with ECMO use to be superior to that of conventional CPR alone in in-hospital patients with CA. In this review, we discuss the mechanism, indications, complications, and evidence for ECMO in CA in adults. PMID:25922385

  11. Preoperative cardiac computed tomography for demonstration of congenital cardiac septal defect in adults

    International Nuclear Information System (INIS)

    We aimed to evaluate the role of preoperative cardiac computed tomography (CT) for adults with congenital cardiac septal defect (CSD). Sixty-five consecutive patients who underwent preoperative CT and surgery for CSD were included. The diagnostic accuracy of CT and the concordance rate of the subtype classification of CSD were evaluated using surgical findings as the reference standard. Sixty-five patients without CSD who underwent cardiac valve surgery were used as a control group. An incremental value of CT over echocardiography was described retrospectively. Sensitivity and specificity of CT for diagnosis of CSD were 95 % and 100 %, respectively. The concordance rate of subtype classification was 91 % in CT and 92 % in echocardiography. The maximum size of the defect measured by CT correlated well with surgical measurement (r = 0.82), and the limit of agreement was -0.9 ± 7.42 mm. In comparison with echocardiography, CT was able to detect combined abnormalities in three cases, and exclusively provided correct subtype classification or clarified suspected abnormal findings found on echocardiography in seven cases. Cardiac CT can accurately demonstrates CSD in preoperative adult patients. CT may have an incremental role in preoperative planning, particularly in those with more complex anatomy. (orig.)

  12. Preoperative cardiac computed tomography for demonstration of congenital cardiac septal defect in adults

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Hye-Joung; Yang, Dong Hyun; Kang, Joon-Won; Lim, Tae-Hwan [University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Cardiac Imaging Center, Asan Medical Center, Seoul (Korea, Republic of); Kim, Dae-Hee; Song, Jong-Min; Kang, Duk-Hyun; Song, Jae-Kwan [University of Ulsan College of Medicine, Department of Cardiology and Heart Institute, Cardiac Imaging Center, Asan Medical Center, Seoul (Korea, Republic of); Kim, Joon Bum; Jung, Sung-Ho; Choo, Suk Jung; Chung, Cheol Hyun; Lee, Jae Won [University of Ulsan College of Medicine, Department of Cardiothoracic surgery, Cardiac Imaging Center, Asan Medical Center, Seoul (Korea, Republic of)

    2015-06-01

    We aimed to evaluate the role of preoperative cardiac computed tomography (CT) for adults with congenital cardiac septal defect (CSD). Sixty-five consecutive patients who underwent preoperative CT and surgery for CSD were included. The diagnostic accuracy of CT and the concordance rate of the subtype classification of CSD were evaluated using surgical findings as the reference standard. Sixty-five patients without CSD who underwent cardiac valve surgery were used as a control group. An incremental value of CT over echocardiography was described retrospectively. Sensitivity and specificity of CT for diagnosis of CSD were 95 % and 100 %, respectively. The concordance rate of subtype classification was 91 % in CT and 92 % in echocardiography. The maximum size of the defect measured by CT correlated well with surgical measurement (r = 0.82), and the limit of agreement was -0.9 ± 7.42 mm. In comparison with echocardiography, CT was able to detect combined abnormalities in three cases, and exclusively provided correct subtype classification or clarified suspected abnormal findings found on echocardiography in seven cases. Cardiac CT can accurately demonstrates CSD in preoperative adult patients. CT may have an incremental role in preoperative planning, particularly in those with more complex anatomy. (orig.)

  13. THE NONLINEAR VISCOELASTIC CONSTITUTIVE MODEL OF CARDIAC MYOCYTE IN SIMULATION OF MICROPIPETTE ASPIRATION EXPERIMENT%心肌细胞大变形黏弹性模型及在实验中的应用

    Institute of Scientific and Technical Information of China (English)

    唐陶; 王世骐; 裘钧; 庄茁

    2009-01-01

    在衡量单个细胞力学行为的研究中,越来越多地采用结合实验的数值模拟方法.在连续介质力学框架下,发展了一种新的心肌细胞本构模型,并与微管吮吸实验结合,探讨了心肌细胞的力学特性.本构模型是对普遍使用的仅能用于小变形分析的标准线性固体模型的一种扩展,它将超弹性性能引入到黏弹性模型中,用以描述细胞的大变形黏弹性效应.基于改进的本构模型,对心肌细胞微管吮吸实验过程进行了有限元模拟,并将计算结果与实验结果以及经典理论解进行了对比.结果显示发展的本构模型适合细胞大变形问题的有限元数值模拟.%Numerical modeling with experimental analysis is increasingly being used to evaluate the mechan-ical properties of living cells in single cell mechanics. In the present study, through the continuum mechanics process, a new constitutive model for cardiac myocyte is developed, and together with the micropipette aspi-ration experiment, the mechanical property of cardiac myocyte is investigated. The commonly used standard linear solid model is extended into a nonlinear viscoelastic constitutive model in which was introduced the hyperelasticity to describe the large deformation of myocytes in response to micropipette aspiration. Based on the constitutive model and experiment data, the experiment process is simulated, and the computational results are compared with the experiment results and classic theoretical solutions. The results show that the new constitutive model suits the computation of large deformation of cells.

  14. [Effect of carvedilol in the combination with quercetine and tiotriazoline on the nucleus density and RNA concentration in the nucleus of cardiac myocytes of spontaneous hypertensive rats].

    Science.gov (United States)

    Zahorodnyĭ, M I

    2010-01-01

    It was found out in the previous studies, that rats with spontaneous hypertension (SHR) developed the hypertrophy of myocardium, disorders of osmotic properties of erythrocytes membranes, morphological and ultrastructural changes in the cardiac hystiocytes of animals. Carvedilol in SHR rats has decreased blood pressure, and normalized physiological, biochemical and morphological indexes in the cardiac muscle. More expressed effect was observed during the use of carvedilol with metabolic medications--Quercetine and Tiotriazoline. Studies on SHR rats has shown increase of cardiac hystiocyte nuclei density and decrease in RNA concentration in a cardiac muscle. Carvedilol, Quercetine and Tiotriazoline have normalising effect on investigated parameters. The use of carvedilol with Tiotriazoline have more expressed normalising effect on nuclei density of cardiac hystiocytes, and also on RNA concentration PHK in nuclei of cardiac muscle. PMID:21265126

  15. Ketamine in adult cardiac surgery and the cardiac surgery Intensive Care Unit: An evidence-based clinical review

    Directory of Open Access Journals (Sweden)

    Michael Mazzeffi

    2015-01-01

    Full Text Available Ketamine is a unique anesthetic drug that provides analgesia, hypnosis, and amnesia with minimal respiratory and cardiovascular depression. Because of its sympathomimetic properties it would seem to be an excellent choice for patients with depressed ventricular function in cardiac surgery. However, its use has not gained widespread acceptance in adult cardiac surgery patients, perhaps due to its perceived negative psychotropic effects. Despite this limitation, it is receiving renewed interest in the United States as a sedative and analgesic drug for critically ill-patients. In this manuscript, the authors provide an evidence-based clinical review of ketamine use in cardiac surgery patients for intensive care physicians, cardio-thoracic anesthesiologists, and cardio-thoracic surgeons. All MEDLINE indexed clinical trials performed during the last 20 years in adult cardiac surgery patients were included in the review.

  16. Functional analysis of Na+/K+-ATPase isoform distribution in rat ventricular myocytes.

    Science.gov (United States)

    Despa, Sanda; Bers, Donald M

    2007-07-01

    The Na(+)/K(+)-ATPase (NKA) is the main route for Na(+) extrusion from cardiac myocytes. Different NKA alpha-subunit isoforms are present in the heart. NKA-alpha1 is predominant, although there is a variable amount of NKA-alpha2 in adult ventricular myocytes of most species. It has been proposed that NKA-alpha2 is localized mainly in T-tubules (TT), where it could regulate local Na(+)/Ca(2+) exchange and thus cardiac myocyte Ca(2+). However, there is controversy as to where NKA-alpha1 vs. NKA-alpha2 are localized in ventricular myocytes. Here, we assess the TT vs. external sarcolemma (ESL) distribution functionally using formamide-induced detubulation of rat ventricular myocytes, NKA current (I(Pump)) measurements and the different ouabain sensitivity of NKA-alpha1 (low) and NKA-alpha2 (high) in rat heart. Ouabain-dependent I(Pump) inhibition in control myocytes indicates a high-affinity NKA isoform (NKA-alpha2, K(1/2) = 0.38 +/- 0.16 microM) that accounts for 29.5 +/- 1.3% of I(Pump) and a low-affinity isoform (NKA-alpha1, K(1/2) = 141 +/- 17 microM) that accounts for 70.5% of I(Pump). Detubulation decreased cell capacitance from 164 +/- 6 to 120 +/- 8 pF and reduced I(Pump) density from 1.24 +/- 0.05 to 1.02 +/- 0.05 pA/pF, indicating that the functional density of NKA is significantly higher in TT vs. ESL. In detubulated myocytes, NKA-alpha2 accounted for only 18.2 +/- 1.1% of I(Pump). Thus, approximately 63% of I(Pump) generated by NKA-alpha2 is from the TT (although TT are only 27% of the total sarcolemma), and the NKA-alpha2/NKA-alpha1 ratio in TT is significantly higher than in the ESL. The functional density of NKA-alpha2 is approximately 4.5 times higher in the T-tubules vs. ESL, whereas NKA-alpha1 is almost uniformly distributed between the TT and ESL. PMID:17392375

  17. Knowledge Management in Cardiac Surgery: The Second Tehran Heart Center Adult Cardiac Surgery Database Report

    Directory of Open Access Journals (Sweden)

    Kyomars Abbasi

    2015-10-01

    Full Text Available Background: The Adult Cardiac Surgery Databank (ACSD of Tehran Heart Center was established in 2002 with a view to providing clinical prediction rules for outcomes of cardiac procedures, developing risk score systems, and devising clinical guidelines. This is a general analysis of the collected data.Methods: All the patients referred to Tehran Heart Center for any kind of heart surgery between 2002 and 2008 were included, and their demographic, medical, clinical, operative, and postoperative data were gathered. This report presents general information as well as in-hospital mortality rates regarding all the cardiac procedures performed in the above time period.Results: There were 24959 procedures performed: 19663 (78.8% isolated coronary artery bypass grafting surgeries (CABGs; 1492 (6.0% isolated valve surgeries; 1437 (5.8% CABGs concomitant with other procedures; 832 (3.3% CABGs combined with valve surgeries; 722 (2.9% valve surgeries concomitant with other procedures; 545 (2.2% surgeries other than CABG or valve surgery; and 267 (1.1% CABGs concomitant with valve and other types of surgery. The overall mortality was 205 (1.04%, with the lowest mortality rate (0.47% in the isolated CABGs and the highest (4.49% in the CABGs concomitant with valve surgeries and other types of surgery. Meanwhile, the overall mortality rate was higher in the female patients than in the males (1.90% vs. 0.74%, respectively.Conclusion: Isolated CABG was the most prevalent procedure at our center with the lowest mortality rate. However, the overall mortality was more prevalent in our female patients. This database can serve as a platform for the participation of the other countries in the region in the creation of a regional ACSD.

  18. Sildenafil preserves diastolic relaxation after reduction by L-NAME and increases phosphodiesterase-5 in the intercalated discs of cardiac myocytes and arterioles

    OpenAIRE

    Silvia Elaine Ferreira-Melo; Caroline Demacq; Silvia Lacchini; José Eduardo Krieger; Maria Cláudia Irigoyen; Heitor Moreno

    2011-01-01

    OBJECTIVES: We investigated the influence of sildenafil on cardiac contractility and diastolic relaxation and examined the distribution of phosphodiesterase-5 in the hearts of hypertensive rats that were treated with by NG-nitro-L-arginine methyl ester (L-NAME). METHODS: Male Wistar rats were treated with L-NAME and/or sildenafil for eight weeks. The Langendorff method was used to examine the effects of sildenafil on cardiac contractility and diastolic relaxation. The presence and location of...

  19. 26S Proteasome regulation of Ankrd1/CARP in adult rat ventricular myocytes and human microvascular endothelial cells

    International Nuclear Information System (INIS)

    Highlights: ► The 26S proteasome regulates Ankrd1 levels in cardiomyocytes and endothelial cells. ► Ankrd1 protein degrades 60-fold faster in endothelial cells than cardiomyocytes. ► Differential degradation appears related to nuclear vs. sarcolemmal localization. ► Endothelial cell density shows uncoupling of Ankrd1 mRNA and protein levels. -- Abstract: Ankyrin repeat domain 1 protein (Ankrd1), also known as cardiac ankyrin repeat protein (CARP), increases dramatically after tissue injury, and its overexpression improves aspects of wound healing. Reports that Ankrd1/CARP protein stability may affect cardiovascular organization, together with our findings that the protein is crucial to stability of the cardiomyocyte sarcomere and increased in wound healing, led us to compare the contribution of Ankrd1/CARP stability to its abundance. We found that the 26S proteasome is the dominant regulator of Ankrd1/CARP degradation, and that Ankrd1/CARP half-life is significantly longer in cardiomyocytes (h) than endothelial cells (min). In addition, higher endothelial cell density decreased the abundance of the protein without affecting steady state mRNA levels. Taken together, our data and that of others indicate that Ankrd1/CARP is highly regulated at multiple levels of its expression. The striking difference in protein half-life between a muscle and a non-muscle cell type suggests that post-translational proteolysis is correlated with the predominantly structural versus regulatory role of the protein in the two cell types.

  20. Myocyte remodelling in response to hypertrophic stimuli requires nucleocytoplasmic shuttling of muscle LIM protein

    OpenAIRE

    Boateng, Samuel Y; Senyo, Samuel E.; Qi, Lixin; Goldspink, Paul H.; Russell, Brenda

    2009-01-01

    CSRP3 or Muscle LIM protein (MLP) is a nucleocytoplasmic shuttling protein and a mechanosensor in cardiac myocytes. MLP regulation and function was studied in cultured neonatal rat myocytes treated with pharmacological or mechanical stimuli. Either verapamil or BDM decreased nuclear MLP while phenylephrine and cyclic strain increased it. These results suggest that myocyte contractility regulates MLP subcellular localization. When RNA polymerase II was inhibited with α-amanitin, nuclear MLP wa...

  1. Bidirectional reprogramming of fusion cells of pluripotent stem cells/primary cardiac myocytes%诱导多能干细胞/原代心肌细胞的融合细胞表现出双向重建

    Institute of Scientific and Technical Information of China (English)

    熊挺淋; 张晓刚; 赵霞; 马红芬

    2011-01-01

    Objective To construct fusion cells with induced pluripotent stem cells (iPSc) and primary cardiac myocytes in vitro, and to investigate biological features of the fusion cells. Methods Polyethylene glycol (PEG-4000) was used to mediate the cell fusion of iPSc derived from green fluorescent protein (GFP) transgenes (octamer-binding transcription factor-4, Oct-4) mouse and cardiac myocytes from neonatal mouse. Morphological changes of the fusion cells were observed dynamically after alkaline phosphatase (AKP) staining. Specific proteins of stem cells and cardiac myocytes in fusion cells were detected by immunofluores-cence. Chromosome karyotype analysis were performed to determine whether the occurrence of nuclear fusion and degree of integration. Results Fusion cells were constructed successfully by polyethylene glycol mediation. Colony-like cell clusters appeared in 4 d after fusion. The AKP positive rate of iPSc were 0.935 ±0.039, 0.939 ± 0.022, 0.954 ± 0.017, and 0.944 ± 0.027 at the 2nd, 3rd, 4th and 5th days respectively, and that of fusion cells were 0.761 ±0.044, 0.740 ±0.023, 0.681 ±0.034, and 0.748 ±0.045 at the corresponding days respectively. At the same time points, there were significant differences between iPSc AKP-positive rates and those of fusion cells ( P < 0. 05). In the initial stage, fusion cells mainly displayed iPSc characteristics, with Oct-4 positive while cTnT negative. Then the fusion cells began to display both characteristics of iPSc and cardiac myocytes in 7 d after fusion, with positive expression of Oct-4 and cTnT. More than 80% of fusion cells had 76 to 80 chromosomes. Conclusion Fusion cells from diploid iPSc and diploid myocardial cells display the characteristics of the two parental cells and show bidirectional reprogramming.%目的 体外构建诱导多能干细胞(induced pluripotent stem cells,iPSc)与原代心肌细胞的融合细胞,初步探讨融合细胞体外生物学特性.方法

  2. Adult-Onset Still's Disease and Cardiac Tamponade: A Rare Association

    Science.gov (United States)

    Silva, Doroteia; de Jesus Silva, Maria; André, Rui; Varela, Manuel Gato; Diogo, António Nunes

    2015-01-01

    Adult-onset Still's disease is a rare disorder with potentially severe clinical features, including cardiac involvement. This systemic inflammatory disease of unknown origin should be considered in the differential diagnosis of pericarditis, with or without pericardial effusion. Cardiac tamponade is a very rare sequela that requires an invasive approach, such as percutaneous or surgical pericardial drainage, in addition to the usual conservative therapy. The authors describe a case of adult-onset Still's disease rendered more difficult by pericarditis and cardiac tamponade, and they briefly review the literature on this entity. PMID:26175648

  3. Liberación de endotelina-1 por angiotensina ll en miocitos cardíacos aislados Angiotensin II-induced endothelin-1 release in cardiac myocytes

    Directory of Open Access Journals (Sweden)

    María C. Villa-Abrille

    2006-06-01

    Full Text Available Muchos de los efectos de la angiotensina II (Ang II son mediados en realidad por la acción de endotelina (ET endógena liberada y/o producida en respuesta a la Ang II. En este trabajo evaluamos la interacción Ang II/ET-1, sus consecuencias en la contractilidad cardíaca y el papel de las especies reactivas del oxígeno (EROs. Se usaron cardiomiocitos aislados de gato. La Ang II, 1 nM, produjo un efecto inotrópico positivo (EIP de 31.8±3.8% que fue cancelado por inhibición de los receptores AT1, de los receptores de ET, del intercambiador Na+/H+ (NHE, del modo inverso del intercambiador Na+/Ca2+ (NCX o por el secuestro de EROs. La Ang II, 100 nM, produjo un EIP de 70.5±7.6% que fue cancelado por inhibición de los receptores AT1 y bloqueado en parte por inhibición de los receptores de ET, del NHE, del modo inverso del NCX o por el secuestro de EROs. La Ang II, 1 nM, incrementó el ARNm de la preproET-1 lo cual fue anulado por el bloqueo de los receptores AT1. Los resultados permiten concluir que el EIP de la Ang II es debido a la acción de la ET-1 endógena liberada/formada por la Ang II. La ET-1 produce: estimulación del NHE, activación del modo inverso del NCX y un consecuente EIP. Dentro de esta cascada también participarían los EROs.Many of the effects thought to be due to angiotensin II (Ang II are due to the release/formation of endothelin (ET. We tested whether Ang II elicits its positive inotropic effect (PIE by the action of endogenous ET-1 and the role played by the reactive oxygen species (ROS in this mechanism. Experiments were performed in cat isolated ventricular myocytes in which sarcomere shortening (SS was measured to asses contractility after pharmacological interventions and the effect of Ang II on inotropism were analyzed. Ang II 1 nM increased SS by 31.8±3.8% (p<0.05. This PIE was cancelled by AT1 receptor blockade, by ET-1 receptors blockade, by Na+/H+ exchanger (NHE inhibition, by reverse mode Na+/Ca2

  4. The anti-angiogenic factor PEDF is present in the human heart and is regulated by anoxia in cardiac myocytes and fibroblasts

    OpenAIRE

    Rychli, Kathrin; Kaun, Christoph; Hohensinner, Philipp J.; Dorfner, Adrian J; Pfaffenberger, Stefan; Niessner, Alexander; Bauer, Michael; Dietl, Wolfgang; Podesser, Bruno K.; Maurer, Gerald; Huber, Kurt; Wojta, Johann

    2009-01-01

    Abstract Cardiac diseases such as myocardial infarction and heart failure are among the leading causes of death in western societies. Therapeutic angiogenesis has been suggested as a concept to combat these diseases. The biology of angiogenic factors expressed in the heart such as vascular endothelial growth factor (VEGF) is well studied, whereas data on anti-angiogenic mediators in the heart are scarce. Here we study the expression of the anti-angiogenic factor pigment epithelium-derived fac...

  5. MRI and CT appearances of cardiac tumours in adults

    International Nuclear Information System (INIS)

    Primary cardiac tumours are rare, and metastases to the heart are much more frequent. Myxoma is the commonest benign primary tumour and sarcomas account for the majority of malignant lesions. Clinical manifestations are diverse, non-specific, and governed by the location, size, and aggressiveness. Imaging plays a central role in their evaluation, and familiarity with characteristic features is essential to generate a meaningful differential diagnosis. Cardiac magnetic resonance imaging (MRI) has become the reference technique for evaluation of a suspected cardiac mass. Computed tomography (CT) provides complementary information and, with the advent of electrocardiographic gating, has become a powerful tool in its own right for cardiac morphological assessment. This paper reviews the MRI and CT features of primary and secondary cardiac malignancy. Important differential considerations and potential diagnostic pitfalls are also highlighted.

  6. Older Adults in Cardiac Rehabilitation: A New Strategy for Enhancing Physical Function.

    Science.gov (United States)

    Rejeski, W. Jack; Foy, Capri Gabrielle; Brawley, Lawrence R.; Brubaker, Peter H.; Focht, Brian C.; Norris, James L., III; Smith, Marci L.

    2002-01-01

    Contrasted the effect of a group-mediated cognitive- behavioral intervention (GMCB) versus traditional cardiac rehabilitation (CRP) upon changes in objective and self-reported physical function of older adults after 3 months of exercise therapy. Both groups improved significantly. Adults with lower function at the outset of the intervention…

  7. Stretch-induced increase in cardiac contractility is independent of myocyte Ca2+ while block of stretch channels by streptomycin improves contractility after ischemic stunning

    OpenAIRE

    Rhodes, Samhita S.; Camara, Amadou K.S.; Aldakkak, Mohammed; Heisner, James S.; Stowe, David F

    2015-01-01

    Stretching the cardiac left ventricle (LV) enhances contractility but its effect on myoplasmic [Ca2+] is controversial. We measured LV pressure (LVP) and [Ca2+] as a function of intra-LV stretch in guinea pig intact hearts before and after 15 min global stunning ± perfusion with streptomycin (STM), a stretch-activated channel blocker. LV wall [Ca2+] was measured by indo-1 fluorescence and LVP by a saline-filled latex balloon inflated in 50 μL steps to stretch the LV. We implemented a mathemat...

  8. Down-regulation of microRNA-26b rescued hypoxia-induced apoptosis in cultured neonatal rat cardiac myocytes by regulating PTEN

    OpenAIRE

    Wang, Xiaoyu; Li, Chen; Dai, Qiaoqun

    2015-01-01

    Background: Cardiomyocyte hypoxia causes cardiac hypertrophy and other major myocardial injuries. We investigated the molecular mechanism of microRNA-26b (miR-26b) in regulating hypoxia-induced apoptosis in rat neonatal cardiomyocytes. Methods: Neonatal rat cardiomyocytes was prepared in vitro and hypoxia was induced. Apoptotic cardiomyocytes were examined by TUNEL staining and the expression of miR-26b were monitored by qRT-PCR. The effect of mir-26b downregulation on hypoxia-induced apoptos...

  9. Technetium-99m labeled 1-(4-fluorobenzyl)-4-(2-mercapto-2-methyl-4-azapentyl)-4- (2-mercapto-2-methylp ropylamino)-piperidine and iodine-123 metaiodobenzylguanidine for studying cardiac adrenergic function: a comparison of the uptake characteristics in vascular smooth muscle cells and neonatal cardiac myocytes, and an investigation in rats

    Energy Technology Data Exchange (ETDEWEB)

    Samnick, Samuel E-mail: rassam@uniklinik-saarland.de; Scheuer, Claudia; Muenks, Sven; El-Gibaly, Amr M.; Menger, Michael D.; Kirsch, Carl-Martin

    2004-05-01

    In developing technetium-99m-based radioligands for in vivo studies of cardiac adrenergic neurons, we compared the uptake characteristics of the {sup 99m}Tc-labeled 1-(4-fluorobenzyl)-4-(2-mercapto-2-methyl-4-azapentyl)-4- (2-mercapto-2-methylpropylamino)-piperidine ({sup 99m}Tc-FBPBAT) with those of the clinically established meta-[{sup 123}I]iodobenzylguanidine ({sup 123}I-MIBG) in rat vascular smooth muscle cells and neonatal cardiac myocytes. Furthermore, the cardiac and extracardiac uptake of both radiopharmaceuticals was assessed in intact rats and in rats pretreated with various {alpha}- and {beta}-adrenoceptor drugs, and adrenergic reuptake blocking agents. The uptake of {sup 99m}Tc-FBPBAT and {sup 123}I-MIBG into vascular smooth muscle cells and neonatal cardiac myocytes was rapid; more than 85% of the radioactivity accumulation into the cells occurring within the first 3 minutes. Radioactivity uptake after a 60-minute incubation at 37 degree sign C (pH 7.4) varied from 15% to 65% of the total loaded activity per million cells. In all cases, {sup 99m}Tc-FBPBAT showed the higher uptake, relative to {sup 123}I-MIBG, at any given cell concentration. The cellular uptake of {sup 99m}Tc-FBPBAT was lower at 4 degree sign C and 20 degree sign C than at 37 degree sign C. In contrast, the {sup 123}I-MIBG uptake was only slightly temperature dependent. Inhibition experiments confirmed that the cellular uptake of {sup 123}I-MIBG is mediated by the uptake-I carrier, whereas {alpha}{sub 1}- and {beta}{sub 1}-adrenoceptors were predominantly involved in the uptake of {sup 99m}Tc-FBPBAT into the cardiovascular tissues. Biodistribution studies in rats showed that {sup 99m}Tc-FBPBAT accumulated in myocardium after intravenous injection. Radioactivity in rat heart amounted to 2.32% and 1.91% of the injected dose per gram at 15 and 60 minutes postinjection, compared with 3.10% and 2.21% injected dose per gram of tissue (%ID/g) in the experiment with {sup 123}I

  10. Provision of Transition Education and Referral Patterns from Pediatric Cardiology to Adult Cardiac Care.

    Science.gov (United States)

    Harbison, Anna L; Grady, Stafford; Chi, Kevin; Fernandes, Susan M

    2016-02-01

    ACC/AHA guidelines recommend a structured preparation for and transfer to adult-oriented cardiac care for adult survivors of pediatric onset heart disease (POHD). Given this, we sought to describe the transition and transfer practices for a cohort of young adults with POHD and to determine factors associated with successful transfer to adult-oriented cardiac care. We performed a single-center, retrospective chart review on patients ≥18 years of age, with POHD likely to require lifelong cardiac care, who were seen in outpatient pediatric cardiology (PC) between 2008 and 2011. Successful transfer was defined as the subsequent attendance at adult cardiology (AC) within 2 years of PC visit. We identified 118 patients who met study criteria. Mean age 22.4 ± 2.0 years, 59 % male, 64 % white and 40 % Hispanic. Mean transition education topics noted was 3.3 ± 1.8 out of 20 and covered the underlying cardiac disease (89 %), follow-up and current medications (56 %) and exercise limitations (34 %). Recommendations for follow-up were AC (57 %) and PC (33 %). Of those told to transfer to AC, 79 % successfully transferred. Characteristics of successful transfer included: prior cardiac surgery (p = 0.008), cardiac medication use (p = 0.006) and frequency of follow-up ≤1 year (p = 0.037). One-quarter of all subjects did not follow-up within at least 2 years. Despite published guidelines, transition education appears lacking and the approach to transfer to adult cardiac care is not consistent. Given the increased risk of morbidity and mortality in this patient population, standardization of transition education and transfer processes appear warranted. PMID:26385471

  11. Effect of hypercholesterolemia on the ionic currents in cardiac ventricular myocytes of rats%高胆固醇血症对大鼠心室肌细胞离子电流的作用

    Institute of Scientific and Technical Information of China (English)

    周宇宏; 王玲; 单宏丽; 张妍; 孙宏丽; 杨宝峰

    2007-01-01

    AIM: To determine whether chronic hypercholesterolemia affects ionic currents on cardiac ventricular myocytes of rats. METHODS: Whole - cell patch - clamp technique was used to record the ionic currents in single cardiac myocytes isolated from normal cholesterolemia and hypercholesterolemia rats. RESULTS: In the hypercholesterol group (group Ⅱ ), serum total - cholesterol level was significantly higher than that of normal group (group Ⅰ) [ (3. 10 ±tricular myocytes of rats, 50% repolarization of action potential duration (APD50) prolonged from (70. 86 ± 8.12) ms (group Ⅰ) to (116.16±6.90)ms (group Ⅱ) (n=10 in each group, P<0.01); APD90 prolonged from (95.10±7. 27)ms (group Ⅰ ) to (144. 04 ± 7.39)ms (group Ⅱ ) (n = 10 in each group, P < 0. 01 ); at the test potential of - 120 mV, Ik1 increased from ( - 16. 98 ±4. 54) pA/pF(group Ⅰ ) to ( - 19.92 ±4.08) pA/pF (group Ⅱ ) (n = 12 in each group, P < 0. 05 ); at the test potential of 0 mV, ICa- L decreased from ( - 8.56 ± 1.29) pA/pF ( group Ⅰ ) to ( -5. 24 ± 0. 90) pA/pF ( group Ⅱ ) ( n = 10 in each group, P < 0. 01 ); at the test potential of + 60 mV, Ito decreased from (13.20±1.97) pA/pF (group Ⅰ) to (10.30±1.97) pA/pF (group Ⅱ) (n=8 in each group, P<0. 05). CON-CLUSION: Hypercholesterolemia affects the ionic currents on cardiomyocytes of rats greatly, which may be the ionic mechanism of cardiac toxicity induced by hypercholesterolemia.%目的:观察高胆固醇血症对大鼠心室肌细胞离子电流的作用.方法:通过全细胞膜片钳技术记录用酶解法分离的正常和高胆固醇饮食的大鼠心室肌细胞离子电流.结果:高胆固醇组(组Ⅱ)血清总胆固醇水平明显高于正常组(组Ⅰ)[(3.10±0.62)mmol·L-1vs(1.18±0.37)mmol·L-1,P<0.01,n=20].组Ⅱ血清甘油三酯也明显高于组Ⅰ[(1.51±0.30)mmol·L-1vs(0.43±0.15)mmol·L-1,P<0.01,n=20].组Ⅱ大鼠心室肌细胞动作电位时程(APD)与组Ⅰ相比明显延长,APD50从(70

  12. Targeting pleiotropic signaling pathways to control adult cardiac stem cell fate and function

    Directory of Open Access Journals (Sweden)

    GiancarloForte

    2014-07-01

    Full Text Available The identification of different pools of cardiac progenitor cells resident in the adult mammalian heart opened a new era in heart regeneration as a means to restore the loss of functional cardiac tissue and overcome the limited availability of donor organs. Indeed, resident stem cells are believed to participate to tissue homeostasis and renewal in healthy and damaged myocardium although their actual contribution to these processes remain unclear. The poor outcome in terms of cardiac regeneration following tissue damage point out at the need for a deeper understanding of the molecular mechanisms controlling CPC behavior and fate determination before new therapeutic strategies can be developed. The regulation of cardiac resident stem cell fate and function is likely to result from the interplay between pleiotropic signaling pathways as well as tissue- and cell-specific regulators. Such a modular interaction – which has already been described in the nucleus of a number of different cells where transcriptional complexes form to activate specific gene programs - would account for the unique responses of cardiac progenitors to general and tissue-specific stimuli.The study of the molecular determinants involved in cardiac stem/progenitor cell regulatory mechanisms may shed light on the processes of cardiac homeostasis in health and disease and thus provide clues on the actual feasibility of cardiac cell therapy through tissue-specific progenitors.

  13. Calsequestrins in skeletal and cardiac muscle from adult Danio rerio.

    Science.gov (United States)

    Furlan, Sandra; Mosole, Simone; Murgia, Marta; Nagaraj, Nagarjuna; Argenton, Francesco; Volpe, Pompeo; Nori, Alessandra

    2016-04-01

    Calsequestrin (Casq) is a high capacity, low affinity Ca(2+)-binding protein, critical for Ca(2+)-buffering in cardiac and skeletal muscle sarcoplasmic reticulum. All vertebrates have multiple genes encoding for different Casq isoforms. Increasing interest has been focused on mammalian and human Casq genes since mutations of both cardiac (Casq2) and skeletal muscle (Casq1) isoforms cause different, and sometime severe, human pathologies. Danio rerio (zebrafish) is a powerful model for studying function and mutations of human proteins. In this work, expression, biochemical properties cellular and sub-cellular localization of D. rerio native Casq isoforms are investigated. By quantitative PCR, three mRNAs were detected in skeletal muscle and heart with different abundances. Three zebrafish Casqs: Casq1a, Casq1b and Casq2 were identified by mass spectrometry (Data are available via ProteomeXchange with identifier PXD002455). Skeletal and cardiac zebrafish calsequestrins share properties with mammalian Casq1 and Casq2. Skeletal Casqs were found primarily, but not exclusively, at the sarcomere Z-line level where terminal cisternae of sarcoplasmic reticulum are located. PMID:26585961

  14. Cardiac Autonomic Function during Submaximal Treadmill Exercise in Adults with Down Syndrome

    Science.gov (United States)

    Mendonca, Goncalo V.; Pereira, Fernando D.; Fernhall, Bo

    2011-01-01

    This study determined whether the cardiac autonomic function of adults with Down syndrome (DS) differs from that of nondisabled persons during submaximal dynamic exercise. Thirteen participants with DS and 12 nondisabled individuals performed maximal and submaximal treadmill tests with metabolic and heart rate (HR) measurements. Spectral analysis…

  15. Altered Na/Ca exchange distribution in ventricular myocytes from failing hearts.

    Science.gov (United States)

    Gadeberg, Hanne C; Bryant, Simon M; James, Andrew F; Orchard, Clive H

    2016-01-15

    In mammalian cardiac ventricular myocytes, Ca efflux via Na/Ca exchange (NCX) occurs predominantly at T tubules. Heart failure is associated with disrupted t-tubular structure, but its effect on t-tubular function is less clear. We therefore investigated t-tubular NCX activity in ventricular myocytes isolated from rat hearts ∼18 wk after coronary artery ligation (CAL) or corresponding sham operation (Sham). NCX current (INCX) and l-type Ca current (ICa) were recorded using the whole cell, voltage-clamp technique in intact and detubulated (DT) myocytes; intracellular free Ca concentration ([Ca]i) was monitored simultaneously using fluo-4. INCX was activated and measured during application of caffeine to release Ca from sarcoplasmic reticulum (SR). Whole cell INCX was not significantly different in Sham and CAL myocytes and occurred predominantly in the T tubules in Sham myocytes. CAL was associated with redistribution of INCX and ICa away from the T tubules to the cell surface and an increase in t-tubular INCX/ICa density from 0.12 in Sham to 0.30 in CAL myocytes. The decrease in t-tubular INCX in CAL myocytes was accompanied by an increase in the fraction of Ca sequestered by SR. However, SR Ca content was not significantly different in Sham, Sham DT, and CAL myocytes but was significantly increased by DT of CAL myocytes. In Sham myocytes, there was hysteresis between INCX and [Ca]i, which was absent in DT Sham but present in CAL and DT CAL myocytes. These data suggest altered distribution of NCX in CAL myocytes. PMID:26566728

  16. Electrical stimulation directs engineered cardiac tissue to an age-matched native phenotype

    Directory of Open Access Journals (Sweden)

    Richard A Lasher

    2012-07-01

    Full Text Available Quantifying structural features of native myocardium in engineered tissue is essential for creating functional tissue that can serve as a surrogate for in vitro testing or the eventual replacement of diseased or injured myocardium. We applied three-dimensional confocal imaging and image analysis to quantitatively describe the features of native and engineered cardiac tissue. Quantitative analysis methods were developed and applied to test the hypothesis that environmental cues direct engineered tissue toward a phenotype resembling that of age-matched native myocardium. The analytical approach was applied to engineered cardiac tissue with and without the application of electrical stimulation as well as to age-matched and adult native tissue. Individual myocytes were segmented from confocal image stacks and assigned a coordinate system from which measures of cell geometry and connexin-43 spatial distribution were calculated. The data were collected from 9 nonstimulated and 12 electrically stimulated engineered tissue constructs and 5 postnatal day 12 and 7 adult hearts. The myocyte volume fraction was nearly double in stimulated engineered tissue compared to nonstimulated engineered tissue (0.34 ± 0.14 vs 0.18 ± 0.06 but less than half of the native postnatal day 12 (0.90 ± 0.06 and adult (0.91 ± 0.04 myocardium. The myocytes under electrical stimulation were more elongated compared to nonstimulated myocytes and exhibited similar lengths, widths, and heights as in age-matched myocardium. Furthermore, the percentage of connexin-43-positive membrane staining was similar in the electrically stimulated, postnatal day 12, and adult myocytes, whereas it was significantly lower in the nonstimulated myocytes. Connexin-43 was found to be primarily located at cell ends for adult myocytes and irregularly but densely clustered over the membranes of nonstimulated, stimulated, and postnatal day 12 myocytes. These findings support our hypothesis and reveal

  17. Characterization and influence of cardiac background sodium current in the atrioventricular node

    OpenAIRE

    Cheng, Hongwei; Li, Jue; James, Andrew F.; Inada, Shin; Choisy, Stéphanie C.M.; Orchard, Clive H.; Zhang, Henggui; Boyett, Mark R.; Hancox, Jules C.

    2016-01-01

    Background inward sodium current (IB,Na) that influences cardiac pacemaking has been comparatively under-investigated. The aim of this study was to determine for the first time the properties and role of IB,Na in cells from the heart's secondary pacemaker, the atrioventricular node (AVN). Myocytes were isolated from the AVN of adult male rabbits and mice using mechanical and enzymatic dispersion. Background current was measured using whole-cell patch clamp and monovalent ion substitution with...

  18. Fast tracking in adult cardiac surgery at Pakistan Institute of Medical Sciences

    International Nuclear Information System (INIS)

    Background: Early extubation after cardiac operation is an important aspect of fast-track cardiac anaesthesia. The length of stay in ICU limits utilisation of operation theatre in cardiac surgery. Increasing cost, limited resources, and newer surgical strategies have stimulated effectiveness of all routines in cardiac surgery, anaesthesia, and intensive care. Aim of this study was to determine the feasibility of fast-tracking in adult cardiac surgery and its effects on post operative recovery in our setup. Methods: This descriptive study was conducted over 14 months between Jul 16, 2007 to Sep 16, 2008. All the open heart cases were included unless absolute contraindications were there. We applied the rapid recovery protocol adopted from Oslo Hospital Norway in an attempt to achieve fast-tracking in our setup. Results: Two-hundred-seventy-four consecutive cases out of 400 operated cases were included in this study. Mean age was 47.69 +- 15.11 years, 27.7% were females, 5.8% were emergency cases, 5.1% were COPD, 11.1% were atrial fibrillation, and 6.9% were NYHA class-III cases. CABG was done in 66.1% cases and mean CPB-time was 75.92 +- 16.20 min. Mean Ventilation-time was 4.47+-4.48 hrs., 86% patients were fast-tracked to be extubated within 6 hours, and 85.4% patients remained free of post-op complications. Six (2.2%) re-intubatIions, 2.6% arrhythmias, 6.6% pleural effusions and 2.2% consolidation were observed post-operatively. Mean ICU stay was 2.49 +- 0.95 days and in-hospital mortality was 2.2%. Conclusion: Fast-tracking with extubation within 6 hours is feasible approach which minimises the post-operative complications significantly in adult cardiac surgical patients. (author)

  19. Risk Assessment of Mortality Following Intraoperative Cardiac Arrest Using POSSUM and P-POSSUM in Adults Undergoing Non-Cardiac Surgery

    OpenAIRE

    Kim, Shin Hyung; Kil, Hae Keum; Kim, Hye Jin; Koo, Bon-Nyeo

    2015-01-01

    Purpose The Physiological and Operative Severity Score for enUmeration of Mortality and morbidity (POSSUM) and its Portsmouth modification (P-POSSUM) are comprehensive assessment methods for evaluating patient and surgical factors widely used to predict 30-day mortality rates. In this retrospective study, we evaluated the usefulness of POSSUM and P-POSSUM in predicting 30-day mortality after intraoperative cardiac arrests in adult patients undergoing non-cardiac surgery. Materials and Methods...

  20. Cardiac adaptation to endurance training in young adult

    Directory of Open Access Journals (Sweden)

    Sandip Meghnad Hulke

    2011-01-01

    Full Text Available Context: Regular physical exercise is known to cause improvement of the cardiovascular function. This adaptation is studied here with the help of non-invasive methods. Aims: To evaluate morphological changes in heart by echocardiography, to see the effect of exercise on autonomic function, on aerobic power and to assess the sequence of changes. Settings and Design: Study comprises of 12-week duration and was done on the students of physical education. Materials and Methods: This study was a longitudinal study in which 100 subjects (51 male, 20.18 yrs±1.147, 49 female, 19.91 yrs±1.89 were assessed using electrocardiography, echocardiography and Queen′s College Step test (for VO 2max within 7 days of admission to their college and re-examined after 12 weeks. Statistical Analysis: Paired t-test using Graph pad prism5 software. Results: Electrocardiographic evaluation was suggestive of significant decrease in heart rate, significant increase in RR interval and t-wave amplitude in cardiac leads in males and similar but not significant result in females. No significant change was found in left ventricular morphology and ejection fraction after exercise program. Conclusions: The results of this study suggest that the exercise training over a period of 3 months does not influence cardiovascular morphology, but causes changes in parasympathetic and sympathetic tone and improves aerobic power.

  1. The Positive Transcription Elongation Factor b Is an Essential Cofactor for the Activation of Transcription by Myocyte Enhancer Factor 2

    OpenAIRE

    Nojima, Masanori; Huang, Yehong; Tyagi, Mudit; Kao, Hung-Ying; Fujinaga, Koh

    2008-01-01

    The positive transcription elongation factor b (P-TEFb), composed of cyclin-dependent kinase 9 and cyclin T1, stimulates the elongation of transcription by hyperphosphorylating the C-terminal region of RNA polymerase II. Aberrant activation of P-TEFb results in manifestations of cardiac hypertrophy in mice, suggesting that P-TEFb is an essential factor for cardiac myocyte function and development. Here, we present evidence that P-TEFb selectively activates transcription mediated by the myocyt...

  2. How to formulate membrane potential in a spatially homogeneous myocyte model?

    OpenAIRE

    Tanskanen, A. J.; E. I. Tanskanen; Greenstein, J. L.; Winslow, R L

    2005-01-01

    Membrane potential in a mathematical model of a cardiac myocyte can be formulated in different ways. Assuming a spatially homogeneous myocyte that is strictly charge-conservative and electroneutral as a whole, two methods will be compared: (1) the differential formulation dV/dt=-I/C_m of membrane potential used traditionally; and (2) the capacitor formulation, where membrane potential is defined algebraically by the capacitor equation V=Q/C_m. We examine the relationship between the formulati...

  3. High sugar intake exacerbates cardiac reperfusion injury in perinatal taurine depleted adult rats

    OpenAIRE

    Kulthinee Supaporn; Wyss J Michael; Jirakulsomchok Dusit; Roysommuti Sanya

    2010-01-01

    Abstract Perinatal taurine depletion and high sugar diets blunted baroreflex function and heightens sympathetic nerve activity in adult rats. Cardiac ischemia/reperfusion also produces these disorders and taurine treatment appears to improve these effects. This study tests the hypothesis that perinatal taurine exposure predisposes recovery from reperfusion injury in rats on either a basal or high sugar diet. Female Sprague-Dawley rats were fed normal rat chow with 3% beta-alanine (taurine dep...

  4. Canadian Cardiovascular Society 2009 Consensus Conference on the management of adults with congenital heart disease: Complex congenital cardiac lesions

    OpenAIRE

    Silversides, Candice K.; Oechslin, Erwin; Schwerzmann, Markus; Muhll, Isabelle Vonder; Khairy, Paul; Horlick, Eric; Landzberg, Mike; Meijboom, Folkert; Warnes, Carole; Therrien, Judith

    2010-01-01

    With advances in pediatric cardiology and cardiac surgery, the population of adults with congenital heart disease (CHD) has increased. In the current era, there are more adults with CHD than children. This population has many unique issues and needs. They have distinctive forms of heart failure and their cardiac disease can be associated with pulmonary hypertension, thromboemboli, complex arrhythmias and sudden death. Medical aspects that need to be considered relate to the long-term and mult...

  5. Oxidative stress decreases microtubule growth and stability in ventricular myocytes.

    Science.gov (United States)

    Drum, Benjamin M L; Yuan, Can; Li, Lei; Liu, Qinghang; Wordeman, Linda; Santana, L Fernando

    2016-04-01

    Microtubules (MTs) have many roles in ventricular myocytes, including structural stability, morphological integrity, and protein trafficking. However, despite their functional importance, dynamic MTs had never been visualized in living adult myocytes. Using adeno-associated viral vectors expressing the MT-associated protein plus end binding protein 3 (EB3) tagged with EGFP, we were able to perform live imaging and thus capture and quantify MT dynamics in ventricular myocytes in real time under physiological conditions. Super-resolution nanoscopy revealed that EB1 associated in puncta along the length of MTs in ventricular myocytes. The vast (~80%) majority of MTs grew perpendicular to T-tubules at a rate of 0.06μm∗s(-1) and growth was preferentially (82%) confined to a single sarcomere. Microtubule catastrophe rate was lower near the Z-line than M-line. Hydrogen peroxide increased the rate of catastrophe of MTs ~7-fold, suggesting that oxidative stress destabilizes these structures in ventricular myocytes. We also quantified MT dynamics after myocardial infarction (MI), a pathological condition associated with increased production of reactive oxygen species (ROS). Our data indicate that the catastrophe rate of MTs increases following MI. This contributed to decreased transient outward K(+) currents by decreasing the surface expression of Kv4.2 and Kv4.3 channels after MI. On the basis of these data, we conclude that, under physiological conditions, MT growth is directionally biased and that increased ROS production during MI disrupts MT dynamics, decreasing K(+) channel trafficking. PMID:26902968

  6. THE EFFECT OF EXERCISE PRECONDITION INDUCED MIR-21 AND BAX GENE EXPRESSIONS ON RATS' CARDIAC MYOCYTE AFTER EXHAUSTIVE EXERCISES%运动预适应对力竭运动后心肌mir-21和bax基因表达的研究

    Institute of Scientific and Technical Information of China (English)

    黄雅雯

    2011-01-01

    [目的]探讨运动预适应(excerise preconditioning,EP)对大鼠一次性力竭运动后心肌mir-21和bax基因表达的影响.[方法]健康雄性SD大鼠36只,随机分为对照组(C组)、一次性力竭运动组(E组)、运动预适应+一次性力竭运动组(EP组).力竭运动后即刻和24 h取各组心肌采用real-time PCR检测各心肌内mir-21和bax基因表达情况.[结果]EP可以显著抑制一次性力竭运动后心肌内mir-21基因的下调表达(P<0.05)和bax基因的上调表达(P<0.05).[结论]EP可以通过抑制mir-21基因下调从而抑制bax基因的上调来发挥保护作用.%[ Objective] To explore the effect of exercise preconditioning induced mir-21 and bax gene expressions on rats' cardiac myocyte after exhaustive exercises. [Methods] 36 healthy male SD rats were randomly divided into control group (C group) , exhaustive exercises (E group) , exercise preconditioning+ exhaustive exercises (EP group) .Used real-time PCR to detect expressions of mir-21 and bax after exhaustive exercises and 24h. [Results] The results of real-time PCR suggested that in EP group, down-regulation of mir-21 and up-regulation of bax cardiac myocyte were obviously inhibited by exhaustive exercises. [Conclusion] EP could inhibit the down-regulation of bax gene through inhibiting up-regulation of mir-21 gene.

  7. Hypoxia/Reoxygenation Cardiac Injury and Regeneration in Zebrafish Adult Heart

    Science.gov (United States)

    Pompilio, Giulio; Verduci, Lorena; Colombo, Gualtiero I.; Milano, Giuseppina; Guerrini, Uliano; Squadroni, Lidia; Cotelli, Franco; Pozzoli, Ombretta; Capogrossi, Maurizio C.

    2013-01-01

    Aims the adult zebrafish heart regenerates spontaneously after injury and has been used to study the mechanisms of cardiac repair. However, no zebrafish model is available that mimics ischemic injury in mammalian heart. We developed and characterized zebrafish cardiac injury induced by hypoxia/reoxygenation (H/R) and the regeneration that followed it. Methods and Results adult zebrafish were kept either in hypoxic (H) or normoxic control (C) water for 15 min; thereafter fishes were returned to C water. Within 2–6 hours (h) after reoxygenation there was evidence of cardiac oxidative stress by dihydroethidium fluorescence and protein nitrosylation, as well as of inflammation. We used Tg(cmlc2:nucDsRed) transgenic zebrafish to identify myocardial cell nuclei. Cardiomyocyte apoptosis and necrosis were evidenced by TUNEL and Acridine Orange (AO) staining, respectively; 18 h after H/R, 9.9±2.6% of myocardial cell nuclei were TUNEL+ and 15.0±2.5% were AO+. At the 30-day (d) time point myocardial cell death was back to baseline (n = 3 at each time point). We evaluated cardiomyocyte proliferation by Phospho Histone H3 (pHH3) or Proliferating Cell Nuclear Antigen (PCNA) expression. Cardiomyocyte proliferation was apparent 18–24 h after H/R, it achieved its peak 3–7d later, and was back to baseline at 30d. 7d after H/R 17.4±2.3% of all cardiomyocytes were pHH3+ and 7.4±0.6% were PCNA+ (n = 3 at each time point). Cardiac function was assessed by 2D-echocardiography and Ventricular Diastolic and Systolic Areas were used to compute Fractional Area Change (FAC). FAC decreased from 29.3±2.0% in normoxia to 16.4±1.8% at 18 h after H/R; one month later ventricular function was back to baseline (n = 12 at each time point). Conclusions zebrafish exposed to H/R exhibit evidence of cardiac oxidative stress and inflammation, myocardial cell death and proliferation. The initial decrease in ventricular function is followed by full recovery. This model more closely

  8. Mitochondrial DNA deletion mutations in adult mouse cardiac side population cells

    Energy Technology Data Exchange (ETDEWEB)

    Lushaj, Entela B., E-mail: lushaj@surgery.wisc.edu [Division of Cardiothoracic Surgery, Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792 (United States); Lozonschi, Lucian; Barnes, Maria; Anstadt, Emily; Kohmoto, Takushi [Division of Cardiothoracic Surgery, Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792 (United States)

    2012-06-01

    We investigated the presence and potential role of mitochondrial DNA (mtDNA) deletion mutations in adult cardiac stem cells. Cardiac side population (SP) cells were isolated from 12-week-old mice. Standard polymerase chain reaction (PCR) was used to screen for the presence of mtDNA deletion mutations in (a) freshly isolated SP cells and (b) SP cells cultured to passage 10. When present, the abundance of mtDNA deletion mutation was analyzed in single cell colonies. The effect of different levels of deletion mutations on SP cell growth and differentiation was determined. MtDNA deletion mutations were found in both freshly isolated and cultured cells from 12-week-old mice. While there was no significant difference in the number of single cell colonies with mtDNA deletion mutations from any of the groups mentioned above, the abundance of mtDNA deletion mutations was significantly higher in the cultured cells, as determined by quantitative PCR. Within a single clonal cell population, the detectable mtDNA deletion mutations were the same in all cells and unique when compared to deletions of other colonies. We also found that cells harboring high levels of mtDNA deletion mutations (i.e. where deleted mtDNA comprised more than 60% of total mtDNA) had slower proliferation rates and decreased differentiation capacities. Screening cultured adult stem cells for mtDNA deletion mutations as a routine assessment will benefit the biomedical application of adult stem cells.

  9. cap alpha. -skeletal and. cap alpha. -cardiac actin genes are coexpressed in adult human skeletal muscle and heart

    Energy Technology Data Exchange (ETDEWEB)

    Gunning, P.; Ponte, P.; Blau, H.; Kedes, L.

    1983-11-01

    The authors determined the actin isotypes encoded by 30 actin cDNA clones previously isolated from an adult human muscle cDNA library. Using 3' untranslated region probes, derived from ..cap alpha.. skeletal, ..beta..- and ..gamma..-actin cDNAs and from an ..cap alpha..-cardiac actin genomic clone, they showed that 28 of the cDNAs correspond to ..cap alpha..-skeletal actin transcripts. Unexpectedly, however, the remaining two cDNA clones proved to derive from ..cap alpha..-cardiac actin mRNA. Sequence analysis confirmed that the two skeletal muscle ..cap alpha..-cardiac actin cDNAs are derived from transcripts of the cloned ..cap alpha..-cardiac actin gene. Comparison of total actin mRNA levels in adult skeletal muscle and adult heart revealed that the steady-state levels in skeletal muscle are about twofold greater, per microgram of total cellular RNA, than those in heart. Thus, in skeletal muscle and in heart, both of the sarcomeric actin mRNA isotypes are quite abundant transcripts. They conclude that ..cap alpha..-skeletal and ..cap alpha..-cardiac actin genes are coexpressed as an actin pair in human adult striated muscles. Since the smooth-muscle actins (aortic and stomach) and the cytoplasmic actins (..beta.. and ..gamma..) are known to be coexpressed in smooth muscle and nonmuscle cells, respectively, they postulate that coexpression of actin pairs may be a common feature of mammalian actin gene expression in all tissues.

  10. Three-dimensional scaffolds of fetal decellularized hearts exhibit enhanced potential to support cardiac cells in comparison to the adult.

    Science.gov (United States)

    Silva, A C; Rodrigues, S C; Caldeira, J; Nunes, A M; Sampaio-Pinto, V; Resende, T P; Oliveira, M J; Barbosa, M A; Thorsteinsdóttir, S; Nascimento, D S; Pinto-do-Ó, P

    2016-10-01

    A main challenge in cardiac tissue engineering is the limited data on microenvironmental cues that sustain survival, proliferation and functional proficiency of cardiac cells. The aim of our study was to evaluate the potential of fetal (E18) and adult myocardial extracellular matrix (ECM) to support cardiac cells. Acellular three-dimensional (3D) bioscaffolds were obtained by parallel decellularization of fetal- and adult-heart explants thereby ensuring reliable comparison. Acellular scaffolds retained main constituents of the cardiac ECM including distinctive biochemical and structural meshwork features of the native equivalents. In vitro, fetal and adult ECM-matrices supported 3D culture of heart-derived Sca-1(+) progenitors and of neonatal cardiomyocytes, which migrated toward the center of the scaffold and displayed elongated morphology and excellent viability. At the culture end-point, more Sca-1(+) cells and cardiomyocytes were found adhered and inside fetal bioscaffolds, compared to the adult. Higher repopulation yields of Sca-1(+) cells on fetal ECM relied on β1-integrin independent mitogenic signals. Sca-1(+) cells on fetal bioscaffolds showed a gene expression profile that anticipates the synthesis of a permissive microenvironment for cardiomyogenesis. Our findings demonstrate the superior potential of the 3D fetal microenvironment to support and instruct cardiac cells. This knowledge should be integrated in the design of next-generation biomimetic materials for heart repair. PMID:27424216

  11. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult.

    Directory of Open Access Journals (Sweden)

    Vinicius S Carreira

    Full Text Available The Developmental Origins of Health and Disease (DOHaD Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR, either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr-/- and in utero TCDD-exposed Ahr+/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr-/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease.

  12. High Density Sphere Culture of Adult Cardiac Cells Increases the Levels of Cardiac and Progenitor Markers and Shows Signs of Vasculogenesis

    Directory of Open Access Journals (Sweden)

    Kristina Vukusic

    2013-01-01

    Full Text Available 3D environment and high cell density play an important role in restoring and supporting the phenotypes of cells represented in cardiac tissues. The aim of this study was therefore to investigate the suitability of high density sphere (HDS cultures for studies of cardiomyocyte-, endothelial-, and stem-cell biology. Primary adult cardiac cells from nine human biopsies were cultured using different media for up to 9 weeks. The possibilities to favor a certain cell phenotype and induce production of extra cellular matrix (ECM were studied by histology, immunohistochemistry, and quantitative real-time PCR. Defined media gave significant increase in both cardiac- and progenitor-specific markers and also an intraluminal position of endothelial cells over time. Cardiac media showed indication of differentiation and maturity of HDS considering the ECM production and activities within NOTCH regulation but no additional cardiac differentiation. Endothelial media gave no positive effects on endothelial phenotype but increased proliferation without fibroblast overgrowth. In addition, indications for early vasculogenesis were found. It was also possible to affect the Wnt signaling in HDS by addition of a glycogen synthase kinase 3 (GSK3 inhibitor. In conclusion, these findings show the suitability of HDS as in vitro model for studies of cardiomyocyte-, endothelial-, and stem-cell biology.

  13. Conventional hemofiltration during cardiopulmonary bypass increases the serum lactate level in adult cardiac surgery

    Directory of Open Access Journals (Sweden)

    Rabie Soliman

    2016-01-01

    Full Text Available Objective: To evaluate the effect of hemofiltration during cardiopulmonary bypass on lactate level in adult patients who underwent cardiac surgery. Design: An observational study. Setting: Prince Sultan cardiac center, Riyadh, Saudi Arabia. Participants: The study included 283 patients classified into two groups: Hemofiltration group (n=138, hemofiltration was done during CPB. Control group (n = 145, patients without hemofiltration. Interventions: Hemofiltration during cardiopulmonary bypass. Measurements and Main Results: Monitors included hematocrit, lactate levels, mixed venous oxygen saturation, amount of fluid removal during hemofiltration and urine output. The lactate elevated in group H than group C (P < 0.05, and the PH showed metabolic acidosis in group H (P < 0.05. The mixed venous oxygen saturation decreased in group H than group C (P < 0.05. The number of transfused packed red blood cells was lower in group H than group C (P < 0.05. The hematocrit was higher in group H than group C (P < 0.05. The urine output was lower in group H than group C (P < 0.05. Conclusions: Hemofiltration during cardiopulmonary bypass leads to hemoconcentration, elevated lactate level and increased inotropic support. There are some recommendations for hemofiltration: First; Hemofiltration should be limited for patients with impaired renal function, positive fluid balance, reduced response to diuretics or prolonged bypass time more than 2 hours. Second; Minimal amount of fluids should be administered to maintain adequate cardiac output and reduction of priming volumes is preferable to maintain controlled hemodilution. Third; it should be done before weaning of or after cardiopulmonary bypass and not during the whole time of cardiopulmonary bypass.

  14. A mighty small heart: the cardiac proteome of adult Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Anthony Cammarato

    Full Text Available Drosophila melanogaster is emerging as a powerful model system for the study of cardiac disease. Establishing peptide and protein maps of the Drosophila heart is central to implementation of protein network studies that will allow us to assess the hallmarks of Drosophila heart pathogenesis and gauge the degree of conservation with human disease mechanisms on a systems level. Using a gel-LC-MS/MS approach, we identified 1228 protein clusters from 145 dissected adult fly hearts. Contractile, cytostructural and mitochondrial proteins were most abundant consistent with electron micrographs of the Drosophila cardiac tube. Functional/Ontological enrichment analysis further showed that proteins involved in glycolysis, Ca(2+-binding, redox, and G-protein signaling, among other processes, are also over-represented. Comparison with a mouse heart proteome revealed conservation at the level of molecular function, biological processes and cellular components. The subsisting peptidome encompassed 5169 distinct heart-associated peptides, of which 1293 (25% had not been identified in a recent Drosophila peptide compendium. PeptideClassifier analysis was further used to map peptides to specific gene-models. 1872 peptides provide valuable information about protein isoform groups whereas a further 3112 uniquely identify specific protein isoforms and may be used as a heart-associated peptide resource for quantitative proteomic approaches based on multiple-reaction monitoring. In summary, identification of excitation-contraction protein landmarks, orthologues of proteins associated with cardiovascular defects, and conservation of protein ontologies, provides testimony to the heart-like character of the Drosophila cardiac tube and to the utility of proteomics as a complement to the power of genetics in this growing model of human heart disease.

  15. 神经介素 B 对大鼠心室肌细胞 L 型钙离子通道调节及机制研究%Modulation of L-type Ca2 + channels by neuromedin B in adult rat ventricular myocytes and the underlying mechanisms

    Institute of Scientific and Technical Information of China (English)

    应娇茜; 张园; 孙玉芳; 张国强; 常志刚

    2016-01-01

    Objective Toinvestigagte the effects of neuromedin B (NeuroB) on L-type Ca2 +channel currents ( IL ) and clarify the relevant signal pathway in adult rat ventricular myocytes.Methods RT-PCR and western blotting analysis were used todetect the expression ofNeuroB receptors in adult rat ventricular myocytes. The content of cAM P was detected by ELISA. The whole-cell patch clamp recording was used to investigate the effect of NeuroB on IL in adult rat ventricular myocytes. Further transduction pathway was studied by pharmacological methods.Results The NeuroB receptorwas endogenouly expressed in adult rat ventricular myocytes. NeuroB enhanced IL in a concentration-dependent manner. NeuroB-mediated increasement of IL was blocked by phosphokinase A ( PKA ) antagonist KT-5720 ,while the antagonist of phosphokinase C (PKC ) GF109203X elicited no such effects. NeuroB induced significant increase of cAM P level in adult rat ventricular myocytes.Conclusions NeuroB enhanced IL in adult rat ventricular myocytes through a NeuroB receptor-denpendent PKA signalling pathway ,whereas PKC was not involved.%目的:研究神经介素 B(NeuroB)对成年大鼠心室肌细胞 L 型钙离子通道的调节及信号转导机制。方法应用 RT-PCR 及 Western blot 方法研究 NeuroB 受体 mRNA 及蛋白在成年大鼠心室肌细胞中的表达。应用 ELISA 方法检测 NeuroB 对心室肌细胞中 cAMP 含量的影响。应用全细胞膜片钳技术研究 NeuroB 对成年大鼠心室肌细胞 L 型钙离子通道电流(IL )的作用,并应用药理学方法阐明其信号转导机制。结果 NeuroB 受体在成年大鼠心室肌细胞中呈高表达。 NeuroB 对大鼠心室肌细胞 IL 具有量效依赖性的增加作用。蛋白激酶 A(PKA)阻断剂 KT-5720能够抑制 NeuroB对该 IL 的增强作用,但蛋白激酶 C(PKC)阻断剂 GF109203X 却无任何效应。 NeuroB 可浓度依赖性增加心室肌细胞中 cAMP 含量水平。结论 NeuroB

  16. Ionic Remodeling and Direct Effects of Valsartan on Ionic Currentsin Human Atrial Myocytes with Atrial Fibrillation

    Institute of Scientific and Technical Information of China (English)

    Xue Yumei; Wu Shulin; Deng Chunyu; Qian Weimin; Chen Chunbo

    2004-01-01

    Objectives Previous studies demonstrated that angiotensin receptor antagonists had effects on some potassium channels in guinea pig myocytes and cloned channels that expressed in human cardiac myocytes. This study determined the direct effects of Valsartan on I caL, INa, IKur, IK1 and Ito1 in isolated human atrial myocytes. Methods and Results Specimens of right atrial appendage tissue were obtained from 39 patients with coronary artery and valvular heart diseases during cardiopulmonary bypass procedure. Pre- operation cardiac rhythm was sinus (SR)in 19 patients and was atrial fibrillation (AF) in the others. Single atrial myocyte was isolated by enzymatic dissociation with the chunk method. The ionic currents were recorded using the whole cell coffiguration of the voltage clamp technique. ICaL and Ito1 densities in AF patients were significantly lower than those in SR patients by 74% and 60%, respectively, while IK1density was significantly higher by 34% at command potential of - 120 mV. With 10 μmol/L Valsartan, INa density was significantly decreased by 59% in SR patients and by 66% in AF patients. IKur and IKl density were significantly decreased in only AF patients by 31% and23%, respectively. Conclusions Conclusions Decreased IcaL and Itol and increased IKl at hyperpolarizing potentials in AF patients' atrial myocytes may result from the electrophysiological remodeling by AF. Valsartan significantly decreases INa, IK1 and IKur current densities in AF patients' myocyte, but decreases only INa in SR patients' myocyte, suggesting that Valsartan may be beneficial to the recovering of remolded atria.

  17. Gestational exposure to diethylstilbestrol alters cardiac structure/function, protein expression and DNA methylation in adult male mice progeny

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Rami, E-mail: rami.haddad@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec, Canada H3A 1A2 (Canada); Kasneci, Amanda, E-mail: amanda.kasneci@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); Mepham, Kathryn, E-mail: katherine.mepham@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec, Canada H3A 1A2 (Canada); Sebag, Igal A., E-mail: igal.sebag@mcgill.ca [Division of Cardiology, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); and others

    2013-01-01

    Pregnant women, and thus their fetuses, are exposed to many endocrine disruptor compounds (EDCs). Fetal cardiomyocytes express sex hormone receptors making them potentially susceptible to re-programming by estrogenizing EDCs. Diethylstilbestrol (DES) is a proto-typical, non-steroidal estrogen. We hypothesized that changes in adult cardiac structure/function after gestational exposure to the test compound DES would be a proof in principle for the possibility of estrogenizing environmental EDCs to also alter the fetal heart. Vehicle (peanut oil) or DES (0.1, 1.0 and 10.0 μg/kg/da.) was orally delivered to pregnant C57bl/6n dams on gestation days 11.5–14.5. At 3 months, male progeny were left sedentary or were swim trained for 4 weeks. Echocardiography of isoflurane anesthetized mice revealed similar cardiac structure/function in all sedentary mice, but evidence of systolic dysfunction and increased diastolic relaxation after swim training at higher DES doses. The calcium homeostasis proteins, SERCA2a, phospholamban, phospho-serine 16 phospholamban and calsequestrin 2, are important for cardiac contraction and relaxation. Immunoblot analyses of ventricle homogenates showed increased expression of SERCA2a and calsequestrin 2 in DES mice and greater molecular remodeling of these proteins and phospho-serine 16 phospholamban in swim trained DES mice. DES increased cardiac DNA methyltransferase 3a expression and DNA methylation in the CpG island within the calsequestrin 2 promoter in heart. Thus, gestational DES epigenetically altered ventricular DNA, altered cardiac function and expression, and reduced the ability of adult progeny to cardiac remodel when physically challenged. We conclude that gestational exposure to estrogenizing EDCs may impact cardiac structure/function in adult males. -- Highlights: ► Gestational DES changes cardiac SERCA2a and CASQ2 expression. ► Echocardiography identified systolic dysfunction and increased diastolic relaxation. ► DES

  18. MicroRNA-21 and Risk of Severe Acute Kidney Injury and Poor Outcomes after Adult Cardiac Surgery

    OpenAIRE

    Juan DU; Cao, Xiaoqing; Zou, Liang; Chen, Yi; Guo, Jin; Chen, Zujun; Hu, Shengshou; Zheng, Zhe

    2013-01-01

    Background Severe acute kidney injury (AKI) after cardiac surgery is associated with poor clinical outcomes. This study evaluated the potential use of miR-21 as a risk marker for postoperative AKI progression and other poor outcomes. Methodology/Principal Findings The study included 120 adult patients undergoing cardiac surgery: 40 non-AKI controls, 39 patients with progressive AKI, and 41 with non-progressive AKI. Urine and plasma levels of miR-21 were assessed by quantitative real-time PCR ...

  19. Transfection of hypertrophic cardiac myocytes in vitro with 99Tcm-labeled antisense miR208b oligonucleotide%99Tcm标记反义miR208b寡核苷酸及其转染离体肥大心肌细胞的实验研究

    Institute of Scientific and Technical Information of China (English)

    王静; 冯会娟; 欧阳伟; 孙云钢; 吴菊清; 陈盼

    2015-01-01

    Objective To test the efficiency of transfecting 9 Tcm-labeled anti-miR208b oligonucleotide into early hypertrophic cardiac myocytes in vitro. Methods The anti-oligonucleotide targeting miR208b (AMO) was synthesized and modified with LNA followed by conjugation with N-hydroxysuccinimidyl S-acetyl-meraptoacetyl triglycine (NHS-MAG3) and radiolabeling with 9 Tcm. NHS-MAG3-LNA-AMO and labeled AMO were purified with Sep-Pak C18 column chromatography, and the former was examined for UV absorption at the 260 nm using Gene Quant DNA/RNA calculator. The labeling efficiency, radiochemical purity, stability and molecular hybridization activity were analyzed. An angiotensin II-induced cell model of hypertrophic cardiac myocytes was transfected with 9 Tcm-NHS-MAG3-LNA-AMO via liposome, and the relative expression of miRNA208b and retention ratio of the labeled AMO in early hypertrophic cells were determined. Results The labeling efficiency and radiochemical purity of the labeled AMO after purification exceeded 84% and 86%, respectively. The radio-chemical purities of the labeled AMO incubated in serum and normal saline for 12 h were both higher than 80%, and the labeled AMO showed a capacity to hybridize with the target gene. In the hypertrophic model of cardiac myocytes, the retention ratio of labeled AMO at 6 h was higher than 20%. Conclusion The 9 Tcm-labeled antisense probe can be efficiently transfected into hypertrophic cardiac myocytes in vitro, which provides an experimental basis for subsequent radionuclide imaging studies.%目的:探索用放射性核素99Tcm标记反义miR208b寡核苷酸,并转染离体早期肥大心肌细胞的实验过程及方法。方法合成针对miR208b的反义miR寡核苷酸(AMO),LNA(带锁核酸)修饰AMO,将双功能螯合剂NHS-MAG3(N-羟基琥珀酰亚胺-巯基乙酰基三甘氨酸)与LNA-AMO偶联后,用99Tcm标记,然后用Sep-Pak C18反相层析法对NHS-MAG3-LNA-AMO及其标记物进行洗

  20. Embryonic caffeine exposure acts via A1 adenosine receptors to alter adult cardiac function and DNA methylation in mice.

    Directory of Open Access Journals (Sweden)

    Daniela L Buscariollo

    Full Text Available Evidence indicates that disruption of normal prenatal development influences an individual's risk of developing obesity and cardiovascular disease as an adult. Thus, understanding how in utero exposure to chemical agents leads to increased susceptibility to adult diseases is a critical health related issue. Our aim was to determine whether adenosine A1 receptors (A1ARs mediate the long-term effects of in utero caffeine exposure on cardiac function and whether these long-term effects are the result of changes in DNA methylation patterns in adult hearts. Pregnant A1AR knockout mice were treated with caffeine (20 mg/kg or vehicle (0.09% NaCl i.p. at embryonic day 8.5. This caffeine treatment results in serum levels equivalent to the consumption of 2-4 cups of coffee in humans. After dams gave birth, offspring were examined at 8-10 weeks of age. A1AR+/+ offspring treated in utero with caffeine were 10% heavier than vehicle controls. Using echocardiography, we observed altered cardiac function and morphology in adult mice exposed to caffeine in utero. Caffeine treatment decreased cardiac output by 11% and increased left ventricular wall thickness by 29% during diastole. Using DNA methylation arrays, we identified altered DNA methylation patterns in A1AR+/+ caffeine treated hearts, including 7719 differentially methylated regions (DMRs within the genome and an overall decrease in DNA methylation of 26%. Analysis of genes associated with DMRs revealed that many are associated with cardiac hypertrophy. These data demonstrate that A1ARs mediate in utero caffeine effects on cardiac function and growth and that caffeine exposure leads to changes in DNA methylation.

  1. Beating and insulting children as a risk for adult cancer, cardiac disease and asthma.

    Science.gov (United States)

    Hyland, Michael E; Alkhalaf, Ahmed M; Whalley, Ben

    2013-12-01

    The use of physical punishment for children is associated with poor psychological and behavioral outcomes, but the causal pathway is controversial, and the effects on later physical health unknown. We conducted a cross-sectional survey of asthma, cancer, and cardiac patients (150 in each category, 75 male) recruited from outpatient clinics and 250 healthy controls (125 male). All participants were 40-60 years old and citizens of Saudi Arabia, where the use of beating and insults is an acceptable parenting style. Demographic data and recalled frequency of beatings and insults as a child were assessed on an 8-point scale. Beating and insults were highly correlated (ρ = 0.846). Propensity score matching was used to control for demographic differences between the disease and healthy groups. After controlling for differences, more frequent beating (once or more per month) and insults were associated with a significantly increased risk for cancer (RR = 1.7), cardiac disease (RR = 1.3) and asthma (RR = 1.6), with evidence of increased risk for cancer and asthma with beating frequency of once every 6 months or more. Our results show that a threatening parenting style of beating and insults is associated with increased risk for somatic disease, possibly because this form of parenting induces stress. Our findings are consistent with previous research showing that child abuse and other early life stressors adversely affect adult somatic health, but provide evidence that the pathogenic effects occur also with chronic minor stress. A stress-inducing parenting style, even when normative, has long term adverse health consequences. PMID:23054177

  2. Altered distribution of ICa impairs Ca release at the t-tubules of ventricular myocytes from failing hearts.

    Science.gov (United States)

    Bryant, Simon M; Kong, Cherrie H T; Watson, Judy; Cannell, Mark B; James, Andrew F; Orchard, Clive H

    2015-09-01

    In mammalian cardiac ventricular myocytes, Ca influx and release occur predominantly at t-tubules, ensuring synchronous Ca release throughout the cell. Heart failure is associated with disrupted t-tubule structure, but its effect on t-tubule function is less clear. We therefore investigated Ca influx and release at the t-tubules of ventricular myocytes isolated from rat hearts ~18weeks after coronary artery ligation (CAL) or corresponding Sham operation. L-type Ca current (ICa) was recorded using the whole-cell voltage-clamp technique in intact and detubulated myocytes; Ca release at t-tubules was monitored using confocal microscopy with voltage- and Ca-sensitive fluorophores. CAL was associated with cardiac and cellular hypertrophy, decreased ejection fraction, disruption of t-tubule structure and a smaller, slower Ca transient, but no change in ryanodine receptor distribution, L-type Ca channel expression, or ICa density. In Sham myocytes, ICa was located predominantly at the t-tubules, while in CAL myocytes, it was uniformly distributed between the t-tubule and surface membranes. Inhibition of protein kinase A with H-89 caused a greater decrease of t-tubular ICa in CAL than in Sham myocytes; in the presence of H-89, t-tubular ICa density was smaller in CAL than in Sham myocytes. The smaller t-tubular ICa in CAL myocytes was accompanied by increased latency and heterogeneity of SR Ca release at t-tubules, which could be mimicked by decreasing ICa using nifedipine. These data show that CAL decreases t-tubular ICa via a PKA-independent mechanism, thereby impairing Ca release at t-tubules and contributing to the altered excitation-contraction coupling observed in heart failure. PMID:26103619

  3. Should Cerebral Near-infrared Spectroscopy be Standard of Care in Adult Cardiac Surgery?

    Science.gov (United States)

    Bevan, Priscilla J W

    2015-06-01

    Near-infrared spectroscopy (NIRS) is non-invasive, easy to use, and offers real-time monitoring of the oxygen content of cerebral tissue. An effective and user-friendly method of cerebral monitoring stands to offer a significant advance in patient care during adult cardiac surgery, particularly for surgery in which the continuity of cerebral vessels may be compromised. While the current evidence does not definitively show improvement in neurological outcomes, it can be argued that the overall risk to benefit ratio falls on the side of NIRS. NIRS also gives information about the oxygenation of systemic tissues. It may be that in surgery that does not involve the aortic arch, the value of NIRS will be in increased individualisation of patient management and improved systemic perfusion, impacting general outcomes as much as neurological outcomes. This review will summarise the need for neuromonitoring and the principles of NIRS. It will examine the thresholds used to define desaturation, the evidence for clinical benefit from NIRS, and the criticisms and limitations of NIRS. It will also discuss the uses of NIRS beyond improving neurological outcomes alone. PMID:25735719

  4. Neonatal Heart-Enriched miR-708 Promotes Differentiation of Cardiac Progenitor Cells in Rats

    OpenAIRE

    Shengqiong Deng; Qian Zhao; Xianjin Zhou; Lin Zhang; Luer Bao; Lixiao Zhen; Yuzhen Zhang; Huimin Fan; Zhongmin Liu; Zuoren Yu

    2016-01-01

    Cardiovascular disease is becoming the leading cause of death throughout the world. However, adult hearts have limited potential for regeneration after pathological injury, partly due to the quiescent status of stem/progenitor cells. Reactivation of cardiac stem/progenitor cells to create more myocyte progeny is one of the key steps in the regeneration of a damaged heart. In this study, miR-708 was identified to be enriched in the neonatal cardiomyocytes of rats, but this has not yet been pro...

  5. Expression Profile of microRNAs Regulating Proliferation and Differentiation in Mouse Adult Cardiac Stem Cells

    OpenAIRE

    Brás-Rosário, Luis; Matsuda, Alex; Pinheiro, Ana Isabel; Gardner, Rui; Lopes, Telma; Amaral, Andreia; Gama-Carvalho, Margarida

    2013-01-01

    The identification of cardiac cells with stem cell properties changed the paradigm of the heart as a post mitotic organ. These cells proliferate and differentiate into cardiomyocytes, endothelial and vascular smooth muscle cells, providing for cardiac cell homeostasis and regeneration. microRNAs are master switches controlling proliferation and differentiation, in particular regulating stem cell biology and cardiac development. Modulation of microRNAs -regulated gene expression networks holds...

  6. Biomimetic Polymers for Cardiac Tissue Engineering

    Science.gov (United States)

    2016-01-01

    Heart failure is a morbid disorder characterized by progressive cardiomyocyte (CM) dysfunction and death. Interest in cell-based therapies is growing, but sustainability of injected CMs remains a challenge. To mitigate this, we developed an injectable biomimetic Reverse Thermal Gel (RTG) specifically engineered to support long-term CM survival. This RTG biopolymer provided a solution-based delivery vehicle of CMs, which transitioned to a gel-based matrix shortly after reaching body temperature. In this study we tested the suitability of this biopolymer to sustain CM viability. The RTG was biomolecule-functionalized with poly-l-lysine or laminin. Neonatal rat ventricular myocytes (NRVM) and adult rat ventricular myocytes (ARVM) were cultured in plain-RTG and biomolecule-functionalized-RTG both under 3-dimensional (3D) conditions. Traditional 2D biomolecule-coated dishes were used as controls. We found that the RTG-lysine stimulated NRVM to spread and form heart-like functional syncytia. Regarding cell contraction, in both RTG and RTG-lysine, beating cells were recorded after 21 days. Additionally, more than 50% (p value < 0.05; n = 5) viable ARVMs, characterized by a well-defined cardiac phenotype represented by sarcomeric cross-striations, were found in the RTG-laminin after 8 days. These results exhibit the tremendous potential of a minimally invasive CM transplantation through our designed RTG-cell therapy platform. PMID:27073119

  7. Biomimetic Polymers for Cardiac Tissue Engineering.

    Science.gov (United States)

    Peña, Brisa; Martinelli, Valentina; Jeong, Mark; Bosi, Susanna; Lapasin, Romano; Taylor, Matthew R G; Long, Carlin S; Shandas, Robin; Park, Daewon; Mestroni, Luisa

    2016-05-01

    Heart failure is a morbid disorder characterized by progressive cardiomyocyte (CM) dysfunction and death. Interest in cell-based therapies is growing, but sustainability of injected CMs remains a challenge. To mitigate this, we developed an injectable biomimetic Reverse Thermal Gel (RTG) specifically engineered to support long-term CM survival. This RTG biopolymer provided a solution-based delivery vehicle of CMs, which transitioned to a gel-based matrix shortly after reaching body temperature. In this study we tested the suitability of this biopolymer to sustain CM viability. The RTG was biomolecule-functionalized with poly-l-lysine or laminin. Neonatal rat ventricular myocytes (NRVM) and adult rat ventricular myocytes (ARVM) were cultured in plain-RTG and biomolecule-functionalized-RTG both under 3-dimensional (3D) conditions. Traditional 2D biomolecule-coated dishes were used as controls. We found that the RTG-lysine stimulated NRVM to spread and form heart-like functional syncytia. Regarding cell contraction, in both RTG and RTG-lysine, beating cells were recorded after 21 days. Additionally, more than 50% (p value < 0.05; n = 5) viable ARVMs, characterized by a well-defined cardiac phenotype represented by sarcomeric cross-striations, were found in the RTG-laminin after 8 days. These results exhibit the tremendous potential of a minimally invasive CM transplantation through our designed RTG-cell therapy platform. PMID:27073119

  8. Does grid-controlled fluoroscopy lower patient doses during adult cardiac procedures ?

    International Nuclear Information System (INIS)

    Purpose: Commercial companies advertise grid-controlled fluoroscopy as a tool that significantly lowers patient and consequently staff doses. In the haemodynamic unit of Athens General Hospital, a Philips Allura FP10 digital flat panel system equipped with a grid-controlled X-ray tube has been installed in 2004. Twenty months later, the grid ceased to function and the question arose whether the X-ray tube should be replaced. Since the cost of grid-controlled X-ray tube is very high, it was decided that the laboratory should continue working as long as the X-ray tube would function. Material and Method: Since interventional procedures are known to be associated with high radiation doses, patient doses are routinely recorded. The data include fluoroscopy time, number of images acquired, as well as the total and fluoroscopic Dose-Area-Product (DAP) dose delivered to patient. From our dose records patient doses collected during Coronary Angiography (CA) and Percutaneous Transluminal Coronary Angioplasty (PTCA) with and without the grid-controlled fluoroscopy present were compared on a total sample of 998 patients. Results: The analysis of the results showed that (a) no statistically significant patient dose increase was noticed with grid not in use, (b) the difference in fluoroscopy time was not statistically significant for CA procedures, while it was statistically significant for PTCA procedures and (c) for both kinds of procedures the difference in number of frames, with and without the grid in use, was statistically significant (more frames when grid not in use). Conclusion: The results of this study suggest that hospital administrators may question the costly investment on grid-controlled X-ray tubes, with the deficient function of which -during adult cardiac diagnostic and therapeutic interventions-, patient dose does not increase, even when more frames are recorded. (author)

  9. A cardiac-specific health-related quality of life module for young adults with congenital heart disease: development and validation

    NARCIS (Netherlands)

    Kamphuis, M.; Zwinderman, K.A.H.; Vogels, T.; Vliegen, H.W.; Kamphuis, R.P.; Ottenkamp, J.; Verloove-Vanhorick, S.P.; Bruil, J.

    2004-01-01

    This study represents the development and validation of a cardiac-specific module of the generic health-related quality of life (HRQoL) instrument, the TAAQOL (TNO/AZL Adult Quality Of Life), for young adults with congenital heart disease (CHD). Items were selected based on literature, an explorativ

  10. Effects of clenbuterol on contractility and Ca2+ homeostasis of isolated rat ventricular myocytes

    OpenAIRE

    Siedlecka, U.; Arora, M.; Kolettis, T; Soppa, G. K. R.; Lee, J.; Stagg, M. A.; Harding, S.E.; Yacoub, M. H.; Terracciano, C. M. N.

    2008-01-01

    Clenbuterol, a compound classified as a β2-adrenoceptor (AR) agonist, has been employed in combination with left ventricular assist devices (LVADs) to treat patients with severe heart failure. Previous studies have shown that chronic administration of clenbuterol affects cardiac excitation-contraction coupling. However, the acute effects of clenbuterol and the signaling pathway involved remain undefined. We investigated the acute effects of clenbuterol on isolated ventricular myocyte sarcomer...

  11. Dynamics of the inward rectifier K+ current during the action potential of guinea pig ventricular myocytes.

    OpenAIRE

    Ibarra, J; Morley, G E; Delmar, M

    1991-01-01

    The potassium selective, inward rectifier current (IK1) is known to be responsible for maintaining the resting membrane potential of quiescent ventricular myocytes. However, the contribution of this current to the different phases of the cardiac action potential has not been adequately established. In the present study, we have used the action potential clamp (APC) technique to characterize the dynamic changes of a cesium-sensitive (i.e., Ik1) current which occur during the action potential. ...

  12. Nongenomic steroid action: Inhibiting effects on cell-to-cell communication between rat ventricular myocytes

    OpenAIRE

    Verrecchia, Franck; Sarrouilhe, Denis; Hervé, Jean-Claude

    2001-01-01

    Numerous steroids are now believed to possess rapid membrane effects independent of the classical gene activation pathways and are potent modulators of membrane proteins, including voltage-and ligand-operated channels. The effects of steroids on the functional state of the intercellular channels clustered in gap junctions were compared by estimation of either the permeability for a fluorescent dye or the electrical conductance in cardiac myocytes of newborn rat. At 25 μM, the esters of 17β-es...

  13. Direct differentiation of atrial and ventricular myocytes from human embryonic stem cells by alternating retinoid signals

    Institute of Scientific and Technical Information of China (English)

    Qiangzhe Zhang; Li Chen; Tian Tian; Xin Wang; Pu Li; Jurgen Hescheler; Guangju Ji; Yue Ma; Junjie Jiang; Pengcheng Han; Qi Yuan; Jing Zhang; Xiaoqian Zhang; Yanyan Xu; Henghua Cao; Qingzhang Meng

    2011-01-01

    Although myocyte cell transplantation studies have suggested a promising therapeutic potential for myocardial infarction, a major obstacle to the development of clinical therapies for myocardial repair is the difficulties associated with obtaining relatively homogeneous ventricular myocytes for transplantation. Human embryonic stem cells (hESCs)are a promising source of cardiomyocytes. Here we report that retinoid signaling regulates the fate specification of atrial versus ventricular myocytes during cardiac differentiation of hESCs. We found that both Noggin and the panretinoic acid receptor antagonist BMS-189453 (RAi) significantly increased the cardiac differentiation efficiency of hESCs. To investigate retinoid functions, we compared Noggin+RAi-treated cultures with Noggin+RA-treated cultures. Our results showed that the expression levels of the ventricular-specific gene IRX-4 were radically elevated in Noggin+RAi-treated cultures. MLC-2V, another ventricular-specific marker, was expressed in the majority of the cardiomyocytes in Noggin+RAi-treated cultures, hut not in the cardiomyocytes of Noggin+RA-treated cultures. Flow cytometry analysis and electrophysiologicai studies indicated that with 64.7 ± 0.88% (mean ± s.e.m) cardiac differentiation efficiency, 83% of the cardiomyocytes in Noggin+RAi-treated cultures had embryonic ventricular-like action potentials (APs). With 50.7 ± 1.76% cardiac differentiation efficiency, 94% of the cardiomyocytes in Noggin+RA-treated cultures had embryonic atrial-like APs. These results were further confirmed by imaging studies that assessed the patterns and properties of the Ca2+ sparks of the cardiomyocytes from the two cultures. These findings demonstrate that retinoid signaling specifies the atrial versus ventricular differentiation of hESCs. This study also shows that relatively homogeneous embryonic atrial- and ventricular-like myocyte populations can be efficiently derived from hESCs by specifically regulating Noggin

  14. Adiponectin downregulation is associated with volume overload-induced myocyte dysfunction in rats

    OpenAIRE

    Wang, Li-li; Miller, Dori; Wanders, Desiree; Nanayakkara, Gayani; Amin, Rajesh; Judd, Robert; Morrison, Edward E.; Zhong, Ju-ming

    2015-01-01

    Aim: Adiponectin has been reported to exert protective effects during pathological ventricular remodeling, but the role of adiponectin in volume overload-induced heart failure remains unclear. In this study we investigated the effect of adiponectin on cardiac myocyte contractile dysfunction following volume overload in rats. Methods: Volume overload was surgically induced in rats by infrarenal aorta-vena cava fistula. The rats were intravenously administered adenoviral adiponectin at 2-, 6- a...

  15. Human fetal cardiac progenitors: The role of stem cells and progenitors in the fetal and adult heart.

    Science.gov (United States)

    Bulatovic, Ivana; Månsson-Broberg, Agneta; Sylvén, Christer; Grinnemo, Karl-Henrik

    2016-02-01

    The human fetal heart is formed early during embryogenesis as a result of cell migrations, differentiation, and formative blood flow. It begins to beat around gestation day 22. Progenitor cells are derived from mesoderm (endocardium and myocardium), proepicardium (epicardium and coronary vessels), and neural crest (heart valves, outflow tract septation, and parasympathetic innervation). A variety of molecular disturbances in the factors regulating the specification and differentiation of these cells can cause congenital heart disease. This review explores the contribution of different cardiac progenitors to the embryonic heart development; the pathways and transcription factors guiding their expansion, migration, and functional differentiation; and the endogenous regenerative capacity of the adult heart including the plasticity of cardiomyocytes. Unfolding these mechanisms will become the basis for understanding the dynamics of specific congenital heart disease as well as a means to develop therapy for fetal as well as postnatal cardiac defects and heart failure. PMID:26421632

  16. Comparison of cardiac magnetic resonance imaging features of isolated left ventricular non-compaction in adults versus dilated cardiomyopathy in adults

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, H. [Department of Radiology, Cardiovascular Institute and Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037 (China); Zhao, S., E-mail: cjrzhaoshihua2009@163.com [Department of Radiology, Cardiovascular Institute and Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037 (China); Jiang, S.; Lu, M.; Yan, C.; Ling, J.; Zhang, Y.; Liu, Q.; Ma, N.; Yin, G.; Wan, J. [Department of Radiology, Cardiovascular Institute and Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037 (China); Yang, Y. [Department of Cardiology, Cardiovascular Institute and Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037 (China); Li, L. [Department of Pathology, Cardiovascular Institute and Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037 (China); Jerecic, R. [MR Research and Development, Siemens Medical Solutions, Chicago, IL (United States); He, Z. [Department of Nuclear Medicine, Cardiovascular Institute and Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037 (China)

    2011-09-15

    Aim: To compare cardiac magnetic resonance imaging (MRI) features between isolated left ventricular non-compaction (IVNC) and dilated cardiomyopathy (DCM) in adults. Materials and methods: A consecutive series of 50 patients with IVNC from a single institution were reviewed. During the same period, 50 patients with DCM who had prominent trabeculations, who were matched for age, gender, and body surface area, were prospectively included. Left ventricular (LV) morphology and function were assessed using cardiac MRI. Results: Compared with patients with DCM, patients with IVNC had a significantly lower LV sphericity index and end-diastolic volume index (LVEDVI) and a greater LV ejection fraction (LVEF), number of trabeculated segments, and ratio of non-compacted to compacted myocardium (NC/C ratio). There were no significant differences in stroke volume index, cardiac output, and cardiac index between the two patient groups. In patients with IVNC, the number of trabeculated segments and the NC/C ratio correlated positively with LVEDVI (r = 0.626 and r = 0.559, respectively) and negatively with LVEF (r = -0.647 and r = -0.521, respectively, p < 0.001 for all). In patients with DCM, the number of non-compacted segments and the NC/C ratio had no correlation with either the LVEDVI (r = -0.082 and r = -0.135, respectively) or the LVEF (r = 0.097 and r = 0.205, respectively). Conclusion: There are demonstrable morphological and functional differences between IVNC and DCM at LV assessment using cardiac MRI. The occurrence of trabeculated myocardium might be due to a different pathophysiological mechanism.

  17. Aerobic exercise training reduces cardiac function in adult male offspring exposed to prenatal hypoxia.

    Science.gov (United States)

    Reyes, Laura M; Kirschenman, Raven; Quon, Anita; Morton, Jude S; Shah, Amin; Davidge, Sandra T

    2015-09-01

    Intrauterine growth restriction (IUGR) has been associated with increased susceptibility to myocardial ischemia-reperfusion (I/R) injury. Exercise is an effective preventive intervention for cardiovascular diseases; however, it may be detrimental in conditions of compromised health. The aim of this study was to determine whether exercise training can improve cardiac performance after I/R injury in IUGR offspring. We used a hypoxia-induced IUGR model by exposing pregnant Sprague-Dawley rats to 21% oxygen (control) or hypoxic (11% oxygen; IUGR) conditions from gestational day 15 to 21. At 10 wk of age, offspring were randomized to a sedentary group or to a 6-wk exercise protocol. Transthoracic echocardiography assessments were performed after 6 wk. Twenty-four hours after the last bout of exercise, ex vivo cardiac function was determined using a working heart preparation. With exercise training, there was improved baseline cardiac performance in male control offspring but a reduced baseline cardiac performance in male IUGR exercised offspring (P exercise decreased superoxide generation in control offspring, while in IUGR offspring, it had the polar opposite effect (interaction P ≤ 0.05). There was no effect of IUGR or exercise on cardiac function in female offspring. In conclusion, in male IUGR offspring, exercise may be a secondary stressor on cardiac function. A reduction in cardiac performance along with an increase in superoxide production in response to exercise was observed in this susceptible group. PMID:26157059

  18. Myocyte repolarization modulates myocardial function in aging dogs.

    Science.gov (United States)

    Sorrentino, Andrea; Signore, Sergio; Qanud, Khaled; Borghetti, Giulia; Meo, Marianna; Cannata, Antonio; Zhou, Yu; Wybieralska, Ewa; Luciani, Marco; Kannappan, Ramaswamy; Zhang, Eric; Matsuda, Alex; Webster, Andrew; Cimini, Maria; Kertowidjojo, Elizabeth; D'Alessandro, David A; Wunimenghe, Oriyanhan; Michler, Robert E; Royer, Christopher; Goichberg, Polina; Leri, Annarosa; Barrett, Edward G; Anversa, Piero; Hintze, Thomas H; Rota, Marcello

    2016-04-01

    Studies of myocardial aging are complex and the mechanisms involved in the deterioration of ventricular performance and decreased functional reserve of the old heart remain to be properly defined. We have studied a colony of beagle dogs from 3 to 14 yr of age kept under a highly regulated environment to define the effects of aging on the myocardium. Ventricular, myocardial, and myocyte function, together with anatomical and structural properties of the organ and cardiomyocytes, were evaluated. Ventricular hypertrophy was not observed with aging and the structural composition of the myocardium was modestly affected. Alterations in the myocyte compartment were identified in aged dogs, and these factors negatively interfere with the contractile reserve typical of the young heart. The duration of the action potential is prolonged in old cardiomyocytes contributing to the slower electrical recovery of the myocardium. Also, the remodeled repolarization of cardiomyocytes with aging provides inotropic support to the senescent muscle but compromises its contractile reserve, rendering the old heart ineffective under conditions of high hemodynamic demand. The defects in the electrical and mechanical properties of cardiomyocytes with aging suggest that this cell population is an important determinant of the cardiac senescent phenotype. Collectively, the delayed electrical repolarization of aging cardiomyocytes may be viewed as a critical variable of the aging myopathy and its propensity to evolve into ventricular decompensation under stressful conditions. PMID:26801307

  19. Plasma high sensitivity troponin T levels in adult survivors of childhood leukaemias: determinants and associations with cardiac function.

    Directory of Open Access Journals (Sweden)

    Yiu-fai Cheung

    Full Text Available BACKGROUND: We sought to quantify plasma high sensitivity cardiac troponin (hs-cTnT levels, their determinants, and their associations with left ventricular (LV myocardial deformation in adult survivors of childhood acute leukaemias. METHODS AND RESULTS: One hundred adult survivors (57 males of childhood acute leukaemias, aged 24.1 ± 4.2 years, and 42 age-matched controls (26 males were studied. Plasma cTnT was determined using a highly sensitive assay. Genotyping of NAD(PH oxidase and multidrug resistance protein polymorphisms was performed. Left ventricular function was assessed by conventional, three-dimensional, and speckle tracking echocardiography. The medians (interquartile range of hs-cTnT in male and female survivors were 4.9 (4.2 to 7.2 ng/L and 1.0 (1.0 to 3.5 ng/L, respectively. Nineteen survivors (13 males, 6 females (19% had elevated hs-cTnT (>95(th centile of controls. Compared to those without elevated hs-TnT levels, these subjects had received larger cumulative anthracycline dose and were more likely to have leukaemic relapse, stem cell transplant, and cardiac irradiation. Their LV systolic and early diastolic myocardial velocities, isovolumic acceleration, and systolic longitudinal strain rate were significantly lower. Survivors having CT/TT at CYBA rs4673 had higher hs-cTnT levels than those with CC genotype. Functionally, increased hs-cTnT levels were associated with worse LV longitudinal systolic strain and systolic and diastolic strain rates. CONCLUSIONS: Increased hs-cTnT levels occur in a significant proportion of adult survivors of childhood acute leukaemias and are associated with larger cumulative anthracycline dose received, history of leukaemic relapse, stem cell transplant, and cardiac irradiation, genetic variants in free radical metabolism, and worse LV myocardial deformation.

  20. Mitogen-activated protein kinase (MAPK) in cardiac tissues.

    Science.gov (United States)

    Page, C; Doubell, A F

    Mitogen-activated protein kinase (MAPK) has recently emerged as a prominent role player in intracellular signalling in the ventricular myocyte with attention being focussed on its possible role in the development of ventricular hypertrophy. It is becoming clear that MAPK is also active in other cells of cardiac origin such as cardiac fibroblasts and possible functions of this signalling pathway in the heart have yet to be explored. In this report the mammalian MAPK pathway is briefly outlined, before reviewing current knowledge of the MAPK pathway in cardiac tissue (ventricular myocytes, vascular smooth muscle cells and cardiac fibroblasts). New data is also presented on the presence and activity of MAPK in two additional cardiac celltypes namely atrial myocytes and vascular endothelial cells from the coronary microcirculation. PMID:8739228

  1. Cardiac and non-cardiac causes of T-wave inversion in the precordial leads in adult subjects: A Dutch case series and review of the literature

    Institute of Scientific and Technical Information of China (English)

    Salah; AM; Said; Rene; Bloo; Ramon; de; Nooijer; Andries; Slootweg

    2015-01-01

    AIM: To describe the electrocardiographic(ECG) phenomena characterized by T-wave inversion in the precordial leads in adults and to highlight its differential diagnosis. METHODS: A retrospective chart review of 8 adult patients who were admitted with ECG T-wave inversion in the anterior chest leads with or without prolongation of corrected QT(QTc) interval. They had different clinical conditions. Each patient underwent appropriate clinical assessment including investigation for myocardial involvement. Single and multimodality noninvasive, semi-invasive and invasive diagnostic approach were used to ascertain the diagnosis. The diagnostic assessment included biochemical investigation, cardiac and abdominal ultrasound, cerebral and chest computed tomography, nuclear medicine and coronary angiography.RESULTS: Eight adult subjects(5 females) with a mean age of 66 years(range 51 to 82) are analyzed. The etiology of T-wave inversion in the precordial leads were diverse. On admission, all patients had normal blood pressure and the ECG showed sinus rhythm. Five patients showed marked prolongation of the QTc interval. The longest QTc interval(639 ms) was found in the patient with pheochromocytoma. Giant T-wave inversion(≥ 10 mm) was found in pheochromocytoma followed by electroconvulsive therapy and finally ischemic heart disease. The deepest T-wave was measured in lead V3(5 ×). In 3 patients presented with mild T-wave inversion(patients 1, 5 and 4 mm), the QTc interval was not prolonged(432, 409 and 424 msec), respectively.CONCLUSION: T-wave inversion associated with or without QTc prolongation requires meticulous history taking, physical examination and tailored diagnostic modalities to reach rapid and correct diagnosis to establish appropriate therapeutic intervention.

  2. Evaluation of the influence of pulmonary hypertension in ultra-fast-track anesthesia technique in adult patients undergoing cardiac surgery

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio da Silva

    2015-08-01

    Full Text Available Abstract Objective: To evaluate the influence of pulmonary hypertension in the ultra-fast-track anesthesia technique in adult cardiac surgery. Methods: A retrospective study. They were included 40 patients divided into two groups: GI (without pulmonary hypertension and GII (with pulmonary hypertension. Based on data obtained by transthoracic echocardiography. We considered as the absence of pulmonary hypertension: a pulmonary artery systolic pressure (sPAP 40 mmHg associated with additional echocardiographic signs of PH. It was established as influence of pulmonary hypertension: the impossibility of extubation in the operating room, the increase in the time interval for extubation and reintubation the first 24 hours postoperatively. Univariate and multivariate analyzes were performed when necessary. Considered significant a P value <0.05. Results: The GI was composed of 21 patients and GII for 19. All patients (100% were extubated in the operating room in a medium time interval of 17.58±8.06 min with a median of 18 min in GII and 17 min in GI. PH did not increase the time interval for extubation (P=0.397. It required reintubation of 2 patients in GII (5% of the total, without statistically significant as compared to GI (P=0.488. Conclusion: In this study, pulmonary hypertension did not influence on ultra-fast-track anesthesia in adult cardiac surgery.

  3. Pro: early extubation in the operating room following cardiac surgery in adults.

    Science.gov (United States)

    Singh, Karen E; Baum, Victor C

    2012-12-01

    There is growing evidence that the general current approach in many centers of continued mechanical ventilation following cardiac surgery has evolved through historical experience rather than having a strong physiological basis in current practice. There is evidence going back several decades supporting very early (in the operating room [OR]) extubation in pediatric cardiac anesthesia. The authors provide evidence from numerous sources showing that extubation in the OR or shortly after arrival in the ICU is safe and cost-effective and is not prevented by the type of cardiac surgery or the use of cardiopulmonary bypass. They query if the paradigm should not be reversed and very early extubation be the routine unless contraindicated. Like any anesthetic technique, appropriate patient selection is called for, but this technique is widely appropriate. PMID:22798230

  4. The lack of target specificity of small molecule anticancer kinase inhibitors is correlated with their ability to damage myocytes in vitro

    International Nuclear Information System (INIS)

    Many new targeted small molecule anticancer kinase inhibitors are actively being developed. However, the clinical use of some kinase inhibitors has been shown to result in cardiotoxicity. In most cases the mechanisms by which they exert their cardiotoxicity are not well understood. We have used large scale profiling data on 8 FDA-approved tyrosine kinase inhibitors and 10 other kinase inhibitors to a panel of 317 kinases in order to correlate binding constants and kinase inhibitor binding selectivity scores with kinase inhibitor-induced damage to neonatal rat cardiac myocytes. The 18 kinase inhibitors that were the subject of this study were: canertinib, dasatinib, dovitinib, erlotinib, flavopiridol, gefitinib, imatinib, lapatinib, midostaurin, motesanib, pazopanib, sorafenib, staurosporine, sunitinib, tandutinib, tozasertib, vandetanib and vatalanib. The combined tyrosine kinase and serine-threonine kinase selectivity scores were highly correlated with the myocyte-damaging effects of the kinase inhibitors. This result suggests that myocyte damage was due to a lack of target selectivity to binding of both tyrosine kinases and serine-threonine kinases, and was not due to binding to either group specifically. Finally, the strength of kinase inhibitor binding for 290 kinases was examined for correlations with myocyte damage. Kinase inhibitor binding was significantly correlated with myocyte damage for 12 kinases. Thus, myocyte damage may be multifactorial in nature with the inhibition of a number of kinases involved in producing kinase inhibitor-induced myocyte damage.

  5. Cardiac abnormalities in adult patients with polymyositis or dermatomyositis as assessed by non-invasive modatities

    DEFF Research Database (Denmark)

    Christensen, Anne Friesgaard

    2016-01-01

    , factors associated with LVDD were age (P = 0.001), disease duration (P = 0.004), presence of myositis specific/associated autoantibodies (P = 0.05), and high cardiac (99m) Tc-PYP uptake (P = 0.006). In multivariate analysis of the pooled data for patients and HCs, a diagnosis of PM/DM (P < 0.0001) was...... associated with LVDD. Conclusions Patients with PM or DM had an increased prevalence of cardiac abnormalities compared to HCs. LVDD was a common occurrence in PM/DM patients and correlated to disease duration. In addition, the association of LVDD with myositis specific/associated autoantibodies and high...

  6. Interaction Between Vitamin D Receptor and Caveolin-3 and Regulation by 1, 25 Dihydroxyvitamin D3 in Adult Rat Cardiomyocytes

    OpenAIRE

    Zhao, Guisheng; Simpson, Robert U.

    2010-01-01

    We show that 1alpha, 25-Dihydroxyvitamin D3 (1,25(OH)2D3) and a synthetic non-genotropic vitamin D analog agonist, 1a,25(OH)2-lumisterol (JN), exhibit similar rapid effects on sarcomere shortening (contraction) of isolated adult cardiomyocyte. We also report that the vitamin D receptor (VDR) specifically interacts with Caveolin-3 in the t-tubules and sarcolemma of isolated adult rat cardiac myocytes. Confocal immunofluorescence microscopy analysis showed co-localization of VDR and Caveolin-3 ...

  7. Biosynthesis of cardiac natriuretic peptides

    DEFF Research Database (Denmark)

    Goetze, Jens Peter

    2010-01-01

    Cardiac-derived peptide hormones were identified more than 25 years ago. An astonishing amount of clinical studies have established cardiac natriuretic peptides and their molecular precursors as useful markers of heart disease. In contrast to the clinical applications, the biogenesis of cardiac p...... competent endocrine cells. The structurally related atrial natriuretic peptide will be mentioned where appropriate, whereas C-type natriuretic peptide will not be considered as a cardiac peptide of relevance in mammalian physiology....... characterized. An ongoing characterization of the molecular heterogeneity will help appreciate the biosynthetic capacity of the endocrine heart and could introduce new diagnostic possibilities. Notably, different biosynthetic products may not be equal markers of the same pathophysiological processes. An...... inefficient post-translational prohormone maturation will also affect the biology of the cardiac natriuretic peptide system. This review aims at summarizing the myocardial synthesis of natriuretic peptides focusing on B-type natriuretic peptide, where new data has disclosed cardiac myocytes as highly...

  8. Biosynthesis of cardiac natriuretic peptides

    DEFF Research Database (Denmark)

    Goetze, Jens Peter

    2010-01-01

    Cardiac-derived peptide hormones were identified more than 25 years ago. An astonishing amount of clinical studies have established cardiac natriuretic peptides and their molecular precursors as useful markers of heart disease. In contrast to the clinical applications, the biogenesis of cardiac...... inefficient post-translational prohormone maturation will also affect the biology of the cardiac natriuretic peptide system. This review aims at summarizing the myocardial synthesis of natriuretic peptides focusing on B-type natriuretic peptide, where new data has disclosed cardiac myocytes as highly...... competent endocrine cells. The structurally related atrial natriuretic peptide will be mentioned where appropriate, whereas C-type natriuretic peptide will not be considered as a cardiac peptide of relevance in mammalian physiology....

  9. Sudden Cardiac Death in Young Adults: Environmental Risk Factors and Genetic Aspects of Premature Atherosclerosis*(,) †

    DEFF Research Database (Denmark)

    Larsen, Maiken K; Nissen, Peter H; Kristensen, Ingrid B;

    2012-01-01

    Familial hypercholesterolemia (FH) is a genetic disorder that may lead to premature coronary heart disease (CHD) and sudden cardiac death (SCD). Mutations in the LDLR or APOB genes cause FH. We have screened the LDLR and the ligand-binding region of APOB genes in 52 cases of SCD. Deceased patient...

  10. Effects of acupuncture at the acupoints of 12 meridians on gastrointestinal and cardiac electricity in healthy adults.

    Science.gov (United States)

    Chang, Xiao-Rong; Yan, Jie; Shen, Jing; Liu, Mi; Wang, Xiao-Juan

    2010-09-01

    The effect of acupuncture at the acupoints of 12 meridians on gastrointestinal and cardiac electricity in healthy adults was studied. Specific regulation between meridian points and viscera was also investigated. An electrogastrogram (EGG), electrointestinogram (EIG), carotid pulse graph, phonocardiogram and electrocardiogram were obtained in 30 healthy adults before and after acupuncture at various acupoints of 12 meridians. The effects of acupuncture on the amplitude and frequency of the EGG, EIG, pre-ejection period and the left ventricular ejection time were then analyzed. Acupuncture revealed that LR3 decreased the amplitude of the EGG while LI11 (Quchi), SJ5 (Waiguan), ST36 (Zusanli), SP9 (Yinlingquan) and SI6 (Yanglao) increased the amplitude. Multiple comparisons among the latter five acupoints indicated that there were significant differences between SP9, LI11, SJ5 and ST36 (p < 0.01, p < 0.01, p < 0.05) and SI6, LI11 and SJ5 (p < 0.01, p < 0.05). SP9 effected EGG amplitude the most, followed by SI6, ST36, SJ5 and LI11. Four acupoints increased the amplitude of the EIG (p < 0.05), including HT5 (Tongli), GB34 (Yanglingquan), SP9 and SI6. No significant differences were observed between these acupoints, but SI6 showed the most obvious effect on EIG amplitude, followed by GB34, SP9 and HT5. No significant effects on the frequency of the gastrointestinal slow wave or on cardiac function indexes were observed. Effects were observed, however, on pre-ejection period and left ventricular ejection time. Routine acupuncture had no detrimental effects on the stomach, intestine and heart in healthy adults, but instead regulated physiological function within a normal range. These findings demonstrate the existence of specific connections between the meridian points and the viscera. The results suggest that multiple meridians control the same viscus, and the same meridian can regulate the functions of multiple viscera. PMID:20869017

  11. Calcium handling by vascular myocytes in hypertension

    Directory of Open Access Journals (Sweden)

    R.C.A. Tostes

    1997-03-01

    Full Text Available Calcium ions (Ca2+ trigger the contraction of vascular myocytes and the level of free intracellular Ca2+ within the myocyte is precisely regulated by sequestration and extrusion mechanisms. Extensive evidence indicates that a defect in the regulation of intracellular Ca2+ plays a role in the augmented vascular reactivity characteristic of clinical and experimental hypertension. For example, arteries from spontaneously hypertensive rats (SHR have an increased contractile sensitivity to extracellular Ca2+ and intracellular Ca2+ levels are elevated in aortic smooth muscle cells of SHR. We hypothesize that these changes are due to an increase in membrane Ca2+ channel density and possibly function in vascular myocytes from hypertensive animals. Several observations using various experimental approaches support this hypothesis: 1 the contractile activity in response to depolarizing stimuli is increased in arteries from hypertensive animals demonstrating increased voltage-dependent Ca2+ channel activity in hypertension; 2 Ca2+ channel agonists such as Bay K 8644 produce contractions in isolated arterial segments from hypertensive rats and minimal contraction in those from normotensive rats; 3 intracellular Ca2+ concentration is abnormally increased in vascular myocytes from hypertensive animals following treatment with Ca2+ channel agonists and depolarizing interventions, and 4 using the voltage-clamp technique, the inward Ca2+ current in arterial myocytes from hypertensive rats is nearly twice as large as that from myocytes of normotensive rats. We suggest that an alteration in Ca2+ channel function and/or an increase in Ca2+ channel density, resulting from increased channel synthesis or reduced turnover, underlies the increased vascular reactivity characteristic of hypertension

  12. Cardiac MRI in a Patient with Coincident Left Ventricular Non-Compaction and Hypertrophic Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Zahra Alizadeh-Sani

    2011-12-01

    Full Text Available Left ventricular non-compaction cardiomyopathy is a rare congenital cardiomyopathy that affects both children and adults. Since the clinical manifestations are not sufficient to establish diagnosis, echocardiography is the diagnostic tool that makes it possible to document ventricular non-compaction and establish prognostic factors. We report a 47-year-old woman with a history of dilated cardiomyopathy with unknown etiology. Echocardiography showed mild left ventricular enlargement with severe systolic dysfunction (EF = 20-25%. According to cardiac magnetic resonance imaging findings non-compaction left ventricle with hypertrophic cardiomyopathy was considered, and right ventricular septal biopsy was recommended. Right ventricular endomyocardial biopsy showed moderate hypertrophy of cardiac myocytes with foci of myocytolysis and moderate interstitial fibrosis. No evidence of infiltrative deposition was seen.

  13. Direct reprogramming of fibroblasts into myocytes to reverse fibrosis.

    Science.gov (United States)

    Muraoka, Naoto; Ieda, Masaki

    2014-01-01

    Heart disease is a major cause of morbidity and mortality worldwide. The low regenerative capacity of adult human hearts has thus far limited the available therapeutic approaches for heart failure. Therefore, new therapies that can regenerate damaged myocardium and improve heart function are urgently needed. Although cell transplantation-based therapies may hold great potential, direct reprogramming of endogenous cardiac fibroblasts, which represent more than half of the cells in the heart, into functional cardiomyocytes in situ may be an alternative strategy by which to regenerate the heart. We and others demonstrated that functional cardiomyocytes can be directly generated from fibroblasts by using several combinations of cardiac-enriched factors in mouse and human. In vivo gene delivery of cardiac reprogramming factors generates new cardiac muscle and improved heart function after myocardial infarction in mouse. This article reviews recent progress in cardiac reprogramming research and discusses the perspectives and challenges of this new technology for future regenerative therapy. PMID:24079415

  14. Care for the adult family members of victims of unexpected cardiac death.

    Science.gov (United States)

    Zalenski, Robert; Gillum, Richard F; Quest, Tammie E; Griffith, James L

    2006-12-01

    More than 300,000 sudden coronary deaths occur annually in the United States, despite declining cardiovascular death rates. In 2000, deaths from heart disease left an estimated 190,156 new widows and 68,493 new widowers. A major unanswered question for emergency providers is whether the immediate care of the loved ones left behind by the deceased should be a therapeutic task for the staff of the emergency department in the aftermath of a fatal cardiac arrest. Based on a review of the literature, the authors suggest that more research is needed to answer this question, to assess the current immediate needs and care of survivors, and to find ways to improve care of the surviving family of unexpected cardiac death victims. This would include improving quality of death disclosure, improving care for relatives during cardiopulmonary resuscitation of their family member, and improved methods of referral for services for prevention of psychological and cardiovascular morbidity during bereavement. PMID:16946285

  15. Our Experience with Two Cardioplegic Solutions: Dextrose versus Non-Dextrose in Adult Cardiac Surgery

    OpenAIRE

    Lessen, Ronald; DiCapua, John; Pekmezaris, Renee; Walia, Rajni; Bocchieri, Karl; Jahn, Lynda; Akerman, Meredith; Lesser, Martin L.; Hartman, Alan

    2012-01-01

    Intraoperative hyperglycemia has been observed to be associated with increased morbidity and mortality after cardiac surgery. Dextrose cardioplegia is used for its cardioprotective effects but may lead to intraoperative hyperglycemia and more postoperative complications. This was a retrospective observational study. Patient records (n = 2301) were accessed from a large database at a tertiary care facility. The two groups (dextrose vs. nondextrose) were then matched using preoperative variable...

  16. The Cardiac Conduction System: Generation and Conduction of the Cardiac Impulse.

    Science.gov (United States)

    Kennedy, Alan; Finlay, Dewar D; Guldenring, Daniel; Bond, Raymond; Moran, Kieran; McLaughlin, James

    2016-09-01

    In this article, the authors outline the key components behind the automated generation of the cardiac impulses and the effect these impulses have on cardiac myocytes. Also, a description of the key components of the normal cardiac conduction system is provided, including the sinoatrial node, the atrioventricular node, the His bundle, the bundle branches, and the Purkinje network. Finally, an outline of how each stage of the cardiac conduction system is represented on the electrocardiogram is described, allowing the reader of the electrocardiogram to translate background information about the normal cardiac conduction system to everyday clinical practice. PMID:27484656

  17. Effects of cardiac resynchronization therapy on health-related quality of life in older adults with heart failure

    Directory of Open Access Journals (Sweden)

    Karin F Hoth

    2008-10-01

    Full Text Available Karin F Hoth1,2, Justin Nash3, Athena Poppas4, Kristin E Ellison4, Robert H Paul5, Ronald A Cohen31Division of Psychosocial Medicine, National Jewish Medical and Research Center, Denver, CO, USA; 2Department of Psychiatry, University of Colorado, Denver, CO, USA; 3Department of Psychiatry and Human Behavior; 4Department of Cardiology, Warren Alpert Medical School of Brown University, Providence, RI, USA; 5Department of Psychology, Division of Behavioral Neuroscience, University of Missouri St. Louis, St. Louis, MO, USAAbstract: The aim of the study was to examine changes in health-related quality of life among older adults undergoing cardiac resynchronization therapy (CRT, a pacemaker based intervention for heart failure. Twenty-one patients (mean age = 68; SD = 8 completed measures of cardiovascular health and quality of life prior to and 3-months post-CRT. Following the intervention, patients reported improvements in their perception of their physical functioning (t = 2.8, p < 0.01 and feelings of vitality (t = 2.9, p < 0.01 on the MOS SF-36 Health Survey. Patients improved on objective clinical measures of exercise capacity, cardiac ejection fraction, and ventricular dyssynchrony. Younger patients reported greater improvements in physical functioning and decreases in pain. Higher baseline body mass index was associated with less improvement in physical functioning. Finally, patients with nonischemic heart failure reported greater improvements on multiple subscales of the SF-36 than patients with ischemic heart failure. This preliminary study documented improvements in health-related quality of life following CRT. The findings highlight that specific patient characteristics may be associated with quality of life changes. Future studies will benefit from including quality of life measures that assess multiple health-related domains.Keywords: cardiac resynchronization therapy, heart failure, quality of life

  18. Bursting calcium rotors in cultured cardiac myocyte monolayers

    OpenAIRE

    Bub, Gil; Glass, Leon; Publicover, Nelson G.; Shrier, Alvin

    1998-01-01

    Rotating waves (rotors) of cellular activity were observed in nonconfluent cultures of embryonic chick heart cells by using a macroscopic imaging system that detected fluorescence from intracellular Ca2+. Unlike previous observations of rotors or spiral waves in other systems, the rotors did not persist but exhibited a repetitive pattern of spontaneous onset and offset leading to a bursting rhythm. Similar dynamics were observed in a cellular automaton model of excitable media that incorporat...

  19. Phosphatidylinositol-bisphosphate regulates intercellular coupling in cardiac myocytes

    DEFF Research Database (Denmark)

    Hofgaard, Johannes P; Banach, Kathrin; Mollerup, Sarah;

    2008-01-01

    that agonist-induced changes in PIP(2) can result in a reduction of the functional coupling of cardiomyocytes and, consequently, in changes in conduction velocity. Intercellular coupling was measured by Lucifer Yellow dye transfer in cultured neonatal rat cardiomyocytes. Conduction velocity was...

  20. Daxx inhibits stress-induced apoptosis in cardiac myocytes

    Czech Academy of Sciences Publication Activity Database

    Zobalová, Renata; Swettenham, E.; Chladová, Jaromíra; Dong, L.F.; Neužil, Jiří

    2008-01-01

    Roč. 13, č. 6 (2008), s. 263-270. ISSN 1351-0002 R&D Projects: GA ČR(CZ) GA305/07/1008 Institutional research plan: CEZ:AV0Z50520701 Keywords : Daxx * apoptosis * oxidative stress Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.013, year: 2008

  1. Research progress of adult cardiac stem cells%成体心肌干细胞的研究进展

    Institute of Scientific and Technical Information of China (English)

    郑楠; 张宁坤; 高连如

    2013-01-01

    传统观点认为心脏是一个终末分化器官,然而随着成体心肌干细胞(CSCs)的发现,这种观点已受到广泛质疑.由于CSCs具有高度的自我更新能力和特异性心肌分化潜能,目前被认为是最有希望应用于缺血性心脏病及其他终末期心脏病替代治疗的干细胞类型.本文综述了目前关于人源CSCs、心外膜源细胞(EPDC)的研究概况,及其应用于心脏再生领域的治疗策略和研究中存在的问题.%The traditional view is that the heart is a terminal organ. This dogma, however, has been widely questioned with the discovery of adult cardiac stem cells (CSCs). Since CSCs have a highly self-renewal capacity and specific myocardial differentiation potential, nowadays they have been regarded as the most promising type of stem cells used in ischemic heart disease and other replacement therapy of end-stage heart disease. The present paper will focus on current results of scientific research on human adult CSCs and epicardium-derived cell (EPDC), as well as the treatment strategies in the field of cardiac regeneration, and the problems and prospect disclosed in the research.

  2. Congenital left ventricular wall abnormalities in adults detected by gated cardiac multidetector computed tomography: Clefts, aneurysms, diverticula and terminology problems

    International Nuclear Information System (INIS)

    Objectives: Our aim was to evaluate congenital left ventricular wall abnormalities (clefts, aneurysms and diverticula), describe and illustrate imaging features, discuss terminology problems and determine their prevalence detected by cardiac CT in a single center. Materials and methods: Coronary CT angiography images of 2093 adult patients were evaluated retrospectively in order to determine congenital left ventricular wall abnormalities. Results: The incidence of left ventricular clefts (LVC) was 6.7% (141 patients) and statistically significant difference was not detected between the sexes regarding LVC (P = 0.5). LVCs were single in 65.2% and multiple in 34.8% of patients. They were located at the basal to mid inferoseptal segment of the left ventricle in 55.4%, the basal to mid anteroseptal segment in 24.1%, basal to mid inferior segment in 17% and septal–apical septal segment in 3.5% of cases. The cleft length ranged from 5 to 22 mm (mean 10.5 mm) and they had a narrow connection with the left ventricle (mean 2.5 mm). They were contractile with the left ventricle and obliterated during systole. Congenital left ventricular septal aneurysm that was located just under the aortic valve was detected in two patients (0.1%). No case of congenital left ventricular diverticulum was detected. Conclusion: Cardiac CT allows us to recognize congenital left ventricular wall abnormalities which have been previously overlooked in adults. LVC is a congenital structural variant of the myocardium, is seen more frequently than previously reported and should be differentiated from aneurysm and diverticulum for possible catastrophic complications of the latter two.

  3. Cardiac inflammatory myofibroblastic tumor: does it recur after complete surgical resection in an adult?

    Directory of Open Access Journals (Sweden)

    Yang Xuedong

    2012-05-01

    Full Text Available Abstract Inflammatory myofibroblastic tumor is currently considered to be a low-grade neoplasm, and it rarely involves the heart. We reported a rare case of a 59-year-old female who received cardiac surgery for complete resection of inflammatory myofibroblastic tumor in the left atrium. Five months after surgery, the patient presented with acute cardiogenic pulmonary edema and subsequent sudden death due to a left atrial tumor which protruded into the left ventricle through mitral annulus during diastole. The recurrence of inflammatory myofibroblastic tumor in the left atrium was strongly suggested clinically.

  4. Validation of an in vitro contractility assay using canine ventricular myocytes

    International Nuclear Information System (INIS)

    Measurement of cardiac contractility is a logical part of pre-clinical safety assessment in a drug discovery project, particularly if a risk has been identified or is suspected based on the primary- or non-target pharmacology. However, there are limited validated assays available that can be used to screen several compounds in order to identify and eliminate inotropic liability from a chemical series. We have therefore sought to develop an in vitro model with sufficient throughput for this purpose. Dog ventricular myocytes were isolated using a collagenase perfusion technique and placed in a perfused recording chamber on the stage of a microscope at ∼ 36 °C. Myocytes were stimulated to contract at a pacing frequency of 1 Hz and a digital, cell geometry measurement system (IonOptix™) was used to measure sarcomere shortening in single myocytes. After perfusion with vehicle (0.1% DMSO), concentration–effect curves were constructed for each compound in 4–30 myocytes taken from 1 or 2 dog hearts. The validation test-set was 22 negative and 8 positive inotropes, and 21 inactive compounds, as defined by their effect in dog, cynolomolgous monkey or humans. By comparing the outcome of the assay to the known in vivo contractility effects, the assay sensitivity was 81%, specificity was 75%, and accuracy was 78%. With a throughput of 6–8 compounds/week from 1 cell isolation, this assay may be of value to drug discovery projects to screen for direct contractility effects and, if a hazard is identified, help identify inactive compounds. -- Highlights: ► Cardiac contractility is an important physiological function of the heart. ► Assessment of contractility is a logical part of pre-clinical drug safety testing. ► There are limited validated assays that predict effects of compounds on contractility. ► Using dog myocytes, we have developed an in vitro cardiac contractility assay. ► The assay predicted the in vivo contractility with a good level of accuracy.

  5. Validation of an in vitro contractility assay using canine ventricular myocytes

    Energy Technology Data Exchange (ETDEWEB)

    Harmer, A.R., E-mail: alex.harmer@astrazeneca.com; Abi-Gerges, N.; Morton, M.J.; Pullen, G.F.; Valentin, J.P.; Pollard, C.E.

    2012-04-15

    Measurement of cardiac contractility is a logical part of pre-clinical safety assessment in a drug discovery project, particularly if a risk has been identified or is suspected based on the primary- or non-target pharmacology. However, there are limited validated assays available that can be used to screen several compounds in order to identify and eliminate inotropic liability from a chemical series. We have therefore sought to develop an in vitro model with sufficient throughput for this purpose. Dog ventricular myocytes were isolated using a collagenase perfusion technique and placed in a perfused recording chamber on the stage of a microscope at ∼ 36 °C. Myocytes were stimulated to contract at a pacing frequency of 1 Hz and a digital, cell geometry measurement system (IonOptix™) was used to measure sarcomere shortening in single myocytes. After perfusion with vehicle (0.1% DMSO), concentration–effect curves were constructed for each compound in 4–30 myocytes taken from 1 or 2 dog hearts. The validation test-set was 22 negative and 8 positive inotropes, and 21 inactive compounds, as defined by their effect in dog, cynolomolgous monkey or humans. By comparing the outcome of the assay to the known in vivo contractility effects, the assay sensitivity was 81%, specificity was 75%, and accuracy was 78%. With a throughput of 6–8 compounds/week from 1 cell isolation, this assay may be of value to drug discovery projects to screen for direct contractility effects and, if a hazard is identified, help identify inactive compounds. -- Highlights: ► Cardiac contractility is an important physiological function of the heart. ► Assessment of contractility is a logical part of pre-clinical drug safety testing. ► There are limited validated assays that predict effects of compounds on contractility. ► Using dog myocytes, we have developed an in vitro cardiac contractility assay. ► The assay predicted the in vivo contractility with a good level of accuracy.

  6. Effect of Ca2+ Efflux Pathway Distribution and Exogenous Ca2+ Buffers on Intracellular Ca2+ Dynamics in the Rat Ventricular Myocyte: A Simulation Study

    Czech Academy of Sciences Publication Activity Database

    Pásek, Michal; Šimurda, J.; Orchard, C.

    2014-01-01

    Roč. 2014, č. 2014 (2014), s. 920208. ISSN 2314-6133 Grant ostatní: GA MZd NT14301 Institutional support: RVO:61388998 Keywords : calcium efflux * calcium buffers * cardiac myocyte * computer model Subject RIV: BO - Biophysics Impact factor: 1.579, year: 2014

  7. Sudden Cardiac Death in Young Adults With Previous Hospital-Based Psychiatric Inpatient and Outpatient Treatment

    DEFF Research Database (Denmark)

    Risgaard, Bjarke; Waagstein, Kristine; Winkel, Bo Gregers;

    2015-01-01

    hospital contact and was identified using The Danish Psychiatric Central Research Register. All diagnoses in Danish registries are coded according to ICD-8 or ICD-10. All hospital records were retrieved manually. Results: Among 5,178 deaths, 395 were due to SCD and autopsies were performed on 262 (66%). In...... 77 SCD cases, a previous psychiatric hospital contact was identified. The SCD incidence rate in psychiatric patients was 14.8 (95% CI, 11.7–18.5) per 100,000 person-years versus 3.8 (95% CI, 3.4–4.3) per 100,000 person-years in individuals without psychiatric hospital contact (incidence rate ratio...... often unexplained (65% vs 40%, P = .02), and cardiac symptoms were reported prior to death in 46% of psychiatric patients. Conclusions: Patients with prior psychiatric hospital contact have a 4-fold increased risk of SCD. Since almost 50% had possible cardiac symptoms prior to death, cardiovascular risk...

  8. A Multistep Procedure To Prepare Pre-Vascularized Cardiac Tissue Constructs Using Adult Stem Sells, Dynamic Cell Cultures And Porous Scaffolds

    Directory of Open Access Journals (Sweden)

    StefaniaPagliari

    2014-06-01

    Full Text Available The vascularization of tissue engineered products represents a key issue in regenerative medicine which needs to be addressed before the translation of these protocols to the bedside can be foreseen. Here we propose a multistep procedure to prepare pre-vascularized three-dimensional (3D cardiac bio-substitutes using dynamic cell cultures and highly porous biocompatible gelatin scaffolds. The strategy adopted exploits the peculiar differentiation potential of two distinct subsets of adult stem cells to obtain human vascularized 3D cardiac tissues. In the first step of the procedure, human mesenchymal stem cells (hMSCs are seeded onto gelatin scaffolds to provide interconnected vessel-like structures, while human cardiomyocyte progenitor cells (hCMPCs are stimulated in vitro to obtain their commitment towards the cardiac phenotype. The use of a modular bioreactor allows the perfusion of the whole scaffold, providing superior performance in terms of cardiac tissue maturation and cell survival. Both the cell culture on natural-derived polymers and the continuous medium perfusion of the scaffold led to the formation of a densely packaged proto-tissue composed of vascular-like and cardiac-like cells, which might complete maturation process and interconnect with native tissue upon in vivo implantation. In conclusion, the data obtained through the approach here proposed highlight the importance to provide stem cells with complementary signals in vitro able to resemble the complexity of cardiac microenvironment.

  9. Prenatal ethanol exposure alters ventricular myocyte contractile function in the offspring of rats: influence of maternal Mg2+ supplementation.

    Science.gov (United States)

    Wold, L E; Norby, F L; Hintz, K K; Colligan, P B; Epstein, P N; Ren, J

    2001-01-01

    Fetal alcohol syndrome (FAS) is often associated with cardiac hypertrophy and impaired ventricular function in a manner similar to postnatal chronic alcohol ingestion. Chronic alcoholism has been shown to lead to hypomagnesemia, and dietary Mg2+ supplementation was shown to ameliorate ethanol- induced cardiovascular dysfunction such as hypertension. However, the role of gestational Mg2+ supplementation on FAS-related cardiac dysfunction is unknown. This study was conducted to examine the influence of gestational dietary Mg2+ supplementation on prenatal ethanol exposure-induced cardiac contractile response at the ventricular myocyte level. Timed-pregnancy female rats were fed from gestation day 2 with liquid diets containing 0.13 g/L Mg2+ supplemented with ethanol (36%) or additional Mg2+ (0.52 g/L), or both. The pups were maintained on standard rat chow through adulthood, and ventricular myocytes were isolated and stimulated to contract at 0.5 Hz. Mechanical properties were evaluated using an IonOptix soft-edge system, and intracellular Ca2+ transients were measured as changes in fura-2 fluorescence intensity (Delta FFI). Offspring from all groups displayed similar growth curves. Myocytes from the ethanol group exhibited reduced cell length, enhanced peak shortening (PS), and shortened time to 90% relengthening (TR90) associated with a normal Delta FFI and time to PS (TPS). Mg2+ reverted the prenatal ethanol-induced alteration in PS and maximal velocity of relengthening. However, it shortened TPS and TR90, and altered the Delta FFI, as well as Ca2+ decay rate by itself. Additionally, myocytes from the ethanol group exhibited impaired responsiveness to increased extracellular Ca2+ or stimulating frequency, which were restored by gestational Mg2+ supplementation. These data suggest that although gestational Mg2+ supplementation may be beneficial to certain cardiac contractile dysfunctions in offspring of alcoholic mothers, caution must be taken, as Mg2

  10. Cardiac misconceptions among healthy adults: implications for the promotion of health in the community

    Directory of Open Access Journals (Sweden)

    Maria João Figueiras

    2015-03-01

    Full Text Available This study sought to confirm the structure and to investigate the psychometric properties of an experimental Portuguese version of the York Cardiac Beliefs Questionnaire (YCBQ in a general population sample. It also set out to identify the prevalent misconceptions in the community and to assess the differences according to socio-demographic characteristics. It involved a cross-sectional survey in which both test and validation samples were collected (n = 476, including participants aged between 18 and 40, recruited via e-mail and social networks. The Confirmatory Factor Analysis on both samples suggested a shorter, three factor version of the YCBQ. Also, misconceptions differed significantly according to sociodemographic variables. The validation of the YCBQ for samples in the community constitutes an important starting point to promote research on misconceptions held in the community by specific groups, as well as to provide key points for health promotion.

  11. Norepinephrine transporter (NET) is expressed in cardiac sympathetic ganglia of adult rat

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The sympathetic nervous system plays a cardinal role in regulating cardiac function through releasing the neurotransmitter norepinephrine (NE). In comparison with central nervous system, the molecular mechanism of NE uptake in myocardium is not clear. In present study, we proved that in rat the CNS type of NE transporter (NET) was also expressed in middle cervical-stellate ganglion complex (MC-SG complex) which is considered to control the activity of heart, but not expressed in myocardium. The results also showed that NET expression level in right ganglion was significantly higher than in the left, rendering the greater capacity of NE uptake in right ventricle, a fact which may contribute to the maintenance of right ventricular function under pathologic state.

  12. Gene Regulatory Networks in Cardiac Conduction System Development

    OpenAIRE

    Munshi, Nikhil V.

    2012-01-01

    The cardiac conduction system is a specialized tract of myocardial cells responsible for maintaining normal cardiac rhythm. Given its critical role in coordinating cardiac performance, a detailed analysis of the molecular mechanisms underlying conduction system formation should inform our understanding of arrhythmia pathophysiology and affect the development of novel therapeutic strategies. Historically, the ability to distinguish cells of the conduction system from neighboring working myocyt...

  13. Intracellular Ca2+ Modulation during Short Exposure to Ischemia-Mimetic Factors in Isolated Rat Ventricular Myocytes

    OpenAIRE

    Danijel, Pravdic; Nikolina, Vladic; Zeljko, Bosnjak J

    2009-01-01

    We investigated the effects of different ischemia-mimetic factors on intracellular Ca2+ concentration ([Ca2+]i). Ventricular myocytes were isolated from adult Wistar rats, and [Ca2+]i was measured using fluorescent indicator fluo-4 AM by confocal microscopy. Intracellular pH was measured using c5-(and-6)-carboxy SNARF-1 AM, a dual emission pH-sensitive ionophore. Myocytes were exposed to hypoxia, extracellular acidosis (pHo 6.8), Na-lactate (10 mM), or to combination of those factors for 25 m...

  14. Clinical features and risk assessment for cardiac surgery in adult congenital heart disease: Three years at a single Japanese center

    Directory of Open Access Journals (Sweden)

    Satoshi Kurokawa

    2014-04-01

    Conclusion: Cardiac surgery could be safely performed in most ACHD cases. Exercise tolerance testing can be useful in identifying patients at high risk of mortality or major complications. BNP can be valuable in predicting poor outcomes after cardiac surgery.

  15. Purinergic facilitation of ATP-sensitive potassium current in rat ventricular myocytes

    OpenAIRE

    Babenko, Andrey P.; Vassort, Guy

    1997-01-01

    The effects of different purinergic agonists on the cardiac adenosine 5′-triphosphate (ATP)-sensitive potassium current (IK(ATP)), appearing during dialysis of rat isolated ventricular myocytes with a low-ATP (100 μM) internal solution under whole-cell patch-clamp conditions, were examined in the presence of a P1 purinoceptor antagonist.The extracellular application of ATP in the micromolar range induced, besides known inward currents through cationic and chloride channels, the facilitation o...

  16. The neonate versus adult mammalian immune system in cardiac repair and regeneration.

    Science.gov (United States)

    Sattler, Susanne; Rosenthal, Nadia

    2016-07-01

    The immune system is a crucial player in tissue homeostasis and wound healing. A sophisticated cascade of events triggered upon injury ensures protection from infection and initiates and orchestrates healing. While the neonatal mammal can readily regenerate damaged tissues, adult regenerative capacity is limited to specific tissue types, and in organs such as the heart, adult wound healing results in fibrotic repair and loss of function. Growing evidence suggests that the immune system greatly influences the balance between regeneration and fibrotic repair. The neonate mammalian immune system has impaired pro-inflammatory function, is prone to T-helper type 2 responses and has an immature adaptive immune system skewed towards regulatory T cells. While these characteristics make infants susceptible to infection and prone to allergies, it may also provide an immunological environment permissive of regeneration. In this review we will give a comprehensive overview of the immune cells involved in healing and regeneration of the heart and explore differences between the adult and neonate immune system that may explain differences in regenerative ability. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. PMID:26801961

  17. December 2014 HeartWeek issue of cardiology in the young: highlights of HeartWeek 2014: diseases of the cardiac valves from the foetus to the adult.

    Science.gov (United States)

    Jacobs, Jeffrey P

    2014-12-01

    This December Issue of Cardiology in the Young represents the 12th annual publication generated from the two meetings that compose "HeartWeek in Florida". "HeartWeek in Florida", the joint collaborative project sponsored by the Cardiac Center at the Children's Hospital of Philadelphia, Pennsylvania, together with Johns Hopkins All Children's Heart Institute of Saint Petersburg, Florida, averages over 1000 attendees every year and is now recognised as one of the major planks of continuing medical and nursing education for those working in the fields of diagnosis and treatment of cardiac disease in the foetus, neonate, infant, child, and adult. "HeartWeek in Florida" combines the International Symposium on Congenital Heart Disease, organised by All Children's Hospital and Johns Hopkins Medicine and entering its 15th year, with the Annual Postgraduate Course in Pediatric Cardiovascular Disease, organised by The Children's Hospital of Philadelphia and entering its 18th year. This December, 2014 Issue of Cardiology in the Young features highlights of Johns Hopkins All Children's Heart Institute's 14th Annual International Symposium on Congenital Heart Disease, which was held at the Renaissance Vinoy Resort & Golf Club, Saint Petersburg, Florida, from 15-18 February, 2014. This Symposium was co-sponsored by The American Association for Thoracic Surgery (AATS) and had as its special focus " Diseases of the Cardiac Valves from the Fetus to the Adult ". We acknowledge the tremendous contributions made to paediatric and congenital cardiac care by Duke Cameron and Joel Brenner, and therefore we dedicate this December, 2014 HeartWeek Issue of Cardiology in the Young to them. Duke Cameron is Professor of Surgery at Johns Hopkins University and Cardiac Surgeon-in-Charge at The Johns Hopkins Hospital. Joel Brenner is Professor of Pediatrics at Johns Hopkins University and Director of the Taussig Heart Center at Bloomberg Children's Center, The Johns Hopkins Hospital. Together

  18. Adult murine skeletal muscle contains cells that can differentiate into beating cardiomyocytes in vitro.

    Directory of Open Access Journals (Sweden)

    Steve O Winitsky

    2005-04-01

    Full Text Available It has long been held as scientific fact that soon after birth, cardiomyocytes cease dividing, thus explaining the limited restoration of cardiac function after a heart attack. Recent demonstrations of cardiac myocyte differentiation observed in vitro or after in vivo transplantation of adult stem cells from blood, fat, skeletal muscle, or heart have challenged this view. Analysis of these studies has been complicated by the large disparity in the magnitude of effects seen by different groups and obscured by the recently appreciated process of in vivo stem-cell fusion. We now show a novel population of nonsatellite cells in adult murine skeletal muscle that progress under standard primary cell-culture conditions to autonomously beating cardiomyocytes. Their differentiation into beating cardiomyocytes is characterized here by video microscopy, confocal-detected calcium transients, electron microscopy, immunofluorescent cardiac-specific markers, and single-cell patch recordings of cardiac action potentials. Within 2 d after tail-vein injection of these marked cells into a mouse model of acute infarction, the marked cells are visible in the heart. By 6 d they begin to differentiate without fusing to recipient cardiac cells. Three months later, the tagged cells are visible as striated heart muscle restricted to the region of the cardiac infarct.

  19. Effects of pressure- or volume-overload hypertrophy on passive stiffness in isolated adult cardiac muscle cells

    Science.gov (United States)

    Kato, S.; Koide, M.; Cooper, G. 4th; Zile, M. R.

    1996-01-01

    It has been hypothesized that the changes in myocardial stiffness induced by chronic hemodynamic overloading are dependent on changes in the passive stiffness of the cardiac muscle cell (cardiocyte). However, no previous studies have examined the passive constitutive properties of cardiocytes isolated from animals with myocardial hypertrophy. Accordingly, changes in relative passive stiffness of cardiocytes isolated from animals with chronic pressure- or volume-overload hypertrophy were determined by examining the effects of anisosmotic stress on cardiocyte size. Anisosmotic stress was produced by altering superfusate osmolarity. Hypertrophied cardiocytes were enzymatically isolated from 16 adult cats with right ventricular (RV) pressure-overload hypertrophy induced by pulmonary artery banding (PAB) and from 6 adult cats with RV volume-overload hypertrophy induced by creating an atrial septal defect (ASD). Left ventricular (LV) cardiocytes from each cat served as nonhypertrophied, normally loaded, same-animal controls. Superfusate osmolarity was decreased from 305 +/- 3 to 135 +/- 5 mosM and increased to 645 +/- 4 mosM. During anisosmotic stress, there were no significant differences between hypertrophied RV and normal LV cardiocytes in pressure overload PAB cats with respect to percent change in cardiocyte area (47 +/- 2% in RV vs. 48 +/- 2% in LV), diameter (46 +/- 3% in RV vs. 48 +/- 2% in LV), or length (2.4 +/- 0.2% in RV vs. 2.0 +/- 0.3% in LV), or sarcomere length (1.5 +/- 0.1% in RV vs. 1.3 +/- 0.3% in LV). Likewise, there were no significant differences in cardiocyte strain between hypertrophied RV and normal LV cardiocytes from ASD cats. In conclusion, chronic pressure-overload hypertrophy and chronic volume-overload hypertrophy did not alter the cardiocyte response to anisosmotic stress. Thus chronic overload hypertrophy did not alter relative passive cardiocyte stiffness.

  20. Cardiac Rehabilitation is Associated with Lasting Improvements in Cognitive Function in Older Adults with Heart Failure

    Science.gov (United States)

    Alosco, Michael L.; Spitznagel, Mary Beth; Cohen, Ronald; Sweet, Lawrence H.; Josephson, Richard; Hughes, Joel; Rosneck, Jim; Gunstad, John

    2016-01-01

    Objective Heart failure (HF) is a known risk factor for cognitive impairment. Cardiac rehabilitation (CR) may attenuate poor neurocognitive outcomes in HF via improved physical fitness—a significant promoter of cognitive function. However, no study has examined the possible acute and lasting benefits of CR on cognitive function in persons with HF. Methods and Results 52 patients with HF completed a 12-week Phase II CR program. All participants were administered neuropsychological testing and completed a brief physical fitness assessment at baseline, completion of CR (i.e. 12-weeks), and 12-month follow-up. Repeated measures analyses showed a significant time effect for both attention/executive function and memory (p performance increased from baseline to 12-weeks and these gains remained up to 12-months; memory was unchanged from baseline to 12-weeks, but then improved between the 12-week and 12-month time points. Physical fitness improved from baseline to 12-weeks and these benefits were maintained 12-months later. Changes in physical fitness and cognitive function over time did not reach a statistically significant association, though poorer physical fitness was associated with decreased cognitive performance at the baseline and 12-month time points. Conclusions CR is associated with both acute and lasting cognitive benefits in patients with HF. Prospective studies with extended follow-ups are needed to clarify the mechanisms that underpin cognitive improvements following CR (e.g., improved cerebral perfusion) and whether CR can ultimately reduce risk for cognitive decline and conditions like Alzheimer’s disease in HF. PMID:25181916

  1. Radiographic evaluation of the cardiac silluet using the VHS method (Vertebral Heart Size) in young and adults coatis (Nasua nasua, Linneaus 1766) living in captivity

    OpenAIRE

    Andresa de Cássia Martini; Yara Silva Meireles; Samuel Monzem; Luiz Paulo Vasconcelos; Nívea Clarice Monteiro Rocha Turbino; Magyda Arabia Araji Dahroug; Daniela Farias; Pedro Brandini Néspoli; Gentil Ferreira Gonçalves; Roberto Lopes de Souza; Luciana Dambrósio Guimarães

    2014-01-01

    Radiographic examination of the toracic cavity is an usefull noninvasive method for assessment, monitoring the progress of heart disease, suggesting prognosis and guiding the treatment. The aim of this study was to evaluate the cardiac silhouette of young and adults coatis and evaluate its relationship to the number of thoracic vertebrae (VHS), the method proposed by Buchanam and Buchele (1995) for small animals. We evaluated a group of 20 coatis, divided by age: I (GI) and 8 animals aged bet...

  2. Cardiac magnetic resonance imaging in dilated cardiomyopathy in adults - towards identification of myocardial inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Voigt, Antje; Beling, Mark; Stangl, Karl [Charite-Universitaetsmedizin Berlin, Department of Cardiology, Campus Mitte, Berlin (Germany); Elgeti, Thomas; Durmus, Tahir; Idiz, Merve Ece; Schilling, Rene; Taupitz, Matthias; Wagner, Moritz [Charite-Universitaetsmedizin Berlin, Department of Radiology, Campus Mitte, Berlin (Germany); Butler, Craig [University of Alberta, Mazankowski Alberta Heart Institute, Edmonton (Canada); Klingel, Karin; Kandolf, Reinhard [University Hospital, Department of Molecular Pathology, Tuebingen (Germany); Kivelitz, Dietmar [Asklepios Klinik St. Georg, Department of Radiology, Hamburg (Germany)

    2011-05-15

    To assess active myocardial inflammation by cardiovascular magnetic resonance (CMR) and endomyocardial biopsy (EMB) amongst adult patients with dilated cardiomyopathy (DCM). We evaluated 23 adults with chronic DCM, who had successfully undergone both CMR and EMB within 3.5 {+-} 2.6 days. EMB was considered the gold standard. CMR assessment of myocardial inflammation used the following parameters as recommended by the recently published ''Lake Louise Criteria'': global myocardial oedema, global relative enhancement (RE), and late gadolinium enhancement (LGE). According to ''Lake Louise Criteria'', myocardial inflammation was diagnosed if two or more of the three above-mentioned parameters were positive. Myocardial inflammation was confirmed by immunohistology in 12 patients (52.2%). Sensitivity, specificity, and diagnostic accuracy of CMR to detect immunohistologically confirmed myocardial inflammation were 75.0%, 72.7%, and 73.9%, respectively. Sensitivity, specificity, and diagnostic accuracy of the individual CMR parameters to detect myocardial inflammation were as follows: global myocardial oedema, 91.7%, 81.8%, and 87.0%, respectively; global RE, 58.3%, 63.6%, and 60.9%, respectively; LGE, 58.3%, 45.4%, and 52.2%, respectively. Global myocardial oedema was identified as a promising CMR parameter for assessment of myocardial inflammation in patients with DCM. In these patients, global myocardial oedema yielded superior diagnostic performance compared to ''Lake Louise Criteria''. (orig.)

  3. Sexual hormones: effects on cardiac and mitochondrial activity after ischemia-reperfusion in adult rats. Gender difference.

    Science.gov (United States)

    Pavón, Natalia; Martínez-Abundis, Eduardo; Hernández, Luz; Gallardo-Pérez, Juan Carlos; Alvarez-Delgado, Carolina; Cerbón, Marco; Pérez-Torres, Israel; Aranda, Alberto; Chávez, Edmundo

    2012-10-01

    In this work we studied the influence of sex hormones on heart and mitochondrial functions, from adult castrated female and male, and intact rats. Castration was performed at their third week of life and on the fourth month animals were subjected to heart ischemia and reperfusion. Electrocardiogram and blood pressure recordings were made, cytokines levels were measured, histopathological studies were performed and thiobarbituric acid reactive species were determined. At the mitochondrial level respiratory control, transmembranal potential and calcium management were determined; Western blot of some mitochondrial components was also performed. Alterations in cardiac function were worst in intact males and castrated females as compared with those found in intact females and castrated males, cytokine levels were modulated also by hormonal status. Regarding mitochondria, in those obtained from hearts from castrated females without ischemia-reperfusion, all evaluated parameters were similar to those observed in mitochondria after ischemia-reperfusion. The results show hormonal influences on the heart at functional and mitochondrial levels. PMID:22609314

  4. Linkage of cardiac gene expression profiles and ETS2 with lifespan variability in rats.

    Science.gov (United States)

    Sheydina, Anna; Volkova, Maria; Jiang, Liqun; Juhasz, Ondrej; Zhang, Jing; Tae, Hyun-Jin; Perino, Maria G; Wang, Mingyi; Zhu, Yi; Lakatta, Edward G; Boheler, Kenneth R

    2012-04-01

    Longevity variability is a common feature of aging in mammals, but the mechanisms responsible for this remain largely unknown. Using microarray datasets coupled with prediction analysis of microarrays (PAM), we identified a set of 252 cardiac transcripts predictive of relative lifespan in Wistar and Fisher 344 rats. Prediction analysis of microarrays 'tests' of rat heart transcriptomes from a third longer lived Fisher × Norway Brown rat strain validated the predictive value of this gene subset. The expression patterns of these genes were highly conserved, and corresponding promoter regions were employed to identify common cis-elements and trans-activating factors implicated in their control. Specifically, four transcription factors (Max, Ets2, Erg, and Msx2) present in heart displayed longevity-dependent, strain-independent changes in abundance, but only ETS2 had an expression profile that directly correlated with the relative lifespan gene set. In heart, ETS2 was prevalent in cardiomyocytes (CMs) and showed a high degree of myocyte-to-myocyte variability predominantly in adult rat hearts prior to the exponential increase in the rate of mortality. Exclusively in this group, elevated ETS2 significantly overlapped with TUNEL staining in heart myocytes. In response to sympathetic stimuli, ETS2 is also up-regulated, and functionally, adenovirus-mediated over-expression of ETS2 promotes apoptosis-inducing factor-mediated, caspase-independent programmed necrosis exclusively in CMs that can be fully inhibited by the PARP-1 inhibitor DPQ. We conclude that variations in ETS2 abundance in hearts of adult rodents and the associated loss of CMs contribute at least partially, to the longevity variability observed during normal aging of rats through activation of programmed necrosis. PMID:22247964

  5. Heart regeneration in adult MRL mice

    OpenAIRE

    Leferovich, John M.; Bedelbaeva, Khamilia; Samulewicz, Stefan; Zhang, Xiang-Ming; Zwas, Donna; Lankford, Edward B.; Heber-Katz, Ellen

    2001-01-01

    The reaction of cardiac tissue to acute injury involves interacting cascades of cellular and molecular responses that encompass inflammation, hormonal signaling, extracellular matrix remodeling, and compensatory adaptation of myocytes. Myocardial regeneration is observed in amphibians, whereas scar formation characterizes cardiac ventricular wound healing in a variety of mammalian injury models. We have previously shown that the MRL mouse strain has an extraordinary ...

  6. Assessment of DNA synthesis in Islet-1+ cells in the adult murine heart

    International Nuclear Information System (INIS)

    Highlights: • Islet-1 was expressed in the adult heart. • Islet-1-positive cells did not proliferate in the adult heart. • Sinoatrial node cells did not proliferate in the adult heart. - Abstract: Rationale: Islet-1 positive (Islet-1+) cardiac progenitor cells give rise to the right ventricle, atria and outflow tract during murine cardiac development. In the adult heart Islet-1 expression is limited to parasympathetic neurons, few cardiomyocytes, smooth muscle cells, within the proximal aorta and pulmonary artery and sinoatrial node cells. Its role in these cells is unknown. Here we tested the hypothesis that Islet-1+ cells retain proliferative activity and may therefore play a role in regenerating specialized regions in the heart. Methods and results: DNA synthesis was analyzed by the incorporation of tritiated thymidine (3H-thymidine) in Isl-1-nLacZ mice, a transgenic model with an insertion of a nuclear beta-galactosidase in the Islet-1 locus. Mice received daily injections of 3H-thymidine for 5 days. DNA synthesis was visualized throughout the heart by dipping autoradiography of cryosections. Colocalization of an nLacZ-signal and silver grains would indicate DNA synthesis in Islet-1+ cells. Whereas Islet− non-myocyte nuclei were regularly marked by accumulation of silver grains, colocalization with nLacZ-signals was not detected in >25,000 cells analyzed. Conclusions: Islet-1+ cells are quiescent in the adult heart, suggesting that, under normal conditions, even pacemaking cells do not proliferate at higher rates than normal cardiac myocytes

  7. Assessment of DNA synthesis in Islet-1{sup +} cells in the adult murine heart

    Energy Technology Data Exchange (ETDEWEB)

    Weinberger, Florian, E-mail: f.weinberger@uke.de; Mehrkens, Dennis, E-mail: dennis.mehrkens@uk-koeln.de; Starbatty, Jutta, E-mail: starbatty@uke.uni-hamburg.de; Nicol, Philipp, E-mail: Philipp.Nicol@gmx.de; Eschenhagen, Thomas, E-mail: t.eschenhagen@uke.de

    2015-01-02

    Highlights: • Islet-1 was expressed in the adult heart. • Islet-1-positive cells did not proliferate in the adult heart. • Sinoatrial node cells did not proliferate in the adult heart. - Abstract: Rationale: Islet-1 positive (Islet-1{sup +}) cardiac progenitor cells give rise to the right ventricle, atria and outflow tract during murine cardiac development. In the adult heart Islet-1 expression is limited to parasympathetic neurons, few cardiomyocytes, smooth muscle cells, within the proximal aorta and pulmonary artery and sinoatrial node cells. Its role in these cells is unknown. Here we tested the hypothesis that Islet-1{sup +} cells retain proliferative activity and may therefore play a role in regenerating specialized regions in the heart. Methods and results: DNA synthesis was analyzed by the incorporation of tritiated thymidine ({sup 3}H-thymidine) in Isl-1-nLacZ mice, a transgenic model with an insertion of a nuclear beta-galactosidase in the Islet-1 locus. Mice received daily injections of {sup 3}H-thymidine for 5 days. DNA synthesis was visualized throughout the heart by dipping autoradiography of cryosections. Colocalization of an nLacZ-signal and silver grains would indicate DNA synthesis in Islet-1{sup +} cells. Whereas Islet{sup −} non-myocyte nuclei were regularly marked by accumulation of silver grains, colocalization with nLacZ-signals was not detected in >25,000 cells analyzed. Conclusions: Islet-1{sup +} cells are quiescent in the adult heart, suggesting that, under normal conditions, even pacemaking cells do not proliferate at higher rates than normal cardiac myocytes.

  8. Modeling CICR in rat ventricular myocytes: voltage clamp studies

    Directory of Open Access Journals (Sweden)

    Palade Philip T

    2010-11-01

    Full Text Available Abstract Background The past thirty-five years have seen an intense search for the molecular mechanisms underlying calcium-induced calcium-release (CICR in cardiac myocytes, with voltage clamp (VC studies being the leading tool employed. Several VC protocols including lowering of extracellular calcium to affect Ca2+ loading of the sarcoplasmic reticulum (SR, and administration of blockers caffeine and thapsigargin have been utilized to probe the phenomena surrounding SR Ca2+ release. Here, we develop a deterministic mathematical model of a rat ventricular myocyte under VC conditions, to better understand mechanisms underlying the response of an isolated cell to calcium perturbation. Motivation for the study was to pinpoint key control variables influencing CICR and examine the role of CICR in the context of a physiological control system regulating cytosolic Ca2+ concentration ([Ca2+]myo. Methods The cell model consists of an electrical-equivalent model for the cell membrane and a fluid-compartment model describing the flux of ionic species between the extracellular and several intracellular compartments (cell cytosol, SR and the dyadic coupling unit (DCU, in which resides the mechanistic basis of CICR. The DCU is described as a controller-actuator mechanism, internally stabilized by negative feedback control of the unit's two diametrically-opposed Ca2+ channels (trigger-channel and release-channel. It releases Ca2+ flux into the cyto-plasm and is in turn enclosed within a negative feedback loop involving the SERCA pump, regulating[Ca2+]myo. Results Our model reproduces measured VC data published by several laboratories, and generates graded Ca2+ release at high Ca2+ gain in a homeostatically-controlled environment where [Ca2+]myo is precisely regulated. We elucidate the importance of the DCU elements in this process, particularly the role of the ryanodine receptor in controlling SR Ca2+ release, its activation by trigger Ca2+, and its

  9. Immunoreactive atrial natriuretic peptide and dopamine beta-hydroxylase in myocytes and chromaffin cells of the heart of the African lungfish, Protopterus aethiopicus.

    Science.gov (United States)

    Larsen, T H; Helle, K B; Saetersdal, T

    1994-07-01

    The heart of the African lungfish, Protopterus aethiopicus, was examined for immunoreactive atrial natriuretic peptide (ANP) and dopamine beta-hydroxylase (D beta H) as markers for hormone secreting myocytes and chromaffin cells, respectively. Specific antibodies raised against rat alpha-ANP and rat D beta H were used for immunofluorescence microscopy and immunogold electron microscopy. D beta H-immunoreactive cells were restricted to subendocardial areas of the atrium whereas ANP immunoreactivity occurred throughout both the atrial and the ventricular myocardium, showing particularly strong staining intensity in the atrial myocytes. The granular ANP immunostaining in the atrial myocytes was frequently accumulated in the sarcoplasm. In the ventricular myocytes ANP immunoreactivity occurred as scattered granular staining throughout the sarcoplasm. ANP and D beta H immunofluorescence staining coincided with the presence of immunoreactive specific granules and secretory vesicles in the cardiac myocytes and chromaffin cells, respectively, as revealed by electron microscopy. The number of ANP-containing specific granules was generally high in the atrial myocytes, and they were frequently observed in clusters in subsarcolemmal areas. Granular frequency was considerably lower and the mean granular diameter was smaller (0.142 +/- 0.045 micron versus 0.213 +/- 0.049 micron) in the ventricular than in the atrial myocytes. The present results indicate that ANP and D beta H are phylogenetically highly conserved proteins from the dipnoi to the rat. The large amounts of ANP and of specific granules are consistent with an endocrine myocardium in the Protopterus heart. The presence of D beta H and secretory vesicles in the subendocardial chromaffin cells of the atrium suggests a local production of catecholamines from dopamine in the heart of this dipnoan. PMID:7926645

  10. Novel all-extremity high-intensity interval training improves aerobic fitness, cardiac function and insulin resistance in healthy older adults.

    Science.gov (United States)

    Hwang, Chueh-Lung; Yoo, Jeung-Ki; Kim, Han-Kyul; Hwang, Moon-Hyon; Handberg, Eileen M; Petersen, John W; Christou, Demetra D

    2016-09-01

    Aging is associated with decreased aerobic fitness and cardiac remodeling leading to increased risk for cardiovascular disease. High-intensity interval training (HIIT) on the treadmill has been reported to be more effective in ameliorating these risk factors compared with moderate-intensity continuous training (MICT) in patients with cardiometabolic disease. In older adults, however, weight-bearing activities are frequently limited due to musculoskeletal and balance problems. The purpose of this study was to examine the feasibility and safety of non-weight-bearing all-extremity HIIT in older adults. In addition, we tested the hypothesis that all-extremity HIIT will be more effective in improving aerobic fitness, cardiac function, and metabolic risk factors compared with all-extremity MICT. Fifty-one healthy sedentary older adults (age: 65±1years) were randomized to HIIT (n=17), MICT (n=18) or non-exercise control (CONT; n=16). HIIT (4×4min 90% of peak heart rate; HRpeak) and isocaloric MICT (70% of HRpeak) were performed on a non-weight-bearing all-extremity ergometer, 4×/week for 8weeks under supervision. All-extremity HIIT was feasible in older adults and resulted in no adverse events. Aerobic fitness (peak oxygen consumption; VO2peak) and ejection fraction (echocardiography) improved by 11% (Pfitness, ejection fraction, and insulin resistance. PMID:27346646

  11. Longstanding hyperthyroidism is associated with normal or enhanced intrinsic cardiomyocyte function despite decline in global cardiac function.

    Directory of Open Access Journals (Sweden)

    Nathan Y Weltman

    Full Text Available Thyroid hormones (THs play a pivotal role in cardiac homeostasis. TH imbalances alter cardiac performance and ultimately cause cardiac dysfunction. Although short-term hyperthyroidism typically leads to heightened left ventricular (LV contractility and improved hemodynamic parameters, chronic hyperthyroidism is associated with deleterious cardiac consequences including increased risk of arrhythmia, impaired cardiac reserve and exercise capacity, myocardial remodeling, and occasionally heart failure. To evaluate the long-term consequences of chronic hyperthyroidism on LV remodeling and function, we examined LV isolated myocyte function, chamber function, and whole tissue remodeling in a hamster model. Three-month-old F1b hamsters were randomized to control or 10 months TH treatment (0.1% grade I desiccated TH. LV chamber remodeling and function was assessed by echocardiography at 1, 2, 4, 6, 8, and 10 months of treatment. After 10 months, terminal cardiac function was assessed by echocardiography and LV hemodynamics. Hyperthyroid hamsters exhibited significant cardiac hypertrophy and deleterious cardiac remodeling characterized by myocyte lengthening, chamber dilatation, decreased relative wall thickness, increased wall stress, and increased LV interstitial fibrotic deposition. Importantly, hyperthyroid hamsters demonstrated significant LV systolic and diastolic dysfunction. Despite the aforementioned remodeling and global cardiac decline, individual isolated cardiac myocytes from chronically hyperthyroid hamsters had enhanced function when compared with myocytes from untreated age-matched controls. Thus, it appears that long-term hyperthyroidism may impair global LV function, at least in part by increasing interstitial ventricular fibrosis, in spite of normal or enhanced intrinsic cardiomyocyte function.

  12. c-kitpos GATA-4 high rat cardiac stem cells foster adult cardiomyocyte survival through IGF-1 paracrine signalling.

    Directory of Open Access Journals (Sweden)

    Nanako Kawaguchi

    Full Text Available BACKGROUND: Resident c-kit positive (c-kitpos cardiac stem cells (CSCs could be considered the most appropriate cell type for myocardial regeneration therapies. However, much is still unknown regarding their biological properties and potential. METHODOLOGY/PRINCIPAL FINDINGS: We produced clones of high and low expressing GATA-4 CSCs from long-term bulk-cultured c-kitpos CSCs isolated from adult rat hearts. When c-kitpos GATA-4 high expressing clonal CSCs (cCSCs were co-cultured with adult rat ventricular cardiomyocytes, we observed increased survival and contractility of the cardiomyocytes, compared to cardiomyocytes cultured alone, co-cultured with fibroblasts or c-kitpos GATA-4 low expressing cCSCs. When analysed by ELISA, the concentration of IGF-1 was significantly increased in the c-kitpos GATA-4 high cCSC/cardiomyocyte co-cultures and there was a significant correlation between IGF-1 concentration and cardiomyocyte survival. We showed the activation of the IGF-1 receptor and its downstream molecular targets in cardiomyocytes co-cultured with c-kitpos GATA-4 high cCSCs but not in cardiomyocytes that were cultured alone, co-cultured with fibroblasts or c-kitpos GATA-4 low cCSCs. Addition of a blocking antibody specific to the IGF-1 receptor inhibited the survival of cardiomyocytes and prevented the activation of its signalling in cardiomyocytes in the c-kitpos GATA-4 high cCSC/cardiomyocyte co-culture system. IGF-1 supplementation or IGF-1 high conditioned medium taken from the co-culture of c-kitpos GATA-4 high cCSCs plus cardiomyocytes did extend the survival and contractility of cardiomyocytes cultured alone and cardiomyocytes co-cultured with c-kitpos GATA-4 low cCSCs. CONCLUSION/SIGNIFICANCE: c-kitpos GATA-4 high cCSCs exert a paracrine survival effect on cardiomyocytes through induction of the IGF-1R and signalling pathway.

  13. Numerically simulated cardiac exposure to electric current densities induced by TASER X-26 pulses in adult men

    Science.gov (United States)

    Leitgeb, N.; Niedermayr, F.; Neubauer, R.; Loos, G.

    2010-10-01

    There is still an ongoing debate whether or not electronic stun devices (ESDs) induce cardiac fibrillation. To assess the ventricular fibrillation risk of law enforcing electronic control devices, quantitative estimates of cardiac electric current densities induced by delivered electric pulses are essential. Numerical simulations were performed with the finite integration technique and the anatomical model of a standardized European man (NORMAN) segmented into 2 mm voxels and 35 different tissues. The load-dependent delivery of TASER X-26 pulses has been taken into account. Cardiac exposure to electric current densities of vertically and horizontally aligned dart electrodes was quantified and different hit scenarios compared. Since fibrillation thresholds critically depend on exposed volume, the provided quantitative data are essential for risk assessment. The maximum cardiac rms current densities amounted to 7730 A m-2. Such high current densities and exposed cardiac volumes do not exclude ventricular fibrillation.

  14. Numerically simulated cardiac exposure to electric current densities induced by TASER X-26 pulses in adult men

    International Nuclear Information System (INIS)

    There is still an ongoing debate whether or not electronic stun devices (ESDs) induce cardiac fibrillation. To assess the ventricular fibrillation risk of law enforcing electronic control devices, quantitative estimates of cardiac electric current densities induced by delivered electric pulses are essential. Numerical simulations were performed with the finite integration technique and the anatomical model of a standardized European man (NORMAN) segmented into 2 mm voxels and 35 different tissues. The load-dependent delivery of TASER X-26 pulses has been taken into account. Cardiac exposure to electric current densities of vertically and horizontally aligned dart electrodes was quantified and different hit scenarios compared. Since fibrillation thresholds critically depend on exposed volume, the provided quantitative data are essential for risk assessment. The maximum cardiac rms current densities amounted to 7730 A m-2. Such high current densities and exposed cardiac volumes do not exclude ventricular fibrillation.

  15. Numerically simulated cardiac exposure to electric current densities induced by TASER X-26 pulses in adult men

    Energy Technology Data Exchange (ETDEWEB)

    Leitgeb, N; Niedermayr, F; Neubauer, R; Loos, G, E-mail: norbert.leitgeb@tugraz.a [Institute of Clinical Engineering with European Notified Body of Medical Devices, Graz University of Technology, Inffeldgasse 18, A-8010 Graz (Austria)

    2010-10-21

    There is still an ongoing debate whether or not electronic stun devices (ESDs) induce cardiac fibrillation. To assess the ventricular fibrillation risk of law enforcing electronic control devices, quantitative estimates of cardiac electric current densities induced by delivered electric pulses are essential. Numerical simulations were performed with the finite integration technique and the anatomical model of a standardized European man (NORMAN) segmented into 2 mm voxels and 35 different tissues. The load-dependent delivery of TASER X-26 pulses has been taken into account. Cardiac exposure to electric current densities of vertically and horizontally aligned dart electrodes was quantified and different hit scenarios compared. Since fibrillation thresholds critically depend on exposed volume, the provided quantitative data are essential for risk assessment. The maximum cardiac rms current densities amounted to 7730 A m{sup -2}. Such high current densities and exposed cardiac volumes do not exclude ventricular fibrillation.

  16. Estereologia do miocárdio de ratos jovens e idosos Stereology of the myocytes in young and aged rats

    Directory of Open Access Journals (Sweden)

    Márcia Barbosa Águila

    1998-02-01

    group we counted 15 random microscopic fields. The following parameters were studied: Vv(myocyte and Vv(interstitium(% (the volume densities of the cardiac myocyte and interstitium, determined by the point-counting method, and Nv(myocyte (1/mm³ (the numerical density of the cardiac myocytes, determined with the disector method. The total number of myocytes (N[myocyte] and the mean volume of the myocytes (V[myocytes] were also determined. The differences were tested by the Mann-Whitney test.RESULTS: Cardiac weight increased from 1.1 to 1.7g, the Vv(myocyte decreased from 76.7 to 72.2%, the Vv(interstitium increased from 23.3 to 27.8%. The Nv(myocyte and the N(myocyte decreased from 14.76x10(4 to 6.19x10(4/mm³ and 15.64x10(4 to 10.72x10(4 myocytes, respectively. Simultaneously, the V(myocyte increased from 5.42x10³ to 13.26x10³mm³. These differences were statistically significant (p<0.05. CONCLUSION: Myocardial changes, comparing young rats with aged ones suggest loss of myocytes (increased apoptosis? with simultaneous myocyte hypertrophy.

  17. Activation of cardiac chloride conductance by the tyrosine kinase inhibitor, genistein.

    OpenAIRE

    Shuba, L. M.; Asai, T.; Pelzer, S.; McDonald, T. F.

    1996-01-01

    1. Genistein (GST), an inhibitor of protein tyrosine kinase (PTK), Na3VO4 (VO4), an inhibitor of phosphotyrosine phosphatase (PTPase), and forskolin (FSK), an activator of the cyclic AMP-dependent, cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel, were applied to guinea-pig ventricular myocytes to probe for a possible role of tyrosine phosphorylation in the regulation of cardiac Cl- channels. 2. Myocytes in the standard whole-cell configuration were pulsed to various pot...

  18. Influence of skeletal muscle satellite cells implanted into infarcted myocardium on remnant myocyte volumes

    Institute of Scientific and Technical Information of China (English)

    钟竑; 朱洪生; 卫洪超; 张臻

    2003-01-01

    Objective To study the effects of skeletal muscle satellite cells implanted into infarcted myocardium on the volume of remnant myocytes.Methods Thirty-six adult mongrel canines were divided randomly into implantation group and control group. In the implantation group, skeletal muscle satellite cells taken from the gluteus maximus muscles of the dogs were cultured, proliferated and labeled with 4', 6-diamidino-2-phenylindone (DAPI) in vitro. In both groups, a model of acute myocardial infarction was established in every dog. In the implantation group, each dog was injected with M199 solution containing autologous skeletal muscle satellite cells. The dogs in the control group received M199 solution without skeletal muscle satellite cells. The dogs of both groups were killed 2, 4 and 8 weeks after implantation (six dogs in a separate group each time). Both infarcted myocardium and normal myocytes distal from the infracted regions isolated were observed under optical and fluorescent microscope. Their volumes were determined using a confocal microscopy image analysis system and analyzed using SAS. A P<0.05 was considered significant.Results A portion of the implanted cells differentiated into muscle fiber with striations and were connected with intercalated discs. Cross-sectional area and cell volume were increased in normal myocardium. Hypertrophy of remnant myocytes in the infarcted site after skeletal muscle cell implantation was much more evident than in the control group. Cross-sectional area, cell area and cell volume differed significantly from those of the control group (P< 0.05). Hypertrophy of the cells occurred predominantly in terms of width and thickness, whereas cell length remained unchanged. Conclusion Skeletal muscle satellite cells implanted into infarct myocardium, could induce the hypertrophy of remnant myocyte cells in the infarcted site and could also aid in the recovery of the contractile force of the infarcted myocardium.

  19. Cardiac mitochondria exhibit dynamic functional clustering

    Directory of Open Access Journals (Sweden)

    FelixTobiasKurz

    2014-09-01

    Full Text Available Multi-oscillatory behavior of mitochondrial inner membrane potential ΔΨm in self-organized cardiac mitochondrial networks can be triggered by metabolic or oxidative stress. Spatio-temporal analyses of cardiac mitochondrial networks have shown that mitochondria are heterogeneously organized in synchronously oscillating clusters in which the mean cluster frequency and size are inversely correlated, thus suggesting a modulation of cluster frequency through local inter-mitochondrial coupling. In this study, we propose a method to examine the mitochondrial network's topology through quantification of its dynamic local clustering coefficients. Individual mitochondrial ΔΨm oscillation signals were identified for each cardiac myocyte and cross-correlated with all network mitochondria using previously described methods (Kurz et al., 2010. Time-varying inter-mitochondrial connectivity, defined for mitochondria in the whole network whose signals are at least 90% correlated at any given time point, allowed considering functional local clustering coefficients. It is shown that mitochondrial clustering in isolated cardiac myocytes changes dynamically and is significantly higher than for random mitochondrial networks that are constructed using the Erdös-Rényi model based on the same sets of vertices. The network's time-averaged clustering coefficient for cardiac myocytes was found to be 0.500 ± 0.051 (N=9 versus 0.061 ± 0.020 for random networks, respectively. Our results demonstrate that cardiac mitochondria constitute a network with dynamically connected constituents whose topological organization is prone to clustering. Cluster partitioning in networks of coupled oscillators has been observed in scale-free and chaotic systems and is therefore in good agreement with previous models of cardiac mitochondrial networks (Aon et al., 2008.

  20. Cardiac tumours in children

    Directory of Open Access Journals (Sweden)

    Parsons Jonathan M

    2007-03-01

    Full Text Available Abstract Cardiac tumours are benign or malignant neoplasms arising primarily in the inner lining, muscle layer, or the surrounding pericardium of the heart. They can be primary or metastatic. Primary cardiac tumours are rare in paediatric practice with a prevalence of 0.0017 to 0.28 in autopsy series. In contrast, the incidence of cardiac tumours during foetal life has been reported to be approximately 0.14%. The vast majority of primary cardiac tumours in children are benign, whilst approximately 10% are malignant. Secondary malignant tumours are 10–20 times more prevalent than primary malignant tumours. Rhabdomyoma is the most common cardiac tumour during foetal life and childhood. It accounts for more than 60% of all primary cardiac tumours. The frequency and type of cardiac tumours in adults differ from those in children with 75% being benign and 25% being malignant. Myxomas are the most common primary tumours in adults constituting 40% of benign tumours. Sarcomas make up 75% of malignant cardiac masses. Echocardiography, Computing Tomography (CT and Magnetic Resonance Imaging (MRI of the heart are the main non-invasive diagnostic tools. Cardiac catheterisation is seldom necessary. Tumour biopsy with histological assessment remains the gold standard for confirmation of the diagnosis. Surgical resection of primary cardiac tumours should be considered to relieve symptoms and mechanical obstruction to blood flow. The outcome of surgical resection in symptomatic, non-myxomatous benign cardiac tumours is favourable. Patients with primary cardiac malignancies may benefit from palliative surgery but this approach should not be recommended for patients with metastatic cardiac tumours. Surgery, chemotherapy and radiotherapy may prolong survival. The prognosis for malignant primary cardiac tumours is generally extremely poor.

  1. Cardiac cAMP: production, hydrolysis, modulation and detection

    OpenAIRE

    Cédric eBOULARAN; Céline eGALES

    2015-01-01

    Cyclic adenosine 3’,5’-monophosphate (cAMP) modulates a broad range of biological processes including the regulation of cardiac myocyte contractile function where it constitutes the main second messenger for β-adrenergic receptors’ signaling to fulfill positive chronotropic, inotropic and lusitropic effects. A growing number of studies pinpoint the role of spatial organization of the cAMP signaling as an essential mechanism to regulate cAMP outcomes in cardiac physiology. Here, we will briefl...

  2. Cardiac cAMP: production, hydrolysis, modulation and detection

    OpenAIRE

    Boularan, Cédric; Gales, Céline

    2015-01-01

    Cyclic adenosine 3′,5′-monophosphate (cAMP) modulates a broad range of biological processes including the regulation of cardiac myocyte contractile function where it constitutes the main second messenger for β-adrenergic receptors' signaling to fulfill positive chronotropic, inotropic and lusitropic effects. A growing number of studies pinpoint the role of spatial organization of the cAMP signaling as an essential mechanism to regulate cAMP outcomes in cardiac physiology. Here, we will briefl...

  3. Pharmacological targeting of CDK9 in cardiac hypertrophy

    Czech Academy of Sciences Publication Activity Database

    Kryštof, Vladimír; Chamrád, Ivo; Jorda, Radek; Kohoutek, J.

    2010-01-01

    Roč. 30, č. 4 (2010), s. 646-666. ISSN 0198-6325 R&D Projects: GA ČR GA204/08/0511; GA ČR GA301/09/1832; GA ČR GA301/08/1649 Institutional research plan: CEZ:AV0Z50380511 Keywords : P-TEFb * cardiac myocyte * cardiac hypertrophy Subject RIV: CE - Biochemistry Impact factor: 10.228, year: 2010

  4. SPARC regulates collagen interaction with cardiac fibroblast cell surfaces

    OpenAIRE

    Harris, Brett S.; Zhang, Yuhua; Card, Lauren; Rivera, Lee B.; Brekken, Rolf A.; Bradshaw, Amy D.

    2011-01-01

    Cardiac tissue from mice that do not express secreted protein acidic and rich in cysteine (SPARC) have reduced amounts of insoluble collagen content at baseline and in response to pressure overload hypertrophy compared with wild-type (WT) mice. However, the cellular mechanism by which SPARC affects myocardial collagen is not clearly defined. Although expression of SPARC by cardiac myocytes has been detected in vitro, immunohistochemistry of hearts demonstrated SPARC staining primarily associa...

  5. Voluntary exercise-induced changes in beta2-adrenoceptor signalling in rat ventricular myocytes.

    Science.gov (United States)

    Stones, Rachel; Natali, Antonio; Billeter, Rudolf; Harrison, Simon; White, Ed

    2008-09-01

    Regular exercise is beneficial to cardiovascular health. We tested whether mild voluntary exercise training modifies key myocardial parameters [ventricular mass, intracellular calcium ([Ca2+]i) handling and the response to beta-adrenoceptor (beta-AR) stimulation] in a manner distinct from that reported for beneficial, intensive training and pathological hypertrophic stimuli. Female rats performed voluntary wheel-running exercise for 6-7 weeks. The mRNA expression of target proteins was measured in left ventricular tissue using real-time reverse transcriptase-polymerase chain reaction. Simultaneous measurement of cell shortening and [Ca2+]i transients were made in single left ventricular myocytes and the inotropic response to beta1- and beta2-AR stimulation was measured. Voluntary exercise training resulted in cardiac hypertrophy, the heart weight to body weight ratio being significantly greater in trained compared with sedentary animals. However, voluntary exercise caused no significant alteration in the size or time course of myocyte shortening and [Ca2+]i transients or in the mRNA levels of key proteins that regulate Ca2+ handling. The positive inotropic response to beta1-AR stimulation and the level of beta1-AR mRNA were unaltered by voluntary exercise but both mRNA levels and inotropic response to beta2-AR stimulation were significantly reduced in trained animals. The beta2-AR inotropic response was restored by exposure to pertussis toxin. We propose that in contrast to pathological stimuli and to beneficial, intense exercise training, modulation of Ca2+ handling is not a major adaptive mechanism in the response to mild voluntary exercise. In addition, and in a reversal of the situation seen in heart failure, voluntary exercise training maintains the beta1-AR response but reduces the beta2-AR response. Therefore, although voluntary exercise induces cardiac hypertrophy, there are distinct differences between its effects on key myocardial regulatory mechanisms

  6. TNNI3K is a novel mediator of myofilament function and phosphorylates cardiac troponin I

    International Nuclear Information System (INIS)

    The phosphorylation of cardiac troponin I (cTnI) plays an important role in the contractile dysfunction associated with heart failure. Human cardiac troponin I-interacting kinase (TNNI3K) is a novel cardiac-specific functional kinase that can bind to cTnI in a yeast two-hybrid screen. The purpose of this study was to investigate whether TNNI3K can phosphorylate cTnI at specific sites and to examine whether the phosphorylation of cTnI caused by TNNI3K can regulate cardiac myofilament contractile function. Co-immunoprecipitation was performed to confirm that TNNI3K could interact with cTnI. Kinase assays further indicated that TNNI3K did not phosphorylate cTnI at Ser23/24 and Ser44, but directly phosphorylated Ser43 and Thr143 in vitro. The results obtained for adult rat cardiomyocytes also indicated that enhanced phosphorylation of cTnI at Ser43 and Thr143 correlated with rTNNI3K (rat TNNI3K) overexpression, and phosphorylation was reduced when rTNNI3K was knocked down. To determine the contractile function modulated by TNNI3K-mediated phosphorylation of cTnI, cardiomyocyte contraction was studied in adult rat ventricular myocytes. The contraction of cardiomyocytes increased with rTNNI3K overexpression and decreased with rTNNI3K knockdown. We conclude that TNNI3K may be a novel mediator of cTnI phosphorylation and contribute to the regulation of cardiac myofilament contraction function

  7. Comparison of fractal dimension and Shannon entropy in myocytes from rats treated with histidine-tryptophan-glutamate and histidine-tryptophan cetoglutarate

    OpenAIRE

    de Oliveira, Marcos Aurélio Barboza; Brandi, Antônio Carlos; dos Santos, Carlos Alberto; Botelho, Paulo Henrique Husseni; Cortez, José Luís Lasso; de Godoy, Moacir Fernandes; Braile, Domingo Marcolino

    2014-01-01

    Introduction Solutions that cause elective cardiac arrest are constantly evolving, but the ideal compound has not yet been found. The authors compare a new cardioplegic solution with histidine-tryptophan-glutamate (Group 2) and other one with histidine-tryptophan-cetoglutarate (Group 1) in a model of isolated rat heart. Objective To quantify the fractal dimension and Shannon entropy in rat myocytes subjected to cardioplegia solution using histidine-tryptophan with glutamate in an experimental...

  8. Effects of temperature and intracellular sodium, ATP and pH on Na+-Ca2+ exchange currents of intact guinea-pig myocytes

    Institute of Scientific and Technical Information of China (English)

    Hong-yiZHOU; Chong-yangHAN; Xiao-liangWANG

    2004-01-01

    AIM: The Na+-Ca2+ exchange is a major pathway for removal of cytosolic Ca2+ in cardiac myocytes. There have been many re-searches reporting about the effects of temperature, intracellular sodium, ATE and pH on Na+-Ca2+ exchange currents. But most of these researches were made with giant-patch voltage-clamp technique or with Ca2+ flux studies in sarcolemmal vesicles. During

  9. Pressure overload-induced hypertrophy in transgenic mice selectively overexpressing AT2 receptors in ventricular myocytes.

    Science.gov (United States)

    Yan, Xinhua; Schuldt, Adam J T; Price, Robert L; Amende, Ivo; Liu, Fen-Fen; Okoshi, Katashi; Ho, Kalon K L; Pope, Adèle J; Borg, Thomas K; Lorell, Beverly H; Morgan, James P

    2008-03-01

    The role of the angiotensin II type 2 (AT2) receptor in cardiac hypertrophy remains controversial. We studied the effects of AT2 receptors on chronic pressure overload-induced cardiac hypertrophy in transgenic mice selectively overexpressing AT2 receptors in ventricular myocytes. Left ventricular (LV) hypertrophy was induced by ascending aorta banding (AS). Transgenic mice overexpressing AT2 (AT2TG-AS) and nontransgenic mice (NTG-AS) were studied after 70 days of aortic banding. Nonbanded NTG mice were used as controls. LV function was determined by catheterization via LV puncture and cardiac magnetic resonance imaging. LV myocyte diameter and interstitial collagen were determined by confocal microscopy. Atrial natriuretic polypeptide (ANP) and brain natriuretic peptide (BNP) were analyzed by Northern blot. Sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)2, inducible nitric oxide synthase (iNOS), endothelial NOS, ERK1/2, p70S6K, Src-homology 2 domain-containing protein tyrosine phosphatase-1, and protein serine/threonine phosphatase 2A were analyzed by Western blot. LV myocyte diameter and collagen were significantly reduced in AT2TG-AS compared with NTG-AS mice. LV anterior and posterior wall thickness were not different between AT2TG-AS and NTG-AS mice. LV systolic and diastolic dimensions were significantly higher in AT2TG-AS than in NTG-AS mice. LV systolic pressure and end-diastolic pressure were lower in AT2TG-AS than in NTG-AS mice. ANP, BNP, and SERCA2 were not different between AT2TG-AS and NTG-AS mice. Phospholamban (PLB) and the PLB-to-SERCA2 ratio were significantly higher in AT2TG-AS than in NTG-AS mice. iNOS was higher in AT2TG-AS than in NTG-AS mice but not significantly different. Our results indicate that AT2 receptor overexpression modified the pathological hypertrophic response to aortic banding in transgenic mice. PMID:18178728

  10. Nitrate-containing beetroot enhances myocyte metabolism and mitochondrial content

    OpenAIRE

    Vaughan, Roger A; Gannon, Nicholas P.; Carriker, Colin R.

    2015-01-01

    Beetroot (甜菜 tián cài) juice consumption is of current interest for improving aerobic performance by acting as a vasodilator and possibly through alterations in skeletal muscle metabolism and physiology. This work explored the effects of a commercially available beetroot supplement on metabolism, gene expression, and mitochondrial content in cultured myocytes. C2C12 myocytes were treated with various concentrations of the beetroot supplement for various durations. Glycolytic metabolism and ox...

  11. Cardiac Outcomes in Adult Survivors of Childhood Cancer Exposed to Cardiotoxic Therapy: A Cross-Sectional Study from the St. Jude Lifetime Cohort

    Science.gov (United States)

    Mulrooney, Daniel A.; Armstrong, Gregory T.; Huang, Sujuan; Ness, Kirsten K.; Ehrhardt, Matthew J.; Joshi, Vijaya M.; Plana, Juan Carlos; Soliman, Elsayed Z.; Green, Daniel M.; Srivastava, Deokumar; Santucci, Aimee; Krasin, Matthew J.; Robison, Leslie L.; Hudson, Melissa M.

    2016-01-01

    Background Studies of cardiac disease among adult survivors of childhood cancer have generally relied upon self-reported or registry-based data. Objective Systematically assess cardiac outcomes among childhood cancer survivors Design Cross-sectional Setting St. Jude Children's Research Hospital Patients 1,853 adult survivors of childhood cancer, ≥18 years old, and ≥10 years from treatment with cardiotoxic therapy for childhood cancer. Measurements History/physical examination, fasting metabolic and lipid panels, echocardiogram, electrocardiogram (ECG), 6-minute walk test (6MWT) all collected at baseline evaluation. Results Half (52.3%) of the survivors were male, median age 8.0 years (range: 0-24) at cancer diagnosis, 31.0 years (18-60) at evaluation. Cardiomyopathy was present in 7.4% (newly identified at the time of evaluation in 4.7%), coronary artery disease (CAD) in 3.8% (newly identified in 2.2%), valvular regurgitation/stenosis in 28.0% (newly identified in 24.8%), and conduction/rhythm abnormalities in 4.6% (newly identified in 1.4%). Nearly all (99.7%) were asymptomatic. The prevalences of cardiac conditions increased with age at evaluation, ranging from 3-24% among those 30-39 years to 10-37% among those ≥40 years. On multivariable analysis, anthracycline exposure ≥250 mg/m2 increased the odds of cardiomyopathy (odds ratio [OR] 2.7, 95% CI 1.1-6.9) compared to anthracycline unexposed survivors. Radiation to the heart increased the odds of cardiomyopathy (OR 1.9 95% CI 1.1-3.7) compared to radiation unexposed survivors. Radiation >1500 cGy with any anthracycline exposure conferred the greatest odds for valve findings. Limitations 61% participation rate of survivors exposed to cardiotoxic therapies, which were limited to anthracyclines and cardiac-directed radiation. A comparison group and longitudinal assessments are not available. Conclusions Cardiovascular screening identified considerable subclinical disease among adult survivors of childhood

  12. Mesenchymal stem cells improve cardiac conduction by upregulation of connexin 43 through paracrine signaling

    OpenAIRE

    Mureli, Shwetha; Gans, Christopher P.; Bare, Dan J; Geenen, David L.; Kumar, Nalin M.; Banach, Kathrin

    2012-01-01

    Mesenchymal stem cells (MSCs) were shown to improve cell survival and alleviate cardiac arrhythmias when transplanted into cardiac tissue; however, little is known about the mechanism by which MSCs modify the electrophysiological properties of cardiac tissue. We aimed to distinguish the influence of cell-cell coupling between myocytes and MSCs from that of MSC-derived paracrine factors on the spontaneous activity and conduction velocity (θ) of multicellular cardiomyocyte preparations. HL-1 ce...

  13. Fibroblast proliferation alters cardiac excitation conduction and contraction: a computational study*

    OpenAIRE

    Zhan, He-qing; Xia, Ling; Shou, Guo-fa; Zang, Yun-liang; Liu, Feng; Crozier, Stuart

    2014-01-01

    In this study, the effects of cardiac fibroblast proliferation on cardiac electric excitation conduction and mechanical contraction were investigated using a proposed integrated myocardial-fibroblastic electromechanical model. At the cellular level, models of the human ventricular myocyte and fibroblast were modified to incorporate a model of cardiac mechanical contraction and cooperativity mechanisms. Cellular electromechanical coupling was realized with a calcium buffer. At the tissue level...

  14. Regulatory effect of connexin 43 on basal Ca2+ signaling in rat ventricular myocytes.

    Directory of Open Access Journals (Sweden)

    Chen Li

    Full Text Available BACKGROUND: It has been found that gap junction-associated intracellular Ca(2+ [Ca(2+](i disturbance contributes to the arrhythmogenesis and hyperconstriction in diseased heart. However, whether functional gaps are also involved in the regulation of normal Ca(2+ signaling, in particular the basal [Ca(2+](i activities, is unclear. METHODS AND RESULTS: Global and local Ca(2+ signaling and gap permeability were monitored in cultured neonatal rat ventricular myocytes (NRVMs and freshly isolated mouse ventricular myocytes by Fluo4/AM and Lucifer yellow (LY, respectively. The results showed that inhibition of gap communication by heptanol, Gap 27 and flufenamic acid or interference of connexin 43 (Cx43 with siRNA led to a significant suppression of LY uptake and, importantly, attenuations of global Ca(2+ transients and local Ca(2+ sparks in monolayer NRVMs and Ca(2+ sparks in adult ventricular myocytes. In contrast, overexpression of rat-Cx43 in NRVMs induced enhancements in the above measurements, and so did in HEK293 cells expressing rat Cx43. Additionally, membrane-permeable inositol 1,4,5-trisphosphate (IP(3 butyryloxymethyl ester and phenylephrine, an agonist of adrenergic receptor, could relieve the inhibited Ca(2+ signal and LY uptake by gap uncouplers, whereas blockade of IP(3 receptor with xestospongin C or 2-aminoethoxydiphenylborate mimicked the effects of gap inhibitors. More importantly, all these gap-associated effects on Ca(2+ signaling were also found in single NRVMs that only have hemichannels instead of gap junctions. Further immunostaining/immunoblotting single myocytes with antibody against Cx43 demonstrated apparent increases in membrane labeling of Cx43 and non-junctional Cx43 in overexpressed cells, suggesting functional hemichannels exist and also contribute to the Ca(2+ signaling regulation in cardiomyocytes. CONCLUSIONS: These data demonstrate that Cx43-associated gap coupling plays a role in the regulation of resting Ca(2

  15. Computational modeling and numerical methods for spatiotemporal calcium cycling in ventricular myocytes

    Directory of Open Access Journals (Sweden)

    Michael eNivala

    2012-05-01

    Full Text Available Intracellular calcium (Ca cycling dynamics in cardiac myocytes is regulated by a complex network of spatially distributed organelles, such as sarcoplasmic reticulum (SR, mitochondria, and myofibrils. In this study, we present a mathematical model of intracellular Ca cycling and numerical and computational methods for computer simulations. The model consists of a coupled Ca release unit (CRU network, which includes a SR domain and a myoplasm domain. Each CRU contains 10 L-type Ca channels and 100 ryanodine receptor channels, with individual channels simulated stochastically using a varient of Gillespie’s method, modified here to handle time-dependent transition rates. Both the SR domain and the myoplasm domain in each CRU are modeled by 5x5x5 voxels to maintain proper Ca diffusion. Advanced numerical algorithms implemented on graphical processing units were used for fast computational simulations. For a myocyte containing 100x20x10 CRUs, a one-second heart time simulation takes about 10 minutes of machine time on a single NVIDIA Tesla C2050. Examples of simulated Ca cycling dynamics, such as Ca sparks, Ca waves, and Ca alternans, are shown.

  16. Iodine 125-phenylpentadecanoic acid and its beta-methyl substitute metabolism in cultured mouse embryonal myocytes

    International Nuclear Information System (INIS)

    Iodine-labelled fatty acids have been proposed as new tracers of cardiac metabolisms. However, it is not clear how these tracers would reflect the intracellular metabolism. Therefore, we measured the uptake and release of iodine 125-labelled phenylpentadecanoic acid (IPPA), its β-methyl substitute (BMIPP) and 201Tl in cultured myocytes of mouse embryos, and compared these values to intracellular adenosine triphosphate (ATP) content after metabolic inhibitions of oxidative phosphorylation by sodium cyanide (CN), glycolysis by 2-deoxyglucose (2-DG) or fatty acid β-oxidation by lactate. The uptake and release of BMIPP was not changed by any inhibitors suggesting BMIPP would not be metabolized in the myocytes. The uptake of IPPA was significantly reduced by 2DG and 60-80% of IPPA was metabolized to hydrophilic catabolites. The correlation of BMIPP and IPPA uptake to intracellular ATP content were high (r=0.89, p201Tl to ATP values (r=0.53, n.s.). These results suggested that iodine-labelled fatty acids could be used as better tracers of myocardial metabolism than 201Tl. (author)

  17. Ultraviolet photoalteration of late Na+ current in guinea-pig ventricular myocytes.

    Science.gov (United States)

    La, C; You, Y; Zhabyeyev, P; Pelzer, D J; McDonald, T F

    2006-03-01

    UV irradiation has multiple effects on mammalian cells, including modification of ion channel function. The present study was undertaken to investigate the response of membrane currents in guinea-pig ventricular myocytes to the type A (355, 380 nm) irradiation commonly used in Ca(2+) imaging studies. Myocytes configured for whole-cell voltage clamp were generally held at -80 mV, dialyzed with K(+)-, Na(+)-free pipette solution, and bathed with K(+)-free Tyrode's solution at 22 degrees C. During experiments that lasted for approximately 35 min, UVA irradiation caused a progressive increase in slowly-inactivating inward current elicited by 200-ms depolarizations from -80 to -40 mV, but had little effect on background current or on L-type Ca(2+) current. Trials with depolarized holding potential, Ca(2+) channel blockers, and tetrodotoxin (TTX) established that the current induced by irradiation was late (slowly-inactivating) Na(+) current (I(Na)). The amplitude of the late inward current sensitive to 100 microM: TTX was increased by 3.5-fold after 20-30 min of irradiation. UVA modulation of late I(Na) may (i) interfere with imaging studies, and (ii) provide a paradigm for investigation of intracellular factors likely to influence slow inactivation of cardiac I(Na). PMID:16783617

  18. Patterns of evolution of myocyte damage after human heart transplantation detected by indium-111 monoclonal antimyosin

    Energy Technology Data Exchange (ETDEWEB)

    Ballester-Rodes, M.; Carrio-Gasset, I.; Abadal-Berini, L.; Obrador-Mayol, D.; Berna-Roqueta, L.; Caralps-Riera, J.M.

    1988-09-15

    The indium-111 labeled Fab fragment of antimyosin monoclonal antibody was used to study cardiac rejection and the time course of myocyte damage after transplantation. Fifty-three studies were performed in 21 patients, 17 men and 4 women, aged 19 to 54 years (mean 37 +/- 8), from 7 to 40 months after transplantation. Repeat studies were available in 8, and 10 were studied after the first year of transplantation. A heart-to-lung ratio was used for quantitation of uptake (normal 1.46 +/- 0.04). Differences between absent (1.69 +/- 0.29) and moderate (1.90 +/- 0.36) rejection were significant (p less than 0.03). Antimyosin ratio at 1 to 3 months (1.89 +/- 0.35) differed from that at greater than 12 months (1.65 +/- 0.2) (p less than 0.01). Repeat studies revealed a decrease in antimyosin ratio in 5 patients with uneventful clinical course; 2 had persistent activity after transplantation and suffered heart failure from rejection. After 1 year of transplantation uptake was within normal limits in 7 of 10 patients, and high uptake was associated with vascular rejection in 1. Because they can define evolving patterns of myocardial lesion activity, antimyosin studies could be useful both in patient management and in concentrating resources for those patients who most require them. The heart-to-lung ratio is suggested to monitor sequentially the degree of myocyte damage after transplantation.

  19. Patterns of evolution of myocyte damage after human heart transplantation detected by indium-111 monoclonal antimyosin

    International Nuclear Information System (INIS)

    The indium-111 labeled Fab fragment of antimyosin monoclonal antibody was used to study cardiac rejection and the time course of myocyte damage after transplantation. Fifty-three studies were performed in 21 patients, 17 men and 4 women, aged 19 to 54 years (mean 37 +/- 8), from 7 to 40 months after transplantation. Repeat studies were available in 8, and 10 were studied after the first year of transplantation. A heart-to-lung ratio was used for quantitation of uptake (normal 1.46 +/- 0.04). Differences between absent (1.69 +/- 0.29) and moderate (1.90 +/- 0.36) rejection were significant (p less than 0.03). Antimyosin ratio at 1 to 3 months (1.89 +/- 0.35) differed from that at greater than 12 months (1.65 +/- 0.2) (p less than 0.01). Repeat studies revealed a decrease in antimyosin ratio in 5 patients with uneventful clinical course; 2 had persistent activity after transplantation and suffered heart failure from rejection. After 1 year of transplantation uptake was within normal limits in 7 of 10 patients, and high uptake was associated with vascular rejection in 1. Because they can define evolving patterns of myocardial lesion activity, antimyosin studies could be useful both in patient management and in concentrating resources for those patients who most require them. The heart-to-lung ratio is suggested to monitor sequentially the degree of myocyte damage after transplantation

  20. IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1

    Science.gov (United States)

    Musaro, A.; McCullagh, K. J.; Naya, F. J.; Olson, E. N.; Rosenthal, N.

    1999-01-01

    Localized synthesis of insulin-like growth factors (IGFs) has been broadly implicated in skeletal muscle growth, hypertrophy and regeneration. Virally delivered IGF-1 genes induce local skeletal muscle hypertrophy and attenuate age-related skeletal muscle atrophy, restoring and improving muscle mass and strength in mice. Here we show that the molecular pathways underlying the hypertrophic action of IGF-1 in skeletal muscle are similar to those responsible for cardiac hypertrophy. Transfected IGF-1 gene expression in postmitotic skeletal myocytes activates calcineurin-mediated calcium signalling by inducing calcineurin transcripts and nuclear localization of calcineurin protein. Expression of activated calcineurin mimics the effects of IGF-1, whereas expression of a dominant-negative calcineurin mutant or addition of cyclosporin, a calcineurin inhibitor, represses myocyte differentiation and hypertrophy. Either IGF-1 or activated calcineurin induces expression of the transcription factor GATA-2, which accumulates in a subset of myocyte nuclei, where it associates with calcineurin and a specific dephosphorylated isoform of the transcription factor NF-ATc1. Thus, IGF-1 induces calcineurin-mediated signalling and activation of GATA-2, a marker of skeletal muscle hypertrophy, which cooperates with selected NF-ATc isoforms to activate gene expression programs.

  1. Dynamic clamp: a powerful tool in cardiac electrophysiology.

    Science.gov (United States)

    Wilders, Ronald

    2006-10-15

    Dynamic clamp is a collection of closely related techniques that have been employed in cardiac electrophysiology to provide direct answers to numerous research questions regarding basic cellular mechanisms of action potential formation, action potential transfer and action potential synchronization in health and disease. Building on traditional current clamp, dynamic clamp was initially used to create virtual gap junctions between isolated myocytes. More recent applications include the embedding of a real pacemaking myocyte in a simulated network of atrial or ventricular cells and the insertion of virtual ion channels, either simulated in real time or simultaneously recorded from an expression system, into the membrane of an isolated myocyte. These applications have proven that dynamic clamp, which is characterized by the real-time evaluation and injection of simulated membrane current, is a powerful tool in cardiac electrophysiology. Here, each of the three different experimental configurations used in cardiac electrophysiology is reviewed. Also, directions are given for the implementation of dynamic clamp in the cardiac electrophysiology laboratory. With the growing interest in the application of dynamic clamp in cardiac electrophysiology, it is anticipated that dynamic clamp will also prove to be a powerful tool in basic research on biological pacemakers and in identification of specific ion channels as targets for drug development. PMID:16873403

  2. Metal particulate matter components affect gene expression and beat frequency of neonatal rat ventricular myocytes.

    Science.gov (United States)

    Graff, Donald W; Cascio, Wayne E; Brackhan, Joseph A; Devlin, Robert B

    2004-05-01

    Soluble particulate matter (PM) components (e.g., metals) have the potential to be absorbed into the bloodstream and transported to the heart where they might induce the expression of inflammatory cytokines and remodel electrical properties. We exposed cultured rat ventricular myocytes to similar concentrations of two metals [zinc (Zn) and vanadium (V)] found commonly in PM and measured changes in spontaneous beat rate. We found statistically significant reductions in spontaneous beat rate after both short-term (4-hr) and long-term (24-hr) exposures, with a more substantial effect seen with Zn. We also measured the expression of genes associated with inflammation and a number of sarcolemmal proteins associated with electrical impulse conduction. Exposure to Zn or V (6.25-50 microM) for 6 hr produced significant increases in IL-6, IL-1 alpha, heat shock protein 70, and connexin 43 (Cx43). After 24 hr exposure, Zn induced significant changes in the gene expression of Kv4.2 and KvLQt (potassium channel proteins), the alpha 1 subunit of the L-type calcium channel, and Cx43, as well as IL-6 and IL-1 alpha. In contrast, V produced a greater effect on Cx43 and affected only one ion channel (KvLQT1). These results show that exposure of rat cardiac myocytes to noncytotoxic concentrations of Zn and V alter spontaneous beat rate as well as the expression of ion channels and sarcolemmal proteins relevant to electrical remodeling and slowing of spontaneous beat rate, with Zn producing a more profound effect. As such, these data suggest that the cardiac effects of PM are largely determined by the relative metal composition of particles. PMID:15159208

  3. Inhibition of p53 by pifithrin-alpha reduces myocyte apoptosis and leukocyte transmigration in aged rat hearts following 24 hours of reperfusion.

    Science.gov (United States)

    Liu, Peitan; Xu, Baohuan; Cavalieri, Thomas A; Hock, Carl E

    2008-11-01

    Ischemic heart disease is a common age-related disease. Apoptotic cell death and inflammation are the major contributors to I/R injury. The mechanisms that trigger myocyte apoptosis and inflammation during myocardial I/R (MI/R) remain to be elucidated. Published data from our laboratory demonstrated that pretreatment of MI/R rats with pifithrin-alpha (PFT), a specific p53 inhibitor, reduced myocyte apoptosis and improved cardiac function compared with MI/R rats pretreated with saline at 4 h of reperfusion. In the present study, we investigated the effects of PFT on the occurrence of myocyte apoptosis and leukocyte transmigration in the later period of reperfusion. Aged (20-month-old) male F344 rats were subjected to 30 min of myocardial ischemia via ligature of the LCA, followed by 24 h of reperfusion. Pifithrin-alpha (2.2 mg/kg, intraperitoneally) or saline was administered to rats before ischemia. The results indicate that pretreatment of MI/R rats with PFT significantly decreased the percentage of infarct area to ischemic area (33 +/- 8 vs. 54 +/- 9, P ischemic area of the heart (339 +/- 37 vs. 498 +/- 75 cells/10 high-power fields, P < 0.05). These data suggest that inhibition of p53 transcriptional function by PFT attenuates myocyte apoptosis and alleviates leukocyte transmigration at 24 h of reperfusion. The mechanisms by which p53 modulates leukocyte transmigration require further investigation. PMID:18317410

  4. Biological determinants of aldosterone-induced cardiac fibrosis in rats.

    Science.gov (United States)

    Robert, V; Silvestre, J S; Charlemagne, D; Sabri, A; Trouvé, P; Wassef, M; Swynghedauw, B; Delcayre, C

    1995-12-01

    To determine the events leading to cardiac fibrosis in aldosterone-salt hypertensive rats, we studied protein and mRNA accumulation of procollagens I and III for 60 days. After 3 and 7 days of treatment systolic pressure was normal, and no histological or biochemical changes were seen in rat hearts. At day 15 arterial pressure was raised (+40%) and left ventricular hypertrophy was +15%. Cardiac examination after hemalun-eosin staining and immunolabeling with anticollagen I and III antibodies showed no structural alterations, but an 83% increase in right ventricular type III procollagen mRNA levels was found. At 30 and 60 days we found progressive cardiac fibrosis, with inflammatory cells, myocyte necrosis, and elevation of both types I and III procollagen mRNA levels in both ventricles. To determine whether aldosterone had effects on Na,K-ATPase that might lead to ionic disturbances and induce myocyte necrosis, we studied the major cardiac Na,K-ATPase isoform genes. Although Na,K-ATPase alpha 1- and beta 1-subunit mRNA levels were elevated in kidney at day 1, neither of these cardiac transcripts nor the specific alpha 2 isoform was altered between 1 and 15 days. These results show that accumulation of procollagen mRNAs occurs before collagen deposition. Cardiac alterations are late and not preceded by changes in Na,K-ATPase cardiac gene expression, precluding a direct modulation of cardiac collagen synthesis and Na,K-ATPase by aldosterone. PMID:7490157

  5. Effects of an 18 week walking programme on cardiac function in previously sedentary or relatively inactive adults.

    OpenAIRE

    Woolf-May, K; Bird, S; A Owen

    1997-01-01

    OBJECTIVE: To investigate the effects of an 18 week walking programme upon cardiac function. METHODS: 29 sedentary or relatively inactive but otherwise healthy subjects (15 walkers and 14 controls, aged 40-68 years) completed the study. The walkers completed a progressive 18 week walking programme which required an estimated average energy expenditure of 900 kcal week-1 for the total duration of the study and 1161 kcal week-1 during the final six weeks. Walking was carried out at an intensity...

  6. Illuminating Myocyte-Fibroblast Homotypic and Heterotypic Gap Junction Dynamics Using Dynamic Clamp.

    Science.gov (United States)

    Brown, Tashalee R; Krogh-Madsen, Trine; Christini, David J

    2016-08-23

    Fibroblasts play a significant role in the development of electrical and mechanical dysfunction of the heart; however, the underlying mechanisms are only partially understood. One widely studied mechanism suggests that fibroblasts produce excess extracellular matrix, resulting in collagenous septa that slow propagation, cause zig-zag conduction paths, and decouple cardiomyocytes, resulting in a substrate for cardiac arrhythmia. An emerging mechanism suggests that fibroblasts promote arrhythmogenesis through direct electrical interactions with cardiomyocytes via gap junction (GJ) channels. In the heart, three major connexin (Cx) isoforms, Cx40, Cx43, and Cx45, form GJ channels in cell-type-specific combinations. Because each Cx is characterized by a unique time- and transjunctional voltage-dependent profile, we investigated whether the electrophysiological contributions of fibroblasts would vary with the specific composition of the myocyte-fibroblast (M-F) GJ channel. Due to the challenges of systematically modifying Cxs in vitro, we coupled native cardiomyocytes with in silico fibroblast and GJ channel electrophysiology models using the dynamic-clamp technique. We found that there is a reduction in the early peak of the junctional current during the upstroke of the action potential (AP) due to GJ channel gating. However, effects on the cardiomyocyte AP morphology were similar regardless of the specific type of GJ channel (homotypic Cx43 and Cx45, and heterotypic Cx43/Cx45 and Cx45/Cx43). To illuminate effects at the tissue level, we performed multiscale simulations of M-F coupling. First, we developed a cell-specific model of our dynamic-clamp experiments and investigated changes in the underlying membrane currents during M-F coupling. Second, we performed two-dimensional tissue sheet simulations of cardiac fibrosis and incorporated GJ channels in a cell type-specific manner. We determined that although GJ channel gating reduces junctional current, it does not

  7. Myomaker mediates fusion of fast myocytes in zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Landemaine, Aurélie; Rescan, Pierre-Yves; Gabillard, Jean-Charles, E-mail: Jean-charles.gabillard@rennes.inra.fr

    2014-09-05

    Highlights: • Myomaker is transiently expressed in fast myocytes during embryonic myogenesis. • Myomaker is essential for fast myocyte fusion in zebrafish. • The function of myomaker is conserved among Teleostomi. - Abstract: Myomaker (also called Tmem8c), a new membrane activator of myocyte fusion was recently discovered in mice. Using whole mount in situ hybridization on zebrafish embryos at different stages of embryonic development, we show that myomaker is transiently expressed in fast myocytes forming the bulk of zebrafish myotome. Zebrafish embryos injected with morpholino targeted against myomaker were alive after yolk resorption and appeared morphologically normal, but they were unable to swim, even under effect of a tactile stimulation. Confocal observations showed a marked phenotype characterized by the persistence of mononucleated muscle cells in the fast myotome at developmental stages where these cells normally fuse to form multinucleated myotubes. This indicates that myomaker is essential for myocyte fusion in zebrafish. Thus, there is an evolutionary conservation of myomaker expression and function among Teleostomi.

  8. Cardiac cAMP: production, hydrolysis, modulation and detection.

    Science.gov (United States)

    Boularan, Cédric; Gales, Céline

    2015-01-01

    Cyclic adenosine 3',5'-monophosphate (cAMP) modulates a broad range of biological processes including the regulation of cardiac myocyte contractile function where it constitutes the main second messenger for β-adrenergic receptors' signaling to fulfill positive chronotropic, inotropic and lusitropic effects. A growing number of studies pinpoint the role of spatial organization of the cAMP signaling as an essential mechanism to regulate cAMP outcomes in cardiac physiology. Here, we will briefly discuss the complexity of cAMP synthesis and degradation in the cardiac context, describe the way to detect it and review the main pharmacological arsenal to modulate its availability. PMID:26483685

  9. STIM1 enhances SR Ca2+ content through binding phospholamban in rat ventricular myocytes.

    Science.gov (United States)

    Zhao, Guiling; Li, Tianyu; Brochet, Didier X P; Rosenberg, Paul B; Lederer, W J

    2015-08-25

    In ventricular myocytes, the physiological function of stromal interaction molecule 1 (STIM1), an endo/sarcoplasmic reticulum (ER/SR) Ca(2+) sensor, is unclear with respect to its cellular localization, its Ca(2+)-dependent mobilization, and its action on Ca(2+) signaling. Confocal microscopy was used to measure Ca(2+) signaling and to track the cellular movement of STIM1 with mCherry and immunofluorescence in freshly isolated adult rat ventricular myocytes and those in short-term primary culture. We found that endogenous STIM1 was expressed at low but measureable levels along the Z-disk, in a pattern of puncta and linear segments consistent with the STIM1 localizing to the junctional SR (jSR). Depleting SR Ca(2+) using thapsigargin (2-10 µM) changed neither the STIM1 distribution pattern nor its mobilization rate, evaluated by diffusion coefficient measurements using fluorescence recovery after photobleaching. Two-dimensional blue native polyacrylamide gel electrophoresis and coimmunoprecipitation showed that STIM1 in the heart exists mainly as a large protein complex, possibly a multimer, which is not altered by SR Ca(2+) depletion. Additionally, we found no store-operated Ca(2+) entry in control or STIM1 overexpressing ventricular myocytes. Nevertheless, STIM1 overexpressing cells show increased SR Ca(2+) content and increased SR Ca(2+) leak. These changes in Ca(2+) signaling in the SR appear to be due to STIM1 binding to phospholamban and thereby indirectly activating SERCA2a (Sarco/endoplasmic reticulum Ca(2+) ATPase). We conclude that STIM1 binding to phospholamban contributes to the regulation of SERCA2a activity in the steady state and rate of SR Ca(2+) leak and that these actions are independent of store-operated Ca(2+) entry, a process that is absent in normal heart cells. PMID:26261328

  10. Evaluation of the mitochondrial respiration of cardiac myocytes in rats submitted to mechanical bile duct obstruction Avaliação da respiração mitocondrial de miócitos cardíacos em ratos ictéricos sumetidos à obstrução do ducto biliar

    OpenAIRE

    Rafael Kemp; Orlando de Castro-e-Silva; José Sebastião dos Santos; Ajith Kumar Sankarankutty; Rodrigo Borges Correa; Caroline Floreoto Baldo; Maria Elisa Jordani Souza; Maria Cecilia Jordani

    2008-01-01

    PURPOSE: The objective of the present study was to evaluate the capacity of the myocardium for energy production by the analysis of mitochondrial respiration in rats with jaundice submitted to bile duct ligature. METHODS: Sixteen male Wistar rats were divided into 2 Groups: Group SO submitted to nontherapeutic laparotomy (sham operation) and Group IC (icteric group) submitted to bile duct ligature. After 7 days, laparotomy was again performed in all animals for cardiac muscle extraction and a...

  11. Radiographic evaluation of the cardiac silluet using the VHS method (Vertebral Heart Size in young and adults coatis (Nasua nasua, Linneaus 1766 living in captivity

    Directory of Open Access Journals (Sweden)

    Andresa Cássia Martini

    2014-02-01

    Full Text Available Radiographic examination of the toracic cavity is an usefull noninvasive method for assessment, monitoring the progress of heart disease, suggesting prognosis and guiding the treatment. The aim of this study was to evaluate the cardiac silhouette of young and adults coatis and evaluate its relationship to the number of thoracic vertebrae (VHS, the method proposed by Buchanam and Buchele (1995 for small animals. We evaluated a group of 20 coatis, divided by age: I (GI and 8 animals aged between 4 and 5 months and group II (GII with 12 animals over 12 months old. Based in chest radiographs and VD laterolateral right projections for determining the major axis (L and short axis (Y being the sum of L and S is the value obtained by ESR, the relative depth/width (D / L chest were obtained and the results determined the type of conformation of the thorax, which results greater than 1.25 cm denote chest type deep, 0.75 to 1.25 cm chest intermediate and inferior results will 0.75cm wide chest. It was observed that the heart is alocated between the fourth and seventh pair of ribs, VHS average coatis healthy adults was 9.36 ± 0.75 and 8.06 ± 0 youth, 595 units thoracic vertebrae and the predominant conformation found was of intermediate type when compared to dogs. The mean values in this study serve as a basis for interpretation of the VHS type, however, a larger number may be required animals to determine the physiological limits of the cardiac silhouette in coati.

  12. Cardiac metabolism and arrhythmias

    OpenAIRE

    Barth, Andreas S.; Tomaselli, Gordon F.

    2009-01-01

    Sudden cardiac death remains a leading cause of mortality in the Western world, accounting for up to 20% of all deaths in the U.S.1, 2 The major causes of sudden cardiac death in adults age 35 and older are coronary artery disease (70–80%) and dilated cardiomyopathy (10–15%).3 At the molecular level, a wide variety of mechanisms contribute to arrhythmias that cause sudden cardiac death, ranging from genetic predisposition (rare mutations and common polymorphisms in ion channels and structural...

  13. Executive functions improvement following a 5-month aquaerobics program in older adults: Role of cardiac vagal control in inhibition performance.

    Science.gov (United States)

    Albinet, Cédric T; Abou-Dest, Amira; André, Nathalie; Audiffren, Michel

    2016-03-01

    The aims of this study were to examine the effects of aerobic exercise on measures of executive performance and their relationships with changes in cardiorespiratory fitness, cardiac vagal control (heart rate variability) and psychological variables. Thirty-six sedentary seniors aged 60-75 years were randomly assigned to a swimming and aquaerobics program or a stretching program two times a week for 21 weeks. Executive functions (inhibition, updating of working memory and cognitive flexibility) and cardiorespiratory fitness (estimated VO2max) were assessed at the start, after 10 weeks of program and at the end of the program. Resting HRV and measures of psychological outcomes (depression, self-efficacy, decisional balance) were obtained at the start and at the end of the program. Participants of both groups significantly improved their VO2max level, their psychological state and their performance for the 2-back task. Only the participants in the aquaerobics group significantly improved their vagally-mediated HRV and their performance for the Stroop test and the verbal running-span test at the end of the program. Only improvements in cardiac vagal control and in inhibition were shown to be functionally related. These results are discussed in line with the model of neurovisceral integration. PMID:26812613

  14. Manual correction of semi-automatic three-dimensional echocardiography is needed for right ventricular assessment in adults; validation with cardiac magnetic resonance

    Directory of Open Access Journals (Sweden)

    Ostenfeld Ellen

    2012-01-01

    Full Text Available Abstract Background Three-dimensional echocardiography (3DE and semi-automatic right ventricular delineation has been proposed as an appropriate method for right ventricle (RV evaluation. We aimed to examine how manual correction of semi-automatic delineation influences the accuracy of 3DE for RV volumes and function in a clinical adult setting using cardiac magnetic resonance (CMR as the reference method. We also examined the feasibility of RV visualization with 3DE. Methods 62 non-selected patients were examined with 3DE (Sonos 7500 and iE33 and with CMR (1.5T. Endocardial RV contours of 3DE-images were semi-automatically assessed and manually corrected in all patients. End-diastolic (EDV, end-systolic (ESV volumes, stroke volume (SV and ejection fraction (EF were computed. Results 53 patients (85% had 3DE-images feasible for examination. Correlation coefficients and Bland Altman biases between 3DE with manual correction and CMR were r = 0.78, -22 ± 27 mL for EDV, r = 0.83, -7 ± 16 mL for ESV, r = 0.60, -12 ± 18 mL for SV and r = 0.60, -2 ± 8% for EF (p Conclusion Manual correction of the 3DE semi-automatic RV delineation decreases the bias and is needed for acceptable clinical accuracy. 3DE is highly feasible for visualizing the RV in an adult clinical setting.

  15. Effects of remifentanil on intracellular Ca2+ and its transients induced by electrical stimulation and caffeine in rat ventricular myocytes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ye; Michael G. Irwin; LI Rui; CHEN Zhiwu; Tak-Ming Wong

    2009-01-01

    Background Preconditioning with remifentanil confers cardioprotection. Since Ca2+ overload is a precipitating factor of injury, we determined the effects of remefentanil on intracellular Ca2+ ([Ca2+]I) and its transients induced by electrical stimulation and caffeine, which reflects Ca2+ handling by Ca2+ handling proteins, in rat ventricular myocytes. Methods Freshly isolated adult male Sprague-Dawley rat myocytes were loaded with Fura-2/AM and [Ca]I was determined by spectrofluorometry. Remifentanil at 0.1-1000 μg/L was administered. Ten minutes after administration, either 0.2 Hz electrical stimulation was applied or 10 mmol/L caffeine was added. The [Ca2+]I, and the amplitude, time resting and 50% decay (t50) of both transients induced by electrical stimulation (E[Ca2+]I) and caffeine (C[Ca2+]I) were determined.Results Remifentanil (0.1-1000.0 μg/L) decreased the [Ca2+]I in a dose-dependent manner. It also decreased the amplitude of both transients dose-dependently. Furthermore, it increased the time to peak and t50 of both transients dose-dependently.Conclusion Remifentanil reduced the [Ca2+]I and suppressed the transients induced by electrical stimulation and caffeine in rat ventricular myocytes.

  16. Differences of promethazine and terfenadine on ion channels in guinea pig ventricular myocytes

    Institute of Scientific and Technical Information of China (English)

    LI Xue-wen; NIU Shuan-cheng; ZHANG Xuan-ping; L(U) Ji-yuan; BAI Feng; ZHANG Ling; WU Bo-wei

    2006-01-01

    @@ Promethazine, a first generation antihistamine,has an antiarrhythmic effect on ischemia-reperfusion inducing arrhythmias1 and experimental arrhythmias.2 However, terfenadine as a second generation of antihistamine, has been reported to elicit hypotension, bradycardia, prolongation of the QTc interval and torsades de pointes (TdP) like ventricular arrhythmia.3 This may be due to the blockage on rectifier postassium current (Ik) of terfenadine, resulting in the prolongation of the action potential duration (APD) and dispersion of the repolarization duration, which might provoke a specific form of polymorphic ventricular tachydysrhythmia, i.e. TdP.4 In clinical practice,however, the class Ⅲ antiarrhythmic agents, which target on the Ik and prolong the action potential duration and QTc interval, rarely lead to arrhythmias.Other actions must be considered to underlie the arrhythmogenic tendency of terfenadine besides its inhibition on Ik. Though both promethazine and terfenadine block the H1 receptor, there must be a different pharmacology profile between the two compounds on ion channels of cardiac myocytes.Whole-cell patch clamp technique was used to investigate the effects of these two antagonists of the H1 receptor on the main ion currents in cardiac electrical activities.

  17. Azelnidipine prevents cardiac dysfunction in streptozotocin-diabetic rats by reducing intracellular calcium accumulation, oxidative stress and apoptosis

    Directory of Open Access Journals (Sweden)

    Kain Vasundhara

    2011-11-01

    Full Text Available Abstract Background Numerous evidences suggest that diabetic heart is characterized by compromised ventricular contraction and prolonged relaxation attributable to multiple causative factors including calcium accumulation, oxidative stress and apoptosis. Therapeutic interventions to prevent calcium accumulation and oxidative stress could be therefore helpful in improving the cardiac function under diabetic condition. Methods This study was designed to examine the effect of long-acting calcium channel blocker (CCB, Azelnidipine (AZL on contractile dysfunction, intracellular calcium (Ca2+ cycling proteins, stress-activated signaling molecules and apoptosis on cardiomyocytes in diabetes. Adult male Wistar rats were made diabetic by a single intraperitoneal (IP injection of streptozotocin (STZ. Contractile functions were traced from live diabetic rats to isolated individual cardiomyocytes including peak shortening (PS, time-to-PS (TPS, time-to-relengthening (TR90, maximal velocity of shortening/relengthening (± dL/dt and intracellular Ca2+ fluorescence. Results Diabetic heart showed significantly depressed PS, ± dL/dt, prolonged TPS, TR90 and intracellular Ca2+ clearing and showed an elevated resting intracellular Ca2+. AZL itself exhibited little effect on myocyte mechanics but it significantly alleviated STZ-induced myocyte contractile dysfunction. Diabetes increased the levels of superoxide, enhanced expression of the cardiac damage markers like troponin I, p67phox NADPH oxidase subunit, restored the levels of the mitochondrial superoxide dismutase (Mn-SOD, calcium regulatory proteins RyR2 and SERCA2a, and suppressed the levels of the anti-apoptotic Bcl-2 protein. All of these STZ-induced alterations were reconciled by AZL treatment. Conclusion Collectively, the data suggest beneficial effect of AZL in diabetic cardiomyopathy via altering intracellular Ca2+ handling proteins and preventing apoptosis by its antioxidant property.

  18. Functional Assessment of Cardiac Responses of Adult Zebrafish (Danio rerio to Acute and Chronic Temperature Change Using High-Resolution Echocardiography.

    Directory of Open Access Journals (Sweden)

    Ling Lee

    Full Text Available The zebrafish (Danio rerio is an important organism as a model for understanding vertebrate cardiovascular development. However, little is known about adult ZF cardiac function and how contractile function changes to cope with fluctuations in ambient temperature. The goals of this study were to: 1 determine if high resolution echocardiography (HRE in the presence of reduced cardiodepressant anesthetics could be used to accurately investigate the structural and functional properties of the ZF heart and 2 if the effect of ambient temperature changes both acutely and chronically could be determined non-invasively using HRE in vivo. Heart rate (HR appears to be the critical factor in modifying cardiac output (CO with ambient temperature fluctuation as it increases from 78 ± 5.9 bpm at 18°C to 162 ± 9.7 bpm at 28°C regardless of acclimation state (cold acclimated CA- 18°C; warm acclimated WA- 28°C. Stroke volume (SV is highest when the ambient temperature matches the acclimation temperature, though this difference did not constitute a significant effect (CA 1.17 ± 0.15 μL at 18°C vs 1.06 ± 0.14 μl at 28°C; WA 1.10 ± 0.13 μL at 18°C vs 1.12 ± 0.12 μl at 28°C. The isovolumetric contraction time (IVCT was significantly shorter in CA fish at 18°C. The CA group showed improved systolic function at 18°C in comparison to the WA group with significant increases in both ejection fraction and fractional shortening and decreases in IVCT. The decreased early peak (E velocity and early peak velocity / atrial peak velocity (E/A ratio in the CA group are likely associated with increased reliance on atrial contraction for ventricular filling.

  19. Cardiac pressure overload hypertrophy is differentially regulated by β-adrenergic receptor subtypes

    OpenAIRE

    Zhao, Mingming; Fajardo, Giovanni; Urashima, Takashi; Spin, Joshua M; Poorfarahani, Sara; Rajagopalan, Viswanathan; Huynh, Diem; Connolly, Andrew; Quertermous, Thomas; Bernstein, Daniel

    2011-01-01

    In isolated myocytes, hypertrophy induced by norepinephrine is mediated via α1-adrenergic receptors (ARs) and not β-ARs. However, mice with deletions of both major cardiac α1-ARs still develop hypertrophy in response to pressure overload. Our purpose was to better define the role of β-AR subtypes in regulating cardiac hypertrophy in vivo, important given the widespread clinical use of β-AR antagonists and the likelihood that patients treated with these agents could develop conditions of furth...

  20. Telomerase reverse transcriptase promotes cardiac muscle cell proliferation, hypertrophy, and survival

    OpenAIRE

    Oh, Hidemasa; Taffet, George E.; Youker, Keith A.; Entman, Mark L.; Overbeek, Paul A.; Michael, Lloyd H.; Schneider, Michael D.

    2001-01-01

    Cardiac muscle regeneration after injury is limited by “irreversible” cell cycle exit. Telomere shortening is one postulated basis for replicative senescence, via down-regulation of telomerase reverse transcriptase (TERT); telomere dysfunction also is associated with greater sensitivity to apoptosis. Forced expression of TERT in cardiac muscle in mice was sufficient to rescue telomerase activity and telomere length. Initially, the ventricle was hypercellular, with increased myocyte density an...

  1. Association of interatrial septal abnormalities with cardiac impulse conduction disorders in adult patients: experience from a tertiary center in Kosovo.

    Directory of Open Access Journals (Sweden)

    Zaim Gashi

    2011-06-01

    Full Text Available Interatrial septal disorders, which include: atrial septal defect, patent foramen ovale and atrial septal aneurysm, are frequent congenital anomalies found in adult patients. Early detection of these anomalies is important to prevent their hemodynamic and/or thromboembolic consequences. The aims of this study were: to assess the association between impulse conduction disorders and anomalies of interatrial septum; to determine the prevalence of different types of interatrial septum abnormalities; to assess anatomic, hemodynamic, and clinical consequences of interatrial septal pathologies. Fifty-three adult patients with impulse conduction disorders and patients without ECG changes but with signs of interatrial septal abnormalities, who were referred to our center for echocardiography, were included in a prospective transesophageal echocardiography study. Intera trial septal anomalies were detected in around 85% of the examined patients.

  2. Association of interatrial septal abnormalities with cardiac impulse conduction disorders in adult patients: experience from a tertiary center in Kosovo

    OpenAIRE

    Zaim Gashi; Masar Gashi; Gani Dragusha; Tefik Bekteshi; Dardan Koçinaj; Nebih Musliu; Aurora Bakalli; Ejup Pllana

    2011-01-01

    Interatrial septal disorders, which include: atrial septal defect, patent foramen ovale and atrial septal aneurysm, are frequent congenital anomalies found in adult patients. Early detection of these anomalies is important to prevent their hemodynamic and/or thromboembolic consequences. The aims of this study were: to assess the association between impulse conduction disorders and anomalies of interatrial septum; to determine the prevalence of different types of interatrial septum abnormaliti...

  3. "String theory" of c-kit(pos) cardiac cells: a new paradigm regarding the nature of these cells that may reconcile apparently discrepant results.

    Science.gov (United States)

    Keith, Matthew C L; Bolli, Roberto

    2015-03-27

    Although numerous preclinical investigations have consistently demonstrated salubrious effects of c-kit(pos) cardiac cells administered after myocardial infarction, the mechanism of action remains highly controversial. We and others have found little or no evidence that these cells differentiate into mature functional cardiomyocytes, suggesting paracrine effects. In this review, we propose a new paradigm predicated on a comprehensive analysis of the literature, including studies of cardiac development; we have (facetiously) dubbed this conceptual construct "string theory" of c-kit(pos) cardiac cells because it reconciles multifarious and sometimes apparently discrepant results. There is strong evidence that, during development, the c-kit receptor is expressed in different pools of cardiac progenitors (some capable of robust cardiomyogenesis and others with little or no contribution to myocytes). Accordingly, c-kit positivity, in itself, does not define the embryonic origins, lineage capabilities, or differentiation capacities of specific cardiac progenitors. C-kit(pos) cells derived from the first heart field exhibit cardiomyogenic potential during development, but these cells are likely depleted shortly before or after birth. The residual c-kit(pos) cells found in the adult heart are probably of proepicardial origin, possess a mesenchymal phenotype (resembling bone marrow mesenchymal stem/stromal cells), and are capable of contributing significantly only to nonmyocytic lineages (fibroblasts, smooth muscle cells, and endothelial cells). If these 2 populations (first heart field and proepicardium) express different levels of c-kit, the cardiomyogenic potential of first heart field progenitors might be reconciled with recent results of c-kit(pos) cell lineage tracing studies. The concept that c-kit expression in the adult heart identifies epicardium-derived, noncardiomyogenic precursors with a mesenchymal phenotype helps to explain the beneficial effects of c

  4. Simulation methods and validation criteria for modeling cardiac ventricular electrophysiology

    OpenAIRE

    Shankarjee Krishnamoorthi; Luigi E Perotti; Nils P Borgstrom; Ajijola, Olujimi A.; Anna Frid; Ponnaluri, Aditya V.; Weiss, James N.; Zhilin Qu; Klug, William S.; Ennis, Daniel B.; Alan Garfinkel

    2014-01-01

    © 2014 Krishnamoorthi et al. We describe a sequence of methods to produce a partial differential equation model of the electrical activation of the ventricles. In our framework, we incorporate the anatomy and cardiac microstructure obtained from magnetic resonance imaging and diffusion tensor imaging of a New Zealand White rabbit, the Purkinje structure and the Purkinje-muscle junctions, and an electrophysiologically accurate model of the ventricular myocytes and tissue, which includes transm...

  5. Dissociation enzyme effects on the biophysical properties of calcium current in acutely isolated rat ventricular myocytes

    Directory of Open Access Journals (Sweden)

    Julio Álvarez

    2013-04-01

    Full Text Available Proteolytic enzymes such as collagenase, trypsin and pronase E are widely used to acutely dissociate adult cardiomyocytes. There is some evidence that enzyme treatment can alter ionic channels. The aim of the present investigation was to compare the characteristics of the L-type Ca2+ current (ICaL of rat ventricular cardiomyocytes dissociated with two enzyme combinations: collagenase + trypsin (C+T and collagenase + pronase E (C+P. ICaL density (pA/pF was significantly lower (~ 2 pA/pF in myocytes isolated with the C+P combination. However, its inactivation time course was barely affected. As well, the voltage dependency of ICaL kinetics was not affected by the C+P treatment. Our results suggest that, compared to the C+T, treatment with the C+P enzyme combination could decrease the number of functional (expressed channels in the sarcolemma.

  6. Differences in affinity of cardiac beta-adrenergic receptors for [3H]dihydroalprenolol

    International Nuclear Information System (INIS)

    We performed quantitative light microscopic autoradiography of [3H]dihydroalprenolol (DHA) binding to frozen sections of canine myocardium to test the hypothesis that there are differences in the density or affinity of beta-adrenergic receptors on various tissue compartments. In one study, with concentrations of [3H]DHA from 0.34 to 5.1 nM, specific binding to cardiac myocytes was saturable, whereas nonspecific binding was linear with ligand concentration. Arterioles had more specific grain counts than muscle cells (P less than 0.0001), and Scatchard analysis showed that the arterioles had a much higher affinity for [3H]DHA than myocytes. In a second study with lower concentrations of [3H]DHA (0.19-1.98 nM), binding to the arterioles saturated, whereas binding to the cardiac myocytes did not. Specific binding to arterioles was significantly higher (P less than 0.0001) than binding to myocytes at all concentrations of [3H]DHA. The dissociation constants for the subendocardial and subepicardial myocytes were 1.57 and 1.71 nM, respectively, while the dissociation constant for the arterioles was 0.26 nM. The maximum number of binding sites was 911 grains/0.9 X 10(-2) mm2 for subepicardial myocytes, 936 for subendocardial myocytes, and 986 for arterioles. The large nerves accompanying an epicardial artery also demonstrated specific [3H]DHA binding. Thus this study has demonstrated major differences in the distribution and affinity of beta-adrenergic receptors, which may help to explain various physiological responses to beta-adrenergic stimulation

  7. Coagulation Parameter Thresholds Associated with Non-Bleeding in the Eighth Hour of Adult Cardiac Surgical Post-Cardiotomy Extracorporeal Membrane Oxygenation.

    Science.gov (United States)

    Riley, Jeffrey B; Schears, Gregory J; Nuttall, Gregory A; Oliver, William C; Ereth, Mark H; Dearani, Joseph A

    2016-06-01

    Excessive bleeding and allogeneic transfusion during adult post-cardiotomy venoarterial extracorporeal membrane oxygenation (ECMO) are potentially harmful and expensive. Balancing the inhibition of clotting and distinguishing surgical from non-surgical bleeding in post-operative period is difficult. The sensitivity of coagulation tests including Thromboelastography(®) (TEG) to predict chest tube drainage in the early hours of ECMO was examined with the use of receiver-operating characteristics (ROC). The results are useful to incorporate in clinical evidence-based algorithms to guide management decisions. In the eighth hour of ECMO, 26 of the 53 adult patients (49%) studied were identified as non-bleeders (less than 2.0 mL/kg/h). All had experienced various types of cardiac surgical procedures. Fifty-two percent were female and the group was 54 ± 19 (mean ± 1 SD) years old. The coagulation parameter threshold with the maximum sensitivity and specificity to predict non-bleeding at 8 hours on ECMO was the kaolin plus heparinase TEG maximum amplitude (KH-TEG MA) at a significant ROC threshold (t) > 50 mm. The activated partial thromboplastin time (aPTT) t 51°, and the kaolin activated clotting time (ACT) t < 148 seconds were sensitive predictors of non-bleeders. The whole-blood KH-TEG MA was superior to the plasma-based aPTT or International Normalization Ratio (INR) to predict bleeding in the eighth hour of ECMO. Using coagulation laboratory thresholds that predict non-bleeding can begin a process of identifying patients earlier that are likely to bleed. Awareness of these parameter thresholds may improve care through patient protection from unnecessary transfusion and prolonging the life of the ECMO circuit. An algorithm incorporating the ROC thresholds was created to help recognize surgical bleeding to minimize unnecessary transfusions. PMID:27578897

  8. Electrophysiological effects of Chinese medicine Shen song Yang xin (SSYX) on Chinese miniature swine heart and isolated guinea pig ventricular myocytes

    Institute of Scientific and Technical Information of China (English)

    FENG Li; GONG Jing; JIN Zhen-yi; LI Ning; SUN Li-ping; WU Yi-ling; PU Jie-lin

    2009-01-01

    Background Shen song Yang xin (SSYX) is a compound of Chinese medicine with the effect of increasing heart rate (HR). This study aimed to evaluate its electrophysiological properties at heart and cellular levels. Methods The Chinese miniature swines were randomly assigned to two groups, administered with SSYX or placebo for 4 weeks (n=8 per group). Cardiac electrophysiological study (EPS) was performed before and after drug administration. The guinea pig ventricular myocytes were enzymatically isolated and whole cell voltage-clamp technique was used to evaluate the effect of SSYX on cardiac action potential (AP). Results SSYX treatment accelerated the HR from (141.8±36.0) beats per minute to (163.0±38.0) beats per minute (P=0.013) without changing the other parameters in surface electrocardiogram. After blockage of the autonomic nervous system with metoprolol and atropin, SSYX had no effect on intrinsic HR (IHR), but decreased corrected sinus node recovery time (CSNRT) and sinus atrium conducting time (SACT). Intra cardiac EPS showed that SSYX significantly decreased the A-H and A-V intervals as well as shortened the atrial (A), atrioventricular node (AVN) and ventricular (V) effective refractory period (ERP). In isolated guinea pig ventricular myocytes, the most obvious effect of SSYX on action potential was a shortening of the action potential duration (APD) without change in shape of action potential. The shortening rates of APD30, APD50 and APDgo were 19.5%, 17.8% and 15.3%, respectively. The resting potential (Em) and the interval between the end of APD3o and APD9o did not significantly change.Conclusions The present study demonstrates that SSYX increases the HR and enhances the conducting capacity of the heart in the condition of the intact autonomic nervous system. SSYX homogenously decreases the ERP of the heart and shortens the APD of the myocytes, suggesting its antiarrhythmic effect without proarrhythmia.

  9. Association of interatrial septal abnormalities with cardiac impulse conduction disorders in adult patients: experience from a tertiary center in Kosovo.

    Science.gov (United States)

    Bakalli, Aurora; Pllana, Ejup; Koçinaj, Dardan; Bekteshi, Tefik; Dragusha, Gani; Gashi, Masar; Musliu, Nebih; Gashi, Zaim

    2011-01-01

    INTERATRIAL SEPTAL DISORDERS, WHICH INCLUDE: atrial septal defect, patent foramen ovale and atrial septal aneurysm, are frequent congenital anomalies found in adult patients. Early detection of these anomalies is important to prevent their hemodynamic and/or thromboembolic consequences. The aims of this study were: to assess the association between impulse conduction disorders and anomalies of interatrial septum; to determine the prevalence of different types of interatrial septum abnormalities; to assess anatomic, hemodynamic, and clinical consequences of interatrial septal pathologies. Fifty-three adult patients with impulse conduction disorders and patients without ECG changes but with signs of interatrial septal abnormalities, who were referred to our center for echocardiography, were included in a prospective transesophageal echocardiography study. Interatrial septal anomalies were detected in around 85% of the examined patients. Patent foramen ovale was encountered in 32% of the patients, and in combination with atrial septal aneurysm in an additional 11.3% of cases. Atrial septal aneurysm and atrial septal defect were diagnosed with equal frequency in 20.7% of our study population. Impulse conduction disorders were significantly more suggestive of interatrial septal anomalies than clinical signs and symptoms observed in our patients (84.91% vs 30.19%, P=0.002). Right bundle branch block was the most frequent impulse conduction disorder, found in 41 (77.36%) cases. We conclude that interatrial septal anomalies are highly associated with impulse conduction disorders, particularly with right bundle branch block. Impulse conduction disorders are more indicative of interatrial septal abnormalities in earlier stages than can be understood from the patient's clinical condition. PMID:21977304

  10. Decreased expression of natriuretic peptides associated with lipid accumulation in cardiac ventricle of obese mice

    DEFF Research Database (Denmark)

    Bartels, E.D.; Nielsen, J.M.; Bisgaard, L.S.;

    2010-01-01

    cultured cardiomyocytes and three different mouse models to examine the impact of obesity and cardiac lipid accumulation on cardiac natriuretic peptide expression. The cardiac ventricular expression of atrial natriuretic peptide (ANP) and BNP mRNA and ANP peptide was decreased 36-72% in obese ob/ob, db......% (P <0.005) depression of ANP mRNA expression in cultured HL-1 atrial myocytes. The data suggest that obesity and altered cardiac lipid metabolism are associated with reduced production of ANP and BNP in the cardiac ventricles in the setting of normal as well as impaired cardiac function.......Plasma B-type natriuretic peptide (BNP) and proBNP are established markers of cardiac dysfunction. Even though obesity increases the risk of cardiovascular disease, obese individuals have reduced plasma concentrations of natriuretic peptides. The underlying mechanism is not established. We used...

  11. Transitions of protein traffic from cardiac ER to junctional SR

    OpenAIRE

    Sleiman, Naama H.; McFarland, Timothy P.; Jones, Larry R.; Cala, Steven E.

    2015-01-01

    The junctional sarcoplasmic reticulum (jSR) is an important and unique ER subdomain in the adult myocyte that concentrates resident proteins to regulate Ca2+ release. To investigate cellular mechanisms for sorting and trafficking proteins to jSR, we overexpressed canine forms of junctin (JCT) or triadin (TRD) in adult rat cardiomyocytes. Protein accumulation over time was visualized by confocal fluorescence microscopy using species-specific antibodies. Newly synthesized JCTdog and TRDdog appe...

  12. Evaluation of the mitochondrial respiration of cardiac myocytes in rats submitted to mechanical bile duct obstruction Avaliação da respiração mitocondrial de miócitos cardíacos em ratos ictéricos sumetidos à obstrução do ducto biliar

    Directory of Open Access Journals (Sweden)

    Rafael Kemp

    2008-01-01

    Full Text Available PURPOSE: The objective of the present study was to evaluate the capacity of the myocardium for energy production by the analysis of mitochondrial respiration in rats with jaundice submitted to bile duct ligature. METHODS: Sixteen male Wistar rats were divided into 2 Groups: Group SO submitted to nontherapeutic laparotomy (sham operation and Group IC (icteric group submitted to bile duct ligature. After 7 days, laparotomy was again performed in all animals for cardiac muscle extraction and analysis. Mitochondrial oxygen consumption was determined by stage 3 velocity and stage 4 velocity. The respiratory control ratio (RCR was obtained by the ratio of stage 3 to stage 4 velocity. Statistical analysis was performed by the Mann-Whitney test, with the level of significance set at 5% (pOBJETIVO: A proposta deste trabalho é avaliar a capacidade de produção energética do miocárdio mediante análise da respiração mitocondrial em ratos ictéricos submetidos à ligadura do ducto biliar. MÉTODOS: Foram utilizados 16 ratos Wistar machos divididos em 2 Grupos: Grupo SO , os quais foram submetidos à Laparotomia branca e Grupo IC, os quais sofreram ligadura do ducto biliar para o desenvolvimento de icterícia obstrutiva. Todos os animais após 7 dias de cirurgia foram submetidos à nova laparotomia para extração e análise do músculo cardíaco. O consumo de oxigênio pelas mitocôndrias foi determinado pela velocidade do estado 3 e velocidade do estado 4. A razão do controle respiratório (RCR foi obtida pela relação entre as velocidades dos estados 3 e 4. A análise estatística foi feita pelo teste de Mann-Whitney com nível de significância de 5 % (p<0.05. RESULTADOS: Observou-se queda estatisticamente significante nos valores do consumo de oxigênio do estado 3 da respiração mitocondrial no grupo IC em relação ao SO, no entanto os valores para estado 4 permaneceram basicamente inalterados entre os grupos. Os valores de RCR entre os

  13. Uso de fluorescência em um método de dissector modificado para estimar o número de miócitos no tecido cardíaco Uso de fluorescencia en un método de disector modificado para estimar el número de miocitos en el tejido cardíaco Use of fluorescence in a modified disector method to estimate the number of myocytes in cardiac tissue

    Directory of Open Access Journals (Sweden)

    Rômulo Dias Novaes

    2012-03-01

    rea de 3D. OBJETIVO: Usar la microscopia de fluorescencia en un método de disector modificado para determinar el número de miocitos en el tejido cardíaco en condiciones normales y patológicas. MÉTODOS: El estudio empleó ratones Wistar machos de cuatro meses de edad y peso de 366,25 ± 88,21 g randomizados en grupos controles (GC, n = 8 e infectados (GI, n = 8. Los animales del GI fueron inoculados con cepa Y de T. cruzi (300.000 tripomastigotas/50 g. Después de ocho semanas, los animales fueron pesados y sacrificados. Los Ventrículos Izquierdos (VI fueron removidos para análisis estereológico de la densidad numérica de cardiomiocitos (Nv [c] y el número total de esas células en el VI (N [c]. Esos parámetros fueron estimados usando un disector fluorescente (FD y comparados con los métodos convencionales de disector óptico (OD y disector físico (PD. RESULTADOS: En ambos métodos de disector, los animales del GI presentaron caída significativa de Nv[c] y N[c] en comparación con los animales del GC (P > 0,05. Una correlación fuerte, igual o superior a 96%, fue obtenida entre FD, OD y PD. CONCLUSIÓN: El método FD parece ser igualmente confiable para determinar Nv[c] y N[c] en condiciones normales y patológicas, presentando algunas ventajas en relación a los métodos convencionales de disector: reducción de cortes histológicos e imágenes en el análisis estereológico, reducción del tiempo de análisis de las imágenes, la construcción de FD en microscopios simples, utilizando el modo de epifluorescencia, distinción de planos de disector en ampliaciones inferiores.BACKGROUND: Conventional disector methods currently require considerable financial, technical and operational costs to estimate the number of cells, including cardyomyocytes, in a 3D area. OBJECTIVE: To use fluorescence microscopy in a modified disector method to determine the number of myocytes in cardiac tissue in normal and pathological conditions. METHODS: The study employed four

  14. Safe Oral Triiodo-L-Thyronine Therapy Protects from Post-Infarct Cardiac Dysfunction and Arrhythmias without Cardiovascular Adverse Effects.

    Directory of Open Access Journals (Sweden)

    Viswanathan Rajagopalan

    Full Text Available A large body of evidence suggests that thyroid hormones (THs are beneficial for the treatment of cardiovascular disorders. We have shown that 3 days of triiodo-L-thyronine (T3 treatment in myocardial infarction (MI rats increased left ventricular (LV contractility and decreased myocyte apoptosis. However, no clinically translatable protocol is established for T3 treatment of ischemic heart disease. We hypothesized that low-dose oral T3 will offer safe therapeutic benefits in MI.Adult female rats underwent left coronary artery ligation or sham surgeries. T3 (~6 μg/kg/day was available in drinking water ad libitum immediately following MI and continuing for 2 month(s (mo. Compared to vehicle-treated MI, the oral T3-treated MI group at 2 mo had markedly improved anesthetized Magnetic Resonance Imaging-based LV ejection fraction and volumes without significant negative changes in heart rate, serum TH levels or heart weight, indicating safe therapy. Remarkably, T3 decreased the incidence of inducible atrial tachyarrhythmias by 88% and improved remodeling. These were accompanied by restoration of gene expression involving several key pathways including thyroid, ion channels, fibrosis, sympathetic, mitochondria and autophagy.Low-dose oral T3 dramatically improved post-MI cardiac performance, decreased atrial arrhythmias and cardiac remodeling, and reversed many adverse changes in gene expression with no observable negative effects. This study also provides a safe and effective treatment/monitoring protocol that should readily translate to humans.

  15. Development of cardiac conduction system in mammals with a focus on the anatomical, functional and medical/genetical aspects

    Czech Academy of Sciences Publication Activity Database

    Sedmera, David

    2007-01-01

    Roč. 5, - (2007), s. 115-123. ISSN 1214-021X Institutional research plan: CEZ:AV0Z50450515 Keywords : myocyte * AV junction * Wolf- Parkinson -White syndrome * ventricular CCS * cardiac disease Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery

  16. Dose-dependent apoptotic and necrotic myocyte death induced by the β2-adrenergic receptor agonist, clenbuterol

    OpenAIRE

    Burniston, Jatin G.; Chester, Neil; Clark, William A; Tan, Lip-Bun; Goldspink, David F.

    2005-01-01

    We have investigated the dose- and time-dependency of myocyte apoptosis and necrosis induced by the β2-adrenergic receptor agonist, clenbuterol, with the aim of determining whether myocyte apoptosis and necrosis are two separate processes or a continuum of events. Male Wistar rats were administered subcutaneous injections of clenbuterol, and immunohistochemistry was used to detect myocyte specific apoptosis and necrosis. Myocyte apoptosis peaked 4 h after, and necrosis 12 h after, clenbuterol...

  17. Interaction of palmitoyl carnitine with calcium antagonists in myocytes.

    OpenAIRE

    Patmore, L; Duncan, G. P.; Spedding, M.

    1989-01-01

    1. Beating of aggregates of embryonic chick myocytes, in primary culture, was quantified by use of a motion-detector and video-recorder technique. Interactions of palmitoyl carnitine, a putative endogenous ligand at Ca2+ channels, with calcium antagonists were investigated. 2. Bay K 8644 (1-100 nM) and palmitoyl carnitine (0.2-30 microM) increased edge movement of the aggregates; beats fused so that there was an increase in baseline 'tone'. The concentrations required to produce a 50% increas...

  18. Cohort comparison study of cardiac disease and atherosclerotic burden in type 2 diabetic adults using whole body cardiovascular magnetic resonance imaging

    OpenAIRE

    Duce, Suzanne L.; Weir-McCall, Jonathan R.; Gandy, Stephen J.; Matthew, Shona Z.; Cassidy, Deirdre B.; McCormick, Lynne; Rauchhaus, Petra; Looker, Helen; Helen M Colhoun; Houston, J. Graeme

    2015-01-01

    BACKGROUND: Whole body cardiovascular MR (WB CVMR) combines whole body angiography and cardiac MR assessment. It is accepted that there is a high disease burden in patients with diabetes, however the quantification of the whole body atheroma burden in both arterial and cardiac disease has not been previously reported. In this study we compare the quantified atheroma burden in those individuals with and without diabetes by clinical cardiovascular disease (CVD) status.METHODS: 158 participants ...

  19. Cohort comparison study of cardiac disease and atherosclerotic burden in type 2 diabetic adults using whole body cardiovascular magnetic resonance imaging

    OpenAIRE

    Duce, Suzanne L.; Weir-McCall, Jonathan R.; Gandy, Stephen J.; Matthew, Shona Z.; Cassidy, Deirdre B.; McCormick, Lynne; Rauchhaus, Petra; Looker, Helen; Helen M Colhoun; Houston, J. Graeme

    2015-01-01

    Background Whole body cardiovascular MR (WB CVMR) combines whole body angiography and cardiac MR assessment. It is accepted that there is a high disease burden in patients with diabetes, however the quantification of the whole body atheroma burden in both arterial and cardiac disease has not been previously reported. In this study we compare the quantified atheroma burden in those individuals with and without diabetes by clinical cardiovascular disease (CVD) status. Methods 158 participants u...

  20. Omega-3 Fatty Acid Supplementation Appears to Attenuate Particulate Air Pollution–Induced Cardiac Effects and Lipid Changes in Healthy Middle-Aged Adults

    OpenAIRE

    Tong, Haiyan; Rappold, Ana G.; Diaz-Sanchez, David; Steck, Susan E.; Berntsen, Jon; Cascio, Wayne E; Devlin, Robert B; Samet, James M.

    2012-01-01

    Background: Air pollution exposure has been associated with adverse cardiovascular health effects. Findings of a recent epidemiological study suggested that omega-3 fatty acid (fish oil) supplementation blunted cardiac responses to air pollution exposure. Objectives: We conducted a randomized, controlled exposure study to evaluate the efficacy of fish oil supplements in attenuating adverse cardiac effects of exposure to concentrated ambient fine and ultrafine particulate matter (CAP). Methods...

  1. Influence of Thromboxane A2 on the Regulation of Adenosine Triphosphate-Sensitive Potassium Channels in Mouse Ventricular Myocytes

    Science.gov (United States)

    Jeong, In Seok; Cho, Hwa Jin; Cho, Jeong Gwan; Kim, Sang Hyung; Na, Kook Joo

    2016-01-01

    Background and Objectives Adenosine triphosphate (ATP)-sensitive potassium (KATP) channels play an important role in myocardial protection. We examined the effects of thromboxane A2 on the regulation of KATP channel activity in single ventricular myocytes. Subjects and Methods Single ventricular myocytes were isolated from the hearts of adult Institute of Cancer Research (ICR) mice by enzymatic digestion. Single channel activity was recorded by excised inside-out and cell-attached patch clamp configurations at −60 mV holding potential during the perfusion of an ATP-free K-5 solution. Results In the excised inside-out patches, the thromboxane A2 analog, U46619, decreased the KATP channel activity in a dose-dependent manner; however, the thromboxane A2 receptor antagonist, SQ29548, did not significantly attenuate the inhibitory effect of U46619. In the cell-attached patches, U46619 inhibited dinitrophenol (DNP)-induced KATP channel activity in a dose-dependent manner, and SQ29548 attenuated the inhibitory effects of U46619 on DNP-induced KATP channel activity. Conclusion Thromboxane A2 may inhibit KATP channel activity, and may have a harmful effect on ischemic myocardium. PMID:27482267

  2. Nitrate-containing beetroot enhances myocyte metabolism and mitochondrial content.

    Science.gov (United States)

    Vaughan, Roger A; Gannon, Nicholas P; Carriker, Colin R

    2016-01-01

    Beetroot ( tián cài) juice consumption is of current interest for improving aerobic performance by acting as a vasodilator and possibly through alterations in skeletal muscle metabolism and physiology. This work explored the effects of a commercially available beetroot supplement on metabolism, gene expression, and mitochondrial content in cultured myocytes. C2C12 myocytes were treated with various concentrations of the beetroot supplement for various durations. Glycolytic metabolism and oxidative metabolism were quantified via measurement of extracellular acidification and oxygen consumption, respectively. Metabolic gene expression was measured using quantitative reverse transcription-polymerase chain reaction, and mitochondrial content was assessed with flow cytometry and confocal microscopy. Cells treated with beetroot exhibited significantly increased oxidative metabolism, concurrently with elevated metabolic gene expression including peroxisome proliferator-activated receptor gamma coactivator-1 alpha, nuclear respiratory factor 1, mitochondrial transcription factor A, and glucose transporter 4, leading to increased mitochondrial biogenesis. Our data show that treatment with a beetroot supplement increases basal oxidative metabolism. Our observations are also among the first to demonstrate that beetroot extract is an inducer of metabolic gene expression and mitochondrial biogenesis. These observations support the need for further investigation into the therapeutic and pharmacological effects of nitrate-containing supplements for health and athletic benefits. PMID:26870674

  3. Toll4 (TLR4) expression in cardiac myocytes in normal and failing myocardium

    OpenAIRE

    Frantz, Stefan; Kobzik, Lester; Kim, Young-Dae; Fukazawa, Ryuji; Medzhitov, Ruslan; Lee, Richard T.; Kelly, Ralph A.

    1999-01-01

    Expression of innate immune response proteins, including IL-1β, TNF, and the cytokine-inducible isoform of nitric oxide synthase (iNOS), have been documented in the hearts of humans and experimental animals with heart failure regardless of etiology, although the proximal events leading to their expression are unknown. Noting that expression of a human homologue of Drosophila Toll, a proximal innate immunity transmembrane signaling protein in the fly, now termed human Toll-like receptor 4 (hTL...

  4. Calcium and IP3 dynamics in cardiac myocytes: Experimental and computational perspectives and approaches

    Directory of Open Access Journals (Sweden)

    Felix eHohendanner

    2014-03-01

    Full Text Available Calcium plays a crucial role in excitation-contraction coupling (ECC, but it is also a pivotal second messenger activating Ca2+-dependent transcription factors in a process termed excitation-transcription coupling (ETC. Evidence accumulated over the past decade indicates a pivotal role of inositol 1,4,5-trisphosphate receptor (IP3R-mediated Ca2+ release in the regulation of cytosolic and nuclear Ca2+ signals. IP3 is generated by stimulation of plasma membrane receptors that couple to phospholipase C (PLC, liberating IP3 from phosphatidylinositol 4,5-bisphosphate (PIP2. An intriguing aspect of IP3 signaling is the presence of the entire PIP2-PLC-IP3 signaling cascade as well as the presence of IP3Rs at the inner and outer membranes of the nuclear envelope (NE which functions as a Ca2+ store. The observation that the nucleus is surrounded by its own putative Ca2+ store raises the possibility that nuclear IP3-dependent Ca2+ release plays a critical role in ETC. This provides a potential mechanism of regulation that acts locally and autonomously from the global cytosolic Ca2+ signal underlying ECC. Moreover, there is evidence that: (i the sarcoplasmic reticulum (SR and NE are a single contiguous Ca2+ store; (ii the nuclear pore complex is the major gateway for Ca2+ and macromolecules to pass between the cytosol and the nucleoplasm; (iii the inner membrane of the NE hosts key Ca2+ handling proteins including the Na+/Ca2+ exchanger (NCX/GM1 complex, ryanodine receptors (RyRs, nicotinic acid adenine dinucleotide phosphate receptors (NAADPRs, Na+/K+ ATPase and Na+/H+ exchanger. Thus, it appears that the nucleus represents a Ca2+ signaling domain equipped with its own ion channels and transporters that allow for complex local Ca2+ signals. Many experimental and modeling approaches have been used for the study of intracellular Ca2+ signaling but the key to understanding of the dual role of Ca2+ mediating ECC and ECT lays in quantitative differences of local [Ca2+

  5. Sarcomere length dependence of power output is increased after PKA treatment in rat cardiac myocytes

    OpenAIRE

    Hanft, Laurin M.; McDonald, Kerry S.

    2009-01-01

    The Frank-Starling relationship of the heart yields increased stroke volume with greater end-diastolic volume, and this relationship is steeper after β-adrenergic stimulation. The underlying basis for the Frank-Starling mechanism involves length-dependent changes in both Ca2+ sensitivity of myofibrillar force and power output. In this study, we tested the hypothesis that PKA-induced phosphorylation of myofibrillar proteins would increase the length dependence of myofibrillar power output, whi...

  6. Antimyosin imaging in cardiac transplant rejection

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.L.; Cannon, P.J. (Department of Medicine, College of Physicians and Surgeons, Columbia University, New York (United States))

    1991-09-01

    Fab fragments of antibodies specific for cardiac myosin have been labeled with indium-111 and injected intravenously into animals and into patients with heart transplants. The antibodies, developed by Khaw, Haber, and co-workers, localize in cardiac myocytes that have been damaged irreversibly by ischemia, myocarditis, or the rejection process. After clearance of the labeled antibody from the cardiac blood pool, planar imaging or single photon emission computed tomography is performed. Scintigrams reveal the uptake of the labeled antimyosin in areas of myocardium undergoing transplant rejection. In animal studies, the degree of antimyosin uptake appears to correlate significantly with the degree of rejection assessed at necropsy. In patients, the correlation between scans and pathologic findings from endomyocardial biopsy is not as good, possibly because of sampling error in the endomyocardial biopsy technique. The scan results at 1 year correlate with either late complications (positive) or benign course (negative). Current limitations of the method include slow blood clearance, long half-life of indium-111, and hepatic uptake. Overcoming these limitations represents a direction for current research. It is possible that from these efforts a noninvasive approach to the diagnosis and evaluation of cardiac transplantation may evolve that will decrease the number of endomyocardial biopsies required to evaluate rejection. This would be particularly useful in infants and children. 31 references.

  7. Antimyosin imaging in cardiac transplant rejection

    International Nuclear Information System (INIS)

    Fab fragments of antibodies specific for cardiac myosin have been labeled with indium-111 and injected intravenously into animals and into patients with heart transplants. The antibodies, developed by Khaw, Haber, and co-workers, localize in cardiac myocytes that have been damaged irreversibly by ischemia, myocarditis, or the rejection process. After clearance of the labeled antibody from the cardiac blood pool, planar imaging or single photon emission computed tomography is performed. Scintigrams reveal the uptake of the labeled antimyosin in areas of myocardium undergoing transplant rejection. In animal studies, the degree of antimyosin uptake appears to correlate significantly with the degree of rejection assessed at necropsy. In patients, the correlation between scans and pathologic findings from endomyocardial biopsy is not as good, possibly because of sampling error in the endomyocardial biopsy technique. The scan results at 1 year correlate with either late complications (positive) or benign course (negative). Current limitations of the method include slow blood clearance, long half-life of indium-111, and hepatic uptake. Overcoming these limitations represents a direction for current research. It is possible that from these efforts a noninvasive approach to the diagnosis and evaluation of cardiac transplantation may evolve that will decrease the number of endomyocardial biopsies required to evaluate rejection. This would be particularly useful in infants and children. 31 references

  8. Simulation of the effect of rogue ryanodine receptors on a calcium wave in ventricular myocytes with heart failure

    International Nuclear Information System (INIS)

    Calcium homeostasis is considered to be one of the most important factors for the contraction and relaxation of the heart muscle. However, under some pathological conditions, such as heart failure (HF), calcium homeostasis is disordered, and spontaneous waves may occur. In this study, we developed a mathematical model of formation and propagation of a calcium wave based upon a governing system of diffusion–reaction equations presented by Izu et al (2001 Biophys. J. 80 103–20) and integrated non-clustered or 'rogue' ryanodine receptors (rogue RyRs) into a two-dimensional (2D) model of ventricular myocytes isolated from failing hearts in which sarcoplasmic reticulum (SR) Ca2+ pools are partially unloaded. The model was then used to simulate the effect of rogue RyRs on initiation and propagation of the calcium wave in ventricular myocytes with HF. Our simulation results show that rogue RyRs can amplify the diastolic SR Ca2+ leak in the form of Ca2+ quarks, increase the probability of occurrence of spontaneous Ca2+ waves even with smaller SR Ca2+ stores, accelerate Ca2+ wave propagation, and hence lead to delayed afterdepolarizations (DADs) and cardiac arrhythmia in the diseased heart. This investigation suggests that incorporating rogue RyRs in the Ca2+ wave model under HF conditions provides a new view of Ca2+ dynamics that could not be mimicked by adjusting traditional parameters involved in Ca2+ release units and other ion channels, and contributes to understanding the underlying mechanism of HF

  9. Simulation of the effect of rogue ryanodine receptors on a calcium wave in ventricular myocytes with heart failure

    Science.gov (United States)

    Lu, Luyao; Xia, Ling; Ye, Xuesong; Cheng, Heping

    2010-06-01

    Calcium homeostasis is considered to be one of the most important factors for the contraction and relaxation of the heart muscle. However, under some pathological conditions, such as heart failure (HF), calcium homeostasis is disordered, and spontaneous waves may occur. In this study, we developed a mathematical model of formation and propagation of a calcium wave based upon a governing system of diffusion-reaction equations presented by Izu et al (2001 Biophys. J. 80 103-20) and integrated non-clustered or 'rogue' ryanodine receptors (rogue RyRs) into a two-dimensional (2D) model of ventricular myocytes isolated from failing hearts in which sarcoplasmic reticulum (SR) Ca2+ pools are partially unloaded. The model was then used to simulate the effect of rogue RyRs on initiation and propagation of the calcium wave in ventricular myocytes with HF. Our simulation results show that rogue RyRs can amplify the diastolic SR Ca2+ leak in the form of Ca2+ quarks, increase the probability of occurrence of spontaneous Ca2+ waves even with smaller SR Ca2+ stores, accelerate Ca2+ wave propagation, and hence lead to delayed afterdepolarizations (DADs) and cardiac arrhythmia in the diseased heart. This investigation suggests that incorporating rogue RyRs in the Ca2+ wave model under HF conditions provides a new view of Ca2+ dynamics that could not be mimicked by adjusting traditional parameters involved in Ca2+ release units and other ion channels, and contributes to understanding the underlying mechanism of HF.

  10. Calcium-sensing receptor activation contributed to apoptosis stimulates TRPC6 channel in rat neonatal ventricular myocytes

    International Nuclear Information System (INIS)

    Capacitative calcium entry (CCE) refers to the influx of calcium through plasma membrane channels activated on depletion of endoplasmic sarcoplasmic/reticulum (ER/SR) Ca2+ stores, which is performed mainly by the transient receptor potential (TRP) channels. TRP channels are expressed in cardiomyocytes. Calcium-sensing receptor (CaR) is also expressed in rat cardiac tissue and plays an important role in mediating cardiomyocyte apoptosis. However, there are no data regarding the link between CaR and TRP channels in rat heart. In this study, in rat neonatal myocytes, by Ca2+ imaging, we found that the depletion of ER/SR Ca2+ stores by thapsigargin (TG) elicited a transient rise in cytoplasmic Ca2+ ([Ca2+]i), followed by sustained increase depending on extracellular Ca2+. But, TRP channels inhibitor (SKF96365), not L-type channels or the Na+/Ca2+ exchanger inhibitors, inhibited [Ca2+]i relatively high. Then, we found that the stimulation of CaR with its activator gadolinium chloride (GdCl3) or by an increased extracellular Ca2+([Ca2+]o) increased the concentration of intracelluar Ca2+, whereas, the sustained elevation of [Ca2+]i was reduced in the presence of SKF96365. Similarly, the duration of [Ca2+]i increase was also shortened in the absence of extracellular Ca2+. Western blot analysis showed that GdCl3 increased the expression of TRPC6, which was reversed by SKF96365. Additionally, SKF96365 reduced cardiomyocyte apoptosis induced by GdCl3. Our results suggested that CCE exhibited in rat neonatal myocytes and CaR activation induced Ca2+-permeable cationic channels TRPCs to gate the CCE, for which TRPC6 was one of the most likely candidates. TRPC6 channel was functionally coupled with CaR to enhance the cardiomyocyte apoptosis.

  11. Assembly of a functional 3D primary cardiac construct using magnetic levitation

    Directory of Open Access Journals (Sweden)

    Matthew Hogan

    2016-07-01

    Full Text Available Easily assembled organotypic co-cultures have long been sought in medical research. In vitro tissue constructs with faithful representation of in vivo tissue characteristics are highly desirable for screening and characteristic assessment of a variety of tissue types. Cardiac tissue analogs are particularly sought after due to the phenotypic degradation and difficulty of culture of primary cardiac myocytes. This study utilized magnetic nanoparticles and primary cardiac myocytes in order to levitate and culture multicellular cardiac aggregates (MCAs. Cells were isolated from 2 day old Sprague Dawley rat hearts and subsequently two groups were incubated with either C1: 33 µL nanoshell/million cells or C2: 50 µL nanoshell/million cells. Varying numbers of cells for each concentration were cultured in a magnetic field in a 24 well plate and observed over a period of 12 days. Constructs generally formed spherical structures. Masson’s trichrome staining of a construct shows the presence of extracellular matrix protein, indicating the presence of functional fibroblasts. Many constructs exhibited noticeable contraction after 4 days of culture and continued contracting noticeably past day 9 of culture. Noticeable contractility indicates the presence of functional primary cardiac myocytes in culture. Phenotypic conservation of cardiac cells was ascertained using IHC staining by α-actinin and collagen. CD31 and fibrinogen were probed in order to assess localization of fibroblasts and endothelial cells. The study verifies a protocol for the use of magnetic levitation in order to rapidly assemble 3D cardiac like tissue with phenotypic and functional stability.

  12. Cardiac cAMP: production, hydrolysis, modulation and detection

    Directory of Open Access Journals (Sweden)

    Cédric eBOULARAN

    2015-10-01

    Full Text Available Cyclic adenosine 3’,5’-monophosphate (cAMP modulates a broad range of biological processes including the regulation of cardiac myocyte contractile function where it constitutes the main second messenger for β-adrenergic receptors’ signaling to fulfill positive chronotropic, inotropic and lusitropic effects. A growing number of studies pinpoint the role of spatial organization of the cAMP signaling as an essential mechanism to regulate cAMP outcomes in cardiac physiology. Here, we will briefly discuss the complexity of cAMP synthesis and degradation in the cardiac context, describe the way to detect it and review the main pharmacological arsenal to modulate its availability.

  13. Cardiac rehabilitation

    Science.gov (United States)

    ... attack or other heart problem. You might consider cardiac rehab if you have had: Heart attack Coronary heart disease (CHD) Heart failure Angina (chest pain) Heart or heart valve surgery Heart transplant Procedures such as angioplasty and stenting In some ...

  14. Cardiac Rehabilitation

    Science.gov (United States)

    Cardiac rehabilitation (rehab) is a medically supervised program to help people who have A heart attack Angioplasty or coronary artery bypass grafting for coronary heart disease A heart valve repair or replacement A ...

  15. Cardiac sarcoidosis

    OpenAIRE

    Costello BT; Nadel J.; Taylor AJ

    2016-01-01

    Benedict T Costello,1,2 James Nadel,3 Andrew J Taylor,1,21Department of Cardiovascular Medicine, The Alfred Hospital, 2Baker IDI Heart and Diabetes Research Institute, Melbourne, VIC, 3School of Medicine, University of Notre Dame, Sydney, NSW, Australia Abstract: Cardiac sarcoidosis is a rare but life-threatening condition, requiring a high degree of clinical suspicion and low threshold for investigation to make the diagnosis. The cardiac manifestations include heart failure, conducting syst...

  16. The H{sub 1}–H{sub 2} domain of the α{sub 1} isoform of Na{sup +}–K{sup +}–ATPase is involved in ouabain toxicity in rat ventricular myocytes

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Chen; Li, Jun-xia; Guo, Hui-cai; Zhang, Li-nan; Guo, Wei; Meng, Jing; Wang, Yong-li, E-mail: wangyongli@gmail.com

    2012-07-01

    The composition of different isoforms of Na{sup +}-K{sup +}-ATPase (NKA, Na/K pump) in ventricular myocytes is an important factor in determining the therapeutic effect and toxicity of cardiac glycosides (CGs) on heart failure. The mechanism whereby CGs cause these effects is still not completely clear. In the present study, we prepared two site-specific antibodies (SSA78 and WJS) against the H{sub 1}–H{sub 2} domain of α{sub 1} and α{sub 2} isoforms of NKA in rat heart, respectively, and compared their influences on the effect of ouabain (OUA) in isolated rat ventricular myocytes. SSA78 or WJS, which can specifically bind with the α{sub 1} or α{sub 2} isoform, were assessed with enzyme linked immunosorbent assay (ELISA), Western blot and immunofluorescent staining methods. Preincubation of myocytes with SSA78 inhibited low OUA affinity pump current but not high OUA affinity pump current, reduced the rise in cytosolic calcium concentration ([Ca{sup 2+}]{sub i}), attenuated mitochondrial Ca{sup 2+} overload, restored mitochondrial membrane potential reduction, and delayed the decrease of the myocardial contractile force as well as the occurrence of arrhythmic contraction induced by high concentrations (1 mM) but not low concentrations (1 μM) of OUA. Similarly, preincubation of myocytes with WJS inhibited high OUA affinity pump current, reduced the increase of [Ca{sup 2+}]{sub i} and the contractility induced by 1 μM but not that induced by 1 mM OUA. These results indicate that the H{sub 1}–H{sub 2} domain of the NKA α{sub 1} isoform mediates OUA-induced cardiac toxicity in rat ventricular myocytes, and inhibitors for this binding site may be used as an adjunct to CGs treatment for cardiovascular disease. -- Highlights: ► We prepared two antibodies against the H{sub 1}-H{sub 2} domain of α{sub 1} and α{sub 2} isoforms of NKA. ► The H{sub 1}-H{sub 2} domain of the NKA α{sub 1} isoform mediates OUA-induced cardiac toxicity. ► The H{sub 1}-H{sub 2

  17. EGCG inhibits cardiomyocyte apoptosis in pressure overload-induced cardiac hypertrophy and protects cardiomyocytes from oxidative stress in rats

    Institute of Scientific and Technical Information of China (English)

    Rui SHENG; Zhen-lun GU; Mei-lin XIE; Wen-xuan ZHOU; Ci-yi GUO

    2007-01-01

    Aim: To investigate the effects of epigallocatechin gallate (EGCG) on pressure overload and hydrogen peroxide (H2O2) induced cardiac myocyte apoptosis. Methods: Cardiac hypertrophy was established in rats by abdominal aortic constriction. EGCG 25, 50 and 100 mg/kg were administered intragastrically (ig). Cultured newborn rat cardiomyocytes were preincubated with EGCG, and oxidative stress injury was induced by H2O2. Results: In cardiac hypertrophy induced by AC in rats, relative to the model group, EGCG 25, 50 and 100 mg/kg ig for 6weeks dose-dependently reduced systolic blood pressure (SBP) and heart weight indices, decreased malondialdehyde (MDA) content, and increased superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activity, both in serum and in the myocardium. Also, treatment with EGCG 50 and 100 mg/kg markedly improved cardiac structure and inhibited fibrosis in HE and van Gieson (VG) stain, and reduced apoptotic myocytes in the hypertrophic myocardium detected by terminal transferase-mediated dUTP-biotin nick end-labeling (TUNEL) assay. Inthe Western blot analysis, EGCG significantly inhibited pressure overload-inducedp53 increase and bcl-2 decrease. In H2O2-induced cardiomyocyte injury, when preincubated with myocytes for 6-48 h, EGCG 12.5-200 mg/L increased cell viability determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay. EGCG also attenuated H2O2-induced lactate dehydrogenase (LDH) release and MDA formation. Meanwhile, EGCG 50 and 100 mg/L significantly inhibited the cardiomyocyte apoptotic rate in flow cytometry. Conclusion: EGCG inhibits cardiac myocyte apoptosis and oxidative stress in pressure overload in-duced cardiac hypertrophy. Also, EGCG prevented cardiomyocyte apoptosis from oxidative stress in vitro. The mechanism might be related to the inhibitory effects of EGCG on p53 induction and bcl-2 decrease.

  18. Vector-averaged gravity alters myocyte and neuron properties in cell culture

    Science.gov (United States)

    Gruener, Raphael; Hoeger, Glenn

    1991-01-01

    The effect of changes in the gravitational field of developing neurons and myocytes on the development of these cells was investigated using observations of rotated cultures of embryonic spinal neurons and myocytes in a horizontal clinostat, in which rotation produces, from the cells' perspective, a 'vector-free' gravity environment by continous averaging of the vector, thus simulating the microgravity of space. It was found that, at rotation rates between 1 and 50 rpm, cellular and nuclear areas of myocytes become significantly enlarged and the number of presumptive nucleoli increase; in neurons, frequent and large swellings appeared along neuritic shafts. Some of these changes were reversible after the cessation of rotation.

  19. A compartmentalized mathematical model of the β1-adrenergic signaling system in mouse ventricular myocytes.

    Directory of Open Access Journals (Sweden)

    Vladimir E Bondarenko

    Full Text Available The β1-adrenergic signaling system plays an important role in the functioning of cardiac cells. Experimental data shows that the activation of this system produces inotropy, lusitropy, and chronotropy in the heart, such as increased magnitude and relaxation rates of [Ca(2+]i transients and contraction force, and increased heart rhythm. However, excessive stimulation of β1-adrenergic receptors leads to heart dysfunction and heart failure. In this paper, a comprehensive, experimentally based mathematical model of the β1-adrenergic signaling system for mouse ventricular myocytes is developed, which includes major subcellular functional compartments (caveolae, extracaveolae, and cytosol. The model describes biochemical reactions that occur during stimulation of β1-adrenoceptors, changes in ionic currents, and modifications of Ca(2+ handling system. Simulations describe the dynamics of major signaling molecules, such as cyclic AMP and protein kinase A, in different subcellular compartments; the effects of inhibition of phosphodiesterases on cAMP production; kinetics and magnitudes of phosphorylation of ion channels, transporters, and Ca(2+ handling proteins; modifications of action potential shape and duration; magnitudes and relaxation rates of [Ca(2+]i transients; changes in intracellular and transmembrane Ca(2+ fluxes; and [Na(+]i fluxes and dynamics. The model elucidates complex interactions of ionic currents upon activation of β1-adrenoceptors at different stimulation frequencies, which ultimately lead to a relatively modest increase in action potential duration and significant increase in [Ca(2+]i transients. In particular, the model includes two subpopulations of the L-type Ca(2+ channels, in caveolae and extracaveolae compartments, and their effects on the action potential and [Ca(2+]i transients are investigated. The presented model can be used by researchers for the interpretation of experimental data and for the developments of

  20. Indirect three-dimensional printing: A method for fabricating polyurethane-urea based cardiac scaffolds.

    Science.gov (United States)

    Hernández-Córdova, R; Mathew, D A; Balint, R; Carrillo-Escalante, H J; Cervantes-Uc, J M; Hidalgo-Bastida, L A; Hernández-Sánchez, F

    2016-08-01

    Biomaterial scaffolds are a key part of cardiac tissue engineering therapies. The group has recently synthesized a novel polycaprolactone based polyurethane-urea copolymer that showed improved mechanical properties compared with its previously published counterparts. The aim of this study was to explore whether indirect three-dimensional (3D) printing could provide a means to fabricate this novel, biodegradable polymer into a scaffold suitable for cardiac tissue engineering. Indirect 3D printing was carried out through printing water dissolvable poly(vinyl alcohol) porogens in three different sizes based on a wood-stack model, into which a polyurethane-urea solution was pressure injected. The porogens were removed, leading to soft polyurethane-urea scaffolds with regular tubular pores. The scaffolds were characterized for their compressive and tensile mechanical behavior; and their degradation was monitored for 12 months under simulated physiological conditions. Their compatibility with cardiac myocytes and performance in novel cardiac engineering-related techniques, such as aggregate seeding and bi-directional perfusion, was also assessed. The scaffolds were found to have mechanical properties similar to cardiac tissue, and good biocompatibility with cardiac myocytes. Furthermore, the incorporated cells preserved their phenotype with no signs of de-differentiation. The constructs worked well in perfusion experiments, showing enhanced seeding efficiency. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1912-1921, 2016. PMID:26991636

  1. Molecular mechanism of carvedilol in attenuating the reversion to fetal energy metabolism during cardiac hypertrophy development

    Institute of Scientific and Technical Information of China (English)

    胡琴; 李隆贵

    2003-01-01

    Objective: To explore the molecular regulation mechanism of carvedilol in attenuating the reversion back towards fetal energy metabolism during the development of cardiac hypertrophy induced by coarctation of abdominal aorta (CAA) in male Wistar rats. Methods: Hemodynamic and ventricular remodeling parameters, free fatty acid content in the serum were measured in the experimental animals at 16 weeks after the surgical CAA, the rats receiving carvedilol intervention (CAR) after CAA, and those with sham operation (SH). The expressions of muscle carnitine palmitoyltransferaseⅠ (M-CPTⅠ) and medium chain acyl-CoA dehydrogenase (MCAD) mRNA in the cardiac myocytes from every group were studied with RT-PCR. Results: Significant left ventricular hypertrophy were observed in the rats 16 weeks after coarctation operation (P<0.05), together with significant free fatty acids accumulation and downregulation of M-CPTⅠ and MCAD mRNA (P<0.05) in CAA group. Carvedilol at a dose of 30 mg/kg/d for 12 weeks inhibited the left ventricular hypertrophy induced by pressure overload and enhanced the gene expressions of rate-limiting enzyme (M-CPTⅠ) and key enzyme of fatty acid (MCAD) in the CAR group compared with CAA group (P<0.05). Conclusion: Pressure overload-induced hypertrophy in CAA rats causes the reversion back towards fetal enery metabolism, that is, downregulates the expressions of rate-limiting enzyme and key enzyme of fatty acid oxidation. The intervention therapy with carvedilol, a vasodilating alpha- and beta-adrenoreceptor antagonist, attenuates the reversion of the metabolic gene expression to fetal type through upregulating M-CPTⅠ and MCAD mRNA expressions. Thus, carvedilol may exert cardioprotective effects on heart failure by the mechanism of preserving the adult metabolic gene regulation.

  2. Clinical Utilities of Peripheral Blood Gene Expression Profiling in the Management of Cardiac Transplant Patients

    OpenAIRE

    Fang, Kenneth C.

    2007-01-01

    Cardiac allografts induce host immune responses that lead to endomyocardial tissue injury and progressive graft dysfunction. Inflammatory cell infiltration and myocyte damage characterize acute cellular rejection (ACR) that presents episodically in either a subclinical or symptom-associated manner. Sampling of the endomyocardium by transvenous biopsy enables pathologic grading using light microscopic criteria to distinguish severity based on the focality or diffuseness of inflammation and ass...

  3. α1A-Adrenergic receptor prevents cardiac ischemic damage through PKCδ/GLUT1/4-mediated glucose uptake.

    Science.gov (United States)

    Shi, Ting; Papay, Robert S; Perez, Dianne M

    2016-06-01

    While α1-adrenergic receptors (ARs) have been previously shown to limit ischemic cardiac damage, the mechanisms remain unclear. Most previous studies utilized low oxygen conditions in addition to ischemic buffers with glucose deficiencies, but we discovered profound differences if the two conditions are separated. We assessed both mouse neonatal and adult myocytes and HL-1 cells in a series of assays assessing ischemic damage under hypoxic or low glucose conditions. We found that α1-AR stimulation protected against increased lactate dehydrogenase release or Annexin V(+) apoptosis under conditions that were due to low glucose concentration not to hypoxia. The α1-AR antagonist prazosin or nonselective protein kinase C (PKC) inhibitors blocked the protective effect. α1-AR stimulation increased (3)H-deoxyglucose uptake that was blocked with either an inhibitor to glucose transporter 1 or 4 (GLUT1 or GLUT4) or small interfering RNA (siRNA) against PKCδ. GLUT1/4 inhibition also blocked α1-AR-mediated protection from apoptosis. The PKC inhibitor rottlerin or siRNA against PKCδ blocked α1-AR stimulated GLUT1 or GLUT4 plasma membrane translocation. α1-AR stimulation increased plasma membrane concentration of either GLUT1 or GLUT4 in a time-dependent fashion. Transgenic mice overexpressing the α1A-AR but not α1B-AR mice displayed increased glucose uptake and increased GLUT1 and GLUT4 plasma membrane translocation in the adult heart while α1A-AR but not α1B-AR knockout mice displayed lowered glucose uptake and GLUT translocation. Our results suggest that α1-AR activation is anti-apoptotic and protective during cardiac ischemia due to glucose deprivation and not hypoxia by enhancing glucose uptake into the heart via PKCδ-mediated GLUT translocation that may be specific to the α1A-AR subtype. PMID:26832303

  4. Ablation of triadin causes loss of cardiac Ca2+ release units, impaired excitation-contraction coupling, and cardiac arrhythmias.

    Science.gov (United States)

    Chopra, Nagesh; Yang, Tao; Asghari, Parisa; Moore, Edwin D; Huke, Sabine; Akin, Brandy; Cattolica, Robert A; Perez, Claudio F; Hlaing, Thinn; Knollmann-Ritschel, Barbara E C; Jones, Larry R; Pessah, Isaac N; Allen, Paul D; Franzini-Armstrong, Clara; Knollmann, Björn C

    2009-05-01

    Heart muscle excitation-contraction (E-C) coupling is governed by Ca(2+) release units (CRUs) whereby Ca(2+) influx via L-type Ca(2+) channels (Cav1.2) triggers Ca(2+) release from juxtaposed Ca(2+) release channels (RyR2) located in junctional sarcoplasmic reticulum (jSR). Although studies suggest that the jSR protein triadin anchors cardiac calsequestrin (Casq2) to RyR2, its contribution to E-C coupling remains unclear. Here, we identify the role of triadin using mice with ablation of the Trdn gene (Trdn(-/-)). The structure and protein composition of the cardiac CRU is significantly altered in Trdn(-/-) hearts. jSR proteins (RyR2, Casq2, junctin, and junctophilin 1 and 2) are significantly reduced in Trdn(-/-) hearts, whereas Cav1.2 and SERCA2a remain unchanged. Electron microscopy shows fragmentation and an overall 50% reduction in the contacts between jSR and T-tubules. Immunolabeling experiments show reduced colocalization of Cav1.2 with RyR2 and substantial Casq2 labeling outside of the jSR in Trdn(-/-) myocytes. CRU function is impaired in Trdn(-/-) myocytes, with reduced SR Ca(2+) release and impaired negative feedback of SR Ca(2+) release on Cav1.2 Ca(2+) currents (I(Ca)). Uninhibited Ca(2+) influx via I(Ca) likely contributes to Ca(2+) overload and results in spontaneous SR Ca(2+) releases upon beta-adrenergic receptor stimulation with isoproterenol in Trdn(-/-) myocytes, and ventricular arrhythmias in Trdn(-/-) mice. We conclude that triadin is critically important for maintaining the structural and functional integrity of the cardiac CRU; triadin loss and the resulting alterations in CRU structure and protein composition impairs E-C coupling and renders hearts susceptible to ventricular arrhythmias. PMID:19383796

  5. Leptin modulates electrophysiological characteristics and isoproterenol-induced arrhythmogenesis in atrial myocytes

    OpenAIRE

    Lin, Yung-Kuo; Chen, Yao-Chang; Huang, Jen-Hung; Lin, Yenn-Jiang; Huang, Shiang-Suo; Chen, Shih-Ann; Chen, Yi-Jen

    2013-01-01

    Background Obesity is an important risk factor for atrial fibrillation (AF). Leptin is an important adipokine. However, it is not clear whether leptin directly modulates the electrophysiological characteristics of atrial myocytes. Results Whole cell patch clamp and indo-1 fluorescence were used to record the action potentials (APs) and ionic currents in isolated rabbit left atrial (LA) myocytes incubated with and without (control) leptin (100 nM) for 1 h to investigate the role of leptin on a...

  6. Enhanced expression of ROCK in left atrial myocytes of mitral regurgitation: a potential mechanism of myolysis

    OpenAIRE

    Chen, Huang-Chung; Chang, Jen-Ping; Chang, Tzu-Hao; Lin, Yu-Sheng; Huang, Yao-Kuang; Pan, Kuo-Li; Fang, Chih-Yuan; Chen, Chien-Jen; Ho, Wan-Chun; Chen, Mien-Cheng

    2015-01-01

    Background Severe mitral regurgitation (MR) may cause myolysis in the left atrial myocytes. Myolysis may contribute to atrial enlargement. However, the relationship between Rho-associated kinase (ROCK) and myolysis in the left atrial myocytes of MR patients remain unclear. Methods This study comprised 22 patients with severe MR [12 with atrial fibrillation (AF) and ten in sinus rhythm]. Left atrial appendage tissues were obtained during surgery. Normal left atrial tissues were purchased. Immu...

  7. Raloxifene acutely suppresses ventricular myocyte contractility through inhibition of the L-type calcium current

    OpenAIRE

    Liew, Reginald; Stagg, Mark A; MacLeod, Kenneth T; Collins, Peter

    2004-01-01

    The selective oestrogen (ER) receptor modulator, raloxifene, is widely used in the treatment of postmenopausal osteoporosis, but may also possess cardioprotective properties. We investigated whether it directly suppresses myocyte contractility through Ca2+ channel antagonism in a similar way to 17β-oestradiol.Cell shortening and Ca2+ transients were measured in single guinea-pig ventricular myocytes field-stimulated (1 Hz, 37°C) in a superfusion chamber. Electrophysiological recordings were p...

  8. Cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Dewey, Marc [Charite - Universitaetsmedizin Berlin (Germany). Inst. fuer Radiologie

    2011-07-01

    Computed tomography of the heart has become a highly accurate diagnostic modality that is attracting increasing attention. This extensively illustrated book aims to assist the reader in integrating cardiac CT into daily clinical practice, while also reviewing its current technical status and applications. Clear guidance is provided on the performance and interpretation of imaging using the latest technology, which offers greater coverage, better spatial resolution, and faster imaging. The specific features of scanners from all four main vendors, including those that have only recently become available, are presented. Among the wide range of applications and issues to be discussed are coronary artery bypass grafts, stents, plaques, and anomalies, cardiac valves, congenital and acquired heart disease, and radiation exposure. Upcoming clinical uses of cardiac CT, such as plaque imaging and functional assessment, are also explored. (orig.)

  9. Cardiac echinococcosis

    Directory of Open Access Journals (Sweden)

    Ivanović-Krstić Branislava A.

    2002-01-01

    Full Text Available Cardiac hydatid disease is rare. We report on an uncommon hydatid cyst localized in the right ventricular wall, right atrial wall tricuspid valve left atrium and pericard. A 33-year-old woman was treated for cough, fever and chest pain. Cardiac echocardiograpic examination revealed a round tumor (5.8 x 4 cm in the right ventricular free wall and two smaller cysts behind that tumor. There were cysts in right atrial wall and tricuspidal valve as well. Serologic tests for hydatidosis were positive. Computed tomography finding was consistent with diagnosis of hydatid cyst in lungs and right hylar part. Surgical treatment was rejected due to great risk of cardiac perforation. Medical treatment with albendazole was unsuccessful and the patient died due to systemic hydatid involvement of the lungs, liver and central nervous system.

  10. Cardiac sarcoidosis

    Science.gov (United States)

    Smedema, J.P.; Zondervan, P.E.; van Hagen, P.; ten Cate, F.J.; Bresser, P.; Doubell, A.F.; Pattynama, P.; Hoogsteden, H.C.; Balk, A.H.M.M.

    2002-01-01

    Sarcoidosis is a multi-system granulomatous disorder of unknown aetiology. Symptomatic cardiac involvement occurs in approximately 5% of patients. The prevalence of sarcoidosis in the Netherlands is unknown, but estimated to be approximately 20 per 100,000 population (3200 patients). We report on five patients who presented with different manifestations of cardiac sarcoidosis, and give a brief review on the current management of this condition. Magnetic Resonance Imaging (MRI) can be of great help in diagnosing this condition as well as in the follow-up of the response to therapy. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6 PMID:25696121

  11. Exercise, Nrf2 and Antioxidant Signaling in Cardiac Aging.

    Science.gov (United States)

    Narasimhan, Madhusudhanan; Rajasekaran, Namakkal S

    2016-01-01

    Aging is represented by a progressive decline in cellular functions. The age-related deformities in cardiac behaviors are the loss of cardiac myocytes through apoptosis or programmed cell death. Oxidative stress (OS) and its deleterious consequence contribute to age-related mechanical remodeling, reduced regenerative capacity, and apoptosis in cardiac tissue. The pathogenesis of OS in the elderly can predispose the heart to other cardiac complications such as atherosclerosis, hypertension, ischemic heart disease, cardiac myopathy, and so on. At the molecular level, oxidant-induced activation of Nrf2 (Nuclear erythroid-2-p45-related factor-2), a transcription factor, regulates several genes containing AREs (Antioxidant Response Element) and bring the respective translates to counteract the reactive radicals and establish homeostasis. Myriad of Nrf2 gene knockout studies in various organs such as lung, liver, kidney, brain, etc. have shown that dysregulation of Nrf2 severely affects the oxidant/ROS sensitivity and predispose the system to several pathological changes with aberrant cellular lesions. On the other hand, its gain of function chemical interventions exhibited oxidant stress resistance and cytoprotection. However, thus far, only a few investigations have shown the potential role of Nrf2 and its non-pharmacological induction in cardiac aging. Therefore, here we review the involvement of Nrf2 signaling along with its responses and ramifications on the cascade of OS under acute exercise stress (AES), moderate exercise training (MET), and endurance exercise stress (EES) conditions in the aging heart. PMID:27378947

  12. Cardiac Pacemakers

    International Nuclear Information System (INIS)

    A complete survey of physiological biophysical,clinical and engineering aspects of cardiac facing,including the history and an assessment of possible future developments.Among the topics studied are: pacemakers, energy search, heart stimulating with pacemakers ,mathematical aspects of the electric cardio stimulation chronic, pacemaker implants,proceeding,treatment and control

  13. [Advanced resuscitation of adults

    DEFF Research Database (Denmark)

    Lippert, F.K.; Lauritsen, T.L.; Torp-Pedersen, C.

    2008-01-01

    International and European Resuscitation Council (ERC) Guidelines for Resuscitation 2005 implicate major changes in resuscitation, including new universal treatment algorithms. This brief summary of Guidelines 2005 for advanced resuscitation of adult cardiac arrest victims is based upon the ERC...

  14. Effect of osmotic stress on spontaneous calcium sparks in rat ventricular myocytes

    Institute of Scientific and Technical Information of China (English)

    Hong XIE; Pei-hong ZHU

    2006-01-01

    Aim: To study whether the volume of cardiomyocytes and their functions would change under severe pathological conditions or osmotic stress. To clarify the role of ryanodine receptors/calcium release channels (RyRs) in the functional change, the effect of osmotic stress on spontaneous Ca2+ sparks in rat ventricular myocytes was investigated. Methods: A laser scanning confocal microscope was used to detect spontaneous Ca2+ sparks of intact or saponin permeabilized myocytes loaded with Fluo-4. High and low tonicity was obtained by adding sucrose and reducing NaCl concentration in the external medium, respectively. Results: In intact myocytes the frequency of Ca2+ sparks was increased and decreased by hyperosmotic (1.5 T) and hyposmotic (0.6 T) exposure, respectively. In addition, hyperosmotic exposure increased the temporal parameters and decreased the spatial parameter of Ca2+ sparks, while opposite changes occurred with hyposmotic exposure. The spatio-temporal properties of Ca2+ sparks were slightly affected by altering [K+]i (50-200 mmol/L) in saponin permeabilized myocytes in the presence of 8% dextran. It was observed that the spatio-temporal parameters of the Ca2+ sparks in permeabilized myocytes were dose-dependently altered by dextran. The propagating velocity of Ca2+ waves in intact and permeabilized myocyte was also affected by osmotic pressure or dextran. Conclusion: The effect of osmotic stress on the frequency of spontaneous Ca2+ sparks might be ascribed to the change of myoplasmic Ca2+ and Ca2+ content in the sarcoplasmic reticulum, while the effect on the spatio-temporal properties is caused by the alteration of Ca2+ diffusion mainly resulting from the morphological change of the myocytes.

  15. Molecule specific effects of PKA-mediated phosphorylation on rat isolated heart and cardiac myofibrillar function.

    Science.gov (United States)

    Hanft, Laurin M; Cornell, Timothy D; McDonald, Colin A; Rovetto, Michael J; Emter, Craig A; McDonald, Kerry S

    2016-07-01

    Increased cardiac myocyte contractility by the β-adrenergic system is an important mechanism to elevate cardiac output to meet hemodynamic demands and this process is depressed in failing hearts. While increased contractility involves augmented myoplasmic calcium transients, the myofilaments also adapt to boost the transduction of the calcium signal. Accordingly, ventricular contractility was found to be tightly correlated with PKA-mediated phosphorylation of two myofibrillar proteins, cardiac myosin binding protein-C (cMyBP-C) and cardiac troponin I (cTnI), implicating these two proteins as important transducers of hemodynamics to the cardiac sarcomere. Consistent with this, we have previously found that phosphorylation of myofilament proteins by PKA (a downstream signaling molecule of the beta-adrenergic system) increased force, slowed force development rates, sped loaded shortening, and increased power output in rat skinned cardiac myocyte preparations. Here, we sought to define molecule-specific mechanisms by which PKA-mediated phosphorylation regulates these contractile properties. Regarding cTnI, the incorporation of thin filaments with unphosphorylated cTnI decreased isometric force production and these changes were reversed by PKA-mediated phosphorylation in skinned cardiac myocytes. Further, incorporation of unphosphorylated cTnI sped rates of force development, which suggests less cooperative thin filament activation and reduced recruitment of non-cycling cross-bridges into the pool of cycling cross-bridges, a process that would tend to depress both myocyte force and power. Regarding MyBP-C, PKA treatment of slow-twitch skeletal muscle fibers caused phosphorylation of MyBP-C (but not slow skeletal TnI (ssTnI)) and yielded faster loaded shortening velocity and ∼30% increase in power output. These results add novel insight into the molecular specificity by which the β-adrenergic system regulates myofibrillar contractility and how attenuation of PKA

  16. Role of paracrine factors in stem and progenitor cell mediated cardiac repair and tissue fibrosis

    Directory of Open Access Journals (Sweden)

    Burchfield Jana S

    2008-10-01

    Full Text Available Abstract A new era has begun in the treatment of ischemic disease and heart failure. With the discovery that stem cells from diverse organs and tissues, including bone marrow, adipose tissue, umbilical cord blood, and vessel wall, have the potential to improve cardiac function beyond that of conventional pharmacological therapy comes a new field of research aiming at understanding the precise mechanisms of stem cell-mediated cardiac repair. Not only will it be important to determine the most efficacious cell population for cardiac repair, but also whether overlapping, common mechanisms exist. Increasing evidence suggests that one mechanism of action by which cells provide tissue protection and repair may involve paracrine factors, including cytokines and growth factors, released from transplanted stem cells into the surrounding tissue. These paracrine factors have the potential to directly modify the healing process in the heart, including neovascularization, cardiac myocyte apoptosis, inflammation, fibrosis, contractility, bioenergetics, and endogenous repair.

  17. Cardiac cell proliferation assessed by EdU, a novel analysis of cardiac regeneration.

    Science.gov (United States)

    Zeng, Bin; Tong, Suiyang; Ren, Xiaofeng; Xia, Hao

    2016-08-01

    Emerging evidence suggests that mammalian hearts maintain the capacity for cardiac regeneration. Rapid and sensitive identification of cardiac cellular proliferation is prerequisite for understanding the underlying mechanisms and strategies of cardiac regeneration. The following immunologically related markers of cardiac cells were analyzed: cardiac transcription factors Nkx2.5 and Gata 4; specific marker of cardiomyocytes TnT; endothelial cell marker CD31; vascular smooth muscle marker smooth muscle myosin IgG; cardiac resident stem cells markers IsL1, Tbx18, and Wt1. Markers were co-localized in cardiac tissues of embryonic, neonatal, adult, and pathological samples by 5-ethynyl-2'-deoxyuridine (EdU) staining. EdU was also used to label isolated neonatal cardiomyocytes in vitro. EdU robustly labeled proliferating cells in vitro and in vivo, co-immunostaining with different cardiac cells markers. EdU can rapidly and sensitively label proliferating cardiac cells in developmental and pathological states. Cardiac cell proliferation assessed by EdU is a novel analytical tool for investigating the mechanism and strategies of cardiac regeneration in response to injury. PMID:25480318

  18. Cardiac rhabdomyosarcoma

    OpenAIRE

    Chlumský, Jaromír; Holá, Dana; Hlaváček, Karel; Michal, Michal; Švec, Alexander; Špatenka, Jaroslav; Dušek, Jan

    2001-01-01

    Cardiac sarcoma is a very rare neoplasm and is difficult to diagnose. The case of a 51-year-old man with a left atrial tumour, locally recurrent three months after its surgical removal, is presented. Computed tomography showed metastatic spread to the lung parenchyma. On revised histology, the mass extirpated was a sarcoma. Because of the metastatic spread, further therapy was symptomatic only; the patient died 15 months after the first manifestation of his problems. Immunohistochemical stain...

  19. Cardiac Calcification

    Directory of Open Access Journals (Sweden)

    Morteza Joorabian

    2011-05-01

    Full Text Available There is a spectrum of different types of cardiac"ncalcifications with the importance and significance"nof each type of cardiac calcification, especially"ncoronary artery calcification. Radiologic detection of"ncalcifications within the heart is quite common. The"namount of coronary artery calcification correlates"nwith the severity of coronary artery disease (CAD."nCalcification of the aortic or mitral valve may indicate"nhemodynamically significant valvular stenosis."nMyocardial calcification is a sign of prior infarction,"nwhile pericardial calcification is strongly associated"nwith constrictive pericarditis. A spectrum of different"ntypes of cardiac calcifications (linear, annular,"ncurvilinear,... could be seen in chest radiography and"nother imaging modalities. So a carful inspection for"ndetection and reorganization of these calcifications"nshould be necessary. Numerous modalities exist for"nidentifying coronary calcification, including plain"nradiography, fluoroscopy, intravascular ultrasound,"nMRI, echocardiography, and conventional, helical and"nelectron-beam CT (EBCT. Coronary calcifications"ndetected on EBCT or helical CT can be quantifie,"nand a total calcification score (Cardiac Calcification"nScoring may be calculated. In an asymptomatic"npopulation and/or patients with concomitant risk"nfactors like diabetes mellitus, determination of the"npresence of coronary calcifications identifies the"npatients at risk for future myocardial infarction and"ncoronary artery disease. In patients without coronary"ncalcifications, future cardiovascular events could"nbe excluded. Therefore, detecting and recognizing"ncalcification related to the heart on chest radiography"nand other imaging modalities such as fluoroscopy, CT"nand echocardiography may have important clinical"nimplications.

  20. Tetrodotoxin Sensitivity of the Vertebrate Cardiac Na+ Current

    Directory of Open Access Journals (Sweden)

    Jaakko Haverinen

    2011-11-01

    Full Text Available Evolutionary origin and physiological significance of the tetrodotoxin (TTX resistance of the vertebrate cardiac Na+ current (INa is still unresolved. To this end, TTX sensitivity of the cardiac INa was examined in cardiac myocytes of a cyclostome (lamprey, three teleost fishes (crucian carp, burbot and rainbow trout, a clawed frog, a snake (viper and a bird (quail. In lamprey, teleost fishes, frog and bird the cardiac INa was highly TTX-sensitive with EC50-values between 1.4 and 6.6 nmol·L−1. In the snake heart, about 80% of the INa was TTX-resistant with EC50 value of 0.65 μmol·L−1, the rest being TTX-sensitive (EC50 = 0.5 nmol·L−1. Although TTX-resistance of the cardiac INa appears to be limited to mammals and reptiles, the presence of TTX-resistant isoform of Na+ channel in the lamprey heart suggest an early evolutionary origin of the TTX-resistance, perhaps in the common ancestor of all vertebrates.

  1. Cardiac adaptations of bullfrog tadpoles in response to chytrid infection.

    Science.gov (United States)

    Salla, Raquel Fernanda; Gamero, Fernando Urban; Ribeiro, Larissa Rodrigues; Rizzi, Gisele Miglioranza; Medico, Samuel Espinosa Dal; Rissoli, Rafael Zanelli; Vieira, Conrado Augusto; Silva-Zacarin, Elaine Cristina Mathias; Leite, Domingos Silva; Abdalla, Fábio Camargo; Toledo, Luis Felipe; Costa, Monica Jones

    2015-08-01

    The chytrid fungus Batrachochytrium dendrobatidis (Bd) can result in heart failure in Bd-susceptible species. Since Bd infection generally does not cause mortality in North American bullfrogs, the aim of this work was to verify whether this species presents any cardiac adaptation that could improve the tolerance to the fungus. Thus, we analyzed tadpoles' activity level, relative ventricular mass, ventricle morphology, in loco heart frequency, and in vitro cardiac function. The results indicate that infected animals present an increase in both ventricular relative mass and in myofibrils' incidence, which accompanied the increase in myocytes' diameter. Such morphological alterations enabled an increase in the in vitro twitch force that, in vivo, would result in elevation of the cardiac stroke volume. This response requires much less energy expenditure than an elevation in heart frequency, but still enables the heart to pump a higher volume of blood per minute (i.e., an increase in cardiac output). As a consequence, the energy saved in the regulation of the cardiac function of Bd-infected tadpoles can be employed in other homeostatic adjustments to avoid the lethal effect of the fungus. Whether other species present this ability, and to what extent, remains uncertain, but such possible interspecific variability might explain different mortality rates among different species of Bd-infected amphibians. PMID:26055358

  2. Elevated NF-κB activation is conserved in human myocytes cultured from obese type 2 diabetic patients and attenuated by AMP-activated protein kinase

    DEFF Research Database (Denmark)

    Green, Charlotte Jane; Pedersen, Maria; Pedersen, Bente K;

    2011-01-01

    To examine whether the inflammatory phenotype found in obese and diabetic individuals is preserved in isolated, cultured myocytes and to assess the effectiveness of pharmacological AMP-activated protein kinase (AMPK) activation upon the attenuation of inflammation in these myocytes....

  3. Cardiac sarcoplasmic reticulum calcium leak: basis and roles in cardiac dysfunction.

    Science.gov (United States)

    Bers, Donald M

    2014-01-01

    Synchronized SR calcium (Ca) release is critical to normal cardiac myocyte excitation-contraction coupling, and ideally this release shuts off completely between heartbeats. However, other SR Ca release events are referred to collectively as SR Ca leak (which includes Ca sparks and waves as well as smaller events not detectable as Ca sparks). Much, but not all, of the SR Ca leak occurs via ryanodine receptors and can be exacerbated in pathological states such as heart failure. The extent of SR Ca leak is important because it can (a) reduce SR Ca available for release, causing systolic dysfunction; (b) elevate diastolic [Ca]i, contributing to diastolic dysfunction; (c) cause triggered arrhythmias; and (d) be energetically costly because of extra ATP used to repump Ca. This review addresses quantitative aspects and manifestations of SR Ca leak and its measurement, and how leak is modulated by Ca, associated proteins, and posttranslational modifications in health and disease. PMID:24245942

  4. Cardiac carcinoid: tricuspid delayed hyperenhancement on cardiac 64-slice multidetector CT and magnetic resonance imaging.

    LENUS (Irish Health Repository)

    Martos, R

    2012-02-01

    INTRODUCTION: Carcinoid heart disease is a rare condition in adults. Its diagnosis can be easily missed in a patient presenting to a primary care setting. We revised the advantages of using coronary multidetector computed tomography (MDCT) and cardiac magnetic resonance imaging (MRI) in diagnosing this condition. MATERIALS AND METHODS: We studied a 65-year-old patient with carcinoid heart disease and right heart failure using transthoracic Doppler-echocardiogram, cardiac MDCT and MRI. Cardiac echocardiogram revealed marked thickening and retraction of the tricuspid leaflets with dilated right atrium and ventricle. Cardiac MDCT and MRI demonstrated fixation and retraction of the tricuspid leaflets with delayed contrast hyperenhancement of the tricuspid annulus. CONCLUSION: This case demonstrates fascinating imaging findings of cardiac carcinoid disease and highlights the increasing utility of contrast-enhanced MRI and cardiac MDCT in the diagnosis of this interesting condition.

  5. Cardiac conduction system

    Science.gov (United States)

    The cardiac conduction system is a group of specialized cardiac muscle cells in the walls of the heart that send signals ... to contract. The main components of the cardiac conduction system are the SA node, AV node, bundle ...

  6. Signaling Pathways Involved in Cardiac Hypertrophy

    Institute of Scientific and Technical Information of China (English)

    Tao Zewei; Li Longgui

    2006-01-01

    Cardiac hypertrophy is the heart's response to a variety of extrinsic and intrinsic stimuli that impose increased biomechanical stress.Traditionally, it has been considered a beneficial mechanism; however, sustained hypertrophy has been associated with a significant increase in the risk of cardiovascular disease and mortality. Delineating intracellular signaling pathways involved in the different aspects of cardiac hypertrophy will permit future improvements in potential targets for therapeutic intervention. Generally, there are two types of cardiac hypertrophies, adaptive hypertrophy, including eutrophy (normal growth) and physiological hypertrophy (growth induced by physical conditioning), and maladaptive hypertrophy, including pathologic or reactive hypertrophy (growth induced by pathologic stimuli) and hypertrophic growth caused by genetic mutations affecting sarcomeric or cytoskeletal proteins. Accumulating observations from animal models and human patients have identified a number of intracellular signaling pathways that characterized as important transducers of the hypertrophic response,including calcineurin/nuclear factor of activated Tcells, phosphoinositide 3-kinases/Akt (PI3Ks/Akt),G protein-coupled receptors, small G proteins,MAPK, PKCs, Gp130/STAT'3, Na+/H+ exchanger,peroxisome proliferator-activated receptors, myocyte enhancer factor 2/histone deacetylases, and many others. Furthermore, recent evidence suggests that adaptive cardiac hypertrophy is regulated in large part by the growth hormone/insulin-like growth factors axis via signaling through the PI3K/Akt pathway. In contrast, pathological or reactive hypertrophy is triggered by autocrine and paracrine neurohormonal factors released during biomechanical stress that signal through the Gq/phosphorlipase C pathway, leading to an increase in cytosolic calcium and activation of PKC.

  7. Study of transmembrane La3+ movement in rat ventricular myocytes by the patch-clamp technique

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    We have studied transmembrane La3+ movement in rat ventricular myocytes for the first time by using the whole-cell patch-clamp recording mode. La3+ (0.01-5.0 mmol/L) could not bring out inward currents through the L-type calcium channel in rat ventricular myocytes, while it could enter the cells by the same way carried by 1μmol/L ionomycin. When the outward Na+ concentration gradient is formed, La3+ can enter the cells via Na-Ca exchange, and the exchange currentsincrease with the increase of external La3+ concentrations. But compared with Na-Ca exchange currents in the same concentration, the former is only 14%-38% of the latter. The patch-clamp experiment indicates that La3+ normally can not enter ventricular myocytes through L-type calcium channel, but it can enter the cells via Na-Ca exchange.

  8. Vitamin D and Cardiac Differentiation.

    Science.gov (United States)

    Kim, Irene M; Norris, Keith C; Artaza, Jorge N

    2016-01-01

    Calcitriol (1,25-dihydroxycholecalciferol or 1,25-D3) is the hormonally active metabolite of vitamin D. Experimental studies of vitamin D receptors and 1,25-D3 establish calcitriol to be a critical regulator of the structure and function of the heart. Clinical studies link vitamin D deficiency with cardiovascular disease (CVD). Emerging evidence demonstrates that calcitriol is highly involved in CVD-related signaling pathways, particularly the Wnt signaling pathway. Addition of 1,25-D3 to cardiomyocyte cells and examination of its effects on cardiomyocytes and mainly Wnt11 signaling allowed the specific characterization of the role of calcitriol in cardiac differentiation. 1,25-D3 is demonstrated to: (i) inhibit cell proliferation without promoting apoptosis; (ii) decrease expression of genes related to the regulation of the cell cycle; (iii) promote formation of cardiomyotubes; (iv) induce expression of casein kinase-1-α1, a negative regulator of the canonical Wnt signaling pathway; and (v) increase expression of noncanonical Wnt11, which has been recognized to induce cardiac differentiation during embryonic development and in adult cells. Thus, it appears that vitamin D promotes cardiac differentiation through negative modulation of the canonical Wnt signaling pathway and upregulation of noncanonical Wnt11 expression. Future work to elucidate the role(s) of vitamin D in cardiovascular disorders will hopefully lead to improvement and potentially prevention of CVD, including abnormal cardiac differentiation in settings such as postinfarction cardiac remodeling. PMID:26827957

  9. Telmisartan attenuates isoproterenol-induced cardiac remodeling in rats via regulation of cardiac adiponectin expression

    Institute of Scientific and Technical Information of China (English)

    Bing-yan GUO; Yong-jun LI; Rui HAN; Shao-1ing YANG; Ying-hui SHI; De-rong HAN; Hong ZHOU; Mei WANG

    2011-01-01

    Aim:To investigate whether telmisartan(Telm)pretreatment attenuates isoproterenol(Iso)-induced postinfarction remodeling(PIR)in rats, and whether the effect of Telm is associated with cardiac expression of adiponectin.Methods:PIR was induced in male Wistar rats with two consecutive injections of Iso(80 mg/kg,sc)at an interval of 24 h.Primary Culture of ventricular myocytes from neonatal rats was prepared.Iso-induced cardiomyocyte injury was assessed based on cell growth and lactate dehydrogenase(LDH)activity.Cardiac adiponectin expression was measured using qRT-PCR and immunoblot analysis.Results:In the rats with PIR.Telm(10 mg·kg-1·d-1,po for 65 d)suppressed lso-induced increases in gravimetric parameters.cardiomyocyte diameter and collagen volume fraction,but had no effect on Iso-induced myocardial hypertrophy and interstitial fibrosis.The protective effect of Telm was associated with enhanced protein expression of cardiac adiponectin.In cultured cardiomyocytes,Telm (5-20 μmol/L)inhibited the celI death and LDH release induced by lSO(10 μmol/L).and reversed Iso-induced reduction in adiponectinprotein expression.In cardiomyocytes exposed to Iso(20 μmol/L).GW9662(30 μmol/L),a selective antagonist of PPAR-v,blocked the effects of Telm Dretreatment on adiponectin protein expression,as well as the protective effects of Telm on Iso-induced celI injUry.Conclusion:Telm attenuates Iso-induced cardiac remodeling and cell injury,which is associated with induction of cardiac adiponectin expression.

  10. Effects of trimetazidine on pHi regulation in the rat isolated ventricular myocyte.

    OpenAIRE

    Lagadic-Gossmann, D.; Le Prigent, K.; Feuvray, D.

    1996-01-01

    1. We have examined the effects of trimetazidine (TMZ) on intracellular pH (pHi) regulation in rat isolated ventricular myocytes. pHi was recorded ratiometrically by use of the pH-sensitive fluoroprobe, carboxy-SNARF-1 (carboxy-seminaphtorhodafluor). 2. Following an intracellular acid load (induced by 10 mM NH4Cl removal), pHi recovery in HEPES-buffered Tyrode solution was significantly slowed down upon application of 0.3 mM TMZ only when myocytes were pretreated for 5 h 30 min (slowing by ap...

  11. Salacia oblonga root improves cardiac lipid metabolism in Zucker diabetic fatty rats: Modulation of cardiac PPAR-α-mediated transcription of fatty acid metabolic genes

    International Nuclear Information System (INIS)

    Excess cardiac triglyceride accumulation in diabetes and obesity induces lipotoxicity, which predisposes the myocytes to death. On the other hand, increased cardiac fatty acid (FA) oxidation plays a role in the development of myocardial dysfunction in diabetes. PPAR-α plays an important role in maintaining homeostasis of lipid metabolism. We have previously demonstrated that the extract from Salacia oblonga root (SOE), an Ayurvedic anti-diabetic and anti-obesity medicine, improves hyperlipidemia in Zucker diabetic fatty (ZDF) rats (a genetic model of type 2 diabetes and obesity) and possesses PPAR-α activating properties. Here we demonstrate that chronic oral administration of SOE reduces cardiac triglyceride and FA contents and decreases the Oil red O-stained area in the myocardium of ZDF rats, which parallels the effects on plasma triglyceride and FA levels. Furthermore, the treatment suppressed cardiac overexpression of both FA transporter protein-1 mRNA and protein in ZDF rats, suggesting inhibition of increased cardiac FA uptake as the basis for decreased cardiac FA levels. Additionally, the treatment also inhibited overexpression in ZDF rat heart of PPAR-α mRNA and protein and carnitine palmitoyltransferase-1, acyl-CoA oxidase and 5'-AMP-activated protein kinase mRNAs and restored the downregulated acetyl-CoA carboxylase mRNA. These results suggest that SOE inhibits cardiac FA oxidation in ZDF rats. Thus, our findings suggest that improvement by SOE of excess cardiac lipid accumulation and increased cardiac FA oxidation in diabetes and obesity occurs by reduction of cardiac FA uptake, thereby modulating cardiac PPAR-α-mediated FA metabolic gene transcription

  12. A new classifier-based strategy for in-silico ion-channel cardiac drug safety assessment

    OpenAIRE

    Mistry, Hitesh B.; Davies, Mark R.; Di Veroli, Giovanni Y.

    2015-01-01

    There is currently a strong interest in using high-throughput in-vitro ion-channel screening data to make predictions regarding the cardiac toxicity potential of a new compound in both animal and human studies. A recent FDA think tank encourages the use of biophysical mathematical models of cardiac myocytes for this prediction task. However, it remains unclear whether this approach is the most appropriate. Here we examine five literature data-sets that have been used to support the use of fou...

  13. Dosimetry of electromagnetic field exposure of an active armlet and its electromagnetic interference to the cardiac pacemakers using adult, child and infant models.

    Science.gov (United States)

    Yang, Hu; Wang, Yuduo; Yang, Jiangang; Wu, Tongning

    2016-01-01

    Wearable devices have been popularly used with people from different age groups. As a consequence, the concerns of their electromagnetic field (EMF) exposure to the human body and their electromagnetic interference (EMI) to the implanted medical devices have attracted many studies. The aim of this study was to evaluate the human exposure to the EMF of an active radiofrequency identification (RFID) armlet as well as its EMI to the cardiac pacemaker (CP). Different human models from various age groups were applied to assess the result variability. The scalar potential finite element method was utilized in the simulation. Local EMF exposure and the exposure to the central nerve system tissues were evaluated using different metrics. EMI to the CP was assessed in terms of the conducted voltage to the CP. The results from all the models revealed that the studied RFID armlet would not produce the EMF exposure exceeding the safety limits. The calculated interference voltage was highly dependent on the distance between the RFID armlet and the CP (i.e. the physical dimension of the individual model). The results proposed to evaluate the appropriateness of the current EMI measurement protocol for this kind of devices used by the infants. PMID:25568953

  14. Magnesium gating of cardiac gap junction channels.

    Science.gov (United States)

    Matsuda, Hiroyuki; Kurata, Yasutaka; Oka, Chiaki; Matsuoka, Satoshi; Noma, Akinori

    2010-09-01

    We aimed to study kinetics of modulation by intracellular Mg(2+) of cardiac gap junction (Mg(2+) gate). Paired myocytes of guinea-pig ventricle were superfused with solutions containing various concentrations of Mg(2+). In order to rapidly apply Mg(2+) to one aspect of the gap junction, the non-junctional membrane of one of the pair was perforated at nearly the connecting site by pulses of nitrogen laser beam. The gap junction conductance (G(j)) was measured by clamping the membrane potential of the other cell using two-electrode voltage clamp method. The laser perforation immediately increased G(j), followed by slow G(j) change with time constant of 3.5 s at 10 mM Mg(2+). Mg(2+) more than 1.0 mM attenuated dose-dependently the gap junction conductance and lower Mg(2+) (0.6 mM) increased G(j) with a Hill coefficient of 3.4 and a half-maximum effective concentration of 0.6 mM. The time course of G(j) changes was fitted by single exponential function, and the relationship between the reciprocal of time constant and Mg(2+) concentration was almost linear. Based on the experimental data, a mathematical model of Mg(2+) gate with one open state and three closed states well reproduced experimental results. One-dimensional cable model of thirty ventricular myocytes connected to the Mg(2+) gate model suggested a pivotal role of the Mg(2+) gate of gap junction under pathological conditions. PMID:20553744

  15. Glucagon-like peptide-1 enhances cardiac L-type Ca2+ currents via activation of the cAMP-dependent protein kinase A pathway

    Directory of Open Access Journals (Sweden)

    Jaye Deborah A

    2011-01-01

    Full Text Available Abstract Background Glucagon-like peptide-1 (GLP-1 is a hormone predominately synthesized and secreted by intestinal L-cells. GLP-1 modulates multiple cellular functions and its receptor agonists are now used clinically for diabetic treatment. Interestingly, preclinical and clinical evidence suggests that GLP-1 agonists produce beneficial effects on dysfunctional hearts via acting on myocardial GLP-1 receptors. As the effects of GLP-1 on myocyte electrophysiology are largely unknown, this study was to assess if GLP-1 could affect the cardiac voltage-gated L-type Ca2+ current (ICa. Methods The whole-cell patch clamp method was used to record ICa and action potentials in enzymatically isolated cardiomyocytes from adult canine left ventricles. Results Extracellular perfusion of GLP-1 (7-36 amide at 5 nM increased ICa by 23 ± 8% (p Ca; however, the increase in ICa was abolished if Exendin (9-39 was pre-applied 5 min prior to GLP-1 administration. Intracellular dialysis with a protein kinase A inhibitor also blocked the GLP-1-enhanced ICa. In addition, GLP-1 at 5 nM prolonged the durations of the action potentials by 128 ± 36 ms (p p Conclusions Our data demonstrate that GLP-1 enhances ICa in canine cardiomyocytes. The enhancement of ICa is likely via the cAMP-dependent protein kinase A mechanism and may contribute, at least partially, to the prolongation of the action potential duration.

  16. Instability of spiral and scroll waves in the presence of a gradient in the fibroblast density: the effects of fibroblast-myocyte coupling

    CERN Document Server

    Zimik, Soling

    2016-01-01

    Fibroblast-myocyte coupling can modulate electrical-wave dynamics in cardiac tissue. In diseased hearts, the distribution of fibroblasts is heterogeneous, so there can be gradients in the fibroblast density (henceforth we call this GFD) especially from highly injured regions, like infarcted or ischemic zones, to less-wounded regions of the tissue. Fibrotic hearts are known to be prone to arrhythmias, so it is important to understand the effects of GFD in the formation and sustenance of arrhythmic re- entrant waves, like spiral or scroll waves. Therefore, we investigate the effects of GFD on the stability of spiral and scroll waves of electrical activation in a state-of-the- art mathematical model for cardiac tissue in which we also include fibroblasts. By introducing GFD in controlled ways, we show that spiral and scroll waves can be unstable in the presence of GFDs because of regions with varying spiral or scroll-wave frequency {\\omega}, induced by the GFD. We examine the effects of the resting membrane pote...

  17. Cardiac MRI in Athletes

    NARCIS (Netherlands)

    Luijkx, T.

    2012-01-01

    Cardiac magnetic resonance imaging (CMR) is often used in athletes to image cardiac anatomy and function and is increasingly requested in the context of screening for pathology that can cause sudden cardiac death (SCD). In this thesis, patterns of cardiac adaptation to sports are investigated with C

  18. Effect of haloperidol on transient outward potassium current in rat ventricular myocytes

    Czech Academy of Sciences Publication Activity Database

    Bébarová, M.; Matejovič, P.; Pásek, Michal; Nováková, M.

    2006-01-01

    Roč. 550, - (2006), s. 15-23. ISSN 0014-2999 R&D Projects: GA ČR(CZ) GA305/04/1385 Institutional research plan: CEZ:AV0Z20760514 Keywords : rat ventricular myocytes * transient outward current * haloperidol * whole-cell patch clamp Subject RIV: BO - Biophysics Impact factor: 2.522, year: 2006

  19. Dual effect of ethanol on inward rectifier potassium current IK1 in rat ventricular myocytes

    Czech Academy of Sciences Publication Activity Database

    Bébarová, M.; Matejovič, P.; Pásek, Michal; Šimurdová, M.; Šimurda, J.

    2014-01-01

    Roč. 65, č. 4 (2014), s. 497-509. ISSN 0867-5910 Grant ostatní: GA MZd NT14301 Institutional support: RVO:61388998 Keywords : ethanol * rat ventricular myocyte * rat ventricular action potential model Subject RIV: BO - Biophysics Impact factor: 2.386, year: 2014

  20. Changes of Ventricular Myocytes Membrane Capacitance in Rabbit with Myocardial Infarction and Effects of Carvedilol

    DEFF Research Database (Denmark)

    Niu, Hui-Yan; Liang, Bo; Liu, Nian; Li, Yang

    2005-01-01

    administration of oral Carvedilol 0.33 mg/kg×3 months beginning on the day of operation; Sham group, left thoracotomy with no coronary artery ligation. 3 months after surgery, rabbits were harvested. Myocytes were isolated by enzymatic method. The cell membrane capacitance was recorded by using the whole cell...

  1. Calcium homeostasis in a local/global whole cell model of permeabilized ventricular myocytes with a Langevin description of stochastic calcium release.

    Science.gov (United States)

    Wang, Xiao; Weinberg, Seth H; Hao, Yan; Sobie, Eric A; Smith, Gregory D

    2015-03-01

    Population density approaches to modeling local control of Ca(2+)-induced Ca(2+) release in cardiac myocytes can be used to construct minimal whole cell models that accurately represent heterogeneous local Ca(2+) signals. Unfortunately, the computational complexity of such "local/global" whole cell models scales with the number of Ca(2+) release unit (CaRU) states, which is a rapidly increasing function of the number of ryanodine receptors (RyRs) per CaRU. Here we present an alternative approach based on a Langevin description of the collective gating of RyRs coupled by local Ca(2+) concentration ([Ca(2+)]). The computational efficiency of this approach no longer depends on the number of RyRs per CaRU. When the RyR model is minimal, Langevin equations may be replaced by a single Fokker-Planck equation, yielding an extremely compact and efficient local/global whole cell model that reproduces and helps interpret recent experiments that investigate Ca(2+) homeostasis in permeabilized ventricular myocytes. Our calculations show that elevated myoplasmic [Ca(2+)] promotes elevated network sarcoplasmic reticulum (SR) [Ca(2+)] via SR Ca(2+)-ATPase-mediated Ca(2+) uptake. However, elevated myoplasmic [Ca(2+)] may also activate RyRs and promote stochastic SR Ca(2+) release, which can in turn decrease SR [Ca(2+)]. Increasing myoplasmic [Ca(2+)] results in an exponential increase in spark-mediated release and a linear increase in nonspark-mediated release, consistent with recent experiments. The model exhibits two steady-state release fluxes for the same network SR [Ca(2+)] depending on whether myoplasmic [Ca(2+)] is low or high. In the later case, spontaneous release decreases SR [Ca(2+)] in a manner that maintains robust Ca(2+) sparks. PMID:25485896

  2. AVE 0991 attenuates cardiac hypertrophy through reducing oxidative stress.

    Science.gov (United States)

    Ma, Yuedong; Huang, Huiling; Jiang, Jingzhou; Wu, Lingling; Lin, Chunxi; Tang, Anli; Dai, Gang; He, Jiangui; Chen, Yili

    2016-06-10

    AVE 0991, the nonpeptide angiotensin-(1-7) (Ang-(1-7)) analog, is recognized as having beneficial cardiovascular effects. However, the mechanisms have not been fully elucidated. This study was designed to investigate the effects of AVE 0991 on cardiac hypertrophy and the mechanisms involved. Mice were underwent aortic banding to induce cardiac hypertrophy followed by the administration of AVE 0991 (20 mg kg·day (-1)) for 4 weeks. It was shown that AVE 0991 reduced left ventricular hypertrophy and improved heart function, characterized by decreases in left ventricular weight and left ventricular end-diastolic diameter, and increases in ejection fraction. Moreover, AVE 0991 significantly down-regulated mean myocyte diameter and attenuate the gene expression of the hypertrophic markers. Furthermore, AVE 0991 inhibited the expression of NOX 2 and NOX 4, meaning that AVE 0991 reduced oxidative stress of cardiac hypertrophy mice. Our data showed that AVE 0991 treatment could attenuate cardiac hypertrophy and improve heart function, which may be due to reduce oxidative stress. PMID:26403967

  3. [Cardiac output monitoring by impedance cardiography in cardiac surgery].

    Science.gov (United States)

    Shimizu, H; Seki, S; Mizuguchi, A; Tsuchida, H; Watanabe, H; Namiki, A

    1990-04-01

    The cardiac output monitoring by impedance cardiography, NCCOM3, was evaluated in adult patients (n = 12) who were subjected to coronary artery bypass grafting. Values of cardiac output measured by impedance cardiography were compared to those by the thermodilution method. Changes of base impedance level used as an index of thoracic fluid volume were also investigated before and after cardiopulmonary bypass (CPB). Correlation coefficient (r) of the values obtained by thermodilution with impedance cardiography was 0.79 and the mean difference was 1.29 +/- 16.9 (SD)% during induction of anesthesia. During the operation, r was 0.83 and the mean difference was -14.6 +/- 18.7%. The measurement by impedance cardiography could be carried out through the operation except when electro-cautery was used. Base impedance level before CPB was significantly lower as compared with that after CPB. There was a negative correlation between the base impedance level and central venous pressure (CVP). No patients showed any signs suggesting lung edema and all the values of CVP, pulmonary artery pressure and blood gas analysis were within normal ranges. From the result of this study, it was concluded that cardiac output monitoring by impedance cardiography was useful in cardiac surgery, but further detailed examinations will be necessary on the relationship between the numerical values of base impedance and the clinical state of the patients. PMID:2362347

  4. Health in adults with congenital heart disease.

    Science.gov (United States)

    Cuypers, Judith A A E; Utens, Elisabeth M W J; Roos-Hesselink, Jolien W

    2016-09-01

    Since the introduction of cardiac surgery, the prospects for children born with a cardiac defect have improved spectacularly. Many reach adulthood and the population of adults with congenital heart disease is increasing and ageing. However, repair of congenital heart disease does not mean cure. Many adults with congenital heart disease encounter late complications. Late morbidity can be related to the congenital heart defect itself, but may also be the consequence of the surgical or medical treatment or longstanding alterations in hemodynamics, neurodevelopment and psychosocial development. This narrative review describes the cardiac and non-cardiac long-term morbidity in the adult population with congenital heart disease. PMID:27451323

  5. Conservative Management of Cardiac Hemangioma for 11 Years.

    Science.gov (United States)

    Gribaa, Rym; Slim, Mehdi; Neffati, Elyes; Boughzela, Essia

    2015-10-01

    Cardiac hemangiomas are benign tumors with an unpredictable natural history. Surgical resection is the treatment of choice; however, conservative management can be an alternative in some patients. We report a case of a left-sided cardiac hemangioma that we managed conservatively for 11 years without obvious major complications in the patient, an adult woman. PMID:26504439

  6. Relationship between coronary atherosclerosis and 'sudden cardiac death'

    International Nuclear Information System (INIS)

    Coronary arteriosclerosis in mini-pigs was produced by combination of hypercholesterolemia and twofold X irradiation of the cardiac region. 15-21 weeks following irradiation 40% of the adult animals and 58% of the juvenils died of 'sudden cardiac death'. The mortality rate decreased significantly after application of the calcium-channel blocking agent nifedipine

  7. Cardiac Niche Influences the Direct Reprogramming of Canine Fibroblasts into Cardiomyocyte-Like Cells

    Directory of Open Access Journals (Sweden)

    Giacomo Palazzolo

    2016-01-01

    Full Text Available The Duchenne and Becker muscular dystrophies are caused by mutation of dystrophin gene and primarily affect skeletal and cardiac muscles. Cardiac involvement in dystrophic GRMD dogs has been demonstrated by electrocardiographic studies with the onset of a progressive cardiomyopathy similar to the cardiac disease in DMD patients. In this respect, GRMD is a useful model to explore cardiac and skeletal muscle pathogenesis and for developing new therapeutic protocols. Here we describe a protocol to convert GRMD canine fibroblasts isolated from heart and skin into induced cardiac-like myocytes (ciCLMs. We used a mix of transcription factors (GATA4, HAND2, TBX5, and MEF2C, known to be able to differentiate mouse and human somatic cells into ciCLMs. Exogenous gene expression was obtained using four lentiviral vectors carrying transcription factor genes and different resistance genes. Our data demonstrate a direct switch from fibroblast into ciCLMs with no activation of early cardiac genes. ciCLMs were unable to contract spontaneously, suggesting, differently from mouse and human cells, an incomplete differentiation process. However, when transplanted in neonatal hearts of SCID/Beige mice, ciCLMs participate in cardiac myogenesis.

  8. Increased incorporation of 14C-palmitate into tissue lipids by isolated heart myocytes in endotoxic shock

    International Nuclear Information System (INIS)

    The incorporation of 14C-palmitate into various classes of tissue lipids by isolated adult dog heart myocytes was studied in an attempt to understand the pathophysiology of myocardial dysfunction during endotoxic shock. The results showed that the incorporation of 14C-palmitate into phospholipids was increased by 85.3% and 108.8% at 0.5 hours and two hours, respectively, following endotoxin (0.5 mg Escherichia coli lipopolysaccharide B per kg body weight) administration. Incorporation of radioactive palmitate into triglycerides was increased by 50.9% and 107.2% at 0.5 and two hours, respectively, postendotoxin. Incorporation of 14C-palmitate into diglycerides was stimulated by 51.9% and 64.5% at 0.5 and two hours, respectively, after endotoxin injection. The incorporation of 14C-palmitate into tissue-free fatty acids and unaltered at 0.5 hours but it was increased by 211.7% at two hours postendotoxin. These data demonstrated that myocardial membrane lipid profile was greatly altered by increased incorporation of 14C-palmitate into phospholipids and neutral lipids after endotoxin administration. An alteration in myocardial lipid profile, as reported in this study, may contribute to the development of myocardial dysfunction during shock

  9. Effects of Kaempferia parviflora Wall. Ex. Baker and sildenafil citrate on cGMP level, cardiac function, and intracellular Ca2+ regulation in rat hearts.

    Science.gov (United States)

    Weerateerangkul, Punate; Palee, Siripong; Chinda, Kroekkiat; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2012-09-01

    Although Kaempferia parviflora extract (KPE) and its flavonoids have positive effects on the nitric oxide (NO) signaling pathway, its mechanisms on the heart are still unclear. Because our previous studies demonstrated that KPE decreased defibrillation efficacy in swine similar to that of sildenafil citrate, the phosphodiesterase-5 inhibitor, it is possible that KPE may affect the cardiac NO signaling pathway. In the present study, the effects of KPE and sildenafil citrate on cyclic guanosine monophosphate (cGMP) level, modulation of cardiac function, and Ca transients in ventricular myocytes were investigated. In a rat model, cardiac cGMP level, cardiac function, and Ca transients were measured before and after treatment with KPE and sildenafil citrate. KPE significantly increased the cGMP level and decreased cardiac function and Ca transient. These effects were similar to those found in the sildenafil citrate-treated group. Furthermore, the nonspecific NOS inhibitor could abolish the effects of KPE and sildenafil citrate on Ca transient. KPE has positive effect on NO signaling in the heart, resulting in an increased cGMP level, similar to that of sildenafil citrate. This effect was found to influence the physiology of normal heart via the attenuation of cardiac function and the reduction of Ca transient in ventricular myocytes. PMID:22691878

  10. Fgf regulates dedifferentiation during skeletal muscle regeneration in adult zebrafish.

    Science.gov (United States)

    Saera-Vila, Alfonso; Kish, Phillip E; Kahana, Alon

    2016-09-01

    Fibroblast growth factors (Fgfs) regulate critical biological processes such as embryonic development, tissue homeostasis, wound healing, and tissue regeneration. In zebrafish, Fgf signaling plays an important role in the regeneration of the spinal cord, liver, heart, fin, and photoreceptors, although its exact mechanism of action is not fully understood. Utilizing an adult zebrafish extraocular muscle (EOM) regeneration model, we demonstrate that blocking Fgf receptor function using either a chemical inhibitor (SU5402) or a dominant-negative transgenic construct (dnFGFR1a:EGFP) impairs muscle regeneration. Adult zebrafish EOMs regenerate through a myocyte dedifferentiation process, which involves a muscle-to-mesenchyme transition and cell cycle reentry by differentiated myocytes. Blocking Fgf signaling reduced cell proliferation and active caspase 3 levels in the regenerating muscle with no detectable levels of apoptosis, supporting the hypothesis that Fgf signaling is involved in the early steps of dedifferentiation. Fgf signaling in regenerating myocytes involves the MAPK/ERK pathway: inhibition of MEK activity with U0126 mimicked the phenotype of the Fgf receptor inhibition on both muscle regeneration and cell proliferation, and activated ERK (p-ERK) was detected in injured muscles by immunofluorescence and western blot. Interestingly, following injury, ERK2 expression is specifically induced and activated by phosphorylation, suggesting a key role in muscle regeneration. We conclude that the critical early steps of myocyte dedifferentiation in EOM regeneration are dependent on Fgf signaling. PMID:27267062

  11. Signal transduction and activator of transcription (STAT) protein-dependent activation of angiotensinogen promoter: A cellular signal for hypertrophy in cardiac muscle

    OpenAIRE

    Mascareno, Eduardo; Dhar, Manya; M.A.Q. SIDDIQUI

    1998-01-01

    The role of the peptide hormone angiotensin (AngII) in promoting myocardial hypertrophy is well documented. Our studies demonstrate that AngII uses a signaling pathway in cardiac myocytes in which the promoter of the gene encoding its prohormone, angiotensinogen, serves as the target site for activated signal transduction and activator of transcription (STAT) proteins. Gel mobility-shift assay revealed that STAT3 and STAT6 are selectively activated by AngII treatment of cardiomyocytes in cult...

  12. Cardiac assessment of African hedgehogs (Atelerix albiventris).

    Science.gov (United States)

    Black, Peter A; Marshall, Cecilia; Seyfried, Alice W; Bartin, Anne M

    2011-03-01

    Cardiomyopathy is a common finding in captive African hedgehogs (Atelerix albiventris) at postmortem exam. To date, treatment attempts have been mostly empirical and unrewarding. The objective of this study was to determine reference cardiac values for captive African hedgehogs based on echocardiogram, electrocardiogram (ECG), and radiographs. Adult African hedgehogs with no clinical signs of cardiac disease (n = 13) were selected. Each animal was anesthetized with isoflurane via facemask and an echocardiogram, ECG, and radiographs were performed. Standard measurements were taken and the descriptive statistics performed. Values were comparable to limited data available in other hedgehog species and other similar-sized exotic species. Two animals were removed from consideration of reference values due to valvular defects that were considered significant. These data are the first establishing cardiac parameters in normal African hedgehogs using radiographic cardiac measurement, echocardiogram, and ECG. Evaluating animals with possible cardiomyopathy may allow for earlier diagnosis and more successful treatment. PMID:22946370

  13. Cardiac Rehabilitation: Improving Function and Reducing Risk.

    Science.gov (United States)

    Servey, Jessica T; Stephens, Mark

    2016-07-01

    Cardiac rehabilitation is a comprehensive multidisciplinary program individually tailored to the needs of patients with cardiovascular disease. The overall goals focus on improving daily function and reducing cardiovascular risk factors. Cardiac rehabilitation includes interventions aimed at lowering blood pressure and improving lipid and diabetes mellitus control, with tobacco cessation, behavioral counseling, and graded physical activity. The physical activity component typically involves 36 sessions over 12 weeks, during which patients participate in supervised exercise under cardiac monitoring. There are also intensive programs that include up to 72 sessions lasting up to 18 weeks, although these programs are not widely available. Additional components of cardiac rehabilitation include counseling on nutrition, screening for and managing depression, and assuring up-to-date immunizations. Cardiac rehabilitation is covered by Medicare and recommended for patients following myocardial infarction, bypass surgery, and stent placement, and for patients with heart failure, stable angina, and several other conditions. Despite proven benefits in mortality rates, depression, functional capacity, and medication adherence, rates of referral for cardiac rehabilitation are suboptimal. Groups less likely to be referred are older adults, women, patients who do not speak English, and persons living in areas where cardiac rehabilitation is not locally available. Additionally, primary care physicians refer patients less often than cardiologists and cardiothoracic surgeons. PMID:27386722

  14. Akt and MAPK signaling mediate pregnancy-induced cardiac adaptation.

    Science.gov (United States)

    Chung, Eunhee; Yeung, Fan; Leinwand, Leslie A

    2012-05-01

    Although the signaling pathways underlying exercise-induced cardiac adaptation have been extensively studied, little is known about the molecular mechanisms that result in the response of the heart to pregnancy. The objective of this study was to define the morphological, functional, and gene expression patterns that define the hearts of pregnant mice, and to identify the signaling pathways that mediate this response. Mice were divided into three groups: nonpregnant diestrus control, midpregnancy, and late pregnancy. Both time points of pregnancy were associated with significant cardiac hypertrophy. The prosurvival signaling cascades of Akt and ERK1/2 were activated in the hearts of pregnant mice, while the stress kinase, p38, was decreased. Given the activation of Akt in pregnancy and its known role in cardiac hypertrophy, the hypertrophic response to pregnancy was tested in mice expressing a cardiac-specific activated (myristoylated) form of Akt (myrAkt) or a cardiac-specific constitutively active (antipathologic hypertrophic) form of its downstream target, glycogen synthase kinase 3β (caGSK3β). The pregnancy-induced hypertrophic responses of hearts from these mice were significantly attenuated. Finally, we tested whether pregnancy-associated sex hormones could induce hypertrophy and alter signaling pathways in isolated neonatal rat ventricular myocytes (NRVMs). In fact, progesterone, but not estradiol treatment increased NRVM cell size via phosphorylation of ERK1/2. Inhibition of MEK1 effectively blocked progesterone-induced cellular hypertrophy. Taken together, our study demonstrates that pregnancy-induced cardiac hypertrophy is mediated by activation of Akt and ERK1/2 pathways. PMID:22345431

  15. Danhong injection attenuates cardiac injury induced by ischemic and reperfused neuronal cells through regulating arginine vasopressin expression and secretion.

    Science.gov (United States)

    Yang, Mingzhu; Orgah, John; Zhu, Jie; Fan, Guanwei; Han, Jihong; Wang, Xiaoying; Zhang, Boli; Zhu, Yan

    2016-07-01

    Ischemic stroke is associated with cardiac myocyte vulnerability through some unknown mechanisms. Arginine vasopressin (AVP) may exert considerable function in the relationship of brain damage and heart failure. Danhong injection (DHI) can protect both stroke and heart failure patients with good efficacy in clinics. The aim of this study is to investigate the mechanism of DHI in heart and brain co-protection effects to determine whether AVP plays key role in this course. In the present study, we found that both the supernatant from oxygen-glucose deprivation (OGD) and reperfused primary rat neuronal cells (PRNCs) and AVP treatment caused significant reduction in cell viability and mitochondrial activity in primary rat cardiac myocytes (RCMs). Besides, DHI had the same protective effects with conivaptan, a dual vasopressin V1A and V2 receptor antagonist, in reducing the RCM damage induced by overdose AVP. DHI significantly decreased the injury of both PRNCs and RCMs. Meanwhile, the AVP level was elevated dramatically in OGD and reperfusion PRNCs, and DHI was able to decrease the AVP expression in the injured PRNCs. Therefore, our present results suggested that OGD and reperfusion PRNCs might induce myocyte injury by elevating the AVP expression in PRNCs. The ability of DHI to reinstate AVP level may be one of the mechanisms of its brain and heart co-protection effects. PMID:27107944

  16. Cardiac perception and cardiac control. A review.

    Science.gov (United States)

    Carroll, D

    1977-12-01

    The evidence regarding specific cardiac perception and discrimination, and its relationship to voluntary cardiac control, is critically reviewed. Studies are considered in three sections, depending on the method used to assess cardiac perception: questionnaire assessment, discrimination procedures, and heartbeat tracking. The heartbeat tracking procedure would appear to suffer least from interpretative difficulties. Recommendations are made regarding the style of analysis used to assess heartbeat perception in such tracking tasks. PMID:348240

  17. Rhabdomyosarcoma cells show an energy producing anabolic metabolic phenotype compared with primary myocytes

    Directory of Open Access Journals (Sweden)

    Higashi Richard M

    2008-10-01

    Full Text Available Abstract Background The functional status of a cell is expressed in its metabolic activity. We have applied stable isotope tracing methods to determine the differences in metabolic pathways in proliferating Rhabdomysarcoma cells (Rh30 and human primary myocytes in culture. Uniformly 13C-labeled glucose was used as a source molecule to follow the incorporation of 13C into more than 40 marker metabolites using NMR and GC-MS. These include metabolites that report on the activity of glycolysis, Krebs' cycle, pentose phosphate pathway and pyrimidine biosynthesis. Results The Rh30 cells proliferated faster than the myocytes. Major differences in flux through glycolysis were evident from incorporation of label into secreted lactate, which accounts for a substantial fraction of the glucose carbon utilized by the cells. Krebs' cycle activity as determined by 13C isotopomer distributions in glutamate, aspartate, malate and pyrimidine rings was considerably higher in the cancer cells than in the primary myocytes. Large differences were also evident in de novo biosynthesis of riboses in the free nucleotide pools, as well as entry of glucose carbon into the pyrimidine rings in the free nucleotide pool. Specific labeling patterns in these metabolites show the increased importance of anaplerotic reactions in the cancer cells to maintain the high demand for anabolic and energy metabolism compared with the slower growing primary myocytes. Serum-stimulated Rh30 cells showed higher degrees of labeling than serum starved cells, but they retained their characteristic anabolic metabolism profile. The myocytes showed evidence of de novo synthesis of glycogen, which was absent in the Rh30 cells. Conclusion The specific 13C isotopomer patterns showed that the major difference between the transformed and the primary cells is the shift from energy and maintenance metabolism in the myocytes toward increased energy and anabolic metabolism for proliferation in the Rh30 cells

  18. Voltage clamp of the cardiac sodium current at 37 degrees C in physiologic solutions.

    OpenAIRE

    Murray, K T; Anno, T.; Bennett, P B; Hondeghem, L M

    1990-01-01

    The cardiac sodium current was studied in guinea pig ventricular myocytes using the cell-attached patch voltage clamp at 37 degrees C in the presence of 145 mM external sodium concentration. When using large patch pipettes (access resistance, 1-2 M omega), the capacity current transient duration was typically 70 microseconds for voltage clamp steps up to 150 mV. At 37 degrees C the maximum inward sodium current peaked in approximately 200 microseconds after the onset of a clamp step and at th...

  19. Differentiation of troponin in cardiac and skeletal muscles in chicken embryos as studied by immunofluorescence microscopy

    OpenAIRE

    1981-01-01

    The differentiation of troponin (TN) in cardiac and skeletal muscles of chicken embryos was studied by indirect immunofluorescence microscopy. Serial sections of embryos were stained with antibodies specific to TN components (TN-T, -I, and -C) from adult chicken cardiac and skeletal muscles. Cardiac muscle began to be stained with antibodies raised against cardiac TN components in embryos after stage 10 (Hamburger and Hamilton numbering, 1951, J. Morphol. 88:49-92). It reacted also with antis...

  20. Taxifolin protects against cardiac hypertrophy and fibrosis during biomechanical stress of pressure overload

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Haipeng; Zhang, Xin [Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan (China); Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China); Cui, Yuqian [Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China); Zhou, Heng [Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan (China); Xu, Dachun [Department of Cardiology, Shanghai Tenth People' s Hospital of Tongji University, Shanghai (China); Shan, Tichao; Zhang, Fan [Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan (China); Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China); Guo, Yuan [Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China); Chen, Yuguo, E-mail: chen919085@163.com [Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China); Department of Emergency, Qilu Hospital of Shandong University, Jinan (China); Wu, Dawei, E-mail: wdwu55@163.com [Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan (China); Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China)

    2015-09-01

    Cardiac hypertrophy is a key pathophysiological component to biomechanical stress, which has been considered to be an independent and predictive risk factor for adverse cardiovascular events. Taxifolin (TAX) is a typical plant flavonoid, which has long been used clinically for treatment of cardiovascular and cerebrovascular diseases. However, very little is known about whether TAX can influence the development of cardiac hypertrophy. In vitro studies, we found that TAX concentration-dependently inhibited angiotensin II (Ang II) induced hypertrophy and protein synthesis in cardiac myocytes. Then we established a mouse model by transverse aortic constriction (TAC) to further confirm our findings. It was demonstrated that TAX prevented pressure overload induced cardiac hypertrophy in mice, as assessed by ventricular mass/body weight, echocardiographic parameters, myocyte cross-sectional area, and the expression of ANP, BNP and β-MHC. The excess production of reactive oxygen species (ROS) played critical role in the development of cardiac hypertrophy. TAX arrested oxidative stress and decreased the expression of 4-HNE induced by pressure overload. Moreover, TAX negatively modulated TAC-induced phosphorylation of ERK1/2 and JNK1/2. Further studies showed that TAX significantly attenuated left ventricular fibrosis and collagen synthesis through abrogating the phosphorylation of Smad2 and Smad2/3 nuclear translocation. These results demonstrated that TAX could inhibit cardiac hypertrophy and attenuate ventricular fibrosis after pressure overload. These beneficial effects were at least through the inhibition of the excess production of ROS, ERK1/2, JNK1/2 and Smad signaling pathways. Therefore, TAX might be a potential candidate for the treatment of cardiac hypertrophy and fibrosis. - Highlights: • We focus on the protective effect of taxifolin on cardiac remodeling. • Taxifolin inhibited cardiac hypertrophy and attenuated ventricular fibrosis. • Taxifolin

  1. Taxifolin protects against cardiac hypertrophy and fibrosis during biomechanical stress of pressure overload

    International Nuclear Information System (INIS)

    Cardiac hypertrophy is a key pathophysiological component to biomechanical stress, which has been considered to be an independent and predictive risk factor for adverse cardiovascular events. Taxifolin (TAX) is a typical plant flavonoid, which has long been used clinically for treatment of cardiovascular and cerebrovascular diseases. However, very little is known about whether TAX can influence the development of cardiac hypertrophy. In vitro studies, we found that TAX concentration-dependently inhibited angiotensin II (Ang II) induced hypertrophy and protein synthesis in cardiac myocytes. Then we established a mouse model by transverse aortic constriction (TAC) to further confirm our findings. It was demonstrated that TAX prevented pressure overload induced cardiac hypertrophy in mice, as assessed by ventricular mass/body weight, echocardiographic parameters, myocyte cross-sectional area, and the expression of ANP, BNP and β-MHC. The excess production of reactive oxygen species (ROS) played critical role in the development of cardiac hypertrophy. TAX arrested oxidative stress and decreased the expression of 4-HNE induced by pressure overload. Moreover, TAX negatively modulated TAC-induced phosphorylation of ERK1/2 and JNK1/2. Further studies showed that TAX significantly attenuated left ventricular fibrosis and collagen synthesis through abrogating the phosphorylation of Smad2 and Smad2/3 nuclear translocation. These results demonstrated that TAX could inhibit cardiac hypertrophy and attenuate ventricular fibrosis after pressure overload. These beneficial effects were at least through the inhibition of the excess production of ROS, ERK1/2, JNK1/2 and Smad signaling pathways. Therefore, TAX might be a potential candidate for the treatment of cardiac hypertrophy and fibrosis. - Highlights: • We focus on the protective effect of taxifolin on cardiac remodeling. • Taxifolin inhibited cardiac hypertrophy and attenuated ventricular fibrosis. • Taxifolin

  2. What Is Cardiac Rehabilitation?

    Science.gov (United States)

    ANSWERS by heart Treatments + Tests What Is Cardiac Rehabilitation? A cardiac rehabilitation (rehab) program takes place in a hospital or ... special help in making lifestyle changes. During your rehabilitation program you’ll… • Have a medical evaluation to ...

  3. Diffuse infiltrative cardiac tuberculosis

    International Nuclear Information System (INIS)

    We present the cardiac magnetic resonance images of an unusual form of cardiac tuberculosis. Nodular masses in a sheet-like distribution were seen to infiltrate the outer myocardium and pericardium along most of the cardiac chambers. The lesions showed significant resolution on antitubercular therapy

  4. Adipose triglyceride lipase deletion from adipocytes, but not skeletal myocytes, impairs acute exercise performance in mice

    OpenAIRE

    Dubé, John J.; Sitnick, Mitch T.; Schoiswohl, Gabriele; Wills, Rachel C.; Basantani, Mahesh K.; Cai, Lingzhi; Pulinilkunnil, Thomas; Kershaw, Erin E.

    2015-01-01

    Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme mediating triacylglycerol hydrolysis in virtually all cells, including adipocytes and skeletal myocytes, and hence, plays a critical role in mobilizing fatty acids. Global ATGL deficiency promotes skeletal myopathy and exercise intolerance in mice and humans, and yet the tissue-specific contributions to these phenotypes remain unknown. The goal of this study was to determine the relative contribution of ATGL-mediated triacylglycer...

  5. Activation and propagation of Ca(2+) release during excitation-contraction coupling in atrial myocytes.

    OpenAIRE

    Kockskämper, J; Sheehan, K A; Bare, D.J.; Lipsius, S. L.; Mignery, G A; Blatter, L A

    2001-01-01

    Fast two-dimensional confocal microscopy and the Ca(2+) indicator fluo-4 were used to study excitation-contraction (E-C) coupling in cat atrial myocytes which lack transverse tubules and contain both subsarcolemmal junctional (j-SR) and central nonjunctional (nj-SR) sarcoplasmic reticulum. Action potentials elicited by field stimulation induced transient increases of intracellular Ca(2+) concentration ([Ca(2+)](i)) that were highly inhomogeneous. Increases started at distinct subsarcolemmal r...

  6. Characterization of the inward-rectifying potassium current in cat ventricular myocytes

    OpenAIRE

    1988-01-01

    Whole-cell membrane currents were measured in isolated cat ventricular myocytes using a suction-electrode voltage-clamp technique. An inward- rectifying current was identified that exhibited a time-dependent activation. The peak current appeared to have a linear voltage dependence at membrane potentials negative to the reversal potential. Inward current was sensitive to K channel blockers. In addition, varying the extracellular K+ concentration caused changes in the reversal potential and slo...

  7. Effect of ethanol on action potential and ionic membrane currents in rat ventricular myocytes

    Czech Academy of Sciences Publication Activity Database

    Bébarová, M.; Matejovič, P.; Pásek, Michal; Ohlídalová, D.; Jansová, D.; Šimurdová, M.; Šimurda, J.

    2010-01-01

    Roč. 200, č. 4 (2010), s. 301-314. ISSN 1748-1708 Institutional research plan: CEZ:AV0Z20760514 Keywords : action potential * ethanol * rat ventricular myocyte Subject RIV: BO - Biophysics Impact factor: 3.138, year: 2010 http:// apps .isiknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=15&SID=Y1pmpi@7k2HPEc8ehEE&page=1&doc=1&colname=WOS

  8. Erythropoietin protects myocardin-expressing cardiac stem cells against cytotoxicity of tumor necrosis factor-{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Madonna, Rosalinda [The Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Health Science Center at Houston, Texas (United States); Institute of Cardiology, and Center of Excellence on Aging, ' G. d' Annunzio' University, Chieti (Italy); Shelat, Harnath; Xue, Qun; Willerson, James T. [The Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Health Science Center at Houston, Texas (United States); The Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, Texas (United States); De Caterina, Raffaele [Institute of Cardiology, and Center of Excellence on Aging, ' G. d' Annunzio' University, Chieti (Italy); Geng, Yong-Jian, E-mail: yong-jian.geng@uth.tmc.edu [The Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Health Science Center at Houston, Texas (United States); The Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, Texas (United States)

    2009-10-15

    Cardiac stem cells are vulnerable to inflammation caused by infarction or ischemic injury. The growth factor, erythropoietin (Epo), ameliorates the inflammatory response of the myocardium to ischemic injury. This study was designed to assess the role of Epo in regulation of expression and activation of the cell death-associated intracellular signaling components in cardiac myoblasts stimulated with the proinflammatory cytokine tumor necrosis factor (TNF)-{alpha}. Cardiac myoblasts isolated from canine embryonic hearts characterized by expression of myocardin A, a promyogenic transcription factor for cardiovascular muscle development were pretreated with Epo and then exposed to TNF-{alpha}. Compared to untreated cells, the Epo-treated cardiac myoblasts exhibited better morphology and viability. Immunoblotting revealed lower levels of active caspase-3 and reductions in iNOS expression and NO production in Epo-treated cells. Furthermore, Epo pretreatment reduced nuclear translocation of NF-{kappa}B and inhibited phosphorylation of inhibitor of kappa B (I{kappa}B) in TNF-{alpha}-stimulated cardiac myoblasts. Thus, Epo protects cardiac myocyte progenitors or myoblasts against the cytotoxic effects of TNF-{alpha} by inhibiting NF-{kappa}B-mediated iNOS expression and NO production and by preventing caspase-3 activation.

  9. Exercise training prior to myocardial infarction attenuates cardiac deterioration and cardiomyocyte dysfunction in rats

    Directory of Open Access Journals (Sweden)

    Luiz Henrique Marchesi Bozi

    2013-04-01

    Full Text Available OBJECTIVES: The present study was performed to investigate 1 whether aerobic exercise training prior to myocardial infarction would prevent cardiac dysfunction and structural deterioration and 2 whether the potential cardiac benefits of aerobic exercise training would be associated with preserved morphological and contractile properties of cardiomyocytes in post-infarct remodeled myocardium. METHODS: Male Wistar rats underwent an aerobic exercise training protocol for eight weeks. The rats were then assigned to sham surgery (SHAM, sedentary lifestyle and myocardial infarction or exercise training and myocardial infarction groups and were evaluated 15 days after the surgery. Left ventricular tissue was analyzed histologically, and the contractile function of isolated myocytes was measured. Student's t-test was used to analyze infarct size and ventricular wall thickness, and the other parameters were analyzed by the Kruskal-Wallis test followed by Dunn's test or a one-way analysis of variance followed by Tukey's test (p<0.05. RESULTS: Myocardial infarctions in exercise-trained animals resulted in a smaller myocardial infarction extension, a thicker infarcted wall and less collagen accumulation as compared to myocardial infarctions in sedentary animals. Myocardial infarction-induced left ventricular dilation and cardiac dysfunction, as evaluated by +dP/dt and -dP/dt, were both prevented by previous aerobic exercise training. Moreover, aerobic exercise training preserved cardiac myocyte shortening, improved the maximum shortening and relengthening velocities in infarcted hearts and enhanced responsiveness to calcium. CONCLUSION: Previous aerobic exercise training attenuated the cardiac dysfunction and structural deterioration promoted by myocardial infarction, and such benefits were associated with preserved cardiomyocyte morphological and contractile properties.

  10. Improvement of cardiac function in mouse myocardial infarction after transplantation of epigenetically-modified bone marrow progenitor cells.

    Directory of Open Access Journals (Sweden)

    Johnson Rajasingh

    Full Text Available OBJECTIVE: To study usefulness of bone marrow progenitor cells (BPCs epigenetically altered by chromatin modifying agents in mediating heart repair after myocardial infarction in mice. METHODS AND RESULTS: We tested the therapeutic efficacy of bone marrow progenitor cells treated with the clinically-used chromatin modifying agents Trichostatin A (TSA, histone deacetylase inhibitor and 5Aza-2-deoxycytidine (Aza, DNA methylation inhibitor in a mouse model of acute myocardial infarction (AMI. Treatment of BPCs with Aza and TSA induced expression of pluripotent genes Oct4, Nanog, Sox2, and thereafter culturing these cells in defined cardiac myocyte-conditioned medium resulted in their differentiation into cardiomyocyte progenitors and subsequently into cardiac myocytes. Their transition was deduced by expression of repertoire of markers: Nkx2.5, GATA4, cardiotroponin T, cardiotroponin I, α-sarcomeric actinin, Mef2c and MHC-α. We observed that the modified BPCs had greater AceH3K9 expression and reduced histone deacetylase1 (HDAC1 and lysine-specific demethylase1 (LSD1 expression compared to untreated BPCs, characteristic of epigenetic changes. Intra-myocardial injection of modified BPCs after AMI in mice significantly improved left ventricular function. These changes were ascribed to differentiation of the injected cells into cardiomyocytes and endothelial cells. CONCLUSION: Treatment of BPCs with Aza and TSA converts BPCs into multipotent cells, which can then be differentiated into myocyte progenitors. Transplantation of these modified progenitor cells into infarcted mouse hearts improved left ventricular function secondary to differentiation of cells in the niche into myocytes and endothelial cells.

  11. Comparative study of myocytes from normal and mdx mice iPS cells.

    Science.gov (United States)

    Chen, Fei; Cao, Jiqing; Liu, Qiang; Qin, Jie; Kong, Jie; Wang, Yanyun; Li, Yaqin; Geng, Jia; Li, Qiuling; Yang, Liqing; Xiang, Andy Peng; Zhang, Cheng

    2012-02-01

    Recently, induced pluripotent stem cells (iPS cells) have been derived from various techniques and show great potential for therapy of human diseases. Furthermore, the iPS technique can be used to provide cell models to explore pathological mechanisms of many human diseases in vitro, such as Duchenne muscular dystrophy (DMD), which is a severe recessive X-linked form of muscular dystrophy without effective treatment. In this study, we try to determine whether there are different characteristics of myocytes from mdx iPS cells and C57BL/10 iPS cells. Our results showed that both of mdx and C57BL/10 cells could be induced into iPS cells in vitro, whereas colony-forming ability of mdx iPS cells was much weaker than that of C57BL/10 iPS cells. Meanwhile, mdx iPS cells could be induced to differentiate into myocytes, whereas their differentiation efficiency was much lower than that of C57BL/10 iPS cells. And, the number of apoptotic cells in differentiated myocytes from mdx iPS cells was significantly higher than that from C57BL/10 iPS cells. More importantly, treatment of a pan-caspase inhibitor (Z-VAD) produced a significant decrease in apoptotic cells. This study might add some insight to the biology study of dystrophin gene. PMID:21976068

  12. Anthracycline-induced cardiac injury using a cardiac cell line: potential for gene therapy studies.

    Science.gov (United States)

    L'Ecuyer, T; Horenstein, M S; Thomas, R; Vander Heide, R

    2001-11-01

    Anthracyclines are effective antitumor agents whose chief limitation has been cardiotoxicity directly related to free radical production. Therefore, strategies designed to selectively overexpress antioxidant proteins in the heart could protect against drug-induced toxicity and allow higher doses of chemotherapy. However, to date an adequate cardiac model system that is susceptible to anthracycline injury and can express foreign genes in a controlled fashion has been lacking. Developing a cardiac model system would permit examination of the relationship between the expression level of a potentially protective foreign gene and the degree of protection from injury. In this study we have examined the potential of the H9C2 rat cardiac myocyte cell line in this regard. H9C2 cells differentiate in a reproducible fashion, as shown by progressive increases in muscle tropomyosin-expressing cells, the organization of this thin filament protein, and the percentage of muscle cells contained within myotubes. Exposure of this cell line to the anthracycline doxorubicin produces cell injury as indicated by release of the intracellular enzyme lactate dehydrogenase into the culture medium. This injury is preceded by generation of reactive oxygen species, indicated by fluorescence after loading with carboxy-dichlorodihydrofluorescein diacetate. Stable transfection of H9C2 cells with a plasmid producing a tetracycline transactivator protein allows foreign genes to be expressed at a level tightly controlled by the concentration of tetracycline in the culture medium. Since H9C2 cells differentiate, can be injured by anthracycline exposure, and can express foreign genes at controllable levels, this is a suitable system in which to design genetic approaches to prevent this important clinical problem. PMID:11708868

  13. Aerobic interval training partly reverse contractile dysfunction and impaired Ca2+ handling in atrial myocytes from rats with post infarction heart failure

    OpenAIRE

    Johnsen, Anne Berit; Høydal, Morten Andre; Røsbjørgen, Ragnhild; Stølen, Tomas; Wisløff, Ulrik

    2013-01-01

    Background: There is limited knowledge about atrial myocyte Ca2+ handling in the failing hearts. The aim of this study was to examine atrial myocyte contractile function and Ca2+ handling in rats with post-infarction heart failure (HF) and to examine whether aerobic interval training could reverse a potential dysfunction. Methods and results: Post-infarction HF was induced in Sprague Dawley rats by ligation of the left descending coronary artery. Atrial myocyte shortening was depressed (p

  14. Aerobic Interval Training Partly Reverse Contractile Dysfunction and Impaired Ca2+ Handling in Atrial Myocytes from Rats with Post Infarction Heart Failure

    OpenAIRE

    Johnsen, Anne Berit; Høydal, Morten; Røsbjørgen, Ragnhild; Stølen, Tomas; Wisløff, Ulrik

    2013-01-01

    Background There is limited knowledge about atrial myocyte Ca2+ handling in the failing hearts. The aim of this study was to examine atrial myocyte contractile function and Ca2+ handling in rats with post-infarction heart failure (HF) and to examine whether aerobic interval training could reverse a potential dysfunction. Methods and results Post-infarction HF was induced in Sprague Dawley rats by ligation of the left descending coronary artery. Atrial myocyte shortening was depressed (p

  15. Fibroblast Growth Factor-2 regulates proliferation of cardiac myocytes in normal and hypoplastic left ventricles in the developing chick

    Czech Academy of Sciences Publication Activity Database

    Dealmeida, A.; Sedmera, David

    2009-01-01

    Roč. 19, č. 2 (2009), s. 159-169. ISSN 1047-9511 R&D Projects: GA ČR GA304/08/0615 Institutional research plan: CEZ:AV0Z50450515; CEZ:AV0Z50110509 Keywords : Chick embryo * Hypoplastic left heart syndrome * Adenovirus Subject RIV: EA - Cell Biology Impact factor: 1.183, year: 2009

  16. Effects of rHu-EPO on Myocyte Apoptosis and Cardiac Function Follow-ing Acute Myocardial Infarction in Rats

    Institute of Scientific and Technical Information of China (English)

    YE Liang; DU Xinling; XIA Jiahong; JIANG Ping

    2005-01-01

    The mechanisms of rHu-EPO attenuating the apoptosis after myocardial infarction in rats were studied. Thirty-two rats were divided into three groups: sham operation group (Sham), acute myocardial infarction group (MI) and rHu-EPO-treated group (MI+ EPO). Acute myocardial infarction model was made by ligating the anterior descending coronary artery. rHu-EPO was administered i. p. in MI+EPO group at the dose of 5 000 IU/kg body weight immediately after the ligation. Each rat in MI+EPO group received the same dose of rHu-EPO daily the next 6 days. On the 14th day all rats underwent hemodynamic measurements and then killed. The samples were examined with HE stain, immunohistochemistry technique (bcl-2, bax) and TUNEL dyeing. The results showed that hemodynamic function in MI+ EPO group was much better than in MI group.The number of the cells positive for bax and TUNEL in MI+EPO group was less than that in MI group. The number of the cells positive for bcl-2 in MI+EPO group was more than that in MI group. These findings suggested that rHu-EPO could treat myocardial infarction by preventing apoptosis and attenuating post-infarction deterioration in hemodynamic function.

  17. Thymbra capitata essential oil prevents cell death induced by 4-hydroxy-2-nonenal in neonatal rat cardiac myocytes.

    Science.gov (United States)

    Hortigón-Vinagre, María P; Blanco, José; Ruiz, Trinidad; Henao, Fernando

    2014-10-01

    An interdisciplinary experimental investigation on the antioxidant activity of Thymbra capitata essential oil was made. This plant is a Mediterranean culinary herb, whose essential oil antioxidant power has recently been demonstrated in vitro as one of the highest in nature. We tested if this in vitro antioxidant capacity was reproducible on biological systems using as model system primary cultures of neonatal rat cardiomyocytes treated with the lipid peroxidation product 4-hydroxy-2-nonenal. The composition and the in vitro antioxidant activity of the T. capitata essential oil were also assessed. Cell viability, mitochondrial membrane potential, and reactive oxygen species level were measured in cells treated with pathophysiologic doses of 4-hydroxy-2-nonenal (capitata essential oil, and the ability of small doses (capitata essential oil. PMID:25203731

  18. Characterization of Mg2+-regulated TRPM7-like current in human atrial myocytes

    Directory of Open Access Journals (Sweden)

    Macianskiene Regina

    2012-08-01

    Full Text Available Abstract Background TRPM7 (Transient Receptor Potential of the Melastatin subfamily proteins are highly expressed in the heart, however, electrophysiological studies, demonstrating and characterizing these channels in human cardiomyocytes, are missing. Methods We have used the patch clamp technique to characterize the biophysical properties of TRPM7 channel in human myocytes isolated from right atria small chunks obtained from 116 patients in sinus rhythm during coronary artery and valvular surgery. Under whole-cell voltage-clamp, with Ca2+ and K+ channels blocked, currents were generated by symmetrical voltage ramp commands to potentials between -120 and +80 mV, from a holding potential of -80 mV. Results We demonstrate that activated native current has dual control by intracellular Mg2+ (free-Mg2+ or ATP-bound form, and shows up- or down-regulation by its low or high levels, respectively, displaying outward rectification in physiological extracellular medium. High extracellular Mg2+ and Ca2+ block the outward current, while Gd3+, SpM4+, 2-APB, and carvacrol inhibit both (inward and outward currents. Besides, divalents also permeate the channel, and the efficacy sequence, at 20 mM, was Mg2+>Ni2+>Ca2+>Ba2+>Cd2+ for decreasing outward and Ni2+>Mg2+>Ba2+≥Ca2+>Cd2+ for increasing inward currents. The defined current bears many characteristics of heterologously expressed or native TRPM7 current, and allowed us to propose that current under study is TRPM7-like. However, the time of beginning and time to peak as well steady state magnitude (range from 1.21 to 11.63 pA/pF, ncells/patients = 136/77 of induced TRPM7-like current in atrial myocytes from different patients showed a large variability, while from the same sample of human atria all these parameters were very homogenous. We present new information that TRPM7-like current in human myocytes is less sensitive to Mg2+. In addition, in some myocytes (from 24 out of 77 patients that current

  19. Effects of Glucose on Transmembrane Ionic Current of Ventricular Myocytes in Guinea Pig

    Institute of Scientific and Technical Information of China (English)

    AIJing; JIAOJun-dong; WANGHe; DUZhi-min; YANGBao-feng

    2004-01-01

    Aim To determine the effects of glucose oi1APD, IK1, IK, ICa-L of ventricular myocytes in guinea pigs. Methods Whole-cell patch-clamp technique was used to record the changed action potential ionic current induced by glucose of single cell in guinea pig ventricular myocytes, to compare the action of 0, 10 and 20 mmol·L-1 glucoses on transmembrane ionic current. Results (1) Compared with 10 mmol·L-1 glucose concentrations, 0 and 20 mmol·L-1 glucose both shortened APD of ventricular myocytes (P<0.05). (2) The inward components of IK1 density were maximal when the glucose concentration was at 10 mmol·L-1. Normalized 1-V relationships showed that both 0 and 20 mmol·L-1 glucose produced a left-shift of I-V curve. The reverse potential changed from-72.4 mV to-64.6 mV. (3) Compared with 10 mmol·L-1, both 0 and 20 mmol·L-1 glucose markedly increased the ICa-L amplitude and density. The ICa-L current density was (-8.0350.82) pA/pF (n=8) at a test potential of 10 mV when the glucose concentration was 10 mmol·L-1. But its current density decreased to (-5.45±0.67) pA/pF and (-6.50±0.56) pA/pF when glucose concentrations were 0 and 20 mmol·L-1, respectively. (4) The current densities of IK were (18.96±2.86) pA/pF, (8.66±1.87) pA/pF, and(15.32:1:3.12) pA/pF, at ±70mV for 0, 10 and 20 mmol·L-1 glucoses, respectively. Conclusion Glucose in different concentrations has different effects on APD, IK1, IK, and ICa-L of single ventricular myocyte in guinea pigs. There are similar actions of 0 and 20 mmol·L-1 glucoses on the transmembrane ionic current of ventricular myocytes in guinea pigs.

  20. Cardiac hypertrophy and failure--a disease of adaptation. Modifications in membrane proteins provide a molecular basis for arrhythmogenicity.

    Science.gov (United States)

    Moalic, J M; Charlemagne, D; Mansier, P; Chevalier, B; Swynghedauw, B

    1993-05-01

    Cardiac hypertrophy is the physiological adaptation of the heart to chronic mechanical overload. Cardiac failure indicates the limits of the process. Cardiac hypertrophy is only one example of biological adaptation and results from the induction of several changes in gene expression, mostly of the fetal type, including those coding for the myosin heavy chain or the alpha-subunit of the Na+,K(+)-ATPase. From a thermodynamic point of view, the decrease in Vmax allows the heart to produce a normal tension at a lower cost. This process results from changes both in the sarcomere and in the expression of certain membrane proteins. The decrease in calcium transient is determined by several changes in membrane proteins that result in a rather fragile equilibrium in terms of calcium homeostasis. Any abnormal input in calcium will have exaggerated detrimental consequences on a hypertrophied myocyte and may cause automaticity and arrhythmias or an exaggerated response to anoxia in terms of compliance. PMID:8485830

  1. Generation of cardiac pacemaker cells by programming and differentiation.

    Science.gov (United States)

    Husse, Britta; Franz, Wolfgang-Michael

    2016-07-01

    A number of diseases are caused by faulty function of the cardiac pacemaker and described as "sick sinus syndrome". The medical treatment of sick sinus syndrome with electrical pacemaker implants in the diseased heart includes risks. These problems may be overcome via "biological pacemaker" derived from different adult cardiac cells or pluripotent stem cells. The generation of cardiac pacemaker cells requires the understanding of the pacing automaticity. Two characteristic phenomena the "membrane-clock" and the "Ca(2+)-clock" are responsible for the modulation of the pacemaker activity. Processes in the "membrane-clock" generating the spontaneous pacemaker firing are based on the voltage-sensitive membrane ion channel activity starting with slow diastolic depolarization and discharging in the action potential. The influence of the intracellular Ca(2+) modulating the pacemaker activity is characterized by the "Ca(2+)-clock". The generation of pacemaker cells started with the reprogramming of adult cardiac cells by targeted induction of one pacemaker function like HCN1-4 overexpression and enclosed in an activation of single pacemaker specific transcription factors. Reprogramming of adult cardiac cells with the transcription factor Tbx18 created cardiac cells with characteristic features of cardiac pacemaker cells. Another key transcription factor is Tbx3 specifically expressed in the cardiac conduction system including the sinoatrial node and sufficient for the induction of the cardiac pacemaker gene program. For a successful cell therapeutic practice, the generated cells should have all regulating mechanisms of cardiac pacemaker cells. Otherwise, the generated pacemaker cells serve only as investigating model for the fundamental research or as drug testing model for new antiarrhythmics. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel

  2. Preoperative cardiac risk management

    OpenAIRE

    Vidaković Radosav; Poldermans Don; Nešković Aleksandar N.

    2011-01-01

    Approximately 100 million people undergo noncardiac surgery annually worldwide. It is estimated that around 3% of patients undergoing noncardiac surgery experience a major adverse cardiac event. Although cardiac events, like myocardial infarction, are major cause of perioperative morbidity or mortality, its true incidence is difficult to assess. The risk of perioperative cardiac complications depends mainly on two conditions: 1) identified risk factors, and 2) the type of the surgical p...

  3. Follistatin-like 1 promotes cardiac fibroblast activation and protects the heart from rupture.

    Science.gov (United States)

    Maruyama, Sonomi; Nakamura, Kazuto; Papanicolaou, Kyriakos N; Sano, Soichi; Shimizu, Ippei; Asaumi, Yasuhide; van den Hoff, Maurice J; Ouchi, Noriyuki; Recchia, Fabio A; Walsh, Kenneth

    2016-01-01

    Follistatin-like 1 (Fstl1) is a secreted protein that is acutely induced in heart following myocardial infarction (MI). In this study, we investigated cell type-specific regulation of Fstl1 and its function in a murine model of MI Fstl1 was robustly expressed in fibroblasts and myofibroblasts in the infarcted area compared to cardiac myocytes. The conditional ablation of Fstl1 in S100a4-expressing fibroblast lineage cells (Fstl1-cfKO mice) led to a reduction in injury-induced Fstl1 expression and increased mortality due to cardiac rupture during the acute phase. Cardiac rupture was associated with a diminished number of myofibroblasts and decreased expression of extracellular matrix proteins. The infarcts of Fstl1-cfKO mice displayed weaker birefringence, indicative of thin and loosely packed collagen. Mechanistically, the migratory and proliferative capabilities of cardiac fibroblasts were attenuated by endogenous Fstl1 ablation. The activation of cardiac fibroblasts by Fstl1 was mediated by ERK1/2 but not Smad2/3 signaling. This study reveals that Fstl1 is essential for the acute repair of the infarcted myocardium and that stimulation of early fibroblast activation is a novel function of Fstl1. PMID:27234440

  4. Urocortin 2 stimulates nitric oxide production in ventricular myocytes via Akt- and PKA-mediated phosphorylation of eNOS at serine 1177

    Science.gov (United States)

    Walther, Stefanie; Pluteanu, Florentina; Renz, Susanne; Nikonova, Yulia; Maxwell, Joshua T.; Yang, Li-Zhen; Schmidt, Kurt; Edwards, Joshua N.; Wakula, Paulina; Groschner, Klaus; Maier, Lars S.; Spiess, Joachim; Blatter, Lothar A.; Pieske, Burkert

    2014-01-01

    Urocortin 2 (Ucn2) is a cardioactive peptide exhibiting beneficial effects in normal and failing heart. In cardiomyocytes, it elicits cAMP- and Ca2+-dependent positive inotropic and lusitropic effects. We tested the hypothesis that, in addition, Ucn2 activates cardiac nitric oxide (NO) signaling and elucidated the underlying signaling pathways and mechanisms. In isolated rabbit ventricular myocytes, Ucn2 caused concentration- and time-dependent increases in phosphorylation of Akt (Ser473, Thr308), endothelial NO synthase (eNOS) (Ser1177), and ERK1/2 (Thr202/Tyr204). ERK1/2 phosphorylation, but not Akt and eNOS phosphorylation, was suppressed by inhibition of MEK1/2. Increased Akt phosphorylation resulted in increased Akt kinase activity and was mediated by corticotropin-releasing factor 2 (CRF2) receptors (astressin-2B sensitive). Inhibition of phosphatidylinositol 3-kinase (PI3K) diminished both Akt as well as eNOS phosphorylation mediated by Ucn2. Inhibition of protein kinase A (PKA) reduced Ucn2-induced phosphorylation of eNOS but did not affect the increase in phosphorylation of Akt. Conversely, direct receptor-independent elevation of cAMP via forskolin increased phosphorylation of eNOS but not of Akt. Ucn2 increased intracellular NO concentration ([NO]i), [cGMP], [cAMP], and cell shortening. Inhibition of eNOS suppressed the increases in [NO]i and cell shortening. When both PI3K-Akt and cAMP-PKA signaling were inhibited, the Ucn2-induced increases in [NO]i and cell shortening were attenuated. Thus, in rabbit ventricular myocytes, Ucn2 causes activation of cAMP-PKA, PI3K-Akt, and MEK1/2-ERK1/2 signaling. The MEK1/2-ERK1/2 pathway is not required for stimulation of NO signaling in these cells. The other two pathways, cAMP-PKA and PI3K-Akt, converge on eNOS phosphorylation at Ser1177 and result in pronounced and sustained cellular NO production with subsequent stimulation of cGMP signaling. PMID:25015964

  5. Effects of propafenone on calcium current in guinea-pig ventricular myocytes.

    OpenAIRE

    Delgado, C; Tamargo, J; Henzel, D.; Lorente, P.

    1993-01-01

    1. The modulation of L-type voltage-sensitive calcium channels in guinea-pig isolated ventricular myocytes by propafenone was examined by the whole cell voltage-clamp technique. 2. Propafenone, 10(-7) -5 x 10(-5) M, produced a concentration-dependent inhibition of Ca current (ICa) without any significant change in the current-voltage relation. Half-blocking concentration (IC50) of propafenone for the peak ICa at +10 mV was 5 x 10(-6) M. 3. The voltage-dependence of ICa inactivation was shifte...

  6. Effects of oleic acid on the high threshold barium current in seabass Dicentrarchus labrax ventricular myocytes

    OpenAIRE

    Chatelier, Aurelien; Imbert, Nathalie; Zambonino, Jose-luis; McKenzie, David; Bois, P.

    2006-01-01

    The present study employed a patch clamp technique in isolated seabass ventricular myocytes to investigate the hypothesis that oleic acid (OA), a mono-unsaturated fatty acid, can exert direct effects upon whole-cell barium currents. Acute application of free OA caused a dose-dependent depression of the whole-cell barium current that was evoked by a voltage step to 0 mV from a holding potential of -80 mV. The derived 50% inhibitory concentration (IC50) was 12.49 +/- 0.27 mu mol l(-1). At a con...

  7. Growth factor-induced mobilization of cardiac progenitor cells reduces the risk of arrhythmias, in a rat model of chronic myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Leonardo Bocchi

    Full Text Available Heart repair by stem cell treatment may involve life-threatening arrhythmias. Cardiac progenitor cells (CPCs appear best suited for reconstituting lost myocardium without posing arrhythmic risks, being commissioned towards cardiac phenotype. In this study we tested the hypothesis that mobilization of CPCs through locally delivered Hepatocyte Growth Factor and Insulin-Like Growth Factor-1 to heal chronic myocardial infarction (MI, lowers the proneness to arrhythmias. We used 133 adult male Wistar rats either with one-month old MI and treated with growth factors (GFs, n = 60 or vehicle (V, n = 55, or sham operated (n = 18. In selected groups of animals, prior to and two weeks after GF/V delivery, we evaluated stress-induced ventricular arrhythmias by telemetry-ECG, cardiac mechanics by echocardiography, and ventricular excitability, conduction velocity and refractoriness by epicardial multiple-lead recording. Invasive hemodynamic measurements were performed before sacrifice and eventually the hearts were subjected to anatomical, morphometric, immunohistochemical, and molecular biology analyses. When compared with untreated MI, GFs decreased stress-induced arrhythmias and concurrently prolonged the effective refractory period (ERP without affecting neither the duration of ventricular repolarization, as suggested by measurements of QTc interval and mRNA levels for K-channel α-subunits Kv4.2 and Kv4.3, nor the dispersion of refractoriness. Further, markers of cardiomyocyte reactive hypertrophy, including mRNA levels for K-channel α-subunit Kv1.4 and β-subunit KChIP2, interstitial fibrosis and negative structural remodeling were significantly reduced in peri-infarcted/remote ventricular myocardium. Finally, analyses of BrdU incorporation and distribution of connexin43 and N-cadherin indicated that cytokines generated new vessels and electromechanically-connected myocytes and abolished the correlation of infarct size with deterioration

  8. Proteome- and transcriptome-driven reconstruction of the human myocyte metabolic network and its use for identification of markers for diabetes

    DEFF Research Database (Denmark)

    Väremo, Leif; Scheele, Camilla; Broholm, Christa;

    2015-01-01

    -scale metabolic models (GEMs) provide a network context for the integration of high-throughput data. We generated myocyte-specific RNA-sequencing data and investigated their correlation with proteome data. These data were then used to reconstruct a comprehensive myocyte GEM. Next, we performed a meta-analysis of...

  9. Biomimetic material strategies for cardiac tissue engineering

    International Nuclear Information System (INIS)

    Cardiovascular disease precedes many serious complications including myocardial infarction (MI) and it remains a major problem for the global community. Adult mammalian heart has limited ability to regenerate and compensate for the loss of cardiomyocytes. Restoration of cardiac function by replacement of diseased myocardium with functional cardiomyocytes is an intriguing strategy because it offers a potential cure for MI. Biomaterials are fabricated in nanometer scale dimensions by combining the chemical, biological, mechanical and electrical aspects of material for potential tissue engineering (TE) applications. Synthetic polymers offer advantageous in their ability to tailor the mechanical properties, and natural polymers offer cell recognition sites necessary for cell, adhesion and proliferation. Cardiac tissue engineering (TE) aim for the development of a bioengineered construct that can provide physical support to the damaged cardiac tissue by replacing certain functions of the damaged extracellular matrix and prevent adverse cardiac remodeling and dysfunction after MI. Electrospun nanofibers are applied as heart muscle patches, while hydrogels serve as a platform for controlled delivery of growth factors, prevent mechanical complications and assist in cell recruitment. This article reviews the applications of different natural and synthetic polymeric materials utilized as cardiac patches, injectables or 3D constructs for cardiac TE. Smart organization of nanoscale assemblies with synergistic approaches of utilizing nanofibers and hydrogels could further advance the field of cardiac tissue engineering. Rapid innovations in biomedical engineering and cell biology will bring about new insights in the development of optimal scaffolds and methods to create tissue constructs with relevant contractile properties and electrical integration to replace or substitute the diseased myocardium.

  10. Comparison of tapentadol with tramadol for analgesia after cardiac surgery

    OpenAIRE

    Srinivas Kalyanaraman Iyer; Gokulakrishnan Mohan; Sivakumar Ramakrishnan; Sanjay Theodore

    2015-01-01

    Background: Tapentadol is a relatively new analgesic. We decided to compare it with tramadol for their various effects after cardiac surgery. Setting: A study in a tertiary care hospital. Materials and Methods: Sixty adults undergoing cardiac surgery were divided into 2 groups of 30 each by computerized random allotment (Group X = tapentadol 50 mg oral and Group Y = tramadol 100 mg oral). Informed Consent and Institutional Ethics Committee approval were obtained. The patients were given eithe...

  11. Fast tracking in paediatric cardiac anaesthesia : an update.

    OpenAIRE

    Lake Carol

    2002-01-01

    A care plan in which cardiac surgical patients progress quickly through the perioperative course to hospital discharge is often referred to as a Fast Track. Such care plans have been used extensively in adult cardiac patients but are also applicable to paediatric patients. Although no randomised controlled trials are available to document a reduction in hospital costs and avoidance of iatrogenic complications with paediatric fast tracks, many healthcare administrators encourage their use. Fas...

  12. Coupling primary and stem cell-derived cardiomyocytes in an in vitro model of cardiac cell therapy.

    Science.gov (United States)

    Aratyn-Schaus, Yvonne; Pasqualini, Francesco S; Yuan, Hongyan; McCain, Megan L; Ye, George J C; Sheehy, Sean P; Campbell, Patrick H; Parker, Kevin Kit

    2016-02-15

    The efficacy of cardiac cell therapy depends on the integration of existing and newly formed cardiomyocytes. Here, we developed a minimal in vitro model of this interface by engineering two cell microtissues (μtissues) containing mouse cardiomyocytes, representing spared myocardium after injury, and cardiomyocytes generated from embryonic and induced pluripotent stem cells, to model newly formed cells. We demonstrated that weaker stem cell-derived myocytes coupled with stronger myocytes to support synchronous contraction, but this arrangement required focal adhesion-like structures near the cell-cell junction that degrade force transmission between cells. Moreover, we developed a computational model of μtissue mechanics to demonstrate that a reduction in isometric tension is sufficient to impair force transmission across the cell-cell boundary. Together, our in vitro and in silico results suggest that mechanotransductive mechanisms may contribute to the modest functional benefits observed in cell-therapy studies by regulating the amount of contractile force effectively transmitted at the junction between newly formed and spared myocytes. PMID:26858266

  13. Functional interaction between charged nanoparticles and cardiac tissue: a new paradigm for cardiac arrhythmia?

    Science.gov (United States)

    Ruenraroengsak, Pakatip; Shevchuk, Andrew I; Korchev, Yuri E; Lab, Max J; Tetley, Teresa D; Gorelik, Julia

    2016-01-01

    Aim To investigate the effect of surface charge of therapeutic nanoparticles on sarcolemmal ionic homeostasis and the initiation of arrhythmias. Materials & methods Cultured neonatal rat myocytes were exposed to 50 nm-charged polystyrene latex nanoparticles and examined using a combination of hopping probe scanning ion conductance microscopy, optical recording of action potential characteristics and patch clamp. Results Positively charged, amine-modified polystyrene latex nanoparticles showed cytotoxic effects and induced large-scale damage to cardiomyocyte membranes leading to calcium alternans and cell death. By contrast, negatively charged, carboxyl-modified polystyrene latex nanoparticles (NegNPs) were not overtly cytotoxic but triggered formation of 50–250-nm nanopores in the membrane. Cells exposed to NegNPs revealed pro-arrhythmic events, such as delayed afterdepolarizations, reduction in conduction velocity and pathological increment of action potential duration together with an increase in ionic current throughout the membrane, carried by the nanopores. Conclusion The utilization of charged nanoparticles is a novel concept for targeting cardiac excitability. However, this unique nanoscopic investigation reveals an altered electrophysiological substrate, which sensitized the heart cells towards arrhythmias. PMID:23140503

  14. A COMPARATIVE STUDY OF PEDIATRIC CARDIAC CATHETERIZATION PROCEDURE UNDER GENERAL ANESTHESIA WITH OR WITHOUT FEMORAL NERVE BLOCK

    OpenAIRE

    Jigisha; Bhavesh; Parineeta; Tarun

    2016-01-01

    OBJECTIVE Anesthetic management for interventional cardiac procedures/cardiac catheterization in pediatric patients is challenging. Cardiac anomalies vary from simple to complex congenital cardiac anomalies, shunts may be present at multiple levels and patients may be profoundly cyanotic, may be with ventricular dysfunction. They usually require sedation and analgesia to maintain steady stable state. In adults, such type of procedures can be well managed with local anesthesia....

  15. Penetrating cardiac injury by a metallic fragment

    International Nuclear Information System (INIS)

    An adult male had a penetrating injury of the chest resulting in cardiac tamponade. The injury resulted as a consequence of a detached iron piece from an iron bar in a steel mill. Emergency sternotomy and percardiotomy revealed blood in the pericardial cavity and full thickness penetration of the right ventricle. The defect was repaired following the removal of the iron fragment. Postoperative recovery was uneventful. (author)

  16. Blunt cardiac rupture.

    Science.gov (United States)

    Martin, T D; Flynn, T C; Rowlands, B J; Ward, R E; Fischer, R P

    1984-04-01

    Blunt injury to the heart ranges from contusion to disruption. This report comprises 14 patients seen during a 6-year period with cardiac rupture secondary to blunt trauma. Eight patients were injured in automobile accidents, two patients were injured in auto-pedestrian accidents, two were kicked in the chest by ungulates, and two sustained falls. Cardiac tamponade was suspected in ten patients. Five patients presented with prehospital cardiac arrest or arrested shortly after arrival. All underwent emergency department thoracotomy without survival. Two patients expired in the operating room during attempted cardiac repair; both had significant extracardiac injury. Seven patients survived, three had right atrial injuries, three had right ventricular injuries, and one had a left atrial injury. Cardiopulmonary bypass was not required for repair of the surviving patients. There were no significant complications from the cardiac repair. The history of significant force dispersed over a relatively small area of the precordium as in a kicking injury from an animal or steering wheel impact should alert the physician to possible cardiac rupture. Cardiac rupture should be considered in patients who present with signs of cardiac tamponade or persistent thoracic bleeding after blunt trauma. PMID:6708151

  17. The profound effects of microcystin on cardiac antioxidant enzymes, mitochondrial function and cardiac toxicity in rat

    International Nuclear Information System (INIS)

    Deaths from microcystin toxication have widely been attributed to hypovolemic shock due to hepatic interstitial hemorrhage, while some recent studies suggest that cardiogenic complication is also involved. So far, information on cardiotoxic effects of MC has been rare and the underlying mechanism is still puzzling. The present study examined toxic effects of microcystins on heart muscle of rats intravenously injected with extracted MC at two doses, 0.16LD50 (14 μg MC-LReq kg-1 body weight) and 1LD50 (87 μg MC-LReq kg-1 body weight). In the dead rats, both TTC staining and maximum elevations of troponin I levels confirmed myocardial infarction after MC exposure, besides a serious interstitial hemorrhage in liver. In the 1LD50 dose group, the coincident falls in heart rate and blood pressure were related to mitochondria dysfunction in heart, while increases in creatine kinase and troponin I levels indicated cardiac cell injury. The corresponding pathological alterations were mainly characterized as loss of adherence between cardiac myocytes and swollen or ruptured mitochondria at the ultrastructural level. MC administration at a dose of 1LD50 not only enhanced activities and up-regulated mRNA transcription levels of antioxidant enzymes, but also increased GSH content. At both doses, level of lipid peroxides increased obviously, suggesting serious oxidative stress in mitochondria. Simultaneously, complex I and III were significantly inhibited, indicating blocks in electron flow along the mitochondrial respiratory chain in heart. In conclusion, the findings of this study implicate a role for MC-induced cardiotoxicity as a potential factor that should be considered when evaluating the mechanisms of death associated with microcystin intoxication in Brazil

  18. Biomaterials for cardiac regeneration

    CERN Document Server

    Ruel, Marc

    2015-01-01

    This book offers readers a comprehensive biomaterials-based approach to achieving clinically successful, functionally integrated vasculogenesis and myogenesis in the heart. Coverage is multidisciplinary, including the role of extracellular matrices in cardiac development, whole-heart tissue engineering, imaging the mechanisms and effects of biomaterial-based cardiac regeneration, and autologous bioengineered heart valves. Bringing current knowledge together into a single volume, this book provides a compendium to students and new researchers in the field and constitutes a platform to allow for future developments and collaborative approaches in biomaterials-based regenerative medicine, even beyond cardiac applications. This book also: Provides a valuable overview of the engineering of biomaterials for cardiac regeneration, including coverage of combined biomaterials and stem cells, as well as extracellular matrices Presents readers with multidisciplinary coverage of biomaterials for cardiac repair, including ...

  19. Mathematical cardiac electrophysiology

    CERN Document Server

    Colli Franzone, Piero; Scacchi, Simone

    2014-01-01

    This book covers the main mathematical and numerical models in computational electrocardiology, ranging from microscopic membrane models of cardiac ionic channels to macroscopic bidomain, monodomain, eikonal models and cardiac source representations. These advanced multiscale and nonlinear models describe the cardiac bioelectrical activity from the cell level to the body surface and are employed in both the direct and inverse problems of electrocardiology. The book also covers advanced numerical techniques needed to efficiently carry out large-scale cardiac simulations, including time and space discretizations, decoupling and operator splitting techniques, parallel finite element solvers. These techniques are employed in 3D cardiac simulations illustrating the excitation mechanisms, the anisotropic effects on excitation and repolarization wavefronts, the morphology of electrograms in normal and pathological tissue and some reentry phenomena. The overall aim of the book is to present rigorously the mathematica...

  20. Regular exercise modulates cardiac mast cell activation in ovariectomized rats.

    Science.gov (United States)

    Phungphong, Sukanya; Kijtawornrat, Anusak; Wattanapermpool, Jonggonnee; Bupha-Intr, Tepmanas

    2016-03-01

    It is well accepted that regular exercise is a significant factor in the prevention of cardiac dysfunction; however, the cardioprotective mechanism is as yet not well defined. We have examined whether regular exercise can modulate the activity of cardiac mast cells (CMC) after deprivation of female sex hormones, as well as the density and percentage degranulation of mast cells, in ventricular tissue of ovariectomized (OVX) rats after an 11-week running program. A significant increase in CMC density with a greater percentage degranulation was induced after ovarian sex hormone deprivation. Increased CMC density was prevented by estrogen supplements, but not by regular training. To the contrary, increased CMC degranulation in the OVX rat heart was attenuated by exercise training, but not by estrogen supplement. These findings indicate a significant correlation between the degree of CMC degranulation and myocyte cross-section area. However, no change in the expression of inflammatory mediators, including chymase, interleukin-6, and interleukin-10, was detected. Taken together, these results clearly indicate one of the cardioprotective mechanisms of regular aerobic exercise is the modulation of CMC activation. PMID:26467449

  1. Fatores de risco de sangramento no pós-operatório de cirurgia cardíaca em pacientes adultos Risk factors for postoperative bleeding after adult cardiac surgery

    Directory of Open Access Journals (Sweden)

    Leonardo Augusto Miana

    2004-09-01

    measures for high-risk populations. METHODS: From October 2001 to March 2002, 411 consecutive adult cardiac surgery patients were prospectively studied, with the exception of those submitted to heart transplantation. In order to determine risk factors for postoperative bleeding, 20 preoperative, 17 operative and six postoperative variables were analyzed using univariate methods and multiple linear regression. RESULTS: Operative procedures included coronary artery bypass grafting in 227 (55.2% patients, valvar operations in 198 (48.2%, aortic surgery in 25 (6.1% and combined procedures in 60 (14.6%. Cardiopulmonary bypass was used in 335 (81.5% patients and anti-fibrinolysis agents in 148 (36%. The thirty-day mortality was 5.6% (23 patients. Mean 24-hour postoperative blood loss was 610 ± 500 ml (range 10-4900. Re-exploration for bleeding was required in 15 (3.7% patients. Independent predictors of postoperative bleeding were emergency operations (p=0.049, postoperative metabolic acidosis (p=0.001, preoperative thrombocytopenia (p=0.034 and prolonged cardiopulmonary bypass (p=0.021. CCONCLUSIONS: When possible, preoperative stabilization and correction of coagulation disturbances should be achieved in patients requiring urgent or emergent surgery and in those with thrombocytopenias. The duration of cardiopulmonary bypass should be minimized as long as this is practical. Postoperative metabolic acidosis must be actively corrected, especially the main determining cause.

  2. Robust generation and expansion of skeletal muscle progenitors and myocytes from human pluripotent stem cells.

    Science.gov (United States)

    Shelton, Michael; Kocharyan, Avetik; Liu, Jun; Skerjanc, Ilona S; Stanford, William L

    2016-05-15

    Human pluripotent stem cells provide a developmental model to study early embryonic and tissue development, tease apart human disease processes, perform drug screens to identify potential molecular effectors of in situ regeneration, and provide a source for cell and tissue based transplantation. Highly efficient differentiation protocols have been established for many cell types and tissues; however, until very recently robust differentiation into skeletal muscle cells had not been possible unless driven by transgenic expression of master regulators of myogenesis. Nevertheless, several breakthrough protocols have been published in the past two years that efficiently generate cells of the skeletal muscle lineage from pluripotent stem cells. Here, we present an updated version of our recently described 50-day protocol in detail, whereby chemically defined media are used to drive and support muscle lineage development from initial CHIR99021-induced mesoderm through to PAX7-expressing skeletal muscle progenitors and mature skeletal myocytes. Furthermore, we report an optional method to passage and expand differentiating skeletal muscle progenitors approximately 3-fold every 2weeks using Collagenase IV and continued FGF2 supplementation. Both protocols have been optimized using a variety of human pluripotent stem cell lines including patient-derived induced pluripotent stem cells. Taken together, our differentiation and expansion protocols provide sufficient quantities of skeletal muscle progenitors and myocytes that could be used for a variety of studies. PMID:26404920

  3. Ectopic automaticity induced in ventricular myocytes by transgenic overexpression of HCN2.

    Science.gov (United States)

    Oshita, Kensuke; Itoh, Masayuki; Hirashima, Shingo; Kuwabara, Yoshihiro; Ishihara, Keiko; Kuwahara, Koichiro; Nakao, Kazuwa; Kimura, Takeshi; Nakamura, Kei-Ichiro; Ushijima, Kazuo; Takano, Makoto

    2015-03-01

    Hyperpolarization-activated cyclic nucleotide-gated channels (HCNs) are expressed in the ventricles of fetal hearts but are normally down-regulated as development progresses. In the hypertrophied heart, however, these channels are re-expressed and generate a hyperpolarization-activated, nonselective cation current (Ih), which evidence suggests may increase susceptibility to arrhythmia. To test this hypothesis, we generated and analyzed transgenic mice overexpressing HCN2 specifically in their hearts (HCN2-Tg). Under physiological conditions, HCN2-Tg mice exhibited no discernible abnormalities. After the application of isoproterenol (ISO), however, ECG recordings from HCN2-Tg mice showed intermittent atrioventricular dissociation followed by idioventricular rhythm. Consistent with this observation, 0.3 μmol/L ISO-induced spontaneous action potentials (SAPs) in 76% of HCN2-Tg ventricular myocytes. In the remaining 24%, ISO significantly depolarized the resting membrane potential (RMP), and the late repolarization phase of evoked action potentials (APs) was significantly longer than in WT myocytes. Analysis of membrane currents revealed that these differences are attributable to the Ih tail current. These findings suggest HCN2 channel activity reduces the repolarization reserve of the ventricular action potential and increases ectopic automaticity under pathological conditions such as excessive β-adrenergic stimulation. PMID:25562801

  4. [Cardiac evaluation before non-cardiac surgery].

    Science.gov (United States)

    Menzenbach, Jan; Boehm, Olaf

    2016-07-01

    Before non-cardiac surgery, evaluation of cardiac function is no frequent part of surgical treatment. European societies of anesthesiology and cardiology published consensus-guidelines in 2014 to present a reasonable approach for preoperative evaluation. This paper intends to differentiate the composite of perioperative risk and to display the guidelines methodical approach to handle it. Features to identify patients at risk from an ageing population with comorbidities, are the classification of surgical risk, functional capacity and risk indices. Application of diagnostic means, should be used adjusted to this risk estimation. Cardiac biomarkers are useful to discover risk of complications or mortality, that cannot be assessed by clinical signs. After preoperative optimization and perioperative cardiac protection, the observation of the postoperative period remains, to prohibit complications or even death. In consideration of limited resources of intensive care department, postoperative ward rounds beyond intensive care units are considered to be an appropriate instrument to avoid or recognize complications early to reduce postoperative mortality. PMID:27479258

  5. Calpain inhibition prevents pacing-induced cellular remodeling in a HL-1 myocyte model for atrial fibrillation

    NARCIS (Netherlands)

    Brundel, BJJM; Kampinga, HH; Henning, RH

    2004-01-01

    Objective: Atrial fibrillation (AF) is a progressive disease. Previously, clinical and animal experimental studies in AF revealed a variety of myocyte remodeling processes including L-type Ca(2+) channel reduction and structural changes, which finally result in electrical remodeling and contractile

  6. [Cardiac Rehabilitation 2015].

    Science.gov (United States)

    Hoffmann, Andreas

    2015-11-25

    The goals of cardiac rehabilitation are (re-)conditioning and secondary prevention in patients with heart disease or an elevated cardiovascular risk profile. Rehabilitation is based on motivation through education, on adapted physical activity, instruction of relaxation techniques, psychological support and optimized medication. It is performed preferably in groups either in outpatient or inpatient settings. The Swiss working group on cardiac rehabilitation provides a network of institutions with regular quality auditing. Positive effects of rehabilitation programs on mortality and morbidity have been established by numerous studies. Although a majority of patients after cardiac surgery are being referred to rehabilitation, these services are notoriously underused after catheter procedures. PMID:26602848

  7. Comprehensive cardiac rehabilitation

    DEFF Research Database (Denmark)

    Kruse, Marie; Hochstrasser, Stefan; Zwisler, Ann-Dorthe O;

    2006-01-01

    OBJECTIVES: The costs of comprehensive cardiac rehabilitation are established and compared to the corresponding costs of usual care. The effect on health-related quality of life is analyzed. METHODS: An unprecedented and very detailed cost assessment was carried out, as no guidelines existed for...... uncertain and may be as high as euro 1.877. CONCLUSIONS: Comprehensive cardiac rehabilitation is more costly than usual care, and the higher costs are not outweighed by a quality of life gain. Comprehensive cardiac rehabilitation is, therefore, not cost-effective....

  8. Modeling effects of L-type Ca2+ current and Na+-Ca2+ exchanger on Ca2+ trigger flux in rabbit myocytes with realistic t-tubule geometries

    Directory of Open Access Journals (Sweden)

    Peter M Kekenes-Huskey

    2012-09-01

    Full Text Available The transverse tubular system of rabbit ventricular myocytes consists of cell membrane invaginations (t-tubules that are essential for efficient cardiac excitation-contraction coupling. In this study, we investigate how t-tubule micro-anatomy, L-type Ca2+ channel clustering and allosteric activation of Na+/Ca2+ exchanger by L-type Ca2+ current affects intracellular Ca2+ dynamics. Our model includes a realistic 3D geometry of a single t-tubule and its surrounding half-sarcomeres for rabbit ventricular myocytes. The effects of spatially-distributed membrane ion-transporters (L-type Ca2+ channel, Na+/Ca2+ exchanger, sarcolemmal Ca2+ pump, sarcolemmal Ca2+ leak, and stationary and mobile Ca2+ buffers (troponin C, ATP, calmodulin, and Fluo-3 are also considered. We used a coupled reaction-diffusion system to describe the spatio-temporal concentration profiles of free and buffered intracellular Ca2+. We obtained parameters from voltage-clamp protocols of L-type Ca2+ current and line-scan recordings of Ca2+ concentration profiles in rabbit cells, in which the sarcoplasmic reticulum is disabled. Our model results agree with experimental measurements of global Ca2+ transient in myocytes loaded with 50 µM Fluo-3. We found that local Ca2+ concentrations within the cytosol and sub-sarcolemma, as well as the local trigger fluxes of Ca2+ crossing the cell membrane, are sensitive to details of t-tubule micro-structure and membrane Ca2+ flux distribution. The model additionally predicts that local Ca2+ trigger fluxes are at least 3-fold to 8-fold higher than the whole-cell Ca2+ trigger flux. We found also that the activation of allosteric Ca2+-binding sites on the Na+/Ca2+ exchanger could provide a mechanism for regulating global and local Ca2+ trigger fluxes in vivo. Our studies indicate that improved structural and functional models could improve our understanding of the contributions of L-type and Na+/Ca2+ exchanger fluxes to intracellular Ca2+ dynamics.

  9. Cardiac Electromechanical Models: From Cell to Organ

    Directory of Open Access Journals (Sweden)

    Natalia A Trayanova

    2011-08-01

    Full Text Available The heart is a multiphysics and multiscale system that has driven the development of the most sophisticated mathematical models at the frontiers of computation physiology and medicine. This review focuses on electromechanical (EM models of the heart from the molecular level of myofilaments to anatomical models of the organ. Because of the coupling in terms of function and emergent behaviors at each level of biological hierarchy, separation of behaviors at a given scale is difficult. Here, a separation is drawn at the cell level so that the first half addresses subcellular/single cell models and the second half addresses organ models. At the subcelluar level, myofilament models represent actin-myosin interaction and Ca-based activation. Myofilament models and their refinements represent an overview of the development in the field. The discussion of specific models emphasizes the roles of cooperative mechanisms and sarcomere length dependence of contraction force, considered the cellular basis of the Frank-Starling law. A model of electrophysiology and Ca handling can be coupled to a myofilament model to produce an EM cell model, and representative examples are summarized to provide an overview of the progression of field. The second half of the review covers organ-level models that require solution of the electrical component as a reaction-diffusion system and the mechanical component, in which active tension generated by the myocytes produces deformation of the organ as described by the equations of continuum mechanics. As outlined in the review, different organ-level models have chosen to use different ionic and myofilament models depending on the specific application; this choice has been largely dictated by compromises between model complexity and computational tractability. The review also addresses application areas of EM models such as cardiac resynchronization therapy and the role of mechano-electric coupling in arrhythmias and

  10. [Extracorporeal membrane oxygenation for critically ill adults].

    Science.gov (United States)

    Maekawa, Kunihiko; Gando, Satoshi

    2016-02-01

    Extracorporeal membrane oxygenation therapy (ECMO) is an artificial life support for severe respiratory and/or cardiac failure, and refractory cardiac arrest. It consists of a hollow-fiber membrane that oxygenates the blood and removes carbon dioxide and a centrifugal pump that drain blood from central venous circulation, pump through membrane, and return to the patients. Veno-venous ECMO provides gas change in hemodynamically stable patients with respiratory failure. Veno-arterial ECMO offers hemodynamic support in addition to gas change for cardiac failure or refractory cardiac arrest. We describe the physiological principles and the clinical evidence supporting the use of ECMO in critically ill adult patients. PMID:26915254

  11. Microelectrode array recordings of cardiac action potentials as a high throughput method to evaluate pesticide toxicity.

    Science.gov (United States)

    Natarajan, A; Molnar, P; Sieverdes, K; Jamshidi, A; Hickman, J J

    2006-04-01

    The threat of environmental pollution, biological warfare agent dissemination and new diseases in recent decades has increased research into cell-based biosensors. The creation of this class of sensors could specifically aid the detection of toxic chemicals and their effects in the environment, such as pyrethroid pesticides. Pyrethroids are synthetic pesticides that have been used increasingly over the last decade to replace other pesticides like DDT. In this study we used a high-throughput method to detect pyrethroids by using multielectrode extracellular recordings from cardiac cells. The data from this cell-electrode hybrid system was compared to published results obtained with patch-clamp electrophysiology and also used as an alternative method to further understand pyrethroid effects. Our biosensor consisted of a confluent monolayer of cardiac myocytes cultured on microelectrode arrays (MEA) composed of 60 substrate-integrated electrodes. Spontaneous activity of these beating cells produced extracellular field potentials in the range of 100 microV to nearly 1200 microV with a beating frequency of 0.5-4 Hz. All of the tested pyrethroids; alpha-Cypermethrin, Tetramethrin and Tefluthrin, produced similar changes in the electrophysiological properties of the cardiac myocytes, namely reduced beating frequency and amplitude. The sensitivity of our toxin detection method was comparable to earlier patch-clamp studies, which indicates that, in specific applications, high-throughput extracellular methods can replace single-cell studies. Moreover, the similar effect of all three pyrethroids on the measured parameters suggests, that not only detection of the toxins but, their classification might also be possible with this method. Overall our results support the idea that whole cell biosensors might be viable alternatives when compared to current toxin detection methods. PMID:16198528

  12. The cardiac patient during Ramadan and Hajj.

    Science.gov (United States)

    Chamsi-Pasha, Hassan; Ahmed, Waqar H; Al-Shaibi, Khaled F

    2014-10-01

    The holy month of Ramadan is one of the five pillars of Islam. During this month, fasting Muslims refrain from eating, drinking, smoking, and sex from dawn until sunset. Although the Quran exempts sick people from the duty of fasting, it is not uncommon for many heart disease patients to fast during Ramadan. Despite the fact that more than a billion Muslims worldwide fast during Ramadan, there is no clear consensus on its effects on cardiac disease. Some studies have shown that the effects of fasting on stable patients with cardiac disease are minimal and the majority of patients with stable cardiac illness can endure Ramadan fasting with no clinical deterioration. Fasting during Ramadan does not seem to increase hospitalizations for congestive heart failure. However, patients with decompensated heart failure or those requiring large doses of diuretics are strongly advised not to fast, particularly when Ramadan falls in summer. Patients with controlled hypertension can safely fast. However, patients with resistant hypertension should be advised not to fast until their blood pressure is reasonably controlled. Patients with recent myocardial infarction, unstable angina, recent cardiac intervention or cardiac surgery should avoid fasting. Physician advice should be individualized and patients are encouraged to seek medical advice before fasting in order to adjust their medications, if required. The performance of the Hajj pilgrimage is another pillar of Islam and is obligatory once in the lifetime for all adult Muslims who are in good health and can afford to undertake the journey. Hajj is a physically, mentally, emotionally, and spiritually demanding experience. Medical checkups one or two months before leaving for Hajj is warranted, especially for those with chronic illnesses such as cardiovascular disease. Patients with heart failure, uncontrolled hypertension, serious arrhythmias, unstable angina, recent myocardial infarction, or cardiac surgery should be

  13. Stroke of a cardiac myxoma origin

    Directory of Open Access Journals (Sweden)

    Shi-Min Yuan

    2015-04-01

    Full Text Available AbstractObjective:The clinical features of cardiac myxoma stroke have not been sufficiently described. Debates remain concerning the options and timing of treatment and the clinical outcomes are unknown. This article aims to highlight the pertinent aspects of this rare condition.Methods:Data source of the present study came from a comprehensive literature collection of cardiac myxoma stroke in PubMed, Google search engine and Highwire Press for the year range 2000-2014.Results:Young adults, female predominance, single cerebral vessel (mostly the middle cerebral artery, multiple territory involvements and solitary left atrial myxoma constituted the outstanding characteristics of this patient setting. The most common affected cerebral vessel (the middle cerebral artery and areas (the basal ganglion, cerebellum and parietal and temporal regions corresponded well to the common manifestations of this patient setting, such as conscious alteration, ataxia, hemiparesis and hemiplegia, aphasia and dysarthria. Initial computed tomography scan carried a higher false negative rate for the diagnosis of cerebral infarction than magnetic resonance imaging did. A delayed surgical resection of cardiac myxoma was associated with an increased risk of potential consequences in particular otherwise arterial embolism. The mortality rate of this patient population was 15.3%.Conclusion:Cardiac myxoma stroke is rare. Often does it affect young females. For an improved diagnostic accuracy, magnetic resonance imaging of the brain and echocardiography are imperative for young stroke patients in identifying the cerebral infarct and determining the stroke of a cardiac origin. Immediate thrombolytic therapy may completely resolve the cerebral stroke and improve the neurologic function of the patients. An early surgical resection of cardiac myxoma is recommended in patients with not large territory cerebral infarct.

  14. Molecular Basis of Cardiac Myxomas

    Directory of Open Access Journals (Sweden)

    Pooja Singhal

    2014-01-01

    Full Text Available Cardiac tumors are rare, and of these, primary cardiac tumors are even rarer. Metastatic cardiac tumors are about 100 times more common than the primary tumors. About 90% of primary cardiac tumors are benign, and of these the most common are cardiac myxomas. Approximately 12% of primary cardiac tumors are completely asymptomatic while others present with one or more signs and symptoms of the classical triad of hemodynamic changes due to intracardiac obstruction, embolism and nonspecific constitutional symptoms. Echocardiography is highly sensitive and specific in detecting cardiac tumors. Other helpful investigations are chest X-rays, magnetic resonance imaging and computerized tomography scan. Surgical excision is the treatment of choice for primary cardiac tumors and is usually associated with a good prognosis. This review article will focus on the general features of benign cardiac tumors with an emphasis on cardiac myxomas and their molecular basis.

  15. Regulation of the cardiac Na⁺/H⁺ exchanger in health and disease.

    Science.gov (United States)

    Wakabayashi, Shigeo; Hisamitsu, Takashi; Nakamura, Tomoe Y

    2013-08-01

    The Na(+) gradient produced across the cardiac sarcolemma by the ATP-dependent Na(+)-pump is a constant source of energy for Na(+)-dependent transporters. The plasma membrane Na(+)/H(+) exchanger (NHE) is one such secondary active transporter, regulating intracellular pH, Na(+) concentration, and cell volume. NHE1, the major isoform found in the heart, is activated in response to a variety of stimuli such as hormones and mechanical stress. This important characteristic of NHE1 is intimately linked to heart diseases, including maladaptive cardiac hypertrophy and subsequent heart failure, as well as acute ischemic-reperfusion injury. NHE1 activation results in elevation of pH and intracellular Na(+) concentration, which potentially enhance downstream signaling cascades in the myocardium. Therefore, in addition to determining the mechanism underlying regulation of NHE1 activity, it is important to understand how the ionic signal produced by NHE1 is transmitted to the downstream targets. Extensive studies have identified many accessory factors that interact with NHE1. Here, we have summarized the recent progress on understanding the molecular mechanism underlying NHE1 regulation and have shown a possible signaling pathway leading to cardiac remodeling, which is initiated from NHE1. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes". PMID:23429007

  16. Characterization and Differentiation into Adipocytes and Myocytes of Porcine Bone Marrow Mesenchymal Stem Cells

    Institute of Scientific and Technical Information of China (English)

    DU Min-qing; WANG Song-bo; JIANG Qing-yan; HUANG Yue-qin; LU Nai-Sheng; SHU Gang; ZHU Xiao-tong; WANG Li-na; GAO Ping; XI Qian-yun; ZHANG Yong-liang

    2014-01-01

    Bone marrow mesenchymal stem cells (BMSCs) could differentiate into various cell types including adipocytes and myocytes, which had important scientiifc signiifcance not only in the ifeld of tissue regeneration, but also in the ifeld of agricultural science. In an attempt to exhibit the characterization and differentiation into adipocytes and myocytes of porcine BMSCs, we isolated and puriifed porcine BMSCs by red blood cell lysis method and percoll gradient centrifugation. The puriifed cells presented a stretched ifbroblast-like phenotype when adhered to the culture plate. The results of lfow cytometry analysis and immunofluorescence staining demonstrated that the isolated cells were positive for mesenchymal surface markers CD29, CD44 and negative for hematopoietic markers CD45 and the adhesion molecules CD31. Cells were induced to differentiate into adipocytes with adipogenic medium containing insulin, dexamethasone, oleate and octanoate. Oil Red O staining demonstrated that the porcine BMSCs successfully differentiated to adipocytes. Moreover, the ifndings of real-time PCR and Western blotting indicated that the induced cells expressed adipogenic marker genes (PPAR-γ, C/EBP-α, perilipin, aP2) mRNA or proteins (PPAR-γ, perilipin, aP2). On the other hand, porcine BMSCs were induced into myoctyes with myogenic medium supplemented with 5-azacytidine, basic ifbroblast growth factor, chick embryo extract and horse serum. Morphological observation by hochest 33342 staining showed that the induced cells presented as multi-nucleus muscular tube structure. And myogenic marker genes (Myf5, desmin) mRNA or proteins (Myf5, MyoD, myogenin, desmin) were found in the induced cells. In addition, the results of immunolfuorescence staining revealed that myogenic marker (Myf5, MyoD, myogenin, desmin, S-MyHC) proteins was positive in the induced cells. Above all, these results suggested that the isolated porcine BMSCs were not only consistent with the characterization of

  17. Muerte súbita en un joven adulto con diagnóstico de síndrome de Tietze Sudden cardiac death in a young adult with diagnosed with Tietze syndrome

    Directory of Open Access Journals (Sweden)

    F.R. Breijo-Márquez

    2010-03-01

    Full Text Available Alcanzar el diagnóstico de certeza en el dolor torácico subagudo o crónico debe ser una meta básica para predecir una posible muerte súbita, como ocurrió en este caso, que fue una muerte súbita de origen cardíaco: arritmia cardíaca con patrón electrocardiográfico de intervalo PQ corto junto a intervalo QT largo.Achieving certainty in the diagnosis of subacute or chronic chest pain should be a basic goal to predict possible sudden death, as in this case, it was a sudden cardiac death: cardiac arrhythmia with an electrocardiographic pattern of Short PQ interval alongside a Long QT interval.

  18. Age‐Dependent Sex Effects on Outcomes After Pediatric Cardiac Surgery

    OpenAIRE

    Kochilas, Lazaros K.; Vinocur, Jeffrey M.; Menk, Jeremiah S.

    2014-01-01

    Background Sex has been linked to differential outcomes for cardiovascular disease in adults. We examined potential sex differences in outcomes after pediatric cardiac surgery. Methods and Results We retrospectively analyzed data from the Pediatric Cardiac Care Consortium (1982–2007) by using logistic regression to evaluate the effects of sex on 30‐day within‐hospital mortality after pediatric (

  19. Automatic Implantable Cardiac Defibrillator

    Medline Plus

    Full Text Available Automatic Implantable Cardiac Defibrillator February 19, 2009 Halifax Health Medical Center, Daytona Beach, FL Welcome to Halifax Health Daytona Beach, Florida. Over the next hour you' ...

  20. Sudden Cardiac Arrest

    Science.gov (United States)

    ... scan, or MUGA, which shows how well your heart is pumping blood. Magnetic resonance imaging (MRI) which gives doctors detailed pictures of your heart. How is SCA treated? Sudden cardiac arrest should ...

  1. Sudden Cardiac Arrest

    Science.gov (United States)

    ... Heart Risk Factors & Prevention Heart Diseases & Disorders Atrial Fibrillation (AFib) Sudden Cardiac Arrest (SCA) SCA: Who's At Risk? Prevention of SCA What Causes SCA? SCA Awareness Atrial Flutter Heart Block Heart Failure Sick Sinus Syndrome Substances & Heart Rhythm Disorders Symptoms & ...

  2. Sudden cardiac death

    Directory of Open Access Journals (Sweden)

    Aranđelović Aleksandra Č.

    2004-01-01

    Full Text Available Sudden cardiac death in an athlete is rare and tragic event. An athlete's death draws high public attention given that athletes are considered the healthiest category of society. The vast majority of sudden cardiac death in young athletes is due to congenital cardiac malformations such as hypertrophie cardiomyopathy and various coronary artery anomalies. In athletes over age 35, the usual cause of sudden cardiac death is coronary artery disease. With each tragic death of a young athlete, there is a question why this tragedy has not been prevented. The American College of Sports Medicine and the American Heart Association recommend that a pre-participation exam should include a complete cardiovascular history and physical examination.

  3. Cardiac Risk Assessment

    Science.gov (United States)

    ... to assess cardiac risk include: High-sensitivity C-reactive protein (hs-CRP) : Studies have shown that measuring ... LDL-C but does not respond to typical strategies to lower LDL-C such as diet, exercise, ...

  4. Cardiac arrest - cardiopulmonary resuscitation

    Institute of Scientific and Technical Information of China (English)

    Basri Lenjani; Besnik Elshani; Nehat Baftiu; Kelmend Pallaska; Kadir Hyseni; Njazi Gashi; Nexhbedin Karemani; Ilaz Bunjaku; Taxhidin Zaimi; Arianit Jakupi

    2014-01-01

    Objective:To investigate application of cardiopulmonary resuscitation(CPR) measures within the golden minutes inEurope.Methods:The material was taken from theUniversityClinical Center ofKosovo -EmergencyCentre inPristina, during the two(2) year period(2010-2011).The collected date belong to the patients with cardiac arrest have been recorded in the patients' log book protocol at the emergency clinic.Results:During the2010 to2011 in the emergency center of theCUCK inPristina have been treated a total of269 patients with cardiac arrest, of whom159 or59.1% have been treated in2010, and110 patients or40.9% in2011.Of the269 patients treated in the emergency centre,93 or34.6% have exited lethally in the emergency centre, and176 or 65.4% have been transferred to other clinics.In the total number of patients with cardiac arrest, males have dominated with186 cases, or69.1%.The average age of patients included in the survey was56.7 year oldSD±16.0 years.Of the269 patients with cardiac arrest, defibrillation has been applied for93 or34.6% of patients.In the outpatient settings defibrillation has been applied for3 or3.2% of patients.Patients were defibrillated with application of one to four shocks. Of27 cases with who have survived cardiac arrest, none of them have suffered cardiac arrest at home,3 or11.1% of them have suffered cardiac arrest on the street, and24 or88.9% of them have suffered cardiac arrest in the hospital.5 out of27 patients survived have ended with neurological impairment.Cardiac arrest cases were present during all days of the week, but frequently most reported cases have been onMonday with32.0% of cases, and onFriday with24.5% of cases. Conclusions:All survivors from cardiac arrest have received appropriate medical assistance within10 min from attack, which implies that if cardiac arrest occurs near an institution health care(with an opportunity to provide the emergent health care) the rate of survival is higher.

  5. Awareness in cardiac anesthesia.

    LENUS (Irish Health Repository)

    Serfontein, Leon

    2010-02-01

    Cardiac surgery represents a sub-group of patients at significantly increased risk of intraoperative awareness. Relatively few recent publications have targeted the topic of awareness in this group. The aim of this review is to identify areas of awareness research that may equally be extrapolated to cardiac anesthesia in the attempt to increase understanding of the nature and significance of this scenario and how to reduce it.

  6. Safety in cardiac surgery

    OpenAIRE

    Siregar, S.

    2013-01-01

    The monitoring of safety in cardiac surgery is a complex process, which involves many clinical, practical, methodological and statistical issues. The objective of this thesis was to measure and to compare safety in cardiac surgery in The Netherlands using the Netherlands Association for Cardio-Thoracic Surgery (NVT) database. The safety of care is usually measured using patient outcomes. If outcomes are not available, the process and structure of care may be used. Outcomes should be adjusted ...

  7. Cardiac rehabilitation in Germany.

    Science.gov (United States)

    Karoff, Marthin; Held, Klaus; Bjarnason-Wehrens, Birna

    2007-02-01

    The purpose of this review is to give an overview of the rehabilitation measures provided for cardiac patients in Germany and to outline its legal basis and outcomes. In Germany the cardiac rehabilitation system is different from rehabilitation measures in other European countries. Cardiac rehabilitation in Germany since 1885 is based on specific laws and the regulations of insurance providers. Cardiac rehabilitation has predominantly been offered as an inpatient service, but has recently been complemented by outpatient services. A general agreement on the different indications for offering these two services has yet to be reached. Cardiac rehabilitation is mainly offered after an acute cardiac event and bypass surgery. It is also indicated in severe heart failure and special cases of percutaneous coronary intervention. Most patients are men (>65%) and the age at which events occur is increasing. The benefits obtained during the 3-4 weeks after an acute event, and confirmed in numerous studies, are often later lost under 'usual care' conditions. Many attempts have been made by rehabilitation institutions to improve this deficit by providing intensive aftercare. One instrument set up to achieve this is the nationwide institution currently comprising more than 6000 heart groups with approximately 120000 outpatients. After coronary artery bypass grafting or acute coronary syndrome cardiac rehabilitation can usually be started within 10 days. The multidisciplinary rehabilitation team consists of cardiologists, psychologists, exercise therapists, social workers, nutritionists and nurses. The positive effects of cardiac rehabilitation are also important economically, for example, for the improvement of secondary prevention and vocational integration. PMID:17301623

  8. Ranolazine in Cardiac Arrhythmia.

    Science.gov (United States)

    Saad, Marwan; Mahmoud, Ahmed; Elgendy, Islam Y; Richard Conti, C

    2016-03-01

    Ranolazine utilization in the management of refractory angina has been established by multiple randomized clinical studies. However, there is growing evidence showing an evolving role in the field of cardiac arrhythmias. Multiple experimental and clinical studies have evaluated the role of ranolazine in prevention and management of atrial fibrillation, with ongoing studies on its role in ventricular arrhythmias. In this review, we will discuss the pharmacological, experimental, and clinical evidence behind ranolazine use in the management of various cardiac arrhythmias. PMID:26459200

  9. Cardiac tumours in infancy

    OpenAIRE

    Yadava, O.P.

    2012-01-01

    Cardiac tumours in infancy are rare and are mostly benign with rhabdomyomas, fibromas and teratomas accounting for the majority. The presentation depends on size and location of the mass as they tend to cause cavity obstruction or arrhythmias. Most rhabdomyomas tend to regress spontaneously but fibromas and teratomas generally require surgical intervention for severe haemodynamic or arrhythmic complications. Other relatively rare cardiac tumours too are discussed along with an Indian perspect...

  10. Cardiac Image Registration

    Directory of Open Access Journals (Sweden)

    2008-09-01

    Full Text Available Long procedure time and somewhat suboptimal results hinder the widespread use of catheter ablation of complex arrhythmias such as atrial fibrillation (AF. Due to lack of contrast differentiation between the area of interest and surrounding structures in a moving organ like heart, there is a lack of proper intraprocedural guidance using current imaging techniques for ablation. Cardiac image registration is currently under investigation and is in clinical use for AF ablation. Cardiac image registration, which involves integration of two images in the context of left atrium (LA, is intermodal, with the acquired image and the real-time reference image residing in different image spaces, and involves optimization, where one image space is transformed into the other. Unlike rigid body registration, cardiac image registration is unique and challenging due to cardiac motion during the cardiac cycle and due to respiration. This review addresses the basic principles of the emerging technique of registration and the inherent limitations as they relate to cardiac imaging and registration.

  11. Cardiac Image Registration

    Directory of Open Access Journals (Sweden)

    Jasbir Sra

    2008-09-01

    Full Text Available Long procedure time and somewhat suboptimal results hinder the widespread use of catheter ablation of complex arrhythmias such as atrial fibrillation (AF. Due to lack of contrast differentiation between the area of interest and surrounding structures in a moving organ like heart, there is a lack of proper intraprocedural guidance using current imaging techniques for ablation. Cardiac image registration is currently under investigation and is in clinical use for AF ablation. Cardiac image registration, which involves integration of two images in the context of the left atrium (LA, is intermodal, with the acquired image and the real-time reference image residing in different image spaces, and involves optimization, where one image space is transformed into the other. Unlike rigid body registration, cardiac image registration is unique and challenging due to cardiac motion during the cardiac cycle and due to respiration. This review addresses the basic principles of the emerging technique of registration and the inherent limitations as they relate to cardiac imaging and registration.

  12. Histone deacetylase inhibition reduces cardiac Connexin43 expression and gap junction communication

    Directory of Open Access Journals (Sweden)

    RichardDavidVeenstra

    2013-04-01

    Full Text Available Histone deactylase (HDAC inhibitors are being investigated as novel therapies for cancer, inflammation, neurodegeneration, and heart failure. The effects of HDAC inhibitors on the functional expression of cardiac gap junctions (GJ are essentially unknown. The purpose of this study was to determine the effects of trichostatin A (TSA and vorinostat (VOR on functional GJ expression in ventricular cardiomyocytes. The effects of HDAC inhibition on connexin43 (Cx43 expression and functional GJ assembly were examined in primary cultured neonatal mouse ventricular myocytes. TSA and VOR reduced Cx43 mRNA, protein expression, and immunolocalized Cx43 GJ plaque area within ventricular myocyte monolayer cultures in a dose-dependent manner. Chromatin-immunoprecipitation experiments revealed altered protein interactions with the Cx43 promoter. VOR also altered the phosphorylation state of several key regulatory Cx43 phospho-serine sites. Patch clamp analysis revealed reduced electrical coupling between isolated ventricular myocyte pairs, altered transjunctional voltage-dependent inactivation kinetics, and steady state junctional conductance inactivation and recovery relationships. Single GJ channel conductance was reduced to 54 pS only by maximum inhibitory doses of TSA (>= 100 nM. These two hydroxamate pan-HDAC inhibitors exert multiple levels of regulation on ventricular GJ communication by altering Cx43 expression, GJ area, post-translational modifications (e.g. phosphorylation, acetylation, gating, and channel conductance. Although a 50% downregulation of Cx43 GJ communication alone may not be sufficient to slow ventricular conduction or induce arrhythmias, the development of class-selective HDAC inhibitors may help avoid the potential negative cardiovascular effects of pan-HDACI.

  13. Accumulation of slowly activating delayed rectifier potassium current (IKs) in canine ventricular myocytes

    DEFF Research Database (Denmark)

    Stengl, Milan; Volders, Paul G A; Thomsen, Morten Bækgaard; Spätjens, Roel L H M G; Sipido, Karin R; Vos, Marc A

    In guinea-pig ventricular myocytes, in which the deactivation of slowly activating delayed rectifier potassium current (IKs) is slow, IKs can be increased by rapid pacing as a result of incomplete deactivation and subsequent current accumulation. Whether accumulation of IKs occurs in dogs, in which...... revealed that the accumulation of canine IKs could occur, but only at rather short interpulse intervals (<100 ms). With action potential (AP) clamp commands of constant duration (originally recorded at rate of 2 Hz), an accumulation was only found at interpulse intervals close to 0 ms. Transmembrane...... potential recordings with high-resistance microelectrodes revealed, however, that at the fastest stimulation rates with normally captured APs (5 Hz) the interpulse interval exceeded 50 ms. This suggested that no IKs accumulation occurs, which was supported by the lack of effect of an IKs blocker, HMR 1556...

  14. Natural History of Cardiac and Respiratory Involvement, Prognosis and Predictive Factors for Long-Term Survival in Adult Patients with Limb Girdle Muscular Dystrophies Type 2C and 2D

    Science.gov (United States)

    Fayssoil, Abdallah; Ogna, Adam; Chaffaut, Cendrine; Chevret, Sylvie; Guimarães-Costa, Raquel; Leturcq, France; Wahbi, Karim; Prigent, Helene; Lofaso, Frederic; Nardi, Olivier; Clair, Bernard; Behin, Anthony; Stojkovic, Tanya; Laforet, Pascal; Orlikowski, David; Annane, Djillali

    2016-01-01

    Background Type 2C and 2D limb girdle muscular dystrophies (LGMD) are a group of autosomal recessive limb girdle muscular dystrophies manifested by proximal myopathy, impaired respiratory muscle function and cardiomyopathy. The correlation and the prognostic impact of respiratory and heart impairment are poorly described. We aimed to describe the long-term cardiac and respiratory follow-up of these patients and to determine predictive factors of cardio-respiratory events and mortality in LGMD 2C and 2D. Methods We reviewed the charts of 34 LGMD patients, followed from 2005 to 2015, to obtain echocardiographic, respiratory function and sleep recording data. We considered respiratory events (acute respiratory failure, pulmonary sepsis, atelectasis or pneumothorax), cardiac events (acute heart failure, significant cardiac arrhythmia or conduction block, ischemic stroke) and mortality as outcomes of interest for the present analysis. Results A total of 21 patients had type 2C LGMD and 13 patients had type 2D. Median age was 30 years [IQR 24–38]. At baseline, median pulmonary vital capacity (VC) was 31% of predicted value [20–40]. Median maximal inspiratory pressure (MIP) was 31 cmH2O [IQR 20.25–39.75]. Median maximal expiratory pressure (MEP) was 30 cm H2O [20–36]. Median left ventricular ejection fraction (LVEF) was 55% [45–64] with 38% of patients with LVEF <50%. Over a median follow-up of 6 years, we observed 38% respiratory events, 14% cardiac events and 20% mortality. Among baseline characteristics, LVEF and left ventricular end diastolic diameter (LVEDD) were associated with mortality, whilst respiratory parameters (VC, MIP, MEP) and the need for home mechanical ventilation (HMV) were associated with respiratory events. Conclusion In our cohort of severely respiratory impaired type 2C and 2D LGMD, respiratory morbidity was high. Cardiac dysfunction was frequent in particular in LGMD 2C and had an impact on long-term mortality. Trial Registration

  15. Postoperative cardiac arrest due to cardiac surgery complications

    International Nuclear Information System (INIS)

    To examine the role of anesthetists in the management of cardiac arrest occurring in association with cardiac anesthesia. In this retrospective study we studied the potential performances for each of the relevant incidents among 712 patients undergoing cardiac operations at Golestan and Naft Hospitals Ahwaz between November 2006 and July 2008. Out of total 712 patients undergoing cardiac surgery, cardiac arrest occurred in 28 cases (3.9%) due to different postoperative complications. This included massive bleeding (50% of cardiac arrest cases, 1.9% of patients); pulseless supra ventricular tachycardia (28.5% of cardiac arrest cases, 1.1% of patients); Heart Failure (7% of cardiac arrest cases, 0.2% of patients); Aorta Arc Rapture (3.5% of cardiac arrest cases, 0.1% of patients); Tamponade due to pericardial effusion (3.5% of cardiac arrest cases, 0.1% of total patients); Right Atrium Rupture (3.5% of cardiac arrest cases, 0.1% of patients) were detected after cardiac surgery. Out of 28 cases 7 deaths occurred (25% of cardiac arrest cases, 0.1% of patients). The most prevalent reason for cardiac arrest during post operative phase was massive bleeding (50%) followed by pulseless supra ventricular tachycardia (28.5%). Six patients had some morbidity and the remaining 15 patients recovered. There are often multiple contributing factors to a cardiac arrest under cardiac anesthesia, as much a complete systematic assessment of the patient, equipment, and drugs should be completed. We also found that the diagnosis and management of cardiac arrest in association with cardiac anesthesia differs considerably from that encountered elsewhere. (author)

  16. Dissociation of insulin receptor phosphorylation and stimulation of glucose transport in BC3H-1 myocytes

    International Nuclear Information System (INIS)

    The authors have investigated insulin receptor phosphorylation in differentiated cultured BC3H-1 myocytes. As for other insulin-responsive cell systems in partially purified wheat germ agglutinin receptor preparations, insulin stimulates the phosphorylation of its own receptor (95K β-subunits) in a dose dependent manner (0-400 nM), as identified by immunoprecipitation with antiinsulin receptor antibodies and SDS-PAGE. In the same preparations they show that 12-0-tetradecanyl phorbol acetate (TPA), which in many respect β-subunits in the same dose dependent manner (0-5 μM). In addition, antiinsulin receptor antibodies (B-10) also induced phosphorylation of mimics insulin action, also induced phosphorylation of the insulin receptor and HPLC tryptic maps of the 32P-labeled β-subunit were identical to those for insulin-induced receptor phosphorylation. However, while insulin and TPA are potent stimulators of glucose transport in these muscle cells, the antireceptor antibodies alone failed to provoke glucose transport at any concentration. The specificity and activity of these antibodies were confirmed in their system by their ability to inhibit insulin binding and insulin-stimulated glucose transport in a concentration-dependent manner. Their results indicate that phosphorylation of insulin receptor is not a crucial event in mediating insulin action, at least with respect to glucose transport. While the effects of the B-10 antibody in the BC3H-1 myocyte differ from those in the adipocyte, their results provide independent confirmation of their essential conclusion that phosphorylation of the insulin receptor may not be necessary nor sufficient for its acute action in promoting glucose transport

  17. Skeletal myocyte hypertrophy requires mTOR kinase activity and S6K1

    International Nuclear Information System (INIS)

    The protein kinase mammalian target of rapamycin (mTOR) is a central regulator of cell proliferation and growth, with the ribosomal subunit S6 kinase 1 (S6K1) as one of the key downstream signaling effectors. A critical role of mTOR signaling in skeletal muscle differentiation has been identified recently, and an unusual regulatory mechanism independent of mTOR kinase activity and S6K1 is revealed. An mTOR pathway has also been reported to regulate skeletal muscle hypertrophy, but the regulatory mechanism is not completely understood. Here, we report the investigation of mTOR's function in insulin growth factor I (IGF-I)-induced C2C12 myotube hypertrophy. Added at a later stage when rapamycin no longer had any effect on normal myocyte differentiation, rapamycin completely blocked myocyte hypertrophy as measured by myotube diameter. Importantly, a concerted increase of average myonuclei per myotube was observed in IGF-I-stimulated myotubes, which was also inhibited by rapamycin added at a time when it no longer affected normal differentiation. The mTOR protein level, its catalytic activity, its phosphorylation on Ser2448, and the activity of S6K1 were all found increased in IGF-I-stimulated myotubes compared to unstimulated myotubes. Using C2C12 cells stably expressing rapamycin-resistant forms of mTOR and S6K1, we provide genetic evidence for the requirement of mTOR and its downstream effector S6K1 in the regulation of myotube hypertrophy. Our results suggest distinct mTOR signaling mechanisms in different stages of skeletal muscle development: While mTOR regulates the initial myoblast differentiation in a kinase-independent and S6K1-independent manner, the hypertrophic function of mTOR requires its kinase activity and employs S6K1 as a downstream effector

  18. Heart regeneration in adult MRL mice

    Science.gov (United States)

    Leferovich, John M.; Bedelbaeva, Khamilia; Samulewicz, Stefan; Zhang, Xiang-Ming; Zwas, Donna; Lankford, Edward B.; Heber-Katz, Ellen

    2001-08-01

    The reaction of cardiac tissue to acute injury involves interacting cascades of cellular and molecular responses that encompass inflammation, hormonal signaling, extracellular matrix remodeling, and compensatory adaptation of myocytes. Myocardial regeneration is observed in amphibians, whereas scar formation characterizes cardiac ventricular wound healing in a variety of mammalian injury models. We have previously shown that the MRL mouse strain has an extraordinary capacity to heal surgical wounds, a complex trait that maps to at least seven genetic loci. Here, we extend these studies to cardiac wounds and demonstrate that a severe transmural, cryogenically induced infarction of the right ventricle heals extensively within 60 days, with the restoration of normal myocardium and function. Scarring is markedly reduced in MRL mice compared with C57BL/6 mice, consistent with both the reduced hydroxyproline levels seen after injury and an elevated cardiomyocyte mitotic index of 10-20% for the MRL compared with 1-3% for the C57BL/6. The myocardial response to injury observed in these mice resembles the regenerative process seen in amphibians.

  19. Stem cells as therapy for cardiac disease — a review

    Directory of Open Access Journals (Sweden)

    Katarzyna Jezierska-Woźniak

    2011-04-01

    Full Text Available Acute myocardial infarction (AMI is one of the most significant causes of morbidity and mortalityworldwide. Stem cells represent an enormous chance to rebuild damaged heart tissue. Correct definition ofthe cardiac progenitors is necessary to understand heart development, and would pave the way for the use ofcardiac progenitors in the treatment of heart disease. Identifying, purifying and differentiating native cardiacprogenitor cells are indispensable if we are to overcome congenital and adult cardiac diseases. To understandtheir functions, physiology and action, cells are tested in animal models, and then in clinical trials. But becauseclinical trials yield variable results, questions about proper cardiac stem cells remain unanswered. Transplantedstem cells release soluble factors, acting in a paracrine fashion, which contributes to cardiac regeneration.Cytokines and growth factors have cytoprotective and neovascularizing functions, and may activate residentcardiac stem cells. Understanding all these mechanisms is crucial to overcoming heart diseases.

  20. Incretin attenuates diabetes-induced damage in rat cardiac tissue.

    Science.gov (United States)

    AbdElmonem Elbassuoni, Eman

    2014-09-01

    Glucagon-like peptide-1 (GLP-1), as a member of the incretin family, has a role in glucose homeostasis, its receptors distributed throughout the body, including the heart. The aim was to investigate cardiac lesions following diabetes induction, and the potential effect of GLP-1 on this type of lesions and the molecular mechanism driving this activity. Adult male rats were classified into: normal, diabetic, 4-week high-dose exenatide-treated diabetic rats, 4-week low-dose exenatide-treated diabetic rats, and 1-week exenatide-treated diabetic rats. The following parameters were measured: in blood: glucose, insulin, lactate dehydrogenase (LDH), total creatine kinase (CK), creatine kinase MB isoenzyme (CK-MB), and CK-MB relative index; in cardiac tissue: lipid peroxide (LPO) and some antioxidant enzymes. The untreated diabetic group displayed significant increases in blood level of glucose, LDH, and CK-MB, and cardiac tissue LPO, and a significant decrease in cardiac tissue antioxidant enzymes. GLP-1 supplementation in diabetic rats definitely decreased the hyperglycemia and abolished the detrimental effects of diabetes on the cardiac tissue. The effect of GLP-1 on blood glucose and on the heart also appeared after a short supplementation period (1 week). It can be concluded that GLP-1 has beneficial effects on diabetes-induced oxidative cardiac tissue damage, most probably via its antioxidant effect directly acting on cardiac tissue and independent of its hypoglycemic effect. PMID:25011640

  1. Stem cells as therapy for cardiac disease — a review

    Directory of Open Access Journals (Sweden)

    Marek Kajetan Jurkowski

    2011-04-01

    Full Text Available Acute myocardial infarction (AMI is one of the most significant causes of morbidity and mortality worldwide. Stem cells represent an enormous chance to rebuild damaged heart tissue. Correct definition of the cardiac progenitors is necessary to understand heart development, and would pave the way for the use of cardiac progenitors in the treatment of heart disease. Identifying, purifying and differentiating native cardiac progenitor cells are indispensable if we are to overcome congenital and adult cardiac diseases. To understand their functions, physiology and action, cells are tested in animal models, and then in clinical trials. But because clinical trials yield variable results, questions about proper cardiac stem cells remain unanswered. Transplanted stem cells release soluble factors, acting in a paracrine fashion, which contributes to cardiac regeneration. Cytokines and growth factors have cytoprotective and neovascularizing functions, and may activate resident cardiac stem cells. Understanding all these mechanisms is crucial to overcoming heart diseases. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 1, pp. 13–25

  2. Cardiac molecular-acclimation mechanisms in response to swimming-induced exercise in Atlantic salmon.

    Directory of Open Access Journals (Sweden)

    Vicente Castro

    Full Text Available Cardiac muscle is a principal target organ for exercise-induced acclimation mechanisms in fish and mammals, given that sustained aerobic exercise training improves cardiac output. Yet, the molecular mechanisms underlying such cardiac acclimation have been scarcely investigated in teleosts. Consequently, we studied mechanisms related to cardiac growth, contractility, vascularization, energy metabolism and myokine production in Atlantic salmon pre-smolts resulting from 10 weeks exercise-training at three different swimming intensities: 0.32 (control, 0.65 (medium intensity and 1.31 (high intensity body lengths s(-1. Cardiac responses were characterized using growth, immunofluorescence and qPCR analysis of a large number of target genes encoding proteins with significant and well-characterized function. The overall stimulatory effect of exercise on cardiac muscle was dependent on training intensity, with changes elicited by high intensity training being of greater magnitude than either medium intensity or control. Higher protein levels of PCNA were indicative of cardiac growth being driven by cardiomyocyte hyperplasia, while elevated cardiac mRNA levels of MEF2C, GATA4 and ACTA1 suggested cardiomyocyte hypertrophy. In addition, up-regulation of EC coupling-related genes suggested that exercised hearts may have improved contractile function, while higher mRNA levels of EPO and VEGF were suggestive of a more efficient oxygen supply network. Furthermore, higher mRNA levels of PPARα, PGC1α and CPT1 all suggested a higher capacity for lipid oxidation, which along with a significant enlargement of mitochondrial size in cardiac myocytes of the compact layer of fish exercised at high intensity, suggested an enhanced energetic support system. Training also elevated transcription of a set of myokines and other gene products related to the inflammatory process, such as TNFα, NFκB, COX2, IL1RA and TNF decoy receptor. This study provides the first

  3. Multidisciplinary VA Cardiac Rehabilitation: Preliminary Results and Treatment Efficacy.

    Science.gov (United States)

    Daly, Susan S.; And Others

    Initial studies have suggested that a cardiac rehabilitation program (CRP) may improve the physical and psychological functioning of participants. However, these studies have generally addressed a relatively young group of employed adult males. Three studies were designed to target an older, generally retired Veterans Administration population for…

  4. Variation in cardiac glycoside content of monarch butterflies from natural populations in eastern North America.

    Science.gov (United States)

    Brower, L P; McEvoy, P B; Williamson, K L; Flannery, M A

    1972-08-01

    A new spectrophotometric assay has been used to determine the gross concentration of cardiac glycoside in individual monarch butterflies. Adults sampled during the fall migration in four areas of eastern North America exhibited a wide variation in cardiac glycoside concentration. The correlation between spectrophotometrically measured concentrations and emetic dose determinations supports the existence of a broad palatability spectrum in wild monarch butterflies. The cardiac gylcoside concentration is greater in females than in males and is independent of the dry weight of the butterflies; contrary to prediction, both the concentration mean and variance decrease southward. The defensive advantage of incorporating cardiac glycosides may be balanced by detrimental effects on individual viability. PMID:5043141

  5. Mechanisms of the anticholinergic effect of SUN 1165 in comparison with flecainide, disopyramide and quinidine in single atrial myocytes isolated from guinea-pig.

    OpenAIRE

    Inomata, N.; T. Ishihara; Akaike, N.

    1991-01-01

    1. The mechanism of the anticholinergic effect of SUN 1165 on the acetylcholine (ACh)-induced K+ current (IK.ACh) was examined and compared with those of flecainide, disopyramide and quinidine in single atrial myocytes, in a whole-cell configuration by use of the concentration-jump technique. This technique combines an intracellular perfusion and a rapid exchange of external solution surrounding the voltage-clamped single myocyte within 2 ms. 2. In the cells loaded with guanosine-5'-triphosph...

  6. Plastic Bronchitis in an Adult with Asthma

    OpenAIRE

    Kim, Eun Jin; Park, Jung Eun; Kim, Dong Hoon; Lee, Jaehee

    2012-01-01

    Plastic bronchitis is a rare disease characterized by marked airway obstruction, via the formation of large gelatinous or rigid airway cast. In Korea, there were a few case reports with plastic bronchitis not in adults, but in children. So we report a case of an adult who was diagnosed as plastic bronchitis with eosinophilic casts, with no history of atopic and cardiac disease.

  7. Improvement of cardiac function and reversal of gap junction remodeling by Neuregulin-1β in volume-overloaded rats with heart failure

    Institute of Scientific and Technical Information of China (English)

    Xue-Hui Wang; Xiao-Zhen Zhuo; Ya-Juan Ni; Min Gong; Ting-Zhong Wang; Qun Lu; Ai-Qun Ma

    2012-01-01

    Objective We performed experiments using Neuregulin-1β (NRG-1β) treatment to determine a mechanism for the protective role derived from its beneficial effects by remodeling gap junctions (GJs) during heart failure (HF). Methods Rat models of HF were established by aortocaval fistula. Forty-eight rats were divided randomly into the HF (HF, n = 16), NRG-1β treatment (NRG, n = 16), and sham operation (S, n = 16) group. The rats in the NRG group were administered NRG-1β (10 μg/kg per day) for 7 days via the tail vein, whereas the other groups were injected with the same doses of saline. Twelve weeks after operation, Connexin 43 (Cx43) expression in single myocytes obtained from the left ventricle was determined by immunocytochemistry. Total protein was extracted from frozen left ventricular tissues for immunoblotting assay, and the ultrastructure of myocytes was observed by transmission electron microscopy. Results Compared with the HF group, the cardiac function of rats in the NRG group was markedly improved, irregular distribution and deceased Cx43 expression were relieved. The ultrastructure of myocytes was seriously damaged in HF rats, and NRG-1β reduced these pathological damages. Conclusions Short-term NRG-1β treatment can rescue pump failure in experimental models of volume overload-induced HF, which is related to the recovery of GJs structure and the improvement of Cx43 expression.

  8. Pediatric cardiac postoperative care

    Directory of Open Access Journals (Sweden)

    Auler Jr. José Otávio Costa

    2002-01-01

    Full Text Available The Heart Institute of the University of São Paulo, Medical School is a referral center for the treatment of congenital heart diseases of neonates and infants. In the recent years, the excellent surgical results obtained in our institution may be in part due to modern anesthetic care and to postoperative care based on well-structured protocols. The purpose of this article is to review unique aspects of neonate cardiovascular physiology, the impact of extracorporeal circulation on postoperative evolution, and the prescription for pharmacological support of acute cardiac dysfunction based on our cardiac unit protocols. The main causes of low cardiac output after surgical correction of heart congenital disease are reviewed, and methods of treatment and support are proposed as derived from the relevant literature and our protocols.

  9. Somatostatin receptor scintigraphy predicts impending cardiac allograft rejection before endomyocardial biopsy

    Energy Technology Data Exchange (ETDEWEB)

    Aparici, C.M.; Martin, J.C.; Tembl, A.; Flotats, A.; Estorch, M.; Catafau, A.M.; Berna, L.; Carrio, I. [Nuclear Medicine Department, Hospital Sant Pau, Barcelona (Spain); Narula, J.; Puig, M.; Camprecios, M.; Ballester, M. [Cardiology Department, Sant Pau Hospital, Barcelona (Spain)

    2000-12-01

    The invasive nature of endomyocardial biopsy has led to a search for alternative diagnostic modalities for the detection of cardiac allograft rejection. To date, no non-invasive test meets all the requirements for the detection of acute and chronic rejection. The rejection process usually presents with lymphocyte infiltration with or without myocyte necrosis, which indicates the severity of cardiac allograft rejection and the necessity of treatment. Activated lymphocytes express somatostatin receptors; thus somatostatin receptor imaging could be used to target them. The aim of this study was to assess the feasibility of using somatostatin receptor imaging to target activated lymphocytes in the process of cardiac allograft rejection. Thirteen somatostatin receptor imaging studies were performed on ten cardiac allograft recipients 12-4745 days after transplantation, simultaneously with endomyocardial biopsy, to assess the imaging of activated lymphocytes in comparison with histological findings. Somatostatin receptor imaging was performed 4 h after the injection of 110 MBq of the somatostatin analogue indium-111 pentetreotide. {sup 111}In-pentetreotide uptake was visually scored and semi-quantitatively estimated by the calculation of a heart-to-lung ratio (HLR). The visual score correlated with the HLR. Intense/moderate uptake on visual assessment and an HLR >1.6 was observed in eight studies. In three of these studies there was significant rejection in the simultaneous endomyocardial biopsy [International Society of Heart and Lung Transplantation (ISHLT) rejection grade 3A/4]. Intense/moderate uptake was associated with mild or no rejection in the remaining five patients, and in four of them the next endomyocardial biopsy performed 1 week later demonstrated significant rejection requiring treatment. Two patients with low uptake and an HLR <1.6 had no evidence of rejection either in the simultaneous endomyocardial biopsy or in the endomyocardial biopsy performed the

  10. Somatostatin receptor scintigraphy predicts impending cardiac allograft rejection before endomyocardial biopsy

    International Nuclear Information System (INIS)

    The invasive nature of endomyocardial biopsy has led to a search for alternative diagnostic modalities for the detection of cardiac allograft rejection. To date, no non-invasive test meets all the requirements for the detection of acute and chronic rejection. The rejection process usually presents with lymphocyte infiltration with or without myocyte necrosis, which indicates the severity of cardiac allograft rejection and the necessity of treatment. Activated lymphocytes express somatostatin receptors; thus somatostatin receptor imaging could be used to target them. The aim of this study was to assess the feasibility of using somatostatin receptor imaging to target activated lymphocytes in the process of cardiac allograft rejection. Thirteen somatostatin receptor imaging studies were performed on ten cardiac allograft recipients 12-4745 days after transplantation, simultaneously with endomyocardial biopsy, to assess the imaging of activated lymphocytes in comparison with histological findings. Somatostatin receptor imaging was performed 4 h after the injection of 110 MBq of the somatostatin analogue indium-111 pentetreotide. 111In-pentetreotide uptake was visually scored and semi-quantitatively estimated by the calculation of a heart-to-lung ratio (HLR). The visual score correlated with the HLR. Intense/moderate uptake on visual assessment and an HLR >1.6 was observed in eight studies. In three of these studies there was significant rejection in the simultaneous endomyocardial biopsy [International Society of Heart and Lung Transplantation (ISHLT) rejection grade 3A/4]. Intense/moderate uptake was associated with mild or no rejection in the remaining five patients, and in four of them the next endomyocardial biopsy performed 1 week later demonstrated significant rejection requiring treatment. Two patients with low uptake and an HLR <1.6 had no evidence of rejection either in the simultaneous endomyocardial biopsy or in the endomyocardial biopsy performed the

  11. Giant Cardiac Cavernous Hemangioma.

    Science.gov (United States)

    Unger, Eric; Costic, Joseph; Laub, Glenn

    2015-07-01

    We report the case of an asymptomatic giant cardiac cavernous hemangioma in a 71-year-old man. The intracardiac mass was discovered incidentally during surveillance for his prostate cancer; however, the patient initially declined intervention. On presentation to our institution 7 years later, the lesion had enlarged significantly, and the patient consented to excision. At surgery, an 8 × 6.5 × 4.8 cm intracardiac mass located on the inferior heart border was excised with an intact capsule through a median sternotomy approach. The patient had an uneventful postoperative course. We discuss the diagnostic workup, treatment, and characteristics of this rare cardiac tumor. PMID:26140782

  12. Radiography in cardiology [cardiac disorders, cardiac insufficiency

    International Nuclear Information System (INIS)

    The diagnostic procedure in cardiology nearly always requires an X-ray examination of the thorax. This examination is very informative when it is correctly performed and interpreted. The radiographs need to be read precisely and comprehensively: this includes the evaluation of the silhouette of the heart (size, form and position) as well as the examination of extra-cardiac thoracic structures allowing among other things to search for signs of cardiac insufficiency. The conclusion of the X-ray examination can be drawn after having brought together information concerning the case history, the clinical examination and the study of the radiographs. The radiologist finds himself in one of three situations: (1) the information provided by the X-ray pictures is characteristic of a disease and permits a diagnosis, (2) the X-ray pictures indicate a group of hypotheses; further complementary tests could be useful and (3) the X-ray pictures provide ambiguous even contradictory information; it is necessary to complete the radiological examination by other techniques such as an ultrasonographic study of the heart

  13. Endothelin-stimulated secretion of natriuretic peptides by rat atrial myocytes is mediated by endothelin A receptors.

    Science.gov (United States)

    Thibault, G; Doubell, A F; Garcia, R; Larivière, R; Schiffrin, E L

    1994-03-01

    Endothelin (ET), a potent vasoconstrictor peptide, is known to enhance the secretion of atrial natriuretic factor (ANF) by the heart. In the present study, we investigated the potency of ET isopeptides to stimulate ANF and brain natriuretic peptide (BNP) secretion in primary cultures of neonatal atrial myocytes, and we characterized the receptor mediating these effects. All ET isopeptides caused a twofold increase of ANF and BNP secretion with the following order of potency: ET-1 approximately ET-2 > sarafotoxin 6b > ET-3. Secretion of the natriuretic peptides was blocked by BQ-123, an ETA-receptor antagonist, but was not affected by either IRL-1620 or [Ala1,3,11,15]ET-1, two ETB-receptor agonists. ET receptors were localized by autoradiography on the surface of atrial myocytes, indicating that contaminating cells were not responsible for 125I-ET-1 binding. Competition binding analyses were then used to assess the ET-receptor subtype on atrial myocyte membrane preparations. A high-affinity (100 pmol/L) binding site with high density (approximately 1500 fmol/mg) was found to preferentially bind the ET isopeptides in the following order: ET-1 > or = ET-2 > or = sarafotoxin 6b > ET-3. Binding was totally displaced by BQ-123 but not by IRL-1620. The ET binding site therefore had the characteristics of an ETA-like receptor. Analysis by cross-linking and sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that it possessed a molecular mass of approximately 50 kD. Northern blot analysis of both ETA- and ETB-receptor mRNAs allowed only the detection of the former, indicating that the ETB receptor may be expressed in very small amounts. These results demonstrate that ANF and BNP secretion by atrial myocytes is enhanced by ET via binding to an ETA-like receptor. PMID:8118954

  14. Myocyte enhancer factor 2C function in skeletal muscle is required for normal growth and glucose metabolism in mice

    OpenAIRE

    Anderson, Courtney M.; Hu, Jianxin; Barnes, Ralston M; Heidt, Analeah B.; Cornelissen, Ivo; Black, Brian L.

    2015-01-01

    Background Skeletal muscle is the most abundant tissue in the body and is a major source of total energy expenditure in mammals. Skeletal muscle consists of fast and slow fiber types, which differ in their energy usage, contractile speed, and force generation. Although skeletal muscle plays a major role in whole body metabolism, the transcription factors controlling metabolic function in muscle remain incompletely understood. Members of the myocyte enhancer factor 2 (MEF2) family of transcrip...

  15. Anthropomorphizing the Mouse Cardiac Action Potential via a Novel Dynamic Clamp Method

    Science.gov (United States)

    Ahrens-Nicklas, Rebecca C.; Christini, David J.

    2009-01-01

    Abstract Interspecies differences can limit the translational value of excitable cells isolated from model organisms. It can be difficult to extrapolate from a drug- or mutation-induced phenotype in mice to human pathophysiology because mouse and human cardiac electrodynamics differ greatly. We present a hybrid computational-experimental technique, the cell-type transforming clamp, which is designed to overcome such differences by using a calculated compensatory current to convert the macroscopic electrical behavior of an isolated cell into that of a different cell type. We demonstrate the technique's utility by evaluating drug arrhythmogenicity in murine cardiomyocytes that are transformed to behave like human myocytes. Whereas we use the cell-type transforming clamp in this work to convert between mouse and human electrodynamics, the technique could be adapted to convert between the action potential morphologies of any two cell types of interest. PMID:19917221

  16. Changes in the microvascular network during cardiac growth, development, and aging.

    Science.gov (United States)

    Rakusan, K; Cicutti, N; Flanagan, M F

    1994-01-01

    Quantitative changes in the terminal vascular bed of the mammalian heart were assessed during postnatal development and aging. The most striking feature is a considerable formation of new capillaries in the early postnatal period, accompanied by a moderate formation of new arterioles. On the other hand, coronary arterioles seem to disappear at a higher rate than capillaries in the senescent heart. We proposed a three-dimensional structural model of tissue capillary supply, defined as capillary domain area times capillary segment length. This so called capillary supply unit increases as a function of age and body growth. It is very similar in size and shape (length to width ratio) to cardiac myocytes. PMID:7849763

  17. Serum myoglobin after cardiac catheterisation.

    OpenAIRE

    McComb, J. M.; McMaster, E A

    1982-01-01

    Study of 80 consecutive patients undergoing elective diagnostic cardiac catheterisation showed that after the procedure 25 (31%) developed myoglobinaemia. This was attributed to complications of the catheterisation in two. The remaining 23 had received premedication by intramuscular injection. In patients without intramuscular injections myoglobinaemia did not occur after uncomplicated cardiac catheterisation. The study did not support the proposition that cardiac catheterisation results in m...

  18. Regression of altitude-produced cardiac hypertrophy.

    Science.gov (United States)

    Sizemore, D. A.; Mcintyre, T. W.; Van Liere, E. J.; Wilson , M. F.

    1973-01-01

    The rate of regression of cardiac hypertrophy with time has been determined in adult male albino rats. The hypertrophy was induced by intermittent exposure to simulated high altitude. The percentage hypertrophy was much greater (46%) in the right ventricle than in the left (16%). The regression could be adequately fitted to a single exponential function with a half-time of 6.73 plus or minus 0.71 days (90% CI). There was no significant difference in the rates of regression for the two ventricles.

  19. Effects of Matrine on Aconitine-Induced Electrophysiological Changes in Rat Ventricular Myocytes

    Institute of Scientific and Technical Information of China (English)

    SHANHong-li; YANGBao-feng; ZHOUYu-hong; WANGHe; LIBao-xin

    2004-01-01

    Aim To explore the reason that the antiarrhythmic effect of the extract of traditional Chinese medicinal herb, matrine, is weaker than quinidine and verapamil by comparision of the effect and efficacy of matrine on various kinds of transmembrane ionic currents with those of quinidine and verapamil; and to demonstrate the best targets for antiarrhythinic drugs. Methods Whole-cell patch-clamp techniques were used to record the action potential and ionic currents in single cells of rat ventrictdar myocytes. Aconitine was used to induce the changes of ionic currents, then study the effects of matrine and quinidine, verapamil on aconitine-induced imbalanced channel currents and action potential. Results Aconitine 1μmol·L-1 induced significant changes in transmembrane currents and action potential in single cells of rat ventricular myocytes. APD was significantly prolonged by aconitine. Simtdtaneously, aconitine increased sodium, L-type calcium and in-ward rectifier potassium currents. Matrine 100μmol·L-1 reversed the aconitine-induced changes of sodium current (INa)from (-70.2±10.5) pA/pF to (-39.6±4.0) pA/pF (n=5, P<0.05 vs aconitine) ; L-type calcium current (ICa-L)from (20.4±3.8) pA/pF to (-12.9±2.9) pA/pF (n=6, P<0.01); the inward rectifier potassium current (IK1) from (-32.2±1.08) pA/pF to (-24.0±3.4) pA/pF (n=6, P<0.01 ), and action potential duration. The reversal effectsof quinidine and verapamil on aconitine-induced changes of APD and ionic currents were more marked than matrine. Conclusion Aco-nitine significantly disturbs the normal equilibrium of ion channels in ventricular myecytes. It induces changes of INa, ICa-L, IK1 and prolongation of action potential duration. Matrine at concentration 50 or 100μmol·L-1 statistically significantly suppresses aconitine-induced changes of APD and ionic currents. The potency and efficacy of inhibitory effect of matrine are markedly weaker than those of commonly used verapamil and quinidine.

  20. Effects of Chinese herbs on multiple ion channels in isolated ventricular myocytes

    Institute of Scientific and Technical Information of China (English)

    LI Ning; MA Ke-juan; WU Xiang-feng; SUN Qi; ZHANG Yi-hui; PU Jie-lin

    2007-01-01

    Background Shensong Yangxin (SSYX) is one of the compound recipe of Chinese materia medica. This study was conducted to investigate the effects of SSYX on sodium current (INa), L-type calcium current (ICa,L), transient outward potassium current (Ito), delayed rectifier current (IK), and inward rectifier potassium currents (IK1) in isolated ventricular myocytes.Methods Whole cell patch-clamp technique was used to study ion channel currents in enzymatically isolated guinea pig or rat ventricular myocytes.Results SSYX decreased peak INa by (44.84±7.65)% from 27.21±5.35 to 14.88±2.75 pA/pF (n=5, P<0.05). The medicine significantly inhibited the ICa,L. At concentrations of 0.25, 0.50, and 1.00 g/100 mi, the peak ICa,L was reduced by(19.22±1.10)%, (44.82±6.50)% and (50.69±5.64)%, respectively (n=5, all P<0.05). SSYX lifted the Ⅰ-Ⅴ curve of both INa and ICa,L without changing the threshold, peak and reversal potentials. At the concentration of 0.5%, the drug blocked the transient component of Ito by 50.60% at membrane voltage of 60 mV and negatively shifted the inactive curve and delayed the recovery from channel inactivation. The tail current density of IK was decreased by (30.77±1.11)% (n=5,P<0.05) at membrane voltage of 50 mV after exposure to the medicine and the time-dependent activity of IK was also inhibited. Similar to the effect on IK, the SSYX inhibited IK1 by 33.10% at the test potential of -100 mV with little effect on reversal potential and the rectification property.Conclusions The experiments revealed that SSYX could block multiple ion channels such as INa ICa,L, Ik, Ito and IK1,which may change the action potential duration and contribute to some of its antiarrhythmic effects.